
Chapter 1 

Introduction 

As the title indicates, this thesis is about the application of the finite element 
method to vibration problems. We have in mind the implementation of the 
method (computation of approximations) as well as error analysis. 

To be more specific, we are concerned with the vibration of beams and plates. 
Partial differential equations that model the vibration of beams and plates 
are classical topics. However, new mathematical problems appear from time 
to time. One reason is that mathematical models are changed to provide a 
more accurate description of reality. Another is that new situations arise in 
ind ustrial applications. 

The stabilization and control of beams and plates lead to model problems 
with non-standard boundary conditions. We give but three examples [BK] , 
[CDKP] and [LL] from a vast literature. 

Due to interaction or damage one is confronted by interface conditions or 
dynamical boundary conditions instead of classical boundary conditions. Our 
main examples are the vibration of a damaged beam and a plate beam model. 
These problems are presented in Chapter 2 with the necessary references. 

It is necessary to adapt the finite element method to accommodate these 
problems. The derivation of the variational form is one aspect treated at 
length in Chapter 3. 

For the analysis of the model problems it is necessary to consider product 
spaces. The basis of the finite dimensional subspace for the Galerkin approx­
imation consists of ordered pairs or triple of functions instead of ordinary 
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2 CHAPTER 1. INTRODUCTION 

functions. As a result finite element interpolation had to be adapted for 
product spaces. 

Our main concern is error analysis . In Chapter 5 we consider the three typical 
problems: Equilibrium problem, Eigenvalue problem and Vibration problem. 
In each case we show that the convergence theory can be adapted to product 
spaces. 

To implement the method, it is necessary to adapt the basis functions to 
avoid the imposition of invalid constraints. To match the theory we rather 
used the basis elements mentioned earlier. The construction of these basis 
functions is discussed in Chapter 4. 

In Chapters 6 and 7 we have two case studies. Here we consider the dam­
aged beam and plate beam problem and demonstrate the implementation of 
the finite element method to find approximations for equil ibrium problems. 
eigenvalue problems and vibration problems. 

 
 
 



Chapter 2 

Model problems 

2.1 Introduction 

In this chapter we present the one and two dimensional vibration models 
that form the basis of this study. The common feature in the models is the 
presence of interface conditions-although these interface conditions may 
occur for different reasons. 

For the analysis as well as implementation of the finite element method, 
the model problems must be written in variational form. We found the 
process more manageable if we start with the equations of motion and the 
constitutive equations. Consequently, we formulate each problem specifying 
the equations of motion and constitutive equations separately. For the sake of 
completeness and comparison with the literature , the models are also given in 
terms of the displacement , i.e. a partial differential equation with boundary 
and interface conditions. Due to the fact that our problems are not standard , 
it is necessary to discuss these aspects in some detail. 

We also write the model problems in dimensionless form to simplify numerical 
experimentation. It also facilitates the interpretation of numerical results. 

In Sections 2.2 and 2.5 the equations of motion and the constitutive equations 
for a beam and a plate are discussed. This paves the way for the presentation 
of the model problems in Sections 2.3,2.4 and 2.6. The models for a damaged 
beam in Section 2.3 and a plate beam system in Section 2.6 are the main 
topics. In Section 2.4 other beam models involving interface conditions are 
presented. 
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CHAPTER 2. MODEL PROBLEMS 4 

2.2 Motion of a beam 

In this section we focus on the small transverse vibration of a beam modelled 
as a one dimensional continuum, i.e. the reference configuration is an interval 
on the real line. The beam has length £, density p, cross sectional area A 
and area moment of inertia I. The position of point x at time t is denoted 
by u(x, t). The shear force is denoted by F and the bending moment by 
M. P denotes an external lateral load on the beam, kl and k2 are damping 
constants and E is Young's modulus. 
motion are important. 

For our approach the equations of 

The equations of motion are given by 

(2.2.1) 

and 

(2.2,2) 

A const itutive equation for M is required to complete the model: 

(2.2,3) 

Viscous damping is included in the equation of motion (2.2,1) by the term 
kl atu , and the Kelvin-Voigt damping as the term k21ata~u, in the constitutive 
equation (2.2.3). The term pla;axu in the second equation of motion re­
presents the angular momentum density of the cross section relative to the 
centroid. In the literature it is usually referred to as the rotary inertia term, 
See , for example, [I], [FuJ or [Se] for background on the modelling procedure, 

The mathematical model is given by equations (2.2,1), (2,2.2) and (2.2,3). 

D imensionless form 

Choose dimensionless variables ~ = xl€ and T = ti T with T a chosen time 
which will be specified later. It follows that if f(x, t) = 9(~ , T), then 

dT 1 
at! = ar9 dt = T ar9 , 

and, similarly, 

 
 
 



5 CHAPTER 2. MODEL PROBLEMS 

Introduce the following dimensionless quantities: 

*(t ) = u(x, t) F *(t ) = F (x, t) M*(t ) = f.M(x, t) 

u ", T f. ' ",T EA' ",T E1' 


p* (t ) = f.3 P(X, t ) >. = ~ = ~ 
",T E1' ET' MET· 

In terms of these dimensionless quantities (2.2.1), (2.2 .2 ) and (2.2.3) become 

ET2 ET2 EIT2 
02U* (2.2.4)

T pf.2 o~F* - pA >'OTU* + pAf.4 P* , 

Af.2 F * 0 M* (2. 2.5 ) 1 + ~ , 
~2 * a ~2 * u~u + M TU~U . (2.2 .6) 

We choose 

T = f.2 fPA 
VEi ' 

and introduce dimensionless constants 

pf.2 >'f.2 
r = ET2 and k = r A . 

If we return to the original notation, i.e . use x and t for the spatial and 
time variables and u, F, M and P for the dimensionless quant ities, the 
dimensionless form of the model is given by 

02U 
t 

1 
-oxF ­
r 

kotu + P, (2.2.7) 

ro;oxu 
1 
-F + oxM, (2 .2.8) 
r 

M o~u + MOtO~U . (2.2 .9) 

These equations yield the following partial differential equation describing 
small transverse vibration of a beam in terms of the dimensionless displace­
ment u: 

In Section 2.6 we have the situation where a plate is supported by beams. 

In this case (2.2.2) must be modified to include a couple L to allow for the 


 
 
 



6 CHAPTER 2. M ODEL PROBLEMS 

bending moment density transmitted to the beam by the plate. To obtain 
the dimensionless form we set 

The second equation of motion (2.2.8) changes to 

2 1 
rat oxu = -F + oxlv! + L , (2.2.10) 

r 

if we write L for L*. 

 
 
 



CHAPTER 2. MODEL PROBLEMS 7 

2.3 Model for a damaged beam 

In this section we consider a model for small transverse vibration of a can­
tilever beam damaged at a single point. The model was proposed by Vil­
joen et al [VV1. See also [JVRVl for the model that includes Kelvin-Voigt 
damping. In this model the interface condition is due to the mathematical 
description of the damage. 

We start with the equations, in dimensionless form, that describe the dynam­
ical behaviour of an undamaged cantilever beam. The reference configuration 
is the interval I = [0,1] and the displacement of x at time t is denoted by 
u(x, t ). 

From Section 2.2 the equations of motion are 

(2.3. 1) 

and 

(2.3.2) 

The constitutive equation is 

(2. 3.3) 

For a cantilever beam the standard boundary conditions at the endpoints are 

u(O, t) oxu(O, t) = 0, (2.3.4) 

F(1, t) M(1, t) = O. (2. 3.5) 

Suppose now that we have a damaged beam with the damage located at a 
single point x = a. (This is of course impossible but it is a convenient model 
for approximating the effect of damage. ) 

At x = a the following interface conditions are prescribed: 

u(a+ , t) u(a- , t), (2.3.6) 

F (a+,t) F(a- ,t), (2.3.7) 

M(a+,t) M(a-, t). (2.3.8) 

Right and left limits are denoted by the superscripts + and -. 

 
 
 



8 CHAPTER 2. MODEL PROBLEMS 

Condition (2.3.6) specifies the continuity of the beam and (2.3.7) and (2.3 .8) 
follow from the action-reaction principle for the shear force F and the bending 
moment IVI at x = a. 

The effect of the damage is modelled by the jump condition at x = a : 

M(a , t) = } (oxu(a+, t) - oxu(a- , t)) 

+J (otoxu(a+, t) - otoxu(a- , t)). (2.3.9) 

Right and left derivatives are denoted by the superscripts + and -. 

The jump condition (2.3 .9) allows for discontinuities in the derivatives oxu 
and OtOxU at x = a. Note that the magnitude of 6 indicates the extent of 
the damage and that 6 = 0 corresponds to a beam with no damage. It is 
clearly impossible to use 6 = 0 in this problem. However, our numerical 
experimentation in [ZVV] showed that solutions for relative small values of 
6 correspond to solutions of an undamaged beam. If a point force is applied 
at the free end of the beam it will result in an increase of the gradient. This 
increase, as a factor of the gradient , is exactly 6. The second term represents 
internal "friction". 

The mathematical model is given by (2.3.1) to (2.3.9). In Section 3.1 we will 
derive a variational formulation for the problem from these equations. 

In terms of the dimensionless displacement u, an equivalent form of the model 
is given on the next page. 

 
 
 



9 CHAPTER 2. MODEL PROBLEMS 

Problem 1 

O;u(x, t) - ro;o~u(x, t) -o;u(x, t) - MOtO;U(x, t) - kotu(x, t) 

+P(x, t), for °< x < 1, x ~ 0' , t > 0, 

u(O, t) oxu(O, t) = 0, 

o~u(1, t) + MOtO~u(1, t) 0, 
3 3ro;oxu(1, t) 0xu(1 , t) + MOtOxu( 1, t) , 

u(O'+,t) u(O'-, t), 


o;u(O'+, t) + fJ,oto;u(O'+ , t) = o;u(O'-, t) + fJ,OtO;u(O'-, t), 


ro;oxu(O'+, t) - o~u(O'+, t) 


-MOtO~u(O'+, t) 	 ro;oxu(O'-, t) - o~u(O'-, t) 

- MOt o~u(0' - , t), 

~ (oxu(O'+, t) - oxu(O'-, t)) 

+J (otoxu(O'+, t) - OtOxu(O'-, t )) . 

Instead of a cantilever beam other boundary conditions can be considered. 
For example, if the beam is clamped at both ends we have 

u(1, t) = oxu(1 , t) = ° 	 (2.3.10) 

instead of (2.3.5). 

 
 
 



10 CHAPTER 2. MODEL PROBLEMS 

2.4 	 B eam models wit h dynamical boundary 
conditions 

When some object of interest interacts with another object at some part of 
the boundary, standard boundary conditions are not applicable. The simplest 
case (which can be found in books on partial differential equations) is prob­
ably a rod or spring, executing longitudinal vibrations with a mass attached 
to one end. See [BST], [GV], [BI] and [V1] for examples of models of this 
type. 

2.4. 1 	 T ip body 

In this section we consider a cantilever beam with a body, of mass mB and 
moment of inertia I B , attached to the free end at x = £. In this case the shear 
force and bending moment are no longer zero at x = £, but the following so 
called dynamical boundary conditions are prescribed. 

mBa:u(£, t) -F(£ , t), (2.4. 1) 

IBa:axu(£, t) -M(£ )t). (2 .4.2 ) 

We assume that the angle e through which the tip body rotates can be 
approximated by axu(£, t). 

These boundary conditions are also converted into dimensionless form by 
using the dimensionless quantities introduced in Section 2.2: 

-EAF*(1, T), 

- ~I 1\1{* (1 ,T) . 

Choosing dimensionless mass m and moment of inertia 1m as 

mBR mB m- - ­
- r EAT2 - pA£ 

and 

I _ IB£ _ rIB 
m - IET2 - pU 

 
 
 



11 CHAPTER 2. MODEL PROBLEMS 

and returning to the original notation, yield the dimensionless boundary 
conditions 

rmo~u(l, t) = -F(l, t), (2.4.3) 

Im 0;Ox V, (1 , t) = -M(1 , t). (2.4.4) 

The mathematical model is given by the equations of motion (2.2.7) and 
(2.2.8), the constitutive equation (2.2.9), the standard boundary conditions 
at x = 0, 

u(O, t) = oxu(O , t) = 0, (2.4.5) 

and the dynamical boundary conditions (2.4.3) and (2.4.4). 

