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Synopsis 

We are concerned with vibration models with interface conditions. Due to 
interaction or damage, one is confronted by interface conditions or dynamical 
boundary conditions instead of classical boundary conditions. 

For the analysis as well as implementation of the finite element method , 
the model problems must be written in variational form. We found the 
process more manageable if we start with the equations of motion and the 
constitutive equations. Consequently, we formulate each problem specifying 
the equations of motion and constitutive equations separately. For the sake of 
completeness and comparison with the literature, the models are also given in 
terms of the displacement, i.e. a partial differential equation with boundary 
and"interface conditions. Due to the fact that our problems are not standard, 
it is necessary to discuss these aspects in some detail. 

Model problems with interface conditions is a relatively new subject , and 
we could not find adequate derivations of the variational form in standard 
references. Hence we found it necessary to present rigorous derivations. 

For the finite element analysis it is necessary to consider product spaces. 
The basis of the finite dimensional subspace for the Galerkin approximation 
consists of ordered pairs or triplets of functions instead of ordinary functions. 

Our main concern is error analysis. As a result finite element interpolation 
had to be adapted for product spaces. A projection operator is defined and 
the approximation error derived from the interpolation error. 

'vVe consider three typical problems: Equilibrium problem, Eigenvalue prob
lem and Vibration problem. In each case we show that the convergence 
theory can be adapted for product spaces. 
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Samevatting 

Die ondersoek handel oor vibrasie modelle met tussenvlakvoorwaardes. As 
gevolg van interaksie of skade ontstaan tussenvlakvoorwaardes of dinamiese 
randvoorwaardes in plaas van die klassieke randvoorwaardes. 

Vir die analise sowel as implimentering van die eindige element metode , moet 
die wiskundige modelle in variasievorm geskryf word. Ons het gevind dat 
die proses meer hanteerbaar is as ons met die bewegingsvergelykings en die 
samestellingsvergelykings begin. Gevolglik het ons vir elke probleem die be
wegingsvergelykings en die samestellingsvergelykings afsonderlik gegee. Vir 
volledigheid, en ook om met die literatuur te vergelyk, word elk van die 
modelle ook in terme van die verplasing gegee, naamlik 'n parsiele differensi
aalvergelyking met randvoorwaardes en tussenvlakvoorwaardes. Aangesien 
die probleme nie standaard is nie, is dit nodig om van hierdie asp ekte in 
besonderhede te bespreek. 

Wiskundige modelle met tussenvlakvoorwaardes is 'n betreklik nuwe onder
werp en ons kon nie voldoende afteidings van die variasievorm in standaard 
bronne kry nie. Om hierdie rede het ons dit nodig geag om wiskundig kor
rekte afteidings aan te bied. 

Produkruimtes is no dig vir die eindige element analise. Die basis van die 
eindig dimensionale deelruimte vir die Galerkin benadering bestaan uit geordende 
pare of geordende drietalle van funksies, in plaas van die gewone funksies. 

Ons hoofbelangstelling is die foutanalise . Gevolglik moes eindige element in
terpolasie aangepas word vir produkruimtes. 'n Projeksie operator is gedefinieer 
en die benaderingsfout word afgelei in terme van die interpolasiefout. 
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Ons beskou drie tipiese probleme: Ewewigsprobleem, Eiewaardeprobleem en 
Vibrasieprobleem. In elk van die gevalle to on ons aan dat die konvergensie
teorie aangepas kan word vir produkruimtes. 

Ons bied ook twee gevalle studies aan, naamlik die wiskundige modelle vir die 
beskadigde balk en die plaat-balk. Die eindige element metode word gebruik 
om benaderings vir die ewewigsprobleem, eiewaardeprobleem en vibrasie
probleem te kry. Hierdie resultate toon dat die metode hoogs effektief is en 
dat die foute ooreenstem met die voorspellings uit die teorie. 
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Chapter 1 

Introduction 

As the title indicates, this thesis is about the application of the finite element 
method to vibration problems. We have in mind the implementation of the 
method (computation of approximations) as well as error analysis. 

To be more specific, we are concerned with the vibration of beams and plates. 
Partial differential equations that model the vibration of beams and plates 
are classical topics. However, new mathematical problems appear from time 
to time. One reason is that mathematical models are changed to provide a 
more accurate description of reality. Another is that new situations arise in 
ind ustrial applications. 

The stabilization and control of beams and plates lead to model problems 
with non-standard boundary conditions. We give but three examples [BK] , 
[CDKP] and [LL] from a vast literature. 

Due to interaction or damage one is confronted by interface conditions or 
dynamical boundary conditions instead of classical boundary conditions. Our 
main examples are the vibration of a damaged beam and a plate beam model. 
These problems are presented in Chapter 2 with the necessary references. 

It is necessary to adapt the finite element method to accommodate these 
problems. The derivation of the variational form is one aspect treated at 
length in Chapter 3. 

For the analysis of the model problems it is necessary to consider product 
spaces. The basis of the finite dimensional subspace for the Galerkin approx
imation consists of ordered pairs or triple of functions instead of ordinary 
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2 CHAPTER 1. INTRODUCTION 

functions. As a result finite element interpolation had to be adapted for 
product spaces. 

Our main concern is error analysis . In Chapter 5 we consider the three typical 
problems: Equilibrium problem, Eigenvalue problem and Vibration problem. 
In each case we show that the convergence theory can be adapted to product 
spaces. 

To implement the method, it is necessary to adapt the basis functions to 
avoid the imposition of invalid constraints. To match the theory we rather 
used the basis elements mentioned earlier. The construction of these basis 
functions is discussed in Chapter 4. 

In Chapters 6 and 7 we have two case studies. Here we consider the dam
aged beam and plate beam problem and demonstrate the implementation of 
the finite element method to find approximations for equil ibrium problems. 
eigenvalue problems and vibration problems. 

 
 
 



Chapter 2 

Model problems 

2.1 Introduction 

In this chapter we present the one and two dimensional vibration models 
that form the basis of this study. The common feature in the models is the 
presence of interface conditions-although these interface conditions may 
occur for different reasons. 

For the analysis as well as implementation of the finite element method, 
the model problems must be written in variational form. We found the 
process more manageable if we start with the equations of motion and the 
constitutive equations. Consequently, we formulate each problem specifying 
the equations of motion and constitutive equations separately. For the sake of 
completeness and comparison with the literature , the models are also given in 
terms of the displacement , i.e. a partial differential equation with boundary 
and interface conditions. Due to the fact that our problems are not standard , 
it is necessary to discuss these aspects in some detail. 

We also write the model problems in dimensionless form to simplify numerical 
experimentation. It also facilitates the interpretation of numerical results. 

In Sections 2.2 and 2.5 the equations of motion and the constitutive equations 
for a beam and a plate are discussed. This paves the way for the presentation 
of the model problems in Sections 2.3,2.4 and 2.6. The models for a damaged 
beam in Section 2.3 and a plate beam system in Section 2.6 are the main 
topics. In Section 2.4 other beam models involving interface conditions are 
presented. 

3 

 
 
 



CHAPTER 2. MODEL PROBLEMS 4 

2.2 Motion of a beam 

In this section we focus on the small transverse vibration of a beam modelled 
as a one dimensional continuum, i.e. the reference configuration is an interval 
on the real line. The beam has length £, density p, cross sectional area A 
and area moment of inertia I. The position of point x at time t is denoted 
by u(x, t). The shear force is denoted by F and the bending moment by 
M. P denotes an external lateral load on the beam, kl and k2 are damping 
constants and E is Young's modulus. 
motion are important. 

For our approach the equations of 

The equations of motion are given by 

(2.2.1) 

and 

(2.2,2) 

A const itutive equation for M is required to complete the model: 

(2.2,3) 

Viscous damping is included in the equation of motion (2.2,1) by the term 
kl atu , and the Kelvin-Voigt damping as the term k21ata~u, in the constitutive 
equation (2.2.3). The term pla;axu in the second equation of motion re
presents the angular momentum density of the cross section relative to the 
centroid. In the literature it is usually referred to as the rotary inertia term, 
See , for example, [I], [FuJ or [Se] for background on the modelling procedure, 

The mathematical model is given by equations (2.2,1), (2,2.2) and (2.2,3). 

D imensionless form 

Choose dimensionless variables ~ = xl€ and T = ti T with T a chosen time 
which will be specified later. It follows that if f(x, t) = 9(~ , T), then 

dT 1 
at! = ar9 dt = T ar9 , 

and, similarly, 

 
 
 



5 CHAPTER 2. MODEL PROBLEMS 

Introduce the following dimensionless quantities: 

*(t ) = u(x, t) F *(t ) = F (x, t) M*(t ) = f.M(x, t) 

u ", T f. ' ",T EA' ",T E1' 


p* (t ) = f.3 P(X, t ) >. = ~ = ~ 
",T E1' ET' MET· 

In terms of these dimensionless quantities (2.2.1), (2.2 .2 ) and (2.2.3) become 

ET2 ET2 EIT2 
02U* (2.2.4)

T pf.2 o~F* - pA >'OTU* + pAf.4 P* , 

Af.2 F * 0 M* (2. 2.5 ) 1 + ~ , 
~2 * a ~2 * u~u + M TU~U . (2.2 .6) 

We choose 

T = f.2 fPA 
VEi ' 

and introduce dimensionless constants 

pf.2 >'f.2 
r = ET2 and k = r A . 

If we return to the original notation, i.e . use x and t for the spatial and 
time variables and u, F, M and P for the dimensionless quant ities, the 
dimensionless form of the model is given by 

02U 
t 

1 
-oxF 
r 

kotu + P, (2.2.7) 

ro;oxu 
1 
-F + oxM, (2 .2.8) 
r 

M o~u + MOtO~U . (2.2 .9) 

These equations yield the following partial differential equation describing 
small transverse vibration of a beam in terms of the dimensionless displace
ment u: 

In Section 2.6 we have the situation where a plate is supported by beams. 

In this case (2.2.2) must be modified to include a couple L to allow for the 


 
 
 



6 CHAPTER 2. M ODEL PROBLEMS 

bending moment density transmitted to the beam by the plate. To obtain 
the dimensionless form we set 

The second equation of motion (2.2.8) changes to 

2 1 
rat oxu = -F + oxlv! + L , (2.2.10) 

r 

if we write L for L*. 

 
 
 



CHAPTER 2. MODEL PROBLEMS 7 

2.3 Model for a damaged beam 

In this section we consider a model for small transverse vibration of a can
tilever beam damaged at a single point. The model was proposed by Vil
joen et al [VV1. See also [JVRVl for the model that includes Kelvin-Voigt 
damping. In this model the interface condition is due to the mathematical 
description of the damage. 

We start with the equations, in dimensionless form, that describe the dynam
ical behaviour of an undamaged cantilever beam. The reference configuration 
is the interval I = [0,1] and the displacement of x at time t is denoted by 
u(x, t ). 

From Section 2.2 the equations of motion are 

(2.3. 1) 

and 

(2.3.2) 

The constitutive equation is 

(2. 3.3) 

For a cantilever beam the standard boundary conditions at the endpoints are 

u(O, t) oxu(O, t) = 0, (2.3.4) 

F(1, t) M(1, t) = O. (2. 3.5) 

Suppose now that we have a damaged beam with the damage located at a 
single point x = a. (This is of course impossible but it is a convenient model 
for approximating the effect of damage. ) 

At x = a the following interface conditions are prescribed: 

u(a+ , t) u(a- , t), (2.3.6) 

F (a+,t) F(a- ,t), (2.3.7) 

M(a+,t) M(a-, t). (2.3.8) 

Right and left limits are denoted by the superscripts + and -. 

 
 
 



8 CHAPTER 2. MODEL PROBLEMS 

Condition (2.3.6) specifies the continuity of the beam and (2.3.7) and (2.3 .8) 
follow from the action-reaction principle for the shear force F and the bending 
moment IVI at x = a. 

The effect of the damage is modelled by the jump condition at x = a : 

M(a , t) = } (oxu(a+, t) - oxu(a- , t)) 

+J (otoxu(a+, t) - otoxu(a- , t)). (2.3.9) 

Right and left derivatives are denoted by the superscripts + and -. 

The jump condition (2.3 .9) allows for discontinuities in the derivatives oxu 
and OtOxU at x = a. Note that the magnitude of 6 indicates the extent of 
the damage and that 6 = 0 corresponds to a beam with no damage. It is 
clearly impossible to use 6 = 0 in this problem. However, our numerical 
experimentation in [ZVV] showed that solutions for relative small values of 
6 correspond to solutions of an undamaged beam. If a point force is applied 
at the free end of the beam it will result in an increase of the gradient. This 
increase, as a factor of the gradient , is exactly 6. The second term represents 
internal "friction". 

The mathematical model is given by (2.3.1) to (2.3.9). In Section 3.1 we will 
derive a variational formulation for the problem from these equations. 

In terms of the dimensionless displacement u, an equivalent form of the model 
is given on the next page. 

 
 
 



9 CHAPTER 2. MODEL PROBLEMS 

Problem 1 

O;u(x, t) - ro;o~u(x, t) -o;u(x, t) - MOtO;U(x, t) - kotu(x, t) 

+P(x, t), for °< x < 1, x ~ 0' , t > 0, 

u(O, t) oxu(O, t) = 0, 

o~u(1, t) + MOtO~u(1, t) 0, 
3 3ro;oxu(1, t) 0xu(1 , t) + MOtOxu( 1, t) , 

u(O'+,t) u(O'-, t), 


o;u(O'+, t) + fJ,oto;u(O'+ , t) = o;u(O'-, t) + fJ,OtO;u(O'-, t), 


ro;oxu(O'+, t) - o~u(O'+, t) 


-MOtO~u(O'+, t) 	 ro;oxu(O'-, t) - o~u(O'-, t) 

- MOt o~u(0' - , t), 

~ (oxu(O'+, t) - oxu(O'-, t)) 

+J (otoxu(O'+, t) - OtOxu(O'-, t )) . 

Instead of a cantilever beam other boundary conditions can be considered. 
For example, if the beam is clamped at both ends we have 

u(1, t) = oxu(1 , t) = ° 	 (2.3.10) 

instead of (2.3.5). 

 
 
 



10 CHAPTER 2. MODEL PROBLEMS 

2.4 	 B eam models wit h dynamical boundary 
conditions 

When some object of interest interacts with another object at some part of 
the boundary, standard boundary conditions are not applicable. The simplest 
case (which can be found in books on partial differential equations) is prob
ably a rod or spring, executing longitudinal vibrations with a mass attached 
to one end. See [BST], [GV], [BI] and [V1] for examples of models of this 
type. 

2.4. 1 	 T ip body 

In this section we consider a cantilever beam with a body, of mass mB and 
moment of inertia I B , attached to the free end at x = £. In this case the shear 
force and bending moment are no longer zero at x = £, but the following so 
called dynamical boundary conditions are prescribed. 

mBa:u(£, t) -F(£ , t), (2.4. 1) 

IBa:axu(£, t) -M(£ )t). (2 .4.2 ) 

We assume that the angle e through which the tip body rotates can be 
approximated by axu(£, t). 

These boundary conditions are also converted into dimensionless form by 
using the dimensionless quantities introduced in Section 2.2: 

-EAF*(1, T), 

- ~I 1\1{* (1 ,T) . 

Choosing dimensionless mass m and moment of inertia 1m as 

mBR mB m- - 
- r EAT2 - pA£ 

and 

I _ IB£ _ rIB 
m - IET2 - pU 

 
 
 



11 CHAPTER 2. MODEL PROBLEMS 

and returning to the original notation, yield the dimensionless boundary 
conditions 

rmo~u(l, t) = -F(l, t), (2.4.3) 

Im 0;Ox V, (1 , t) = -M(1 , t). (2.4.4) 

The mathematical model is given by the equations of motion (2.2.7) and 
(2.2.8), the constitutive equation (2.2.9), the standard boundary conditions 
at x = 0, 

u(O, t) = oxu(O , t) = 0, (2.4.5) 

and the dynamical boundary conditions (2.4.3) and (2.4.4). 

In terms of the dimensionless displacement u , the mathematical model follows 
as: 

Tip body problem 

o;u(x, t) - ro;o;u(x, t ) -o;u(x, t) - MOtO;U(x , t) - kotu(x , t) + P(.T, t), 

for 0 < x < I, t > 0, 

u(O, t) oxu(O, t) = 0, 

mo;u(l, t) -ro;oxu(1, t) + o;u(l, t) + MOtO;u(l, t), 

Imo;Oxu(l, t) -O;u(l , t) - MOtO;u(l , t). 

2.4.2 Boundary control 

For a cantilever beam it is possible to suppress vibration by boundary feed
back controls. See [C]. In this case the shear force and bending moment are 
not zero at x = € and the situation is modelled by boundary feedback control 
conditions: 

F (€, t) = - ko Otu (€, t), 


M(€, t) = -klotoxu(€, t). 


Choosing the dimensionless quantities 

ko kl € 
Mo = EAT€r and MI = E IT 

and returning to the original notation yields the dimensionless boundary 
conditions: 

F(l, t) - Mo Ot u (1, t) , 


M(l, t) -MIOtOxu(l , t). 


 
 
 



12 CHAPTER 2. MODEL PROBLEMS 

The mathematical model is given by these boundary conditions, the equa
tions of motion (2.2.7) and (2.2.8), the constitutive equation (2.2.9), and the 
standard boundary conditions at x = 0 (2.4.5). 

In terms of the dimensionless displacement u the model follows as: 

Boundary damping problem 

o;u(x, t ) - ro;o;u(x, t ) -o;u(x, t) - fJOtO;u(x, t ) - kotu (.y , t) + P(x, t ), 

for 0 < x < I, t > 0, 

u(O,t) oxu(O, t ) = 0, 

ro;oxu(l , t) o~u(l, t) + fJoto~u ( l, t) - fJootu(l, t) , 
o;u(l, t ) + fJoto;u(l, t ) -fJlotu(l, t ). 

2 .4.3 General m o del 

For theoretical purposes and without regard for the physical meaning of 
the model , we will formulate a generalization which contains both the two 
previous models as special cases. This general model will be used to derive 
a variational formulation. 

The general model is given by the equations of motion (2.2.7) and (2.2.8) . 
the constitutive equation (2.2.9), the standard boundary condit.ions at x = 0 
(2.4.5), and the following dynamical boundary conditions 

F(l, t) -fJootu( l, t ) - rmo(u(l, t), (2.4.6) 

M(l , t) = -fJlotoxu( l , t) - 1mo;oxu(l, t). (2.4 .7) 

By setting either fJo and fJl or m and 1m equal to zero , these boundary 
conditions reduce to the boundary conditions of the appropriate problem. 

In terms of the dimensionless displacement u the model follows as: 

Problem 2 

o(u(x, t) - ro(o;u(x, t) -o;u(x ,t) - p,8JJ~u(x) t) - ko[u(x. t) + P(x. t). 

for 0 < x < 1, t > 0, 

u(O ,t) oxu(O, t) = 0, 

mo;u(l, t) + ro;oxu(l , t) o~u(l, t) + fJoto~u(l , t) - p,ootu(l, t) , 

1mo;ox1L(l , t) -o;u(l ,t ) - p,oto;u(l, t) - P,lotu(l , t). 
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2.5 Motion of a thin plate 

When a plate interacts with a beam, one is confronted by more complicated 
dynamical boundary conditions than those encountered in Section 2.4. To 
prepare, we discuss the equations of motion and constitutive equation for a 
plate. We used [Fu], [TW], [Rei], [VI] and [V2]. 

Consider the transverse motion of a thin plate with density p and thickness 
h. The reference configuration for the plate is a domain n in the plane. The 
transverse displacement of x = (Xl, X2) at time t is u(x , t). This means that 
the position r of x at time t is r = (Xl, X2, u(x , t)). 

The equations of motion are 

photu = divT + q 

and 

-ROt H = T - R div JI,{ 

with T the contact force and q an external lateral load. H is the angular 
momentum density relative to the centroid and M the moment or contact 
couple. For more detail concerning the meaning of T and M see [Rei]' [FuJ 
or [TW]. Rand M are square matrices: 

R = [ Oil and M = -1 0 

Note that 	R- l = RT = -R. 

The constitutive equation is given by 

M = D [ 	 (1;- V)OlO~U o~u + VO?U ] 
-01u - V02U -(1 - V)0102U . 

(See [Fu, p 461J and [TW, p 81].) D is a measure of stiffness for the plate 
given by 

where E is Young's modulus and v Poisson 's ratio. 
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For small vibrations where shear is ignored, the angular momentum density 
H is given by 

where J = h3 /12 is the length moment of inertia. 

Dimensionless form 

We introduce the dimensionless variables: 6 = xl/a, 6 = X2/a andT = tl17 
where 1] will be specified later, and a is some typical length dimension of the 
plate. 

We introduce the following dimensionless quantities: 

3 

q*(e, T) = ;q(x,t), M *(e, T) = ;lvI(x,t). 

In terms of these quantities the equations of motion are given by 

1]2 D . * '1")2 D * 
~J dlVT + -h4 q ,pa p a 

2 
ha T * R div M* 
J 

with 

and the constitutive equation is given by 

M* = [ (1 - v)olchu* o~u* + vOfu* ] 
-Ofu* - vo~u* -(1 - V)8102U* . 

If we choose 

and return to the original notation, the equations of motion are given by 

1 
- div T + q, (2.5.1) 
r 
1 
-T-RdiviVJ (2.5.2) 
r 
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with 

and the constitutive equation by 

(2.5.3) 

(2.5.4) 

Substituting (2.5.2) into (2.5.1) yields 

r div (ROtH) + o;u = div (R div M) + q. 

Substituting (2.5.3) here we obtain the partial differential equation 

o;u-ro;(oiu+o~u) = - (oiu+2oio~u+oiu) + q. (2.5.5) 
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2.6 Plate beam model 

We consider a thin plate as in Section 2.5 which interacts with beams at 
the boundary. See [VI], [V2] and [ZVGVl]. The boundary an consists of 
two parts, I: and r . The section I: is rigidly supported and the section r 
elastically supported by a beam. The end points of the beam are also rigidly 
supported . The orientation of the boundary an is important. The domain 
n is on the "left" of the tangent. To be precise, we require that 

n = [ 0 1] T = RT 
-1 0 

where n is the unit exterior normal and T is the unit tangent. 

For the mathematical model of the plate we use the dimensionless equations 
of Section 2.5: 

1 .02U - dIvT + q, (2.6.1)t r 
1 

-rRotH - T -R divM, (2.6.2)
r 

H Ot(02U, -OIU), (2.6.3) 
2[ (1 - V)OI02U 02U + voI u ]M 2 (2.6.4)-02u - vo2u -(1 - V)OI02U .1 2 

From Section 2.2 the equations of motion for the supporting beam, in dimen
sionless form and without damping terms, are given by 

(2.6.5) 

and 

(2.6.6) 

In applications Os = ±01 or Os = ±02 depending on the orientation of the 
beam. A subscript b will be used, where necessary, to indicate quantities 
associated with the beam. 

The length of the beam is a. In terms of this notation the dimensionless 
quantities chosen in Section 2.2 are: 
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For the rotary inertia constant rb we have 

In addition , we choose the following dimensionless constants: 

a = 	 Ebh and j3 = Pb A . 
aD pah 

It is necessary to adapt (2.6.5) and (2.6.6) to allow for the difference in 
dimensionless time scale, between the plate model and the beam model. The 
time derivatives have to be multiplied by a factor T /7]. As T 2 /7]2 = {3/a , 
(2.6.5) and (2.6.6) change to 

(2.6.7) 

(2 .6.8) 

The 	constitutive equation for the beam is: 

(2 .6.9) 

ext we formulate the interface conditions. In this case the force density P 
is the contact force density that the plate exerts on the beam. It follows that 

P= -T· n. (2.6.10) 

The moment density L is the moment that the plate exerts on the beam. 
This implies, for the moment density - M n of the plate on r , that 

L = - l\l1n · n . (2 .6.ll ) 

Since the plate is merely supported by the beam it also follows that 

NIn· T = o. (2.6.12) 

The interface conditions change to the following (again using the original 
notation to refer to the dimensionless quanti ties): 

1 
aP --T ·n, 	 (2 .6.13) 

r 
M n	 ·T 0, (2.6. 14) 

aL -Mn· n. (2 .6.15 ) 
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To complete the model we have to add the boundary conditions for the rigidly 
supported section 2::: 

u 0, (2.6.16) 

Mn· T 0; (2.6.17) 

and for the rigidly supported end points of the beam: 

0, (2.6 .18) 

o. (2.6. 19) 

The mathematical model is given by (2.6 .1) to (2.6.4), (2.6.7) to (2.6.9) and 
(2.6.13) to (2.6.19) . Alternatively, the mathematical model can be given in 
terms of the dimensionless displacement u. 'vVe illustrate the procedure for 
obtaining the boundary conditions for a special domain D. 

Consider a rectangular plate rigidly supported at two opposing sides and 
supported by two identical beams at the remaining sides. To find the di
mensionless form for the model we choose a as the length of the supporting 
beams. T hen the reference configuration D is the rectangle with 0 < Xl < 1 
and 0 < X2 < d. 2::0 and 2::1 are those parts of the boundary where X l = 0 
and Xl = 1 respectively, and correspond to the rigidly supported parts of 
the boundary. r 0 and r 1 are those parts of the boundary where X2 = 0 
and X2 = d respectively, and correspond to the sections of the boundary 
supported by beams. 

2::0 
 2::1 


o 1 


Figure 2.1: Reference configuration of the plate. 
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As in Section 2.5, the partial diflerential equation (2.5.5) is obtained. 

On L:o and L: 1 , (2 .6.17) reduces to M21 = O. The conditions at the end points 
of the beams (2.6.18) and (2.6.19) are included by extending the conditions 
on L:o and L:1 to L:o and L: 1 . 

