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SUMMARY

This study investigates the use of vibration and strain measurements on machine tools in
order to identify the propagating wear of the selected tools. Two case studies are
considered, one of which was conducted in the plant of a South African piston
manufacturer. The purpose of the first case study was to investigate the feasibility of
vibration monitoring to identify tool wear, before attempting to implement a monitoring
system in the manufacturing plant. During this case study, data from a turning process
was recorded using two accelerometers coupled to a PL202 real time FFT analyser.
Features indicative of tool wear were extracted from the sensor signals, and then used as
inputs to a Self-Organising Map (SOM). The SOM is a type of neural network based on
unsupervised learning, and can be used to classify the input data into regions
corresponding to new and worn tools. It was also shown that the SOM can also be used
very efficiently with discrete variables.

One of the main contributions of the second case study was the fact that a unique type of
tool was investigated, namely a synthetic diamond tool specifically used for the
manufacturing of aluminium pistons. Data from the manufacturing of pistons was
recorded with two piezoelectric strain sensors and a single accelerometer, all coupled to a
DSPT Siglab analyser. A large number of features indicative of tool wear were
automatically extracted from different parts of the original signals. These included
features from time and frequency domain data, time series model coefficients as features

and features extracted from wavelet packet analysis. A correlation coefficient approach




was used to automatically select the best features indicative of the progressive wear of the
diamond tools. The SOM was once again used to identify the tool state. Some of the
advantages of using different map sizes on the SOM were also demonstrated. A near
100% correct classification of the tool wear data was obtained by training the SOM with
two independent data sets, and testing it with a third independent data set.

Tt was also shown that the monitoring strategy proposed in the second case study can be
fully automated and can be implemented on-line if the manufacturer wishes to. Some of
the contributions of this study are the use of the SOM for tool wear classification, and
conclusions regarding the wear modes of the synthetic diamond tools.

Keywords: Neural Networks, Self-Organising Map (SOM), Vibration, Process
Monitoring, Diamond Tools, Machining, Turning, Tool Condition Monitoring (TCM),
Tool Wear, Wavelets.
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OPSOMMING

Hierdie studie ondersoek die gebruik van vibrasie- en vervormingsmetings op snybeitels
gedurende draai-operasies met die doel om die slytasie van sekere soorte beitels te
identifiseer. Twee gevallestudies word bespreek, waarvan een in die aanleg van 'n Suid-
Afrikaanse suiervervaardiger onderneem is. Die doel van die eerste gevallestudie was om
die moontlike toepaslikheid van vibrasiemetings om beitelslytasie te identifiseer te
ondersoek, voordat daar met werk in die vervaardigingsaanleg voortgegaan word.
Gedurende die eerste gevallestudie is data opgeneem deur die gebruik van twee
versnellingmeters gekoppel aan 'n PL202 intydse FFT analiseerder. Seinkarakteristicke
wat die beitelslytasie kan aandui is uit die data onttrek, en was as die insette vir 'n Self-
Organising Map (SOM) gebruik. Die SOM is 'n tipe neurale netwerk wat sonder enige
 interaksie van die gebruiker leer, en die insetdata kan verdeel in areas wat met nuwe en
gebruikte beitels ooreenstem. Daar is ook aangetoon dat die SOM diskrete veranderlikes
effektief kan hanteer.

Een van die bydraes van die tweede gevallestudie is die feit dat 'n unieke tipe beitel vir
die eksperimente gebruik is, naamlik 'n kunsmatige diamantbeitel, wat spesifiek vir
suiervervaardiging gebruik word. Data vanaf die vervaardigingsproses is opgeneem deur
twee piezo-elektriese vervormingsensors en ‘n enkele versnellingsmeter, gekoppel aan 'n
DSPT Siglab analiseerder. 'n Groot hoeveelheid seinkarakteristicke wat beitelslytasie kan
aandui is automaties vanuit verskillende dele van die oorspronklike seine onttrek. Dit
sluit in karakteristicke vanuit tyd en frekwensie domein data, tydreeks modelkoéffisiénte