In terms of the dimensionless displacement u , the mathematical model follows 
as: 

Tip body problem 

o;u(x, t) - ro;o;u(x, t ) -o;u(x, t) - MOtO;U(x , t) - kotu(x , t) + P(.T, t), 

for 0 < x < I, t > 0, 

u(O, t) oxu(O, t) = 0, 

mo;u(l, t) -ro;oxu(1, t) + o;u(l, t) + MOtO;u(l, t), 

Imo;Oxu(l, t) -O;u(l , t) - MOtO;u(l , t). 

2.4.2 Boundary control 

For a cantilever beam it is possible to suppress vibration by boundary feed­
back controls. See [C]. In this case the shear force and bending moment are 
not zero at x = € and the situation is modelled by boundary feedback control 
conditions: 

F (€, t) = - ko Otu (€, t), 


M(€, t) = -klotoxu(€, t). 


Choosing the dimensionless quantities 

ko kl € 
Mo = EAT€r and MI = E IT 

and returning to the original notation yields the dimensionless boundary 
conditions: 

F(l, t) - Mo Ot u (1, t) , 


M(l, t) -MIOtOxu(l , t). 


 
 
 



12 CHAPTER 2. MODEL PROBLEMS 

The mathematical model is given by these boundary conditions, the equa­
tions of motion (2.2.7) and (2.2.8), the constitutive equation (2.2.9), and the 
standard boundary conditions at x = 0 (2.4.5). 

In terms of the dimensionless displacement u the model follows as: 

Boundary damping problem 

o;u(x, t ) - ro;o;u(x, t ) -o;u(x, t) - fJOtO;u(x, t ) - kotu (.y , t) + P(x, t ), 

for 0 < x < I, t > 0, 

u(O,t) oxu(O, t ) = 0, 

ro;oxu(l , t) o~u(l, t) + fJoto~u ( l, t) - fJootu(l, t) , 
o;u(l, t ) + fJoto;u(l, t ) -fJlotu(l, t ). 

2 .4.3 General m o del 

For theoretical purposes and without regard for the physical meaning of 
the model , we will formulate a generalization which contains both the two 
previous models as special cases. This general model will be used to derive 
a variational formulation. 

The general model is given by the equations of motion (2.2.7) and (2.2.8) . 
the constitutive equation (2.2.9), the standard boundary condit.ions at x = 0 
(2.4.5), and the following dynamical boundary conditions 

F(l, t) -fJootu( l, t ) - rmo(u(l, t), (2.4.6) 

M(l , t) = -fJlotoxu( l , t) - 1mo;oxu(l, t). (2.4 .7) 

By setting either fJo and fJl or m and 1m equal to zero , these boundary 
conditions reduce to the boundary conditions of the appropriate problem. 

In terms of the dimensionless displacement u the model follows as: 

Problem 2 

o(u(x, t) - ro(o;u(x, t) -o;u(x ,t) - p,8JJ~u(x) t) - ko[u(x. t) + P(x. t). 

for 0 < x < 1, t > 0, 

u(O ,t) oxu(O, t) = 0, 

mo;u(l, t) + ro;oxu(l , t) o~u(l, t) + fJoto~u(l , t) - p,ootu(l, t) , 

1mo;ox1L(l , t) -o;u(l ,t ) - p,oto;u(l, t) - P,lotu(l , t). 
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2.5 Motion of a thin plate 

When a plate interacts with a beam, one is confronted by more complicated 
dynamical boundary conditions than those encountered in Section 2.4. To 
prepare, we discuss the equations of motion and constitutive equation for a 
plate. We used [Fu], [TW], [Rei], [VI] and [V2]. 

Consider the transverse motion of a thin plate with density p and thickness 
h. The reference configuration for the plate is a domain n in the plane. The 
transverse displacement of x = (Xl, X2) at time t is u(x , t). This means that 
the position r of x at time t is r = (Xl, X2, u(x , t)). 

The equations of motion are 

photu = divT + q 

and 

-ROt H = T - R div JI,{ 

with T the contact force and q an external lateral load. H is the angular 
momentum density relative to the centroid and M the moment or contact 
couple. For more detail concerning the meaning of T and M see [Rei]' [FuJ 
or [TW]. Rand M are square matrices: 

R = [ Oil and M = -1 0 

Note that 	R- l = RT = -R. 

The constitutive equation is given by 

M = D [ 	 (1;- V)OlO~U o~u + VO?U ] 
-01u - V02U -(1 - V)0102U . 

(See [Fu, p 461J and [TW, p 81].) D is a measure of stiffness for the plate 
given by 

where E is Young's modulus and v Poisson 's ratio. 

 
 
 



- -

14 CHA.PTER 2. MODEL PROBLEMS 

For small vibrations where shear is ignored, the angular momentum density 
H is given by 

where J = h3 /12 is the length moment of inertia. 

Dimensionless form 

We introduce the dimensionless variables: 6 = xl/a, 6 = X2/a andT = tl17 
where 1] will be specified later, and a is some typical length dimension of the 
plate. 

We introduce the following dimensionless quantities: 

3 

q*(e, T) = ;q(x,t), M *(e, T) = ;lvI(x,t). 

In terms of these quantities the equations of motion are given by 

1]2 D . * '1")2 D * 
~J dlVT + -h4 q ,pa p a 

2 
ha T * R div M* 
J 

with 

and the constitutive equation is given by 

M* = [ (1 - v)olchu* o~u* + vOfu* ] 
-Ofu* - vo~u* -(1 - V)8102U* . 

If we choose 

and return to the original notation, the equations of motion are given by 

1 
- div T + q, (2.5.1) 
r 
1 
-T-RdiviVJ (2.5.2) 
r 
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with 

and the constitutive equation by 

(2.5.3) 

(2.5.4) 

Substituting (2.5.2) into (2.5.1) yields 

r div (ROtH) + o;u = div (R div M) + q. 

Substituting (2.5.3) here we obtain the partial differential equation 

o;u-ro;(oiu+o~u) = - (oiu+2oio~u+oiu) + q. (2.5.5) 
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2.6 Plate beam model 

We consider a thin plate as in Section 2.5 which interacts with beams at 
the boundary. See [VI], [V2] and [ZVGVl]. The boundary an consists of 
two parts, I: and r . The section I: is rigidly supported and the section r 
elastically supported by a beam. The end points of the beam are also rigidly 
supported . The orientation of the boundary an is important. The domain 
n is on the "left" of the tangent. To be precise, we require that 

n = [ 0 1] T = RT 
-1 0 

where n is the unit exterior normal and T is the unit tangent. 

For the mathematical model of the plate we use the dimensionless equations 
of Section 2.5: 

1 .02U - dIvT + q, (2.6.1)t r 
1 

-rRotH - T -R divM, (2.6.2)
r 

H Ot(02U, -OIU), (2.6.3) 
2[ (1 - V)OI02U 02U + voI u ]M 2 (2.6.4)-02u - vo2u -(1 - V)OI02U .1 2 

From Section 2.2 the equations of motion for the supporting beam, in dimen­
sionless form and without damping terms, are given by 

(2.6.5) 

and 

(2.6.6) 

In applications Os = ±01 or Os = ±02 depending on the orientation of the 
beam. A subscript b will be used, where necessary, to indicate quantities 
associated with the beam. 

The length of the beam is a. In terms of this notation the dimensionless 
quantities chosen in Section 2.2 are: 

 
 
 



17 CHAPTER 2. MODEL PROBLEMS 

For the rotary inertia constant rb we have 

In addition , we choose the following dimensionless constants: 

a = 	 Ebh and j3 = Pb A . 
aD pah 

It is necessary to adapt (2.6.5) and (2.6.6) to allow for the difference in 
dimensionless time scale, between the plate model and the beam model. The 
time derivatives have to be multiplied by a factor T /7]. As T 2 /7]2 = {3/a , 
(2.6.5) and (2.6.6) change to 

(2.6.7) 

(2 .6.8) 

The 	constitutive equation for the beam is: 

(2 .6.9) 

ext we formulate the interface conditions. In this case the force density P 
is the contact force density that the plate exerts on the beam. It follows that 

P= -T· n. (2.6.10) 

The moment density L is the moment that the plate exerts on the beam. 
This implies, for the moment density - M n of the plate on r , that 

L = - l\l1n · n . (2 .6.ll ) 

Since the plate is merely supported by the beam it also follows that 

NIn· T = o. (2.6.12) 

The interface conditions change to the following (again using the original 
notation to refer to the dimensionless quanti ties): 

1 
aP --T ·n, 	 (2 .6.13) 

r 
M n	 ·T 0, (2.6. 14) 

aL -Mn· n. (2 .6.15 ) 
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To complete the model we have to add the boundary conditions for the rigidly 
supported section 2::: 

u 0, (2.6.16) 

Mn· T 0; (2.6.17) 

and for the rigidly supported end points of the beam: 

0, (2.6 .18) 

o. (2.6. 19) 

The mathematical model is given by (2.6 .1) to (2.6.4), (2.6.7) to (2.6.9) and 
(2.6.13) to (2.6.19) . Alternatively, the mathematical model can be given in 
terms of the dimensionless displacement u. 'vVe illustrate the procedure for 
obtaining the boundary conditions for a special domain D. 

Consider a rectangular plate rigidly supported at two opposing sides and 
supported by two identical beams at the remaining sides. To find the di­
mensionless form for the model we choose a as the length of the supporting 
beams. T hen the reference configuration D is the rectangle with 0 < Xl < 1 
and 0 < X2 < d. 2::0 and 2::1 are those parts of the boundary where X l = 0 
and Xl = 1 respectively, and correspond to the rigidly supported parts of 
the boundary. r 0 and r 1 are those parts of the boundary where X2 = 0 
and X2 = d respectively, and correspond to the sections of the boundary 
supported by beams. 

2::0 
 2::1 


o 1 


Figure 2.1: Reference configuration of the plate. 
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As in Section 2.5, the partial diflerential equation (2.5.5) is obtained. 

On L:o and L: 1 , (2 .6.17) reduces to M21 = O. The conditions at the end points 
of the beams (2.6.18) and (2.6.19) are included by extending the conditions 
on L:o and L:1 to L:o and L: 1 . 

On f1 ' n = e2 and T = -el' Using (2.6.2), we get 

1 1 2
--T· n = --T2 = [hMll + a2M12 - rat a2U 

r r 

and 

Nfn'T = M12 and Nfn · n = N!22' 

Assuming that the beams are merely supporting the plate, we get 

1 
M12 = 0 and L = --iv!22 on fl' 

a 

Similarly, on fo , n = -e2 and T = e1' Hence 

and 

1 
M12 = 0 and L = --iv!22. 

a 

For the two beams, the first equation of motion (2.6.7) reduces to the follow­
ing two equations. Note that as = -01 on fl ' and as = alan f o· 

The second equation of motion (2.6.8) reduces to 

Finally, (2.6.14) implies that 
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In terms of the dimensionless displacement u the model is given by: 


Problem 4 

-(8{u+28~8~u+8iu)+q m [2, 

u o on ~o and ~l' 

fiu + v82u1 2 o on ~o and ~l' 

8~u + v8~u o on fo and f l , 

j38;u ­ j3rb818~u ­ r8182u -8gu ­ (2 - v )8t82U - o:8;u on fa, 

/3o;u - /3rbo;o~u + rO;02'U o~u + (2 - V)8t02U - o:8{u on fl' 

 
 
 



Chapter 3 

Variational form and weak 
solutions 

Our main concern is the analysis and implementation of the finite element 
method, i.e . Chapters 5, 6 and 7. For this we need the model problems 
in (weak) variational form. Model problems with interface conditions is a 
relatively new subject, and we could not find adequate derivations of the 
variational form in standard references. Hence we found it necessary to 
present rigorous derivations. Much of the material is from [Vl], [V2], [VVZ], 
[ZVGV1] and [ZVGV2]. 

