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This dissertation investigates the cost-complexity-performance relationship between

two automatic language identification systems. The first is a state-of-the-art archi-

tecture, trained on about three hours of phonetically hand-labelled telephone speech

obtained from the recognised OGLTS corpus. The second system, introduced by our-

selves, is a simpler design with a smaller, less complex parameter space. It is a vector

quantisation-based approach which bears some resemblance to a system suggested

by Sugiyama. Though trained on the same data, it has no need for any labels and is

therefore less costly. A number of experiments are performed to find quasi-optimal

parameters for the two systems. In further experiments the systems are evaluated and

compared on a set of ten two-language tasks, spanning five languages. The more com-

plex system is shown to have a substantial performance advantage over the simpler

design - 81%versus 65%on 40 seconds of speech. However, both results are well under

reported state-of-the-art performance of 94% and would suggest that our systems can

benefit from additional attention to implementation detail and optimisation of various

parameters. Given the above, our suggested architecture may potentially provide an

adequate solution where the high development cost associated with state-of-the-art

techno,logy and the necessary training corpora are prohibitive.

 
 
 



Hierdie verhandeling ondersoek die verwantskap tussen twee outomatiese taalher-

kenningstelsels in terme van koste, kompleksiteit en werkverrigting. Die een stelsel

is gebaseer op 'n tegnologie-spits argitektuur en word afgerig op ongeveer drie uur

se foneties handgemerkte telefoonspraak verkry uit die OGLTS korpus. Die kom-

peterende stelsel wat ons voorstel, is 'n eenvoudiger ontwerp met 'n kleiner, min-

der komplekse parameterruimte. Dit is 'n vektorkwantiserings-gebaseerde benade-

ring wat in sekere opsigte ooreenstem met In vorige stelsel van Sugiyama. Hoewel

ons stelsel op dieselfde data afgerig word, hoef die data nie gemerk te wees nie; ons

stelsel is gevolglik heelwat goedkoper. Stelselwerkverrigting word geoptimeer deur

'n gedeelte van die parameterruimte ekperimenteel te ondersoek. Die kwasi-optimale

stelsels word in verdere eksperimente met mekaar vergelyk oor 'n stel van 10 twee-taal

herkenningstake wat vyf tale onderspan. Die komplekse stelsel lewer heelwat beter

werkverrigting as die eenvoudiger alternatief - 81% versus 65% op 'n 40 sekonde ui-

ting. Daar moet egter in gedagte gehou word dat beide resultate beduidend swakker is

as gepubliseerde tegnologie-spits werkverrigting van 94%. Dit sou dus wou voorkom

asof ons stelsels verbeter kan word deur meer aandag aan implementeringskwessies

en optimering van verskeie parameters te skenk. Met hierdie feite inaggenome kan ons

voorgestelde stelsel potensieel handig te pas kom in situasies waar die ontwikkelings-

koste van tegnologie-spits stelsels, en die gepaardgaande spraak korpora, andersins

beperkend so wees.
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Chapter 1

Introduction

1.1 The problem

The goal of Automatic Language Identification (ALl)is to classify a speech signal as be-

longing to one of a number of previously encountered languages - automatic, because

the task is performed by a machine. As with all spoken language activities, people can

identify languages familiar to them with exceptional speed and accuracy. Their skill

tends to disguise the inherent complexity of the problem. Human speech, apart from

being massively redundant, contains information about the sex, age, unique vocal

tract, socio-economical background, native geographical location, emotional status,

nationality and language of the speaker. In addition, the signal is altered by back-

ground noise as well as distortion introduced by the communication channel. As

a matter of fact, if one works with the whole audio band accessible to the human

auditory system, the intended symbolic message constitutes only about 0.1% of the

total information content of a speech signal [1]. When extracting language-specific

information, it is implied that the process is robust with regard to the avalanche of

additional information. Automatic language identification is not a trivial problem and

a successful solution will have to draw from a number of different fields of expertise
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- human physiology and psychology, acoustics, information theory, statistics, pattern

recognition, phonetics and linguistics - all forged into a working system in a way that

is worthy of the term engineering.

We will discuss the context and possible applications of ALl in Section 1.2. It is fol-

lowed by a brief overview of the basic approach to the problem in Section 1.3 and a

look at ALl state-of-the-art in Section 104. Section 1.5 explains our contribution to ALl

and we conclude with a brief outline of the dissertation in Section 1.6.

The first question that comes to mind, maybe, is why do we need ALl technology at

all? As an immediate practical example, in a multi-lingual society such as South Africa,

automatic language identification can be useful in an emergency service context, where

callers who phone in are normally in shock and prone to confused babbling in their

native tongue. An ALl system can switch callers to an operator that can understand

them without wasting valuable time in trying to establish which language they are

using.

The longer answer is that ALl is a vital part of any multilingual spoken language sys-

tem. These will eventually include public speech-based information retrieval systems,

services that handle hotel bookings, real-time translation systems and the like. Such

applications are only starting to receive attention as they become more feaSible, but

in a shrinking global community they will by necessity eventually enjoy high priority.

Already a central aim of technology is to develop so-called SILKyinterfaces to ma-

chines that are locked on a path of ever-increasing complexity. SILKis an acronym for

Speech, Image, Language and Knowledge, the enabling technologies for truly intuitive

man-machine interfaces.

 
 
 



function in a high-technology environment. In order to remain globally competitive,

the people of South Africa will have to adapt, but we need technology to access tech-

nology. Spoken language systems might provide part of the answer by placing the

burden of human-machine interaction on the machine. In a country with 11 national

languages, ALl may eventually playa vital part. The basic approach to this enabling

technology is outlined in the next section.

1.3 The approach

Although people can sometimes recognise a familiar language even from a partially

spoken word, they find it difficult to express exactly how they achieve this feat. An

obvious difference among languages is that of different words, but when confronted

with an unknown language, it is near-impossible to tell where words begin and end; yet

people still manage a better than chance performance. Perceptual experiments provide

some clues [2, 3,4, 5]. Subjects may find an unknown language similar to a known

one, or describe it as nasal (French), harsh (German), sing-song (Mandarin), rhythmic or

guttural. In addition, speakers are sensitive to sounds not found in languages familiar

to them, like the click-sounds in a number of southern African languages, or the velar

fricatives in Arabic. Apart from the obvious differences in the sound inventories of

languages, there are more subtle patterns in the frequency of occurrence of certain

sounds and combinations thereof. Hawaiian for instance, has a very small number of

consonants. The cluster Isrl is very common in Tamil, but not found in English at

all. Hindi has four different consonants that are all likely to sound to native English

speakers like their own It/.

The challenge of ALl then, is to identify and exploit these differences in a systematic

way. In brief, state-of-the-art systems achieve their goal by means of a phone recogni-

tion front-end that transcribes the speech stream into known speech units or phones.
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A language modelling subsystem extracts statistical information about phone distri-

butions and the results are used for classification. The process will be described in

detail in Chapter 3. The next section considers the current state of ALl technology.

Although ALl research can be traced back for at least twenty years, very little work has

been done until 1993 (Muthusamy mentions a total of fourteen papers [4]). Then, with

the work of Muthusamy, the OGI Telephone Speech (OGLTS) Corpus [4, 6] was put in

the public domain and adopted by the American National Institute of Standards and

Technology (NIST) as the standard for evaluating ALl algorithms. It contains a large

amount of telephone speech in 11 languages. (NISThad organised an annual evalua-

tion event for state-of-the-art ALl systems from 1992 to 1996, but has unfortunately

discontinued this useful contribution to ALl research.) A subsequent explosion in the

field produced a flood of papers and a number of groups working full-time on the

problem. The intensity of the attack leaves automatic language identification today as

a mature field. A number of systems that can identify around 10 languages with high

accuracy (approximately 80% recognition rate for a 10-language task on a 45 second

utterance) have been demonstrated [7].

Research is now turning to the more difficult problems of accent and dialect recogni-

tion and ALl system that does not need a labelled speech corpus for training. Chap-

ter 2 elaborates on existing ALl literature and practice. The next section covers our

contribution to ALl research.

 
 
 



Although state-of-the-art ALl systems perform very well, they require large hand-

labelled speech corpora. Such corpora are typically very expensive and difficult to

obtain. In addition these systems do not scale very well. Both factors are serious con-

cerns in the light of envisioned systems eventually handling hundreds of languages.

We address these issues by introducing an alternative approach that can use unla-

belled data for training and we quantitatively compare its performance to current ALl

technology.

We implemented two ALl systems. The systems share the same general structure. A

feature extraction front-end operating on a speech stream is followed by a transcrip-

tion block that takes the feature stream as input and produces a symbol (or token)

stream. The token stream is analysed statistically, extracting language specific infor-

mation describing its probabilistic syntax, which is used to classify the speech sample.

The systems differ in the nature of the tokens that are used.

The first is a state-of-the-art architecture, referred to as Parallel Phone Recognition

followed by N-gram Language Modelling (PPRLM).It uses hand-labelled speech data

to train a phone recogniser during the training phase. When testing the system, the

phone recogniser produces a phone string for processing by the N-gram language mod-

elling block. The phone recognition is performed with a Continuous Density Hidden

Markov Model (CDHMM).

Our system (the second system implemented) produces a string of equal-length sub-

phonetic units as tokens. Whereas the phonetically-based system needs to be trained

from labelled data, the sub-phonetic approach uses vector quantisation (VQ)to "dis-

cover" suitable sub-phonetic units and consequently has no need for labelled data.

Having independently arrived at this solution, it was found to bear some resemblance

to the work of Sugiyama [3, 8]. He suggested two VQ-based systems. We are only

 
 
 



concerned with the second, more effective one. The effort documented here differs

in three important respects from Sugiyama's approach.

• We use a separate VQ codebook for each language, as opposed to a universal

codebook spanning all the system languages.

• The way that we utilise the histograms describing the occurrence of token N-

grams is completely different.

• Our system is tested on the recognised OGLTScorpus, using more than five hours

of speech from 416 speakers in five languages as opposed to the 40 minute, 153

speaker, 20 language corpus used by Sugiyama.

The state-of-the-art PPRLM architecture yields significantly better results then our VQ-

based approach, but at the price of vastly increased effort needed to label a training

corpus. The latter, not requiring human intervention, trades reduced complexity and

effort for performance. In addition, when adding a new language to the first system,

one can use the existing phonetic classifiers of previously incorporated languages to

perform suboptimal transcription of the new language. Bycontrast, when integrating a

new language into the second system, it can take full advantage of the new information.

1.6 Organisation of dissertation

First of all, in Chapter 2, we will review existing ALl research. Chapter 3 examines

the theory behind ALl, which will allow as to present our systems in more detail.

This is followed by a description of experiments and results in Chapter 4. Chapter 5

concludes with a discussion of the results and some pointers for future work.
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Previous work

Muthusamy reviews ALl research prior to 1993 thoroughly in [4]. There are more

recent reviews by Muthusamy et al. [9], Zissman [7] and Berlding [10]. Later work is

dominated by the sustained efforts of two or three groups.

Because few of the early attempts used the same corpora and much of the research

details (number and gender of speakers, recording conditions and quality, languages

used, test and training set division, etc.) were somewhat nebulous, it is rather difficult

to compare these attempts quantitatively. Still, they provide interesting ideas. Most

of these approaches used some form of unsupervised training to estimate a set of

optimal system parameters. Recently, with the availability of the OGLTScorpus, ALl

systems that use multilingual, phonetically labelled corpora, have received much more

attention and have delivered good results.

Section 2.2 continues with a discussion of perceptual research. We then turn to a

number of different approaches to the ALlpreviously studied in Sections 2.3, 2.4, 2.5

and 2.6. Significant trends are highlighted in Section 2.7, followed by conclusions in

 
 
 



2.2 Perceptual studies

Spoken language is generated by the human speech system, for the human auditory

system; consequently machines perform rather badly in most aspects of spoken lan-

guages processing when compared to human beings. Since we are trying to mimic a hu-

man ability, studying people engaged in ALlmight provide us with valuable clues. Ear-

lier perceptual studies on language identification [2, 3, 4, 5] are scarce in engineering-

oriented literature. This might be largely due to the pattern recognition approach to

spoken language problems: in the same way that one does not need to fly like a bird

in order to fly, one does not need to process speech like the human speech centre in

order to recognise it. It does become increasingly clear, however, that human speech

perception is extremely complex and operates in non-obvious ways. We briefly review

results from a number of studies. Muthusamy et al. reports on two experiments; since

the second [5] was more comprehensive and the trends similar to that of the first, we

discuss only the second experiment.

28 subjects (14 male, 14 female) listened to and classified one-, two-, four- and six-

second excerpts of telephone speech from 10 languages. The subjects included na-

tive speakers of all the languages. The languages were English, Farsi, French, German,

Japanese, Korean, Mandarin, Spanish, Tamil and Vietnamese. The average classifica-

tion performance over all subjects and languages as a function of the duration of the

excerpts rose from 44.8% (one second) to 65.3% (six seconds). The average perfor-

mance over all subjects, languages and durations was 56.7%, with individual language

scores ranging from 28.3% for Korean to 93.1% for English. Performance of listeners

seems to be a strong function of the number of languages known; 44.1% for speakers

who knew one language up to 66.7% for speakers who knew four.
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After the experiments, the subjects were debriefed in an attempt to determine how

they performed the classification task. It seems that subjects used a combination

of phoneme- and word-spotting as well as phonetic and prosodic cues. German, for

instance, sounded "harsh" (maybe because of velar fricatives) and had the distinctive

word "ich". The tonal quality of Mandarin was important and sometimes confused

with Japanese. French had several nasal sounds and distinct intonation.

The experiments suggest that humans integrate data from diverse information sources

and that they can identify languages using very short utterances. Unfortunately the

duration of the excerpts were not extended to the durations used when comparing

automatic systems. (The NIST evaluation uses 10 second and 45 second phrases.)

This would have enabled direct comparisons between humans and automatic systems.

As it is, Muthusamy states that human performance asymptotes for much shorter

durations of speech than automatic systems [9]. Although humans are very good

with familiar languages, their performance vary greatly over a number of variables.

People who know ten or more languages are few and far between, and for tasks with

a large number of languages, machines probably already outperform humans. Future

systems might handle tens to hundreds of languages which will eventually rule out

any human competition.

More recently, Stockmal, Bond et al. performed a number of perceptual experiments

[11, 12, 13]. In an earlier paper [11] they report on two studies designed to explore

which perceptual properties inherent within the phonological structure of languages

are salient to foreign language listeners. In the first of these, fifteen subjects were

asked to judge whether pairs of spoken foreign language sentences were selected from

same or different languages and to explain how they had made the judgement. Multi-

dimensional scaling (MDS)was conducted on the subject responses for the "same lan-

guage" condition. The resulting map suggested that responses could be characterised

along two dimensions: phonologically based psychoacoustic properties (prosodics)

and talker specific characteristics (voice quality and speech rate).

 
 
 



In the second study this perceptual feature relationship was tested using similarity

judgements. Thirty subjects rated similarity on a seven-point scale for the same set

of sentence pairs that had been judged in study one. MDS analysis of the "differ-

ent language" condition yielded a map in which the language relationships closely

approximated those which had been derived by focusing on phonological properties.

A later study [12] explored the attributes of languages to which listeners attend, using

magnitude estimation and multi-dimensional scaling techniques. In magnitude esti-

mation, listeners assign any numerical value to a set of stimuli. In response to the

question: "How similar is this language to English?" fifty college students assigned

numerical values to spoken samples of foreign languages. The languages represented

Europe, Asia and Africa. Differences between the mean ratings for each language and

English were used to construct a proximity matrix which was submitted to MDSanal-

ysis. The optimum solution employed three dimensions. The first dimension was

interpreted as "familiarity," the second as "speaker affect," and the third as "prosodic

pattern." The MDSmaps suggest that listeners were using English as a standard of

comparison to the acoustic-phonetic properties of other languages.

Typically, in studies like these, foreign language samples have been provided by dif-

ferent speakers so that language and speaker characteristics could be confused. This

problem is addressed in [13]. Three experiments were conducted using the same

speaker for different pairs of languages. Listeners were able to discriminate between

two unknown languages, even when spoken by the same speaker, showing that listen-

ers can distinguish speaker characteristics from language characteristics. The exper-

iment also suggested that prosodies was the major determining factor.

It would seem then that humans can accurately identify languages known to them

using sometimes less than one second of speech. They can learn to identify unknown

languages and they use various strategies and cues that range over different classes of

information and different levels of organisation inherent in a spoken language signal.

 
 
 



The next section examines some attempts to build ALlsystems that mimic this human

ability in the most basic sense, using only simple acoustic features.

2.3 Unsupervised training with acoustic features

The simplest and earliest approaches to the ALl problem attempted to use the raw

speech signal or a simple transformation thereof to train language classifiers. These

systems were unsupervised in the sense that the features were not labelled to be used

in a two-stage process where the features are first identified and then presented to a

second stage where language identification takes place. Our VQLMsystem would fit

roughly into this category.

In what probably constitutes the first sustained ALl effort, Leonard and Doddington

[14,15,16,17] used spectrally-based features to build a dictionary of reference sounds

for each language. They assumed that a language can be characterised by chunks of

sound that occur more frequently in one language than in competing candidates. By

detecting these reference sounds in an utterance, the most likely language can be

found. They moved from single sounds to sequences of sounds and from automatic

to manual selection of reference sounds. The automatic selection was done using

various information-theoretic measures. The first three studies used read speech from

100 adult males over five languages, equally divided into training and test sets. The

languages, recording conditions and sampling frequency were not specified. Results

ranged from 60%to 100%for different language pairs with an overall recognition rate

of 64%on 60s of speech for the first study. The results were subsequently improved

to 88%in study 2 and 80%in study 3 (where reference sounds were manually selected).

They added two more languages in study 4, resulting in a total of 66 speakers in the

training set and 65 in the test set. This system achieved a 62%recognition rate. Using

a confidence measure to reject test utterances with a low confidence level, recognition
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Cimarusti and Ives [18] extracted frame-based features derived form Linear Predictive

Coding (LPC) analysis. These included autocorrelation coefficients, cepstral coeffi-

cients, filter coefficients, log area ratios and formant frequencies. The features were

used to find an optimal polynomial decision function used for classification. The

data consisted of three minutes of read speech (lOkHz sampling frequency) from five

adult male speakers of each of the following languages: American English, Czech,

Farsi, German, Korean, Mandarin, Russian and Vietnamese. Using randomly divided

training and test sets (size unknown), they achieved an overall recognition rate of 84%.

Foil [19] used formant vectors as features and vector quantisation (k-means clustering)

to find the 10 best formant vector clusters for each language. A vector quantisation

distortion measure was used for classification. 10 hours of data from three unspeci-

fied languages were recorded from radio (SNRof 5dB). The number of speakers were

not specified. Using 5s of speech for an identification decision, they managed a 39%

recognition rate. The addition of a confidence measure boosted accuracy to 64% at an

11%rejection rate.

Goodman et al. [20] extended Foil's work, making a number of improvements to all

aspects of the system and increasing performance by more than 50%on Foil's data set.

The system was also tested on three other data sets. The one set was a six language

database of noisy speech (SNR of 9dB). Further details concerning the data were not

available.

Savic et al. [21] used features derived from hidden Markov models (HMMs)and pitch

contours that they integrated with a voting scheme. Each language was modelled by a

five-state linear predictive HMM.It was found that the HMMstates roughly correspond

to articulatory states of the vocal tract. Preliminary results showed considerable inter-

language variation in the transition probabilities. The data used was ten minutes of

read speech in each of four languages: English, Hindi, Mandarin and Spanish. It was

 
 
 



recorded in a noise-free room, sampled at 10kHz and low-pass filtered at 4.5 kHz. The

number of speakers, train/test set division and classification results are unspecified.

Sugiyama [3,8] tested two approaches. In the first a vector quantisation codebook of

acoustic features was created for each language. The test utterance was then quantised

with each language codebook and accumulated quantisation distortion was calculated.

The utterance was classified as belonging to the language with minimum VQ distortion.

(This is similar to Foil and Goodman's work.) The second approach used a universal

codebook created from all the training data. Each language was characterised by an

occurrence probability histogram. The test utterance was quantised using the univer-

sal codebook and the Euclidean distance between its occurrence probability histogram

and the language specific histograms (previously calculated) were used for classifica-

tion. The data was taken from a multilingual corpus, ccnT SG-XII,distributed by

NNT, Japan and consisted of 16 sentences (8s duration) uttered twice by four male

and four female speakers in each of the following 20 languages: American English,

Arabic, Mandarin, Danish, Dutch, (British?) English, Finnish, French, German, Greek,

Hindi, Hungarian, Italian, Japanese, Norwegian, Polish, Portuguese, Russian, Spanish

and Swedish. There were a total of 76 male and 77 female speakers (some languages

did not have eight speakers). The first technique had a recognition rate of 65% on 64s

test utterances and the second, 80%.

Nakagawa et al. [22] used acoustic features and examined four different HMM ap-

proaches. The first method used VQ and was identical to that of Sugiyama. The two

HMM systems used discrete and continuous HMMs respectively. Each language was

modelled using a single ergodic HMM(with a varying number of states). The continu-

ous HMMused a single Gaussian mixture, while they experimented with different num-

bers of mixtures in the fourth, a Gaussian mixture model system. For the latter three

systems, the likelihood for each language was accumulated over all feature frames

and used for classification. The continuous HMM and GMMsystems were shown to

outperform the VQ and discrete HMM approaches. The data was generated by fif-
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teen native male speakers for each of four languages: English, Japanese, Mandarin

and Indonesian. There were 50 sentences per speaker with an average duration of 3

seconds, sampled at 12 kHz (SNRof 49.2dB). The training set consisted of about 300

utterances of 10 speakers in each language and the test set of about 100 utterances

from the remaining 5 speakers in each language. The classification performance for

the various techniques were 81.1% for the continuous HMMand GMMapproaches and

77.4% and 47.6% respectively for the VQ and discrete HMM systems. With enhance-

ments to the continuous HMM system, it reached 86.3%. The addition of five more

languages (French, German, Korean, Malay and Russian) reduced the recognition rate

of the original continuous HMMsystem to 48.0%.