On f1 ' n = e2 and T = -el' Using (2.6.2), we get 

1 1 2
--T· n = --T2 = [hMll + a2M12 - rat a2U 

r r 

and 

Nfn'T = M12 and Nfn · n = N!22' 

Assuming that the beams are merely supporting the plate, we get 

1 
M12 = 0 and L = --iv!22 on fl' 

a 

Similarly, on fo , n = -e2 and T = e1' Hence 

and 

1 
M12 = 0 and L = --iv!22. 

a 

For the two beams, the first equation of motion (2.6.7) reduces to the follow
ing two equations. Note that as = -01 on fl ' and as = alan f o· 

The second equation of motion (2.6.8) reduces to 

Finally, (2.6.14) implies that 
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In terms of the dimensionless displacement u the model is given by: 


Problem 4 

-(8{u+28~8~u+8iu)+q m [2, 

u o on ~o and ~l' 

fiu + v82u1 2 o on ~o and ~l' 

8~u + v8~u o on fo and f l , 

j38;u  j3rb818~u  r8182u -8gu  (2 - v )8t82U - o:8;u on fa, 

/3o;u - /3rbo;o~u + rO;02'U o~u + (2 - V)8t02U - o:8{u on fl' 

 
 
 



Chapter 3 

Variational form and weak 
solutions 

Our main concern is the analysis and implementation of the finite element 
method, i.e . Chapters 5, 6 and 7. For this we need the model problems 
in (weak) variational form. Model problems with interface conditions is a 
relatively new subject, and we could not find adequate derivations of the 
variational form in standard references. Hence we found it necessary to 
present rigorous derivations. Much of the material is from [Vl], [V2], [VVZ], 
[ZVGV1] and [ZVGV2]. 

In each case we find a variational formulation as a first step . This is done 
by multiplying the equation of motion by an arbitrary smooth function , and 
integrating over the reference configuration. The variational form is suffi
cient for the implementation of the finite element method , but for existence 
theory and analysing the convergence of the finite element method , a weak 
formulation of the model problem is required. In each case we will define 
the necessary function spaces and present such a weak form. At this stage a 
unified approach will become possible as we show that the model problems 
all have similar weak forms . 

In Section 3.4 we discuss existence results for weak solutions. The free re
sponse of a system is determined by the natural frequencies and natural 
modes. These are determined by the eigenvalues and eigenvectors of a bilin
ear form. This topic is treated in Section 3.5. 

21 
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3.1 The damaged beam 

3.1. 1 Variational formulation 

Multiplying the equation of motion (2.3.1) by an arbitrary function v and 
integrating gives

·1 1 11 11O;U(., t)V = - OxF(- , t)V - k OtU(-' t)V + I("I P(-, t)V. (3 .1.1 ) 
Or. 0 0 Jo1

W P. llSP. t.hp notation u(-, t) for the function 

U(-, t) : [0,1] ----+ lR with U(-, t)(x) =u(x. t) . 

As the jump condition allows for discontinuities in oxu and OtOxU at x = Q , 

the integration must be performed separately on the subintervals (0 , Q) and 
(Q,l). Due to the discontinuity of oxu(-, t) at Q , the function o;u(-, t) will 
not exist- not even in a generalized sense. (We exclude 6- functions.) For 
thi s reason it is necessary to consider product spaces with pairs of functions 
as elements. With each function u, we associate a pair U = (U l ' U2) with Ul 
the restriction of U to the interval [0, Q], and U2 the restriction to [Q, 1] . For 
simplicity of notation we will write U for u. 

For any open interval I = (a, b) the function spaces Ci (1), Ci (1), Co(1) 
and L2(1) are defined in Appendix A. 

Let I = (0 , I), II = (0, Q) and 12 = (Q,l). Define the following product 
spaces: 

L2 .- L2(1d x L2(h), 

Ci . ci (1d x Ct (12) , i = 0,1 , ... , 
.C~ C':(11) x C':(h). 

In terms of this notation oxu(Q-, t) = OxUl(CY, t) and oxu(CY+, t) = OxU2(CY, t) , 
etcetera. 

We will also use the notation u' := (u~, u~) , etcetera. 
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In terms of the new notation, (3.1.1) can be written as 

In the following results the term UOxF(-, t), v)o is examined. For simplicity 
of notation we write F and u for F(·, t) and u(-, t) in the following results. 

Lemma 3.1. 1 If the equation of motion (2.3.2) is satisfied, then 

GaxF, v) 0 ~ -(M,v")o - (rafaxu, v')o + [~F1V{ + UF2V{ 

+ [JVI1V~l~ + [JVhv~l~ jar all v E C 2
. 

P roof The result is obtained by performing integration by parts twice. 0 

Define the space of test functions T as 

Corollary 3.1.1 Assume that the equation of motion (2.3.2) is satisfied. n 
in addition, F and M satisfy the boundary conditions at x = 1, (2.3 .5); as 
well as the interface conditions at x = ex , (2.3.6) to (2.3.8) , then 

(~oxF, v) 0 = -(M,v")o - (ro;oxu ,v')o - M(ex , t) (v~(ex) - v~ (ex)) 

for all vET. 

From the constitutive equation (2.3.3) and the jump condition (2.3.9) , the 
term (~ox F, v) 0 can be expressed in terms of u. 

Corollary 3.1.2 If u is a solution of Problem I, then 

(~OxF, v) 0 = -(o;u, v")o - (/-LOtO;U, v")o - (rotox u , v')o 

- ~ (ox U2 (ex, t) - OX'U 1 ( ex , t)) (v~ (ex) - v~ (0:' ) ) 

-J (OxOtU2(ex, t) - OxOtUl(ex, t)) (v~(ex) - v~(ex)) 

for all v E T. 

 
 
 



CHAPTER 3. VARIATIONAL FORM AND WEAK SOLUTIONS 24 

We define bilinear forms a, band c by 

b(u,v) '- (U",V")O + l (u;(ex) - u~(ex)) (v;(ex) - v~(ex)) for all u,v E C2, 

a(u ,v) '- jJb(u,v) + (ku,v)o for all u,v E C2, 

c(u,v) '- (u,v)o + (ru',v')o for all u,v E C 1 : 

The variational form of Problem 1 can be expressed in terms of these bilinear 
forms. In the following sections we will show that all the model problems 
can be reduced to the same abstract form if appropriate bilinear forms are 
introduced. 

Problem Ib: Variat ional formulation 

Find u such that; for all t > O. u(·, t) E T and 

c ( 8;uC , t) ,v) + a(8tu (- , t), v) + b(u(-, t), v) = (P (- , t) , v )0 

for all vET. 

Theorem 3.1.1 If u 7S a solution of Problem 1, then u 7S a solution of 
Problem lb. 

P roof The proof follows directly from substituting the result in Corol
lary 3.1.2 into (3.1.2). Note that if u is a solution of Problem 1, it follows 
from (2.3.4) and (2.3.6) that u E T. 0 

C4Theorem 3.1.2 If u is a solution of Problem 1b and 8tu(· . t) E and 
8luC, t) E C 2) then u 7S a solutwn of Problem 1. 

Proof For simplicity of notation we will write u for u(- , t) in this proof. Let 
VET such that VI E Co (11) and V2 = O. Performing integration by parts , 
we find that 

lC< (8;Ul - r8;8;u1 + 8;U1 + jJ8t 8;U1 + k8tUl - P1)Vl = O. (3 .1.3) 

Since C0 (11) is dense in L2(11), it follows that u satisfies the partial diffe
rential equation on II = (0, ex). The same is obviously true on 12 = (ex, 1). 

A direct consequence is that 

lC< (-r8;8;u1 + 8;U1 + jJ8t 8;Ul)Vl + 11 (-ro;8;u2 + 8;U2 + /-L8t 8;U2)V2 

(r8;8x u, v')o + b(u, v) + jJb(8tu, v) for each vET. 
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Performing integration by parts once on the terms rolO;Ul VI and rolo;u2V2 
and twice on the terms O~UlVI , O~U2V2, I-LOtO;Ul VI, and I-LOtO;U2V2 yield that 

- [roloXuIVd~ - [roloXu2V2J~ + [O~(UI + I-LOtUdVd~ 
+ [O~(U2 + I-LOtU2)V2J~ - [O;(UI + I-Lotudv~]~ - [O;(U2 + I-LOtU2)V;J~ = 0 

for each vET. 

Recall that VI (0) = v~ (0) O. Choosing v~ (er.) 
v;(l) = 0, we have 

ro2o u(er. - t) 


-o~ ·u(er.-, t) - I-LOtO~u(er. - , t ). 


ro;oxu(er.+, t) - o~u(er.+, t) -I-LOtO~u(er.+ , t) t x , 

All the other conditions follow from suitable choices for the values of v~ , V2 
and v~ at x = er. and x = l. 0 

3.1.2 Weak formulation 

L2 is a Hilbert space with the inner product (-, ')0' The norms in L2(Ij) and 
L2 will all be denoted by II . 110 with the relevant space being clear from the 
context . 

Define the following product spaces: 

where Hi(Ij) is the Sobolev space of order i on f j . See Appendix B. The 
norms in Hi(Ij) and Hi are all denoted by 11·lk For the product space Hi we 
use the usual product space inner product and norms, I.e. if 

U = (Ul, U2) E Hi, then IlulI; = Ilulll; + Ilu211l. 

For the weak formulation of the vibration problem we consider the closure 
of T in H2. We denote this closure by V and note that V is a Hilbert space 
with the inner product of H2. 

T he bilinear form c can be extended to HI and is an inner product on HI. 
We define the space W as the closure of T with respect to the norm induced 
by c. We refer to this norm as the inertia norm. If rotary inertia is ignored 
(i.e. r = 0), it follows that c(-, .) = (-, ')0 and then W = L2. 
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are well defined in the sense of trace. See Appendix B. We have the following 
result. 

Lemma 3.1.2 For i = 1, 2 and K = max{ 0'-1, (1 _ O')-l}, 

(3.1.4) 

Proof From Lemma B.2.1 in Appendix B follows that 

o 

It follows that the domains of the bilinear forms a and b can be extended 
to H2. 

For the definition of cm ((0, T), X) see Appendix B. 

Problem I e: Weak formulation 

Findu E C2((O,T),L2)nC1([O,T),L2
) such that, fOT allt > 0, u(t) E V , 

u'(t) E V, ul/(t) E Wand 

e(ul/(t), v) + a(u'(t), v) + b(u(t), v) = (f(t ), v)o 

for all v E V. 

The initial conditions u(O) and u'(O) will be discussed later. Note that u'(O) 
refers to the right derivative of u' at t = O. 

N otation With a function u we associate a function u* such that 

u* : [0, TJ ---+ L2 with u*(t)(x) = u(t, x). 

Theorem 3.1.3 If u is a solution of Problem 1b , then u* zs a solution of 
Problem 1e. 
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Proof Suppose u is a solution of Problem l b. Then (ui)"(t) = OtUl(-,t) 
and (u;)"(t) = OtU2(" t). (See Appendix B.) Obviously the same will be true 
in the product space. The result now follows from the fact that T is dense 
in V. 0 

Notation W ith u E C ([0, T], L2) we associate a function it such that 

u: [0, T] X (0,1) -+ lR with u(x, t) = u(t)(x). 

If the weak solution is smooth enough, it satisfies the variational problem. 

Theorem 3 .1.4 ffu is a solution of Problem 1c and u E C 2([0, Tj, C2), then 
ii is a solution of Problem lb. 

Proof IfUI E C2 ([O ,T],C 2 [0,a]), then OtUI exists and olur(x,t) = u{(t)(x) 
for each point (x, t). It is now clear that UI E C2 ([0, T) X [0, a]) . Similarly, 
U2 E C2 ([0, T) x [a, 1]). 0 

3.1.3 T he energy norm 

The following lemma gives some inequalities of Poincare type for the space V. 

Lemma 3. 1.3 For any u = (UI, U2) E V , 

Ilullio < Ilu~llo ::; lIu~llo , (3.1.5) 

II u II ~ < 14 (IIu" 116 + (u~ (a) - U'l ( a) )2) . (3 .1. 6) 

P roof We assume first that u E T. For x E (0, a ) we choose [a, b] = [0 ,x] 
in Lemma B.2.1 and note that UI(O) = u~(O) = O. It follows that 

lur (x)1::; Ilu~llo and lu~(x )1 ::; Il u~ llo 

and the inequalities (3.1.5) are direct consequences . 

For x E (a, 1), we choose [a, b] = [a, x] in Lemma B.2.1 , and find that 

IU2 (x) - U2 (a) I ::; Il u~ llo. 

As IU2(a)1 = lur(a)l::; Ilu~llo it follows that 

IU2(X) 1::; Ilu'rllo + Ilu~llo. 
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Hence 

Similarly, from Lemma B. 2.1, 

and as lu~(o:)1 :S Ilu~llo it follows (using the inverse triangle inequality) that 

Hence 

It is now easy to prove that (3 .1.6) holds. The inequalities will also hold on 
V as it is the closure of T in H 2. 0 

Theorem 3.1.5 The bilinear form b is bounded and positive definite on V. 

Proof For any u , v E V, 

Ib(u, v) I :S II u I 11211 VI 11 2+ II u211211 v2112 
+~ (lu~(o:)1 + IU'l(o:)l ) ( Iv~ (o:)1 + Iv~(o: )I ) · 

Using also Lemma 3.1.2 , it is easy to see that b is bounded . Clearly, from 
(3.1.6), there exists a constant C such that 

b(u, u) 2:: C211ull~ for all u E V. o 

Due to the fact that b is symmetric we have the following result. 

Corollary 3.1.3 The bilinear form b defines an inner product on V. 

Define the energy norm II . II E in V by 

lIull~ = b(u, u ) for any u E V. 

Corollary 3.1.4 The energy norm is equivalent to the H2-norm on V. 
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Lemma 3.1.4 V is dense in W. 

Proof W is the closure of T with respect to the inertia norm and 
TcVcW. 0 

Lemma 3.1.5 V is dense in L2. 

Proof For v = (VI, V2) E Co = CO(II) x CO(I2) it is clear that 
VI (ex) = V2(ex) = 0, and hence that vET. Thus Co eTc V c U, 
and as Co is dense in U , it follows that V is dense in L 2 0 

The following result is required to prove that bounded subsets of V are 
precompact in W. 

Lemma 3.1.6 Let Xl C YI and X 2 C Y2 , be four Hilbert spaces. Let 
X = Xl X X 2 and Y = YI X Y2· If bounded sequences in Xl and X 2, 
respectively, have convergent subsequences in YI and Y2 , then any bounded 
subset in X is precompact in Y. 

Proof Suppose the subset A of X is bounded and {un} = {(u~ 1 u;D} is a 
sequence in A. Then {u~} and {u2} are bounded sequences in Xl and X 2 

respectively. This means that there exists a convergent subsequence {U~k } 

of {u~} in YI . Consider the sequence {unk 
} = {(u7

k
, U 2' )}. It is now obvi

ous that this sequence possesses a convergent subsequence in Y which is a 
subsequence of {un}. We conclude that A is precompact in Y. 0 

Lemma 3.1.7 A bounded subset of V is precompact in Wand a bounded 
subset of W is precompact in L2. 

Proof Assume that {u~} and {u2} are bounded sequences in H2(Id and 
H 2(I2), respectively. Using the Rellich imbedding theorem 
(See [Fr, p 31-32]), we can find convergent subsequences in HI(h) and H 2(I2) , 
respectively. The result follows from Lemma 3.1.6. 

The proof of the second part is the same. o 
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3.2 	 Beam models with dynamical boundary 
conditions 

3.2.1 Variational formulation 

The equation of motion (2.2.7) is multiplied by an arbitrary function v and 
integrated to get 

11 111 11 i· r 
o;uC, t)v = - OxF(·, t)v - k OtUC, t) v + pc, t) v . (3.2 .1) 

o r o 	 0 0 

Let 1 = (0,1 ). 


Notation For any u E L2(1) and any v E L2(1 ), 


(u, V) J:= 11 uv . 

In the following results the term ( ~ox F, v) J is examined . 

Lemma 3.2.1 If the equation of motion (2.2.8) is satisfied, then 

Ga"F,v) /~ -(M,v"h - (raia"u, v')/ + UFVl: + IMv']: 

f OT all v E C2 (1 ). 

Proof The result is obtained by performing integration by parts twice. 0 

Define the space of test functions T(1 ) as 

T(I ) = {v E c2 (l) : v(O) = v'(O) = O} . 

The following result follows from the constitutive equation (2.2.9) and the 
boundary conditions (2.4.6) and (2.4.7). 

Corollary 3.2.1 If u is the solution of Problem 2, then 

(~oxF, v) J = - (o;u, v" )J - (/-dJto;U, v")J - (r ofoxu , v') J 

-mo;u(l , t )v (l) - Imo;oxu( l , t)v'(l) 

-MoOtu(l , t)v(l ) - Mr Otoxu( l , t)v'(l ) for all v E T(1). 
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vVe define bilinear forms a, band c by 

' b(u , v) (u", v")[ for all u , v E c 2 (l), 
'a(u,v) I1b(U, v) + (ku, v)[ + l1ou(l)v(l) + 111u'(1)v'(1) for all u , v E c2 (l), 
' c(u,v) (u , v)[ + (ru', v')[ + mU(l)v(l) + Imu'(l)v'(l) for all u , v E c1(l). 

The variational form of Problem 2 can be expressed in terms of these bilinear 
forms. 

Problem 2b: Variational formulation 

Find u such that, for all t > 0, uC, t) E T(I) and 

c(o;uC, t), v) + a(otuC , t), v) + b(u(-, t), v) = (pC, t), v)[ 

for all v E T(I). 

Theorem 3.2.1 If u is a solution of Problem 2, then u is a solution of 
Problem 2b. 

P roof The proof follows directly from substituting the result of Corol
lary 3.2.1 into (3.2.1). Note that if u is a solution of Problem 2, it follows 
from (2 .4. 5) that u E T(I). 0 

Theorem 3.2.2 If u is a solution of Problem 2b and Otu(-, t) E c4 (l) and 
olue, t) E C 2 (J) , then u is a solution of Problem 2. 

Proof The proof is virtually the same as that of Theorem 3.1.2. 0 

3.2.2 Weak formulation 

The product spaces L2 and Hm are defined by 

and 
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The inner product in L2 is given by 

(11 

(u, v)o = U1V1) + U2V2 + U3V3 

and in Hm by 

~ (t (i) (i))(u, V)m = ~ Jo U 1 V 1 + U2 V2 + 'U3V3' 

The notation II . 11m is used for the associated norm in Hm 

The definitions of the bilinear forms a and b are extended to 

b(u, v) (u~, V~)I for all u, v E H2, 

a(u,v) /1b(U1' vd + (kU1, V1)I + /10U2V2 + /11U3V3 for all u, v E H2. 

Define the space 1'2 (1) as the closure of T (1) in H2 (1). Recall the fact that 

the boundary values of vii) are defined in the sense of trace, for example 

vi i )(1) is well defined if VI E Hi+l(1). (See Appendix B.) 

Define the subspace V of H2 by 

V = {v E H2 : Vl E 1'2 (1), V2 = Vl (1), V3 = v~ (1)}. 

Lemma 3.2.2 V is a closed subspace of H2. 

Proof If {vn } is a sequence in V with limit v E H2, it follows that 

Ilv~ - vll12 ---) 0 as n ---) 00. 

The boundedness of the trace operator yields that 

and 

Uniqueness of limits implies that v E V. D 

Define 1'1(1) as the closure of T(1) in Hl(I). Define the subspace 1.0/ of Hl 

by 
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Lemma 3.2.3 W is a closed subspace of HI. 

P roof The proof is virtually identical to that of Lemma 3.2.2. 0 

The definition of c is extended to 

This bilinear form defines an inner product on W, even if m = 1m = O. The 
inertia norm induced by c on VV is equivalent to the HI norm. If rotary 
inertia is ignored (i.e. r = 0), we again have W = L2. 

Choose f(t) = (P(·, t) ,0, 0). 

Problem 2c: Weak formulat ion 

Find u E C2 ((0, T), L2) n C1 ([O, T), L2) such that, for all t > 0, u(t) E V, 
u'(t) E V, u"(t) E Wand 

c(u"(t), v) + a(u'(t), v) + b(u(t), v) = (J(t), v)o 

fOT all v E V . 

Notation vVith the function u we associate a functionu* such that 

u* : [0, T] --) L2 with u*(t)(x) = u(t , x) . 

Theorem 3.2.3 If u is a solution of Problem 2b, then u* is a solutwn of 
Problem 2c. 

Proof The proof is the same as that of Theorem 3.1.3. o 

Notation W ith u E C ([0 ,T], L2) we associate a function u such that 

u: [0 ,T] X (0, 1) --) IR with u(x , t) = u(t)(x ). 

Theorem 3.2 .4 If u is a solution of Problem 2c and Ul E C2 ([O, T], c2(1)). 
then u is a solution of Problem 2b. 

Proof The proof is the same (even simpler) than the proof of T heorem 3.1.4. 

o 
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3.2.3 Energy norm 

Lemma 3.2 .4 Th e bilinear form b is bounded and posztwe definite on V. 

Proof Clearly, b is bounded in H 2. From Lemma B.2.3, follows that for any 
wE V, 

as WI(O) = w~(O) = o. 

Also , from Lemma B.2.1, IW21:s; I l w~ 110 and IW31 :s; Ilw{llo. Consequently 
there exists a constant c, such that 

Il w ll ~ :s; cb(w , w) for a ll W E V. 

o 

We define the energy norm on V by 

Ilwll~ = b(w, w) for all w E V. 

It remains to show that V is dense in L2 and that V is dense in W. This can 
be done by adapting the proof of [Sa, Prop 8.1], to this sit uat ion . 

Lemma 3.2.5 V is dense m L2 . 

Proof Let f E COO(O, 1) and 9 E COO(O, 1) be such that 

for O:s;x<~)
f(x) = { ~ for ¥<x:S;1, 

and 

for O<x<l 
g(x) = { ~ - 3' 

for ¥<x:S;l. 

Let w = (WI, W2 , W3) E L2. Then there exists a sequence of funct ions {Pn} 
in Coo(O, 1) such that 

IIPn - wIllI -..; 0 as n -..; 00. 
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Let Vn = Pn + w2fn + W39n' Then Vn E T(I) and Yn = (vn , vn(l ), v~(1)) E V. 
Now, 

We also have 

and 

v~(1) = W3 for all n. 

Hence llYn - wllo 0 as n ----c\ o-----7 00. 

Lemma 3.2.6 V is dense in lV. 

~ ~ 

Proof Consider any w E W. From the definit ions of T1(I) and T2 (I) it is 

clear that there exists a sequence {Pn } C THI) such that IlwI - Pnlli ----c\ 0 
as n -----7 00. Using the sequence of functions {fn} defined in the proof of 
Lemma 3.2.5, we let Vn = Pn + w2fn. The rest of the proof in the same as 
the proof of Lemma 3.2.5. 0 

Lemma 3.2.7 A bounded subset of V is precompact m Wand a bounded 
subset of W is precompact in L2. 

Proof Suppose {w n
} is a bounded sequence in V. This implies that {w~} is a 

bounded sequence in H2(I) and that {w2} and {w3} are bounded sequences 
. of real numbers. Using the Rellich imbedding theorem (See [Fr , p 31-32]) 
yields a convergent subsequence of {w n } in Hl(I) , and fro m the Weierstrass 
theorem we find convergent subsequences of {W2} and {W3 }' The result then 
follows from Lemma 3.1.6 . 

The proof of the second part is the same. o 
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3.3 Plate beam model 

3.3.1 Variat ional formulation 

The variational form is obtained by multiplying the dimensionless form of 
the equation of motion (2. 6.1) by an arbitrary scalar valued function v and 
integrating to get 

r8;uv = ~ r(div T)'U + rq'U. (3. 3.1)
JD r JD JD 

We start by quoting a general Green formula on a domain D in the plane: 

For any scalar valued function v and any vector valued function F, 

r(div F)v = - rF . grad v + r (F· n )'U ds. (3.3.2)
JD JD JeD 

We also need a similar result for a matrix valued function A. We define div A 
to be a vector with the ith component equal to div AJ'oW i . The trace of the 
matrix A is denoted by tr (A). 

Lemma 3 .3.1 FoT' any vectoT' valued function wand any matnr valuedfunc
tion A, 

rdiv A . w = - rtr(AW) + r Aw· n ds, (3.3.3)
JD JD hD 

Proof The proof follows directly if (3.3 .2) is applied for each row. 0 

Lemma 3.3 .2 If the eq'uation of motion (2.6.2) is satisfied and v E C 2 (D) , 
then 

1 r 
- I (divT)v 
T JD 

= r tr(RMV) - T r (8;(gradu)) . (grad v)
JD .JD 
- r (RNln ). (grad 'U) ds + ~ r (T 

.JeD r JaD 
· n )'U ds(3.3.4) 
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Proof From (3. 3. 2), with F = T follows that 

r(divT)v = - rT· grad v + r (T · n )v ds.In In lon 
From (2. 6.2), l/rT = Rdiv M - rRotH , and hence 

11 .- (dlvT)v = - j' (Rdiv N!) . grad v - r rROtH · grad v 
r n n ~ 

+~ r (T· n )v ds . (3. 3.5)rlon 
Using (3.3.3) with w = grad v and A = RM gives 

r R div M . grad v = - r tr(RMV) + r RNIn· grad v ds, (3.3.6)In In Jon 

[ o~v 01 02V 1
where V = 01 02V o~v . 

Note that RNI is symmetric and div (RN!) = R div NI. 

From (2.6.3) follows that 

1ROtH· grad v = 10; (grad u) . grad v. 

o 

Choose the space of test functions T(D) as 

It is necessary to analyze the line integrals in (3.3.4). Let v E T (D) throughout 
the discussion that follows. 