In each case we find a variational formulation as a first step . This is done 
by multiplying the equation of motion by an arbitrary smooth function , and 
integrating over the reference configuration. The variational form is suffi­
cient for the implementation of the finite element method , but for existence 
theory and analysing the convergence of the finite element method , a weak 
formulation of the model problem is required. In each case we will define 
the necessary function spaces and present such a weak form. At this stage a 
unified approach will become possible as we show that the model problems 
all have similar weak forms . 

In Section 3.4 we discuss existence results for weak solutions. The free re­
sponse of a system is determined by the natural frequencies and natural 
modes. These are determined by the eigenvalues and eigenvectors of a bilin­
ear form. This topic is treated in Section 3.5. 

21 
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3.1 The damaged beam 

3.1. 1 Variational formulation 

Multiplying the equation of motion (2.3.1) by an arbitrary function v and 
integrating gives

·1 1 11 11O;U(., t)V = - OxF(- , t)V - k OtU(-' t)V + I("I P(-, t)V. (3 .1.1 ) 
Or. 0 0 Jo1

W P. llSP. t.hp notation u(-, t) for the function 

U(-, t) : [0,1] ----+ lR with U(-, t)(x) =u(x. t) . 

As the jump condition allows for discontinuities in oxu and OtOxU at x = Q , 

the integration must be performed separately on the subintervals (0 , Q) and 
(Q,l). Due to the discontinuity of oxu(-, t) at Q , the function o;u(-, t) will 
not exist- not even in a generalized sense. (We exclude 6- functions.) For 
thi s reason it is necessary to consider product spaces with pairs of functions 
as elements. With each function u, we associate a pair U = (U l ' U2) with Ul 
the restriction of U to the interval [0, Q], and U2 the restriction to [Q, 1] . For 
simplicity of notation we will write U for u. 

For any open interval I = (a, b) the function spaces Ci (1), Ci (1), Co(1) 
and L2(1) are defined in Appendix A. 

Let I = (0 , I), II = (0, Q) and 12 = (Q,l). Define the following product 
spaces: 

L2 .- L2(1d x L2(h), 

Ci .­ ci (1d x Ct (12) , i = 0,1 , ... , 
.­C~ C':(11) x C':(h). 

In terms of this notation oxu(Q-, t) = OxUl(CY, t) and oxu(CY+, t) = OxU2(CY, t) , 
etcetera. 

We will also use the notation u' := (u~, u~) , etcetera. 
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In terms of the new notation, (3.1.1) can be written as 

In the following results the term UOxF(-, t), v)o is examined. For simplicity 
of notation we write F and u for F(·, t) and u(-, t) in the following results. 

Lemma 3.1. 1 If the equation of motion (2.3.2) is satisfied, then 

GaxF, v) 0 ~ -(M,v")o - (rafaxu, v')o + [~F1V{ + UF2V{ 

+ [JVI1V~l~ + [JVhv~l~ jar all v E C 2
. 

P roof The result is obtained by performing integration by parts twice. 0 

Define the space of test functions T as 

Corollary 3.1.1 Assume that the equation of motion (2.3.2) is satisfied. n 
in addition, F and M satisfy the boundary conditions at x = 1, (2.3 .5); as 
well as the interface conditions at x = ex , (2.3.6) to (2.3.8) , then 

(~oxF, v) 0 = -(M,v")o - (ro;oxu ,v')o - M(ex , t) (v~(ex) - v~ (ex)) 

for all vET. 

From the constitutive equation (2.3.3) and the jump condition (2.3.9) , the 
term (~ox F, v) 0 can be expressed in terms of u. 

Corollary 3.1.2 If u is a solution of Problem I, then 

(~OxF, v) 0 = -(o;u, v")o - (/-LOtO;U, v")o - (rotox u , v')o 

- ~ (ox U2 (ex, t) - OX'U 1 ( ex , t)) (v~ (ex) - v~ (0:' ) ) 

-J (OxOtU2(ex, t) - OxOtUl(ex, t)) (v~(ex) - v~(ex)) 

for all v E T. 
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We define bilinear forms a, band c by 

b(u,v) '- (U",V")O + l (u;(ex) - u~(ex)) (v;(ex) - v~(ex)) for all u,v E C2, 

a(u ,v) '- jJb(u,v) + (ku,v)o for all u,v E C2, 

c(u,v) '- (u,v)o + (ru',v')o for all u,v E C 1 : 

The variational form of Problem 1 can be expressed in terms of these bilinear 
forms. In the following sections we will show that all the model problems 
can be reduced to the same abstract form if appropriate bilinear forms are 
introduced. 

Problem Ib: Variat ional formulation 

Find u such that; for all t > O. u(·, t) E T and 

c ( 8;uC , t) ,v) + a(8tu (- , t), v) + b(u(-, t), v) = (P (- , t) , v )0 

for all vET. 

Theorem 3.1.1 If u 7S a solution of Problem 1, then u 7S a solution of 
Problem lb. 

P roof The proof follows directly from substituting the result in Corol­
lary 3.1.2 into (3.1.2). Note that if u is a solution of Problem 1, it follows 
from (2.3.4) and (2.3.6) that u E T. 0 

C4Theorem 3.1.2 If u is a solution of Problem 1b and 8tu(· . t) E and 
8luC, t) E C 2) then u 7S a solutwn of Problem 1. 

Proof For simplicity of notation we will write u for u(- , t) in this proof. Let 
VET such that VI E Co (11) and V2 = O. Performing integration by parts , 
we find that 

lC< (8;Ul - r8;8;u1 + 8;U1 + jJ8t 8;U1 + k8tUl - P1)Vl = O. (3 .1.3) 

Since C0 (11) is dense in L2(11), it follows that u satisfies the partial diffe­
rential equation on II = (0, ex). The same is obviously true on 12 = (ex, 1). 

A direct consequence is that 

lC< (-r8;8;u1 + 8;U1 + jJ8t 8;Ul)Vl + 11 (-ro;8;u2 + 8;U2 + /-L8t 8;U2)V2 

(r8;8x u, v')o + b(u, v) + jJb(8tu, v) for each vET. 
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Performing integration by parts once on the terms rolO;Ul VI and rolo;u2V2 
and twice on the terms O~UlVI , O~U2V2, I-LOtO;Ul VI, and I-LOtO;U2V2 yield that 

- [roloXuIVd~ - [roloXu2V2J~ + [O~(UI + I-LOtUdVd~ 
+ [O~(U2 + I-LOtU2)V2J~ - [O;(UI + I-Lotudv~]~ - [O;(U2 + I-LOtU2)V;J~ = 0 

for each vET. 

Recall that VI (0) = v~ (0) O. Choosing v~ (er.) 
v;(l) = 0, we have 

ro2o u(er. - t) 


-o~ ·u(er.-, t) - I-LOtO~u(er. - , t ). 


ro;oxu(er.+, t) - o~u(er.+, t) -I-LOtO~u(er.+ , t) t x , 

All the other conditions follow from suitable choices for the values of v~ , V2 
and v~ at x = er. and x = l. 0 

3.1.2 Weak formulation 

L2 is a Hilbert space with the inner product (-, ')0' The norms in L2(Ij) and 
L2 will all be denoted by II . 110 with the relevant space being clear from the 
context . 

Define the following product spaces: 

where Hi(Ij) is the Sobolev space of order i on f j . See Appendix B. The 
norms in Hi(Ij) and Hi are all denoted by 11·lk For the product space Hi we 
use the usual product space inner product and norms, I.e. if 

U = (Ul, U2) E Hi, then IlulI; = Ilulll; + Ilu211l. 

For the weak formulation of the vibration problem we consider the closure 
of T in H2. We denote this closure by V and note that V is a Hilbert space 
with the inner product of H2. 

T he bilinear form c can be extended to HI and is an inner product on HI. 
We define the space W as the closure of T with respect to the norm induced 
by c. We refer to this norm as the inertia norm. If rotary inertia is ignored 
(i.e. r = 0), it follows that c(-, .) = (-, ')0 and then W = L2. 
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are well defined in the sense of trace. See Appendix B. We have the following 
result. 

Lemma 3.1.2 For i = 1, 2 and K = max{ 0'-1, (1 _ O')-l}, 

(3.1.4) 

Proof From Lemma B.2.1 in Appendix B follows that 

o 

It follows that the domains of the bilinear forms a and b can be extended 
to H2. 

For the definition of cm ((0, T), X) see Appendix B. 

Problem I e: Weak formulation 

Findu E C2((O,T),L2)nC1([O,T),L2
) such that, fOT allt > 0, u(t) E V , 

u'(t) E V, ul/(t) E Wand 

e(ul/(t), v) + a(u'(t), v) + b(u(t), v) = (f(t ), v)o 

for all v E V. 

The initial conditions u(O) and u'(O) will be discussed later. Note that u'(O) 
refers to the right derivative of u' at t = O. 

N otation With a function u we associate a function u* such that 

u* : [0, TJ ---+ L2 with u*(t)(x) = u(t, x). 

Theorem 3.1.3 If u is a solution of Problem 1b , then u* zs a solution of 
Problem 1e. 
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Proof Suppose u is a solution of Problem l b. Then (ui)"(t) = OtUl(-,t) 
and (u;)"(t) = OtU2(" t). (See Appendix B.) Obviously the same will be true 
in the product space. The result now follows from the fact that T is dense 
in V. 0 

Notation W ith u E C ([0, T], L2) we associate a function it such that 

u: [0, T] X (0,1) -+ lR with u(x, t) = u(t)(x). 

If the weak solution is smooth enough, it satisfies the variational problem. 

Theorem 3 .1.4 ffu is a solution of Problem 1c and u E C 2([0, Tj, C2), then 
ii is a solution of Problem lb. 

Proof IfUI E C2 ([O ,T],C 2 [0,a]), then OtUI exists and olur(x,t) = u{(t)(x) 
for each point (x, t). It is now clear that UI E C2 ([0, T) X [0, a]) . Similarly, 
U2 E C2 ([0, T) x [a, 1]). 0 

3.1.3 T he energy norm 

The following lemma gives some inequalities of Poincare type for the space V. 

Lemma 3. 1.3 For any u = (UI, U2) E V , 

Ilullio < Ilu~llo ::; lIu~llo , (3.1.5) 

II u II ~ < 14 (IIu" 116 + (u~ (a) - U'l ( a) )2) . (3 .1. 6) 

P roof We assume first that u E T. For x E (0, a ) we choose [a, b] = [0 ,x] 
in Lemma B.2.1 and note that UI(O) = u~(O) = O. It follows that 

lur (x)1::; Ilu~llo and lu~(x )1 ::; Il u~ llo 

and the inequalities (3.1.5) are direct consequences . 

For x E (a, 1), we choose [a, b] = [a, x] in Lemma B.2.1 , and find that 

IU2 (x) - U2 (a) I ::; Il u~ llo. 

As IU2(a)1 = lur(a)l::; Ilu~llo it follows that 

IU2(X) 1::; Ilu'rllo + Ilu~llo. 
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Hence 

Similarly, from Lemma B. 2.1, 

and as lu~(o:)1 :S Ilu~llo it follows (using the inverse triangle inequality) that 

Hence 

It is now easy to prove that (3 .1.6) holds. The inequalities will also hold on 
V as it is the closure of T in H 2. 0 

Theorem 3.1.5 The bilinear form b is bounded and positive definite on V. 

Proof For any u , v E V, 

Ib(u, v) I :S II u I 11211 VI 11 2+ II u211211 v2112 
+~ (lu~(o:)1 + IU'l(o:)l ) ( Iv~ (o:)1 + Iv~(o: )I ) · 

Using also Lemma 3.1.2 , it is easy to see that b is bounded . Clearly, from 
(3.1.6), there exists a constant C such that 

b(u, u) 2:: C211ull~ for all u E V. o 

Due to the fact that b is symmetric we have the following result. 

Corollary 3.1.3 The bilinear form b defines an inner product on V. 

Define the energy norm II . II E in V by 

lIull~ = b(u, u ) for any u E V. 

Corollary 3.1.4 The energy norm is equivalent to the H2-norm on V. 
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Lemma 3.1.4 V is dense in W. 

Proof W is the closure of T with respect to the inertia norm and 
TcVcW. 0 

Lemma 3.1.5 V is dense in L2. 

Proof For v = (VI, V2) E Co = CO(II) x CO(I2) it is clear that 
VI (ex) = V2(ex) = 0, and hence that vET. Thus Co eTc V c U, 
and as Co is dense in U , it follows that V is dense in L 2 0 

The following result is required to prove that bounded subsets of V are 
precompact in W. 