Kwasny et al. [23] used raw speech data with a neural network classifier in a sim-

ple two-language, two-speaker experiment. The experiments were continued with a

recurrent neural network in [24, 25]. In the first study the data consisted of eight

read utterances (12.5 seconds each) generated by two bilingual speakers in French

and English (2 utterances per speaker, per language). The classifier achieved 100%

classification. The last study used four speakers (still on a English-French task). The

results are not really meaningful on such small samples.

More recently Zissman [26, 7] investigated the use of GMMsand HMMs similar to the

work of Riek [27] and Nakagawa. These experiments were done more recently, using

the OGLTS corpus. Experimental details are given in Sections 3.7.2 and 3.7.5. We also

used the OGLTS corpus in our experiments and describe it in Section 4.2.

Du Preez and Weber [28] reported good results using high-order HMMs (Le. HMMs

that have memory about previous states visited). Though still new, this seems to

be a promising approach to high-quality unsupervised systems. Experiments were

performed on free-format English and Hindi utterances from the OGLTS corpus. A

hundred minutes of each language were used for training. The system achieved 79.8%

and 97.4% recognition rate on 5s utterances (247 trials) and 45s utterances (39 trials)
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I Languages I Duration I Results I
Leonard, Doddington 7 66 train, 65 test 60s 62%

Cimarusti, Ives 8 40 male Unknown 84%
Foil 3 600 minutes total 5s 39%

Goodman et al. Unknown Unknown Unknown Unknown
Savic et al. 4 40 minutes total Unknown Unknown
Sugiyama 20 76 male, 77 female 64s 80%
Nakagawa 4 40 train, 20 test 3s 86%

Kwasny et al. 2 1 male, 1 female 12.5s 100%
Zissman 10 OGLTS 45s 53%

Du Preez, Weber 2 OGLTS 45s 97%

Table 2.1: Automatic language identification systems using acoustics features and an
unsupervised training approach.

The systems discussed here, summarised in Table 2.1, were mostly the result of earlier

studies and represent a wide variety of different approaches and experimental con-

ditions. The work of Sugiyama deserves, maybe, special attention. The results (80%

recognition rate) seem to be impressive given the large number of languages (20). The

other salient study is that of Du Preez and Weber. High-order HMMs might just man-

age to marry the necessary complexity demanded of ALl systems with the the low cost

associated with data-driven systems.

2.4 Phone recognition with language modelling

In search of better performance, researchers were relentlessly driven to increasing

complexity and more comprehensive modelling of language on higher levels of organ-

isation. This section gives an overview of systems that incorporate a priori knowledge

about the phonetic and phonotactic structure of spoken language.
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House and Neuberg [29] used phonetically transcribed text to show that languages

could be classified using broad phonetic categories (stop, fricative, vowel, silence).

They modelled a language as a Markov process emitting a stream of symbols belong-

ing to broad phonetic categories and assumed that the parameters of the models could

be estimated from enough training data. The data consisted of manually transcribed

phonetic texts for eight languages: American English, Chinese, Greek, Japanese, Ko-

rean, Russian, Swahili and Urdu. They achieved perfect discrimination.

Li and Edwards [30] extended the work of House and Neuberg to real speech data.

They investigated broad phonetic category segments as well as syllable-based Markov

models. The system handled five (unspecified) languages; two Asian and three Indo-

European. The data was all-male, read speech recorded under unspecified conditions

at an unspecified sample rate. The training set consisted of four minutes of speech

from ten speakers for each of the five languages. The testing set contained two min-

utes of speech per speaker. The highest recognition rate was 80%,obtained with the

syllable-based model.

D'Amore and Mah [31] and Schmitt [32] used N-gram analysis of text to do language

and topic identification and clustering. Albina et al. [33] extended this technique to

speech.

Tucker et al. [34] and Lamel and Gauvain [35] used monolingual phone recognis-

ers to label multilingual training corpora that could then be used to build language-

dependent phone recognisers for ALL

Muthusamy [4] examined broad phonetic features, amongst others, in his compre-

hensive Phd dissertation. Muthusamy et al. [36] compared acoustic features, broad-

category segmentation and fine phonetic classification using multiple monolingual

neural network phone recognisers. They found fine phonetic classification to outper-

form the other two approaches on a English-Japanese identification task. The data was

taken form the OGLTScorpus, with a training set of 85 utterances and a test set of
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30. The best results for acoustic features, broad-category and fine phonetic features

were respectively 70.0%, 83.2% and 86.3%.

In stead of using language-specific sets of phones for multiple monolingual phone

recognisers, Andersen and Dalsgaard [37, 38, 39,40] and Bedding et al. [41, 42, 43]

experimented with inter- and intra-language clustering of phones to produce a group

common to all classifiers (poly-phonemes) and sets of language-dependent phones

(mono-phonemes) for each classifier. Amongst others they aimed to optimise discrim-

inative, as opposed to representative, information content. Dalsgaard and Anderson

tested variants of their system on a three way classification task (American English,

German and Spanish) using the OGLTScorpus and achieved 88% and 83%respectively

in [38] and [39].

Hazen and Zue (OGLTS, 10 languages, 45s duration, 47.7% recognition rate) [44], Ziss-

man and Singer [45] and Tucker et al. [34] have also experimented with monolingual

front-end phone recognisers. This work was extended by Zissman and Singer [45]

and Yan and Barnard (OGLTS, 11 languages, 77.1% recognition rate on 10s and 90.8%

on 45s utterances) [46] to multiple monolingual front-ends where there need not be

as many front-ends as languages to be classified. They also introduced a high-level

language model optimisation scheme and in [47] duration modelling of phones were

found to be useful. The system was tested on six languages in the OGLTS corpus (En-

glish, German, Hindi, Japanese, Mandarin and Spanish) and achieved 81.1% and 92.0%

on 10s and 45s utterances respectively.

Hazen and Zue (OGLTS, 11 languages, 79.7% recognition rate) [48] as well as Lamel,

Gauvain et al. [49] experimented with a single, multilingual front-end. The latter group

used the IDEALtelephone speech corpus, containing four languages: British English,

Spanish, French and German, with about 19 hours of speech per language. Their best

recognition rate of 91% on 10s utterances was not significantly better than the 90% of

their system with multiple monolingual front-ends.

 
 
 



Chapter 2

I Languages I I Duration I Results I
House, Neuberg 8 Text-based Unknown 100%

Li, Edwards 5 50 speakers 120s 80%
Muthusamy 2 OGLTS 45s 86%

Andersen, Dalsgaard 3 OGLTS 45s 88%
Yan, Barnard 11 OGLTS 45s 91%
Hazen, Zue 11 OGLTS 45s 80%

Lamel, Gauvain 4 IDEALcorpus 10s 91%
Berkling, Barnard 2 OGLTS 45s 93%
Navratil, Zuhlke 9 OGLTS 45s 91%

Table 2.2: Automatic language identification systems using phone recognition fol-
lowed by language modelling.

Berkling [10] and Berkling and Barnard [50] investigated variable length, inaccurate

phone sequences (as opposed to fixed N-grams). A language is too complex to be

modelled (represented) with a single Markov or hidden Markov model, but one can

attempt to extract significant (discriminative) portions of the model. So, although

the model will not represent the language completely, the language will have a very

definite and possibly unique effect on the parameters of the model. Using the OGLTS

corpus they achieved 93% correct classification on the English-German language pair.

Parris et al. [51,52] experimented with much the same idea.

Navratil and Zuhlke [53] examined a way to improve phonotactic probability estima-

tions and looked at language models based on binary decision trees. Using 9 languages

from the OGLTS corpus, they achieved 77.4% and 90.6% on 10s and 45s utterances re-

spectively.

Kadambe and Hieronymus [54] used a "lexical access module" to spot language-specific

patterns in the phone sequences.

The research documented in this section (as summarised in Table 2.2) shows clearly

the seemingly unavoidable movement towards increased complexity. At the same
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time, some of the work (like that of Berlding) already show an awareness of this prob-

lem and attempt to move beyond it.

2.5 Prosody-based features

Prosody is concerned with the "music" as opposed to the "lyrics" of speech. Spoken

language have characteristic sound patterns that can be analysed in terms of duration,

pitch and stress. The efforts mentioned here have tried to use this information to

identify language.

Foil [19] and Savic et al. [21] examined the use of pitch contours. Muthusamy [4]

experimented with pitch, speech rate, syllabic timing and segmental duration. Hazen

and Zue [44, 48] used fundamental frequency (Fo) contours and segment duration

as part of their system. Using a Phone Recognition followed by Language Modelling

(PRLM)-type system they achieved 77.5%on a II-language task (OGLTScorpus) for 45s

utterances. A prosodic duration model only managed 44.4% on the same task and the

Fo-model 20.9%. An integrated system, using all the components had a recognition

rate of 79.1%.

Itahashi and Du [55] also investigated fundamental frequency.

Hutchins and Thyme-Gobbel [56] obtained good results using rhythmic and tonal char-

acteristics. They recognised four main language categories: stress-timed (for instance

English), syllable-timed (Spanish), mora-timed (Japanese) and tone languages (Man-

darin). Using data from the OGLTS corpus representing these four languages, they

investigated a set of 220 prosodic and derived features and showed that successful

features depend very much on the prosodic nature of the languages under consid-

eration [57]. The best results on different language pairs with different feature sets

ranged from 71% to 86%. This is substantially lower than results achieved with PRLM

approaches [7].
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Although perceptual experiments show that prosodic information plays an important

role when humans classify unknown languages [5, 11, 12, 13], it seems to be difficult

to utilise this information in an effective way in automated systems. While in some

cases producing reasonable results on their own, prosodic features add very little

performance on top of phone-based systems.

2.6 Other approaches

Finally, there are a number of approaches that are unique or otherwise difficult to

classify. We present them in this section.

Ives [58] built an expert system using production rules operating on formant-based

features. 50 distinguishing features obtained from experts were converted to nu-

merical thresholds using patterns in the training data. Based on these thresholds, a

minimum set of nine production rules were designed and used for classification. His

database consisted of 50 hours of speech from 122 male speakers in eight languages:

American English, Czech, Farsi, German, Korean, Mandarin, Russian, Vietnamese. The

data was sampled at 10kHz and low-pass filtered at 5kHz. The experiments were per-

formed on a total of 720 five-second utterances and the system had a recognition rate

of 92%.

Li [59] imported ideas from speaker identification. Features from the test utterance

are compared to those in each language of the N closest matching speakers of that lan-

guage. The utterance is classified as belonging to the language of the closest matching

speaker.

Hieronymus and Kadambe [60], Schultz et al. [61] and Mendoza et al. [62] investi-

gated ALl using Large Vocabulary Continuous Speech Recognition (LVCSR)systems.

This approach requires a fully-fledged LVCSRsystem for each of the target languages.

The utterance is presented to each of the systems which returns a transcription and

 
 
 



a likelihood score. The one with the highest likelihood score represents the chosen

language. This approach is very resource hungry in terms of labelled data, word dic-

tionaries for all the languages and raw processing power for the continuous speech

recognition task. If the LVCSRsystems already exist, though, it can be a very powerful

solution. Hieronymus and Kadambe tested their system on a 5-language task (En-

glish, German, Spanish, Japanese and Mandarin) using the OGLTS corpus. The best

recognition rates were 93% for 10s utterances and 98% for 45s utterances. Mendoza

et aI. achieved respectively 97.3% and 98.3% on 10s and 45s utterances, also using the

OGLTS corpus in a three-way task (English, Japanese and Spanish). These results are

substantially better than those reported for 3- and 5-language tasks in Section 2.4.

Kwan and Hirose used a neural network [63] and recurrent neural network [64] with a

unigram histogram of phones as feature vector to flag and reject unknown languages

in a system where the input is not limited to a set of known alternatives.

Matrouf et aI. [65] presented a pragmatic hybrid approach to ALl.They incorporated an

N-most-frequently-used word recogniser into a standard phone-based language model

system. They exploit the principle that the most frequently used words in a language

account for a large proportion of all word occurrences; the 100 most frequently used

words in a language may easily constitute in the excess of 40 percent of all word

occurrences. The data was taken from the IDEALcorpus, containing British English,

French, German and Spanish. The best result was 92% for 5s spontaneous speech

utterances, incorporating the 500 most frequently used words for each language. The

recognition rate was slightly higher (96%)for read and elicited speech.

Yan and Barnard [66] examined the possibility of adapting existing ALl systems to new

languages by modifying the phonotactic language models, using only a limited amount

of training data. They trained a 9-language system with only 60% of the available data

and used a fully-trained 6-language system to adapt the system parameters. Adapting

the 9-language system in this way improved performance from 87.3% to 91.9% on 45s

 
 
 



I Languages I I Duration I Results I
Ives 8 122 speakers 5s 92%

flieronyrnus, Kadambe 5 OGLTS 45s 98%
Mendoza et al. 3 OGLTS 45s 98%
Matrouf et al. 4 IDEALcorpus 5s 96%
Yan, Barnard 9 OGLTS 45s 92%

Reynolds et al. [67] investigated the problem of clustering utterances according to

language and/or speaker characteristics when no information regarding the speaker

or language classes is available.

The results of the different studies documented in this section are summarised in

Table 2.3. The two most promising concepts are those of LVCSR-based systems in-

vestigated in three independent studies and the work of Yan and Barnard on adapting

existing systems with a small amount of data from additional languages. The next

section examines trends emerging from the work presented in the four previous sec-

tions.

Berkling [10] points out a number of trends in the structure of ALlover the last few

years. One of these is the move from low-level (spectral) features to high-level fea-

tures (fine-phonetic or even words) and then again to lower-level features (clustered

phones). This observation implies the distinction between acoustic features (low level)

and structural features (high level). The acoustics features are derived directly from

sampled speech waveforms and are infinitely variable. There is vague statistical struc-

ture in these features. On a next level (that of phones), the variability is much less -

 
 
 



the acoustic features are now vector quantised to a small set of possible symbols. The

much stronger statistical patterns observed on this level are captured by phonotactics.

On a next level (that of words) one finds that the statistical relationships become so

strong as to be deterministic in some cases. Most words in a language are unique to

that language and can therefore be used to identify the language conclusively. Yet, the

ability to recognise words, as opposed to phones, imply (much) more a priori infor-

mation to compensate for the brittle nature of such systems. That information must

reside in the system in one way or another and leads to increased complexity. Cur-

rently, much work focuses on reducing the complexity, while retaining the information

with the most discriminative power [10].

2.8 Summary

Although trends begin to emerge from ALl research, a significant number of possi-

ble approaches remains on the detail level of implementation. Obvious processing

blocks like hidden Markov models, Gaussian mixture models, neural networks and

N-gram language modelling subsystems are ubiquitous, but the way in which these

blocks are used in conjunction with a large number of signal pre-processing tech-

niques, make for diverse and very complex systems. The fact that many such systems

are only described on conceptual level in publications, makes duplication of experi-

ments difficult. Meaningful research therefore requires a sustained effort and solid

infrastructure. The most prominent, sustained efforts during the past few years have

been those of the OCI Centre for Spoken Language Understanding [9] and MIT Lincoln

Labs [7].

Since the basic problem is well-studied and solutions (at least in concept) abound, re-

search becomes more specialised and turns to more practical issues like task indepen-

dence [68], discrimination between similar languages, dialects and accents [69, 70, 71],

 
 
 



uniform performance over languages, system complexity as well as efficiency and ex-

tensibility. Our work is primarily concerned with system cost and complexity, finding

a simple, cost-effective approach to the problem that still yields acceptable perfor-

mance.
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Theory of automatic language

identification

In this chapter we give a detailed description of the theory behind AU systems. The

concepts that are covered are general enough to encompass nearly all the systems

mentioned in Sections 2.3 and 2.4 as well as the two systems that we have imple-

mented. We show how the individual components function and how they interact to

form an AU system. Apart from the fundamental linguistics theory, treated in Sec-

tion 3.2, there are three main components involved: feature extraction (Section 3.3),

token alignment or phone recognition (Section 3.5) and language or phonotactic mod-

elling (Section 3.6). In addition we discuss vector quantisation in Section 3.4 and

provide an overview of ALl architectures in Section 3.7. Section 3.8 concludes the

chapter with a summary.
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3.2 Spoken language

Language can be thought of as a set of conventions that a group of people use to

capture and communicate concepts. In a general sense language can be seen to exist

independent of speech, since it is entirely possible to communicate using symbols

unrelated to speech. Consider for instance Chinese and Japanese icons, Egyptian

pictograms, the ancient Peruvian knot language, Quipu (that used coloured threads

knotted together) or ASL(American Sign Language) used by deaf people. Of course,

on the other hand we know that language has evolved hand in hand with speech -

some words for instance being the result of sound imitation. In our context, language

refers to a fairly stable set of speech signals used for communication by a group of

people. Let A = {AI. A2, A3, ... ,AN} be the set of N languages under consideration.

Now consider a person (the information source) communicating by means of spoken

language. His vocal cords and speech channel serve as a transmitter by generating

variations in air pressure that are propagated outwards. We measure the variation

in pressure a short distance from his mouth and call this the speech signal s(t). It

is a continuous, analogue, stochastic signal, carrying vast amounts of information in

a complex, non-linear way. The signal passes through a channel, H(·), that may in

general distort it in a time-varying, non-linear way. This includes various types of

noise. Let the modified signal be x (t) = H(s (t), t). The auditory system of the person

listening, serves as receiver and the awareness of the person as destination. In all

spoken language processing applications, the receiver and destination are replaced

by a machine. For any language Ai, we can expect x(t) to be constrained in various

characteristic ways.
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of communication) and meaning (the goal of communication). We will throughout this

dissertation be concerned with the form, rather than the meaning (semantics) of an

utterance. Proceeding from this distinction, the form of a language can (linguistically)

be studied on two levels, those of grammar and phonology respectively. Grammar is

concerned with the structure of a language on the level of morphemes, (Le. words,

loosely speaking) representing concepts, and syntax, the rules that dictate the way in

which the words are strung together. Phonology studies phonemes or the basic sound

units of speech, phonotacties, the syntax of phonemes, and prosodies, the "music"

as opposed to the "lyrics" of speech.

We describe these terms in more detail below. The interested reader is referred to

[72, 73, 74, 75] for an introduction to linguistics.

Phonetics. Phonetics study speech sounds (phones) as physical entities on a sub-

language basis. The speech signal x(t), To ::s;t ::s;TN-l + dN-lI can be thought

of as a concatenation of N segments Vi(t) of duration di, i = O,I, ... N - 1

with (Ti-l + di-1) ::s;Ti ::s;t ::s;(Ti + di) ::s;Ti+l, Le. the segments are non-

overlapping and not necessarily touching. Each segment (phone) can be mapped

to a phoneme in the context of a certain language.

Phonology. Though the human speech system is potentially capable of an infinite

range of sounds, there exist in any language only a limited number of recur-

rent, fairly distinctive speech units. Such an inventory of speech units differ

widely from one language to another and phonology studies these units in the

context of a certain language, '\i. Let <Pi = {c/>i1, c/>i2'c/>i3,... ,c/>iNi} be the set

of Ni phonemes that occurs in language '\i. The number of phonemes, Ni' in a

language ranges form about 15 to 50, with a peak at 30.

Phonotacties. Not only does phoneme inventories differ from language to language,

but the frequency distributions of phonemes and combinations of phonemes are

also very distinctive. Some combinations that occur frequently in one language
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may be illegal in another. Phonotactics is concerned with the constraints that a

language places on the sequential occurrence of phonemes and can be used to

recapture some of the dynamical nature of speech lost during feature extraction.

It is also the principle way in which machines distinguish one language from

another. We will mostly be concerned with phonotactics in a statistical sense,

i.e. probabilities of the form P (4)ijt I4>ijt-l , 4>ijt-2' ..• ,4>ijt-T+1) for some language

Ai·

Prosodies. Languages have characteristic sound patterns that can be analysed in terms

of duration, pitch and stress. The study of these patterns is called prosodics.

Prosodic features are sometimes referred to as suprasegmental, because they are

not confined to phonetic segments. Changes in pitch, or the melody of an utter-

ance, is referred to as intonation. Used in English to communicate emotion, as

well as semantic and pragmatic information, it distinguishes between otherwise

identical words in tone languages like Mandarin or Xhosa. In stress languages,

like English, one syllable in most words has a heavy stress or "accent" that sets

it off from the other syllables.

Morphology. Morphology studies the way in which words are built up from the small-

est meaningful parts in a language. If a system is capable of recognising words,

the words can be checked against a language-specific dictionary and used to iden-

tify a language conclusively. Such an approach is paid for by loss of robustness

and flexibility.

Syntax. The ways in which words can be legally strung together is studied under

the label syntax, and constitute distinctive information that is utilised by Large

Vocabulary Continuous Speech Recognition (LVCSR)systems.