asook karakteristieke onttrek van wavelet packet analises. 'n Korrelasiekoéffisiént-metode
is gebruik om die karakteristieke te identifiseer wat die slytasie van die diamantbeitels die
beste beskryf. Die SOM is weer eens ingespan om die graad van slytasie op die beitel te
klassifiseer. Die voordele van die gebruik van verskillende hoeveelhede neurone op die
SOM is ook aangetoon. 'n Byna 100% korrekte klassifikasie van die graad van slytasie is
verkry deur die SOM te leer met twee onafhanklike datastelle en dit te toets met 'n derde
onafhanklike datastel.

Daar is ook aangetoon dat die algehele strategie vir slytasiemonitering in die tweede
gevallestudie ten volle geoutomatiseer kan word, en ook intyds geimplementeer kan word
indien die vervaardiger dit sou verlang. Bydraes van hierdie studie met relevansie tot die
vakliteratuur, sluit in die gebruik van die SOM vir slytasie data klassifisering, asook die
gevolgtrekkings wat gemaak is rakende die slytasiemodusse van die kunsmatige diamant-
beitels.

Sleutelterme: Neurale Netwerke, Self-Organising Map (SOM), Vibrasie, Proses
Monitering, Diamant Beitels, Masjinering, Draai-operasies, Toestandsmonitering, Beitel
Slytasie, Wavelets.
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INOMENCLATURE

Uppercase

A, wavelet approximations of packet n

AB constants for learning rate function for SOM
AMV, base line Absolute Mean Value
AMYV; current Absolute Mean Value at instant i

C Taylor equation constant, wavelet coefficients

CF crest factor

CA, wavelet coefficients approximations of packet n

cD, wavelet coefficients details of packet n

D, wavelet details of packet n

E energy of wavelet packet (Shannon entropy)

K kurtosis

L surface length

Nis 1-neighbourhourhood of neurone i

RAMY; Ratio of Absolute Mean Value at instant i

R, roughness average

R, maximum height of a surface profile from the centre line
R,. mean of the maximum height values for a number of chosen off-cuts
R, rms roughness average

R, peak to valley roughness

R, mean peak to valley value

R, maximum depth of a surface profile from the centre line
R, largest peak to valley value

S skewness, original signal for wavelet analysis

S, () one sided PSD function

T total accumulated time, tool life in Taylor equation

14 cutting speed

w waviness

X rmax maximum value of x(f)

X s rms value of x({)




Lowercase

a,a,..a,

b,b,...b,

AR coefficients

MA coefficients

subscript denoting Best-Matching Unit for SOM
lower frequency cut-off for frequency band energy

upper frequency cut-off for frequency band energy

height of surface profile above or below the centre line
neighbourhood function for SOM

summation index of ARMA model
Best Matching Model for SOM

model vectors for SOM

material exponent in Taylor equation, index of AR, MA, and ARMA
models, number of off-cuts for roughness assessment

order of AR model
order of MA model

location of BMU on SOM grid

location of unit i on SOM grid

signal sample /

time index, training step for SOM

sequence for MA model
sample vector for SOM
mean value of x(f)

observation sample for SOM
AR, MA or ARMA model of x(t)

sensor observation
ideal trend value

mean of ideal trend vector
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Greek symbols

a(t) learning rate function of SOM

o, correlation coefficient

o’ variance

v wavelet function

w2 frequency band energy
Abbreviations

AC Adaptive Control

ACC Adaptive Control Constraint
ACO Adaptive Control Optimisation
AE Acoustic Emission

AFM Atomic Force Microscopy

Al Artificial Intelligence

ANOVA Analysis of Variance

AR Auto Regressive

ARMA Auto Regressive Moving Average
BMU Best-Matching Unit

CAD Computer Aided Design

CNC Computerised Numerical Control
CWT Continuous Wavelet Transform
DWT Discrete Wavelet Transform