Lemma 3.1.6 Let Xl C YI and X 2 C Y2 , be four Hilbert spaces. Let 
X = Xl X X 2 and Y = YI X Y2· If bounded sequences in Xl and X 2, 
respectively, have convergent subsequences in YI and Y2 , then any bounded 
subset in X is precompact in Y. 

Proof Suppose the subset A of X is bounded and {un} = {(u~ 1 u;D} is a 
sequence in A. Then {u~} and {u2} are bounded sequences in Xl and X 2 

respectively. This means that there exists a convergent subsequence {U~k } 

of {u~} in YI . Consider the sequence {unk 
} = {(u7

k
, U 2' )}. It is now obvi­

ous that this sequence possesses a convergent subsequence in Y which is a 
subsequence of {un}. We conclude that A is precompact in Y. 0 

Lemma 3.1.7 A bounded subset of V is precompact in Wand a bounded 
subset of W is precompact in L2. 

Proof Assume that {u~} and {u2} are bounded sequences in H2(Id and 
H 2(I2), respectively. Using the Rellich imbedding theorem 
(See [Fr, p 31-32]), we can find convergent subsequences in HI(h) and H 2(I2) , 
respectively. The result follows from Lemma 3.1.6. 

The proof of the second part is the same. o 
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3.2 	 Beam models with dynamical boundary 
conditions 

3.2.1 Variational formulation 

The equation of motion (2.2.7) is multiplied by an arbitrary function v and 
integrated to get 

11 111 11 i· r 
o;uC, t)v = - OxF(·, t)v - k OtUC, t) v + pc, t) v . (3.2 .1) 

o r o 	 0 0 

Let 1 = (0,1 ). 


Notation For any u E L2(1) and any v E L2(1 ), 


(u, V) J:= 11 uv . 

In the following results the term ( ~ox F, v) J is examined . 

Lemma 3.2.1 If the equation of motion (2.2.8) is satisfied, then 

Ga"F,v) /~ -(M,v"h - (raia"u, v')/ + UFVl: + IMv']: 

f OT all v E C2 (1 ). 

Proof The result is obtained by performing integration by parts twice. 0 

Define the space of test functions T(1 ) as 

T(I ) = {v E c2 (l) : v(O) = v'(O) = O} . 

The following result follows from the constitutive equation (2.2.9) and the 
boundary conditions (2.4.6) and (2.4.7). 

Corollary 3.2.1 If u is the solution of Problem 2, then 

(~oxF, v) J = - (o;u, v" )J - (/-dJto;U, v")J - (r ofoxu , v') J 

-mo;u(l , t )v (l) - Imo;oxu( l , t)v'(l) 

-MoOtu(l , t)v(l ) - Mr Otoxu( l , t)v'(l ) for all v E T(1). 
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vVe define bilinear forms a, band c by 

' ­b(u , v) (u", v")[ for all u , v E c 2 (l), 
'­a(u,v) I1b(U, v) + (ku, v)[ + l1ou(l)v(l) + 111u'(1)v'(1) for all u , v E c2 (l), 
' ­c(u,v) (u , v)[ + (ru', v')[ + mU(l)v(l) + Imu'(l)v'(l) for all u , v E c1(l). 

The variational form of Problem 2 can be expressed in terms of these bilinear 
forms. 

Problem 2b: Variational formulation 

Find u such that, for all t > 0, uC, t) E T(I) and 

c(o;uC, t), v) + a(otuC , t), v) + b(u(-, t), v) = (pC, t), v)[ 

for all v E T(I). 

Theorem 3.2.1 If u is a solution of Problem 2, then u is a solution of 
Problem 2b. 

P roof The proof follows directly from substituting the result of Corol­
lary 3.2.1 into (3.2.1). Note that if u is a solution of Problem 2, it follows 
from (2 .4. 5) that u E T(I). 0 

Theorem 3.2.2 If u is a solution of Problem 2b and Otu(-, t) E c4 (l) and 
olue, t) E C 2 (J) , then u is a solution of Problem 2. 

Proof The proof is virtually the same as that of Theorem 3.1.2. 0 

3.2.2 Weak formulation 

The product spaces L2 and Hm are defined by 

and 

 
 
 



32 CHAPTER 3. VARIATIONAL FORM AND WEAK SOLUTIONS 

The inner product in L2 is given by 

(11 

(u, v)o = U1V1) + U2V2 + U3V3 

and in Hm by 

~ (t (i) (i))(u, V)m = ~ Jo U 1 V 1 + U2 V2 + 'U3V3' 

The notation II . 11m is used for the associated norm in Hm 

The definitions of the bilinear forms a and b are extended to 

b(u, v) (u~, V~)I for all u, v E H2, 

a(u,v) /1b(U1' vd + (kU1, V1)I + /10U2V2 + /11U3V3 for all u, v E H2. 

Define the space 1'2 (1) as the closure of T (1) in H2 (1). Recall the fact that 

the boundary values of vii) are defined in the sense of trace, for example 

vi i )(1) is well defined if VI E Hi+l(1). (See Appendix B.) 

Define the subspace V of H2 by 

V = {v E H2 : Vl E 1'2 (1), V2 = Vl (1), V3 = v~ (1)}. 

Lemma 3.2.2 V is a closed subspace of H2. 

Proof If {vn } is a sequence in V with limit v E H2, it follows that 

Ilv~ - vll12 ---) 0 as n ---) 00. 

The boundedness of the trace operator yields that 

and 

Uniqueness of limits implies that v E V. D 

Define 1'1(1) as the closure of T(1) in Hl(I). Define the subspace 1.0/ of Hl 

by 
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Lemma 3.2.3 W is a closed subspace of HI. 

P roof The proof is virtually identical to that of Lemma 3.2.2. 0 

The definition of c is extended to 

This bilinear form defines an inner product on W, even if m = 1m = O. The 
inertia norm induced by c on VV is equivalent to the HI norm. If rotary 
inertia is ignored (i.e. r = 0), we again have W = L2. 

Choose f(t) = (P(·, t) ,0, 0). 

Problem 2c: Weak formulat ion 

Find u E C2 ((0, T), L2) n C1 ([O, T), L2) such that, for all t > 0, u(t) E V, 
u'(t) E V, u"(t) E Wand 

c(u"(t), v) + a(u'(t), v) + b(u(t), v) = (J(t), v)o 

fOT all v E V . 

Notation vVith the function u we associate a functionu* such that 

u* : [0, T] --) L2 with u*(t)(x) = u(t , x) . 

Theorem 3.2.3 If u is a solution of Problem 2b, then u* is a solutwn of 
Problem 2c. 

Proof The proof is the same as that of Theorem 3.1.3. o 

Notation W ith u E C ([0 ,T], L2) we associate a function u such that 

u: [0 ,T] X (0, 1) --) IR with u(x , t) = u(t)(x ). 

Theorem 3.2 .4 If u is a solution of Problem 2c and Ul E C2 ([O, T], c2(1)). 
then u is a solution of Problem 2b. 

Proof The proof is the same (even simpler) than the proof of T heorem 3.1.4. 

o 
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3.2.3 Energy norm 

Lemma 3.2 .4 Th e bilinear form b is bounded and posztwe definite on V. 

Proof Clearly, b is bounded in H 2. From Lemma B.2.3, follows that for any 
wE V, 

as WI(O) = w~(O) = o. 

Also , from Lemma B.2.1, IW21:s; I l w~ 110 and IW31 :s; Ilw{llo. Consequently 
there exists a constant c, such that 

Il w ll ~ :s; cb(w , w) for a ll W E V. 

o 

We define the energy norm on V by 

Ilwll~ = b(w, w) for all w E V. 

It remains to show that V is dense in L2 and that V is dense in W. This can 
be done by adapting the proof of [Sa, Prop 8.1], to this sit uat ion . 

Lemma 3.2.5 V is dense m L2 . 

Proof Let f E COO(O, 1) and 9 E COO(O, 1) be such that 

for O:s;x<~)
f(x) = { ~ for ¥<x:S;1, 

and 

for O<x<l 
g(x) = { ~ - 3' 

for ¥<x:S;l. 

Let w = (WI, W2 , W3) E L2. Then there exists a sequence of funct ions {Pn} 
in Coo(O, 1) such that 

IIPn - wIllI -..; 0 as n -..; 00. 

 
 
 



CHAPTER 3. VARIATIONAL FORM AND WEAK SOLUTIONS 35 

Let Vn = Pn + w2fn + W39n' Then Vn E T(I) and Yn = (vn , vn(l ), v~(1)) E V. 
Now, 

We also have 

and 

v~(1) = W3 for all n. 

Hence llYn - wllo 0 as n ----c\ o-----7 00. 

Lemma 3.2.6 V is dense in lV. 

~ ~ 

Proof Consider any w E W. From the definit ions of T1(I) and T2 (I) it is 

clear that there exists a sequence {Pn } C THI) such that IlwI - Pnlli ----c\ 0 
as n -----7 00. Using the sequence of functions {fn} defined in the proof of 
Lemma 3.2.5, we let Vn = Pn + w2fn. The rest of the proof in the same as 
the proof of Lemma 3.2.5. 0 

Lemma 3.2.7 A bounded subset of V is precompact m Wand a bounded 
subset of W is precompact in L2. 

Proof Suppose {w n
} is a bounded sequence in V. This implies that {w~} is a 

bounded sequence in H2(I) and that {w2} and {w3} are bounded sequences 
. of real numbers. Using the Rellich imbedding theorem (See [Fr , p 31-32]) 
yields a convergent subsequence of {w n } in Hl(I) , and fro m the Weierstrass 
theorem we find convergent subsequences of {W2} and {W3 }' The result then 
follows from Lemma 3.1.6 . 

The proof of the second part is the same. o 
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3.3 Plate beam model 

3.3.1 Variat ional formulation 

The variational form is obtained by multiplying the dimensionless form of 
the equation of motion (2. 6.1) by an arbitrary scalar valued function v and 
integrating to get 

r8;uv = ~ r(div T)'U + rq'U. (3. 3.1)
JD r JD JD 

We start by quoting a general Green formula on a domain D in the plane: 

For any scalar valued function v and any vector valued function F, 

r(div F)v = - rF . grad v + r (F· n )'U ds. (3.3.2)
JD JD JeD 

We also need a similar result for a matrix valued function A. We define div A 
to be a vector with the ith component equal to div AJ'oW i . The trace of the 
matrix A is denoted by tr (A). 

Lemma 3 .3.1 FoT' any vectoT' valued function wand any matnr valuedfunc­
tion A, 

rdiv A . w = - rtr(AW) + r Aw· n ds, (3.3.3)
JD JD hD 

Proof The proof follows directly if (3.3 .2) is applied for each row. 0 

Lemma 3.3 .2 If the eq'uation of motion (2.6.2) is satisfied and v E C 2 (D) , 
then 

1 r 
- I (divT)v 
T JD 

= r tr(RMV) - T r (8;(gradu)) . (grad v)
JD .JD 
- r (RNln ). (grad 'U) ds + ~ r (T 

.JeD r JaD 
· n )'U ds(3.3.4) 
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Proof From (3. 3. 2), with F = T follows that 

r(divT)v = - rT· grad v + r (T · n )v ds.In In lon 
From (2. 6.2), l/rT = Rdiv M - rRotH , and hence 

11 .- (dlvT)v = - j' (Rdiv N!) . grad v - r rROtH · grad v 
r n n ~ 

+~ r (T· n )v ds . (3. 3.5)rlon 
Using (3.3.3) with w = grad v and A = RM gives 

r R div M . grad v = - r tr(RMV) + r RNIn· grad v ds, (3.3.6)In In Jon 

[ o~v 01 02V 1
where V = 01 02V o~v . 

Note that RNI is symmetric and div (RN!) = R div NI. 

From (2.6.3) follows that 

1ROtH· grad v = 10; (grad u) . grad v. 

o 

Choose the space of test functions T(D) as 

It is necessary to analyze the line integrals in (3.3.4). Let v E T (D) throughout 
the discussion that follows. 