A few words about the potentially confusing terms phonology, phonetics, phoneme

and phone are in order. Phonetics is concerned with the study of speech sounds with-

out reference to any particular language. Rather, speech sounds are analysed with re-
.
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spect to their articulation (articulatory phonetics), transmission (acoustic phonetics)

and perception (auditory phonetics). These sound units, called phones, are physical

entities classified strictly according to their acoustic properties and can therefore be

described without knowing which language they belong to. Phonetics is general and

descriptive. Phonology, on the other hand, is particular and functional. It studies

the exploitation of sounds in a specific language. From a phonological point of view

sound units are called phonemes. Phonemes are abstractions that only have meaning

in the context of a particular language. Two phonetically different phones in the same

environment that distinguishes between different words, are recognised as different

phonemes. The phones [r] and [I] are phonemes in English because they distinguish

between words pairs like lamb - ram, light - right and lobe - robe. These are called

minimal pairs, since they differ only enough to be recognised as distinct words and

show that [r] and [I]are in contrast. The two phones are represented by the phonemes

Irl and III respectively. In many languages, however, [r] and [I] either do not both

occur, or do not distinguish between minimal pairs. In Chinese and Japanese for in-

stance, the difference between [r] and [I]is not phonemic. Speakers of these languages

find it extremely difficult to distinguish between [r] and [I];they simply perceive it as

the same sound and generate it interchangeably. Similarly, the English III in leaf and

field are actually phonetically two different sounds, called "clear" and "dark" respec-

tively. They are recognised as different phonemes in Russian amongst others, though

they sound very much alike to English speakers. Such phonetically different sounds,

that are recognised as one phoneme in a language are called allophones.

We have presented a brief introduction to relevant linguistic terms and concepts. The

pattern recognition approach to spoken language processing tends to trivialise the

value of detailed psychological, physiological and linguistic understanding of speech.
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Though this is changing, a common engineering approach seems to be that the dis-

tinction between phones and phonemes, for instance, are not of much importance in

real-life systems. However, to us it would seem that the evolution of ALl systems show

that these differences are in fact important. It should for instance be clear from the

example in the previous section that an English phoneme recogniser should distin-

guish between [r] and [1],while a Japanese system should not. Speech perception is

an extremely complex subject, much of which is still not understood. Unfortunately

it has received little attention in a ALl context [38, 7]. In the next section we scratch

the surface of this fascinating world.

(Please note that mathematical symbols do not in general retain their meaning over

section boundaries.)

3.3 Auditory perception and feature extraction

Perceived speech is a function of the speech signal and transmission channel as well as

the human auditory system. From a spoken language point of view, human speech per-

ception is studied under the label of auditory phonetics, a daunting mix of physics and

physiology. From an engineering point of view we want to process the speech signal

in a way that allows us to extract the relevant information concisely. The mel-scaled

cepstrum is a popular feature extraction scheme that incorporates some perceptual

modelling while maintaining efficiency.

The pre-processing and feature extraction stages of a pattern recognition system serve

as an interface between the real world and a classifier operating on an idealised model

of reality. Information that is discarded at this stage is forever lost; conversely, noise

that is accepted will degrade the performance of the classifier that tends to be sensitive

to complexity in the data. The signals that spoken language systems have to deal with

are unique in the sense that they are generated by a biological system, for a biological
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system. Human speech is adapted to, and uniquely constrained by the vocal and

auditory systems; the result shows a distinct lack of engineering common sense. As a

matter of fact, psychophysical studies over the last number of decades tend to leave

us with the uncomfortable feeling that the world perceived through our senses is

rather different from the one that we measure with our instruments. We will now

consider some revealing aspects of human auditory perception and then examine the

mel-scaled cepstrum algorithm in order to draw some conclusions.

A pure tone is uniquely defined by its intensity and frequency. The perceptual counter-

parts of these quantities are termed loudness and pitch respectively. Mostly we agree

that pure tones can be ordered in such a way that one tone is "higher" or "lower" than

another. Pitch is the criterion that we use to make such decisions. Like loudness, it is

a complex, non-linear function of both frequency and intensity. Frequency does how-

ever remain the dominant factor in pitch perception; Stevens, Volkmann and Newman

defined the mel scale, which relates pitch to frequency as depicted in Figure 3.1 [76].

It was later refined by Stevens and Volkmann in a classical paper [77]. The form of

the curve was determined by perceptual experiments designed to find a linear rela-

tion among perceived pitches. A pitch of 2000 mels is therefore subjectively "twice as

high" as a pitch of 1000 mels. (The unit "mel", incidentally, is derived from the word

"melody".) The numeric range of the mel scale and its relation to sound intensity was

fixed by defining a 40dB tone with a frequency of 1000Hz as having a pitch of 1000

mels. We fitted a curve on Stevens' and Volkmann's original data to obtain equations

3.1 and 3.2 where f denotes frequency in Hertz and v, pitch in mels.

v(f) = 4491.7 - 30.360
(l + exp(7.1702 - 1.9824IogIQ(f))
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Loudness is a psychological term used to describe the magnitude of an auditory sen-

sation. Though mainly determined by the intensity of the perceived speech signal,

it is also a function of frequency, as well as a number of psychological factors like

fatigue, attention and alertness. Fletcher and Munson investigated and defined loud-

ness [78]. They extended their work in [79], where they also addressed masking, an

interesting auditory phenomenon: the threshold at which a tone can be perceived is

raised when heard in the presence of another tone (or band of noise). In addition the

effect of a sound on the auditory system persists for milliseconds. This latter effect

is called forward masking. The perception of sound is therefore context sensitive in

the frequency domain (masking) as well as the time domain (forward masking) on a

very low level.
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components within a certain narrow band centred at the frequency of the tone [80].

Differential pitch sensitivity, the smallest detectable change in frequency, is closely

linked to these bands [81]. As a matter of fact, a number of perceptual phenomena

seem to indicate that there exist what came to be called critical bands [82, 83, 84,

85]. The bandwidth of critical bands increase with frequency as shown in Figure 3.2.

Equations 3.3 and 3.4 describe typical critical band cutoff frequencies.

freqCrit!Ow(j)= 1.3056jo.95987 - 64.193

freqCrithigh(j) = 0.70616j1,0497 + 81.288

The bark scale, another pitch scale that corresponds closely in form to the mel scale,

is defined in terms of critical bands [86, 87]. The knowledge presented here can serve

as a useful guide when developing a spoken language system.
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Engineers were lured into the world of auditory perception mainly through attempts

to optimise telephone systems. A classic study on the intelligibility of speech can be

found in [88]. As the performance of digital computers exploded, it opened the world

to speech recognition experiments. Following Bridle and Brown [89], Mermelstein [90]

investigated the ability of the mel-scaled cepstrum, a non-linear, spectrally-base fea-

ture set, to distinguish between similar sounding consonants. In a later publication

Davies and Mermelstein [91] found the mel-scaled cepstrum to be significantly supe-

rior to four other feature extraction front-ends in a syllable-oriented, speaker depen-

dent, continuous speech recognition task. A recent study compared the mel-scaled

cepstrum to two feature extraction front-ends based on auditory models in a speaker

dependent word recognition task [92]. It was shown that the more complex front-ends

provided little improvement in performance (a difference of 0.6 to 4 percentage points

in error rate) to compensate for increased complexity and processing time (t real time

as opposed to respectively, 40 and 120 times real time). In addition it was shown that

the mel-scaled cepstrum approach significantly outperforms a traditional LPC-based

front-end. These results were extended to a (male) speaker independent, continuous

task [93]. The mel-scale cepstrum does therefore seem to be a good choice.

We now present an algorithm to calculate the mel-scaled cepstrum. This algorithm

has been reconstructed from [93,94,90,92] and our own experience.
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The speech signal is pre-emphasised to compensate for spectral tilt (Le. Sf (w) =

S(w).wa). This is a high-pass filtering operation and can be executed in either the

time or frequency domain. The filter in the time-domain is of the form

Xi
Xi +- I I' i = 0, ... ,N - 1maxj=O,....N-I Xj

The filtered, normalised signal is broken into M overlapping frames and stored in an

M x W matrix Y with its rows Yi representing the frames. V is the step size and W

the frame size. Frame size usually range from 10ms to 20ms and step size between

20 and 50 percent of frame size.
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Each frame is multiplied with a window function to minimise signal discontinuities in

the time domain and the resulting spectral artifacts.

Wj = 0.54 - 0.46COS( ~~jl)' j = 0, ... , W - 1

The power spectrum of each window is calculated and represented by the the M x U

matrix S. W (and U = W /2) will be constrained by the FFT algorithm in a practical

implementation. We used a prime factor FFTwhich gives more freedom in the choice

of W than standard radix-2 algorithms. Still, W needs to be one of a limited set of

integers that will in general not be the same as the number determined by the choice

of frame size. To work around this, Yi can be zero-padded or the frame size can be

adjusted to coincide with a valid number.

Sij = 1 S~j 1
2
, j = 0,... , U - 1, i = 0,... ,M - 1

The mel filter bank consists of overlapping triangular filters with the cutoff frequen-

cies determined by the centre frequencies of the two adjacent filters. The filters have
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linearly spaced centre frequencies and fixed bandwidth on the mel scale, modelling

the differential pitch sensitivity of the ear. This arrangement (depicted in Figure 3.3)

results in a logarithmic spacing on the frequency scale with bandwidths rougWy cor-

responding to the critical bandwidth curve. If one takes Irnin as 20Hz (0 mels) and

Imax as half the sampling rate, then the mel filter bank is defined by equations 3.13

to 3.15 and represented by the K x U matrix F. Ie is the centre frequency of a filter.

The low and high cutoff frequencies, Il and Ih' are the centre frequencies of the two

adjacent filters. The number of filters, K, is usually between 13 and 24. Care must be

taken that it is not too large, since crowding the filters will result in poor frequency

resolution at low frequencies. Let

W-l
)1= ,

Imax - Irnin
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Il = Y(ll - lmin),

Ie = y(/e - lmin)and

Ir = Y(lh - lmin),

1 .
fe-fl (~+ lmin - Il) if fIll s; j s; LIeJ

lij = 1 + fc~fh (~+ lmin - Ie) if fIe 1 s; j s; LIrJ

o otherwise.

An approximation to the mel scale, frequently used in other implementations of the

filter bank, is to have a number of linearly spaced filters with equal bandwidth un-

der 1000Hz and then logarithmically spaced filters above 1000Hz where the centre

frequency of each filter is 1.1 times the preceding centre frequency [92, 93].

Now, one of the confusing aspects of the mel-scaled cepstrum is that the mel filter

bank is not really a filter. In stead of just weighting each point of the spectrum with

the filter weights, one calculates a type of inner product and find what is probably best

described as an energy coefficient for each filter. To compensate for the increasing

bandwidths of the filters, the energies are normalised as per equation 3.17. This part

of the processing is completed by taking the logarithm of each energy coefficient. It

is a crude attempt to model the non-linear intensity-loudness relationship which is

logarithmic in nature. These operations, implemented by equation 3.16, result in the

M x K matrix P.

(
1 U-l ) j = 0, ... ,K - 1

Pij = lOglO A. I Sikljk ,
J k=O i = 0, ... ,M-
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U-l

Aj = I !jk.
k=Q

The inverse cosine transform is used to orthogonalise the filter energy vectors. It

has been suggested to be an efficient approximation to the optimal Karhunen-Loeve

transform [95, 96, 97]. Because of this orthogonalisation step, the information of the

filter energy vector is compacted into the first number of components and we can

shorten the vector to L components, resulting in the M x L matrix Q.

1K-l ( TTi)
qij = K I Pik cos (k - 0.5)T '

k=Q

It has been found that including the first and second derivatives of the log energy

vector significantly improves the performance of mel-scaled cepstrum-based systems

[93, 92]. These are referred to as the delta and delta-delta cepstra. Since we are

dealing with discrete data, it is advisable to calculate the derivatives on a smoothed

approximation. This issue is considered in detail in [98]. The first mel-scaled cepstral

coefficient represents the mean energy in each frame and is usually dropped. The

delta-cepstrum and occasionally the delta-delta cepstrum is concatenated to the mel-

scaled cepstrum to form one long vector. This then constitutes a mel-scaled cepstrum

feature vector.
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From an engineering point of view, the mel-scaled cepstrum is an efficient algorithm

because it is performed mainly in the frequency domain and can therefore use the FFT.

The inverse cosine transform is an efficient dimension reduction technique. From a

perceptual point of view, the mel-scaled cepstrum takes into account the non-linear

nature of pitch perception (the mel scale) as well as loudness perception (the log

operation). It also models critical bandwidth as far as differential pitch sensitivity is

concerned (the mel scale). The derivatives serve to incorporate dynamic information.

However, the mel-scaled cepstrum does not model (static) masking. It does not model

forward (dynamic) masking and there is no feedback between higher level processing

(the classifier stage) and feature extraction.

The feature extraction process models human audition up to the point where we be-

come aware of speech. The next section describes one way of casting the infinite range

of speech sounds into a manageable set of recognisable symbols. At this point we are

probably starting to diverge very far from anything going on in the human brain.

3.4 Vector quantisation

Vector quantisation (VQ) is the process of breaking up (infinite, continuous) vector

space into a finite set of chunks or quanta. We can then assign a symbol to each

quantum and represent a trajectory through vector space with a sequence of symbols.

In our system vector quantisation is performed with the aid of the Self-Creating and

Organising Neural Network (SCONN)algorithm [99]. It is essentially a top-down clus-

tering algorithm. The top-down, as opposed to bottom-up, approach makes it remark-

ably efficient.
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3.4.1 The SCONNalgorithm

SCONNfinds clusters in feature space and the centroids of these clusters constitute the

VQ codebook. The codebook, in turn, is used to translate a set of vectors in feature

space into a set of symbols. The algorithm below is adapted from Choi and Park's

paper [99]. It has been shown to outperform two well-known algorithms - Kohonen's

Self Organising Feature Map (SOFM)[100], and the Linde-Buzo-Gray (LBG)algorithm

[101].

The algorithm starts off with a single node in the vector space of the dataset that it

attempts to model. This "mother" node has an activation region that stretches across

the whole input space. Activation value represents the range of the activation region

of a node. A node is activated by an input vector when the Euclidean distance to

the vector is within this range. The activation region is shrunk with each iteration

and new nodes (with activation regions equal in range to the current range of other

nodes) are added as they become needed to model data points in vector space that

fall outside the shrinking regions of other nodes. In addition, nodes slowly migrate

in the direction of high concentrations of data points that fall within their activation

regions. Weights (Wj) are simply the vector representations of nodes. The result of

the learning algorithm is therefore a codebook of vectors (and ranges) that model the

input data. The input data is vector quantised by assigning the closest vector from

the codebook to each data point. In this way the input data that consists of a series

of vectors is reduced to a series of symbols or tokens.

Let Q be the M x L feature matrix, containing M feature vectors of size L, Le. M points

in L-dimensional feature space. Use i to iterate over the feature vectors (qi) and j to

iterate over the nodes (Wj). Let t denote the absolute iteration count.

1. Initialise weights. Let i = 0 and t = O. Start with one (N = 1) node, Wo, and give

it a random weight in the neighbourhood of the Euclidean centre of the cluster
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off all the feature vectors in Q. Set activation level p(O) big enough to cover all

data points.

L-I

dJ = I (qik - Wjk(t»2, j = 0,1, ... ,N - 1
k=O

jwin = arg '_ mill [dJ]
)-O,I, .."N-I

S. Decide whether winner node is active. If winner node is active, Le. djwin < p(t),

then go to step 6, else go to step 7.

where lX is a factor that regulates the tempo at which nodes migrate in feature

space. Go to step 8.

7. Create a son node from the inactive winner (mother) node. Increase N by 1 and

assign the following weight to the son node:
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where a, b and c are problem specific constants determined empirically. Halt if

stop criterion is met, else increase t by 1, increase i by 1 and go to step 2.

We use the size of the vector quantisation code book, Le. the maximum number of

nodes allowed, as a stop criterion. Once a codebook is generated in this manner, the

series of vectors qi can be coded as a series of M tokens, Ti, that each represent the

node closest to the particular feature vector in feature space.

We have presented a vector quantisation algorithm that allows us to translate a fea-

ture stream into a token stream. Features are extracted from relatively short (~ 10

to 30ms), fixed-length speech frames; tokens consequently represent sub-phonetic

units. In the unsupervised approach we attempt to directly utilise the statistical prop-

erties of streams of these tokens to identify a language. Sophisticated approaches,

however, exploit the higher information content of phones - larger, variable-length

speech segments. In the next section we take a look at this approach.
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3.5 Phone recognition and hidden Markov models

Phone recognition, or token alignment, is the process of classifying the feature stream

into a time-aligned sequence of tokens. Tokens, in this context, represent phones. This

process, being continuous speech recognition in essence, is the problem at the heart

of spoken language processing. Fortunately, ALl is less demanding of this process

than most other spoken language applications. Since only the statistics of the tokens

are of importance, rather than the exact transcription, it is robust with regard to the

recognition process. On the other hand, every mistake contributes towards inaccuracy

in the statistics which will affect system performance.

3.5.1 Phonetic segmentation followed by classification

One way to approach the problem is to pre-segment the feature stream into chunks

corresponding to phones, and then proceed to classify those chunks using a classifier

like hidden Markov models. Typically the segmentation is done by finding some form

of derivative of the feature steam over time and defining phone boundaries at local

peaks in the derivative. Unfortunately, it seems to be quite difficult to mimic the

auditory system's ability to break a continuous sound stream into chunks without

feedback from higher levels of modelling.

3.5.2 Integrated phonetic segmentation and classification

The more sophisticated approach, which has by now become standard, is to adjust

the hypothesised phone boundaries with a search algorithm. The phone sequence is

reclassified and the probability of the sequence re-estimated. The phone boundaries

are adjusted to maximise this probability.

We have briefly sketched two approaches to phone recognition. Both the methods
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(can, and mostly do) use hidden Markov models (HMMs)to model individual phones

in terms of sub-phonetic feature sequences. We will now proceed to introduce the

theory of hidden Markov models. The implementation of HMMs,various architectural

issues and specifically the application to spoken language processing opens up a large

number of issues that are topics of research on their own. We will not enter into these

issues here. The most salient point maybe, is continuous versus discrete HMMs. We

experimented with both, but since it does not provide significant additional insight,

we will refrain from developing the theory of continuous HMMs. For more information

please see [102, 103, 104, lOS, 106, 28, 107]. The following is adapted from [108].

Th~ Hidden Markov model is an extension of the idea of discrete-time Markov pro-

cesses. Like a finite state machine, an HMM can be in any of a number of discrete

states at a given time. Let the states for an N -state HMM be taken from the set

Q = {l,2, ...,N}. Let qt denote the active state at time t.

The HMMchanges state at each time step. The next state is a probabilistic function of

the current state and the N x N state transition matrix A,

That is, aij is the probability of moving form state i to state j at any given time.

In addition to A, the vector IT defines the initial state distribution that determines in

which state the HMM starts up. Accordingly
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The state of the system is not directly observable, in stead, at time t the active state

emits an observation, 0t, that is one of M possible symbols taken from the set V =

{VI, V2, ... ,VM}. The emitted symbol is a probabilistic function of the current state

and the observation symbol probability distribution matrix B,where

j = 1,2, ,N

k = 1,2, ,M.

That is, bj(k) is the probability of emitting symbol k in state j.

Given N, M, and V, an HMMis uniquely defined by the three sets of probabilities A, B

and TT. The parameter set, "",for a model is denoted as

Having defined the HMMin the previous section, we now turn to the three major

problems that come to mind when implementing a system that utilises HMMs.

Given an observation sequence 0 = 01,02, ... , 0T and a model,," = (A,B,TT), find P (0 IA.)

Le. the probability of the observation sequence given the model. This information is

needed in order to classify an observation sequence.
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Find the most likely state sequence q = q1. qz, ... , qT, given the model ,\ and an ob-

servation sequence 0 = 01. OZ, •.. , 0T. In a speech application this typically allows

segmentation of an utterance.

A brute force approach is to enumerate every possible state sequence of length T.

Consider one of NT such possible fixed state sequences

where ql is the initial state. The probability of the observation sequence 0 given the

state sequence in 3.29 is

T

P(o!q,'\) = nP(Otlqt,,\),
t=l
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Given the model A,the probability of the observation sequence 0 is obtained by sum-

ming the joint probability given in 3.33 over all possible state sequences q,

P(oIA) = I P(olq, A)P(qIA)
allq

= I 1Tq1 • bq1 (01) . aq1q2 • bq2 (02) ... aqT-lqT • bqT (OT).
allq

The above is not computationally feasible and we must resort to a more efficient

approach. One such a procedure is the forward backward algorithm.

The forward variables express the probability of the p·artial observation sequence,

010 02, ... , 0t and state i at time t, given the model A. Their values are computed by

iteratively solving for ocdi). The procedure is as follows:
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[
N ] j = 1,2, ... ,N

(Xt+l (j) = ~ (Xt(i) . aij . bj(Ot+d,
t=l t = 1,2, ... , T - 1

N

P(ol.\) = I (XT(i)
i=l

This provides us with P(ol.\) in a much more efficient manner. The backward proce-

dure is used in conjunction with the forward procedure to solve further problems.

The backward variables express the probability of the partial observation sequence

from t + 1 to the end of the sequence, given the state i at time t and the model .\.

These probabilities are calculated by solving for f3t(i) iteratively, according to the

following strategy:
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N i = 1,2, ... ,N
13dO = L aij . bj(ot+d . 13t+l(j),

j=l t = T - 1,T - 2, ... ,1

Because there are various different ways to define an 'optimal' state sequence asso-

ciated with any given observation sequence, no unique solution exists for Problem 2.