The boundary oD consists of four parts. Consider first the part 2:1 , vVe have 
v = 0, hence 

r (T· n)v ds = O. (3.3.7)
JE) 

(RMn ) . (grad v) = - (oiu+ VOiU )OlV = O. (3.3.8) 
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As a consequence the boundary terms vanish. The same will happen on 2:0 , 

For the domain n the line integrals on r 0 and r 1 reduce to two one-dimensional 
integrals on (0,1). Formally, ds = dX1 on r0 and ds = -dX1 on r 1, because 
of the orientation of the line integral. This means that for any function v 

r v ds = t V(X1' 0)dX1 and r v ds = t V(X1' d) dx 1.i ro Jo Jr1 Jo 

We will use subscripts 0 and 1 to differentiate between functions defined on 
ro and r 1 · 

Now, consider roo From (2 .6.13), 

~ r (T . n )v ds = -a (1 Po(', t) vC, 0). (3 .3.9) 
r Jro JO 

Since n = -e2 and Me2 ' e1 = 0, we have from (2.6.15) that 

- (RNln ) . (grad v ) = (J'vfe2' e2)01v = -aLoOl'u. (3.3.10) 

If (2.6 .8) is satisfied and w E C 2 [O , 1] with w(O) = w(l) = 0, then 

~ fo'l oxFoC, t)w = 11 (a01[\;[bQC, t) + aLoC, t) - (JrbotoluC, 0, t)) Wi 

+ [a FoC, t)W]l
rb 0 

- t aNlbo (', t)w" - (3rb t O;OlU(" 0, t)w' 
Jo .Jo 

+ 11 aLo(', t)w' + [a FoC, t)w] 1 + [aMbOC, t)w/]6. 
o rb 0 

Clearly, the boundary terms vanish as MbQ (O, t) = Mbo (l, t) = 0 from (2.6.19). 

Choosing W(X1) = V(X1' 0) and combining this result with (3.3.9) and (3.3 .10) 
yield that 

fro (( -Rl'v1n) . grad v + ~T . n ) ds 

- a t 01 Fo C, t)vC, 0) - a t MbOC , t)oivC, 0)
rb Jo Jo 

- (3rb 11 O;OlUC, 0, t)OlV(" 0) - a 11 Po(· , t)vC, 0) . (3.3.11) 

An analogous result is true for r 1. 
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Lemma 3.3.3 Ifu is a solution of Problem 3 and v E T(D), then 

~ r(div T)v + 0: 11 Ol FoC, t)v(-, 0) + 0: 11 01 F1(', t)vC , d) 
r Jo rb 0 rb 0


- i tr(RMV) - r 10; (grad u) . grad v 


-(3rb t O;OlUC, 0, t)OlV(" 0) - (3rb t 0;01U(', d, t)01V(" d)Jo 	 Jo 
-0: 11 O~U(" 0, t)O~v(., 0) - 0: i'l O~U(" d, t)o~v(. , d) 

-0:11 Po(' , t)vC, 0) - 0: 11 Pl (·, t)v(·, d). 

Proof Substitute (3.3.7), (3.3.8) and (3.3.11) for the boundary integrals in 
Lemma 3.3.2. 0 

Notation For any u E L2(D) 	and v E L2(D), 

(u ,v)o = ruv. 
Jo 

Define a bilinear form b on C2 (D) by 

bCu,v) = bo(u, v) + o:bo(u ,v) + o:b1(u, v) 

with 

bo(u, v) = 1tr(RNIV) 	 (O~u,O~v)o +2(1 - V)(0102U ,0102V)O 

+(o~u,o~v)o +v(o~u,oiv)o +v(oiu,o~v ) o 

and 

bo(u, v) fo'l oiuC , 0) o~vC, 0) , 

bl (u, v) = 11 ofuc ,d)o~v C, d). 
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Lemma 3.3.4 ff u is a solution of Problem 3, then 

~ f(divT)v+ a t01FoC , t)vC,0) + a t01FIC,t) uC,cl)
rJo. rbJo rbJo 


= -b(u, v) - r iO;(grad u) . grad v 


-f3rb 11 O;OlU(" 0, t)01V(-, 0) - f3rb 11 O;OlUC, d, t)OlVC, d) 

-a 11 Po(., t)v(-, 0) - a 11 Pl (. , t)v(. , d) 

for all v E T(fl ). 

P roof A direct substitution yields that Jo. tr (RMV) = bo.(u , v). 0 

Define a bilinear form c on C 1(D) by 

c(u,v) = co.(u , v) + f3co(u,v) + f3Cl(U,V) 

with 

and 

co(u, v) 

Problem 3b: Variational formulation 

Find u such that for all t > 0, u(-, t) E T(fl) and 

c(O;uC , t), v) + b(uC, t), v) = (gC, t) , v)o. 

for all v E T(D). 

Theorem 3.3.1 ff u is a solution of Problem 3, then u zs a solution of 
Problem 3b. 
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Proof If (2.6.7) is multiplied by an arbitrary function v E T(D.) and inte
grated over r o, it follows that 

112 11 11ex(3 Ot U(-, 0, t) v (-, 0) = - 01 Fo (-, t) v (- , 0) + ex Po (- , t) v (-, 0). 
o rb . 0 0 

A similar result holds on r). 


Combining these results with (3.3.1) and Lemma 3.3.4 completes the proof. 


o 

Theorem 3.3.2 ffu is a solution of Problem 3b and oluC, t) E C2 (D); then 
u is a solutwn of Problem 3. 

Proof The proof follows the same pattern as in the previous cases and is 
tedious rather than difficult. We will write u for uC, t) in this proof. 

First let v E Cgo(D.). U ing integration by parts and the fact that Co(D) 
is dense in L2(D. ), we see that u satisfies the partial differential equa tion in 
Problem 3. 

This in turn implies that, for each v E T(D.), 

(3co(OtuC, 0, t), v) + ,f3Cl(OtU(-, d, t), v) 

2+ 1r(0;V u)v -1 (oiu + 20~0~u + oiu)v 

= -r(O;OlU, 0IV)D - r(0;02U, 02V)D - b(u, v). 

Using integration by parts again, we have 

Hence, 

(3co(Ot u (" 0, t), v) + ,f3C1(OtU(" d, t), v) - 1(oiu + 20;0~u + oiu)v 

= -b(u, v) - ( rv(grad dtu ) . n ds . 
.JoD 

For convenience , define a matrix M by (2.5.4) (regardless of any physical 

 
 
 



42 CHAPTER 3. VARlATIONAL FORM AND WEAK SOLUTIONS 

interpretation). We have 

bn(u, v) = 1tr (RMV) 

- r Rdiv M . grad v + r RMn · grad v ds In Jon 
r div (Rdiv M)v ds - r (Rdiv M . n )v dsIn . Jon 

+ r Rlvfn. grad v ds.JaD 
But div (Rdiv lvf) = -(otu + 20io~u + oiu), (see (2.5.4) and (2.5.5)). 

We are left with 

-abo(uC, 0, t) , v) - abl(uC. d. t) v) 

- ( Tv(grad Otu) . n ds
Jon 

+ r Riv1n · grad v ds Jon 
- ( (Rdiv JV[ . n)v ds

Jan 
for each v E T(D) . 

Recall that for v E T(D), v = 0 on ~o and ~l. All the boundary conditions 
are obtained by suitable choices of the values of v and grad von the boundary 
00.. As an example we consider the dynamical boundary condition on roo 

Choose v E T(D) such that v = 02V = 0 on r l . Then OlV = 0 on r l . In 
addition, choose 01 v = 0 on ~o and ~1 and 02V = 0 on ro. 

We are left with, 

Applying integration by parts twice to the term oiuoiv and once to the terms 
OiOlUOlV and M22 01V gives the dynamical boundary condition on roo 0 
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3.3.2 Weak formulation 

Define the following product spaces: 

L2 .- L2(n) x L2(I) x L2(I), 


Hk .- Hk(n) x Hk(I) x Hk(I). 


We use the product space inner products (-, ·)0 on L2 and (-, .h on Hk defined 
by: 

(u, v)o (U1' vdo + (U2 ' V2)r + (U3, V3)r 
. 1 1 

10 U1 V 1 +1U2 V 2 +1U3 V3 , 

with (-, .)~ and (- , ·)k the standard inner products on Hk(n) and Hk(I ) re

spectively. 


Define T2(n) as the closure of T(n) in H2(n). 


The trace operators 10 and 1 1 are defined by 


10 : u ---t u(-, 0) 

and 

11 : U ---t u(-, d) 

for any u E H1 (n). See Appendix B. 

The bilinear form b can be extended to H2 

The definition of c is extended to 

Define a subspace V of H2 by 
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Lemma 3.3.5 V is a closed subspace of H2. 

Proof If {vn 
} is a sequence in V with limit v E H2, it follows that 

Il v~ - vlll~ -+ 0 as n -+ 00. 

Hence VI E 1\(D). Also, 

II rov~ - v211~ -+ 0 as n -+ 00 

and 

The boundedness of the trace operators yields that 

lliov~ - rovl1l6 --t 0 as n -+ 00 

and 

Uniqueness of limits implies that v E V. D 

Oefine 1\(D) as the closure of T (D) in Hl(D). Define the subspace W of HI 
by 

The bilinear form c defines an inner product on W. The ineTtia nOTm induced 
by c on W is equivalent to the HI norm. If rotary inertia is ignored (i.e. 
T = 0), we again get W = L2. 

Lemma 3.3.6 W is a closed subspace of HI . 

P roof The proof is virtually identical to that of Lemma 3.3.5. D 

Let f(t) = (q(t), 0,0) . 

P roblem 3c: Weak formulat ion 

Find u E C2 ((0, T), L2 ) n Cl ([O ,T), L2) such that , for all t > 0, u(t) E V , 
u//( t) E Wand 

c(u//(t), v) + b(u( t ), v) = (f(t), v )o for all v E V. 
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N otation 

W ith the function u E C(n) we associate functions Ul and u' such that 

and 

Theorem 3.3.3 If U is a solution of Problem 3b, then u· is a solution of 
Problem 3c. 

Proof A solution of Problem 3b is in C 2 ([0, T] X D) . In this case the oper
ators 1 0 and 1 1 merely indicate the restriction of a function to r0 or r 1. As 
before (see the proof of Theorem 3.1.3), 

u'{(t) = Btu(-, t ), houdl/(t) = , 0Btu(-, t) and h lUd'(t ) = 11Btu(- , t). 

We conclude that (u*)I/(t) = (Blu(-, t) , ,0B(u(- , t)111Blu(-, t)). o 
For Ul E C 2 ([0, T], L2 ) we associate a fun ction 11 such that 

T heorem 3.3 .4 If u is a solution of Problem 3c and Ul E C 2 ([0, T], C 2 (n)) ) 
then 11 is a solution of Problem 3b . 

Proof See the proof of Theorem 3.1.4. o 

3.3.3 Energy norm 

Lemma 3.3.7 The bilinear fo rm b is positwe defin'de on V. 

Proof We start with a Poincare type inequality (Lemma B.2.3): 

If fECI [0, a] and f(O) = f (a) = 0, then 

l a 
f 2 :s; a41·a(JII) 2. 
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Clearly, 

"u (-, 0) II I ::; [bo(u (-, 0) , 'U ( ., 0)) ]1 /2 

and 

Also 

Evaluating the double integral over 0, we have 

Hence Ilulin ::; arbdu, cU)1 /2. It is now straightforward to derive the desired 
est imate. 0 

Lemma 3.3.8 V is dense in L2. 

Proof Let f E COO( O, d) be such that 

f( ) = {O for O::;y<~ , 
Y 1 for 23d < Y ::; d, 

let j~(y) = f (yn)) and let 9n (Y) = fn(d - y) for 0 ::; y ::; d. 

Let W = (W1,W2,W3 ) E L2. Then there exists a sequence of functions {Pn} 
in Co (0) such that 

IIPn - wlilo ----. 0 as n ----. oc. 

Let 'Un = Pn + w2!n + W39n· Then 'Un E T(O ) and Yn = ('Un , IO'Un, I l'Un ) E V. 
Now , 

vVe also have IO 'Un = W2 for each n and I I 'Un = W3 for each n. Hence 
llYn - wllo ----. 0 as n ----. 00 . o 

Lemma 3.3.9 V is dense in W. 
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Proof Consider any w E W. From the definitions of T1(I) and T2(I) it is 

clear that there exists a sequence {Pn} C T2(I) such that Ilwl - Pnll{ ~ 0 as 
n ~ 00. The rest of the proof is the same as the proof of Lemma 3.3.8. 0 

Lemma 3.3.10 A bounded subset of V is precompact in Wand a bounded 
subset of W is precompact in £2. 

Proof V C H2 = H2 (D) X H2(I ) x H2(I ) and W C HI = Hl(D) X 

Hl(I) x Hl( I) . The Rellich imbedding theorem (See [Fr , [p 31-32]) yields 
that bounded sequences in H2(D ) and H2(I) have convergent subsequences 
in Hl(D) and Hl(I) respectively. The result follows from Lemma 3.l.6. 

The proof of the second part is the same. o 
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3.4 	 A bstract differential equation for model 
problems 

All our model problems have now been written in the same weak form. We 
have two Hilbert spaces V and W with inner products band c respectively. 
It will be more convenient to denote c(- , .) by (- . . ) and we will reserve the 
notation 11·11 for the associated norm which is called the mertia norm. Recall 
that the norm associated with the inner product b is called the energy norm 
and denoted by /I . "E. The inner product in L2 is denoted by (-, ' )0 and the 
associated norm by II . 110. 

The properties of the spaces V, Wand L2 are of critical importance in the 
theory. For convenience we present a summary: 

Space Inner product Norm 
Energy space V 
Inertia space W 

L2 

be, .) 
c(-, .) = (-, .) 

(-, ')0 

Energy norm" . liE 
Inertia norm " . " 

1/ . 11 0 

The energy norm is equivalent to the norm of H2 on V. The inertia norm 
is equivalent to the norm of HI on W if rotary inertia is included. 

Estimates 

There exist constants CE and C1 such that 

IIul/E > CEliuli for all u E V, 
Ilull > C1 l1ul/ofor all u E vv. 

Topological properties 

V is dense in W with respect to the iner tia norm. These spaces are also 
dense in the underlying Hilbert space L2. 
If a subset of V is bounded with respect to the energy norm II . /IE) it is 
precompact with respect to the inertia norm II . 1/, and if it is bounded with 
respect to the inertia norm II . 1/ , it is precompact with respect to the L2 
norm II . 11 0. 
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'vVe consider the following problem: 

P roblem A (Vibration problem) 

Find u E C2 ((0, T), L2) n C1([0, T), L2) such that, JOT all t > 0, u(t) E V, 
u' (t) E V, u" (t) E Wand 

(u" (t), v) + a(u' (t), v) + b(u( t), v) (J(t), v) jor all v E V, 

u (0 ) = (X, U' ( 0 ) (3 . 

Remarks 

l. 	In general the damping term a is a non-negative bounded bilinear form 
on V. In our model problems, we have that 

a(u, v) = f-Lb(u, v) + k(u, v)o 


and k or f-L or both can be zero. 


2. 	 For the model problems in Section 3.1 to Section 3.3 the forcing term 
is (J(t),v)o. In the cases where W i- L2, it is proved in Lemma 3.4.1 
that there exists a function j : [0, T] -) W with 

(j(t) , v) = (J(t) , v)o for all v E W 

We use the notation f for f· 

The following results are special cases of the Lax-Milgram Lemma. 
See [Fr, p 41]. 

Lemma 3.4.1 For each y E L2 there exists a unique wE W such that 

(w, v) = (y, v)o for all v E w. 

Proof The Riesz Theorem yields that, for any F in the dual of W , there 
exists a unique w E W such that 

(w, v) = F(v) for all v E W. 

ow define F by F( v) = (y, v)o for all v E W, then F is a continuous linear 
functional on W. D 
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Lemma 3.4.2 For each yEW there exists a unique u E V such that 

b(u, v) = (y, v) for all v E V. 

Proof The proof is exactly the same as that of Lemma 3.4.1. o 
It is easy to show that Problem A can have at most one solution for given 
u(O) and u' (O). If w is a solution of the associated homogeneous problem (i.e. 
f(t) = 0 for t > 0, w(O) = w'( O) = 0), it follows that 

(wl/(t), v) + a(w'(t ), v) + b(w(t), v) = 0 for all v E V. 

Thus 

(wl/(t), w'(t)) + a(w'(t), w'(t)) + b(w(t), w'(t)) = 0 for all t > O. 

This means that 

d 
dt (/lw'(t)11 2 + Ilw(t)/I~) = -2a(w' (t),w'(t)) ~ 0 for all t > O. 

We conclude that w(t) = 0 for all t > 0, as w(O) = 0 and the uniqueness of 
solutions for Problem A follows. 

Even though Problem A is a typical weak formulation of a vibration modeL 
we were unable to find any directly applicable existence result. Available 
existence results which follow from standard semigroup theory are all formu
lated for abstract differential equations. This means that operators associ
ated with the bilinear forms a and b have to be constructed. We present this 
construction as it will also be used for the analysis of the eigenvalue problem. 

Define an operator 

A: W --> V by b(Af,v) = (j,v) for all v E V. 

Lemma 3.4 .3 The operator A is a bounded linear operator with trivial null
space and range R ( A) dense in V. 

P roof For any fEW , 

IIAfll~ = b(Af, A1) = (j, A1) ::; Ilf ll ll Af l1 ::; Ce1 1l f 11 1l Af 11 E. 

This implies that A is bounded. 
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Also, if /\] = 0, it follows that 0 = b( /\], v) = (1, v) for all v E V. As V is 
dense in W , this implies that (j, J) = 0 and that /\ has a trivial nullspace. 

Suppose that the closure R of R(/\) with respect to the energy norm is not 
equal to V. Then there exists ayE V, y =J 0 such that b(v, y) = 0 for 
all v E R. As y E V, (y, y) = b(/\y, y) = 0 and hence y = 0, which is a 
contradiction. D 

Define an operator 

A : D(A) = R(/\ ) c V ~ W by A = -/\ -1. 

The idea for the construction of the operator A is due to Lax and Milgram 
[LM]. 

Corollary 3.4.1 The operator A is a closed densely defined symmetric ope
rator with range R(A) = Wand 

b(u, v) = -(Au , v) for all u E D(A) and v E V. 

For the damping term a, we can define an associated operator in a similar 
way. From the model problems in Section 3.1 and Section 3.2 it is clear that 
there are two special cases to consider. 

In the case of Kelvin-Voigt damping , a is posi tive definite with respect to 
the energy norm , i.e. there exists a constant c such that 

a(lI" u) ~ cb(u, u) for all u E V. 

Then an operator J can be constructed in exactly the same way as A with 
R(J) = Wand 

a(u, v) = -(Ju, v) for all u E D(J) and v E V. 

In this case J will be a closed densely defined symmetric linear operator. 

In the case of viscous damping, a is bounded in the inertia norm. The 
bilinear form a can then be extended to W. From the Riesz Theorem (see 
Lemma 3.4.1) follows that for any u E W there exists a unique w E VV with 

a(u,v) = (w,v) for all v E W. 

Choose Ju = -w. Then 

a(u , v) = - (Ju, v) for all u E D(J) and v E W. 
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In terms of the operators A and J, the weak formulation of the problem can 
be represented as follows: 

Initial value problem for second order abstract differential equation 

Find u E C2 ((0, T), L2) n C1([0, T) ,U) such that, jor all t > O. u(t) E D (A) . 
u'(t) E D(J) and 

ul/ (t) - Ju' (t) - Au(t) J(t) , 

u (0) = ex, 'u' (0) {3 . 

In a report [VVZ], existence results for Problem A are proved. Some restric
tions had to be placed on the initial conditions. A general existence result is 
proved in [BI] using results of [PJ or [Sh] . In the latter references one may 
also find existence results. See [Sh, Section VI.2, Theorems 2A, 2B and 2C] 
and also [K , Section III. 1, Theorem l.3]. However, the transition from the 
abstract existence result to a concrete example is far from trivial. See for 
instance the treatment of the wave equation in [P, Section 7.4]. We consider 
this topic to be beyond the scope of this thesis. 

As a final remark on the dynamic problem we mention that general existence 
results do not include satisfactory regularity results . The regularity of the 
solution is of great importance in convergence theory. (See Section 5.3. ) 
For the one-dimensional wave equation it is a fact that the regularity of the 
solution depends on the regularity of the initial conditions. This fact is clear 
from either D 'Alemberts method or a Fourier series solution. (See [\tV].) For 
two-dimensional problems the shape of the physical domain is also a factor. 
In Section 5.3 we will allow for different possibilities as far as regularity is 
concerned. 

The following equilibrium problem is associated with Problem A. The solva
bility of this problem follows from Lemmas 3.4.1 and 3.4.2. 

Problem B (Equilibrium problem) 

Fo r J E L2, find u E V such that, b(u, v) = (f, v)o Jor all v E V . 
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3.5 Eigenvalue problem 

Consider the undamped homogeneous problem associated with Problem A: 

(u//(t), v) + b(u(t), v) = 0 fOT all v E V. 	 (3 .5 .1) 

Applying separation of variables to (3.5.1) (i.e. assuming that u(t) = ¢(t)w 
with ¢ a real valued function and w E V), yields two problems , namely an 
eigenvalue problem and an ordinary differential equation. 

Problem C (Eigenvalue problem) 

Find a complex numbeT..\ and w E V , w i:- 0, such that 

b(w, v) = ..\(w , v) for all v E V. 	 (3.5.2) 

The differential equation is 

¢// + ..\¢ = O. 

The function u is a solution of (3 .5.1 ) if and only if w is an eigenvector of b, ..\ 
is a corresponding eigenvalue and ¢ is a solution of the differential equation. 

The constant ..\ is called an eigenvalue of b and the subspace of solutions w 
is called the eigenspace E).. of b corresponding to ..\. The elements of E)., are 
called eigenvectors. (Recall the fact that b is symmetric.) 

J);" is called a natural frequency and w a natural mode of vibration. (We 
will prove that all the eigenvalues are positive.) 

Theorem 3.5.1 Let A be the opemtoT defined in Section 3.4. 

1. 	 ..\ is an eigenvalue of b if and only if ..\-1 is an eigenvalue of A. The 
eigenspace of b cOTTesponding to ..\ is the same as the eigenspace of A 
corresponding to ..\ - 1. 

2. 	 All the eigenvalues of baTe posztzve. 

3. 	 Suppos e ..\ and M aTe eigenvalues of b wdh ..\ i:- M If wEE)., and 
u EEl-" then 

b(u, w) = (u, w) = O. 
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Proof 

1. 	 ote that b cannot have a zero eigenvalue. Zero is also not an eigenvalue 
of A as the nullspace of A is trivial. The definition of A implies that 

b(w ,v) = A(W,v) for all v E V 

if and only if 

2. 	 The operator A is symmetric since b is symmetric. It is well known 
that the eigenvalues of a symmetric operator are real. Finally, A > 0, 
since b(w, w) > 0 and (w, w) > O. 

3. 	 From A(W,U) = b(w,u) = IL(w,u),it follows that (A-IL)(W,U) = o. As 
A =1= IL, this yields that (w, u) = 0 and as a consequence, b(w, u) = O. 0 

Lemma 3.5.1 The operator A from W to VV is compact. 

Proof The operator A maps a bounded subset of VV onto a bounded subset 
of V. But this set is precompact in W. 0 

T heorem 3.5.2 

1. 	 The set of eigenvalues of b zs countable. 

2. 	 If the sequence of eigenvalues are ordered as a non-decreasing sequence 
AI, A2, ... , then An ----+ 00 if n ----+ 00. 

3. 	 E;" is finite dimensional for each A. 

Proof Due to Theorem 3.5.1, it is sufficient to consider the operator A. Since 
A is compact, we have immediately the facts that the eigenvalues are at most 
countable and the finite dimensionality of the eigenspaces. (See any text on 
Functional Analysis, for example [Kr , Section 8.3].) For a symmetric compact 
operator on a Hilbert space we have more: There exists an orthonormal 
sequence of eigenvectors for which the corresponding sequence of eigenvalues 
converge to zero. See [Sh , Theorem 7c] or [Ze, Theorem 4A]. 
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Since the Hilbert space V is not finite dimensional, it follows that there must 
be an infinite number of different eigenvalues. 	 0 

Remark The dimension of the eigenspace E)., is called the multiplicity of 
the eigenvalue A. 

Definit ion 3.5.1 Rayleigh quotient 

The Rayleigh quotient R 2S defined as 

R(v) = b(v , v) 
(v,v) 

The eigenvalues can be characterised in terms of the Rayleigh quotient. 

Theorem 3.5 .3 The smallest eigenvalue AI! is given by 

Al = min{R(v) : v E V}. 

Proof See [SF , p 220]. 	 o 

Remarks 

1. 	 Theorem 3.5.3 may be used to order the eigenvalues of b. If u is an ei~ 
genvector corresponding to AI , we consider the orthogonal complement 
of u in V, which is again a Hilbert space. 

2. 	For the eigenvalue problem (3.5.2) , various bounds for the eigenvector 
W, associated with an eigenvalue A, can be obtained. Clearly, in general , 

(3.5.3) 

3. 	 We may also consider eigenvalue problems for other bilinear forms, for 
example 

(u, v) = c(u, v) = A(U ,v)o. 

Exactly the same results will be true-this time in the Hilbert space W . 

Regularity For beam problems where rotary inertia is ignored (i.e. W = L2) , 
the eigenfunction satisfies the differential equation 

W (4) = AW. 
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As a consequence we have 

(3.5.4) 

Also, from the differential equation, 

W(6) = Awl!. 

Since the energy norm is equivalent to the H2-norm, there exists a constant 
Cb such that 

(3.5 .5) 

For the case where rotary inertia is included, 

W(4) = A(rwl! + w). 

In this case it follows that 

(3.5.6) 

if A > 1. 

Remark For the plate beam problem we do not know if the eigenvectors 
are in Hk for k > 2. 

 
 
 



Chapter 4 

Discretization 

4.1 Galerkin approximation 

In Chapter 3 we showed that all the model problems lead to three typical 
abstract problems. In this section we will formulate a Galerkin approximation 
for the general vibration problem, Problem A, as well as for the associated 
equilibrium problem, P roblem B, and the eigenvalue problem, Problem C. 

To formulate these Galerkin approximations, it is necessary to choose a finite 
dimensional subspace Sh of V. (At this stage the symbol h is used only to 
indicate that we are considering approximation in a finite dimensional space.) 

Galerkin approximation for the vibration problem 

P roblem AG 

Find Uh E C2 ((O, (0), Sh), such that fo r all t > 0, 

(u~(t) , v) + a(u~(t) , v) + b(Uh(t), v) = (J(t) , v)o for all v E Sh , 

Uh(O) = 0:h, u~(O) = {3h' 

The initial conditions 0:h and {3h are approximations in Sh for 0: and {3. 