The boundary oD consists of four parts. Consider first the part 2:1 , vVe have 
v = 0, hence 

r (T· n)v ds = O. (3.3.7)
JE) 

(RMn ) . (grad v) = - (oiu+ VOiU )OlV = O. (3.3.8) 
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As a consequence the boundary terms vanish. The same will happen on 2:0 , 

For the domain n the line integrals on r 0 and r 1 reduce to two one-dimensional 
integrals on (0,1). Formally, ds = dX1 on r0 and ds = -dX1 on r 1, because 
of the orientation of the line integral. This means that for any function v 

r v ds = t V(X1' 0)dX1 and r v ds = t V(X1' d) dx 1.i ro Jo Jr1 Jo 

We will use subscripts 0 and 1 to differentiate between functions defined on 
ro and r 1 · 

Now, consider roo From (2 .6.13), 

~ r (T . n )v ds = -a (1 Po(', t) vC, 0). (3 .3.9) 
r Jro JO 

Since n = -e2 and Me2 ' e1 = 0, we have from (2.6.15) that 

- (RNln ) . (grad v ) = (J'vfe2' e2)01v = -aLoOl'u. (3.3.10) 

If (2.6 .8) is satisfied and w E C 2 [O , 1] with w(O) = w(l) = 0, then 

~ fo'l oxFoC, t)w = 11 (a01[\;[bQC, t) + aLoC, t) - (JrbotoluC, 0, t)) Wi 

+ [a FoC, t)W]l
rb 0 

- t aNlbo (', t)w" - (3rb t O;OlU(" 0, t)w' 
Jo .Jo 

+ 11 aLo(', t)w' + [a FoC, t)w] 1 + [aMbOC, t)w/]6. 
o rb 0 

Clearly, the boundary terms vanish as MbQ (O, t) = Mbo (l, t) = 0 from (2.6.19). 

Choosing W(X1) = V(X1' 0) and combining this result with (3.3.9) and (3.3 .10) 
yield that 

fro (( -Rl'v1n) . grad v + ~T . n ) ds 

- a t 01 Fo C, t)vC, 0) - a t MbOC , t)oivC, 0)
rb Jo Jo 

- (3rb 11 O;OlUC, 0, t)OlV(" 0) - a 11 Po(· , t)vC, 0) . (3.3.11) 

An analogous result is true for r 1. 
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Lemma 3.3.3 Ifu is a solution of Problem 3 and v E T(D), then 

~ r(div T)v + 0: 11 Ol FoC, t)v(-, 0) + 0: 11 01 F1(', t)vC , d) 
r Jo rb 0 rb 0


- i tr(RMV) - r 10; (grad u) . grad v 


-(3rb t O;OlUC, 0, t)OlV(" 0) - (3rb t 0;01U(', d, t)01V(" d)Jo 	 Jo 
-0: 11 O~U(" 0, t)O~v(., 0) - 0: i'l O~U(" d, t)o~v(. , d) 

-0:11 Po(' , t)vC, 0) - 0: 11 Pl (·, t)v(·, d). 

Proof Substitute (3.3.7), (3.3.8) and (3.3.11) for the boundary integrals in 
Lemma 3.3.2. 0 

Notation For any u E L2(D) 	and v E L2(D), 

(u ,v)o = ruv. 
Jo 

Define a bilinear form b on C2 (D) by 

bCu,v) = bo(u, v) + o:bo(u ,v) + o:b1(u, v) 

with 

bo(u, v) = 1tr(RNIV) 	 (O~u,O~v)o +2(1 - V)(0102U ,0102V)O 

+(o~u,o~v)o +v(o~u,oiv)o +v(oiu,o~v ) o 

and 

bo(u, v) fo'l oiuC , 0) o~vC, 0) , 

bl (u, v) = 11 ofuc ,d)o~v C, d). 

 
 
 



CHAPTER 3. VARIATIONAL FORM AND WEAK SOLUTIONS 40 

Lemma 3.3.4 ff u is a solution of Problem 3, then 

~ f(divT)v+ a t01FoC , t)vC,0) + a t01FIC,t) uC,cl)
rJo. rbJo rbJo 


= -b(u, v) - r iO;(grad u) . grad v 


-f3rb 11 O;OlU(" 0, t)01V(-, 0) - f3rb 11 O;OlUC, d, t)OlVC, d) 

-a 11 Po(., t)v(-, 0) - a 11 Pl (. , t)v(. , d) 

for all v E T(fl ). 

P roof A direct substitution yields that Jo. tr (RMV) = bo.(u , v). 0 

Define a bilinear form c on C 1(D) by 

c(u,v) = co.(u , v) + f3co(u,v) + f3Cl(U,V) 

with 

and 

co(u, v) 

Problem 3b: Variational formulation 

Find u such that for all t > 0, u(-, t) E T(fl) and 

c(O;uC , t), v) + b(uC, t), v) = (gC, t) , v)o. 

for all v E T(D). 

Theorem 3.3.1 ff u is a solution of Problem 3, then u zs a solution of 
Problem 3b. 
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Proof If (2.6.7) is multiplied by an arbitrary function v E T(D.) and inte­
grated over r o, it follows that 

112 11 11ex(3 Ot U(-, 0, t) v (-, 0) = - 01 Fo (-, t) v (- , 0) + ex Po (- , t) v (-, 0). 
o rb . 0 0 

A similar result holds on r). 


Combining these results with (3.3.1) and Lemma 3.3.4 completes the proof. 


o 

Theorem 3.3.2 ffu is a solution of Problem 3b and oluC, t) E C2 (D); then 
u is a solutwn of Problem 3. 

Proof The proof follows the same pattern as in the previous cases and is 
tedious rather than difficult. We will write u for uC, t) in this proof. 

First let v E Cgo(D.). U ing integration by parts and the fact that Co(D) 
is dense in L2(D. ), we see that u satisfies the partial differential equa tion in 
Problem 3. 

This in turn implies that, for each v E T(D.), 

(3co(OtuC, 0, t), v) + ,f3Cl(OtU(-, d, t), v) 

2+ 1r(0;V u)v -1 (oiu + 20~0~u + oiu)v 

= -r(O;OlU, 0IV)D - r(0;02U, 02V)D - b(u, v). 

Using integration by parts again, we have 

Hence, 

(3co(Ot u (" 0, t), v) + ,f3C1(OtU(" d, t), v) - 1(oiu + 20;0~u + oiu)v 

= -b(u, v) - ( rv(grad dtu ) . n ds . 
.JoD 

For convenience , define a matrix M by (2.5.4) (regardless of any physical 
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interpretation). We have 

bn(u, v) = 1tr (RMV) 

- r Rdiv M . grad v + r RMn · grad v ds In Jon 
r div (Rdiv M)v ds - r (Rdiv M . n )v dsIn . Jon 

+ r Rlvfn. grad v ds.JaD 
But div (Rdiv lvf) = -(otu + 20io~u + oiu), (see (2.5.4) and (2.5.5)). 

We are left with 

-abo(uC, 0, t) , v) - abl(uC. d. t) v) 

- ( Tv(grad Otu) . n ds
Jon 

+ r Riv1n · grad v ds Jon 
- ( (Rdiv JV[ . n)v ds

Jan 
for each v E T(D) . 

Recall that for v E T(D), v = 0 on ~o and ~l. All the boundary conditions 
are obtained by suitable choices of the values of v and grad von the boundary 
00.. As an example we consider the dynamical boundary condition on roo 

Choose v E T(D) such that v = 02V = 0 on r l . Then OlV = 0 on r l . In 
addition, choose 01 v = 0 on ~o and ~1 and 02V = 0 on ro. 

We are left with, 

Applying integration by parts twice to the term oiuoiv and once to the terms 
OiOlUOlV and M22 01V gives the dynamical boundary condition on roo 0 
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3.3.2 Weak formulation 

Define the following product spaces: 

L2 .- L2(n) x L2(I) x L2(I), 


Hk .- Hk(n) x Hk(I) x Hk(I). 


We use the product space inner products (-, ·)0 on L2 and (-, .h on Hk defined 
by: 

(u, v)o (U1' vdo + (U2 ' V2)r + (U3, V3)r 
. 1 1 

10 U1 V 1 +1U2 V 2 +1U3 V3 , 

with (-, .)~ and (- , ·)k the standard inner products on Hk(n) and Hk(I ) re­

spectively. 


Define T2(n) as the closure of T(n) in H2(n). 


The trace operators 10 and 1 1 are defined by 


10 : u ---t u(-, 0) 

and 

11 : U ---t u(-, d) 

for any u E H1 (n). See Appendix B. 

The bilinear form b can be extended to H2 

The definition of c is extended to 

Define a subspace V of H2 by 
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Lemma 3.3.5 V is a closed subspace of H2. 

Proof If {vn 
} is a sequence in V with limit v E H2, it follows that 

Il v~ - vlll~ -+ 0 as n -+ 00. 

Hence VI E 1\(D). Also, 

II rov~ - v211~ -+ 0 as n -+ 00 

and 

The boundedness of the trace operators yields that 

lliov~ - rovl1l6 --t 0 as n -+ 00 

and 

Uniqueness of limits implies that v E V. D 

Oefine 1\(D) as the closure of T (D) in Hl(D). Define the subspace W of HI 
by 

The bilinear form c defines an inner product on W. The ineTtia nOTm induced 
by c on W is equivalent to the HI norm. If rotary inertia is ignored (i.e. 
T = 0), we again get W = L2. 

Lemma 3.3.6 W is a closed subspace of HI . 

P roof The proof is virtually identical to that of Lemma 3.3.5. D 

Let f(t) = (q(t), 0,0) . 

P roblem 3c: Weak formulat ion 

Find u E C2 ((0, T), L2 ) n Cl ([O ,T), L2) such that , for all t > 0, u(t) E V , 
u//( t) E Wand 

c(u//(t), v) + b(u( t ), v) = (f(t), v )o for all v E V. 
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N otation 

W ith the function u E C(n) we associate functions Ul and u' such that 

and 

Theorem 3.3.3 If U is a solution of Problem 3b, then u· is a solution of 
Problem 3c. 

Proof A solution of Problem 3b is in C 2 ([0, T] X D) . In this case the oper­
ators 1 0 and 1 1 merely indicate the restriction of a function to r0 or r 1. As 
before (see the proof of Theorem 3.1.3), 

u'{(t) = Btu(-, t ), houdl/(t) = , 0Btu(-, t) and h lUd'(t ) = 11Btu(- , t). 

We conclude that (u*)I/(t) = (Blu(-, t) , ,0B(u(- , t)111Blu(-, t)). o 
For Ul E C 2 ([0, T], L2 ) we associate a fun ction 11 such that 

T heorem 3.3 .4 If u is a solution of Problem 3c and Ul E C 2 ([0, T], C 2 (n)) ) 
then 11 is a solution of Problem 3b . 

Proof See the proof of Theorem 3.1.4. o 

3.3.3 Energy norm 

Lemma 3.3.7 The bilinear fo rm b is positwe defin'de on V. 

Proof We start with a Poincare type inequality (Lemma B.2.3): 

If fECI [0, a] and f(O) = f (a) = 0, then 

l a 
f 2 :s; a41·a(JII) 2. 
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Clearly, 

"u (-, 0) II I ::; [bo(u (-, 0) , 'U ( ., 0)) ]1 /2 

and 

Also 

Evaluating the double integral over 0, we have 

Hence Ilulin ::; arbdu, cU)1 /2. It is now straightforward to derive the desired 
est imate. 0 

Lemma 3.3.8 V is dense in L2. 

Proof Let f E COO( O, d) be such that 

f( ) = {O for O::;y<~ , 
Y 1 for 23d < Y ::; d, 

let j~(y) = f (yn)) and let 9n (Y) = fn(d - y) for 0 ::; y ::; d. 

Let W = (W1,W2,W3 ) E L2. Then there exists a sequence of functions {Pn} 
in Co (0) such that 

IIPn - wlilo ----. 0 as n ----. oc. 