One possible optimality criterion is to choose the states qt that are individually most

likely at time t. This criterion maximises the expected number of correct individual

states. To implement this solution, an a posteriori probability variable is defined as

follows:

where Yt (i) indicates the probability of being in state i at time t, given the observation

sequence ° and the model A..The value of Yt(i) can be expressed as:

Yt(i) = P(qt = ilo, A.)

P(o, qt = ilA.)
= P(olA.)

P(o, qt = ilA.)
= N ".L.i=lP(O,qt = riA.)

However, P(o, qt = ilA.) is equal to cxdi)13t(i) and therefore Yt(i) can be expressed in

terms of the forward and backward variables as:

" cxdO . 13t(i)
Yt(r) = ",N (") 13 (")'L.i=l CXt r . t r

where CXt(i) represents the partial observation sequence 01, 02, ... ,Ot at time t while

13t(i) accounts for the rest of the observation sequence i.e. Ot+1J 0t+2, ... ,OT, given
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qi = arg min [Yt(i)], t = 1,2, ... , T.
l:5i:5N

The Viterbi algorithm is a formal technique based on dynamic programming methods

and it is often used to find the single best state sequence.

In order to find the best state sequence, q = q1, q2, ... , qT, for the given observation

sequence 0 = 01,02,"" 0T, define the quantity

where Dt(i) is the highest probability along a single path, at time t, that accounts for

the first t observations and ends in state i. Byinduction the value of Dt+1 (j) is

Dt+1 (j) = m~[Dt(i) . aij] . bj(Ot+1).
t

D1(i) = TTi • bi(Ol),

lJJl (i) = 0,
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P* = max [8T(i)]
ls;is;N

qj. = arg max [8T(i)]
ls;is;N

The last, and most difficult problem, is the estimation of a set of model parameters

that satisfies a certain optimisation criterion. One solution is the Baum-Welch or ex-

pectation maximisation (EM)method.
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'l: (" ") _ P(qt = i, qt+l = j, oli\)
st t, J - P(oli\) ,

The probability of being in state i at t given the observation sequence °and the model,

i\ was defined in equation 3.42 as

N

Yt(i) = I ~t(i,j).
j=l

T-l
I Yt(i) = expected number of transitions from state iino, (3.59)
t=l

T-l
I ~t (i, j) = expected number of transitions from state i to state j in o. (3.60)
t=l

 
 
 



Theory of automatic language identification

",T-l'J: (" ")
- L.t=l ~t t, Ja .. ------IJ - ",T-l (.) I

L.t=l Yt t

If ,\ = ,\ then quit (having achieved convergence), else set ,\ to be ,\ and repeat proce-

dure.

We have presented an introduction to hidden Markov model theory in terms of the

three basic problems that one encounters during application of HMMs. These tech-

niques provide us with a powerful way to model dynamic stochastic systems and have

with much success been applied to the problem of extracting speech sounds from a

speech stream. The last remaining ALlcomponent is a framework that will allow us to

model the characteristic probability constraints imposed on token sequences by the

source language. The next section considers a solution to this problem.
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3.6 Languagemodelling

With language modelling we aim to capture and recognise the language-specific con-

straints inherent in a sequence of symbols generated by a certain language. We present

N-gram modelling in the next section and subsequently introduce an adapted approach

that focuses on discrimination between, as opposed to representation of different lan-

guages.

3.6.1 N-gram modelling

Consider a sequence of symbols q = qll q2, ... ,qT (representing an utterance) gener-

ated by language Ai, where qt is drawn from the set of tokens 'I'i = {I./h, 1.fJ2,··· ,I.fJM},

associated with Ai. The exact nature of these tokens are not of immediate importance;

it might be phones, phonemes, sub-phonetic units or even words. On all of these lev-

els, the probabilities associated with a sequence of observed tokens are determined

by the source language. A sequence of two tokens is known as a bigram, three tokens,

a trigram and in general a sequence of N tokens is called an N-gram.

In trying to assign a specific language Ai to an utterance represented by the symbol

sequence q, we are interested in

P(qIAi) = P(qlIAi)' P(q2Iql, Ad ..... P(qTlqlq2 ... qT-lI Ai)
T

= np(qtlqlq2 ... qt-lIAi).
t=l

(3.64)

(3.65)

For a sequence longer than two or three symbols, the estimation of this probability

qUickly becomes a practical impossibility and we have to resort to an approximation.
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T

P(qIAi) = nP(qtlqt-N+lqt-N+2 ... qt-l, Ad.
t=l

Even this estimation becomes infeasible for Nmore than two or three. Fortunately, the

statistics associated with a sequence of only two phones are already quite distinctive.

Still, there are difficulties associated with these estimations and we suggest a slightly

different approach in the next section.

In the previous section we presented a simple probabilistic framework for N-gram

modelling of a language. This was a representational approach, since we attempted to

estimate accurate probabilities that describe the way in which a sequence of tokens

generated by a language is constrained by that language. However, for a token set 'Yi

of size M, there are MN possible N-grams. This number can easily grow very large and

one is consequently faced with the practical problems of estimating extremely small

probabilities, requiring huge amounts of data. Since we are trying to discriminate

among languages, an alternative approach is to focus on the discriminatory properties

of a much smaller set of N-grams. In this way one can capture the information relevant

to ALl in a more efficient manner.

Consider the N-gram qt-N+l ... qt-lqt. Let C( ·IAi) denote the number of times that an

N-gram occurs in Hi = {qil, qi2, ... ,qiKi}' the set of training sequences that represent

Ai, where Ki is the number of training sequences for that language. In addition, let C ( . )
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denote the number of times that an N-gram occurs in the union of all such training

sets, HA = Uf=l Hi, where S is the number of languages. Now define D(·), an N-gram

distinctiveness measure, as follows:

For each language the model-building algorithm constructs a histogram of the N-grams

encountered in the training set HA. The histograms are sorted according to distinc-

tiveness as defined in 3.68, using absolute frequency of occurrence as a secondary sort

key. The absolute frequency is used to weed out N-grams that might have high infor-

mation content, but only occur rarely. The Ii most distinctive N-grams are kept for

each language. Ii is chosen in such a way as to balance the total number of expected

occurrences of the N-grams across all languages, Le.

A list of Ii N-grams generated in this manner is considered a language model. When

classifying an unknown utterance, a point is awarded to a competing language hy-

pothesis for every occurrence of an N-gram present in its model list. The hypothesis

with the highest score wins.

This approach has the disadvantage that a model is not uniquely defined for a lan-

guage, but in return it provides a model that is optimised for discrimination among

competing language models.
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We presented representational and discriminatory N-gram models. The algorithm

used to estimate the latter is adaptive in the sense that the most distinctive N-gram

model for a language depends on the other languages that are involved in the training

process. It provides a way to deal efficiently with that information which is important

for classification purposes.

Having described various ALl components, we present the main architectures based

on these methods in the next section.

From a number of reviews of ALlover the last couple of years a significant trend

concerning performance and complexity emerges [4, 36, 9, 7, 10]. The first attempts

followed a simple pattern recognition approach with little or no a priori informa-

tion. As large amounts of labelled speech data became available, systems increased

in complexity while trying to capture more and more a priori information in order

to boost performance. While state-of-the-art systems currently operate on about ten

languages, future systems will eventually have to handle hundreds of languages in an

increasingly global community. From such a point of view, the explosion in complexity

of current architectures becomes a potential problem. The following is an overview of

ALl architectures that use the components described in this chapter in various ways.

The architectures are presented in order of increasing complexity and performance.

We implemented those described in Sections 3.7.3 (vector quantisation followed by

language modelling) and 3.7.5 (parallel phone recognition followed by language mod-

elling).
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At the bottom end of the complexity scale are attempts to directly classify a raw speech

signal. This approach assumes that language-specific raw speech wave forms differ

in a trivial way on a very low level and/or that a sufficiently complex classifier, like

a neural network, can "discover" and adequately model higher level building blocks

through self-organisation. Though the former assumption does not seem to hold very

well, the latter has much merit. Unfortunately it seems that the problem is simply too

complex to allow this avenue of attack with current understanding and technology. An

example of this approach is the work of Kwasny etal. [23,24,25] who used raw speech

data with neural network and recurrent neural network classifiers. Unfortunately,

their data sets were much too small for the experiments to deliver any meaningful

results.

A bit more sophisticated is the Gaussian mixture model (GMM)approach [27, 22, 7].

GMMALl is motivated by the assumption that languages differ on the acoustic level

(say, in spectral content) and that these differences can be captured directly by appro-

priate features. The dynamic nature of the speech signal, contextual information and

higher order organisation are neglected. The speech signal is broken into overlapping

frames by moving a fixed-length analysis window over the signal in fixed increments.

The frames are represented as points in feature space by extracting acoustic features

for each frame. The assumption is that each language can be represented by a set

of N multivariate Gaussian distributions in feature space. During the training phase

of such a system, vector quantisation is used to find the initial clusters, which are

refined through an estimation-maximisation (EM)procedure. A test utterance is clas-

sified by finding that model which has produced it with maximum likelihood. The
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latest study of this type of system was done by Zissman [7], who achieved 50% and

53% for 5s and 45s utterances respectively on a 10-language task using the OGLTS

corpus. These results are significantly worse than those of more complex systems

reported in Chapter 2.

3.7.3 Vector quantisation followed by language modelling

The next level of complexity in ALl architectures arises from acknowledging the sym-

bolical (implying discrete units), contextual and hierarchical nature of speech, Le. the

fact that information resides in the way that higher level units are arranged with regard

to each other, rather than simply the presence or absence of certain sounds. If we are

to work with units of some kind, we require a discretisation process. As in the previ-

ous section, the speech stream is broken into frames which are represented as points

in feature space. Feature space is then discretised by means of vector quantisation.

This allows us to translate the continuous speech stream into (sub-phonetic) units,

by assigning an entry from the VQ codebook to each frame. Having represented an

utterance as a sequence of symbols, one can use N-gram analysis to create a language

model that characterises a language in terms of statistics describing the probabilities

of various combinations of units occurring in close proximity to each other.

This approach still assumes that unlabelled, fixed-length, sub-phonetic units are good

enough and attempts to model speech at a level below that which humans are con-

sciously aware of. In defence, one must say that it is about as far as one can go before

requiring human expertise in the form of hand-labelled speech. It therefore maintains

a very important advantage in being much cheaper than more complex systems that

require hand-labelled speech. In addition, it scales better than more complex systems.

Sugiyama [3, 8] has examined an approach loosely belonging to this class. He achieved

80% on a 20-language task (64s utterances) as described in Section 2.3. One of our sys-

tems also falls in this class; the experiments and results for this system are detailed
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The next architecture moves over the threshold that distinguishes supervised from

unsupervised systems.

3.7.4 Phone recognition followed by language modelling

Zissman describes a system embodying the next level of complexity as "Monolin-

gual Phone Recognition followed by language dependent N-gram Language Modelling"

(PRLM)[7]. The system uses hand-labelled speech data from one language to train a

single monolingual phone recogniser. The phone recogniser transcribes a test ut-

terance into a phone string, which is processed using a number of N-gram language

models - one for each language hypothesis. The language models produce proba-

bilities or system-specific scores which are classified with a neural network, linear

classifier, voting scheme or some equivalent technology. A variation on this system

uses a single multilingual front-end, trained on the data from a number of different

languages [48, 49]. All major research efforts have explored this class of systems

[41,42,43,37,38,39,40,7]. Zissman [7], achieved 54% and 72%with a PRLMsystem

for 5s and 45s utterances respectively, on a 10-language task using the OGLTS corpus.

3.7.5 Parallel phone recognition followed by language modelling

A variation on the previous architecture, "Parallel Monolingual Phone Recognition fol-

lowed by language dependent N-gram Language Modelling" (PPRLM),defines state-of-

the-art ALL It again goes one step further by introducing multiple language-specific

phone recognisers operating in parallel. For an N language task, the system shown in

Figure 3.4 consists of M language dependent phone recognisers, followed by an array

of Nx M language models. The language models each produce a likelihood score. The

likelihood scores are averaged over M models for each language and are classified as
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described in the previous section. The languages used for the phone recognisers need

not be the same as all, or even any of those recognised [45, 7,47,46]. In the same

study mentioned in the previous section, Zissman's PPRLMsystem achieved 63% and

79%on the 5s and 45s utterance tests [7].

We have also implemented such a system. Section 4.5 details the experiments and

results for this system.

Another variation on the previous two architectures is language dependent Parallel

Phone Recognition. Here, the language model for a specific language is incorporated

into the phone recogniser, improving its performance. One now essentially has a bank

of fully-fledged, phone-level continuous speech recognition systems in parallel. Each

recogniser produces a phone string hypothesis and a probability score. The language

with the highest score wins. Note that in this case one needs labelled speech for every
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language to be recognised (this not being the case for any of the previous systems).

Zissman [7] has implemented and tested such a system. It performed slightly worse

than the PPRLMsystem on a 3-language task.

3.7.7 Large vocabulary continuous speech recognition

At the top end of the complexity scale are Large Vocabulary Continuous Speech Recog-

nition (LVCSR)systems [60, 61, 62]. The rationale behind this approach is that, once it

is known what a person is saying, it becomes trivial to determine the language. LVCSR

systems use a number of fully-fledged continuous speech recognition systems in par-

allel - one for each language under consideration. Each system produces a word level

transcription hypothesis for a test utterance, together with a likelihood score. The

language of the system that produces the hypothesis with the highest likelihood is

taken to be the language of the test utterance. Hieronymus and Kadambe [60] tested

their system on a S-language task (English, German, Spanish, Japanese and Mandarin)

using the OGLTS corpus. The best recognition rates were 93% for 10s utterances and

98% for 4Ss utterances.

We have briefly discussed the various classes of ALl architectures that have evolved

during the history of ALl research and how they relate to each other in terms of com-

plexity and performance. We now provide a summary of this chapter.
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3.8 Summary

Spoken language. We presented a condensed introduction to relevant linguistic con-

cepts and expressed our opinion that linguistic knowledge is important in devel-

oping high-performance spoken language systems.

Auditory perception and feature extraction. We discussed the mel-scaled cepstrum

feature extraction algorithm in the context of significant human auditory phe-

nomena and found it to be a good engineering solution compared to other stan-

dard approaches. However, as processing power increases, we may find it re-

warding to move to more advanced auditory models.

Vector quantisation. This section introduced vector quantisation and presented the

details of the Self-Creating and Organising Neural Network algorithm used in one

of our systems.

Phone recognition and hidden Markov models. The structure and theoretical foun-

dations of HMMswere presented and we explained its use as a phone recogniser

in spoken language systems.

Language modelling. We formulated the N-gram modelling approach and introduced

an N-gram distinctiveness measure used in our systems.

All architectures. In conclusion we showed how the above building blocks can be

used to create AU systems.

In the next chapter we present our own ALl system implementations, experiments and

results.
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Experiments and results

In this chapter we describe our experimental framework, the experiments that were

performed and relevant results. As previously explained, we aim to explore the perfor-

mance-cost-complexity relationship between a fully-fledged, state-of-the-art AU sys-

tem and a much simpler data-driven alternative.

We used fine-phonetically labelled data from the OGIMulti-language Telephone Speech

corpus, provided by the Centre for Spoken Language Understanding of the Oregon

Graduate Institute [4, 6].
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The OGI Multi-language Telephone Speech corpus (designated OGLTS in literature)

contains telephone speech from 11 languages. The data was recorded over various

telephone channels and sampled at 8kHz. There are roughly two times as many male

as female speakers. The initial collection, collected by Yeshwant Muthusamy for his

Ph.D. dissertation research [4], included 900 calls - 90 in each of 10 languages: English,

Farsi, French, German, Japanese, Korean, Mandarin, Spanish, Tamil and Vietnamese.

It is from this initial set that Muthusamy established training (50 calls), development

(20) and test (20) sets for his work. The National Institute of Standards and Technology

(NIST)used the same sets in their annual evaluation of ALl systems [109]. Amongst

others, each speaker provides about 60 seconds of speech that consists of a mono-

logue on a subject of the speaker's choice. A tone was played at the 50s mark while

recording these monologues. The speech samples before and after the tone were la-

belled as story-bt and story-at respectively. We used the story-bt data. The speech

files are accompanied by time-aligned, fine-phonetic transcriptions for six of the lan-

guages: English (148 calls), German (100), Japanese (64), Mandarin (70), Spanish (102)

and Hindi (68). Since the Hindi data was added at a later time under slightly different

conditions, we only used data from the first five languages.

Table 4.1 provides statistics on the data that we used. The columns indicate the

various languages. The rows show the number of speakers (male, female and total),

as well as the amount of data measured in minutes, for the various data sets. Initially

we used Muthusamy's original training/development/test division, however, because

some of the utterances in the development sets had corrupted, incomplete or no label

files, this division was revised. Appendix A details the final data sets on a file-by-file

 
 
 



I Data set I Subset ~ TOT I
Train Male 30 22 27 30 32 141
Train Female 14 24 19 15 16 88
Train Total 44 46 46 45 48 229
Train Time (min.) 35 36 36 29 38 174

Develop Male 12 11 14 9 15 61
Develop Female 6 8 4 9 4 31
Develop Total 18 19 18 18 19 92
Develop Time (min.) 15 15 14 13 14 71

Test Male 15 15 11 13 10 64
Test Female 4 5 9 6 7 31
Test Total 19 20 20 19 17 95
Test Time (min.) 15 16 15 15 13 74
All Male 57 48 52 52 57 266
All Female 24 37 32 30 27 150
All Total 81 85 84 82 84 416
All Time (min.) 65 67 65 57 65 319

The OGLTSallowed for the first time direct comparison of independently developed

ALl systems. Using it allows us to reliably benchmark our own systems and com-

pare it with other published results. We continue in the next section to describe the

experimental framework in terms of the hardware and software that we used.
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4.3.1 Hardware and operating system platform

All the software was developed in, and for, a UNIXenvironment. Although develop-

ment and testing took place on a number of different platforms, it was mostly Linux

running on various Intel x86 machines. The final experiments were done on a number

of 350MHz Intel Pentium II' s with 128MB of RAM,running Linux.

Since the project documented in this dissertation coincided with the birth of our local

spoken language research group, there was no previous infrastructure on which to

build. Unaware of the large investment in software that this type of research requires,

we started developing our own software. This resulted in the SPoken Language Analy-

sis Toolkit (SPLAT),a set of software tools for manipulating speech and label files, as

well as applying various feature extraction schemes and performing discrete hidden

Markov modelling. In addition we used the Hidden Markov model Toolkit for Speech

Recognition (HMTSR)to experiment with continuous density hidden Markov models.

HMTSRwas developed by other group members, concurrently with our research.

The SPoken Language Analysis Toolkit was developed over a period of three years.

It consists of a number of processing blocks that were implemented in as general a

way as possible to allow experimental freedom. Writing the software was a learning

experience, so efficiency came second many times to ease, elegance and consistency

of implementation. Integrity always had highest priority. Where possible, results
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were tested against examples and common sense. Sometimes (as with the mel-scaled

cepstrum features) this was not really possible and we had to be content with some-

thing that 'looked right'. Much care has been taken to ensure robustness and to keep

the system modular and generic. Unfortunately, again, these qualities were traded

for reduced efficiency. SPLATonly implemented discrete hidden Markov modelling,

which is a sub-optimal solution for large spoken language systems. Though not a

very practical solution for building spoken language systems, it did serve us well as

a tool for initial exploration of the necessary concepts. The VQLMsystem was imple-

mented using SPLAT.Relevant experiments are documented in Section 4.6. Please see

Appendix C for a description of SPLATcomponents.

The Hidden Markov model Toolkit for Speech Recognition, developed by Darryl Pur-

nell and Christoph Nieuwoudt1, provides software components for training and test-

ing continuous hidden Markov models from speech data. We used it to build phone

models in the phone recognition front-ends. Our PPRLMsystem is designed around

this software. The experiments detailed in Section 4.5 were all performed using the

HMTSRsystem.

All the software that we used was developed locally, amounting to thousands of man

hours. Neither of our systems scale well with the amount of data used and is ineffi-

cient when faced with the large corpora that have become standard. It would appear

that speech processing systems are inherently complex and that such systems need a

1Pattern Recognition Group, Department of Electrical and Electronic Engineering, University of
Pretoria.
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very large initial development investment in order to produce potentially competitive

results. We have, however, gained much practical experience during the process.

The following section deals with our first experiments, exploring the feasibility of

automatic language identification.

4.4 Text-based test of language modelling back-end

We performed this experiment early ip our research in order to test a claim by House

and Neuberg [29] about the distinctiveness of phoneme N-grams in a language identi-

fication context. Having only access to text data at the time, we assumed that the dis-

tinctiveness of letter N-grams are roughly comparable to those of phoneme or phone

N-grams.

The system consists of a text pre-processor, a training module and a recognition mod-

ule. Raw ASCII text files were pre-processed by converting all upper case to lower case

letters and then filtering out everything in the file except the twenty-six lower case

letters and spaces; every file contains at most twenty-seven symbols. Some languages

contain symbols that are not part of the standard ASCII character set. These were ei-

ther converted to one of the twenty-seven symbols, or just omitted. This is not strictly

necessary (we have tested the system with the raw files and it still works well), but

serves to increase the signal to noise ratio in most cases. Where language specific char-

acters are concerned, it might seem that one is throwing away valuable information.

Unfortunately these symbols are in many cases associated with a specific character

set, making it useless when documents from many different sources are compared.