FFT Fast Fourier Transform

M Federal Mogul

FN Fuzzy Net

FRF Frequency Response Function
IDWT Inverse Discrete Wavelet Transform
KBES Knowledge Based Expert Systems
MA Moving Average

MRR Metal Removal Rate

NC Numerical Control

OR Operations Research

PC Personal Computer

PDC Polycrystalline Diamond Compact

PSD Power Spectral Density
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ms root mean squarc

SOM Self-Organising Map
STFT Short-Time Fourier Transform
SURE Stein’s Unbiased Risk Estimate
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CHAPTER 1

INTRODUCTION AND LITERATURE

1.1 Introduction

The use of flexible manufacturing equipment has gained more ground in recent years due
to the high demands of a fast growing industry. In order to justify the investment
associated with the purchase of such equipment, it is necessary to achieve the maximum
possible utilisation of each machine. Furthermore, manufactured goods have to be
supplied with sufficient quality and low cost. Monitoring of the manufacturing process
plays a very important role to avoid down time of the machine, or to prevent unwanted
conditions such as chatter vibration, excessive tool wear or tool breakage. This is also
very important in the unmanned machining environment, where the process must be
absolutely reliable, and be able to operate non-stop without an operator checking for
errors.

Increasing interest has been shown in the design of process control systems for
manufacturing. This interest is driven by the rapid development of advanced sensor
technology, signal processing and the successful implementation of intelligent control
systems. Modern monitoring systems are generally required to operate on-line, and must
be able to interpret the working conditions at any given time. The growing need in
industry present various opportunities and challenges for research, and the development
of new products. One of these challenges lies in devising methods for the complete
optimisation of the machining process. Optimisation of machining processes can be
divided into many sub problems, for example:

- Optimisation of the machining parameters.

- Maximisation of the process output.

- Minimisation of operating costs.

- Minimisation of the tool wear.

These sub problems are often related, and one problem may constrain another, such as the
optimisation of machining parameters with tool wear as a constraint. Many of these
problems have been researched for various processes. A wide variety of techniques have
been developed and implemented, for industrial and academic purposes. Due to the wide

13




Chapter 1: Introduction and literature

variety of manufacturing processes, it is not possible to apply a single technique to all
operations. It is not uncommon for a monitoring system to be reliable for one process, but
unsatisfactory for the next. However, a number of techniques exist that can be used for
different processes, if the necessary adjustments are made to them.

It is widely accepted that intelligent, sensor based manufacturing is vital to achieve
reliable operation of a manufacturing process [1]. Sophisticated signal processing supply
information about the manufacturing conditions that enables optimisation, control and
decision making criteria. Due to the many factors that influence manufacturing process,
they are very difficult to model mathematically. Therefore, sensors are generally needed
to solve the optimisation problems described above. Sensors supply the information that
researchers are unable to determine from pure mathematical modelling. Using this
information, it is however possible to determine empirical equations describing the
process.

This study deals with tool wear monitoring. However, studies of surface roughness and
process optimisation are very often found in conjunction with tool wear studies. In order
to get a better understanding on the subject of wear monitoring, a wide range of \iterature
in the fields of process monitoring, process optimisation, tool wear and surface roughness
monitoring were studied. In this chapter, the literature from the various fields dealing
with Tool Condition Monitoring (TCM) are discussed.

1.2 Process monitoring

1.2.1 Sensors for process monitoring

A wide variety of sensors for process monitoring are available today. The most common
sensors found in the industry are force, power and acoustic emission sensors. Others
include [1,2]:

- Flame detector - Smoke sensor

- Sound level sensor - Image sensor

- Lubrication oil detector - Temperature sensor

- Touch sensor - Tool wear sensor

- Edge position sensor - Accelerometer (vibration)

- Limit sensor - Seismic sensor

- Clamping force sensor - Tool damage sensor

- Speed sensor - Current sensor

- Torque sensor - Acoustic Emission (AE) sensor

14




Chapter 1: Introduction and literature

- pH sensor - Machined surface roughness sensor
- Level meter - Coolant temperature sensor