Let 'Un = Pn + w2!n + W39n· Then 'Un E T(O ) and Yn = ('Un , IO'Un, I l'Un ) E V. 
Now , 

vVe also have IO 'Un = W2 for each n and I I 'Un = W3 for each n. Hence 
llYn - wllo ----. 0 as n ----. 00 . o 

Lemma 3.3.9 V is dense in W. 
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Proof Consider any w E W. From the definitions of T1(I) and T2(I) it is 

clear that there exists a sequence {Pn} C T2(I) such that Ilwl - Pnll{ ~ 0 as 
n ~ 00. The rest of the proof is the same as the proof of Lemma 3.3.8. 0 

Lemma 3.3.10 A bounded subset of V is precompact in Wand a bounded 
subset of W is precompact in £2. 

Proof V C H2 = H2 (D) X H2(I ) x H2(I ) and W C HI = Hl(D) X 

Hl(I) x Hl( I) . The Rellich imbedding theorem (See [Fr , [p 31-32]) yields 
that bounded sequences in H2(D ) and H2(I) have convergent subsequences 
in Hl(D) and Hl(I) respectively. The result follows from Lemma 3.l.6. 

The proof of the second part is the same. o 
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3.4 	 A bstract differential equation for model 
problems 

All our model problems have now been written in the same weak form. We 
have two Hilbert spaces V and W with inner products band c respectively. 
It will be more convenient to denote c(- , .) by (- . . ) and we will reserve the 
notation 11·11 for the associated norm which is called the mertia norm. Recall 
that the norm associated with the inner product b is called the energy norm 
and denoted by /I . "E. The inner product in L2 is denoted by (-, ' )0 and the 
associated norm by II . 110. 

The properties of the spaces V, Wand L2 are of critical importance in the 
theory. For convenience we present a summary: 

Space Inner product Norm 
Energy space V 
Inertia space W 

L2 

be, .) 
c(-, .) = (-, .) 

(-, ')0 

Energy norm" . liE 
Inertia norm " . " 

1/ . 11 0 

The energy norm is equivalent to the norm of H2 on V. The inertia norm 
is equivalent to the norm of HI on W if rotary inertia is included. 

Estimates 

There exist constants CE and C1 such that 

IIul/E > CEliuli for all u E V, 
Ilull > C1 l1ul/ofor all u E vv. 

Topological properties 

V is dense in W with respect to the iner tia norm. These spaces are also 
dense in the underlying Hilbert space L2. 
If a subset of V is bounded with respect to the energy norm II . /IE) it is 
precompact with respect to the inertia norm II . 1/, and if it is bounded with 
respect to the inertia norm II . 1/ , it is precompact with respect to the L2 
norm II . 11 0. 
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'vVe consider the following problem: 

P roblem A (Vibration problem) 

Find u E C2 ((0, T), L2) n C1([0, T), L2) such that, JOT all t > 0, u(t) E V, 
u' (t) E V, u" (t) E Wand 

(u" (t), v) + a(u' (t), v) + b(u( t), v) (J(t), v) jor all v E V, 

u (0 ) = (X, U' ( 0 ) (3 . 

Remarks 

l. 	In general the damping term a is a non-negative bounded bilinear form 
on V. In our model problems, we have that 

a(u, v) = f-Lb(u, v) + k(u, v)o 


and k or f-L or both can be zero. 


2. 	 For the model problems in Section 3.1 to Section 3.3 the forcing term 
is (J(t),v)o. In the cases where W i- L2, it is proved in Lemma 3.4.1 
that there exists a function j : [0, T] -) W with 

(j(t) , v) = (J(t) , v)o for all v E W 

We use the notation f for f· 

The following results are special cases of the Lax-Milgram Lemma. 
See [Fr, p 41]. 

Lemma 3.4.1 For each y E L2 there exists a unique wE W such that 

(w, v) = (y, v)o for all v E w. 

Proof The Riesz Theorem yields that, for any F in the dual of W , there 
exists a unique w E W such that 

(w, v) = F(v) for all v E W. 

ow define F by F( v) = (y, v)o for all v E W, then F is a continuous linear 
functional on W. D 
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Lemma 3.4.2 For each yEW there exists a unique u E V such that 

b(u, v) = (y, v) for all v E V. 

Proof The proof is exactly the same as that of Lemma 3.4.1. o 
It is easy to show that Problem A can have at most one solution for given 
u(O) and u' (O). If w is a solution of the associated homogeneous problem (i.e. 
f(t) = 0 for t > 0, w(O) = w'( O) = 0), it follows that 

(wl/(t), v) + a(w'(t ), v) + b(w(t), v) = 0 for all v E V. 

Thus 

(wl/(t), w'(t)) + a(w'(t), w'(t)) + b(w(t), w'(t)) = 0 for all t > O. 

This means that 

d 
dt (/lw'(t)11 2 + Ilw(t)/I~) = -2a(w' (t),w'(t)) ~ 0 for all t > O. 

We conclude that w(t) = 0 for all t > 0, as w(O) = 0 and the uniqueness of 
solutions for Problem A follows. 

Even though Problem A is a typical weak formulation of a vibration modeL 
we were unable to find any directly applicable existence result. Available 
existence results which follow from standard semigroup theory are all formu­
lated for abstract differential equations. This means that operators associ­
ated with the bilinear forms a and b have to be constructed. We present this 
construction as it will also be used for the analysis of the eigenvalue problem. 

Define an operator 

A: W --> V by b(Af,v) = (j,v) for all v E V. 

Lemma 3.4 .3 The operator A is a bounded linear operator with trivial null­
space and range R ( A) dense in V. 

P roof For any fEW , 

IIAfll~ = b(Af, A1) = (j, A1) ::; Ilf ll ll Af l1 ::; Ce1 1l f 11 1l Af 11 E. 

This implies that A is bounded. 
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Also, if /\] = 0, it follows that 0 = b( /\], v) = (1, v) for all v E V. As V is 
dense in W , this implies that (j, J) = 0 and that /\ has a trivial nullspace. 

Suppose that the closure R of R(/\) with respect to the energy norm is not 
equal to V. Then there exists ayE V, y =J 0 such that b(v, y) = 0 for 
all v E R. As y E V, (y, y) = b(/\y, y) = 0 and hence y = 0, which is a 
contradiction. D 

Define an operator 

A : D(A) = R(/\ ) c V ~ W by A = -/\ -1. 

The idea for the construction of the operator A is due to Lax and Milgram 
[LM]. 

Corollary 3.4.1 The operator A is a closed densely defined symmetric ope­
rator with range R(A) = Wand 

b(u, v) = -(Au , v) for all u E D(A) and v E V. 

For the damping term a, we can define an associated operator in a similar 
way. From the model problems in Section 3.1 and Section 3.2 it is clear that 
there are two special cases to consider. 

In the case of Kelvin-Voigt damping , a is posi tive definite with respect to 
the energy norm , i.e. there exists a constant c such that 

a(lI" u) ~ cb(u, u) for all u E V. 

Then an operator J can be constructed in exactly the same way as A with 
R(J) = Wand 

a(u, v) = -(Ju, v) for all u E D(J) and v E V. 

In this case J will be a closed densely defined symmetric linear operator. 

In the case of viscous damping, a is bounded in the inertia norm. The 
bilinear form a can then be extended to W. From the Riesz Theorem (see 
Lemma 3.4.1) follows that for any u E W there exists a unique w E VV with 

a(u,v) = (w,v) for all v E W. 

Choose Ju = -w. Then 

a(u , v) = - (Ju, v) for all u E D(J) and v E W. 
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In terms of the operators A and J, the weak formulation of the problem can 
be represented as follows: 

Initial value problem for second order abstract differential equation 

Find u E C2 ((0, T), L2) n C1([0, T) ,U) such that, jor all t > O. u(t) E D (A) . 
u'(t) E D(J) and 

ul/ (t) - Ju' (t) - Au(t) J(t) , 

u (0) = ex, 'u' (0) {3 . 

In a report [VVZ], existence results for Problem A are proved. Some restric­
tions had to be placed on the initial conditions. A general existence result is 
proved in [BI] using results of [PJ or [Sh] . In the latter references one may 
also find existence results. See [Sh, Section VI.2, Theorems 2A, 2B and 2C] 
and also [K , Section III. 1, Theorem l.3]. However, the transition from the 
abstract existence result to a concrete example is far from trivial. See for 
instance the treatment of the wave equation in [P, Section 7.4]. We consider 
this topic to be beyond the scope of this thesis. 

As a final remark on the dynamic problem we mention that general existence 
results do not include satisfactory regularity results . The regularity of the 
solution is of great importance in convergence theory. (See Section 5.3. ) 
For the one-dimensional wave equation it is a fact that the regularity of the 
solution depends on the regularity of the initial conditions. This fact is clear 
from either D 'Alemberts method or a Fourier series solution. (See [\tV].) For 
two-dimensional problems the shape of the physical domain is also a factor. 
In Section 5.3 we will allow for different possibilities as far as regularity is 
concerned. 

The following equilibrium problem is associated with Problem A. The solva­
bility of this problem follows from Lemmas 3.4.1 and 3.4.2. 

Problem B (Equilibrium problem) 

Fo r J E L2, find u E V such that, b(u, v) = (f, v)o Jor all v E V . 
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3.5 Eigenvalue problem 

Consider the undamped homogeneous problem associated with Problem A: 

(u//(t), v) + b(u(t), v) = 0 fOT all v E V. 	 (3 .5 .1) 

Applying separation of variables to (3.5.1) (i.e. assuming that u(t) = ¢(t)w 
with ¢ a real valued function and w E V), yields two problems , namely an 
eigenvalue problem and an ordinary differential equation. 

Problem C (Eigenvalue problem) 

Find a complex numbeT..\ and w E V , w i:- 0, such that 

b(w, v) = ..\(w , v) for all v E V. 	 (3.5.2) 

The differential equation is 

¢// + ..\¢ = O. 

The function u is a solution of (3 .5.1 ) if and only if w is an eigenvector of b, ..\ 
is a corresponding eigenvalue and ¢ is a solution of the differential equation. 

The constant ..\ is called an eigenvalue of b and the subspace of solutions w 
is called the eigenspace E).. of b corresponding to ..\. The elements of E)., are 
called eigenvectors. (Recall the fact that b is symmetric.) 

J);" is called a natural frequency and w a natural mode of vibration. (We 
will prove that all the eigenvalues are positive.) 

Theorem 3.5.1 Let A be the opemtoT defined in Section 3.4. 

1. 	 ..\ is an eigenvalue of b if and only if ..\-1 is an eigenvalue of A. The 
eigenspace of b cOTTesponding to ..\ is the same as the eigenspace of A 
corresponding to ..\ - 1. 

2. 	 All the eigenvalues of baTe posztzve. 

3. 	 Suppos e ..\ and M aTe eigenvalues of b wdh ..\ i:- M If wEE)., and 
u EEl-" then 

b(u, w) = (u, w) = O. 
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Proof 

1. 	 ote that b cannot have a zero eigenvalue. Zero is also not an eigenvalue 
of A as the nullspace of A is trivial. The definition of A implies that 

b(w ,v) = A(W,v) for all v E V 

if and only if 

2. 	 The operator A is symmetric since b is symmetric. It is well known 
that the eigenvalues of a symmetric operator are real. Finally, A > 0, 
since b(w, w) > 0 and (w, w) > O. 

3. 	 From A(W,U) = b(w,u) = IL(w,u),it follows that (A-IL)(W,U) = o. As 
A =1= IL, this yields that (w, u) = 0 and as a consequence, b(w, u) = O. 0 

Lemma 3.5.1 The operator A from W to VV is compact. 

Proof The operator A maps a bounded subset of VV onto a bounded subset 
of V. But this set is precompact in W. 0 

T heorem 3.5.2 

1. 	 The set of eigenvalues of b zs countable. 

2. 	 If the sequence of eigenvalues are ordered as a non-decreasing sequence 
AI, A2, ... , then An ----+ 00 if n ----+ 00. 

3. 	 E;" is finite dimensional for each A. 

Proof Due to Theorem 3.5.1, it is sufficient to consider the operator A. Since 
A is compact, we have immediately the facts that the eigenvalues are at most 
countable and the finite dimensionality of the eigenspaces. (See any text on 
Functional Analysis, for example [Kr , Section 8.3].) For a symmetric compact 
operator on a Hilbert space we have more: There exists an orthonormal 
sequence of eigenvectors for which the corresponding sequence of eigenvalues 
converge to zero. See [Sh , Theorem 7c] or [Ze, Theorem 4A]. 
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Since the Hilbert space V is not finite dimensional, it follows that there must 
be an infinite number of different eigenvalues. 	 0 

Remark The dimension of the eigenspace E)., is called the multiplicity of 
the eigenvalue A. 