The Galerkin approximation yields a semi-discrete problem which can be 
written as a system of ordinary differential equations. Let {<P I) <P2, . .. , <Pn} 
be a basis for Sh. Then there exist functions Ui (t) such that 

Uh(t) = L
n 

Ui(t)<Pi. 
i = 1 

57 
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Let u be a function with values in lRn such that the vector 'u(t) has compo
nents Ui(t). 

Problem AD 

Find u E C 2 ([0, (0), lRn ), such that 

Mul/(t) + Lu'(t) + Ku(t) f(t), t > 0, 

u(O) = 6', u'(O) jJ, 

with 6' and jJ the coefficients of Cih and i3h' 

The matrices K, L, M and Mo are defined as follows 

Kij = b(¢i, ¢j), Lij = a(¢i, ¢j) , Mij = (¢i, ¢j) and [N1olij = (¢i, ¢j)o. 

The vector f(t) has components (1(t) , ¢i)o. 

It is easy to see that Problem AG is equivalent to Problem AD. For instance, 
if v = ~7 Vi¢i, then (u~(t), v) = Miil/(t) . fJ = fJT Nlul/(t). 

Remark Problem AD is an initial value problem for a system of differential 
equations. It will have a unique solution if f is continuous, but the differen
tiability properties of u (and hence Uh) will depend on the differentiability 
properties of 1. 
Galerkin approximation for the equilibrium problem 

Problem BG 

Find Uh E Sh, such that b(Uh, v) = (1, v)o for all v E Sh 

Since Uh and v are linear combinations of {¢l, ¢2, ... , cPn}, the Galerkin 
approximation reduces to the system of linear equations: 

Problem BD 

Find u E lRn, such that Ku = F, where Fi = (1, ¢i)O. 

Galerkin approximation for the eigenvalue problem 

Problem CG 

Find Wh E Sh, Wh =J 0, and a complex number ).,h, such that 
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Since Uh and v are linear combinations of {rP l ) rP2 ) ... ) rPn }, the Galerkin 
approximation reduces to the generalised eigenvalue problem: 

Problem CD 

Find W E lRn ) W #- 0, and a complex number A, such that 

Kw = AMw. 

The vector w has components Wi where Wh = L:~ l WirPi · 

More will be said concerning the computation of these matrices in Section 4.4 
and Chapters 5 and 6. 
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4.2 	 Finite dimensional subspaces. 
B eam problems 

4.2.1 	 Hermite cubics and Hermite quintics 

The well-known Hermite piecewise cubics (see for instance [SF] or [ReJ) are 
used successfully as basis functions for the Galerkin approximation in beam 
problems. Although cubics are sufficiently accurate for beam problems, we 
also use Hermite piecewise quintics. The main reason is that cubics will not 
be compatible with reduced quintics in plate beam models. As a bonus we 
find that quintics are extremely efficient. (See Chapter 5.) 

The interval! = [a, b] is divided into subintervals by nodes Xi , i = 0, I , ... , n, 
with 

a = Xa < Xl < ... < Xn = b. 

Consequently we have elements Oi = [Xi - I , Xi] of length hi' 

We proceed to define Hermite piecewise quintic polynomials. For k = 0, I , 2 
and for each element Oi there exist six quintic polynomials 'ljJi~)1 , i and 'ljJ,i,~) 
with the following properties. 

For j = i-lor i: 

if e= k, 
if e=1= k. 

Next these polynomials are "pieced" together. The basis function ¢ ;k) IS 

defined by 

on Oi+l, 
on Oi , 
elsewhere. 

For piecewise Hermite cubics the construction is virtually the same. The 
only difference is that k = 0, 1. 
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Instead of piecewise Hermite cubics and piecewise Hermite quintics we will 
refer to cubics and quintics. 1 ote that the cubics are elements of H 2 (a , b) 
and the quintics elements of H 3 (a, b). 

D efinition 4.2.1 Interpolation operator. 

Let r = 1 faT cubics and r = 2 for quintics. Then we define 

T n 

ITu = L L DkU(Xi )¢~k). 
k=Q i==) 

Remark 

1. 	 For cubics it is necessary that U E H2(I) , for then U E C1(l). (See 
Appendix B.) For quintics it is necessary that 'U E H 3(I ). 

2. 	 Note that if v = ITu, then DkV( Xi ) = Dku(Xi). 

3. 	Cubic splines are often used as basis functions. This has advantages 
over cubics (see [Pr]), but for reasons already mentioned we choose 
quintics as an alternative to cubics. 

4.2.2 The damaged b eam 

The variational form of the damaged beam is derived in Section 3.l. In this 
section we construct a finite dimensional subspace for the Galer-kin approx
imation. The interval I = [0, 1] is divided in such a way that x = 0:' (location 
of damage) coincides with an interior node xp. This means that I) = (0 ,xp) 
and 12 = (xp, 1). 

We construct a finite dimensional subspace of the space V by specifying a 
basis. The basis elements must be pairs of functions. Suppose ¢ik) is a 

quintic or cubic. Let ¢i~) denote the restriction of ¢~k) to I) = [O , O:'J and 

¢i~) the restriction of ¢ik) to 12 = [0:',1]. We then define the basis elements 

J~k) by Ji k) = (¢i~), ¢~;\ These elements are in H2 since ¢i~) E H2(Id and 

¢g) E H2(I2). ¢~l) is an exception and may not be used . Instead we have 
1(1) _ (~(1) 0) d 1(1) - (0 ~(1))
'f'pL - 'f'pl' an 'f'pR - , 'f'p2 . 
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Consequently, J~k ) E V if i i= O. Also J~~ and J~~ E V. (They all satisfy the 

forced boundary conditions. For k = 0 and k = 1, J6k 
) are not admissible on 

account of the forced boundary conditions at x = 0.) 

Let h = max hi' The finite dimensional subspace Sh is chosen as the span of 
all the admissible basis elements. Although the space Sh is determined by 
the partition of the interval , and not h, the notation Sh is commonly used. 
Note that Sh is a subspace of V , since the basis of Sh consists of elements of 
V. 

Next we define an interpolation operator IT on Hk . (For any u E Hk, 
UI E Hk(II) and U2 E Hk(I2) ') We use the usual interpolation operators 
for these spaces (defined in the previous subsection) and denote them by IT I 

and IT 2 : 

Definition 4.2.2 Interpolation operator 

ITu := (ITIUI, IT2U2) for each U E Hk. 

k = 3 for quintics and k = 2 for cubics. 

Note that ITu E V for all U E V as 

(ITiUi) (Xj) = Ui (X j) and (ITiud (Xj) = u~(Xj). 

4.2.3 B eam with dy namical boundary conditions 

The construction of a finite dimensional subspace is simpler in this case. 
Suppose ¢~k) is either a cubic or a quintic. The basis elements for Sh are 

J~k) = (¢ik),¢ik)( l) , (¢ik))'(l)). 

Note that ¢~O) and ¢~l) are excluded. Clearly J~k) E V for each i and each k. 

Definit ion 4.2.3 Interpolation operator 

Let TIl denote the usual interpolation operatoT'. 

ITu:= (IT1UI, (ITIUI)(l), (ITlud(l)) for U E H k. 

k = 3 for quintics and k = 2 for cubics. 

ote that (ITIUl) (Xi) = UI( Xi) and (IT1ud (Xi) = U~(Xi)' Again, it is easy to 
see that ITu E V if u E V. 
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4.3 	 Finite dimensional subspaces. 
Plate problems 

4 .3.1 	 Reduced quintics 

We use only reduced quintics developed by Cowper et al. (See for instance 
[SF]' [CKL0 1], [CKL02] and [CKL03].) These basis functions are highly 
accurate for the Galerkin approximation in plate problems. 

The rectangle D is divided into triangles or elements Di . vVith each node we 
associate six basis functions. To define these functions the following notation 
for derivatives is convenient: 

o(O)u = 	u , O(3)U = ofu, 

o (l)u = 01 U, O(4)U = Ol02 U , 

o(2)u = 02U, a(5),u = oiu. 

For each node Xj and for each element Di (with Xj as a vertex) there exist 

six reduced quintics 7/J~~) fo r k = 0, 1, .. . , 5 with the following properties: 

if e= k,
For j = 	 m : 

if e=I- k . 

For j =I-	 m : 

Next these polynomials are "pieced" together. We define the basis function 
¢jk) by: 

The restriction of ¢jk) to element Di is 7/J;7) if Xj is a vertex of Di . 

If Xj is 	not a vertex of Di then ¢;k) = 0 on Di . 

The piecewise polynomial functions ¢~k) are continuous and have continuous 
partial derivatives. The second order parti al derivatives are not continuous. 
However, these functions are elements of H2 (D). 

Definition 4.3.1 Interpolation operator II st 
n 5 

IIstu := L L a(k)U(Xj )¢jk). 
j=1 k=O 

 
 
 



64 CHAPTER 4. DISCRETIZATION 

Consequently, if v = TInu, then 8(k)V (Xj) = 8 (k)U(Xj). 

4 .3.2 Plate beam model 

The elements of Sh must be ordered triples of the form (u , IOU, 11u). The 
basis elements for Sh are 

;;:,(k) = (~(k) ~(k) ~(k))
'f't 'f't ' I O'f't ,11'f't . 

Note that some basis functions must be excluded to satisfy the forced bounda
ry conditions. Clearly ¢~k) E V for each i and each k. The finite dimensional 
space Sh is the span of all the admissible basis functions. 

Definition 4.3.2 Interpolation operator 

Remark Let IIr denote the interpolation operator defined for quintics in 
Section 4.2.1. Note that 

The same is true for I)' 
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4.4 	 Implementation 

vVe now reconsider the three types of problems posed in Section 4.1. Having 
defined finite dimensional subspaces, the matrices K, L, NI and Nlo are also 
defined. 

The equilibrium problem, Problem BD , is trivial and needs no further dis
CUSSlOn. 

The eigenvalue problem, Problem CD, is a generalized eigenvalue problem. 
For the different model problems, this is solved, after the matrices have been 
computed, using standard Matlab subroutines. In the one-dimensional case, 
this is a straightforward procedure. (Chapter 6.) The two-dimensional case 
is more interesting because of the presence of repeated eigenvalues and the 
irregular pattern in which they occur. As the multiplicity of eigenvalues for 
the abstract eigenvalue problem (Problem B) and the Galerkin approxim
ation (Problem BG) do not correspond, it can be difficult to interpret the 
numerical results. vVe will elaborate on this in Chapter 7. 

The vibration problem, Problem AD, is an initial value problem for a second 
order system of ordinary differential equations 

Mul/(t) 	+ Lu'(t) + Ku(t) J(t), 

ii, (0 ) = (}, U' (0 ) /3 , 

which is to be solved on an interval [0, T]. The initial conditions, (} and /3, 
depend on the choice of approximations for 0' and (3 . One possibility is to 
use O'h = ITO' and (3h = IT(3. Another possibility is to use projections-to 
be defined in Section 4.6. This problem is solved using a finite difference 
method. The interval [0, T] is partitioned into subintervals of length Ot and 
tk = kOt. 

Let Uk 	denote the approximation for u(tk). Vve use the following scheme: 

(Ot)-2NI(Uk+l - 2Uk +uk-d 


+(2Ot)-1 L(Uk+l - uk-d 


+K(PIUk+l + POUk + PIUk-l) 


More detail about the weights , Po and PI, will be given in Section 5.4 and 
Chapter 6. The scheme is started with initial conditions Uo = (} and 
(2Ot)-1(Ul - u- d = /3. 
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It is clear that as far as implementation is concerned, the real challenge is 
the computation of the matrices K , Land lIif. This is complicated by the 
interface conditions which result in non-standard basis elements. We write 
our own code to assemble the matrices. 

As an example we illustrate the computation for the simplest case, namely 
the beam with tip body. The dimensionless model is given in Section 2.4. 

The interval I = [0,1J is divided into subintervals by nodes Xi, Z = 0, I, ... , n, 
with 

o= .Xo < .X 1 < ... < Xn = 1. 

Consequently, we have elements Di = [X i -I, Xi] of length hi' Suppose we use 
Hermite piecewise cubics defined in Section 4.2 and the basis elements are 
ordered as follows : 

for i = 1, 2, . .. , n, 

for i = n + I, n + 2, ... , 2n. 


First consider the computations for an undamaged beam. We denote the 
standard cubics by rjJ i ' Also, the matrices NIA

, Ml and K are the usual 
matrices used for an undamaged beam: 

ext we show how to adapt these matrices for the beam with tip body. (The 
bilinear forms are defined in Section 3.2 and the matrices in Section 4. l. ) 

The K -matrix does not change since 

Since /-Lo = /-Ll = 0, 

Lij = a( ¢i) ¢j) = 11 (/-LrjJ~ rjJ~ + krjJirjJj) 

which yields that L = /-LK + kMA . Lastly, 

tC ( ¢i, ¢j) = } 0 ( rjJi rjJ j + r rjJ~ rjJ~ ) + mrjJi (1 ) rjJj (1) + I m rjJ; (1) rjJj (1 ) 

Nli1 + r [Mllij + mrjJi(l)rjJj(l) + ImrjJ~(l)rjJ~(l) . 

Thus, M = NIA + rMl + M* where M* is the 2n x 2n zero matrix , except 
for two non-zero entries namely M~ n and M2n 2n'. , 
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4.5 Interpolation error 

4.5.1 Standard estimates 

In this subsection we quote standard interpolation estimates, as found in, 
for instance, [SF], [OR] and rOC]. The standard Sobolev spaces H k(1) and 
Hk(O ) are used and II . II denotes the L2(1) or L2(0) norm. 

We introduce two parameters for an interpolation operator IT: 
r(IT) is the highest degree of polynomials left invariant by the operator IT , 
s(IT) is the highest order derivative used in the definition of IT. 

Vie will use C 
~ 

to denote a generic constant which depends on the constants 
in Sobolev's lemma and the constants in the Bramble Hilbert lemma. 

In the following result 1·lk denotes the seminorm of order k, i.e. lulk = lIu(k) II , 

on an interval I . 

Lemma 4. 5.1 Suppose s(IT)+1 S k S T(I1)+l. Then theTe exists a constant 
C such that, for all u E Hk (1) ) 

Ilu - l1ullm S Chk-mlulb m= 0, 1, ... , k. 

Notation If u E Hk(1) , let k* denote the minimum of k and r( l1) + 1. 

Corollary 4 .5.1 There exists a constant C such that, JOT all u E Hk (1) , 
wdh k 2:: s(l1) + I, 

lIu - ITuli m S Chk*-mlulk*, m = 0,1, ... , k*. 

P roof Hk(I) C Hr(TI)+l for k 2:: r(l1) + 1. 0 

Remark For cubics, k* = 4 if k 2:: 4. For quintics, k* = 6 if k 2:: 6. 

In the following result , for a two-dimensional domain 0, I . Ik denotes the 
seminorm of order k, i.e. 

Iv, l~ = L 11 8l~u Il 2. 
i+j=k 

In the two-dimensional case, the constant of the estimate also depends on 
the shape of the elements. Care should be taken that the minimum angle of 
any triangle element does not become too small. See for instance [SF , p 138]. 
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Lemma 4.5.2 Suppose s(II)+2 ::; k ::; r( II )+ l. Then there exists a constant 
C such that, for u E Hk(D, ), 

lIu - IIu/i m ::; Chk-mlulk> m= 0, 1, .. . ,k. 

Remark For reduced quintics r(II ) = 4, hence k* = 5 if k 2: 5. 

Corollary 4.5.2 There exists a constant C such that, for all u E H k(D,) . 
with k 2: s(II) + 2, 

Ilu - IIull m ::; Chk' - mlulk" m = 0, 1, ... , k*. 

4.5.2 D amaged beam model 

The seminorm of order k fo r the product space Hk = Hk(11) X Hk (12) is 

defined by lul~ = IUll~ + IU21~ · 

Lemma 4.5.3 There exists a constant C and an s' such that, fOT all u E Hk. 
wzth k 2 s', 

Proof The result is a direct consequence of the definition of seminorms , 
norms and the interpolation operator on the product space. For this in


. terpolation operator, s* = 2 and k* = min { k, 4}, if adapted cubic basis 

functions are used, and s* = 3 and k* = min{k, 6}, if adapted quintic basis 

functions are used. 0 


4.5.3 Beam with dynamical boundary conditions 

The seminorm of order k for the product space Hk = Hk(1 ) X 1R x 1R is defined 

by lul~ = IUll~· 

Lemma 4.5.4 There exists a constant Cand an s* such that, fo r all u E Hk , 
with k 2: s*, 

 
 
 



CHAPTER 4. DISCRETIZATION 69 

Proof T he result is a direct consequence of the definition of seminorms, 
norms and the interpolation operator on the product space. Also for this 
interpolation operator, s* = 2 and k* = min { k , 4} if adapted cubic basis 
functions are used, and s* = 3 and k* = min{k ,6 } if adapted quintic basis 
functions are used. 0 

4.5.4 P late beam model 

The seminorm of order k on the product space Hk = Hk(D) X H k(I) x Hk(I) 
is defined by lul% = IUil%+ IU21% + IU31%· 

Consider the interpolation operator IT defined in Section 4.3.2. In this case 
k* is the minimum of k and 5. 

Lemma 4.5.5 There e.xists a constant Cand an s* such that, jor all U E Hk, 
with k ~ s*, 

~ k-Ilu - ITulimSCh -mlul k _, m = 0, 1, . .. , k* 

Proof Note that for any u E Hm, we have that 

Ilu - ITull~ = /lUi - ITDU1/l~ + IIu2- ITru2/1~ + /lu3 - ITru311~· 

Use the results of Corollaries 4.5.1 and 4.5.2. From Corollary 4.5.2 it follows 
that s* = 4 as s(IT) = 2 for reduced quintics . 0 

4.5.5 Abstract error estimates 

At this stage a unified approach is possible. We have a Hilbert space V, a 
finite dimensional subspace sh, an interpolation operator IT and require an 
estimate for the interpolation error u - ITu. 

In Subsections 4.5 .2 to 4.5.4 we showed that for all the model problems we 
can define parameters s* and k* for each interpolation operator , such that 
the following general interpolation estimate holds. 

Lemma 4.5.6 There exists a constant C such that, jor all u E Hk , wzth 
k ~ s*, 
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As V C H2 for all the model problems) and the energy norm is equivalent to 
the H2 norm, the following interpolation estimate holds. 

Corollary 4.5.3 There exists a constant C such that, for all u E Hk n V, 
with k ~ s*, 

For all the model problems s* < 4 and for k = 4 it follows that k* = 4. This 
means that the following result applies to all the interpolation operators that 
we use. 

Corollary 4 .5 .4 There e.'Iists a constant C such that, for all u E H4 n v . 
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4.6 A pproximat ion 

We have a Hilbert space V, a finite dimensional subspace Sh, an interpola
tion operator II and an estimate for the interpolation error u - IIu. We now 
introduce a projection of V onto the subspace Sh. This projection will fea
ture in every convergence proof in Chapter 4. For more information on this 
projection, see any Functional Analysis text, for example [Kr, Section 3.3]. 

Definit ion 4.6. 1 Projection P 

P is a projection of V onto Sh with respect to the inner product b. 

The definition implies that for any x E V, 

b(x - Px,v) = 0 for all v E Sh. 

Due to the important role that P will play in the theory, we display the 
properties of this projection: 

Ilx - PxllE :::; /Ix - vilE for all v E S\ 

IIPx - vilE:::; Ilx - vilE for all v E Sh 

and 

IIPxllE :::; IlxiIE' 
~ 

Lemma 4.6.1 There exists a constant C such that, for any u E Hk n V , 
with k ~ s*, 

Proof 

IIPu - uilE :::; IIIIu - uilE 

and 

IIIIu - PullE :::; Ilu - II~uIIE' 

Now use the results for the interpolation error in Corollary 4.5.3. 0 

The next result is convenient due to the fact that it applies to all the inter
polation operators that we use. 
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Corollary 4.6.1 There exists a constant C such that, Jar any u E H4 n V, 

Lemma 4.6.2 For any c > 0 and any u E V , there exzsts a 6> 0, such that 

Ilu - PullE < c, zJ h < 6. 

Proof For any u E V there exists awE H4 n V such that 

Ilu - wilE::; C. 

Now, 

IIPu - uilE < Ilu - wilE + Ilw - PwllE + IIPw - PullE 
< c+ Clwl4h2 + c 
< 3c for h sufficiently small. 

o 

In a final result we show that the Aubin-Nitsche trick, [N], can also be applied 
to find estimates in the inertia norm for the discretization error. 

Lemma 4 .6.3 There exists a constant C such that, Jar all u E Hk nV, wdh 
k 2: s*, 

P roof Set ep = u- Pu. As b defines an inner product on V it follows from 
the Riesz theorem that there exists a unique y E V such that 

b(y, v) = (ep , v) for all v E V. (4.6.1) 

Regularity results yield that y E H4 n V and that there exists a Cb such that 

(4.6.2) 

Since P is a projection 

b(ep , v) = 0 for all v E Sh ( 4.6.3) 
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Let v = ep in (4.6.1) and v = Py in (4.6.3). This yields that 

From Corollary 4.6.1, 

We conclude from (4.6.2) that 

The result now follows from Lemma 4.6.1. o 

For all our model problems the following result applies. 

Corollary 4.6.2 TheTe ex~sts a constant C such that, fOT all u E H4 n V. 

 
 
 



Chapter 5 

Convergence 

In Section 3.4 we presented three general problems, Problems A, Band C. 
In Section 4.1 we formulated the problems for the Galerkin approximations. 
T hese are Problems AG , BG and CG. 

5.1 Equilibrium problem 

In this section we consider the convergence of the solution of Problem BG to 
the solution of Problem B. 

Assume that uh E Sh is the solution of 

b(uh 
, v) = (j,v) for all v E Sh (5.1.1 ) 

and u E V is the solution of 

b(u, v) = (j, v) for all v E V. (5.1.2) 

In the proof of the theorem, we will use the projection P , defined in Sec
tion 4.6. 

Theorem 5.1. 1 

1. IIuh - u" E -+ 0 if h -+ o. 

74 
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2. If U E H4 n V ; then 

and 

P roof If (5.l.2) is subtracted from (5.l.1), it follows that 

b(u - u\ v) = 0 for all v E Sh 

This means that uk = Pu. The first part of the theorem follows directly 
from Lemma 4.6.2 . The estimates in the second part of the theorem follow 
from Lemma 4.6 .1 and Lemma 4.6.3. 0 
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5.2 Eigenvalue problem 

Our approach is based on the ideas of [BDSW] , [BF] and [SF] and we fol
low the presentation in [SF]. The theory in the book of Strang and Fix, 
[SF, Section 6.3], concerns eigenvalue problems for general symmetric elliptic 
operators. Most of the presentation is written in a style which encourage 
abstraction. In collaboration with others, [ZVGV2], we verified that the 
theory is valid for abstract eigenvalue problems such as Problem C. In this 
thesis we present this abstract version, and also offer a number of modest 
improvements. 

The rate of convergence for eigenvalue problems also depends on the regula
rity of the eigenvectors. In the absence of such theory for interface problems, 
we pose the following assumption which we showed to be true in the one
dimensional case. (See Section 3.5.) 

Regularity Assumption The eigenvectors of the eigenvalue problem, Pro
blem C, are in Hk n V for k = 4 or 6, and there exists a constant Cb--- 

depending on th bilinear forms band (')' )- such that for each eigenvector 
y 

5.2.1 T he Rayleigh quot ient and the Minmax principle 

To analyse the convergence of eigenvalues and eigenvectors, some preparation 
is necessary. First we establish bounds for the approximate eigenvalues using 
the Rayleigh quotient and the minimax principle. 

It is well-known that the eigenvalues are the stationary values of the Rayleigh 
quotient. However, the following result gives a more convenient characteri
zation of the eigenvalues. See [SF, p 221]. 

Lemma 5.2.1 Minmax principle 

Let T denote the class of subspaces of V having dimens'ion J' , then 

Aj = min max R(v) . 
SET vES 
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We may assume that the eigenvalues are ordered 

For some integer m, consider the eigenvalues )'1, A2, ... , Am and corres
ponding eigenvectors Yl, Y2, ... , Ym' Equal eigenvalues are possible but we 
assume that Aj =I- Am for each J' > m. 

In the finite dimensional subspace S h we have A7, A~, .. . , A~ (also ordered) 
and corresponding eigenvectors y7, y~, ... , y~. (Equal eigenvalues do not 
matter. In the case of multipliCity, yJ is not uniquely determined, but it does 
not influence any proof.) 

5.2.2 Bounds for the approximate eigenvalues 

The minimax principle yields lower bounds for the approximate eigenvalues. 

Lemma 5.2.2 A] 2:: Aj for each j. 

Proof The minmax principle is also true for the space Sh. Any subspace of 
Sh is a subspace of V . 0 

Notation Yi will be used to denote the normalised eigenvectors, i.e. II Yi l1 = 1. 

For j = I, 2, ... , m, let Ej denote the subspace of V spanned by {Yl, Y2, ... , Yj}. 

Consider t he subspaces Sj where 

Sj = P Ej for j = 1, 2, ... , m. 

P = Ph is the projection defined in Section 4.6. 

An upper bound for some approximate eigenvalue depends on the construc
tion of Sh. Clearly the construction of Sh must be such that 
dim Sh = N > m. However, it is still possible that dim Sm < m . 

Assumption The construction of Sh is such that dim Sm = m. 

We define a quantity f.L~ to measure the "distortion" of the projection of the 
unit ball Em = {y E Em : IIYII = I} : Set 

fL':n = inf{IIPyl1 2 
: Y E Em} . 
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Proposit ion 5.2. 1 M':n > 0 ~f and only if dim Sm = m. 


Proof The function IIPyI1 2 has a minimum on the compact set Bm. Hence 

M':n > 0 if and only if Py -=/:. 0 for each y E Bm· But this is so if and only if 

the vectors PYl, PY2, .. . , pYm form a linearly independent set. D 


P roposition 5.2.2 A':n :::; max{R(Py ) : y E Bm}. 