- Thermal deformation sensor - Chip monitoring sensor

- Temperature distribution sensor - Dust sensor

- Humidity sensor - Pressure sensor

- CO, gas sensor

These sensors and many more have found their rightful place in the manufacturing
industry. Most of them are only used for a specific monitoring objective. The focus of
monitoring may fall on one or more of the following areas [1]:

1. The machine (diagnostics and performance).

2. The tools for machining (wear, lubrication and alignment).

3. Workpiece (surface roughness, tolerance, geometry).

4. Process (chip formation, energy consumption, temperature).

The development of smart sensor technology also present new and exciting developments
for the manufacturing industry [1,3,4,5]. With smart sensors, the time needed for signal
processing are reduced significantly, thus enabling faster response for an on-line control
scheme. These sensors can also possess abilities such as self-calibration, self-diagnostics,
signal conditioning and decision making. This development, together with sophisticated
signal processing software, makes inexpensive, fast and accurate measurements possible.
With control systems that can respond at almost the same instant as sensor measurement,
changes to the machine parameters can be made to optimise the machining conditions.
Numerous optimisation techniques for control systems exist that could be used to

improve machining speed and quality.

As will be shown further in this chapter, the emphasis in current international research is
to integrate sensor systems. This enables more accurate and robust characterisation of a
process. Integrated sensor systems can handle noisy input data, which is caused by
random disturbances in the machining process. The sensor integration systems include
learning schemes such as neural networks, and have the capability to handle complex
processes which defy mathematical modelling.

15




Chapter 1: Introduction and literature

1.2.2 Applications of monitoring systems

Applications for tool wear and surface roughness monitoring systems are found in a wide
range of modern manufacturing industries. The on-line monitoring of tool wear allows
timely tool replacement with minimum down time. A few examples are:

- The automotive industry.

- Manufacturing of machine components.

- Mass production of household items.

- Computerised Numerical Control (CNC) machining optimisation.

- Electrical / Mechanical product manufacture.

It has been shown that monitoring systems are most often used in turning and drilling
processes, with milling and grinding in second place, according to Dornfeld et al. [1].
They also suggest that no monitoring system should be expected to operate with 100%
reliability, although failures almost always occur due to human error. In most cases the
demand for a monitoring scheme is to monitor tool breakage, tool wear and collision.
Most manufacturers state that reliable operation of the manufacturing process is more
important than quality monitoring. Some industries may have monitoring requirements
that have never been explored. However uncertain these demands may be at the moment,
the already existent need in the manufacturing industry for reliable monitoring systems is
evident.

1.3 Tool wear monitoring

1.3.1 Introduction

The monitoring of cutting tool wear is a more complex task than expected, because tool

wear induces very small changes in a process with a very wide dynamic range.

Furthermore it is difficult to identify whether a change in a signal is caused by tool wear

or a change in the cutting conditions. The task of tool wear monitoring can be subdivided

into a number of stages [6]:

- Sensor selection and deployment.

. Generation of a set of features indicative of tool condition.

_ (Classification of the collected and processed information as to determine the amount
of tool wear.

- A further step, which is not always included, is what we do about it, like the control
or optimal tool replacement strategy.

16
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Through the years, a number of different types of wear geometry have been identified,
depending on the following [6,7,8]:

- Cutting tool material.

- Workpiece material.

- Tool geometry.

- Cutting conditions.

Tool wear is also generally divided into five distinct stages, namely [9]:
1. Initial stage of wear.

2. Regular stage of wear.

3. Micro-breakage stage of wear.

4. Fast wear stage.

5. Tool breakage.

Most authors identify the initial, regular and fast wear stage with their monitoring
strategy. It is also assumed by some authors that tool wear only consists of the initial,
regular and fast wear stages. It has been established by various researchers that the initial
and fast (before tool breakage) stages wear occur more rapidly than the regular stage. The
reason for this behaviour is not clear from any of the surveyed literature.