The letter filters can of course be adapted to allow a greater variety of symbols if one

 
 
 



Chapter 4

uses the system in a well-defined environment.

During the training stage a discriminative N-gram language model is constructed for

each training set as detailed in Section 3.6.2. When tested, the system is presented

with a previously unseen piece of text. The text is scanned for occurrences of the N-

grams representative of the different language models. In this way the system builds a

histogram for each language of the number of hits for the various N-grams as described

in Section 3.6.2. The test text is classified as belonging to the language model with the

highest score.

The system was tested on a text corpus of the following twelve languages: Afrikaans,

English, Sepedi, Xhosa, Zulu, Tswana, Swazi, German, Italian, French, Spanish and

Portuguese. The data for the training and test sets came from (different parts of) a

single text in the following cases: French, Italian, Portuguese, Sepedi and Xhosa. We

chose English as an example and measured classification performance as a function

of the training set size, the size of the representative model of the language and the

test set size.

4.4.3 Results and;interpretation

The system obtained 100 percent correct classification of all the test texts. In order

to measure differences in performance meaningfully while achieving perfect language

recognition, we used a relative performance measure. It is defined as the ratio of the

histogram score attained by the language model representing the correct language, to

that of the largest of the other models. Accordingly a value of "2" indicates that the

test instance was correctly classified with the output being twice as high as that of the

runner up. Similarly a figure smaller than one would represent a misclassification. In
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Figure 4.1 the performance of the system in terms of the relative performance measure

is shown for each of the test languages. The results were obtained by making four

test runs for each language and averaging the results. All of the individual test runs

also achieved 100 percent classification.

Figure 4.2 is a graph of the relative performance measure as a function of the number

of characters per language in the training set. The system is trained using texts of

equal length to prevent a priori bias of the language models. The performance de-

grades sharply for training sets exceeding 1400 characters on average for this specific

mix of languages. The result may appear counter-intuitive at first, as one might expect

the system to perform better when trained with more data. Since even 5000 characters

still fall within a single text for most of the languages, this behaviour may be ascribed

to over-fitting of the model to the idiosyncrasies of the specific training set at the
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cost of failing to capture the general characteristics of the language. Nevertheless, it

does seem to be a surprisingly small text sample when one keeps the complexity of a

whole language in mind. If one were to extend the training set over a (large) number

of different texts for each language, one would expect performance to increase again

with training set size.

Since the language models are normalised to equalise the a priori probabilities of the

languages, the models do not necessarily contain the same number of N-grams. The

size used in the graph is that of the smallest model. Figure 4.3 suggests that there

exists an optimum point for model size. Though the system seems to work best for

extremely small models, its operation is unstable and very sensitive to model size in

that region. This is an artifact of the relative performance measure that is used. Since

this value is calculated as a ratio of occurrence frequencies, it does not have statistical
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significance for small numbers. Still, it is clear that system performance is adversely

affected by large models. When allowed to grow too large the system incorporates N-

grams with low discriminatory value, that is letter combinations that are not specific

enough to a certain language and consequently give rise to false alarms.

The classification performance of the system is obviously a function of the length of

the piece of text that it analyses. Similar to Figure 4.3, Figure 4.4 seems to suggest that

the best results are obtained with very short texts, but again the system is unstable

when confronted with too little data. The result can be seen to stabilise for larger test

sets as the statistical significance increases for larger numbers.
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We have presented a text-based automatic language identification system and investi-

gated the effect of a number of parameters on system performance. Performance was

measured in terms of a relative performance measure. We have shown that there exist

optimum sizes for the training set as well as the language model and that the test set

should be large enough for the classifier to stabilise. It is clear that letter N-grams

are in fact very distinctive as far as language is concerned and therefore supports the

results of House and Neuberg [29].
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4.5 PPRLMALl system

Our Parallel monolingual Phone Recognition followed by language dependent N-gram

Language Modelling system consists of two language-specific phone recognisers op-

erating in parallel, followed by an array of 2 x 2 language models for the various

2-language tasks. During training, labelled speech data from a specific language is

used to estimate the parameters for a number of CDHMMs- each modelling a single

phone. Such a set of HMMsconstitute a language-dependent phone recogniser. When

applied to a test utterance, the system uses a search algorithm in conjunction with the

HMMsto find the most likely phone boundaries and phone transcriptions. The phone

transcriptions are analysed using a set of discriminatively trained, phone bigram lan-

guage models which provide a set of language scores - one for each hypothesis. The

score for a specific language is summed over the various models and the hypothesis

with the highest score wins. Although this need not be the case, the languages used

for the phone recognisers are the same as those recognised. An important parameter

in the language model is the number of adjacent phones, N, that are used to estimate

N-gram statistics. Distinctiveness implies that the frequency of an N-gram for a given

language should be high relative to the frequency of occurrence in other languages. In

addition, the absolute frequency of occurrence of a feature should be high enough to

have statistical significance. The more tokens in the feature, the higher its discrimi-

natory value, but the lower its probability of occurrence. These two criteria constitute

a trade-off that is a strong function of the length of N-grams used for features. In

preliminary experiments we found N = 2 to be a practical compromise.
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The performance of the phone recognition system is sensitive with regard to the num-

ber of states and Gaussian mixtures that are used in the HMMs.Weperformed a series

of experiments to find the optimal number of states and Gaussian mixtures for our

problem. We assume that the two parameters affect performance independently (al-

though this is not quite true). Given the optimal values for these two parameters, we

further investigated the effect of the language model size and utterance duration on

system performance. No assumption regarding the independence of these two pa-

rameters were made. All the above experiments were performed on the development

set. The final experiment was an overall system performance evaluation on the test

set using the optimal values for various parameters as suggested by the results of the

relevant experiments.

The training set contained approximately 35 minutes of speech data per language

and the development and test sets each about 15 minutes per language. A single

2-language task experiment (training and testing phase) processed therefore 100 min-

utes of speech and used ± 60 hours of computer time on a 350MHz Pentium II with

128MB of RAM. Though this figure can be substantially reduced in various ways,

searching for optimal system performance through parameter space is obviously very

expensive and we had to limit such a search to, and assume independence between, a

few salient parameters.

We present the various PPRLMexperiments and results, providing us with quasi-

optimal parameters settings and an indication of the performance of the PPRLMsys-

tem on 2-language tasks. A note on the operation of the N-gram language model

classifier is in order here: Since the score that it generates for each language is an in-
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teger value directly related to the number of occurrences of language-specific N-grams,

it may happen that the system produces identical scores for two language hypothe-

ses. In such a case there is no ground for forcing a classification and the result is

undecided. We have treated all such cases as a "wrong" classification, rather than

a "rejection". System performance stated in terms of "percent correct" is therefore

calculated throughout in the stricter sense as percentage of utterances correctly clas-

sified out of the total number of utterances presented to the system, as opposed to the

number utterances correctly classified out of those not "rejected".

We varied the number of HMMmixtures from 1 to 10 for two phone recognition sys-

tems - one English and one Mandarin. The recognition rates were reported both as

percentage correct and accuracy scores. Accuracy is defined as percentage correct
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minus insertions, deletions and substitutions (and can hence be a negative number).

It is a better measure of performance than simply taking the percentage of correct

phones calculated by pairing the test result and correct phone string phone-by-phone.

Figure 4.5 shows the percentage correct results for the training and development sets

and Figure 4.6, the accuracy results. Performance seemed to stabilise at six mixtures

and we used this figure in further experiments.
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In this experiment we varied the number of HMMstates from 1 to 9 - again for the

English and Mandarin phone recognition systems. The results of the previous ex-

periment suggested that the number of HMMmixtures be set to six for these tests.

Figure 4.7 show the percentage correct results for the training and development sets

and Figure 4.8, the accuracy results. From the latter we chose the number of HMM

states to be six.

The next parameter that we experimented with is the size of the language model, Le.

the number of significantly discriminative phone bigrams used in the language scor-

ing process. Since this number may vary widely depending on how closely related the

languages under consideration is, we expressed this quantity implicitly in another pa-

rameter - the minimum distinctiveness measure value. During training of the language
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model, only bigrams with a distinctiveness measure value greater than this parameter

are accepted into the language model. This constraint is applied before equation 3.69.

The higher the threshold, the smaller the language model and the chance of overfit-

ting. In an English-Spanish task, with a minimum distinctiveness measure of 1.0, for

example, the English model contains 390 bigrams and the Spanish model 562 bigrams

in terms of the English VQ codebook and 529 and 665 bigrams respectively in terms

of the Spanish VQ codebook.

The distinctiveness measure (equation 3.68) is only defined in the range 0.5 (~, for

N languages) to 1.0. In this set of experiments the minimum distinctiveness mea-

sure value was swept from 0.5 to 1.0 in 0.1 increments for all ten pair-wise language

permutations. The mean performance of the ten systems on the training and develop-

ment sets are shown in Figure 4.9 and Figure 4.10 respectively. Figure 4.10 suggests

an optimal value of 0.6. The results for individual language pairs are documented in

Sections B.2 and B.3.
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Figure 4.9: Mean language classification performance on the training set as a function
of the minimum distinctiveness measure value and utterance duration.
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Figure 4.10: Mean language classification performance on the development set as a
function of the minimum distinctiveness measure value and utterance duration.
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Figure 4.11: Mean language classification performance on the training, development
and final test sets as a function of utterance duration.

The last parameters that we considered experimentally was utterance duration. Ob-

viously the system should perform better with more information, but one would also

expect performance to level off after a certain length of time. One of the goals of

ALl is to achieve adequate performance on as little speech as possible. Figure 4.11

show system behaviour as a function of utterance duration. As expected, performance

asymptotes with increasing utterance duration.

Finally, the system was configured with optimal parameters as suggested by the pre-

vious experiments (summarised in Table 4.2) and tested on the OGLTStest sets. The

results are shown in Table 4.3 and Figure 4.11. The numbers in parentheses in Ta-

ble 4.3 are the number of "undecided" utterances (see Section 4.5.3) and were taken as
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I Value I
HMMGaussian mixtures 6

HMMstates 6
Min. distinctiveness measure 0.6

incorrectly classified. The largest number (seven utterances for English vs. Mandarin)

accounts for approximately 4 percent of the IOs utterances classified in that task.

We presented four sets of experiments to determine good values for certain PPRLM

system parameters. In the final set the system was configured with these values and

tested on test data, presented for the first time to the system. It achieved average

recognition rates of 79.6% (10s utterances) and 81.2% (40s utterances) over the ten

pair-wise language recognition tasks.

IIOs utterance 140S utterance I

English - German 85% (4) 86%
English - Japanese 92% (1) 97%
English - Mandarin 84% (7) 83% (1)
English - Spanish 80% (5) 80%

German - Japanese 86% (4) 89%
German - Mandarin 79% (4) 76%
German - Spanish 80% (6) 86%

Japanese - Mandarin 77% (4) 78%
Japanese - Spanish 58% (9) 63%
Mandarin - Spanish 75% (3) 74%
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4.6 VQLM ALl system

As with the PPRLMsystem, the VQLMsystem is based on the fact that the sequential

organisation of discrete units in spoken language provide language-specific informa-

tion that can be used to identify that language. During training, the speech signal is

broken into overlapping frames by moving a fixed-length analysis window over the

signal in fixed increments. The frames are represented as points in feature space by

extracting acoustic features for each frame. Feature space is vector quantised. This

results in a VQ codebook for each language which represents a set of sub-phonetic

tokens for that language. The speech stream (frame-based features) is then coded

using the VQ codebook. The resulting sequence of tokens is used to train an array of

2 x 2 language models in the same way as with the PPRLMsystem. A test utterance

is quantised using both VQ codebooks and the token sequences are analysed using

a set of discriminatively trained, phone bigram language models which provide a set

of language scores - one for each hypothesis. The score for a specific language is

summed over the various models and the hypothesis with the highest score wins.

The most prominent parameters in the VQLMsystem are the VQ codebook size, lan-

guage model size and utterance duration. Accordingly we performed three sets of

experiments to evaluate the effect of these quantities on system performance as well

as a set of experiments on the test set as a final benchmark.

The training set contained approximately 35 minutes of speech data per language

and the development and test sets each about 15 minutes per language. A single

2-language task experiment (training and testing phase) processed therefore 100 min-
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Figure 4.12: Mean language classification performance on the training set as a function
of VQ codebook size and utterance duration.

utes of speech and used ± 1 hour of computer time on a 3S0MHz Pentium II with

128MB of RAM.This is sixty times faster than the PPRLMsystem.

We present the various VQLMexperiments and results, providing us with quasi-optimal

parameters settings and an indication of the performance of the VQLMsystem on a

set of 2-language tasks.

4.6.3.1 Effect of vector quantisation codebook size on language identification per-

formance

The first set of experiments is aimed at determining an optimal codebook size. On

the one hand a large codebook is preferable, since it provides finer resolution in dis-

 
 
 



Chapter 4

25
o 20 40 60 80 100 120 140 160 180 200

Number of VO clusters

Figure 4.13: Mean language classification performance on the development set as a
function of VQ codebook size and utterance duration.

tinguishing between potentially different sub-phonetic units. On the other hand, the

number of possible bigram probabilities grows quadratically with codebook size and

manifests as complexity in the language model that needs more data to train satisfac-

torily. The system was tested with codebook sizes ranging from 10 to 190 on all ten

pair-wise language permutations. The mean performance of the ten systems on the

training and development sets are shown in Figure 4.12 and Figure 4.13 respectively.

The latter suggests a codebook size of 110.

The discontinuity and sharp peak at 100 in Figure 4.12 invites discussion. It is possible

that this point represents the mean total number of (sub) phone-like units naturally

occurring in two languages. Below this point significantly different sounds would be

forced together, degrading performance, while above it the statistics belonging to a

single unit would be diffused across multiple units with a resulting higher confusion

rate. In addition it may appear that the classifier is performing worse than chance

(50%)to the left of the peak. Note, however, that since the classifier recognises an
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Figure 4.14: Mean language classification performance on the training set as a function
of the minimum distinctiveness measure value and utterance duration.

"undecided" class in addition to the two language hypotheses, as explained in Section

4.5.3, chance performance should be calculated for a three-class, rather than a two-

class system. The exact number is smaller than 50.0%, but larger than 33.3% and is

a non-trivial function of the length of the test utterance. The number of undecided

utterance are nevertheless very small - less than one percent over nearly the entire

region represented in Figure 4.12. (The figure does become significantly larger in some

regions of parameter space.) The results for individual language pairs are documented

in Sections B.4 and B.5.

This set of experiments is identical in nature to those in Section 4.5.3.3, performed

for the PPRLMsystem. Again the minimum distinctiveness measure value was swept

from 0.5 to 1.0 in 0.1 increments for all ten pair-wise language permutations. The

mean performance of the ten systems on the training and development sets are shown
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Figure 4.15: Mean language classification performance on the development set as a
function of the minimum distinctiveness measure value and utterance duration.

in Figure 4.14 and Figure 4.15 respectively. Figure 4.15 suggests an optimal value of

0.6. The results for individual language pairs are documented in Sections B.6 and B.7.

The last parameter that we considered experimentally for the VQLMsystem was ut-

terance duration. As with the PPRLMsystem, VQLMshould perform better with more

information and one would expect performance to level off after a certain length of

time. Figure 4.16 shows system behaviour as a function of utterance duration. The

results for different utterance durations are quite close to each other in the regions

where the system performs well.
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Figure 4.16: Mean language classification performance on the training, development
and final test sets as a function of utterance duration.

Finally, the system was configured with optimal parameters suggested by the previous

experiments as summarised in Table 4.4 and tested on the OGLTStest sets. The results

are shown in Table 4.5 and Figure 4.16. The numbers in parentheses in Table 4.5 are

the number of "undecided" utterances (see Section 4.5.3) and were taken as incorrectly

classified.

Parameter I Value I
VQ codebook size 110

Min. distinctiveness measure 0.6
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I10S utterance 140S utterance I

English - German 58% (1) 58%
English - Japanese 66% 68%
English - Mandarin 74% (1) 81%
English - Spanish 58% (1) 58%

German - Japanese 54% 60% (1)
German - Mandarin 73% (1) 78%
German - Spanish 59% (1) 61%

Japanese - Mandarin 62% (1) 58%
Japanese - Spanish 53% 54%
Mandarin - Spanish 68% 71%

We presented four sets of experiments to determine good values for certain VQLM

system parameters. In the final set the system was configured with these values and

tested on test data, presented for the first time to the system. It achieved average

recognition rates of 62.5% (10s utterances) and 64.7%(40s utterances) over the ten pair-

wise language recognition tasks. The system shows inferior performance compared

to that of the PPRLMsystem (79.6% and 81.2% respectively). This is expected, given

the simpler nature of the system and the fact that it incorporates much less a priori

information. One should however bear in mind that these results are achieved with

unlabelled data, implying large savings in development cost.

4.7 Summary

We have described our experimental environment and the data used, the two AU sys-

tems that we have implemented, as well as various experiments and results. In the

final chapter we present various conclusions concerning automatic language identifi-
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Conclusion

In Chapter 1 we introduced automatic language identification as a concept and sketched

the nature and context of the problem, as well as the outlines of a solution. Chapter 2

continued with a foray into the existing body of literature on ALl systems. It became

clear that non-withstanding the bewildering variety in implementation detail, there

are a number of standard components to such systems. Following a brief overview of

relevant linguistic terms, these components were introduced and described in some

detail in Chapter 3. In addition, we presented the more prominent ALl architecture

families. Chapter 4 described our experimental framework, the experiments that we

conducted and relevant results.

In this, the final chapter, we provide a retrospective overview of our work. In the

next section we summarise our results and draw conclusions regarding the issue of

performance vs. complexity in automatic language identification systems. Section 5.3

follows with a discussion of our research experience in a wider sense. Section 5.4

presents ideas for future work flowing from our increased understanding of the prob-
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I 1Os utterance I 40s utterance I
PPRLM 80% 81%
VQLM 63% 65%

State-of-the-art 90% 94%

5.2 Performance vs. complexity in automatic language

identification systems

We implemented, and experimented with, two systems. A state-of-the-art architecture

and our own much simpler, cheaper alternative. The overall language classification

rates on a set of ten pair-wise language identification tasks are compared in Table 5.l.

It is clear that the PPRLMsystem significantly outperformed the VQLM system. The

former was, however, trained on about three hours of fine-phonetically hand-labelled

speech data, requiring a vast amount of expensive skilled labour. It was also more

complex, conceptually as well as implementation-wise. We had hoped that the simpler

system could approach state-of-the-art performance, but it seems that it remains a

clear trade-off between performance on the one hand and cost and complexity on the

other.

Neither of our systems performed as well as the best reported in literature on a similar

set of tasks [7] (confirm Table 5.1). We attribute this to the fact that both our systems

are first-generation systems and cannot really be fairly compared to systems in liter-

ature that have the benefit of years of fine-tuning and dedicated research effort. As a

matter of fact, the large discrepancy between the performance of our PPRLMsystem

and state-of-the-art results shown in Table 5.1, would seem to suggest that both our

 
 
 



systems can benefit from additional refinement. If the difference between the PPRLM

and state-of-the-art results is taken as measure, VQLMsystem performance might very

well be raised to a level that is adequate for some environments.

5.3 Challenges, issues and insights

We have gained some valuable experience and insight into the nature of spoken lan-

guage systems as well as research and development resulting in technically involved

software systems. We share some conclusions:

Statement: The development of a high quality speech corpus is an activity worthy

of project status, requiring expert knowledge, careful planning, a solid infrastructure

and many hours of skilled labour.

We did initially intend to collect and label data for a local speech corpus, but found

it beyond our immediate capabilities. Since different types of speech (conversational,

read, prompted, monologue, etc.) has an impact on the performance of the system,

one should be clear beforehand about the exact nature of the data required. Depend-

ing on the nature of the data, it might be necessary to have ready access to expert

knowledge on phonetics and/or linguistics. In addition, the recording environment

should be stable, well-tested and user-friendly, since the environment affects the sub-

jects in ways that alters the nature and quality of the data. The same criteria applies to

the labelling environment. The labelling process is tedious and time-consuming and

ideally requires a small army of computer literate, mother-language phonetic experts

that received additional training as demanded by the specific goals of the research

project.

 
 
 



Corpus development is not something that one does quickly before starting with the

development of speech technology.

Statement: Spoken language research is a multi-disciplinary activity that spans non-

trivial concepts and skills over various expert domains and requires ready access to

domain experts that are comfortable with multi-disciplinary interaction, as well as a

wide range of applicable books and journals.

We found spoken language processing to be surprisingly resistant to the pattern recog-

nition approach which attempts to view the speech signal as simply another signal that

contains patterns that can be extracted without any additional knowledge about the

origin, nature and context of the signal. Successful spoken language systems oper-

ate across various domains and levels of organisation (acoustic properties, perceptual

issues, phonetic units, words, sentences, language structures, etc.) that each require

expert knowledge. Maybe owing to the rapid growth of, specifically, automatic lan-

guage identification, we found that research was mostly published in journals and

technical conference proceedings (focusing on reporting results and conceptual ad-

vances), without the much-needed counterpart of tutorial papers and books that give

attention to finer detail and implementation issues.

Statement: Effective spoken language systems are complex.

Spoken language have proven to be remarkably resistant to simple solutions. It would

seem that human spoken communication is an activity worthy of the most advanced

form of computation known to us and that it will continue to demand cutting edge
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technology for a long time to come. This fact has implications in all aspects of spoken

language systems development.

5.3.4 Well-defined, limited problem specification

Statement: Because of the inherent complex nature of spoken language systems, it is

vital to very carefully delimit the goals of any specific research project.