P roof 


Since dim Sm = m, it follows from the minimax principle that 

A':n :::; max{R(v) : v E Sm}. 

Consider any v E Sm, v-=/:. O. There exists a vector y E Em such that Py = v. 

Note that R(P(ay)) = R(av ) = R(v). Choose a such that ay E Bm. 
Consequently, 

max{R(Pz ) : z E Bm} = max{R(v) : v E Sm}· 

D 

The following result is crucial. 

Lemma 5.2.3 A':n :::; A:. 
Mm 

Proof If y = 2:::':1 CiYi, then b(y, y) = L
m 

c; \, since {Yl, Y2, . . . , Ym} is an 
i=l 

orthonormal set. Hence 
m 

i=l 

Since P is a projection with respect to the inner product b, 

b(Py, Py ) :::; Am for each y E Bm. 

From the definition of M':n, we have 

R(P ) = b(Py , Py) < Am 
y IIPyl12 - M':n ' 

ow use Proposition 5.2.2. D 
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Corollary 5.2.1 J-lr:n :::; 1. 

This is a direct consequence of Lemmas 5.2.2 and 5.2.3. It is convenient to 

formulate error estimates in terms of the quantity 1 - J-l':n. 


N otation CJ':n = 1 - J-l':n. 


Corollary 5.2.2 0:::; CJ~ < 1 and A~ - Am :::; A~P~, 

Since the eigenvalue error is bounded by CJ!, it is sufficient to estimate CJ! 
and prove that CJ! ----> O. 

5.2.3 Estimates 

Proposition 5.2. 3 CJ! = max{2(y, y - Py) - IIY - Pyl12 : y E Em}. 

P roof 

IIPyll2 + lIyll 2 - 2(y, Py) 


IIPyll2 + 2(y, y) - 2(y, Py) - 1 (since lIyll2 = 1). 


As a consequence 1 - IIPyll2 = 2(y , y - Py ) - Ily - p Y11 2. The result follows 
from the definition of CJ!. 0 

Remark In [SF , Section 6.3] CJ! is defined by 

CJ~ = max{12(y, y - Py )  lIy - pYll21 : y E Em}. 

The absolute value is not necessary since 

max{2(y, y - Py) - Ily  Pyl12 : y E Em} ~ O. 

The assumption is then made that CJ! < 1, and they prove that dim Sm = m. 

We proved the fact that dim Sm = m is equivalent to CJ! < 1 and we believe 
that it is important to take note of this equivalence. 
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Proposition 5.2 .4 	For any y E Em ! 

(y,y - Py ) = b(y* - Py*,y - Py ). 

Proof 

b(Yi - PYi, Y - Py) = b(Yi, Y - Py ) since b(y - Py, PYi) = O. 

Hence, 

Multiply by ciA;-l and sum over i. We have 

(y, y - Py) = 	 L
m 

Ci\-lb(Yi - Pi, Y - Py) 

i=l 


o 

The following result also differ from [SF]. 

Lemma 5.2 .4 (J~ ~ 	max{2 1Iy* - pY*IIE IIY - pYllE : Y E Em}· 

P roof Consider the result of Proposition 5.2.3. We have demonstrated that 
the quantity 

2(y, Y _ py) _ Ily - pyll2 

must have a non negative maximum (Corollary 5.2.2) . Consequently 

(J~ ~ max{2(y, y - Py ) : y E Em}. 

Use Proposition 5.2.4 and the Schwartz inequality for the inner product b. 0 

Proposition 5.2.5 	For any c > 0 there exists a <5 > 0 such that for h < <5! 

Ily* - Py*I IE < c for each y E Em, 

Ily - pYllE < c for each y E Em· 
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P roof From Lemma 4.6.2 there exist positive numbers 01) 02 ) . . . ) On such 
that for each i 

Now, suppose h < mini Oi, then 
m 

i=l 

The same arguments are valid for Ily* - PY*//E' o 

Lemma 5.2.5 For any c > 0 there exists a 0 > 0 such that 

(J~ < c if h < O. 

Proof 

For any c > 0 there exists a 0 > 0 such that if h < 0, then 

Ilu - PUIlE < c for each u E Em · 

The result follows from Lemma 5.2.4 and Proposition 5.2.5. o 

Proposition 5.2.6 If Problem C satisfies the regularity assumption, then 
for any Y E Em 

and 

Proof We may assume that Ci ~ 0 for each i. 

First estimate: 

IIY* - Py*IIE < 
m

L c),.;-lIlYi - pYiliE 
i=l 

m 

< ~ L 1 P 2c c)\i IYil k· h -
i=l 

< 
'm 

c/] L Ci Af- 1 I1Yill hk*-2 

i=l 

< CCbAr:n- 1 hk' -2. 

 
 
 



82 CHAPTER 5. CONVERGENCE 

Second estimate: 
m 

i = l 

< CGbAf hY-2, 

using the same arguments as for the first estimate. 	 o 

Lemma 5.2.6 If Problem C satisfies the regularity assumption) then 

CT~ :::; CG A;::-lh2(kO-2)b

P roof 

Use Lemma 5.2.4 and Proposition 5.2.6. 	 o 

5.2 .4 Convergence of e ige nvalues 

We may now use the results of the previous subsection to establish the con
vergence of A~ to Am. 

Lemma 5.2.7 There e.'Eists a 6 > 0 such that for h < 6, 

A~ - Am :::; 2AmCJ~. 

Proof 

Choose 6 such that CJ~ 	< ~. Consequently A~ < 2Am. o 

Theorem 5.2.1 

1. A~ - Am --t 0 as h --t O. 

2. 	 If Problem C satisfies the regularity assumptwn, then 


. A~ - Am :::; 15Gb A;: h2(k " - 2) . 


Proof 

1. This is a direct consequence of Lemmas 5.2.5 and 5.2 .7. 

2. Use Lemmas 5.2.6 and 5.2.7. 	 o 
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5.2.5 Convergence of eigenvectors 

To estimate the error "ym-y~ll, we need to estimate the difference IIPYm-y~ll· 
It is necessary to consider the possibility that Am has multiplicity more than 
one. Suppose that the multiplicity of Am is r and let 
A = 1, 2, ... , m - r, m + 1, ... , N. From Theorem 5.2.1 it follows 
that there exist real numbers p > 0 and 0 > 0 such that if h < 0, then 

lAm - AJI > p for each j E A. (5.2.1) 

Assumption Assume that h is sufficiently small for (5.2.1) to hold. 

Suppose {y~-r+l' y~-r+2 ' ... , y~} is an orthonormal set of eigenvectors 
corresponding to A~-r+l' A~-r+2 ' ... , A~. The strategy now is to estimate 
the distance between y~-r+i and some (uniquely defined) vector in EAm' the 
eigenspace corresponding to Am. 

We define a projection Pm with domain P(EArn ): 
m 

PmW = L (w, yJ)yJ for each w E P(EArn)' 
j=m-r+l 

This projection enables us to deal with the case of a repeated eigenvalue. 

Here we differ from [SF]. Although most of the computations are the same, 
we believe that our construction of the projection Pm is a worthwhile contri
bution. We will show that PmP (and hence Pm) is invertible for h sufficiently 
small. 

Proposition 5.2.7 For each j E A and each y E EAmJ 

(AJ - Am)(Py, yJ) = Am(Y - Py , yJ). 

Proof 

It is only necessary to prove that 

AJ(Py, yJ) = Am(Y, yJ) (5.2.2) 

since the term - Am (Py, yJ) appears on both sides of the equation. 

Since yJ and yare eigenvectors, it follows that 

A7(Py, yJ) = b(Py, yJ) and Am(Y, yJ) = b(y, yJ). 

But b(Py - y, yJ) = 0 for each j, thus (5.2.2) follows. o 
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Lemma 5.2.8 

P roof From the assumption we have the estimate 

Am
IAJ - Ami :=:; Pm for each j E 1\ , (5.2.3) 

where Pm = Amp-1. 


The set y~ , yq , ... , Y'N form an orthonormal basis for Sh , hence 


N 

Py = L(Py, yJ)yJ. 
j= l 

Consequently, 

Py - PmPy = I)py, yJ)yJ. 
j Ei\ 

If y E E Arn ' then 

L (Py , yJ? 
jEi\ 

We now use Proposition 5.2.7 . 

~ CAJ ~mAml) 2 (y Py ,yj)' 

< p~ L(y - Py, yJ)2 (Inequality (5.2.3)) 
jEi\ 

N 

< p~ 'L)y - Py, yJ)2 
j=l 

D 
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Lemma 5.2.9 

Proof 

Ily - PmPy11 	 < Ily - Pyll + IIPy - PmPy11 
< (1 + Amp-I) Ily - pYI!. 

o 

Corollary 5.2.3 PmP is invertible for h sufficiently small. 

Proof Let y 	E Em n EAm' Then 

for h sufficiently small. Since 

it follows that 	IIPmPyl1 > ~. Consequently 

1 
IIPmPyll> Li"YI for each y E EAm . 

o 

Corollary 5.2.4 If h is s'ufficiently small, then for each j, .i = 1, 2 , ... , r 

there exists a unique Xj E EAm w~th IIxj II = 1 such that 

Proof There exists a unique y E EAm such that y = (PmP)-lYm_r+j. Hence , 

Let {3 be a real number such that 1{31 = lIyll and let Xj = {3-1y. 'vVe can choose 
Xj such that {3 > O. As a consequence lIyll = {3. 
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It 	follows that 

Hence 

II Xj - Y~-r+jll 	 < IIXj - yll + Ily - y~-r+jll 
< 2(1+p- 1 Am )lly-Pyll· 

o 

It is important to realise that one compute the approximation y':n-r+j. The 
result above guarantees the existence of an exact eigenvector, with norm one, 
close to the approximate one. 

The following result from [SF] shows that an error estimate in the energy 
norm depends on error estimates in the norm II · II and eigenvalue errors. We 
modified it slightly to make it useful for the case of repeated eigenvalues. 

Lemma 5.2.10 

Proof 

b(Ym - yj, Ym - yj) b(Ym, Ym ) - 2b(Ym, yj) + b(yj , yj) 

2
AmllYmll - 2Am(Ym, yj) + AJIlY~1I2 

Am 	- 2Am(Ym, y~) + AJ 

Am[2 - 2(Ym, y~)] + AJ - Am 

Am [IIYmIl 2 - 2(Ym, yj)] + lIyJ II 2] + AJ - Am 

AmilYm - yj ll2 + AJ - Am. 

o 

Theorem 5.2.2 

1. 	 Let c > 0 be arbitrary. If h is sufficiently small) then for each 
j, j = 1, 2, .. . , r there exists a unique Xj E EArn with IIx j II = 1 
such that 
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2. 	 Suppose Problem C satisfies the regularity assumptwn. If h IS suffi
ciently small, then for each j, j = I , 2, ... , r there e.'LZsts a unique 
Xj E EArn with IIxj II = 1 such that 

. II h II C~C \ a: h(k*-2)Xj 	- Ym-r+j E :s; bAm . 

Proof 

1. 	 Use Corollary 5.2.4: There exists a unique Xj E EArn such that 

But 

(Lemma 5.2.10). Hence 

Ilxj 	- Y~-r+jll~ :s; 4Am(1 + p-1Am)21Ixj - PXjl12 + A~_r+j - Am 
(5.2.4) 

Now use Proposition 5.2.5 and Theorem 5.2.1. 

2. 	 Consider the Inequality (5.2.4). We have the estimates 

(5.2.5) 

from Proposition 5.2.6 and 

(5.2.6) 

from Theorem 5.2.1. The result follows from (5.2.5) and (5.2.6). 

o 
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5.3 Vibration problem 

Our concern is the difference between the solution u of Problem A and the 
solution Uh of Problem AG. It is possible to estimate this error in terms of 
the projection error (Section 4.6) and errors for the initial conditions. See 
[SF, Section 7.3]. This is called a projection method and was first used for 
parabolic problems. For second order hyperbolic problems, it appear that 
credit is due to [DJ, [De] and [SF]. Research in this direction was also done 
by [Ba]. 

After this it appear that abstract methods became popular. See for example 
[Sh, Section 6.4]. In Section 3 of an invited paper, [BIt], very general results 
are given. (Incidentally they use results in [Sh].) 

A general approximation theory, using functional analysis, is obviously im
portant. However, we found that the basic error inequality mentioned before 
([SF, Section 7.3] and [D , Lemma 1]) is valid for an abstract problem as 
general as P roblem A. As a final remark we mention the paper [FXX] where 
the authors also use what they term a "partial projection" met hod to obtain 
£ 2-error estimates. 

5.3. 1 Discretization error 

In this section we show that the convergence proof sketched by Strang and Fix 
[SF , Section 7.3] can be applied to Problem A in Section 3.4 and Problem AG 
in Section 4.l. In this proof the projection operator P defined in Section 4.6 
is used to find an estimate on the discretization error 

Ilu(t) - uh(t)IIE for t E [0 , (0). 

vVe also use the symbol P to denote the "projection" Pu of the solution u of 
Problem A , i.e. (Pu)(t) = Pu(t) for each t ?: O. 

Let e(t) = Pu(t) - Uh(t) and ep(t) = u(t) - Pu(t). Then 

Ilu(t) - uh(t)IIE::; Ilep(t)IIE + Ile(t)IIE' (5.3.1) 

The following result is required for the main result of this section. Note that 
differentiability with respect to the energy norm is required to prove that the 
projection function Pu is differentiable. This regularity requirement is not 
stated by [SF]. 
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Lemma 5.3.1 ffu E C2 ([O, 00) , V), then Pu E C2([O, OO), V) wdh 

(Pu)'(t) = Pu'(t) and (Pu)"(t) = Pu//(t). 

P roof As the projection operator P is a bounded linear operator with norm 

less than one, it follows that 


II(ot)-l (Pu(t + c5t) - Pu(t)) - Pu'(t)IIE ::; 11(c5t)-l(u(t + c5t) - u(t)) - u'(t)IIE' 


This implies that Pu E C 1 ([0,00), V) and (Pu)'(t) = Pu'(t). 


In exactly the same way we prove that (Pu)' E Cl ([0 , 00), V) and 

(Pu)//(t) = Pu//(t). 


o 

Since we already have an estimate for the projection error ep(t) , it is only 
necessary to estimate the other part of the error. 

In the next proof the following "energy" expression will be convenient: 

E(t) = 	 ~(e'(t), e'(t) ) + ~b(e(t), e(t)) 

1 1 
- 211 e' (t ) 112 + 211 e(t) II ~. 	 (5.3 .2) 

Lemma 	5 .3.2 Assume that u E C2([O, 00) , V). Then, for any t 2 0, 

Ile(t) liE::; IIPcx - CXhllE + liP;] - ;]h II + it Ile~(s ) II + ~[ Ile~( s ) 110 ds. 

Proof From P roblem A and the Galerkin approximation (Problem AG) we 
deduce that for any v E Sh , 

(u//(t) - u~(t) , v) + a(u'(t) - u~(t) , v) + b(u(t) - Uh(t), v) = O. (5.3.3) 

Since P is a projection, we have 

b(u(t) - Pu(t) , v) = b(u'(t) - Pu'(t), v) = 0 for all v E Sh. 

Using the fact that Pu//(t) = (Pu)//(t) , (5.3.3) can be written as 

(el/(t), v) + b(e(t), v) = -(e~(t), v) - k(e~(t), v )o - k(e'(t) , v)o 

-J-ib(e'(t),v) for all v E Sh. (5.3.4) 
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( ote that a(u, v) = fJb(u, v) + k(u, v)o where fJ or k or both can be zero.) 

We will use the fact that 

E'(t) = (el/(t), e'(t)) + b(e(t), e'(t)). 

As e(t) E Sh it follows that e'(t) E Sh. Choose v = e'(t) in (5.3.4), then 

E'(t) - -(e~(t), e'(t)) - (ke~(t), e'(t))o - k(e'(t), e'(t))o - fJb(e'(t) , e'(t)) 

~ (1/e~(t)11 + ~llle~(t)llo) Ile'(t)ll· 

From (5.3.2), 1/e'(t)11 ~ J2E(t). Thus 

E'(t) ~ J2E(t) (1Ie~(t)11 + ~I II ~(t)llo) 
and consequently 

This yields that 

JE(i5 ~ JE(O) + ~ 1t (1Ie~(s)11 + ~Ille~(s)llo) ds. (5.3 .5) 

As 

1 2 1 2 
E (0) = '2 IIPP' - P'hll + '2 IIPQ - QhllE 

and Ile(t)IIE ~ J2E(t) , again from (5.3.2) , the result follows from (5.3.5). 0 

Theorem 5 .3.1 Assume that u E C2 ([0 ,(0), V). Then , JOT any t ~ O. 

Ilu(t) - uh(t)IIE ~ Ilep(t)IIE + IIPQ - QhllE + IIPp' - P'hll 

+1t (1Ie~(s)11 + ~I Ile~(s)llo) ds. 

Proof Use Lemma 5.3.2 and Equation (5.3.1). 

o 
To prove the convergence results, it is now necessary to consider the terms 
on the right side of the inequality in this theorem. 
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5.3.2 Convergence 

The main factor that determines the rate of convergence of the solution 
Uh of Problem AG to the solution U of Problem A as h tends to zero, is 
the regularity of the weak solution u. The regularity of u depends on the 
regularity of the initial values Q and f3, as we pointed out in Section 3.4. [Raj 
gave an example to show that the regularity of the solution is necessary to 
obtain optimal order convergence. 

The rate of convergence is also directly influenced by the choice of the initial 
values Qh and f3h for the solution Uh of Problem AG. V·..,re will consider two 
cases, i.e. Qh = ITQ, f3h = ITf3 and Qh = PQ , f3h = Pf3. In the following 
result we show that the rate of convergence in the energy norm is of order h2 

if certain regularity conditions are satisfied. The estimates are expressed in 
terms of the constants CJ and CE defined in Section 3.4 as well as Cdefined 
in Section 4.5. 

Theorem 5.3.2 LetQh = ITQ andf3h = ITf3. Assume thatu E C 2([0 , 00), V) 
and that u(t)! u'(t) and ul/(t) are in H4 n V for t 2: O. Then, 

Ilu(t) - uh(t)IIE::; C (IQI4 + Ce1 1f314 + lu(t)14 + k(CECJ)-lt max lu'(s)14
sE[a,t[ 

+Ce1t max lul/(s)14) h2 for t E [0 , 00).
SE[a,f) 

Proof From Theorem 5.3.1, 

Ilu(t) - uh(t)IIE ::; Ilep(t)IIE + II PQ - ITQllE i IIPf3 - IT) II 

+ it ( 1Ie~ (s ) 1 1 + ~J Il e~(s)lla) ds. 

All that remains to be done is to apply the approximation results from Co
rollary 4.6.1 to each of the terms in this expression: 

and 
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From Lemma 5.3.1 , (Pu)' = Put and hence e~(t) = u'(t) -Pu'(t). This yields 
that 

and 

Similarly, 

o 
Under less strict regularity conditions we can still show that the solution Uh 

of P roblem AG converges to the solution u of Problem A in the energy norm 
if h tends to zero. 

Theorem 5.3.3 Let O:h = ITo: and Ph = ITp. Assume that 0: E V , P E V 
and u E C2([0, 00), V ), then 

lim Ilu(t) - uh (t) II E = 0 jar t E [0 , T].
h-+O 

Proof From Theorem 5.3.1, 

Il u(t) - uh(t)IIE ::; Il ep(t) II E + IIPo: -ITo:IIE+ IIPp - TIp ll 

+ fo·t ( 1I e~( s ) 1 1 + ~J Ile~(s)l l o dS) . 

From the approximation results we know that for any E > 0, each term is 
less than E, provided that h is sufficiently small. 0 

5.3.3 Inertia norm estimate 

In a final result we show that the Aubin-Nitsche trick can also be applied to 
this problem to find inertia norm estimates for the discretization error. 
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Theorem 5.3.4 Let O'.h = PO'. and !3h = P!3. Assume that u(t) , u'(t) and 
ul/ (t) are all in V n H4 for all t ;:: 0. Then, 

Ilu(t) - uh(t)11 :::; 	 C (lu(t)14 + kt(CJCE)-l max lu'(s)14 + tCi/ max lul/(S)14) h4 
SE[O,tl 	 SE[O,tj 

for t E [0, (0). 

Proof From Theorem 5.3.2, 

. I/u(t) - Uh(t)/1 	 < l/ep(t)/1 + /Ie(t )/1 


< /Ie p(t )/1 + Ci11I e(t)/IE 


< l/ep(t) /1 + Ci1 l t 

( lI e~(s) 1I + ~J ll e~(s ) ll o) ds. 


For a fixed t;:: 0, we consider ep(t) = u(t) - Pu(t ). 

We conclude from Corollary 4.6 .2 that 

II ep ( t ) 1/ :::; C I u (t)14 h4 . 

Similar arguments yield that 

lIe~(t)l/o :::; C!llle~(t)1I :::; Ci1Clu'(t)14h4 and lie~(t)1I :::; Clul/(t)14h4. (5.3.6) 

o 

A useful result is also obtained if the Aubin-Nitsche trick is used only for the 
terms containing the integrals. 

Theorem 5.3. 5 Let O'.h = ITO'. and!3h = IT l)', Assume that 0'... ;3 , u(t). u'(t) 
and ul/ (t) are all in V n H4 for all t. Then, 

lI u(t) - Uh(t) liE :::; C (10'.14 + Ci11!314 + lu(t)14) h2+ 

C (ktCi2 max lu'(s)14 + t max lul/(s)14) h4 for t E [0, (0).
SE[O ,t] sE [O,tj 

Proof The proof is exactly the same as the proof of Theorem 5.3.2. The 
estimates in (5.3 .6) are used for the terms containing the integral. D 

Remark We consider this result to be significant. It is advantageous to 
have an error estimate in the energy norm, while the terms containing tare 
"suppressed" by h4. 
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5.4 Finite Differences 

In this section we consider the system of ordinary differential equations, 
Problem AD in Section 4.1, and the finite difference method for approxima
ting the solution. The objective is to prove that the solution of the discre
tized problem converges to the solution of the Galerkin approximation. This 
method has been extensively studied- even in the context of finite difference 
methods for second order hyperbolic partial differential equations. However , 
one must be careful when matching the estimates. Although all norms are 
equivalent in the finite dimensional space Sn, the "constants" may depend on 
the dimension of Sh. Presenting error estimates for semi-discrete and fully 
discrete systems in the same presentation is a line also followed by others. 
See for example [D], [Ea] and [FXX]. 

We consider Problem AG in Section 4.1 and the finite difference scheme 
proposed in Section 4.4. In the first subsection we estimate the local error 
and then proceed to establish stability results. 

5.4.1 Local error 

The first step is to derive finite difference formula.s similar to the Newma.rk 
schemes [Zi]. Since we need error estimates in terms of the unknown function 
or its derivatives, it is necessary to derive the formulas . 

We will use Taylor's theorem in the following form: 

(t t ) n -l 
g(t ) = g(to) + (t - to)g' (to) + ... + (~ _o 1)1 g(n-l)(to) + R(t) 

where R(t) = (n ~l)1 ft:(t - e)n-lg(n)(e ) de . It is also true for t < to· 

See [el, p 179] or [Ap, p 279]. 

The following notation is introduced for convenience. 

j tHt 
Notation R~(t)= ( _ 

1 
)1 (t+6t-et- 1g(n)(e)de and 

n 1 . t 

The first proposition contains well-known results and the proofs are trivial. 
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Proposition 5.4.1 

l. 	If the real valued function 9 is m C3 [t - bt, t + bt], then 

g(t + bt) - g(t - bt) = 2btg'(t) + Rj(t) - R3(t). (5.4.1) 

2. 	 If the real valued function 9 is in C4[t - bt, t + btl, then 

g(t + bt) - 2g(t) + g(t - bt) = (bt)2 gl/(t) + Rt(t) + Ri(t). (5.4.2) 

Proof 

1. 	 Use Taylor 's theorem to get: 


(bt )2 

g(t + bt) = g(t) + bt g'(t) + - 2- gil (t) + Rj (t) 


and 

(bt) 2 

g(t - bt) = g(t) - btg'(t) + -2- gl/(t ) + R3 (t). 

Clearly 

9(t + bt) - 9(t - bt) = 2bt g' (t) + Rj (t ) - R3 (t) . 

2. 	 Approximate 9 by a polynomial of degree three and compute 
g(t + bt) + g(t - bt). 

o 
We gave the proof of part one in detail because we use the result. in the next 
proposition. 

Proposition 5.4.2 Let Po and PI be real numbers such that Po + 2PI = l. 

l. 	If the real valued function 9 is in C4[t - bt, t + bt], then 

g(t + bt) - g(t - bt) 

= 2bt (PIg'(t + bt) + Pog'(t) + PIg'(t - bt)) + R4(t), (5.4.3) 

 
 
 



96 CHAPTER 5. CONVERGENCE 

2. 	 Suppose the real valued function 9 is m C5[t - ot, t + M], then 


g(t + M) - 2g(t) + g(t - M) 


= 	 (M)2 (Plg//(t + M) + Pog"(t) + Plg//(t - M)) + R5(t), (5.4.4) 

where R5(t) =Wl {Rt(t) +Ri(t)} +W2{ Rt(t) +R5(t) 

(M)2jt+6t (M)2jt-c5t }
- (t + M - 8)2g(5)(8) d8 - - (t - M - 8)2g(5)(8) d8 . 

24 t 24 	 t 

Proof 

1. 	 Use Taylor's theorem to get: 

(M)2 (M)3
9 (t + M) = 9 (t) + Mg' (t) + - 2- g" (t) + -6- g'" (t) + R; (t ) 

and 

(ot)2 (ot) 3 
9 (t - M) = 9 (t) - Mg' (t) + -2- g// (t) - -6- g'" (t) + Ri (t ) . 

This yields 

(M)3
g(t + M) - g(t - M) - 2M g'(t) + -	 g"'(t) + Rt(t) - R; (t).