1.3.2 Tool failure modes

It is important to identify the different tool failure modes in order to select appropriate
operating conditions for machining. The most widely researched tool failure modes are
flank wear, breakage (fracture), crater wear and plastic deformation [10]. Other modes
include notching (groove wear), cracking and chipping. Notching and chipping changes
the tool nose curvature. Figure 1.1 displays the tool failure modes, as depicted by Rao
[11]. Flank and crater wear are generally accepted as the normal tool failure modes,
because the other failure modes can be avoided by selecting the proper machining
parameters. The growth of flank and crater wear are directly related to the cutting time
(or length of cut), unlike some of the other failure modes which can occur unexpectedly,
even with a new tool.

17
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Plastic
deformation

Notching
Cracking
Crater S:::D

wear
/

Flank
wear
Breakage

Chipping

Figure 1.1: Tool failure modes

It is already well established that flank wear has the greatest influence on the workpiece
dimensions and surface quality [11]. For this reason flank wear has been widely
researched, and ways and means of predicting it has been the pursuit of researchers for
many years. However, this study demonstrates that certain tools can exhibit different
dominant modes of failure; such as the synthetic diamond tools investigated in Chapter 4,
A brief discussion of the different tool failure modes are made here:

A. Flank wear

Flank wear is the volumetric loss at the top of the tool tip edge, and is mainly caused by
abrasion. It is of course normal that a tool will wear out at some or other stage, depending
on the type of work it has been subjected to. Some authors affirm that the flank wear in
coated tools first occurs due to abrasion, and, as the cutting process continues, the
temperature also increases and diffusion also occurs [9]. Flank wear normally occurs at
lower operating speeds.

B. Fracture

Fracture is a mode of failure characterised by breakaway of material on the tool edge.
Fracture occurs when the feed-rate is too high, or when a tool is used with too low
fracture strength.

18
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C. Crater wear

Crater wear is a mode of failure predominantly caused by diffusion of tool material into
the chip when operating at high speeds. The tool-chip interface temperature governs this
mode of failure. This is in its turn a function of the speed and feed-rate.

D. Plastic deformation

Plastic deformation starts when the temperature of the tool tip reaches a certain value.
This implies that the tool yield strength is lowered below the existent normal stress.
Further plastic deformation results in a temperature increase that causes complete failure.
Keeping the temperature increase at the tool tip edge lower than a critical value can
prevent this failure mode.

1.3.3 Tool wear monitoring techniques

A. Direct and Indirect systems

A number of approaches to monitor tool wear exist. These techniques can be divided in
two categories, namely direct and indirect. Direct methods always deal with a
measurement of volumetric loss at the tool tip, while indirect methods seek a pattern in
sensor data from the process to detect a failure mode [1]. Direct methods are of less
importance to this study. In general, direct methods are sensitive to dirt and chips, and
therefore they are not commonly accepted in industry.

Indirect methods will be discussed in greater detail. Indirect methods are said to be less
accurate than direct methods, but have found more acceptance in industry, due to the fact
that most indirect methods are easily interpreted, cost-effective, and in some instances
more reliable than direct methods. Also, for some applications, it might not be possible to
use a direct monitoring method, due to the nature of the process.

B. Continuous and Intermittent systems

The second important distinction to be made with tool wear monitoring systems is
between continuous and intermittent systems [1]. In the case of continuous systems, the
measurement variable is available throughout the machining process. This enables the on-
line classification of the process, and ensures that sudden changes can be reacted upon in
time. This study will focus on continuous systems.
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In the case of intermittent systems, the variable is only recorded during intervals in the
machining process. This method has many obvious disadvantages, which includes time
losses and high costs. One practical application of an intermittent system can be the
detecting of a tool or wear measurement on a magazine of tools, while the machine is
using a different tool.