Definit ion 3.5.1 Rayleigh quotient 

The Rayleigh quotient R 2S defined as 

R(v) = b(v , v) 
(v,v) 

The eigenvalues can be characterised in terms of the Rayleigh quotient. 

Theorem 3.5 .3 The smallest eigenvalue AI! is given by 

Al = min{R(v) : v E V}. 

Proof See [SF , p 220]. 	 o 

Remarks 

1. 	 Theorem 3.5.3 may be used to order the eigenvalues of b. If u is an ei~ 
genvector corresponding to AI , we consider the orthogonal complement 
of u in V, which is again a Hilbert space. 

2. 	For the eigenvalue problem (3.5.2) , various bounds for the eigenvector 
W, associated with an eigenvalue A, can be obtained. Clearly, in general , 

(3.5.3) 

3. 	 We may also consider eigenvalue problems for other bilinear forms, for 
example 

(u, v) = c(u, v) = A(U ,v)o. 

Exactly the same results will be true-this time in the Hilbert space W . 

Regularity For beam problems where rotary inertia is ignored (i.e. W = L2) , 
the eigenfunction satisfies the differential equation 

W (4) = AW. 
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As a consequence we have 

(3.5.4) 

Also, from the differential equation, 

W(6) = Awl!. 

Since the energy norm is equivalent to the H2-norm, there exists a constant 
Cb such that 

(3.5 .5) 

For the case where rotary inertia is included, 

W(4) = A(rwl! + w). 

In this case it follows that 

(3.5.6) 

if A > 1. 

Remark For the plate beam problem we do not know if the eigenvectors 
are in Hk for k > 2. 

 
 
 



Chapter 4 

Discretization 

4.1 Galerkin approximation 

In Chapter 3 we showed that all the model problems lead to three typical 
abstract problems. In this section we will formulate a Galerkin approximation 
for the general vibration problem, Problem A, as well as for the associated 
equilibrium problem, P roblem B, and the eigenvalue problem, Problem C. 

To formulate these Galerkin approximations, it is necessary to choose a finite 
dimensional subspace Sh of V. (At this stage the symbol h is used only to 
indicate that we are considering approximation in a finite dimensional space.) 

Galerkin approximation for the vibration problem 

P roblem AG 

Find Uh E C2 ((O, (0), Sh), such that fo r all t > 0, 

(u~(t) , v) + a(u~(t) , v) + b(Uh(t), v) = (J(t) , v)o for all v E Sh , 

Uh(O) = 0:h, u~(O) = {3h' 

The initial conditions 0:h and {3h are approximations in Sh for 0: and {3. 

The Galerkin approximation yields a semi-discrete problem which can be 
written as a system of ordinary differential equations. Let {<P I) <P2, . .. , <Pn} 
be a basis for Sh. Then there exist functions Ui (t) such that 

Uh(t) = L
n 

Ui(t)<Pi. 
i = 1 

57 
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Let u be a function with values in lRn such that the vector 'u(t) has compo­
nents Ui(t). 

Problem AD 

Find u E C 2 ([0, (0), lRn ), such that 

Mul/(t) + Lu'(t) + Ku(t) f(t), t > 0, 

u(O) = 6', u'(O) jJ, 

with 6' and jJ the coefficients of Cih and i3h' 

The matrices K, L, M and Mo are defined as follows 

Kij = b(¢i, ¢j), Lij = a(¢i, ¢j) , Mij = (¢i, ¢j) and [N1olij = (¢i, ¢j)o. 

The vector f(t) has components (1(t) , ¢i)o. 

It is easy to see that Problem AG is equivalent to Problem AD. For instance, 
if v = ~7 Vi¢i, then (u~(t), v) = Miil/(t) . fJ = fJT Nlul/(t). 

Remark Problem AD is an initial value problem for a system of differential 
equations. It will have a unique solution if f is continuous, but the differen­
tiability properties of u (and hence Uh) will depend on the differentiability 
properties of 1. 
Galerkin approximation for the equilibrium problem 

Problem BG 

Find Uh E Sh, such that b(Uh, v) = (1, v)o for all v E Sh 

Since Uh and v are linear combinations of {¢l, ¢2, ... , cPn}, the Galerkin 
approximation reduces to the system of linear equations: 

Problem BD 

Find u E lRn, such that Ku = F, where Fi = (1, ¢i)O. 

Galerkin approximation for the eigenvalue problem 

Problem CG 

Find Wh E Sh, Wh =J 0, and a complex number ).,h, such that 
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Since Uh and v are linear combinations of {rP l ) rP2 ) ... ) rPn }, the Galerkin 
approximation reduces to the generalised eigenvalue problem: 

Problem CD 

Find W E lRn ) W #- 0, and a complex number A, such that 

Kw = AMw. 

The vector w has components Wi where Wh = L:~ l WirPi · 

More will be said concerning the computation of these matrices in Section 4.4 
and Chapters 5 and 6. 
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4.2 	 Finite dimensional subspaces. 
B eam problems 

4.2.1 	 Hermite cubics and Hermite quintics 

The well-known Hermite piecewise cubics (see for instance [SF] or [ReJ) are 
used successfully as basis functions for the Galerkin approximation in beam 
problems. Although cubics are sufficiently accurate for beam problems, we 
also use Hermite piecewise quintics. The main reason is that cubics will not 
be compatible with reduced quintics in plate beam models. As a bonus we 
find that quintics are extremely efficient. (See Chapter 5.) 

The interval! = [a, b] is divided into subintervals by nodes Xi , i = 0, I , ... , n, 
with 

a = Xa < Xl < ... < Xn = b. 

Consequently we have elements Oi = [Xi - I , Xi] of length hi' 

We proceed to define Hermite piecewise quintic polynomials. For k = 0, I , 2 
and for each element Oi there exist six quintic polynomials 'ljJi~)1 , i and 'ljJ,i,~) 
with the following properties. 

For j = i-lor i: 

if e= k, 
if e=1= k. 

Next these polynomials are "pieced" together. The basis function ¢ ;k) IS 

defined by 

on Oi+l, 
on Oi , 
elsewhere. 

For piecewise Hermite cubics the construction is virtually the same. The 
only difference is that k = 0, 1. 
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Instead of piecewise Hermite cubics and piecewise Hermite quintics we will 
refer to cubics and quintics. 1 ote that the cubics are elements of H 2 (a , b) 
and the quintics elements of H 3 (a, b). 

D efinition 4.2.1 Interpolation operator. 

Let r = 1 faT cubics and r = 2 for quintics. Then we define 

T n 

ITu = L L DkU(Xi )¢~k). 
k=Q i==) 

Remark 

1. 	 For cubics it is necessary that U E H2(I) , for then U E C1(l). (See 
Appendix B.) For quintics it is necessary that 'U E H 3(I ). 

2. 	 Note that if v = ITu, then DkV( Xi ) = Dku(Xi). 

3. 	Cubic splines are often used as basis functions. This has advantages 
over cubics (see [Pr]), but for reasons already mentioned we choose 
quintics as an alternative to cubics. 

4.2.2 The damaged b eam 

The variational form of the damaged beam is derived in Section 3.l. In this 
section we construct a finite dimensional subspace for the Galer-kin approx­
imation. The interval I = [0, 1] is divided in such a way that x = 0:' (location 
of damage) coincides with an interior node xp. This means that I) = (0 ,xp) 
and 12 = (xp, 1). 

We construct a finite dimensional subspace of the space V by specifying a 
basis. The basis elements must be pairs of functions. Suppose ¢ik) is a 

quintic or cubic. Let ¢i~) denote the restriction of ¢~k) to I) = [O , O:'J and 

¢i~) the restriction of ¢ik) to 12 = [0:',1]. We then define the basis elements 

J~k) by Ji k) = (¢i~), ¢~;\ These elements are in H2 since ¢i~) E H2(Id and 

¢g) E H2(I2). ¢~l) is an exception and may not be used . Instead we have 
1(1) _ (~(1) 0) d 1(1) - (0 ~(1))
'f'pL - 'f'pl' an 'f'pR - , 'f'p2 . 
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Consequently, J~k ) E V if i i= O. Also J~~ and J~~ E V. (They all satisfy the 

forced boundary conditions. For k = 0 and k = 1, J6k 
) are not admissible on 

account of the forced boundary conditions at x = 0.) 

Let h = max hi' The finite dimensional subspace Sh is chosen as the span of 
all the admissible basis elements. Although the space Sh is determined by 
the partition of the interval , and not h, the notation Sh is commonly used. 
Note that Sh is a subspace of V , since the basis of Sh consists of elements of 
V. 

Next we define an interpolation operator IT on Hk . (For any u E Hk, 
UI E Hk(II) and U2 E Hk(I2) ') We use the usual interpolation operators 
for these spaces (defined in the previous subsection) and denote them by IT I 

and IT 2 : 

Definition 4.2.2 Interpolation operator 

ITu := (ITIUI, IT2U2) for each U E Hk. 

k = 3 for quintics and k = 2 for cubics. 

Note that ITu E V for all U E V as 

(ITiUi) (Xj) = Ui (X j) and (ITiud (Xj) = u~(Xj). 

4.2.3 B eam with dy namical boundary conditions 

The construction of a finite dimensional subspace is simpler in this case. 
Suppose ¢~k) is either a cubic or a quintic. The basis elements for Sh are 

J~k) = (¢ik),¢ik)( l) , (¢ik))'(l)). 

Note that ¢~O) and ¢~l) are excluded. Clearly J~k) E V for each i and each k. 

Definit ion 4.2.3 Interpolation operator 

Let TIl denote the usual interpolation operatoT'. 

ITu:= (IT1UI, (ITIUI)(l), (ITlud(l)) for U E H k. 

k = 3 for quintics and k = 2 for cubics. 

ote that (ITIUl) (Xi) = UI( Xi) and (IT1ud (Xi) = U~(Xi)' Again, it is easy to 
see that ITu E V if u E V. 
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4.3 	 Finite dimensional subspaces. 
Plate problems 

4 .3.1 	 Reduced quintics 

We use only reduced quintics developed by Cowper et al. (See for instance 
[SF]' [CKL0 1], [CKL02] and [CKL03].) These basis functions are highly 
accurate for the Galerkin approximation in plate problems. 

The rectangle D is divided into triangles or elements Di . vVith each node we 
associate six basis functions. To define these functions the following notation 
for derivatives is convenient: 

o(O)u = 	u , O(3)U = ofu, 

o (l)u = 01 U, O(4)U = Ol02 U , 

o(2)u = 02U, a(5),u = oiu. 

For each node Xj and for each element Di (with Xj as a vertex) there exist 

six reduced quintics 7/J~~) fo r k = 0, 1, .. . , 5 with the following properties: 

if e= k,
For j = 	 m : 

if e=I- k . 

For j =I-	 m : 

Next these polynomials are "pieced" together. We define the basis function 
¢jk) by: 

The restriction of ¢jk) to element Di is 7/J;7) if Xj is a vertex of Di . 

If Xj is 	not a vertex of Di then ¢;k) = 0 on Di . 

The piecewise polynomial functions ¢~k) are continuous and have continuous 
partial derivatives. The second order parti al derivatives are not continuous. 
However, these functions are elements of H2 (D). 

Definition 4.3.1 Interpolation operator II st 
n 5 

IIstu := L L a(k)U(Xj )¢jk). 
j=1 k=O 
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Consequently, if v = TInu, then 8(k)V (Xj) = 8 (k)U(Xj). 

4 .3.2 Plate beam model 

The elements of Sh must be ordered triples of the form (u , IOU, 11u). The 
basis elements for Sh are 

;;:,(k) = (~(k) ~(k) ~(k))
'f't 'f't ' I O'f't ,11'f't . 

Note that some basis functions must be excluded to satisfy the forced bounda­
ry conditions. Clearly ¢~k) E V for each i and each k. The finite dimensional 
space Sh is the span of all the admissible basis functions. 