3 
(5.4.5) 

Applying Taylor 's theorem once more on 	g' we obtain 


(M)2

g' (t + M) = g' (t) + Mg" (t) + -2- g//' (t) + 

6t11t 
- + (t + M - 8)2g(4)(e) de 
2 t 

and 

(M)2
g' (t - M) = g' (t) - Mg" (t) + -2- g//' (t) + 

t c5t 
1 1- (t-M-8)2g(4)(8)d8.
2 	 t 

The two equations yield 
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g'(t + 5t) + g'(t - 5t) = 2g'(t) + (5t)2 gl/'(t)+ 

From this we get an expression for (5t)2g//'(t) which can substituted 
into (5 .4.5). The result is 

g(t + bt) - g(t - bt) 

(5.4.6) 

Finally we combine (5.4.1) and (5 .4.6) with weights WI and W2 to get 
the desired result. 

2. This proof is similar to the proof in (1) . D 

Remark The results above will also be used in the case where the function 9 
is not defined for t < O. In this case we may extend 9 by using the polynomial 
approximation on [t - 5t ,0). This will only influence the result in so far as 
there will be fewer remainder terms. 

The second step is to apply the difference formulas to Problem AG and to 
estimate the errors. 

A ssumption We assume that f E C3[O ,T] so that the solution Uh of Pro
blem AG is in C5 [0,T]. 

N otation Illuhlllfmax = L
5 

max Ilu~k)(t)IIE' 
, tE[O,T ] 

k=O 

Notation In the rest of this section Cb will denote a generic constant that 
depends on the bilinear forms, i.e. Cb is a combination of CE and CI . 

Notation Illflhmax = L
3 

max Ilf(k)(t)ll·
tE[O ,TI 

k=O 
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Proposit ion 5.4.3 Suppose Ui E C5 [t - M, t + Ml faT i = 1, 2, ... , nand 
{¢1 , ¢2, ... , ¢n} is the basis faT Sh and let Uh(t) = L~= l Ui(t)¢i' Suppose 
also that Po and P1 aTe Teal numbeTs such that Po + 2P1 = 1. 

If Uh(t + M) - 2Uh(t) + Uh(t - M) 

= (M?(P1U~(t + ot) + Pou~(t) + P1U~(t - M)) + e~, 
(5.4.7) 

Uh(t + M) - Uh(t - M) 

= 2M (P1U~(t + M) + Po 'u~(t) + P1U;1( t - M)) + e~ 
(5.4.8) 

and 

(5.4.9) 

then 

lle~ll S; K(M)3 { max I lu~3)(e)11 + max Ilu~4)(e ) 11 + max Ilu~5)(e)ll }
eE[t,tHt j eE[t,tHtj eE [t,tHt) 

and 

P roof 

Consider (5.4.7) as an example: Use (5.4.4) in P roposition 5.4.2 for Ui and 

denote the remainder by R5i (t), Now, each term in (5.4 .7)can be written as 
a linear combination, for example, 

Uh(t + M) = L
n 

Ui(t + M)¢i. 
i = l 

Consequently we have (5.4.7), if we set e~(t) = L~l R5i (t)¢i' 
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It remains to estimate the error term e~(t), which is actually the sum of six 
error terms. Consider one of the terms: For any v E Sh 

(WIt [+01 (t + 8t - e)3u;41 (e )t/>, de, v) 

- 1[+01 W , (t + 8t - e)3 (u~41 (e), v) del 

I
t+bt 

< t IWII(t+M-e) 31Iu~4)(e ) llll v llde 

< ~ (5t)4IwIl llv ll max Ilu~4)(e ) ll· 
4 eE[t ,l +M) 

Hence there exists a constant K, which depends only on the weights WI and 

W2 such that l ( e~ (t),v )1 :S K (M)3 1Ivll { max Ilu~3)(e)11 + max Ilu~4)(e) 11 
eE[t,t+6tj eEl t ,t+ot) 

+ max lIu~5)(e)II}.
eElt,Hot) 

Note that the worst of the errors are of order (M)3. Since v is arbitrary, we 
have the desired result. The same procedure yields estimates in the energy 
norm. 

o 

Lemma 5.4. 1 Suppose 'uh 'is the solution of Problem AG. Let Po and PI be 
real numbers such that Po + 2Pl = l. If u*(t , M) is defined by 

(u*(t, M) - 2Uh(t) + Uh (t - 5t), v) + (M ) a(u*(t, M) - Uh(t - 5t ), v ) 2 . 
+(M)2b(PIU*(t, M) + POUh(t) + PIUh(t - M), v) 

(M)2 (pI! (t + M) + Pof(t) + pI!(t - M) , v)o for eaxh v E S\ 
(5.4.10) 

Proof Using Proposition 5.4.3 we have 

(M)
(Uh(t + M) - 2Uh(t) + Uh(t - M), v) + - 2- a(uh(t + M) - Uh(t - M), v) 

- (M)2 (PIU~ ( t + M) + Pou~(t) + PIU~(t - M), v) + (e7, v) 

+(M )2 a(pIu~(t + M) + Po 'u~(t) + PIU~(t - M), v ) + (~t) a(e~, v). 
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ow use the fact that Uh is the solution of Problem AG to prove that Uh 
satisfies (5.4.10) with u(t + M) in stead of u*(t, M) provided that the error 
terms (e~, v) and (~t) a(e~, v) are included. 

Consequently, (u(t + M) - u*(t, M), v) = (e~, v) + (~t) a(e~, v) for each v E Sil. 
Replace v by u*(t, M) - Uh(t + M) to obtain the estimate. 0 

Reconsider the semi discrete system in Section 4.4. 

Mul/(t) + Lu'(t) + Ku(t) = J(t) (5.4.11) 

u(O) = Ci , u'(O) = /1 

To estimate the local errors for a finite difference scheme, we consider a 
one-to-one correspondence between Sh and lRn . 

Definit ion 5.4.1 For uh E Sh, the vector u = Quh has components Ui where 
n 

uh 
= LUi(/Ji. 

i = l 

If we use the norm IluliM = (Mu· up 
1 

for lRn , then IIQuhllM = Iluhll· 

In our next result use the fact that u is a solution of (5.4.11) if and only if 
Uh is a solution of Problem AG. 

Corollary 5.4.1 If u is a solution of the system of differ-ential equatzons 
(5.4.11) andu*(t,M) is defined by 

M [u*(t ,M) - 2u(t) + u(t - M) ]+ (M) L [u* (t, M) - u(t - M)] 
. 2 

+(M)2 K [PIU*(t, M) + Po u(t) + PIU(t - M)] 

(M)2[PIJ(t + M) + PoJ(t ) + PIJ(t - M)], (5.4.12) 

then Ilu*(t, M) - u(t + M)IIM :::; Cb(M)311Iuhlllf.max· 

Proof Consider the terms in (5.4. 10) . If fj = Qvh ) then 

(Uh( t + M), vh) = j'\1u(t + M) . v. 

In this way we can associate each term in (5.4.12) with a corresponding term 
in (5.4.10). The resul t follows fom the fact that u*(t , M) = Qu*(t , M) and 
u(t + M) = QUh(t + M). 0 
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2. 	 If we assume that f is merely continuous and hence Uh twice continu
ously differentiable, we could still estimate the local errors but not 
obtain the same order. The results would be of the form: Given c > 0, 
there exists a real number 6. > 0 such that the error will be less than 
cOt K for Ot < 6.. (K a constant depending on Uh and f. ) 

5.4.2 Transformation 

Due to symmetry considerations , it will be more convenient to consider a 
transformed system for stability analysis. Since !vI is symmetric and posit
ive definite, there exists a symmetric positive definite matrix N such that 
N 2 = 	 M. Set v(t) = Nu(t), then v is a solution of the problem 

v" + N - 1LN-1v' + N- 1K N - 1v = N- 1J 
or 

v" + Lv' + Kv = .9. 	 (5.4.14) 

where L= N - 1LN- 1 , K = N -l K N - 1 and 9 = N -l ]. 

The advantage of the transformation is that the matrix K is symmetric , and 
hence has orthogonal eigenvectors. 

Let y = Ni , then 

Ki = AjVff 

if and only if 

The eigenvalues of K are the eigenvalues of the eigenvalue problem Pro
blem CG (See Sections 4.1 and 5.2.) 

We use the norm IIi l12 = (i . i) ~ , and in the remaining part of this section 
II . II will refer to II . 11 2unless stated otherwise. 

Corollary 5.4.3 If v is a solution of the system of differential equations 
(5.4.14), and v*(t, Ot) is defined by 

(Ot) ~ 
[v*(t , Ot) - 2v(t) + v(t - Ot)] + -2- L [v*(t, c5t) - v(t - Ot)] 

+(Ot f i( [PIV*(t, Ot) + Pov(t) + PIV(t - Ot)] 

(Ot)2 [Plg(t + Ot ) + POg(t) + Plg(t - Ot )], 
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Proof Direct from Corollary 5.4.1, since v*(t,M) = N u*(t,M). 

Corollary 5.4 .4 If v is a solution of the system of dIfferential equations 
(5.4.14), and v**(t, M) is defined by 

(M)2
2 [v** (t,M) - v(t )] + -2-K [v**(t, M) + v(t)] 

(6t)2 (6t)3
-2- [g(t + M) + g(t)] + 2Mv'(t) - (M)2 Lv'(t) + - 2-Kv'(t) 

(M)3 _'( )---g t 
2 ' 

then Il v**(t, 6t) - v(t + M)II ::; Cb(6t)3 (1IIuhlllf,max + (M)311Iflhmax) . 

Proof See Corollary 5.4.3. o 

Remark The result remains true for t = o. 

5.4 .3 G lobal error 

vVe approximate the solution of (5.4 .14) on the interval [0 ,T]. Let M indicate 
the time step length , i.e. 6t = T / N, and let Wk denote the approximation for 
v(t k ) . 

We use the difference scheme (which corresponds to (5.4 .12)) 

( - 2- + - ) (M)L-(- -)Wk+ l - Wk Wk-l + -2- Wk+l - Wk-l 


+(M)2 K(PIWk+l + POWk + PIWk-d = (6t)2(Plgk+l + POgk + Plgk-d· 

(5.4. 15) 

The initial conditions for the system of differential equations are 

v(O) = No: and v'(O) = NiJ, 

and the initial conditions of the finite difference system are 
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To estimate local errors the following scheme will also be used: 

To estimate the global error wN- V(T) we introduce artificial numerical sol u

tions wk') For each i, wki 
) satisfies (5.4.14) with w?) = v(ti ) and 

-(i) - _(i) 2 s:t-/(t) N t th t - _ _(0)- - - U Vi. 0 e a Wk - .W i l WHl W k 

For the global error we have 

Ilv(T) - WNII ~ Ilv(T) - wt-l)11 + Ilwt-
l
) - w~V-2)11 + ... + Ilw~) - ~wNII· 

(5.4.17) 

(Note that the global error fo r the original system can be derived fro m this 
error. ) 

It is clearly necessary to estimate Ilw~) - ~w~-l)ll. The next two subsections 
will be devoted to the estimation of the differences between "neighbouring 
numerical solutions" . 

5.4.4 Consistency 

In this subsection we consider the differences Ilw~21 - v(ti+d II and 

II -(i) -(i+l) II F . l"t d t -(t) b - Th fi tId 1W i+2 - W H2 . or Slmp lCl y we eno e v i y Vi. e rs emma ea s 
with the "starting" error. 

Lemma 5 .4.3 

Proof This is a direct consequence of Corollary 5.4.4. o 

1 ext we have the error at the second step. 
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Lemma 5.4.4 

Proof Combine the results of Corollary 5.4.3 and Lemma 5.4.3. 

Lemma 5.4.3 provide an estimate for the difference W~i) - W~21. The following 
result provide an estimate for the difference at the second step. 

Corollary 5.4.5 

Ilw;22 - w;~~l)11 ::; Cb(bt)3 (1IIud;'max + Illflhmax) . 

P roof Use Lemmas 5.4.3 and 5.4.4. 

(i) (Hl) II < II _(i) - II 11- -(Hl) IIII WH2 - W H2 _ Wi+2 - Vi+2 + Vi+l - Wi+2 . 

o 

5.4.5 Stability 

For the stability analysis we introduce the following matrices: 

(bt) - 
A 1+--L+Pl(bt)2K ,

2
B = -21 + PO(bt) 2K, 
C 1 - (bt) Z+ Pl(bt)2 K. 

2 

The system (5.4.15 ) is now 

(5.4.18) 

As mentioned at the end of Subsection 5.4.3, we need to estimate the differ
ence w~) _W~+l) for each i. Since both W;i) and wy+l) satisfy the system 

(5.4.18) it follows that the error ej = wJi) - w;Hl) must satisfy 

(5.4.19) 
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with the starting values, the local errors ei+l and ei+2, already estimated. 

For the case L = J.1K , we derive the eigenvalues of A, Band C. If Ky = ).,y, 
then 

- - (cSt) ~ - ~ - ( cSt )Ay Y + J.1--Ky + Pl(cSt)2Ky = 1 + 2(J.1).,) + Pl(cSt)2/\ y,
2


By -2y + Po (cSt)2 Ky = (-2 + Po (cSt)2 ).,) y, 


Cy (1- ~t(J.1).,) + Pl(<5t)2).,) y. 

It is now possible to solve (5.4.19). Let Yl, Y2, ... , Yn denote the normalized 

eigenvectors of K and suppose ei+l = .L~1 TJ(Yi and ei+2 = .L~1 ~iYi' 

Since the eigenvectors are orthogonal , it is sufficient to solve difference equa
tions of the form 

where ai, {3i and Ii denote the eigenvalues of the matrices A, Band C 
respecti vel y. 

The following result can be obtained by elementary calculations. Note that 
we do not use the subscripts for the coefficients a, {3 and i. We take Tl = ~ 

and TO = TJ· 

Solution of t he difference equation 

Case 1 (32 < 4ai. 

Note that in this case I > O. The solution is of the form 

Tk = pk(A coswk + B sinwk), 

wherep = Vi/Ct., cosw = -(3/(2...flYY), A = TJ and B = (~- PTJCosw)/(sinw). 

Case 2 {32 = 4Ct./, . 

The solution is of the form 
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The solution is of the form 

with 7'1 and r2 the real roots of the equation o:r2 + ;3r +r = O. The constants 
are A = (~ -1]T2)/(rl - r2) and B = (~ -1]Tr)/(r2 - rr). 

We now prove the stability result. Bear in mind that )..k -----+ (X) as k -----+ 00. 

Lemma 5. 4 .5 Stabzlzty 

If Po ::; 2pl) then there exists a constant K -independent of the dimenszon 
of Sh - such that 

(i) (i+l) II K (II (i) II II (i) (i+l) II)II W N - W N ::; 'Ui+l - W i+1 + Wi+2 - Wi+2 . 

Proof For the eigenvalues 

M 
1 + Pl(M) 2).. + 2)..jJ-, 

-2 + Po(M? ).., 
M

l+Pl(M) 
2 

)..-2)..jJ

of A, Band C, we get 

-4Po(M)2).. + P6(c5t)4)..2 - 8Pl(M)2)"-4pi(M)4)..2 + (M)2 jJ-2)..2 

)"(M)2 [jJ-2).. - 4 + (P6 - 4Pi)(M)2)..] . 

Consider the different cases: 


Case 1 If ;32 < 40:r then rk is bounded if "/ ::; 0:. 


This case, ;32 - 40:r < 0, is possible only for a finite number of small eigen

values and only if Po ~ 2pl. Since r/O: < I, the corresponding modes will 
not cause error growth. 

Case 2 If ;32 = 40:r then rk is bounded if 1;3/0:1 < 2. 

If PO(M)2).. < 2, we have 1;31/10:1 < f· 
Po (c5 t)2 ).. Po . 

If Po(M)2).. > 2, we have 1/31/10:1 < (c5 )2).. = - ::; 2 If Po::; 2Pl' 
PI t PI 

 
 
 



108 CHAPTER 	5. CONVERGENCE 

Case 3 If 13 2 > 4CYi then Tk is bounded if both roots of CYT 
2 + j3T + /' = 0 are 

less than one in absolute value. Let 

and let T max denote the absolute value of the root largest in absolute value. 

13 + J75, 
Tmax 2cy 

PO(bt)2)... + )"'6t VM2 + (P6 - 4pi)(6t)2
< 

2pl(6t)2)... + 6t)...M 

Po6t + VM2 + (P6 - 4pi)(6t)2 

2P1 6t + M 
Po6t + M< 

2P1 6t + M 
< 1 ( if Po S; 2pl)· 

o 

Remark If damping is excluded, the difference system is considered to be 
unconditionally stable for PI = ~ and Po = ~, see [RM] or [Zi]. However, the 
bound may depend on the eigenvalues. 

-0 - Po (6t )2 )... + 2 
cosw = --' 

2y1CFi 	 2(1 + PI (6t)2)...) 

-po(bt? + 2)", -1 -Po 
---7 - as )... ---7 00. 

2Pl(bt)2 + 2)...-1 2Pl 

Consequently, sin w ---7 0 as )... 00 and sin w is present in the numerator of---7 

a constant. 

R e marks 

l. 	Exactly the same results hold if we assume that rotary inertia can be 
ignored and we have only viscous damping. In this case L = kMo and 
M=Mo· 

2. 	 The eigenvalues of K i = )...j'vloi are much larger than the eigenvalues 
of Ki = )...j'vli (with rotary inertia). 

3. Rotary inertia and Kelvin-Voigt damping both enhance stability. 
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5.4.6 Convergence 

Lemma 5.4.6 Global error 

(w here 	N is the number of steps). 

Proof 

IleN11 	 < Ilv(T) - w~~-lll + ... + Ilw~ ) - wN11 
< K N max{ Ilvi+l - W;2111 + Ilvi+l - w;2211}.

2 

Now use Lemmas 5.4.3 and 5.4.4. 

o 

To the sequence of finite difference vectors Vk, correspond a sequence of ap
proximations for uh: u~k) = (Q J)-lVk E Sh. 

Theorem 5.4.1 If Uh is the solution of Problem AG. then 

Proof Since eN = QN(Un(T) - u;:), we have 

Now use Lemma 5.4.6. 

o 

Remark Error estimates for the fully discrete system is obtained by com
bining Theorem 5.4.1 with the results of Section 5.3. Note that the error 
estimates are with respect to the inertia norm. 

 
 
 



Chapter 6 

Application. Damaged beam 

6.1 Introduction 

We consider Problem 1 (from Section 2.3). This model for a damaged beam 
was proposed in [VV] . See also [JVRV]. 

The detection of damage in structures or materials is clearly of great im
portance. Ideally it should be possible to infer the location and extent of 
damage from indirect measurements or signals. To facilitate such deduction , 
a mathematical model of the object or structure is necessary. See [VV] for 
details and numerous other references. 

Viljoen et al. [VV] use changes in the natural frequencies of the beam to 
locate and quantify the damage. The natural angular frequencies for the 
damaged beam are calculated from the characteristic equation obtained from 
the associated eigenvalue problem. As is well-known, only the first few natu 
ral angular frequencies and modes are usually calculated with this method, 
because of computational difficulties with the hyperbolic functions. Due 
to this limitation, the need arises for a numerical method to simulate the 
dynamical behaviour of the beam. 

In a joint paper, [ZVV], we developed a finite element method (FEM) to ap
proximate the solution of the model problem for arbitrary initial conditions. 
(Ironically we also found it possible to calculate eigenvalues and eigenfunc
tions more accurately with the FEM .) It was necessary to adapt standard 
procedures to deal with the discontinuity in the derivative that arises as a 

110 
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result of the elastic joint. We made the assumption that damping would not 
influence t he solution significantly on a small time scale. We now invest igate 
the validity of this assumption, and also deem it prudent to include the effect 
of rotary inertia. 

In the paper [ZVV], only Hermite piecewise cubics were used as basis func
tions. In this investigation we also demonstrate the effectiveness of Hermite 
piecewise quintics. 

From Section 3.1 we have the variational formulation. The Galerkin approxi
mations for the eigenvalue and initial value problems are given in Section 4.l. 
eWe do not consider the equilibrium problem.) In Section 4.2 we showed ho"v 
the standard basis functions are adapted to deal with the discontinuity 111 

the derivative. 

In Section 6.2 we compute the natural angular frequencies and modes of 
vibration from the characteristic equation for comparison purposes. The 
computation of the matrices is discussed in Section 6.3. 

In Sections 6.4 and 6.5 numerical results are presented that demonstrate 
not only the effect of damage on the motion of a beam but also the effect of 
damping and rotary inertia. We also investigate t he use of Hermite piecewise 
quintics as basis functions instead of Hermite piecewise cubics. 
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6.2 	 N atural frequencies and modes of vibra
t ion 

One way to calculate the natural angular frequencies and modes of vibration 
for the damaged beam is to apply the method of separation of variables 
directly to Problem 1 (from Section 2.3). 

For the case T = 0 (without rotary inertia), we have the following eigenvalue 
problem: 

W(4) - .Aw 0, 0 < x < 1, x I:- a, 

w(O) w'(O) - w" (1) = w"'(l) 0, 

w(a+) w(a-), 

w"(a+) w"(a -) , 
w'" (a+) w '" (a -) , 

w" (a) ~(w'(a+) - w'(a-)). 

For this eigenvalue problem it is possible to find so called exact solutions. 
It is convenient to introduce the positive real number u, with .A = u4 

. Con
2sequently u = vf).. is a natural angular frequency. Analogous to the case of 

the undamaged beam, the corresponding mode is of the form 

_ ( Asin(ux) - Asinh(ux) + Bcos(ux) - Bcosh(ux) for 0 < x < a , 

w(x) - (C + A) sin(ux) + (D - A) sinh(ux) 
+(E + B) cos(ux) + (F - B) cosh(ux) for a < x < 1. 

Note that the boundary conditions at x = 0 have already been taken into 
account. 

From the continuity conditions and the jump condition at x = a, the con
stants C, D, E, and F can be expressed in terms of A and B. Finally, from 
the two boundary conditions at x = 1, the characteristic equation for u can 
be constructed from 

(6.2.1) 
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where 

-(sin v + sinh v) + ov (sin va + sinh va) x 
2 

(sin v cos va - sinh v cosh va - cos v sin va + cosh v sinh va), 
ov 

- ( cos v + cosh v) + - (cos va + cosh va) x 
2 

(sin v cos va - sinh v cosh va - cos v sin va + cosh v sinh va) 
ov 

-(cos v + cosh v) + -(sin va + sinh va) x 
2 

(cos v cos va - cosh v cosh va + sin v sin va + sinh v sinh va), 
ov 

(sin v - sinh v ) + -(cos va + cosh //a) x 
2 

(cos v cos va - cosh v cosh va + sin v sin va + sinh v sinh va). 

Solving equation (6.2.1) numerically using the Newton-Raphson method, 
yields the natural angular frequencies for the damaged beam. For each na
tural angular frequency a corresponding mode can then be obtained. As is 
expected, only the first few natural angular frequencies and modes could be 
calculated, as it is difficult to handle the hyperbolic functions numerically 
for large values of v. 

Numerical results obtained using the finite element method- using cubics as 
well as quintics as basis functions- are given in Section6.4. 
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6.3 Computation of Matrices 

The matrices K , Land M are defined in Section 4.1 in terms of the bilinear 
forms defined in Section 3.1. The computation of the matrices is complicated 
by the interface conditions which results in non-standard basis elements. 
In this section we give an indication of how we went about in computing 
these matrices. The first step is to reorder the basis elements constructed in 
Subsection 4.2.2. 

Consider the matrix j\1o: 

[J\!IoJi j = (¢i' ¢j) cPi1cPjl + 11 cPi2cPj2.= lQ 
ote that ¢i (0, cPi) or (cPi ,O) except when we are dealing with a basis 

element associated with the node xp = 0: , the location of the damage. In 
general then, the entries will be those of the standard mass matrix for an 
undamaged beam. Now suppose one of the basis elements are associated 
with xp : 

- (2)
Again the result will be the same as in the standard case. The same for cPP . 

On the other hand, suppose ¢i = ¢;2) then 

[j\10lij = let cPj1 cPi l + 0, 

which is not the same as for an undamaged beam. Similarly for ¢i = ¢;~. 
Thus the standard matrix has to be modified for the damaged beam. 

We have the same situation for the matrix Mr where we define 

There is an additional complication for the K -matrix: 
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Only four entries in the standard K-matrix will change due to the additional 
term, Cu~(ex) - 'U'l(ex)) (v~(ex) - v~(ex)) /6, in the bilinear form b. 

For greater clarity we will explain the procedure in another way. In the 
discussion that follows, we refer to ¢~k) as a Type k basis function. 

In modifying the matrices for an undamaged beam to the matrices for a dam
aged beam, we have to keep in mind that the Type 1 basis function associated 
with xp = ex, has changed. By replacing the row and column associated with 
the Type 1 basis function at x P' in the matrix of the undamaged beam, by 
two rows and columns respectively, provision is made for the modified basis 
function. The values in the matrix in these two rows and columns have to be 
modified accordingly. For the K -matrix one must also keep the additional 
term in mind. 

Having computed Mo, Mr and K we are done since L p,K + kMo and 
M = j\!fo + Mr. 
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6.4 N umerical results . Eigenvalue problem 

Cubics as basis functions, are usually sufficiently accurate in solving one
dimensional vibration problems with the finite element method. In a joint 
paper [ZVV] we discussed the use of cubics as basis functions for the damaged · 
beam. 

In this section of the thesis we also consider numerical convergence of the 
eigenvalues. The order of convergence that is suggested by the numerical 
results is also compared to the order obtained from the theory. Additionally, 
quintics are considered as basis functions. The main reason for this is that 
cubics are not compatible with reduced quintics in plate beam models . We 
also investigate the effect of rotary inertia. 

6.4.1 Cubics 

Natural angular frequencies and modes for the vibration problem are calcu
lated by solving the eigenvalue problem with the FEM. 'vVe developed the 
code to construct the relevant matrices in Matlab and use standard Matlab 
subroutines to calculate the eigenvalues and eigenvectors of the generalised 
eigenvalue problem. 

It is possible to compare only the first few FEM eigenvalues to the so called 
exact eigenvalues calculated from the characteristic equation. Thereafter 
the exact values can not be computed accurately and the F EM is used to 
calculate the eigenvalues. 