Automatic language identification, from a state-of-the-art point of view, is a high-level

application, Le. it requires certain components that are sophisticated systems which,

in turn, touch on significant development issues of their own. Current systems require

a continuous speech phone recogniser, which in turn requires a well-implemented hid-

den Markov modelling environment and a solid feature extraction component. Hidden

Markov modelling and speech feature extraction are active areas of research them-

selves. When one focuses on a high-level task like automatic language identification,

these components should be available on a state-of-the-art level.

Statement: Spoken language systems are resource-intensive.

The explosive advance in spoken language systems over the past few years seems to be

largely because the equally impressive increase in raw processing power has pushed

spoken language system over the edge of feasibility. Software should be developed

with a high premium on efficiency and even then, especially in an experimental envi-

ronment, will require much processing power. Speech data also tend to require large

amounts of storage space.
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It would seem that spoken language systems require a high degree of complexity that

translates into a large initial development investment, before achieving any amount

of success. In our opinion this fact can be traced back to the inherent complexity of

human speech as a communication medium, as pointed out in Section 1.1. It is also

reflected in the rather involved human auditory system (Section 3.3). Despite the fact

that spoken language systems function reasonably well and are continually improv-

ing, they still lag behind human performance, especially under adverse conditions.

At the same time though, paradoxically, current spoken language systems perform

surprisingly well when one keeps in mind the involved nature of the articulatory and

auditory systems and the formidable processing ability of the human mind.

As a general comment one might note that since state-of-the-art ALl systems rely on

continuous speech phone recognition as a first processing step, improved continuous

speech recognition holds obvious performance benefits for ALl systems. We mention

a number of more specific issues:

It would seem that the most basic aspects of a spoken language system are those

of feature extraction, knowledge representation and search (optimisation over a

discrete, non-ordered space). The last two are very general technologies and does not

concern us directly here. In our view, however, the features used in spoken language

systems need more attention because they can potentially affect the performance of

such systems significantly [38, 7]. In addition it would seem that the effectiveness of

 
 
 



features depends on the language(s) under consideration [57].

Current systems largely ignore the dynamic nature of the auditory system. Specifically,

masking and forward masking are important concepts that need to be integrated in

an efficient way into spoken language feature extraction systems [110]. As processing

power increase we may find it rewarding to move to more advanced auditory models.

The vector quantisation algorithm (SCONN),used in our work, has a number of pa-

rameters that affect its performance. Amongst others, one has to choose the number

of clusters or codebook size. It is preferable to rather let this number flow naturally

from the structure of the data in feature space. One way of doing this might be by

using the minimum description length principle that takes into account both the in-

formation contained in the quantised data and in the model and attempts to minimise

the complete description of the original data, aiming for better generalisation [111].

The measure that is currently used to evaluate the distinctiveness of N-grams is a

heuristic. It evaluates the N-grams primarily according to their distinctiveness and

secondarily according to their frequency of occurrence. While it takes the absolute

frequency of occurrence into account, it only does so marginally. The ideal distinc-

tiveness measure should blend the effect of relative and total frequency of occurrence

in an elegant and effective way. We suggest a closer look at the mutual information

measure which has a much firmer basis in information theory [112], as well as the

minimum description length principle [111] and other methods that can be used to

 
 
 



select features that are optimal for classification [113]. Another approach would be

to use minimum classification error (MCE)training [114] to optimise the parameters

of a function that combines the information implied by the relative and absolute oc-

currence frequency of N-grams. In addition one can attempt to find N-grams that

are both maximally distinctive between languages and least distinctive among same-
language utterances. Although the various measures might perform comparably un-

der favourable circumstances, one should ask how their performance degrade with

degrading accuracy of the token string (phone transcription) that is analysed.

The information gained by the more advanced distinctiveness measures suggested

in the previous section can also be used more efficiently if retained in the N-gram

language model. Each N-gram can be accompanied by a weight that represents its

distinctiveness. Such a weight will allow the system to affect the classification score

in a manner proportional to the amount of information that an N-gram it carries, rather

than simply noting its presence in a way that implies all N-grams to be equal.

We have considered an interesting compromise between the two system that we im-

plemented. If one could retain the discriminative power arising from the high infor-

mation content of phones and phonotactics without the burden of having to manually

label speech data, it should allow for a powerful ALl system. One could start with ap-

proximate phone boundaries (automatically segmented) and build a large number of

quasi-phone HMMsfrom the training data. Clustering in HMMspace may then lead to

 
 
 



a set of HMMsthat closely approximate phones. Rabiner and ]uang suggest a number

of distance measures in HMMspace [108] that can be useful in this regard.

We mentioned in Section 1.1 that human speech, apart from being massively redun-

dant, contains information about the sex, age, unique vocal tract, socio-economical

background, native geographical location, emotional status, nationality and language

of the speaker. In addition, the signal is altered by background noise as well as dis-

tortion introduced by the communication channel. As a matter of fact, if one works

with the whole audio band accessible to the human auditory system, the intended

symbolic message constitutes only about 0.1%of the total information content of a

speech signal [1].

Now, various spoken language systems attempt to apprehend some of the information

in the speech signal, while going to great lengths to ignore the rest. Speaker identifica-

tion and verification systems are interested in speaker-dependent features, while most

other systems implement elaborate schemes to work around the unfortunate presence

of this information. There are systems that attempt to gauge the emotional status of

the subject, again this is unwanted information in most other systems. Monolingual

systems tend to depend on certain speech characteristics that may be absent in other

languages.

And so research focused on the various members of spoken language systems family

tend to go their own way with the occasional attempt at cross-pollination. Why not

integrate all the systems and use the abundance of information to iteratively refine the

decisions of various sub-systems? Large vocabulary continuous speech recognition-

based ALl (Section 3.7.7) and the work of Li [59], using ideas from speaker identifica-

tion in ALl, are examples of some attempts in this direction.
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A major remaining challenge is to reduce the complexity of ALl systems and to find

ways to optimise the large sets of parameters that are associated with existing sys-

tems. Our PPRLMsystem has over 30 parameters and alternative configurations that

can potentially affect performance. These parameters are interlinked in a complex,

non-linear way and affect system performance synergistically. Finding the parame-

ters that are critical to system performance as well as optimal values for them, is a

rather formidable non-linear optimisation problem. Maybe judicious, well-motivated

pruning of the parameter space augmented by a genetic algorithm search through the

remaining space will be a good angle of attack.

Alternatively, or, in addition, one can attempt to create a model of system behaviour as

a function of various parameters and perform the optimisation process on the model,

rather than the real system. This would allow for an increase in speed of a couple of

orders of magnitude.

A single parameter that may still improve the performance of the PPRLMsystem signif-

icantly when properly optimised, is a weight that represents the transition probability

between phones during phone recognition. The parameter will effectively adjust the

balance between phone insertions and deletions. We suggest the difference between

the number of phones in the phone string returned by the system, and the true number

in the test utterance as a simple, yet effective cost function.
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5.4.5 Speech corpus management

Typically, spoken language corpora are distributed as a set of audio files in one of

many formats and a set of accompanying label files in some custom format. It has

occurred to us that research might benefit from an effort to make the data available (if

only locally) as a multimedia relational database. Such a database can span different

corpora and contain with every utterance various labelling efforts, as well as informa-

tion regarding the speaker (sex, age, nationality, etc.) and recording conditions.

From a state-of-the-art point of view it seems that the basic problems of ALl are now

well understood and that relatively successful strategies exist [7, 10]. These will have

to be incrementally improved and will be aided by increasing processing power.

5.5 And finally

This then represents our research, findings and views on automatic language identifi-

cation. In the hope that I have conveyed it clearly and concisely, I thank you for your

interest and attention. Live long and prosper.

 
 
 



Appendix A

Data sets

This appendix contains a list of the data files distributed with the OGLTScorpus that

we used. The first column is simply a count of the number of files, the second is the

file name of the speech and label files without extensions, the third is the duration of

the utterance in seconds and the last column indicates the sex of the speaker. For a

few files the sex of the speaker was indeterminate - these were assumed to be female.

Please note that some of the files were incompletely labelled and thus provided less

data than indicated by the durations given here.
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A.2 Training Set

A.2.1 English
1 ENcall-3-G.story-bt 48.8 m
2 ENcall-4-G.story-bt 49.1 m
3 ENcall-5-G.story-bt 48.4 m
4 ENcall-6-G.story-bt 50.0 f
5 ENcall-8-G.story-bt 49.0 m
6 ENcall-9-G.story-bt 48.4 m
7 ENcall-ll-G.story-bt 48.8 f
8 ENcall-12-G.story-bt 43.4 f
9 ENcall-13-G.story-bt 49.0 m

10 ENcall-18-G.story-bt 49.1 m
11 ENcall-19-G.story-bt 48.8 f
12 ENcall-20-G.story-bt 47.8 f
13 ENcall-22-G.story-bt 45.1 m
14 ENcall-24-G.story-bt 48.7 m
15 ENcall-27-G.story-bt 42.2 m
16 ENcall-28-G.story-bt 49.4 m
17 ENcall-29-G.story-bt 49.1 m
18 ENcall-30-G.story-bt 50.0 m
19 ENcall-31-G.story-bt 49.2 f
20 ENcall-32-G.story-bt 49.1 f
21 ENcall-33-G.story-bt 48.2 f
22 ENcall-34-G.story-bt 50.0 m
23 ENcall-35-G.story-bt 48.5 m
24 ENcall-37-G.story-bt 48.9 m
25 ENcall-38-G.story-bt 48.3 m
26 ENcall-40-G.story-bt 48.3 m
27 ENcall-41-G.story-bt 48.8 f
28 ENcall-42-G.story-bt 48.9 m
29 ENcall-43-G.story-bt 48.1 m
30 ENcall-44-G.story-bt 48.5 m
31 ENcall-45-G.story-bt 47.9 m
32 ENcall-47-G.story-bt 45.5 f
33 ENcall-48-G.story-bt 47.7 f
34 ENcall-50-G.story-bt 48.5 f
35 ENcall-51-G.story-bt 47.8 f
36 ENcall-52-G.story-bt 49.2 m
37 ENcall-53-G.story-bt 47.8 m
38 ENcall-54-G.story-bt 46.6 m
39 ENcall-56-G.story-bt 49.5 f
40 ENcall-57-G.story-bt 46.8 m
41 ENcall-58-G.story-bt 47.0 m
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42 ENcall-59-G.story-bt
43 ENcall-60-G.story-bt
44 ENcall-61-G.story-bt

49.2 m
49.4 m
48.4 m

A.2.2 German
1 GEcall-1-G.story-bt 49.2 f
2 GEcall-2-G.story-bt 48.2 m
3 GEcall-3-G.story-bt 49.0 m
4 GEcall-4-G.story-bt 49.4 f
5 GEcall-5-G.story-bt 48.8 f
6 GEcall-6-G.story-bt 49.3 f
7 GEcall-7-G.story-bt 48.8 m
8 GEcall-9-G.story-bt 45.2 f
9 GEcall-10-G.story-bt 45.3 f

10 GEcall-11-G.story-bt 48.7 f
11 GEcall-12-G.story-bt 49.0 f
12 GEcall-14-G.story-bt 48.9 m
13 GEcall-15-G.story-bt 47.4 f
14 GEcall-16-G.story-bt 46.2 f
15 GEcall-18-G.story-bt 48.4 m
16 GEcall-19-G.story-bt 47.4 f
17 GEcall-22-G.story-bt 47.1 f
18 GEcall-23-G.story-bt 47.0 f
19 GEcall-24-G.story-bt 46.6 m
20 GEcall-26-G.story-bt 48.4 m
21 GEcall-27-G.story-bt 49.8 m
22 GEcall-28-G.story-bt 48.8 m
23 GEcall-31-G.story-bt 48.1 m
24 GEcall-33-G.story-bt 49.4 m
25 GEcall-34-G.story-bt 46.0 m
26 GEcall-36-G.story-bt 47.1 f
27 GEcall-37-G.story-bt 49.4 m
28 GEcall-38-G.story-bt 47.9 m
29 GEcall-39-G.story-bt 48.5 m
30 GEcall-40-G.story-bt 48.9 m
31 GEcall-41-G.story-bt 44.5 m
32 GEcall-42-G.story-bt 48.5 f
33 GEcall-44-G.story-bt 31.9 f
34 GEcall-45-G.story-bt 47.7 f
35 GEcall-46-G.story-bt 48.3 f
36 GEcall-47-G.story-bt 48.6 m
37 GEcall-50-G.story-bt 48.3 f
38 GEcall-51-G.story-bt 46.1 m
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39 GEcall-53-G.story-bt 48.9 f
40 GEcall-56-G.story-bt 48.7 f
41 GEcall-57-G.story-bt 44.3 f
42 GEcall-58-G.story-bt 46.6 m
43 GEcall-59-G.story-bt 48.1 f
44 GEcall-60-G.story-bt 48.4 m
45 GEcall-61-G.story-bt 48.7 m
46 GEcall-63-G.story-bt 48.1 f

A.2.3 Japanese
1 JAcall-l-G.story-bt 48.7 m
2 JAcall-2-G.story-bt 48.5 f
3 JAcall-3-G.story-bt 47.0 m
4 JAcall-7-G.story-bt 47.6 m
5 JAcall-13-G.story-bt 48.3 m
6 JAcall-15-G.story-bt 49.6 m
7 JAcall-17-G.story-bt 46.8 f
8 JAcall-19-G.story-bt 48.8 f
9 JAcall-20-G.story-bt 48.4 m

10 JAcall-22-G.story-bt 46.8 m
11 JAcall-23-G.story-bt 48.9 m
12 JAcall-24-G.story-bt 49.2 m
13 JAcall-25-G.story-bt 19.6 f
14 JAcall-27-G.story-bt 48.0 m
15 JAcall-29-G.story-bt 49.1 m
16 JAcall-35-G.story-bt 48.7 f
17 JAcall-36-G.story-bt 48.0 m
18 JAcall-40-G.story-bt 44.0 m
19 JAcall-47-G.story-bt 48.0 f
20 JAcall-48-G.story-bt 49.2 m
21 JAcall-50-G.story-bt 47.5 f
22 JAcall-51-G.story-bt 48.4 m
23 JAcall-53-G.story-bt 47.8 f
24 JAcall-54-G.story-bt 47.3 m
25 JAcall-55-G.story-bt 48.8 f
26 JAcall-57-G.story-bt 48.0 m
27 JAcall-58-G.story-bt 47.1 m
28 JAcall-60-G.story-bt 48.5 f
29 JAcall-61-G.story-bt 46.5 m
30 JAcall-62-G.story-bt 48.0 m
31 JAcall-65-G.story-bt 49.2 m
32 JAcall-66-G.story-bt 48.8 m
33 JAcall-67-G.story-bt 48.5 f
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34 JAcall-68-G.story-bt 48.6 f
35 JAcall-69-G.story-bt 23.3 m
36 JAcall-71-G.story-bt 48.4 f
37 JAcall-72-G.story-bt 46.4 f
38 JAcall-73-G.story-bt 47.9 f
39 JAcall-75-G.story-bt 41.4 m
40 JAcall-80-G.story-bt 48.7 m
41 JAcall-82-G.story-bt 47.5 f
42 JAcall-83-G.story-bt 36.1 m
43 JAcall-85-G.story-bt 48.5 f
44 JAcall-86-G.story-bt 48.7 f
45 JAcall-88-G.story-bt 48.9 m
46 JAcall-90-G.story-bt 43.4 f

A.2.4 Mandarin
1 MAcall-l-G.story-bt 36.0 m
2 MAcall-9-G.story-bt 41.1 m
3 MAcall-ll-G.story-bt 36.5 m
4 MAcall-13-G.story-bt 48.6 m
5 MAcall-14-G.story-bt 45.4 f
6 MAcall-15-G.story-bt 48.5 m
7 MAcall-16-G.story-bt 47.9 f
8 MAcall-18-G.story-bt 48.3 m
9 MAcall-21-G.story-bt 43.6 m

10 MAcall-23-G.story-bt 29.9 m
11 MAcall-24-G.story-bt 41.1 m
12 MAcall-27-G.story-bt 20.4 m
13 MAcall-30-G.story-bt 46.9 f
14 MAcall-31-G.story-bt 45.9 f
15 MAcall-33-G.story-bt 49.2 f
16 MAcall-34-G.story-bt 3.3 m
17 MAcall-35-G.story-bt 42.7 m
18 MAcall-36-G.story-bt 48.3 m
19 MAcall-37-G.story-bt 47.8 f
20 MAcall-39-G.story-bt 47.1 m
21 MAcall-40-G.story-bt 32.9 u
22 MAcall-41-G.story-bt 48.1 m
23 MAcall-42-G.story-bt 16.1 f
24 MAcall-43-G.story-bt 46.5 m
25 MAcall-44-G.story-bt 46.1 f
26 MAcall-46-G.story-bt 48.5 m
27 MAcall-48-G.story-bt 46.8 m
28 MAcall-49-G.story-bt 49.4 m
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29 MAcall-51-G.story-bt 47.6 f
30 MAcall-52-G.story-bt 21.1 m
31 MAcall-53-G.story-bt 15.9 m
32 MAcall-55-G.story-bt 29.5 m
33 MAcall-56-G.story-bt 47.4 m
34 MAcall-57-G.story-bt 43.4 m
35 MAcall-58-G.story-bt 49.0 m
36 MAcall-59-G.story-bt 27.2 f
37 MAcall-60-G.story-bt 10.2 m
38 MAcall-65-G.story-bt 34.6 f
39 MAcall-67-G.story-bt 47.9 f
40 MAcall-68-G.story-bt 48.6 f
41 MAcall-69-G.story-bt 45.7 m
42 MAcall-73-G.story-bt 16.4 f
43 MAcall-76-G.story-bt 46.9 m
44 MAcall-77-G.story-bt 48.2 m
45 MAcall-78-G.story-bt 21.6 m

A.2.5 Spanish

1 SPcall-l-G.story-bt 46.7 m
2 SPcall-2-G.story-bt 48.9 f
3 SPcall-3-G.story-bt 46.9 m
4 SPcall-4-G.story-bt 46.7 m
5 SPcall-5-G.story-bt 48.8 m
6 SPcall-6-G.story-bt 48.6 m
7 SPcall-8-G.story-bt 49.5 m
8 SPcall-l0-G.story-bt 49.2 f
9 SPcall-12-G.story-bt 43.3 m

10 SPcall-13-G.story-bt 49.0 m
11 SPcall-14-G.story-bt 48.1 m
12 SPcall-15-G.story-bt 44.4 f
13 SPcall-16-G.story-bt 49.0 f
14 SPcall-17-G.story-bt 47.9 m
15 SPcall-18-G.story-bt 48.2 m
16 SPcall-19-G.story-bt 49.2 m
17 SPcall-20-G.story-bt 45.8 m
18 SPcall-22-G.story-bt 47.9 m
19 SPcall-23-G.story-bt 38.5 m
20 SPcall-24-G.story-bt 26.1 m
21 SPcall-25-G.story-bt 49.3 f
22 SPcall-26-G.story-bt 49.1 m
23 SPcall-27-G.story-bt 46.0 m
24 SPcall-28-G.story-bt 49.4 m
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25 SPcall-29-G.story-bt 47.7 m
26 SPcall-30-G.story-bt 48.0 f
27 SPcall-31-G.story-bt 49.0 m
28 SPcall-32-G.story-bt 47.8 f
29 SPcall-33-G.story-bt 48.5 f
30 SPcall-35-G.story-bt 47.6 f
31 SPcall-36-G.story-bt 48.7 m
32 SPcall-37-G.story-bt 48.4 f
33 SPcall-38-G.story-bt 47.8 f
34 SPcall-40-G.story-bt 45.1 f
35 SPcall-41-G.story-bt 49.1 m
36 SPcall-44-G.story-bt 48.4 f
37 SPcall-46-G.story-bt 48.6 m
38 SPcall-47-G.story-bt 48.2 f
39 SPcall-48-G.story-bt 49.4 m
40 SPcall-49-G.story-bt 47.8 m
41 SPcall-50-G.story-bt 48.7 m
42 SPcall-51-G.story-bt 48.2 m
43 SPcall-52-G.story-bt 42.9 f
44 SPcall-53-G.story-bt 47.3 m
45 SPcall-54-G.story-bt 49.3 m
46 SPcall-55-G.story-bt 47.0 m
47 SPcall-56-G.story-bt 48.9 f
48 SPcall-57-G.story-bt 44.5 m

A.3 Development Set

A.3.1 English
1 ENcall-84-G.story-bt 48.5 m
2 ENcall-86-G.story-bt 48.9 m
3 ENcall-87-G.story-bt 47.9 m
4 ENcall-88-G.story-bt 48.5 f
5 ENcall-90-G.story-bt 48.0 f
6 ENcall-92-G.story-bt 49.0 m
7 ENcall-93-G.story-bt 49.0 m
8 ENcall-94-G.story-bt 49.2 m
9 ENcall-96-G.story-bt 48.9 m

10 ENcall-97-G.story-bt 47.5 m
11 ENcall-98-G.story-bt 49.2 m
12 ENcall-99-G.story-bt 49.9 f
13 ENcall-l00-G.story-bt 49.1 m
14 ENcall-l03-G.story-bt 47.8 f
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15 ENcall-l05-G.story-bt 46.8 m
16 ENcall-l06-G.story-bt 48.6 f
17 ENcall-l07-G.story-bt 48.9 m
18 ENcall-l08-G.story-bt 48.5 f