Definition 4.3.2 Interpolation operator 

Remark Let IIr denote the interpolation operator defined for quintics in 
Section 4.2.1. Note that 

The same is true for I)' 
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4.4 	 Implementation 

vVe now reconsider the three types of problems posed in Section 4.1. Having 
defined finite dimensional subspaces, the matrices K, L, NI and Nlo are also 
defined. 

The equilibrium problem, Problem BD , is trivial and needs no further dis­
CUSSlOn. 

The eigenvalue problem, Problem CD, is a generalized eigenvalue problem. 
For the different model problems, this is solved, after the matrices have been 
computed, using standard Matlab subroutines. In the one-dimensional case, 
this is a straightforward procedure. (Chapter 6.) The two-dimensional case 
is more interesting because of the presence of repeated eigenvalues and the 
irregular pattern in which they occur. As the multiplicity of eigenvalues for 
the abstract eigenvalue problem (Problem B) and the Galerkin approxim­
ation (Problem BG) do not correspond, it can be difficult to interpret the 
numerical results. vVe will elaborate on this in Chapter 7. 

The vibration problem, Problem AD, is an initial value problem for a second 
order system of ordinary differential equations 

Mul/(t) 	+ Lu'(t) + Ku(t) J(t), 

ii, (0 ) = (}, U' (0 ) /3 , 

which is to be solved on an interval [0, T]. The initial conditions, (} and /3, 
depend on the choice of approximations for 0' and (3 . One possibility is to 
use O'h = ITO' and (3h = IT(3. Another possibility is to use projections-to 
be defined in Section 4.6. This problem is solved using a finite difference 
method. The interval [0, T] is partitioned into subintervals of length Ot and 
tk = kOt. 

Let Uk 	denote the approximation for u(tk). Vve use the following scheme: 

(Ot)-2NI(Uk+l - 2Uk +uk-d 


+(2Ot)-1 L(Uk+l - uk-d 


+K(PIUk+l + POUk + PIUk-l) 


More detail about the weights , Po and PI, will be given in Section 5.4 and 
Chapter 6. The scheme is started with initial conditions Uo = (} and 
(2Ot)-1(Ul - u- d = /3. 
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It is clear that as far as implementation is concerned, the real challenge is 
the computation of the matrices K , Land lIif. This is complicated by the 
interface conditions which result in non-standard basis elements. We write 
our own code to assemble the matrices. 

As an example we illustrate the computation for the simplest case, namely 
the beam with tip body. The dimensionless model is given in Section 2.4. 

The interval I = [0,1J is divided into subintervals by nodes Xi, Z = 0, I, ... , n, 
with 

o= .Xo < .X 1 < ... < Xn = 1. 

Consequently, we have elements Di = [X i -I, Xi] of length hi' Suppose we use 
Hermite piecewise cubics defined in Section 4.2 and the basis elements are 
ordered as follows : 

for i = 1, 2, . .. , n, 

for i = n + I, n + 2, ... , 2n. 


First consider the computations for an undamaged beam. We denote the 
standard cubics by rjJ i ' Also, the matrices NIA

, Ml and K are the usual 
matrices used for an undamaged beam: 

ext we show how to adapt these matrices for the beam with tip body. (The 
bilinear forms are defined in Section 3.2 and the matrices in Section 4. l. ) 

The K -matrix does not change since 

Since /-Lo = /-Ll = 0, 

Lij = a( ¢i) ¢j) = 11 (/-LrjJ~ rjJ~ + krjJirjJj) 

which yields that L = /-LK + kMA . Lastly, 

tC ( ¢i, ¢j) = } 0 ( rjJi rjJ j + r rjJ~ rjJ~ ) + mrjJi (1 ) rjJj (1) + I m rjJ; (1) rjJj (1 ) 

Nli1 + r [Mllij + mrjJi(l)rjJj(l) + ImrjJ~(l)rjJ~(l) . 

Thus, M = NIA + rMl + M* where M* is the 2n x 2n zero matrix , except 
for two non-zero entries namely M~ n and M2n 2n'. , 

 
 
 



CHA PTER 4. DISCRETIZATIO 67 

4.5 Interpolation error 

4.5.1 Standard estimates 

In this subsection we quote standard interpolation estimates, as found in, 
for instance, [SF], [OR] and rOC]. The standard Sobolev spaces H k(1) and 
Hk(O ) are used and II . II denotes the L2(1) or L2(0) norm. 

We introduce two parameters for an interpolation operator IT: 
r(IT) is the highest degree of polynomials left invariant by the operator IT , 
s(IT) is the highest order derivative used in the definition of IT. 

Vie will use C 
~ 

to denote a generic constant which depends on the constants 
in Sobolev's lemma and the constants in the Bramble Hilbert lemma. 

In the following result 1·lk denotes the seminorm of order k, i.e. lulk = lIu(k) II , 

on an interval I . 

Lemma 4. 5.1 Suppose s(IT)+1 S k S T(I1)+l. Then theTe exists a constant 
C such that, for all u E Hk (1) ) 

Ilu - l1ullm S Chk-mlulb m= 0, 1, ... , k. 

Notation If u E Hk(1) , let k* denote the minimum of k and r( l1) + 1. 

Corollary 4 .5.1 There exists a constant C such that, JOT all u E Hk (1) , 
wdh k 2:: s(l1) + I, 

lIu - ITuli m S Chk*-mlulk*, m = 0,1, ... , k*. 

P roof Hk(I) C Hr(TI)+l for k 2:: r(l1) + 1. 0 

Remark For cubics, k* = 4 if k 2:: 4. For quintics, k* = 6 if k 2:: 6. 

In the following result , for a two-dimensional domain 0, I . Ik denotes the 
seminorm of order k, i.e. 

Iv, l~ = L 11 8l~u Il 2. 
i+j=k 

In the two-dimensional case, the constant of the estimate also depends on 
the shape of the elements. Care should be taken that the minimum angle of 
any triangle element does not become too small. See for instance [SF , p 138]. 
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Lemma 4.5.2 Suppose s(II)+2 ::; k ::; r( II )+ l. Then there exists a constant 
C such that, for u E Hk(D, ), 

lIu - IIu/i m ::; Chk-mlulk> m= 0, 1, .. . ,k. 

Remark For reduced quintics r(II ) = 4, hence k* = 5 if k 2: 5. 

Corollary 4.5.2 There exists a constant C such that, for all u E H k(D,) . 
with k 2: s(II) + 2, 

Ilu - IIull m ::; Chk' - mlulk" m = 0, 1, ... , k*. 

4.5.2 D amaged beam model 

The seminorm of order k fo r the product space Hk = Hk(11) X Hk (12) is 

defined by lul~ = IUll~ + IU21~ · 

Lemma 4.5.3 There exists a constant C and an s' such that, fOT all u E Hk. 
wzth k 2 s', 

Proof The result is a direct consequence of the definition of seminorms , 
norms and the interpolation operator on the product space. For this in­


. terpolation operator, s* = 2 and k* = min { k, 4}, if adapted cubic basis 

functions are used, and s* = 3 and k* = min{k, 6}, if adapted quintic basis 

functions are used. 0 


4.5.3 Beam with dynamical boundary conditions 

The seminorm of order k for the product space Hk = Hk(1 ) X 1R x 1R is defined 

by lul~ = IUll~· 

Lemma 4.5.4 There exists a constant Cand an s* such that, fo r all u E Hk , 
with k 2: s*, 

 
 
 



CHAPTER 4. DISCRETIZATION 69 

Proof T he result is a direct consequence of the definition of seminorms, 
norms and the interpolation operator on the product space. Also for this 
interpolation operator, s* = 2 and k* = min { k , 4} if adapted cubic basis 
functions are used, and s* = 3 and k* = min{k ,6 } if adapted quintic basis 
functions are used. 0 

4.5.4 P late beam model 

The seminorm of order k on the product space Hk = Hk(D) X H k(I) x Hk(I) 
is defined by lul% = IUil%+ IU21% + IU31%· 

Consider the interpolation operator IT defined in Section 4.3.2. In this case 
k* is the minimum of k and 5. 

Lemma 4.5.5 There e.xists a constant Cand an s* such that, jor all U E Hk, 
with k ~ s*, 

~ k-Ilu - ITulimSCh -mlul k _, m = 0, 1, . .. , k* 

Proof Note that for any u E Hm, we have that 

Ilu - ITull~ = /lUi - ITDU1/l~ + IIu2- ITru2/1~ + /lu3 - ITru311~· 

Use the results of Corollaries 4.5.1 and 4.5.2. From Corollary 4.5.2 it follows 
that s* = 4 as s(IT) = 2 for reduced quintics . 0 

4.5.5 Abstract error estimates 

At this stage a unified approach is possible. We have a Hilbert space V, a 
finite dimensional subspace sh, an interpolation operator IT and require an 
estimate for the interpolation error u - ITu. 

In Subsections 4.5 .2 to 4.5.4 we showed that for all the model problems we 
can define parameters s* and k* for each interpolation operator , such that 
the following general interpolation estimate holds. 

Lemma 4.5.6 There exists a constant C such that, jor all u E Hk , wzth 
k ~ s*, 
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As V C H2 for all the model problems) and the energy norm is equivalent to 
the H2 norm, the following interpolation estimate holds. 

Corollary 4.5.3 There exists a constant C such that, for all u E Hk n V, 
with k ~ s*, 

For all the model problems s* < 4 and for k = 4 it follows that k* = 4. This 
means that the following result applies to all the interpolation operators that 
we use. 

Corollary 4 .5 .4 There e.'Iists a constant C such that, for all u E H4 n v . 
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4.6 A pproximat ion 

We have a Hilbert space V, a finite dimensional subspace Sh, an interpola­
tion operator II and an estimate for the interpolation error u - IIu. We now 
introduce a projection of V onto the subspace Sh. This projection will fea­
ture in every convergence proof in Chapter 4. For more information on this 
projection, see any Functional Analysis text, for example [Kr, Section 3.3]. 

Definit ion 4.6. 1 Projection P 

P is a projection of V onto Sh with respect to the inner product b. 

The definition implies that for any x E V, 

b(x - Px,v) = 0 for all v E Sh. 

Due to the important role that P will play in the theory, we display the 
properties of this projection: 

Ilx - PxllE :::; /Ix - vilE for all v E S\ 

IIPx - vilE:::; Ilx - vilE for all v E Sh 

and 

IIPxllE :::; IlxiIE' 
~ 

Lemma 4.6.1 There exists a constant C such that, for any u E Hk n V , 
with k ~ s*, 

Proof 

IIPu - uilE :::; IIIIu - uilE 

and 

IIIIu - PullE :::; Ilu - II~uIIE' 

Now use the results for the interpolation error in Corollary 4.5.3. 0 

The next result is convenient due to the fact that it applies to all the inter­
polation operators that we use. 
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Corollary 4.6.1 There exists a constant C such that, Jar any u E H4 n V, 

Lemma 4.6.2 For any c > 0 and any u E V , there exzsts a 6> 0, such that 

Ilu - PullE < c, zJ h < 6. 

Proof For any u E V there exists awE H4 n V such that 

Ilu - wilE::; C. 

Now, 

IIPu - uilE < Ilu - wilE + Ilw - PwllE + IIPw - PullE 
< c+ Clwl4h2 + c 
< 3c for h sufficiently small. 

o 

In a final result we show that the Aubin-Nitsche trick, [N], can also be applied 
to find estimates in the inertia norm for the discretization error. 

Lemma 4 .6.3 There exists a constant C such that, Jar all u E Hk nV, wdh 
k 2: s*, 

P roof Set ep = u- Pu. As b defines an inner product on V it follows from 
the Riesz theorem that there exists a unique y E V such that 

b(y, v) = (ep , v) for all v E V. (4.6.1) 

Regularity results yield that y E H4 n V and that there exists a Cb such that 

(4.6.2) 

Since P is a projection 

b(ep , v) = 0 for all v E Sh ( 4.6.3) 

 
 
 



73 CHAPTER 4. DISCRETIZATION 

Let v = ep in (4.6.1) and v = Py in (4.6.3). This yields that 

From Corollary 4.6.1, 

We conclude from (4.6.2) that 

The result now follows from Lemma 4.6.1. o 

For all our model problems the following result applies. 

Corollary 4.6.2 TheTe ex~sts a constant C such that, fOT all u E H4 n V. 
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