In Table 6.1 we list values for the eigenvalues obtained from the characteristic 
equation (see Section 6.2) and values obtained by the FEM using cubics as 
basis functions with 20, 40, 80 and 160 subintervals respectively. This give 
approximations for respectively the first 40, 80 , 160 and 320 eigenvalues. 
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). (20) ). (80) 
t t 

1 11.81469 1l.81469 11.81469 11.81469 1l.81469 
2 406.01614 406.01757 406.01623 406.01615 406.01615 
3 3806.05283 3806.17742 3806.06067 3806.05332 3806.05287 
4 12544.12940 12545.47137 12544.21439 12544.13473 12544.12972 
5 39943.82322 39957.35763 39944.68387 39943.87724 39943.82661 

Table 6.1: Eigenvalv,es from the characteristzc equation as well as FEM ei
genvalues using cubics as basis functions with c5 = 0.1 and Ct = 0.5. 

Throughout. t.his sed.inn n clellntp. th>:> num ber of subintervals. (All of equoJ 
length. ) 

To investigate the convergence of the FEM eigenvalues, we calculate the 
relative difference between FEM approximations, that is (). (2n) - ). (n)) / ). (2n). 

These differences are calculated and listed in Table 6.2 for n = 20, 40, 80 
and 160 subintervals respectively. 

n = 20 n = 40 I n = 80 n = 160 

6 6.1 X 10-4 3.9 X 10-5 2.5 X 10-6 l.6 X 10-7 

12 l.1 x 10 -'4 7.6 x 10 4 4.9 x 10 5 3.1 x 10 -b 

24 2.2 x 10-1 l.2 X 10-2 8.6 X 10-4 5.5 X 10-5 

48 - 2.2 x 10 1 1.3 x 10 2 9.2 X 10-4 

Table 6.2: Relative differences fOT FEM eigenvalues using cubics as basis 
functions. 

The tendency of the relative difFerence to decrease (by roughly a factor 10) 
each time that the number of subintervals is doubled , is empirical verifica
tion that there is convergence of the FEM eigenvalues. Vve found that the 
eigenvalues computed from the characteristic equation were less dependable. 

It is necessary to determine a relationship between the number of FEM eigen
values that is sufficiently accurate (criterion to be specified) and the number 
of subintervals used. 

A relative difference strictly lCtls than 10-3 is considered sufficiently accurate 
for our purpose. Using this as criterion, we find that approximately a sev
enth of the 2n eigenvalues calculated using n subintervals, yields a relative 
difference, ( ).(2n) - ).(n))/).(2n) , strictly less than 10-3 , see Table 6.2. 
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The relative difference between the FEM eigenvalues with 160 and 320 subin
tervals is an indication of the relative error between the exact eigenvalue and 
the FEM eigenvalue using 320 subintervals. 

Since we use (>,(320) >-(160))/ >-(320) as measure of the relative error, 
(>- - >-(320)) / >-, we conclude that the first 90 eigenvalues obtained usmg 
320 subintervals yield a relative error that is sufficiently accurate. 

An indication of the order of convergence of the FEM eigenvalues can be 
obtained from the ratio of two successive differences 

>-(2n) _ >-(n)I/I>-(4n) _ >- (2n) I 
1 t t t t ' 

Typical results are listed in Table 6.3 . 

l>-i:3n ) _ >-~n) I /I >-;4n) _ >-?n) I 
z n = 20 n = 40 n = 80 

1 10.25 0.03 0.14 
3 15.88 16.41 6.57 
6 15.53 15.88 15.72 
12 14.23 15.57 15.90 
24 18.29 14.47 15.62 

Table 6.3 : Relationship between successive relative differences wzth cubzcs as 
basis functions. 

These relative differences decrease by roughly a factor 16 if the number of 
subintervals is doubled. From this it would appear that the convergence is 
of order h4 which matches the theory, Section 5.2. 

It is observed that those differences not yielding a factor 16 typically occur 
in the right top part as well as the left bottom part of Table 6.3. These 
deviations are illustrated by the first , third and 24th eigenvalues: 

Firstly, the accuracy of an approximation can decrease if the number of 
subintervals is increased. This is due to an increase in the roundoff error and 
has significant effects in situations where the errors are already small. For 
example, FEM approximations for the first eigenvalue yield 

(>-i40) _ >-i20)) = -1.1 x 10- 13 while (>-i80) - >-i40)) = 3.8 x 10- 12 . 

From the theory, Section 5.2, we know that the FEM approxirnations of an 
eigenvalue will decrease if the number of subintervals is increased. This can 
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be used to detect cases where the effect of the roundoff error is greater than 
the advantageous effect of an increase in the number of subintervals used. 

Rounding error also explain the decrease in the ratios for the third eigenvalue 
from roughly a factor 16 to 6.5. This situation differ from the first eigenvalue 
in that the decrease (improvement) in the relative difference was just partially 
cancelled by the increase in the roundoff error. 

Secondly, as we have showed previously, there is a relationship between the 
number of FEM eigenvalues that can be calculated sufficiently accurately and 
the number of subintervals used. The 24th eigenvalue is such an example. 
The effect of the poor approximation of .\~~O ), is seen in Table 6.3 in that 
18.29 > 14.47. This is expected as only the first six eigenvalues obtained , 
using 20 subintervals, yield relative errors less than 10-3 

6.4.2 Quintics 

We now consider quintics as basis functions, and compare the results to the 
case where we used cubics. 

In Table 6.4 we list values for the eigenvalues obtained from the characteristic 
equation and values obtained by the FEM using quintics as basis functions 
with 2, 4, 8 and 16 subintervals respectively. This gives approximations for 
respectively the first 6, 12, 24 and 48 eigenvalues. 

1 11.81469 11.81469 11.81469 11.81469 11.81469 
2 406.01614 406.01954 406.01618 406.01614 406.01614 
3 3806.05283 3822.51900 3806.09344 3806.05297 3806 .05283 
4 12544.12940 12844.88875 12544.53719 12544.13441 12544.12941 
5 39943.82322 41569.18041 40042.72518 39944.02589 39943.82387 

Table 6.4: Eigenvalues from the characteristic equation as well as FEM ei
genvalues using quintics as basis functions with <5 = 0.1 and ex = 0.5. 

If these values are compared to those in Table 6.1, it seems as if the same 
accuracy can be obtained, using quintics as basis functions, with less subin
tervals, than in the case where cubics were used as basis functions. For 
example, the fifth FEM eigenvalue using quintics as basis functions with 
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16 subintervals, already yields a better approximation than using cubics with 
80 subintervals. 

As in the case with cubics as basis functions, we investigate the convergence 
of the FEM eigenvalues by considering relative differences, PI (2n) _)., (n)) /)., (2n). 

These values are are listed in Table 6.5 for 2, 4, 8 and 16 subintervals re
spectively. 

'/, n =2 n=4 n = 8 n = 16 
1 2.1 x 10-8 7.9 X 10- 11 1.2 X 10- 11 1.7 X 10- 11 

2 8.3 X 10-6 9.5 X 10 8 3.4 X 10-10 1.3 X 10- 11 

4 2.4 X 10 2 3.2 X 10-5 4.0 X 10-7 1.4 X 10-9 

8 - 3.9 X 10-2 7.2 X 10-5 8.2 X 10-7 

Table 6.5: Relative differences for FEM eigenvalues using quintics as basis 
functions . 

The numerical results suggest convergence of the FEM eigenvalues since the 
relative error decreases (by roughly a factor 100) each time that the number 
of subintervals is doubled, see Table 6.5. 

For approximately a third of the 3n eigenvalues computed , using n subinter
vals , the relative difference ().,(2n) - ).,(n))/).,(2n) is strictly less than 10-3 . 

As with the cubics, we now consider the ratio of two successive differences 

to get an idea of the order of convergence. Typical results are listed in 
Table 6.6. 

As was the case in Table 6.3, the values in the top right of Table 6.6 exhibit 
effect of roundoff error and the values in the bottom left the result of eigen
values not calculated sufficiently accurately. From this it would appear that 
the order of convergence is h8 which matches the theory, Section 5.2. 

To compare the accuracy of the FEM eigenvalues using quintics as basis 
functions to the case using cubics as basis functions , we choose the number 
of subintervals in each of the cases such that the sizes of the matrices in 
the two cases are equal. For example, using 30 subintervals for cubics yield 
61 x 61 matrices and 20 subintervals for quintics 62 x 62 matrices. We then 
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IAr~n)  Ain)I/IAi4n) Ai~n)1 

~ n=2 n=4 n=8 
1 265.60 6.75 0.69 
2 87.21 278.22 25.45 
3 405.90 278.67 319.70 
4 745.69 80.59 291.89 
5 15.43 488.57 311.65 
6 16.24 330.71 307.27 
7 304.98 166.95 286.96 
8 302.37 540.94 87.70 

Table 6.6: Relationship between successive relative differences with quintics 
basis functions. 

compare the eigenvalues calculated in the two cases with the eigenvalues 
computed using cubics with 320 subintervals. (We use the first 90 FEM 
eigenvalues using cubics as basis functions with 320 subintervals as the FEM 
approximation to the first 90 exact eigenvalues.) 

Our numerical experiments indicate that using quintics with n subintervals , 
yield at least double the number of eigenvalues to the prescribed accuracy 
(relative error strictly less than 10-3 ) than when cubics are used with 3n/2 
subintervals. In Table 6.7 we give an example of results obtained. 

In Table 6.7 we use the following notation: 

• 	 Let Ai denote the ith FEM eigenvalue that we use as approximation 
for the exact eigenvalue. (In this case those FEM eigenvalues obtained 
using cubics as basis functions with 320 subintervals.) 

• 	 To distinguish between the FEM eigenvalues computed using quintics 
and cubics as basis functions, we denote the ith FEM eigenvalue using 
cubics with 30 subintervals by A~c) and using quintics with 20 subinter
vals by A~q). 

Note that the FEM approximations for the first eigenvalue are identical in 
both cases . 

From Table 6.7 we see that using cubics, the first 9 eigenvalues (approxim
ately a seventh of the number of eigenvalues calculated, 61/7 ~ 8.7) have 
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1 2.6 X 10-6 2.6 X lO- b 

5 6.8 x 10 -5 9.6 X 10 9 

9 8.5 X 10-4 4.3 X 10-7 

10 1.2 X 10-3 8.6 X 10-7 

15 6.8 x 10-3 4.6 X 10-5 

20 1.9 X 10 2 1.4 X 10-4 

Table 6.7: Comparzng FEM ezgenvalues uszng quintics with 20 subzntervals 
to FEM eigenvalues using cubics wzth 30 subintervals. 

relative difference less than 10-3 . Using quintics , the first 20 eigenvalues, 
that is approximately a third of the number of eigenvalues calculated , have 
relative difference less than 10-3 . 

In conclusion, for the same computational effort (same size of the matrices), 
quintics yield twice as many eigenvalues sufficiently accurate than when cu
bics are used i.e. to obtain the first k FEM eigenvalues with relative difference 

3less than 10- ) 7k/2 subintervals must be used with cubics as basis functions 
and k subintervals with quintics. 

6.4.3 T he effect of rotary inertia 

We now consider the effect of rotary inertia on the eigenvalues and use 
quintics as basis functions. 

Note that this eigenvalue problem differs from the one excluding rotary iner
tia, Section 3.5. The parameter r is a measure of the effect of rotary inertia, 
Section 2.2. 

We start by establishing convergence of the FEM eigenvalues for the case 
where rotary inertia is included, thereafter, we investigate the effect of rotary 
inertia on the eigenvalues. 

As for the case without rotary inertia, the numerical results indicate conver
gence of the FEM eigenvalues. In Table 6.8 typical results for the relative 
differences, (>-(2n) - >- (n))/ >- (2n), including rotary inertia, are listed for 2, 4, 8 
and 16 subintervals respectively. 
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n=2 n=4 I n=8 n = 16 

1 2.1 X 10-8 7.8 X 1O-11 2.9 X 10-11 7.6 X 10-10 

2 7.8 X 10-6 8.9 X 10-8 3.2 X 10-10 1.4 X 10- 11 

4 1.6 x 10 3 4.0 x 10 6 2.0 x 10 -tl 7.9 X 10-11 

8 - 1.6 X 10-2 9.5 X 10-5 3.3 X 10-7 

Table 6.8: Relatwe differences for FEM eigenvalues including rotary inertza 
with 11r = 4800 . 

The numerical results again suggests convergence of the FEM eigenvalues. 
The same pattern with respect to the order of convergence is observed as for 
the case without rotary inertia. 

The presence of rotary inertia decreases the values of corresponding eigenval
ues in comparison to the case without rotary inertia. Furthermore, the bigger 
the parameter r, the greater the change in the eigenvalues in comparison to 
the case without rotary inertia. In Table 6.9 we list eigenvalues for different 
values of r as well as for the case without rotary inertia (r = 0). We use 32 
subintervals for these approximations. 

In Table 6.9 Ai denotes the ith FEM eigenvalue. 

I i I Aiwith r = 0 I 11r = 19200 I 11r = 4800 I 11r = 1200 I 

1 11.81469 11 .81138 11.80145 11.76186 
2 406.01614 403.97925 397.71100 370.06960 
4 12544.12940 11057.05461 5401.71657 3576.19925 
8 273293.79309 169832.12061 158744.64019 125970.79578 

Table 6.9: FEM eigenvalues for different effects of rotary inertia using 32 
subintervals. 

These results are for the dimensionless case. Where rotary inertia is included , 
two dimensionless constants , T and r, must be calculated if the results is to 
be connected to a specific beam, Section 2.2. 

Modes 

In [ZVV] we showed that only up to the seventh so called exact mode can 
be computed before computational difficulties are encountered. Therefore we 

 
 
 



124 CHAPTER 6. APPLICATION. DAMAGED BEAM 

consider the convergence of the FEM modes using quintics as basis functions 
and include rotary inertia. 

Let w~n) denote the F EM approximation for the ith mode using n elements, 
normalised with respect to the infinity norm , II . 1100' 

The way in which we ordered our ba5i5 elements implies that the firsL n + 1 
components of w~n) are associated with the function values at the n+ 1 nodes. 
The next n + 2 values represent the values of the first order derivatives at the 
nodes. Two values are associated with the point where the damage occurs. 
Quintics as basis functions also yield approximations for the values of the 
second order derivatives, and the last n + 1 values of w~n) represent the 
values of the second order derivatives at the nodes. 

In Table 6.10 the numerical convergence of the FEM modes are illustrated. 
We list the differences Ilw~ 2n) - w~n)lloo, II(w?n)y - ( w~n)Ylloo and 

II (w?n))" - (w~n))"l l oo for different values of n. 
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Ilw;LnJ - wtJ1100 
II(wi2n)),  (win))'lloo 

II (w?n))" - (win))" II 00 
z n=4 n=8 n = 16 

6.83140 X 10-6 4.56592 X 10-7 2.578292 X 10-8 

1 9.65478 X 10 -0 6.45299 X 10 1 3.64876 X 10 -I) 

2.48714 X 10 -0 6.33818 X 10-1) 8.43408 X 10-» 

2.49236 X 10-5 2.09579 X 10-6 1.47615 X 10-7 

1.18092 X 10 -4 9.93009 X 10 -0 6.99423 X 10 12 
1.96527 X 10 -'I 6.46058 X 10 -0 2.06282 X 10 -I 

1.46719 X 10 5 6.47026 X 10-6 5.44719 X 10-7 

1.61154 X 10-4 7.01558 X 10-5 5.90054 X 10-04 
8.16804 X 10 -3 2.53189 X 10 -4 8.28369 X 10 -0 

8 

3.70776 X 10 4 6.16539 X 10 6 1. 75076 X 10-0 

7.90080 X 10-3 1.30886 X 10-4 3.71925 X lO-b 

6.26608 X 10 -L 1.00243 X 10 -j 2.90161 X 10 -b 

3.20162 X 10-4 9.48592 X 10-5 9.65450 X 10-7 

14 1.68312 X 10 -£ 4.23303 X 10 ·3 4.29824 X lOb 

1.17602 1.65933 X 10 1 1.00174 X lO- L 

16 

- 9.03027 X 10-5 4.81429 X 10-6 

- 4.78628 X 10-3 2.60210 X 10-4 

- 1.91004 X 10 -1 2.44992 X 10 -L 

Table 6.10: Convergence of FEM modes with 6 0.1, Go 0.5 and 
1/r = 4800. 

The rate at which convergence of the function values and the first order 
derivatives occur, differ from the convergence rate of the second order de
rivatives, which is much slower. Those modes that are associated with the 
first eigenvalues, starting with the smallest, converges faster than the modes 
associated with later eigenvalues. (Convergence in the energy norm implies 
that the second order derivative converges in the mean.) 
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6.5 Numerical results. Initial value problem 

Consider the initial value problem. From Section 4.1 we have the following 
system of differential equations 

Mul/(t) = -Lu'(t) - Ku(t). 

For the numerical experimentations) we choose the following initial condi
tions: u~(O) = 0 and Uh(O) a quintic "solitary wave)). 

To approximate the solution of this problem we use the difference scheme in 
Section 5.4 with Po = 2Pl = 1/ 2. 

( 
1) 1 ) M L (!VI-+-+-K Uk+l+ -2-+-K Uk+

M2 2M 4 bt2 2 

!VI L 1)
( M2 - 2M + 4K Uk-l = O. 

Since t he initial velocity is zero , we have U1 = U-l' 

The results obtained for the eigenvalue problem motivated us to use quintics 
as basis functions. 

Convergence 

The verify convergence) we choose a fixed spacial discretization and a fixed 
final time I. Then) starting with 10 time intervals) we increased the num
ber of intervals until the relative difference is strictly less than 10-3 . This 
approximation is then considered as sufficiently accurate for the system of 
differential equations. 

Decreasing the time step size, we found the first order derivatives needed 
approximately double the number of time steps to yield the same relative 
difference in II . 1100 than the function values do. It seems as if the the second 
order derivatives do not converge point wise, if they do) the convergence is 
very slow. This is not altogether surprising (see Section 5.4). 

To establish the number of elements needed for our approximation , we choose 
a fixed final time, I) and time step size, M. Then the number of elements, 
starting with 10, is doubled until the relative difference satisfy our criterion. 
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Simulation of the motion of beam 

We are primarily concerned with the detection of damage. In this section we 
give an indication of the effect of respectively damage, damping and rotary 
inertia on the motion of a beam. 

Our experiments indicate that measurable differences between the undam
aged and damaged beams occur in displacements as well as gradients. 
(Table 6.11.) Viscous damping has no significant effect on the motion. Look
ing at the modal analysis this was expected, since it only effects the first few 
modes. Adding Kelvin-Voigt damping, the differences between the damaged 
and undamaged cases decrease , but is still clearly detectable. (Table 6.12.) 
The presence of rotary inertia can have a more significant effect on the dif
ference between the motion of the damaged and undamaged beams. (Tables 
6.13 and 6.14). 

To illustrate the above effects we compare the motion of an undamaged beam 
to that of a damaged beam where the initial velocity is zero and the initial 
position a 'solitary wave". For this simulation we choose C\' = 0.4, 6 = 0.1 
which is rat her excessive, 80 elements , T = 0.02 and 400 time subintervals. 

Almost immediately after the first wave front pass through the damaged 
point, measurable differences in displacements as well as gradients between 
the two cases occur. (See Figure 6.l.) In Table 6.11 we compare the dis
placement of the damaged and undamaged beams on T = 0.02 at x = 0.3 
and x = 0.7. 

I x I Undamaged beam I Damaged beam I % difference I 

0.3 2.325 x 10-1 l.505 X 10-1 8.2 
0.7 4.733 x 10-1 5.508 X 10-1 7.8 

Table 6.11: Eff·ect oj damage during motion where 6 = 0.1 , C\' = 0.4, T = 0.02. 

 
 
 



128 CHAPTER 6. APPLICATION DAMAGED BEAM 

1 
Ini tial position 

~ 
Q 
Q) 

E Damaged"",
Q) 
u .
CIl . 
0
.~ 
Q 0 

.......:.- Undama ed 

0.4 1 

Position 

Figure 6.1: Companng the moNon of an undamaged beam to that of a dam
aged beam where 6 = 0.1, Ct' = 0.4 and T = 0.02. 

vVe now add Kelvin-Voigt damping to the same situation as in the previous 
5
case. We use f-L = 3.469 X 10- . This value for f-L was obtained from [JVRVj. 


I x I Undamaged beam I Damaged beam I % difference I 


1.378 X 10-1
2.099 x 10-1
0.3 7.2 
4.716 x 10-1 
 5.436 X 10-1 
 7.20.7 

Table 6.12: Effect of Kelvin- Voigt damping on the damage during motion 

where 6 = 0.1, Ct' = 0.4, T = 0.02 and f-L = 3.469 X 10-5 . 


The presence of rotary inertia can make the differences more difficult to 
detect. An example is given in Tables 6.13 and 6.14. 
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x I Undamaged beam I Damaged beam I % difference I 

-2.525 x 10 1 
 -2.065 x 10 1
0.2 4.6 
4.762 x 10-1 
 5.248 X 10-1
0.6 4.9 

Table 6.13 : Effect of Rotary inertia on the damage during motion where 
o= 0.1, c¥ = 0.4, T = 0.02 and 11r = 19200. 

I x I Undamaged beam I Damaged beam I % difference I 
0.2 -2.236 x 10-1 -2.092 x 10 1 l.4 
0.6 4.140 x 10- 1 4.287 X 10- 1 l.5 

Table 6.14: Effect of Rotary inertia on the damage during motion where 
o= 0.1 , c¥ = 0.4 , T = 0.02 and 11r = 4800 . 


 
 
 



Chapter 7 

Application. Plate beam model 


7 .1 Introduct ion 

We consider Problem 3 (from Section 2.6). It is a mathematical model for 
a plate connected to two beams. Problems of this type are clearly of great 
practical importance. The plate can be rigidly connected to the beams or 
simply supported by the beams. The same model can be used for an I-shaped 
structural member (depending on the type of vibration) . For simplicity we 
restrict our investigation to the case of a plate supported by beams. If the 
plate is rigidly connected to the beams, it may result in a problem with six 
unknown functions (excluding shear) due to dynamical effects. Even in our 
restricted case, one may easily encounter very large matrices. 

In collaboration with others, [ZVGV1], we considered the equilibrium and 
eigenvalue problems of a rectangular plate supported by two beams at the 
boundary. In this thesis we extend the investigation and include the effect 
of rotary inertia. 

The computation of the matrices is explained in Section 7.2. We use reduced 
quintics for the plate, which necessitates the use of quintics for the beams. 
We treat the equilibrium problem in Section 7.3 and the eigenvalue problem 
Section 7.4. 
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7.2 Computation of matrices 

For the numerical experimentation we consider a square plate, 0, rigidly 
supported at two opposing sides and supported by identical beams at the 
remaining sides. The plate has thickness h and the beams are of square 
profile with thickness d. Furthermore, we assume the plate and beams are of 
the same material. (These restrictions are evidently not necessary.) 

The reference configuration 0 is the rectangle with 0 < Xl < 1 and 
o < X2 < l. Those parts of the boundary where Xl = 0 and Xl = 1 are 
denoted by ~o and ~l respectively and correspond to the rigidly supported 
parts of the boundary. Those parts where X2 = 0 and X2 = 1 are denoted 
by r 0 and r 1 respectively and correspond to the sections of the boundary 
supported by beams. 

7.2. 1 B asis element s 

For the plate we use only reduced quintics as basis functions. These functions 
are in H2(0) or fully conforming, in finite element language. They are defined 
on a triangular mesh. The mesh for the rectangle 0 is generated in the 
following way: The interval [0 , 1] is divided into nl subintervals and the 
interval [0 , 1] into n2 subintervals. This partition of the intervals yields n l x n2 
rectangles. The final triangular mesh is then obtained by dividing each of 
these rectangles into two triangles by connecting the lower left corner with 
the upper right corner. The rectangle 0 is divided into 2nl x n2 triangles. 
Consequently we have 2nl x n2 elements Oi. 

Reduced quintics are defined in Section 4.3.l. The computation of the coeffi
cients is not trivial and we describe it. in ApppnniY C The choice of reduced 
quintics "force" one to use quintics for the beams. Hermit.e piecewise quintics 
are defined in Section 4.2.l. 
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7.2.2 Standard Matrices 

First we compute standard matrices for the two beams with quintics. The 
procedure is the same as with cubics. 

[Mci°Lj = JO\-YOcPi) C'YOcPj ), [MfOLj = Jo\ , 0cPd C'Yo cPj)' , 

1[Mci1Lj = JO\YlcPi )C'YlcPj) , [MilLj = .Jo C'Yl e,Di)' C'YI e,Dj)' , 

as well as 

Next we compute standard matrices for the plate. These computations are 
quite involved and we provide some detail in Appendix C. 

The bilinear forms are given in Section 3.3. Each basis element is of the 
form ¢i = (cPi, 10cPi, I lcPi)' (The forced boundary conditions are satisfied by 
eliminating certain basis elements.) Now, consider for example 

CO( e,Di , cPj ) involves the restriction of basis functions e,Di and e,D j to the bound
ary roo These restrictions are non-zero only for some of the basis functions 
associated with nodes on roo (The restriction of a reduced quintic on ro 
is an one-dimensional quintic. ) The result is Mij = lvtg + {3 MDo + {3Mrl. 
Consequently M = Mil. + {3M r o + {3Mr 

l, 

where 

The computation of the K-matrix is the similar , 
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7.3 Equilibrium problem 

To find the Galerkin approximation for the solutions of the equilibrium prob
lem, we solve a system of linear equations. 

Problem BD 

K ii = F, where Fi = (f, cPi)' 

The parameter a gives an indication of the stiffness of the beams in compa
rison to that of the plate. Increasing the value of ex implies an increase in 
the stiffness of the beams and a = 0 corresponds to the case where two sides 
are free. 

For different values of a we compare in Table 7.1 the FEN! approximations 
for the maximum displacement, to the so called exact solution. See [TW]. 
(Interesting historical remarks are found in [TW] .) 

Note that the maximum displacement occurs at the centre of the plate as a 
result of symmetry. 