A.3.2 German
1 GEcall-95-G.story-bt 49.0 m
2 GEcall-97-G.story-bt 48.0 f
3 GEcall-99-G.story-bt 46.0 m
4 GEcall-l00-G.story-bt 48.9 f
5 GEcall-l0l-G.story-bt 48.8 m
6 GEcall-l02-G.story-bt 48.8 m
7 GEcall-l06-G.story-bt 48.0 m
8 GEcall-l09-G.story-bt 46.9 m
9 GEcall-113-G.story-bt 41.8 f

10 GEcall-114-G.story-bt 49.0 m
11 GEcall-116-G.story-bt 48.0 f
12 GEcall-118-G.story-bt 48.8 f
13 GEcall-120-G.story-bt 47.7 f
14 GEcall-123-G.story-bt 48.7 m
15 GEcall-124-G.story-bt 46.3 f
16 GEcall-125-G.story-bt 46.9 m
17 GEcall-127-G.story-bt 16.0 m
18 GEcall-129-G.story-bt 44.5 f
19 GEcall-130-G.story-bt 49.2 m

A.3.3 Japanese
1 JAcall-l00-G.story-bt 48.1 m
2 JAcall-118-G.story-bt 47.6 m
3 JAcall-120-G.story-bt 47.7 m
4 JAcall-121-G.story-bt 48.7 f
5 JAcall-122-G.story-bt 48.9 m
6 JAcall-124-G.story-bt 47.8 f
7 JAcall-126-G.story-bt 47.9 m
8 JAcall-127-G.story-bt 48.1 m
9 JAcall-129-G.story-bt 48.5 m

10 JAcall-131-G.story-bt 48.6 m
11 JAcall-133-G.story-bt 48.5 m
12 JAcall-135-G.story-bt 49.4 m
13 JAcall-136-G.story-bt 46.9 m
14 JAcall-137-G.story-bt 48.2 f
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15 JAcall-138-G.story-bt 49.0 m
16 JAcall-139-G.story-bt 48.2 m
17 JAcall-140-G.story-bt 47.1 f
18 JAcall-141-G.story-bt 48.2 m

A.3.4 Mandarin
1 MAcall-79-G.story-bt 48.9 m
2 MAcall-83-G.story-bt 41.1 f
3 MAcall-86-G.story-bt 45.5 f
4 MAcall-90-G.story-bt 48.1 f
5 MAcall-92-G.story-bt 45.6 f
6 MAcall-93-G.story-bt 49.0 m
7 MAcall-97-G.story-bt 48.1 f
8 MAcall-98-G.story-bt 44.9 f
9 MAcall-100-G.story-bt 48.3 f

10 MAcall-101-G.story-bt 45.4 f
11 MAcall-105-G.story-bt 48.5 m
12 MAcall-106-G.story-bt 21.5 m
13 MAcall-107-G.story-bt 44.0 m
14 MAcall-108-G.story-bt 44.9 m
15 MAcall-109-G.story-bt 41.4 m
16 MAcall-113-G.story-bt 48.1 m
17 MAcall-118-G.story-bt 43.7 f
18 MAcall-119-G.story-bt 48.6 m

A.3.5 Spanish
1 SPcall-81-G.story-bt 47.0 m
2 SPcall-82-G.story-bt 47.5 m
3 SPcall-83-G.story-bt 48.0 m
4 SPcall-84-G.story-bt 48.7 m
5 SPcall-85-G.story-bt 40.8 m
6 SPcall-87-G.story-bt 48.4 m
7 SPcall-88-G.story-bt 46.9 m
8 SPcall-89-G.story-bt 45.9 m
9 SPcall-90-G.story-bt 48.0 m

10 SPcall-91-G.story-bt 48.3 m
11 SPcall-93-G.story-bt 15.3 m
12 SPcall-94-G.story-bt 19.1 f
13 SPcall-95-G.story-bt 47.8 m
14 SPcall-96-G.story-bt 48.4 f
15 SPcall-97-G.story-bt 49.0 m
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16 SPcall-98-G.story-bt
17 SPcall-99-G.story-bt
18 SPcall-l00-G.story-bt
19 SPcall-l02-G.story-bt

43.9 m
45.1 f
46.5 m
46.3 f

A.4 Test Set

A.4.1 English
1 ENcall-62-G.story-bt 48.3 m
2 ENcall-63-G.story-bt 48.0 m
3 ENcall-64-G.story-bt 47.2 m
4 ENcall-65-G.story-bt 48.6 m
5 ENcall-66-G.story-bt 49.0 m
6 ENcall-68-G.story-bt 48.9 f
7 ENcall-69-G.story-bt 48.8 m
8 ENcall-70-G.story-bt 48.6 m
9 ENcall-71-G.story-bt 49.4 m

10 ENcall-72-G.story-bt 49.2 m
11 ENcall-73-G.story-bt 48.9 m
12 ENcall-74-G.story-bt 49.2 f
13 ENcall-76-G.story-bt 48.8 m
14 ENcall-77-G.story-bt 49.3 f
15 ENcall-78-G.story-bt 48.6 m
16 ENcall-79-G.story-bt 49.3 m
17 ENcall-81-G.story-bt 49.3 f
18 ENcall-82-G.story-bt 49.2 m
19 ENcall-83-G.story-bt 48.9 m

A.4.2 German
1 GEcall-69-G.story-bt 48.4 f
2 GEcall-70-G.story-bt 48.7 m
3 GEcall-72-G.story-bt 48.6 m
4 GEcall-74-G.story-bt 47.4 m
5 GEcall-75-G.story-bt 48.6 f
6 GEcall-77-G.story-bt 48.3 f
7 GEcall-78-G.story-bt 48.5 m
8 GEcall-79-G.story-bt 22.3 m
9 GEcall-80-G.story-bt 47.9 m

10 GEcall-81-G.story-bt 48.0 m
11 GEcall-83-G.story-bt 47.6 m

Department of Electrical and Electronic Engineering 113

 
 
 



12 GEcall-85-G.story-bt
13 GEcall-86-G.story-bt
14 GEcall-87-G.story-bt
15 GEcall-88-G.story-bt
16 GEcall-89-G.story-bt
17 GEcall-90-G.story-bt
18 GEcall-91-G.story-bt
19 GEcall-93-G.story-bt
20 GEcall-94-G.story-bt

46.7 f
48.2 m
47.3 m
44.3 m
48.8 m
48.5 m
48.4 m
48.4 m
47.2 f

A.4.3 Japanese
1 JAcall-26-G.story-bt 48.1 f
2 JAcall-38-G.story-bt 23.1 m
3 JAcall-91-G.story-bt 47.6 f
4 JAcall-92-G.story-bt 47.3 f
5 JAcall-94-G.story-bt 47.1 f
6 JAcall-96-G.story-bt 47.5 m
7 JAcall-97-G.story-bt 47.0 f
8 JAcall-l0l-G.story-bt 46.3 f
9 JAcall-l02-G.story-bt 49.0 m

10 JAcall-l04-G.story-bt 42.5 m
11 JAcall-l05-G.story-bt 48.6 f
12 JAcall-l06-G.story-bt 48.2 m
13 JAcall-l07-G.story-bt 48.8 m
14 JAcall-l09-G.story-bt 34.0 f
15 JAcall-ll0-G.story-bt 48.5 f
16 JAcall-112-G.story-bt 44.6 m
17 JAcall-113-G.story-bt 48.6 m
18 JAcall-116-G.story-bt 49.0 m
19 JAcall-117-G.story-bt 44.4 m
20 JAcall-142-G.story-bt 47.5 m
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A.4.4 Mandarin
1 MAcall-121-G.story-bt 48.6 f
2 MAcall-122-G.story-bt 46.2 m
3 MAcall-123-G.story-bt 48.9 f
4 MAcall-124-G.story-bt 47.8 f
5 MAcall-126-G.story-bt 36.7 m
6 MAcall-127-G.story-bt 31.4 m
7 MAcall-129-G.story-bt 49.6 f
8 MAcall-134-G.story-bt 45.8 m
9 MAcall-135-G.story-bt 48.2 m

10 MAcall-136-G.story-bt 47.4 m
11 MAcall-137-G.story-bt 48.0 f
12 MAcall-138-G.story-bt 48.2 m
13 MAcall-140-G.story-bt 43.2 m
14 MAcall-142-G.story-bt 48.2 m
15 MAcall-143-G.story-bt 47.0 f
16 MAcall-146-G.story-bt 45.6 m
17 MAcall-147-G.story-bt 49.1 m
18 MAcall-148-G.story-bt 44.7 m
19 MAcall-149-G.story-bt 48.1 m

A.4.5 Spanish
1 SPcall-60-G.story-bt 41.3 m
2 SPcall-62-G.story-bt 49.3 m
3 SPcall-63-G.story-bt 48.1 m
4 SPcall-64-G.story-bt 47.6 f
5 SPcall-65-G.story-bt 49.1 m
6 SPcall-67-G.story-bt 49.3 m
7 SPcall-68-G.story-bt 49.0 m
8 SPcall-69-G.story-bt 44.7 f
9 SPcall-70-G.story-bt 47.6 m

10 SPcall-71-G.story-bt 36.6 f
11 SPcall-72-G.story-bt 48.9 f
12 SPcall-73-G.story-bt 48.0 m
13 SPcall-76-G.story-bt 46.0 m
14 SPcall-77-G.story-bt 49.0 f
15 SPcall-78-G.story-bt 49.1 m
16 SPcall-79-G.story-bt 45.4 f
17 SPcall-80-G.story-bt 49.3 f
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Results

This appendix contains graphs of some of the results of Chapter 4 on a per language-
pair basis.

B.2 PPRLMsystem, minimum distinctiveness measure value,
training set
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Figure B.l: English - German language classification performance on the training set
as a function of the minimum distinctiveness measure value and utterance duration.
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Figure B.2: English - Japanese language classification performance on the training set
as a function of the minimum distinctiveness measure value and utterance duration.
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Figure B.3: English - Mandarin language classification performance on the training set
as a function of the minimum distinctiveness measure value and utterance duration .
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Figure B.4: English - Spanish language classification performance on the training set
as a function of the minimum distinctiveness measure value and utterance duration.
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Figure B.5: German - Japanese language classification performance on the training set
as a function of the minimum distinctiveness measure value and utterance duration .
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Figure B.6: German - Mandarin language classification performance on the training set
as a function of the minimum distinctiveness measure value and utterance duration.
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Figure B.7: German - Spanish language classification performance on the training set
as a function of the minimum distinctiveness measure value and utterance duration.
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Figure B.B: Japanese -Mandarin language classification performance on the training set
as a function of the minimum distinctiveness measure value and utterance duration.

 
 
 



Appendix B

..::;::~--- .~::::=:·:t::::·:·:·:·:::·:·:·::·:·:::=.~ -:-=;'~_'_'_'_'_'::~":':'·:·~:~~':':-~:-"::::::.::.::r=:'='~2~:-":~::'

________ --_ ··t... "'" 4s _
90 ~"-.--_.-- , ·~·~~·~~--·.""OL· ,.-... ~ Os::::::;;·;;;;~::.:..

. '..'..'..'.'..'..'..'.'..'..- -.........."'. : 20-----._ ..·· ..l.30~.~:;:=.:~..
.......................l\:""\,..i':~_._-

>\\ , .
\

\,\ ~.............. . ,,\\ j

\\ 1
··········\i~······ .

~------------------

20
0.5 0.6 0.7 0.8 0.9

Minimum distinctiveness measure value

Figure B.9: Japanese - Spanish language classification performance on the training set
as a function of the minimum distinctiveness measure value and utterance duration.
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Figure B.IO: Mandarin - Spanish language classification performance on the training
set as a function of the minimum distinctiveness measure value and utterance dura-
tion.
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Figure B.II: English - German language classification performance on development
set as a function of minimum distinctiveness measure value and utterance duration.
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Figure B.12: English - Japanese language classification performance on development
set as a function of minimum distinctiveness measure value and utterance duration.
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Figure B.13: English - Mandarin language classification performance on development
set as a function of minimum distinctiveness measure value and utterance duration.
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Figure B.I4: English - Spanish language classification performance on development
set as a function of minimum distinctiveness measure value and utterance duration.
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Figure B.IS: German - Japanese language classification performance on development
set as a function of minimum distinctiveness measure value and utterance duration.

 
 
 



2s -
""" 4s ------

80 '.,.,. . , ...1.0s :.::.::.:.: .

~~:~:~~~:·~:~~~::~~:~'''~,~.~:·~~.::::::L:i ~g~
70 ------,,:-:,- -.-:~:j'::::~:~r:~~=~~
60 , "<~~'~~J,',,~.

•••••••••••••.•••• • _._ •••••••••••• ~ ••••••• ~.~~~~."': ••• <.: ••••

.•.•.•....•..•.•.•.

300.5 0.6 0.7 0.8 0.9
Minimum distinctiveness measure value

Figure B.16: German - Mandarin language classification performance on development
set as a function of minimum distinctiveness measure value and utterance duration.
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Figure B.20: Mandarin - Spanish language classification performance on development
set as a function of minimum distinctiveness measure value and utterance duration.
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Figure B.22: English - Japanese language classification performance on the training set
as a function of VQ codebook size and utterance duration.

90

U- 80

l!!
700u

C 60
Q)
uc:eu 50E
0
t 40Q)
Co
c:
0 30~
.2
~ 20eneu
{)

10

0
0

,

················f· ......; ; ~~\=
105 i.... · ..

, 205:
··30s···:~:~·:~:~····
405 i·······

.......... __ ~..- -..
: :
: :,

.- •••••••••••• "'1 -_..•.........• ·r··.. . ~ ~ .

,

··········1 ················1····

20 40 60 80 100 120 140 160 180 200
Size of VQ code book

Figure B.23: English - Mandarin language classification performance on the training
set as a function of VQ codebook size and utterance duration.
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Figure B.24: English - Spanish language classification performance on the training set
as a function of VQ codebook size and utterance duration.
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Figure B.25: German - Japanese language classification performance on the training
set as a function of VQ codebook size and utterance duration.
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Figure B.26: German - Mandarin language classification performance on the training
set as a function of VQ codebook size and utterance duration.
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Figure B.27: German - Spanish language classification performance on the training set
as a function of VQ codebook size and utterance duration.
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Figure B.29: Japanese - Spanish language classification performance on the training
set as a function of VQ codebook size and utterance duration.
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Figure B.30: Mandarin - Spanish language classification performance on the training
set as a function of VQ codebook size and utterance duration.
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Figure B.31: English - German language classification performance on the development
set as a function of VQ codebook size and utterance duration.
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Figure B.32: English - Japanese language classification performance on the develop-
ment set as a function of VQ codebook size and utterance duration.
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Figure B.33: English - Mandarin language classification performance on the develop-
ment set as a function of VQ codebook size and utterance duration.

 
 
 



................ ~ ~
::',1/'\..··\.,

55H
"'

H
;

40
o 20 40 60 80 100 120 140 160 180 200

Size of va codebook

Figure B.34: English - Spanish language classification performance on the development
set as a function of VQ codebook size and utterance duration.
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Figure B.35: German - Japanese language classification performance on the develop-
ment set as a function of VQ codebook size and utterance duration.
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ment set as a function of VQ codebook size and utterance duration.
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Figure B.38: Japanese - Mandarin language classification performance on the develop-
ment set as a function of VQ codebook size and utterance duration.
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Figure B.39: Japanese - Spanish language classification performance on the develop-
ment set as a function of VQ codebook size and utterance duration.
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Figure B.41: English - German language classification performance on the training set
as a function of the minimum distinctiveness measure value and utterance duration.
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Figure B.42: English - Japanese language classification performance on the training set
as a function of the minimum distinctiveness measure value and utterance duration.

55
0.5 0.7 0.8

Size of va codebook

Figure B.43: English - Mandarin language classification performance on the training set
as a function of the minimum distinctiveness measure value and utterance duration.
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Figure BA4: English - Spanish language classification performance on the training set
as a function of the minimum distinctiveness measure value and utterance duration.
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Figure BAS: German -Japanese language classification performance on the training set
as a function of the minimum distinctiveness measure value and utterance duration.
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Figure BA6: German - Mandarin language classification performance on the training
set as a function of the minimum distinctiveness measure value and utterance dura-
tion.
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Figure BA7: German - Spanish language classification performance on the training set
as a function of the minimum distinctiveness measure value and utterance duration.
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Figure BA8: Japanese - Mandarin language classification performance on the train-
ing set as a function of the minimum distinctiveness measure value and utterance
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Figure BAg: Japanese - Spanish language classification performance on the training set
as a function of the minimum distinctiveness measure value and utterance duration.
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Figure B.SO: Mandarin - Spanish language classification performance on the training
set as a function of the minimum distinctiveness measure value and utterance dura-
tion.
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Figure B.51: English - German language classification performance on development
set as a function of minimum distinctiveness measure value and utterance duration.
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Figure B.S2: English - Japanese language classification performance on development
set as a function of minimum distinctiveness measure value and utterance duration.
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Figure B.S3: English - Mandarin language classification performance on development
set as a function of minimum distinctiveness measure value and utterance duration.
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Figure B.54: English - Spanish language classification performance on development
set as a function of minimum distinctiveness measure value and utterance duration.
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Figure B.55: German - Japanese language classification performance on development
set as a function of minimum distinctiveness measure value and utterance duration.
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Figure B.56: German - Mandarin language classification performance on development
set as a function of minimum distinctiveness measure value and utterance duration.
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Figure B.57: German - Spanish language classification performance on development
set as a function of minimum distinctiveness measure value and utterance duration.
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Figure B.58: Japanese - Mandarin language classification performance on development
set as a function of minimum distinctiveness measure value and utterance duration.
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Figure B.59: Japanese - Spanish language classification performance on development
set as a function of minimum distinctiveness measure value and utterance duration.
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Figure B.60: Mandarin - Spanish language classification performance on development
set as a function of minimum distinctiveness measure value and utterance duration.

 
 
 



Appendix C

SPLAT

Hi, welcome to SPLAT. SPLAT stands for SPoken Language Analysis
Toolkit. It is a collection of programs for analysing speech signals
and performing related functions. These programs are mostly little
more than shells that use a library of speech objects and functions.
Please send comments, suggestions, questions and bug reports to
rikus@suntiger.ee.up.ac.za.
Source Release: I have now released the source as well. I did not do
that previously for two reasons: (1) I did not want multiple
uncorrelated copies drifting around and (2) I did not consider the
code to be user-friendly. Neither of these have changed, but if other
people can get more out of SPLAT by hacking the code, then so be it.
There are two major weaknesses in the code: (1) It is not implemented
efficiently and (2) the object-oriented architecture of the whole
thing is neither consistent, nor particularly intuitive. The first
problem can be addressed by random hacking; the second requires a
total re-write. If anybody wants to do this, please let me know. May
the source be with you.
Release 1.2: Few minor modifications and bug fixes.
Release 1.1: Added the following new components: cutwav, lb12lola,
101a2lbl, trnslola, confuse, entropy. Most components that used OGI
.lola files now also support PRAAT .Label files. Documentation and
examples have reached a local minimum and now probably constitutes the
20% of the full documentation set, that provides 80% of the
information.
Release 1.0: Improves on Release 0.5 (a pre-release version) in that
there is a certain amount of uniformity among the various tools from
the user's point of view. The software is, however, in a continuing
state of development and may therefore not live up to any expectations
that you might have. I apologise for the inconvenience and hope that
it will be useful in some way.

When you write software there are generally three concerns that spring
to mind: integrity, efficiency and ease of implementation. When you
use another person's software, ease of implementation is not an issue
and you are (should be?) interested in the first two points. Writing
the software was a learning experience, so efficiency came second many
times to ease, elegance and consistency of implementation. This does
not mean that it was not a concern at all, just that some programs can
run faster and use less memory with a bit of trouble. Integrity
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always had highest priority. Where possible, results were tested
against examples and common sense. Sometimes (as with the mel-scaled
cepstrum features) this was not really possible and I had to be
content with something that 'looks right'. Of course, having said
this, it is in the nature of software that I cannot guarantee it to be
bug free. Since the software is in a continuous state of development
(where have I heard this before?), there will probably be some bugs.
These, however, should be small and obvious. If you get the software
to generate a segmentation fault for instance, please let me know
immediately.

>melcep
Melcep Version 4.1 last compiled on Feb 20 1997.
A component of SPLAT Release 1.0
Copyright (c) 1997 Rikus Combrinck. All rights reserved.
usage: melcep [<options>] <source>
-a <circular autocorrelation enable> (switch)
-0 <destination> (*.mel)
-w <window size> (10.0)
-s <step size> (2.0)
-p <preemphasis constant> (0.98)
-f <number of fil ters> (11)
-c <number of coefficients> (9)
-h help

>melcep -h
Melcep Version 4.1 last compiled on Feb 20 1997.
A component of SPLAT Release 1.0
Copyright (c) 1997 Rikus Combrinck. All rights reserved.

I
usage: melcep [<options>] <source>

I
-a <circular autocorrelation enable> (switch) I
-0 <destination> (* .mel) I
-w <window size> (10.0) I
-s <step size> (2.0) I
-p <preemphasis constant> (0.98) I
-f <number of fi lters> (11) I
-c <number of coefficients> (9) I

I
This command extracts mel-scaled cepstrum features from a speech I
signal file <source>. The signal is preemphasised using a preem- I
phasis constant of <preemphasis constant>. A hamming window of I
size <window size> milliseconds is moved over the signal in in- I
crements of <step size> milliseconds. For each frame <number of
coefficients> mel-scaled cepstrum coefficients are calculated us- I
ing <number of filters> triangular filters. The first and second I
derivatives of these coefficients are calculated as well and ap- I
pended to the feature vector. The output is written in OGI tdat I
format to <destination>. Circular autocorrelation filtering is a I
bad idea. I

I

Options are one of four kinds. There are ordered options that should
be supplied in the order indicated and without any switches. In the
example there is only one, <source>, the source file. Then there are
mandatory switch-value pairs that have to be supplied (none in the
example). Thirdly there are switches that take no argument and only
switches on or off some feature ('-a' in this case). The last and
most common form is some parameter specified by a switch-value pair
that has a default value indicated in parentheses.
A useful feature is the file masks. For this example the output file
<destination> is specified by '*.mel'. The asterisk will be replaced
by the base of the source file. So if the source file was 'sl.wav',
then the output file will be 'sl.mel'. The output file can be a
single asterisk '*' which is equivalent to '*.*' and will be replaced
by the source file name. This is usually not a good thing to do since
the output will overwrite the source file. In general the mask may be

 
 
 



any string containing a maximum of two asterisks which will be
replaced by the base and extension of the source file name. In
addition, any leading directory names are stripped from the source
file name before substitution. If a file mask contains asterisks, it
should be protected from the shell with double or single quotes.
All this stuff is useful if you are calling SPLAT commands from within
a script and would like to access source files from one directory and
write the output to another directory, with the output name associated
in some way with the input name. So, for instance:
>melcep -0 "/u/rikus/data/mel/* .mel" /u/rikus/data/wav/fl.wav
would be both likely and useful.

SPLAT commands operate on and produce various data files. These data
files are usually one of the following types:

.wav

.nsp

.raw

.mel

.tfa

.tca

.seq

.ens

.vtr

.mtx

.cbk

.hmm

.phn

.lola

.Label

- NIST .wav file format
- another speech file format
- 16-bit binary (low byte, hight byte), read as signed short int
- mel-scaled cepstral coeffs in OGI .tdat format
- spectrogram in OGI .tdat format
- time correlation analysis in OGI .tdat format
- sequence of unsigned ints in ascii format
- ensemble; multiple sequences
- vector of things (usually numbers in ascii format)
- matrix of things (usually numbers in ascii format)
- code book (.mtx format)
- hidden markov model - contains pi vector, a and b matrices
- label file in TIMIT .phn format
- label file in OGI .lola format
- label file in PRAAT .Label format

NOTE: 'Sound file' in this document means either a .wav or .nsp file.
CAUTION: The .nsp file format is currently only supported on Intel
architectures. Reading it on another architecture (like SUN), will
result in errors, garbage, undefined behaviour or some such bad thing.
This will hopefully be fixed soon.

I Component I Description
raw2vtr Convert raw format to ascii vector format.
raw2wav Convert raw format to NISTwav format.
vtr 2wav Convert ascii vector format to NISTwav format.
vtr2raw Convert ascii vector format to raw format.
wav2raw Convert NISTwav format to raw format.
wav2vtr Convert NISTwav format to ascii vector format.
nsp2wav Convert nsp format to NISTwav format.
tdat2mtx Convert OGI tdat format to ascii matrix format.
mtx2tdat Convert ascii matrix format to OGI tdat format.
phn2lola Convert TIMITphn format to OGI lola format.
lola2lbl Convert OGI lola format to PRAAT Label format.
Ibl2lola Convert PRAAT Label format to OGI lola format.

 
 
 



Raw2vtr Version 1.1 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: raw2vtr [<options>] <source>
-0 <destination> (*.vtr)

Raw2wav Version 2.1 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: raw2wav [<options>] <source>
-0 <destination> (*.wav)
-f <sample rate> (8000)
This command converts a file <source> from SPLAT .raw format to
TIMIT .wav format <destination>. <sample rate> is the sample
rate of the signal. It defaults to 8000Hz.

Vtr2wav Version 1.1 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: vtr2wav [<options>] <source>
-0 <destination> (*.wav)
-f <sample rate> (8000)
-a <max level> (detect)
This command converts a file <source> from SPLAT .vtr format to
TIMIT .wav format <destination>. <sample rate> is the sample
rate of the signal. It defaults to 8000Hz. <max level> is the
maximum amplitude of the signal and is auto detected if not spec-
ifi ed.

Vtr2raw Version 1.1 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: vtr2raw [<options>] <source>
-0 <destination> (*.raw)

Wav2raw Version 2.1 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: wav2raw [<options>] <source>
-0 <destination> (*.raw)

Wav2vtr Version 1.1 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: wav2vtr [<options>] <source>
-0 <destination> (*.vtr)

Nsp2wav Version 1.1 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: nsp2wav [<options>] <source>
-0 <destination> (*.wav)
This command converts a sound file <source> from .nsp format to

 
 
 



Appendix C

Tdat2mtx Version 1.1 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: tdat2mtx [<options>] <source>
-0 <destination> (*.mtx)
This command converts a file <source> from ocr .tdat format to
SPLAT .mtx format <destination>.

Mtx2tdat Version 1.1 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.

-0 <destination> (*.tdat)
-f <sample rate> (8000)
-w <window size> (10.0)
-s <step size> (2.0)
-p <start time> (0.0)
This command converts a file <source> from SPLAT .mtx format to
ocr .tdat format <destination>. rt takes parameters <sample
rate>, <window size>, <step size> and <start time>. These param-
eters must be known and correct. The defaults are only supplied
as much used values.

Phn2lola Version 1.1 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: phn2lola [<options>] <source>
-0 <destination> (*.lola)

Lola2lbl Version 1.0 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: 101a2lbl [<options>] <source>
-0 <destination> (*.Label)

Lb12lola Version 1.0 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: lb12lola [<options>] <source>
-0 <destination> (*.lola)
This command converts a file <source> from PRAAT .Label format to
ocr .lola format <destination>.

 
 
 



Speech file operations

I Component I Description
wavgain Adjust gain of NISTwav file.
wavrate Adjust sampling rate of NISTwav file.
noisify Add Gaussian noise to speech file.
silabel Perform word end-point detection.
remsil Remove silence from speech file.
phnseg Perform phonetic segmentation of speech file.
cutwav Extract labelled speech segments from speech file.

chopwav Split speech file into equal length segments.

Wavgain Version 1.1 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: wavgain [<options>] <source>
-0 <destination> (*)
-a <amplitude level> (32760.0)
This command adjusts the maximum amplitude level <amplitude lev-
el> of a .wav file <source>. The result is stored in <destina-
tion>. Note that the default <destination> is the same as
<source> so that <source> will be overwritten.

Wavrate Version 1.1 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: wavrate [<options>] <source> <sampling rate>
-0 <destination> (*)
This command adjusts the sampling rate <sampling rate> of a .wav
file <source>. The result is stored in <destination>. Note that
the default <destination> is the same as <source> so that
<source> will be overwritten.

Noisify Version 1.1 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: noisify [<options>] <source>
-0 <destination> (*.n.*)
-f <variance fraction> (0.1)
This command adds gaussian noise to a .wav file <source> with
variance that is <variance fraction> of the total signal vari-
ance. This is not a very sophisticated approach, since the
amount of silence have an effect on total signal variance. The
resulting signal is stored in <destination>.

Silabel Version 1.5 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: silabel [<options>] <source>
-0 <destination> (*.sil.lola)
-w <window size> (10.0)
-s <step size> (2.0)
-p <preemphasis constant> (0.98)
-n <minimum no-voice duration> (300.0)
-v <minimum voice duration> (30.0)

 
 
 



Appendix C

This command detects silence in a speech signal <source> and la-
bels it accordingly. It can be used to extract discrete words
from a speech stream. The signal is preemphasised using a preem-
phasis constant of <preemphasis constant>. A hamming window of
size <window size> milliseconds is moved over the signal in in-
crements of <step size> milliseconds. The energy for each frame
is calculated and thresholded to make a silence/voice decision.
In order for a segment to be labelled as silence (....in the des-
tination file), it must be at least <minimum no-voice duration>
milliseconds long. Segments labelled as speech ("w" in the des-
tination file), should equal or exceed <minimum voice duration>
milliseconds. The decision threshold is auto-detected and should
work well in most cases. It can be fine-tuned with the <thresh-
old> factor. The output is written in OGI lola format to
<desti nati on>.

Remsil Version 1.0 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: remsil [<options>] <source>
-c <clean> (switch)
-0 <destination> (*.v.*)
-1 <lola source> (* .lola)
-q <lola destination> (*.v.lola)
-w <window size> (10.0)
-s <step size> (2.0)
-p <preemphasis constant> (0.98)
-n <minimum no-voice duration> (300.0)
-v <minimum voice duration> (30.0)
-t <threshold> (1.0)

This command detects silence in a speech signal <source> and la-
bels it accordingly. It can be used to extract discrete words
from a speech stream. The signal is preemphasised using a preem-
phasis constant of <preemphasis constant>. A hamming window of
size <window size> milliseconds is moved over the signal in in-
crements of <step size> milliseconds. The energy for each frame
is calculated and thresholded to make a silence/voice decision.
In order for a segment to be labelled as silence (....in the des-
tination file), it must be at least <minimum no-voice duration>
milliseconds long. Segments labelled as speech ("w" in the des-
tination file), should equal or exceed <minimum voice duration>
milliseconds. The decision threshold is auto-detected and should
work well in most cases. It can be fine-tuned with the <thresh-
old> factor. The output is written in OGI lola format to
<desti nati on>.

Phnseg Version 1.3 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: phnseg [<options>] <source>
-0 <destination> (*.lola)
-d <di storti on fi1e> (none)
-t <threshold level> (0.5)
-r <region size> (10)
This command segments a tdat (feature) file <source> into
phonemes. The result is stored as a label file <destination>.
The 'distance' between two successive frames is calculated using
a distortion measure. The distance (or distortion) is smoothed
using a quadratic filter with a region of support of <region
size> samples. Phoneme boundaries are assumed to exist where the
distortion exceeds <threshold level> as a fraction of the mean
distortion. NOTE: Phoneme segmentation is a very difficult prob-
lem and accordingly this software does not work very well.

Cutwav Version 1.3 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: cutwav [<options>] <source>
-n <disable numbering> (switch)
-c <disable label coding> (switch)
-1 <label file> (*.lola)
-0 <sound output mask> (*.*.wav)

 
 
 



This command takes a sound file <source> and its corresponding
label file <label file> as input and then generates a sound file
and a label file for each label. The output is written to files
named using the masks <sound output mask> and <label output
mask>. These masks differ from the SPLAT mask convention and is
defined as follows: the first (or only) asterisk is replaced by a
name based on the label as found in the lola file; the second (if
present) is replaced by the base of <source>. A number repre-
senting the n'th instance of the label is appended to the label
name (first asterisk) in the output filename. <disable number-
ing> disables this feature and instances of the same label are
then simply overwritten. Since output files are named after la-
bels, and labels may contain filename-unfriendly characters, the
labels are encoded by default. <disable label coding> disables
this feature.

Chopwav Version 1.0 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.

-1 <label file> (*.lola)
-0 <sound output mask> (*.wav)
-p <label output mask> (*.lola)
-s <chunk size> (10)

I Component I Description
tfa Perform time-frequency analysis of speech file (spectogram).

melcep Extract mel-scaled cepstrum features from speech file.
tea Perform time correlation analysis on speech file.

Tfa Version 1.1 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: tfa [<options>] <source>
-a <circular autocorrelation enable> (switch)
-0 <destination> (*.tfa)
-w <window size> (10.0)
-s <step size> (2.0)
-p <preemphasis constant> (0.98)
This command performs time-frequency analysis (i.e. a spectro-
gram) on a speech signal file <source>. The signal is preempha-
sised using a preemphasis constant of <preemphasis constant>. A
hamming window of size <window size> milliseconds is moved over
the signal in increments of <step size> milliseconds. For
each frame a fft is calculated. The output is written in OGI
tdat format to <destination>. Circular autocorrelation filtering
is a bad idea.

Melcep Version 4.2 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: melcep [<options>] <source>
-a <circular autocorrelation enable> (switch)
-n <no energy> (switch)

 
 
 



-0 <destination> (*.mel)
-w <window size> (10.0)
-s <step size> (2.0)
-p <preemphasi s constant> (0.98)
-f <number of filters> (11)
-c <number of coefficients> (9)
This command extracts mel-scaled cepstrum features from a speech
signal file <source>. The signal is pre~mphasised using a preem-
phasis constant of <preemphasis constant>. A hamming window of
size <window size> milliseconds is moved over the signal in in-
crements of <step size> milliseconds. For each frame <number of
coefficients> mel-scaled cepstrum coefficients are calculated us-
ing <number of filters> triangular filters. The first and second
derivatives of these coefficients are calculated as well and ap-
pended to the feature vector. The output is written in OGr tdat
format to <destination>. Circular autocorrelation filtering is a
bad idea.

Tca Version 2.1 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: tca [<options>] <source>
-a <circular autocorrelation enable> (switch)
-0 <destination> (*.tca)
-w <window size> (10.0)
-s <step size> (2.0)
-p <preemphasis constant> (0.98)
-n <number of coefficients> (9)
-c <centre frequency> (200)
This command performs time correlation analysis on a speech sig-
nal file <source>. The signal is preemphasised using a preempha-
sis constant of <preemphasis constant>. A hamming window of size
<window size> milliseconds is moved over the signal in incre-
ments of <step size> milliseconds. For each frame <number of
coefficients> coefficients are calculated. using a centre fre-
quency of <centre frequency>. The output is written in OGr tdat
format to <destination>. Circular autocorrelation filtering is a
bad idea.

Vector quantisation

I Component I Description
sconn

sconntst
Perform vector quantisation and create codebook.
Encode data file using VQ codebook.

Sconn Version 2.1 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: sconn [<options>] <source>
-n <maximum node count> (mandatory)
-u <sense range high> (mandatory)
-v <sense range low> (mandatory)
-m <sense range minimum> (mandatory)
-0 <code book> (*.cbk)
-e <existing code book> (none)
-p <maximum pass count> (1000)
-s <random seed> (123)
-r <report every> (100)
-a <alpha> (0.085)
-f <r factor> (0.85)
-c <decay constant> (0.0001)

 
 
 



This command creates a vector quantisation code book <code book>
from the mtx file <source>. The rows in <source> represent
training vectors. The training process is stopped when the maxi-
mum number of output vectors exceeds <maximum node count>, the
number of passes through the whole data set exceeds <maximum pass
count> or the cluster size drops below <sense range minimum>.
Cluster size decays exponentially from <sense range high> to
<sense range low> at a rate determined by <decay constant>.
<random seed> seeds the random number generator and the status of
the algorithm is reported every <report every> iterations. See
documentation for definitions of <alpha> and <r factor>. (The
defaults should work well.) <existing code book> is an existing
code book that can be updated using the training file. WARNING:
Updating an existing codebook has not been thoroughly tested.
Using this feature is a bad idea at the moment.

Sconntst Version 1.2 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: sconntst [<options>] <source> <code book>
-0 <sequence> (*.seq)
This command encodes (vector quantises) a mtx file <source> using
the code book <code book>. The output is a set of encoded vector
quanta written to <sequence>.

Hidden Markov modelling

I Component I Description
hmmtrain Estimate HMMparameters from observation sequence.
hmmtest Find probability that observation sequence was generated by HMM.
hmmgen Generate an observation sequence given a certain HMM.
hmmdist Find "distance" between two HMMs.
buildens Build ensemble file from labelled speech file.

label Perform phone classification on pre-segmented speech file.
10la2seq Create token sequence file from OGr lola file.
confuse Create confusion matrix of phone classification.
entropy Calculate entropy of token sequence.

Hmmtrain Version 1.4 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.

-n <number of states> (mandatory)
-m <number of symbols> (mandatory)
-1 <left-to-right> (switch)
-0 <estimated model> (*.hmm)
-u <exi st;ng model> (none)
-e <minimum error delta> (0.000001)
-a <minimum iteration count> (10)
-z <maximum iteration count> (10000)
-r <number of restarts> (5)
-s <seed> (123)

 
 
 



el>. The model has <number of states> states and <number of sym-
bols> symbols. It ;s ;n;t;al;sed e;ther w;th an ex;st;ng model
<ex;st;ng model> or w;th a random model generated us;ng the seed
<seed>. In th;s case;t can be restarted <number of restarts>
t;mes w;th d;fferent random models. The opt;mal model w;ll auto-
mat;cally selected. Dur;ng tra;n;ng a m;n;mum number of ;tera-
t;ons <m;n;mum ;terat;on count>;s forced and the process is
stopped either at <max;mum iteration count> iterat;ons or when
the change in error is smaller than <minimum error delta>.

Hmmtest Version 1.2 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyr;ght (c) 1999 H.P. Combr;nck. All r;ghts reserved.

Hmmgen Vers;on 1.1 last comp;led on Sep 30 1999.
A component of SPLAT Release 1.2
Copyr;ght (c) 1999 H.P. Combrinck. All r;ghts reserved.
usage: hmmgen [<opt;ons>] <hmm>
-0 <sequence> (*.seq)
-n <observat; on count> (10)
Th;s command generates an observat;on sequence <sequence> us;ng
the h;dden markov model <hmm>. The sequence contains <observa-
t;on count> observat;ons. The random number generator;s seeded
from the system clock.

Hmmd;st Version 1.0 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyr;ght (c) 1999 H.P. Combr;nck. All r;ghts reserved.
usage: hmmd;st [<opt;ons>] <hmm1> <hmm2>
-t <# of observat; ons> (SO)

Bu;ldens Vers;on 1.3 last comp;led on Sep 30 1999.
A component of SPLAT Release 1.2
Copyr;ght (c) 1999 H.P. Combr;nck. All r;ghts reserved.
usage: bu;ldens [<options>] <sequence>
-c <d;sable label coding> (sw;tch)
-f <label us;ng filename> (sw;tch)
-1 <label f;le> (*.lola)
-0 <dest;nation> (*.ens)
-s <step s;ze> (2.0)
This command creates a set of ensemble files from the sequence
file <sequence> and the matching label f;le <label f;le>. The
names of the ensemble files are determined by the f;le mask <des-
t;nat;on> and the labels ;n the label f;le. An ensemble f;le
conta;ns all the sequences present ;n the sequence file that rep-
resent a certa;n symbol as determined by the label f;le. <step
s;ze> is the frame increment (in m;lliseconds) that was used dur-
;ng feature extract;on. S;nce ensemble f;les are named after la-
bels, and labels may conta;n f;lename-unfr;endly characters, the
labels are encoded by default. <disable label cod;ng> disables
this feature. If the sequence f;le <sequence> conta;n only a
single label (e.g. a word), then the ensemble f;le can be named
after the sequence file and no label f;le ;s needed. The <label
us;ng filename> switch does th;s. In th;s case the output f;le
nam;ng convention ;s non-standard. Only the f;rst aster;sk has
mean;ng ;n the <dest;nat;on> file mask - ;t ;s replaced w;th the
first part (up to the first '.') of <sequence>.

Label Vers;on 1.3 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyr;ght (c) 1999 H.P. Combr;nck. All r;ghts reserved.
usage: label [<opt;ons>] <observat;on> <hmm l;st>
-n <no squeeze> (switch)
-1 <seg f;le> (*.seg.lola)
-s <step s;ze> (2.0)

 
 
 



This command automatically labels an utterance represented by the
sequence of codebook symbols in <observation>. The utterance
must be pre-segmented in <seg file>. (Only the time information
in this file is used - the labels are ignored.) The sequence of
symbols are assumed to be generated from frames incremented by
<step size> during the feature extraction process. <hmm list>
should contain a white space delimited list of hmm file names
that represent the set of possible labels. Each segment in the
label will be assigned the base name of the file in the list rep-
resenting the closest matching hmm. The names in <hmm list>
should not contains paths. The search path is determined by
<hmm mask>. Labels are squeezed by default (i.e. adjacent repe-
titions merged). <no squeeze> disables this feature. Output is
written to <destination>.

Lola2seq Version 1.2 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: 101a2seq [<options>] <source>
-0 <sequence> (*.seq)
-1 <hmm list> (hmm_list)
This command creates a .seq file <sequence> from a label file
<source> and an accompanying list of hidden markov model files
<hmm list>, that were used to generate the label file.

Confuse Version 1.3 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: confuse [<options>] <file list> <hmm list>
-0 <destination> (none)
-t <label test> (*.lola)
-d <label target> (*.target.lola)
This command compares .lola files generated by some classifier
(such as 'label') to correctly labeled files and creates a confu-
sion matrix to evaluate the classifier performance. It takes as
input a whitespace delimited list of filenames <file list> which
is used together with the mask <label test> to determine the
names of the .lola files to be tested. These files are compared
to (the desired) .lola files designated by the mask <label tar-
get>. The confusion matrix is reported to standard output and
can optionally also be written to a file <destination>. Valid
labels are deduced from <hmm list>.

Entropy Version 1.1 last compiled on Sep 30 1999.
A component of SPLAT Release 1.2
Copyright (c) 1999 H.P. Combrinck. All rights reserved.

This command calculates the entropy (average information in bits
per symbol) of the alphabet used to represent the .seq file
<source> .

Language modelling

I Component I Description
grammar Find N-gram histograms from token sequences.
hst2grm Find N-gram language models from histograms.

score Find language scores for token sequence.

 
 
 



Appendix C

Hst2grm Version 1.1 last compiled on Sep 30 1999.
Copyright (c) 1999 H.P. Combrinck. All rights reserved.
usage: hst2gram <max.n_cbk> <basename 1> [ ... <basename 12>]
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