We consider a square plate with the same number of equal intervals per side. 
We denote this number by n , and use it to distinguish between different 
meshes. 

Denote the maximum displacement obtained from the so called exact solution 
by U max and the FEN! approximation of the maximum displacement where n 
subintervals are used, by u~2x. Choose Poisson 's ratio l/ = 0.3. 
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(Umax - u~L) / Umax 

I I Exact n=2 I n=4 I n=8Q 

100 4.09 X 10-3 2.0421 X 10-3 2.9308 X 10-4 2.3653 X 10-4 

30 4.16 X 10-3 1.0507 X 10-3 6.5975 X 10-4 7.1510 X 10-4 

10 4.34 x 10 .j 1. 7896 x lO- j 1. 7460 X 10- 4 1.2220 X 10-4 

6 4.54 X 10-3 3.5724 X 10-3 5.0933 X 10-3 5.1428 X 10-3 

4 4.72 x 10 -j 2.9835 x 10-3 1.547 x lO- j 1.5006 X 10-3 

2 5.29 X 10-3 3.2719 X 10-3 2.0580 X 10-3 2.0181 X 10-3 

1 6.24 x lO- j 1.0228 x lO- j 9.3231 X 10-5 6.2112 X 10-5 

0.5 7.56 x 10- 3 2.2617 X 10-3 1.6195 X 10 - 3 1.5973 X 10- 3 

0 1.309 X 10-2 3.2828 X 10-4 2.8584 X 10-4 2.8129 X 10-4 

Ta.ble 7.1: Comparison oj exact values with FEM approximations oj ma:;;
imum displacement. 

The fact that the relative error originally improves if we double the number 
of intervals from 2 to 4 and then remains almost the same, suggests that the 
so called exact solution is not very accurate, as could be expected since only 
a few significant digits are given. 

The relative difference between consecutive FEM approximations strenghtens 
this observation as can be seen in Table 7.2. 

Q (u~L - u~~x)/u~~ (u~~x  u~~x) / u~~x 
100 1.748505 X 10- 3 5.653982 X 10-5 

30 1.711612 x 10 3 5.539486 x 10 5 

10 1.614713 X 10-3 5.238781 X 10-5 

6 1.528720 x 10 3 4.971930 x 10 5 

4 1.433896 X 10-3 4.677682 X 10-5 

2 1.211367 X 10-3 3.987090 x 10 5 

3.111738 X 10-51 9.294900 X 10-4 

0.5 6.412267 x 10-4 2.214781 X 10-5 

0 4.242264 X 10-5 4.550660 X 10- 6 

Table 7.2: Comparison oj FEM approximations Jar the maximum displace
ment. 
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7.4 E igenvalue problem 

As mentioned before, Section 4.4, the occurence of eigenvalues has a highly 
irregular pattern in the two-dimensional case. We have an elementary ex
ample to illustrate this, and also to show how difficult it can be to identify 
eigenvalues with multiplicity. 

7.4. 1 Multiplicity of eigenvalues 

Consider the following eigenvalue problem, 

- \]2U = AU on the unit square with 'U = 0 on the boundary. 

Clearly, 
u(x, y) = sin(mrx) sin(m7fY) is an eigenfunction, for nand m integers. The 

2 + m 2corresponding eigenvalue is A = n . 

The popular difference scheme is 

or 

where h is the length of a subinterval. 

Let U i ,j = sin(iwk) sin(Jwe), then 

Hence 

Ui ,j satisfies the boundary conditions if Wk (br)/(n + 1) and 
We = (t'7f)/(n+ 1). It satisfies the difference equations if Ae = h-2(2 -2 cos we) . 
Hence Ui,j is an eigenvector and every eigenvalue is of the form Ak + Ae. 

In Table 7.3 we list the exact eigenvalues for this problem as well as the nu
merical approximations obtained for different subinterval lengths. We give 
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I i I Exact I h = 0.2 I h = 0.1 I h = 0.05 I h = 0.005 I 
1 19.7 19.3 19.6 19.7 19.7 
2 49.3 45.6 48.2 49.0 49.3 
3 49.3 45.6 48.2 49.0 49.3 
4 79.0 72 76.8 78.4 78.8 
5 98.7 81.6 93.3 97.2 98.3 
6 98.7 81.6 93.3 97.2 98.3 
7 128 108 122 127 128 
8 128 108 122 127 128 
9 168 118 151 163 167 
10 168 118 151 163 167 
11 178 144 167 175 177 
12 197 144 180 192 196 
13 197 144 180 192 196 
14 247 144 217 240 245 
15 247 144 217 240 245 
16 257 170 225 245 254 
17 257 170 225 245 254 
18 286 180 246 275 283 
19 286 180 246 275 283 
20 316 206 283 307 313 

Table 7.3: Comparison of finite d~fference eigenvalues to the exact eigenva
lues . 

only three significant digits as it is sufficient to illustrate difficulties of match
ing exact eigenvalues and approximate eigenvalues. 

Let i denote the number of the eigenvalue and h the length of a subinterval. 

Interpreting numerical results with respect to multiplicity of eigenvalues is 
difficult . Great care should be taken to establish whether approximate ei
genvalues that are close together are an indication of multiplicity of exact 
eigenvalues, or not. 

For example, for h = 0.2 , the eleventh to fifteenth eigenvalues seem to be one 
eigenvalue with multiplicity five, while it actually approximates three diffe
rent eigenvalues. Another example is the fifteenth and sixteenth eigenvalues 
for h = 0.05. These eigenvalues seem close and one might expect them to 
approximate the same eigenvalue with multiplicity more than one. 
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7.4.2 P late beam 

The generalized eigenvalue problem associated with the plate beam model is 
given by 

Problem CD 

KiD = AM'w. 

In a joint report [ZVGV1] we consider this eigenvalue problem for the plate 
beam model excluding rotary inertia. In this subsection we investigate the 
effect of rotary inertia if included in the model. 

The ratio CY./{3 of the dimensionless constants, CY. = (Ebh)/(aD) and 
{3 = (PbA)(pah), defined in Section 2.6 , with the plate of thickness hand 
the beams of square profile with thickness d, is a measure of the stiffness of 
the beams in comparison to that of the plate. 

In the special case where both the beams and the plate are of the same 
material, we have 

CY. d 
2 

2 
- = - (1 - l/ ){3 ( h ) . 

As the values of d/h increase, i.e. the stiffness of the beams is increased, the 
situation approaches the plate problem where all four sides of the plate are 
rigidly supported. For this problem the eigenvalues and eigenfunctions are 
known. The eigenvalues are of the form 

((mr)2 + (m7f)2)2 

with corresponding eigenfunctions 

sin(n7fx) sin(m7fY). 

Since the exact eigenvalues for the plate beam problem are not available, 
the FEM approximations for the eigenvalues for large values of d/h can be 
compared to the eigenvalues of this limiting case, see Table 7.4. 

Denote the ith eigenvalue for the case where all four sides are rigidly sup
ported by Ai. The eigenvalues are ordered according to size. The FEM 
approximation of the ith eigenvalue is denoted by A~n) where n subintervals 
are used. 

Throughout this subsection we use Poisson's ratio as l/ = 0.3. 

 
 
 



138 CHAPTER 7. APPLICATION. PLATE BEAM MODEL 

Ai8 
) for different values of d/ h 

'/, d/h = 1 d/h = 10 d/h = 100 d/h = 200 Ai 
1 92.6654 386.3556 389.6361 389.6364 389.6364 
2 250.7783 2359.4575 2435.2366 2435.2398 2435.2273 
3 1264.1968 2433.5697 2435.2500 2435.2525 2435.2273 
4 1514.0745 6221.0210 6234.2338 6234.2346 6234.1818 
5 2142.1461 7345.9342 9741.4914 974l.5319 9740.9091 

16462.13648 7725.6133 11308.1573 16463.7086 16463.7127 
10 11599.1799 16455.3398 28158.9627 28159.0563 28151.2273 

Table 7.4: Comparison of FEM ezgenvalues for different values of d/ h with 
eigenvalues of a rigidly supported plate. Rotary inertza zs e:rcluded. 

As d/h increases, the FEM approximation of the eigenvalues approaches the 
eigenvalues of the plate rigidly supported on all four sides. 

For values of d/h that do not correspond to the limit case, the numerical 
convergence of he FEM eigenvalues are illustrated in Table 7.5. 

d/h = 10 d/h = 100 
( A~2n) _ A~n)) / A?n) iA~2n)  A~n)) / A?n) 

i n=2 n=4 n=2 n=4 
1 6.94630 x 10 4 8.2136 x 10 -b 7.0601 x 10 4 8.3506 X 10-6 

2 2.1888 X 10-2 4.0239 X 10-4 l.2764 X 10-2 2.9014 X 10-4 

3 4.1506 x 10 -2 4.2474 x 10 4 5.3144 x 10 2 5.6098 X 10-4 

7.3 537 X 10-44 0.6013 x 10 :J 7.:32b6 x lU ' l 0.0438 x 10 -'L 

5 2.3179 X 10-2 9.5076 X 10-4 4.8512 X 10-2 3.1069 X 10-4 

10 2.3327 x 10 1 5.0927 X 10-3 5.7506 X 10-1 1.3180 X 10-2 

Table 7.5: Numerical convergence of FEM eigenvalues for different values 
of d/h. Rotary inertia is e:rcluded. 

Remark Choosing n = 8, yields (486 x 486) matrices which are already 
very time consuming to handle with our available computer hardware and 
software. Therefore we do not consider more than 8 subintervals. 

Including rotary inertia in the model 

In addition to the joint report [ZVGV1] we now establish the effect of rotary 
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inertia on the eigenvalues of the plate beam problem. 

From Sections 2.5 and 2.6 we have the dimensionless constants rb = hi (a 2d2 
) 

and r = I I (a2h). In the experimentation we work with a fixed plate, i.e. a 
and h are fixed, and modify the beams by changing d. Consequently rb and 
r depend on the relationship dlh and indicate the effect of rotary inertia. 

In Table 7.6 we illustrate numerical convergence of the FEM eigenvalues if 
rotary inertia is included. For dl h = 50 we have rb = 2.083 x 10-2 and 
r = 8.3~:3 x 10-6. 

~ ( A~4) _ A~2)) I A~4) (A~8) _ A;4)) I A~8) 

1 7.0599 X 10-4 8.3271 X 10-0 

5 4.8512 X 10-2 3.1350 X 10- 3 

10 5.7479 X 10- 1 l.312 x 10 2 

Table 7.6: Numerical convergence of FEM e~genvalues fOT dlh = 50. Includ
ing rotary inertia. 
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For the plate supported on all four sides, repeated eigenvalues are expected
and indeed observed. For the plate beam problem the symmetry is partially 
lost, and the question arises if repeated eigenvalues will occur, and whether 
those FEM eigenvalues will be observed as repeated eigenvalues? 

As with the case excluding rotary inertia, the exact solution is not avail
able. Again, the exact eigenvalues for the plate rigidly supported on all four 
sides are used to give an indication of what can be expected of the FEM 
eigenvalues. 

As is expected, the presence of rotary inertia decreases the eigenvalues in 
comparison to the case without rotary inertia. The effect of rotary inertia 
is illustrated in Table 7.7. For d/ h = 50 we have rb = 2.083 x 10-2 and 
r = 8.333 x 10-6 . 

II 
Excluding rotary inertia 

A(8) 
t 

Including rotary inertia 
A(8) 

t 

Exact value 

Ai 
1 389.6313 389.5673 389.6364 
2 2435.1545 2434.1536 2435.2273 
3 2435.2439 2434.2429 2435.2273 
4 6234 .2146 6230.1154 6234.1818 
5 9740.7884 9732.7844 9740.9091 
6 974l.5344 9733.5289 9740.9091 
7 16463.2389 16445.6552 16462.1364 
8 16463.6608 16446.0765 16462.1364 
9 28154.6617 28115.3573 2815l.2273 
10 28158.7179 28119.4013 2815l.2273 
11 31564.1696 31517.5097 31560.5455 

Table 7.7: Effect of rotary inertia on the e7genvalues for d/ h = 10. 

In Table 7.7 the multiplicity of eigenvalues of the plate rigidly supported 
on all four sides are observed. These repetitions give reason to expect that 
the corresponding FEM eigenvalues for the plate beam problem may also be 
repeated eigenvalues. 

The question arises whether the FEM approximation will yield repeated ei
genvalues or will the eigenvalues only be close? 
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Notation 

Go(I) 

GOO(fl) 

Go(fl) 

L2(D) 

The space of functions with continuous derivatives 
up to order i on I. 

The space of functions with continuous derivatives 
up to order i on 1. 

The space of infinitely differentiable functions with 
compact support contained in I. 

The space of functions with continuous derivatives 
up to order m on fl . (This idea can be made precise 
by defining a function on an open set containing fl 
and taking the restriction of this function using 
uniform continuity. [Fr, Section 1.1].) 

Functions in Gm(fl) for all m . 

Functions in C<Xl(fl) with a compact support. 

The class of square integrable functions on D. 
(Lebesgue integral). 
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(au au)grad u ox' oy . 

V'u 	 grad u. 

The inner product in L2(0,) : (u, v)S1 = Jo. uv dm. 

au au 
divu 01 u + 02 U or ox + oy' 

;:::)2 ;:;)2
2 2 2. uU uU 

V' u = 01U + 02 U or dlV grad u = ox2 + oy2' 
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Sobolev Spaces 

B.1 D efinitions 

For a domain D in ~n, the space C(D) or C(D) is the set C(D) or C(D) with 

norm Ilull oo = sup lui· 
S1 

The space cm(D) or cm(D) is the relevant set of functions with norm 
Ilull m.sup = max{llv lloo : v is a derivative of u of order at most m}. 


For a domain D in ~n, L2(D) is the space of square Lebesgue integrable 

functions on D. 


wm(D) is the subset of L2(D) of functions for which weak derivatives up to 

order m exist and are in L2 (D). 


For our purposes Hm(D ) = wm(D). 


See, for instance, [Fr] or [OR]. 


Lemma B.1.l Sobolev's lemma 

Let r < m - n/2. For u E Hm(D) there exists a function v E Cr(D) such 
that v = u almost everywhere, and there e,I;ists a constant C such that 

Ilvll r •sup :::; Cl lull m for each u E H(D). 

See [Ag, Section 3]. 

143 

 
 
 



144 APPENDIX B. SOBOLEV SPACES 

B.2 Trace operator 

For the value of a function at the boundary to make sense, it is necessary to 
introduce the concept of a trace operator. The following simple result will 
prove to be useful. 

Lemma B.2.l Let f be an arbitrary function in C 1 [a, b]. Then 

If(b)1 ~ Kllflll 

with K = max{~, 11~ }! and 

If(b) - f(a)1 ~ ~lltllo. 

Proof For any 9 E C1(a, b) 

b 
f(b)g(b) - f(a)g(a) = l b(Jg)' = l (Jl g + fgl). 

From the Schwartz inequality in L2(a, b) follows that 

If(b)g(b) - f(a)g(a)1 ~ Iltllollgllo + Il fllollg'llo. 
x-a 

Now choose g(x) = -- or g(x) = 1 on [a, b]. o
b-a 

Definition B.2.! Trace operator for an interval. 

The mapping 

, : f E C1(a, b) ------+ f(b) 

is called a trace operator. 

From Lemma B.2.1 we have lifl ~ Kllflll' hence, is continuous if CI(a,b) 
is regarded as a subspace of HI (a, b) and this mapping can then be extended 
by continuity to functions in the Sobolev space HI (a, b). 

Notation We will denote ,f by f(b) for simplicity. 


The following Poincare type estimates have many applications. 
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Lemma B.2.2 For any function f in Gl[a, b] with a zero in [a, b], we have 

Ilfllsup ::; Jb=aII1'llo 
and 

Ilfllo::; (b - a)II1'llo· 
For any function f in Gl [a, b], we have 

Ilfllsup ::; Kllflh 
and 

Ilfllo ::; K Jb=allflh, 

where K = max{~, 1/~}. 

Lemma B.2.3 If f E G2 [a, b] with f(O) = f(a ) = 0, then 

111'110::; (b - a) 111"110 

and 

Ilfllo ::; (b - a)21I1"llo. 

Definition B.2.2 Trace operator for a rectangle. 

Co nsider Sl = (0, a) x (0, b). 

U E G' (Sl) : 10 IO U = u( ., 0) 

11 i'IU = uC )b). 

From Lemma B.2 .1 we have 

Hence ) 

Ilu(-, O)lllo,al ::; K2 ( 1 I ull~ + Il a~ull~) . 
We conclude that the operator 10 is a bounded operator from HI (Sl) to 
L2(O , a). Also G1 (Sl) is dense in H'(Sl ). Hence 10 may be extended by con
t inuity to be defined on Hl (Sl). 
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B.3 The space em ((0, T), X ) 

Let X be an arbitrary Banach space and U a function with 

U : (0, T) -+ X. 

Definition B.3. 1 If there exists awE X such that 

lim 11c·-1(u(t + c) - u(t)) - wllx = 0, 
1':-->0 

then define u'(t) = w. 

Definition B.3.2 The function u' : (0, T) -+ X is defined by u' : t -+ u'(t) 
for each t. 

Higher order derivatives u(k) are defined similarly. 

Definition B.3.3 em ((0, T), X ) is defined as the space of functions for which 
the derivatives up to order m are continuous with the respect to the topology 
in X on (0,7). 

D efinition B.3.4 em ([0, T) , X) is defined as the subspace of em ((0, T) , X) 
for which the derivatives up to order m are right continuous with the respect 
to the topology in X at t = O. 

For u E e l (0 x [0, T]) we associate a function v: such that 

u* : [0, T) -+ L2 with u*(t)(x) = U(Xl , X2, t). 

Lemma B.3.1 If u E el(O x [0 ,TJ)) then (u*)'(t) = Otu(., t) . 

Proof Consider any t in (0 ,T). For each (Xl , X2) in D there exists a B(Xl, X2) 
between t and t + h such that 

Since the derivatives ofu are uniformly continuous , OtU ('L l , X2,B( x )) will con
verge uniformly to OtU( Xl , X2, t) as h -+ O. Define the functions w(t) by 

W(t)(Xl,X2) = OtU(Xl,X2 , t) for each (Xl ,X2 ) EO. 
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Then 

We have shown that w(t) - (u*)'(t), the derivative of u* in the norm of 
£2 (0,). o 

 
 
 



Appendix C 

Reduced Quintics 

C.l Basis functions on the master element 

Reduced quintics are defined in Section 4.3.1 but no explanation given on 
how to construct them. In this subsection we construct reduced quintics on 
a so called master element. (Figure c.l.) 

(0, 1) 

(0, 0) ~---..:e (1, 0) 

Figure C.l: The master element. 

With each vertex of the master element we associate six reduced quintics 
which we will refer to as shape functions. These functions , say PI to P6, 
associated with x is described as follows: All their function values and the 
values of the first and second order derivatives at x, are zero , except one 
specified value for each function, which is one. The non-zero values are 
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The functions values and the values of the first and second order derivatives of 
these functions at the remaining two vertices, are zero. The shape functions 
associated with the remaining two vertices are defined in a similar way. 

Each one of these shape functions is a polynomial of degree five in Xl and X2. 
Thus there are 21 conditions necessary to determine such a shape function 
uniquely. Eighteen conditions are obtained from the function values and the 
values of the first and second order derivatives at the three vertices. 

Cowper, Kosko, Lindberg and Olsen, [CKLOl], [CKL02] and [CKL03] ob~ 
tained the remaining three conditions by requiring that the normal derivative 
of each shape function along each edge reduces to a cubic. 

These local shape functions, P, can be expressed in terms of other local basis 
functions consisting of monomials. Vie use all monomials of degree five in Xl 

and X2 excluding xlxi and xix2' (These two monomials are excluded because 
of the requirement that the normal derivative of each local shape function 
along each edge of the master element reduces to a cubic.) 

We number the monomials as follows: 

Ql (x) = 1 Q2(X) = Xl Q3(X) = X2 


Q4(X) = xi Qs(X) = X1X2 Q6(X) = X~ 

Q7(X) = xy Qs(X) = xix2 Qg(x) = X1X~ QlO(X) = x~ 


Q11 (x) = xi Q12(X) = XYX2 Q13(X) =:rix~ Q14(X) = X1X~ 
Q16(X) = x~ Q17(X) = XYX~ Q1S(X) = xix~ Q19(X) = x~. 

Each monomial, Qj, can be expressed in terms of the shape functions Pi' 

For j = 1, ... , 19 

lS 

Qj = L TijPi, 

where the matrix T is given at the end of this appendix. 

To express P in terms of the local basis Q, the inverse of T has to exist. But 
T is a 18 x 19 matrix. By requiring that the normal derivative of each Pi 
on the hypotenuse has to be a cubic, an additional relationship is obtained. 
This relationship yields a 19 x 19 matrix describing the relationship between 
Qj and Pi. 

The normal derivative of Pi on the hypotenuse is grad Pi . (1,1). For this to 
be a cubic, the following polynomial must be of degree at most three: 

 
 
 



150 APPENDIX C. REDUCED QUINTICS 

616 81Q16 	 +61781Q17 +61S81QlS 


617 82Q17 +61S82Q lS +619 82Q19 


= 6165xi 	 +3617xi(1 - xd 2 +261S X l (1 - xd 3 


2617xy(1 - xd +361sxi(1- xd 2 +5619 (1 - xd 4 
. 


Consequently, 

which implies that 

The 19th row of T is then 

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 1 5]. 

The inverse of the modified 19 x 19 matrix T exists. By removing the 19th 
column of T- 1

, the shape functions can be expressed in terms of the monomi
als: For i = 1, .. . , 18 

19 
Pi = L Tj-:/Q j' 

j=l 

For example, 

PI (Xl, X2) 	= 1-10xr-lOx~+15xi-30xrx~+15x~-6x~+30xYx~+30xfx~-6x~. 

The matrix T- 1 is given at the end of this appendix. 

C.2 	 Computation of matrices on the master 
element 

The integrations necessary to calculate the bending and mass matrices can 
be simplified using the integrals of local basis functions defined on the master 
element. 

Suppose 	we intend to compute 
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If a corresponding integral is evaluated over the master element, one can ob
tain the contribution of any given element by a transformation (substitution 
of variables). Suppose then that we integrate over the master element
denoted by E. If 

18 18 

U = L aiPi and v = L biPi, 
i =1 i = 1 

then 

Also , if 

19 19 

U = LCiQi and v = L diQi , 
i = 1 i = l 

then 

From the definition of T , we have d = Ttb and c = Tta. Since 

l uv = Nc . d = Ma . b, 

the matrices M and N are related by T. It is easy to write computer code 
to compute N. Using this transformation JVI can be computed. Using the 
transformation between the master element and an element in the mesh, we 
compute the contribution of the relevant element to J\7. cPicPj· 

By adding up the contributions of the different elements, we eventually have 

[M~J ij = J\7. cPicPj· 
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 o 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 
0 1 0 2 0 0 3 0 0 0 4 o 0 0 0 5 0 0 0 

T= 
0 
0 

0 
0 

1 
0 

0 
2 

1 
0 

0 
0 

0 
6 

1 
0 

0 
0 

0 
0 

0 
12 

1 
0 

0 
0 

0 
0 

0 
0 

0 
20 

0 
0 

0 
0 

0 
0 

0 0 0 0 1 0 0 2 0 0 0 3 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 2 0 0 0 2 0 0 0 2 0 0 
1 0 1 0 0 1 0 0 0 1 0 0 o 0 1 0 0 0 1 
0 1 0 0 1 0 0 0 1 0 0 o 0 1 0 0 0 0 0 
0 0 1 0 0 2 o 0 o 3 0 o 0 0 4 0 0 0 5 
0 0 0 2 0 0 0 2 0 0 0 0 2 0 0 0 0 2 0 
0 0 0 0 1 0 0 0 2 0 0 0 0 3 0 0 0 0 0 
0 0 0 0 0 2 0 0 o 6 0 o 0 0 12 0 0 0 20 

 
 
 



T- 1 = 

100000000 
010000000 
001000000 
o 0 0 0.5 0 0 0 0 0 
000010000 
o 0 0 0 0 0.5 0 0 0 

-10 -6 0 -1.5 0 0 10 -4 0 
o 0 -3 0 -2 0 0 0 3 
o -3 0 0 -2 0 0 0 0 

-10 	 0 -6 0 0 -1.5 0 0 0 
15 8 0 1.5 0 0 -15 7 0 
o 0 2 0 1 0 0 0 -2 

-30 -6 - 6 -1.5 2 -1.5 15 -7.5 -1.5 
o 2 0 0 1 0 0 0 0 

15 0 8 0 0 1.5 0 0 0 
-6 	 -3 0 -0.5 0 0 6 -3 0 
30 9 6 1.5 0 1 -15 7.5 1.5 
30 6 9 1 0 1.5 -15 7.5 -1.5 

00 
00 
00 
0 0 
00 
0 0 

0.5 0 
0 -1 
0 0 
0 0 

-1 0 
0 1 

1.25 0.5 
0 0 
0 0 

0.5 0 
-1.25 -0.5 
-1.25 0.5 

0000 
0000 
0000 
0 0 0 0 
0000 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 3 0 
0 10 0 -4 
0 0 0 0 
0 0 0 0 

0.25 15 -1.5 -7.5 
0 0 -2 0 
0 -15 0 7 
0 0 0 0 

0.25 -15 -1.5 7.5 
-0.25 -15 1.5 7.5 

00 
00 
00 
0 0 
00 
0 0 
0 0 
0 0 
0 -1 
0 0 
0 0 
0 0 

0.25 0.5 
0 1 
0 0 
0 0 

-0.25 0.5 
0.25 -0.5 

00 
00 
00 
0 0 
00 
0 
0 0 
0 0 
0 0 

0.5 0 
0 0 
0 0 

1.25 -0.5 
0 0 

-1 0 
0 0 

-1.25 0.5 
-1.25 0.5 

i 
~ 

~ 
o 
;:0 
t:rl 
t:J 
c:; 

~ 

cD 
S 
<
:j 
~ 

r-' 
c.n 
eN 
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