C. Sensors for tool wear monitoring

Monitoring usually takes place in very hostile environments. Subsequently, sensors used
for tool wear monitoring should be robust and simple to operate. The use of multiple
sensors can enhance the performance of tool wear monitoring systems, because each
sensor is independently related to the tool wear. Sensors used for TCM must meet certain
requirements, such as [1]:

e Measurement as close to the machining point as possible.

e No reduction in the static and dynamic stiffness of the machine tool.

e No restriction of working space and cutting parameters.

e Wear and maintenance free, easy to replace and of low cost.

e Resistant to dirt, chips and mechanical, electromagnetic and thermal influences.

e Function independent of tool and workpiece.

e Adequate metrological characteristics.

e Reliable signal transmission, e.g. from rotating to fixed machine components.

1.3.4 Tool Condition Monitoring (TCM) systems

A discussion on some TCM systems follows. Surface roughness analysis is also a indirect
TCM method, but will be discussed in a separate section, because it is a wider field of
study not only dependent on tool wear.

A. Mathematical modelling: Analytical and empirical

Analytical mathematical models can be very useful to study the effects of tool geometry
on the various machining parameters, but these models are too complex to be of any
value in a real-time TCM system. The non-linear, stochastic and time invariant nature of
machining processes, make modelling very difficult [6]. A transformation between the
signal characteristics and the physical law representing the process is necessary to
establish such a model. Because of the complexity of the process, modelling of the
physical law cannot be performed analytically in most instances.
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The only remaining option is empirical modelling which can be performed parametrically
or non-parametrically. Parametric modelling usually represents only an adaptation of the
analytical model and is of limited capability. This method also requires the inputs of an
expert familiar with the relational mechanisms and an ability to translate these into simple
rules [10]. Non-parametric modelling methods are based on a statistical description of
natural phenomena.

Empirical models have been used with great success for describing many manufacturing
processes. Grabec et al. [13] used empirical modelling for estimating tool sharpness on a
lathe, for the determination of surface roughness in a grinding process, and for classifying
surface quality of paper. Ruiz et al. [14] used a multi-sensor empirical approach to
estimate tool wear, and identified tool wear with three different empirical identification
methods.

A common mathematical model for the case of tool wear can be generated by Taylor’s
tool life equation [11]. The equation is:

Vrt =C (1.1)
The equation provides a relationship between cutting speed ¥, and tool life 7, and two
parameters, n and C, depending on tool and workpiece material. The Taylor parameters
are generally determined empirically if they are unknown. This method is useful in
establishing a tentative value for the expected tool life. It was found from experiments
that the Taylor equation could yield estimates within = 35 percent of the actual tool life.
This equation is common in the literature and various versions have been adapted to
enhance the equation’s performance.

The use of an analytical model for force reconstruction for wear identification was
proposed by Braun et al. [15]. This model can be used for the prediction of chatter onset.
Ravindra et al. [16] proposed a mathematical model based on multiple regression
analysis. The model describes the wear-time and wear-force relationships for turning
operations. Good correlation was found between the cutting force and progressive tool
wear.

21
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B. Force-based monitoring

It is well established that worn tools cause an increase in the cutting force components

[1,17,18]. Many types of sensors have been developed to monitor the cutting force in

different directions for a number of processes. These include [1]:

Direct measurement dynamometers

These sensors are based on the piezoelectric effect and can measure dynamic cutting
forces very accurately. However, these sensors are expensive and in most cases not
protected from overload, and therefore not widely used in industry yet. There is also
some difficulty in protecting the sensors against cutting lubricant. Force-measuring
tool turrets have been developed that can measure three force components, but are
still of a very high cost.

Plates and rings

Force-measuring plates can be fitted relatively easy on turning machines between the
turret housing and the cross slide, or between the turret disc and slide. These thin
plates are fitted with piezoelectric force measuring sensors. These sensors have some
advantages, but in some cases they are subject to many disturbing factors, such as
thermal expansion.

Pins, extension Sensors

These sensors are suitable for tool breakage monitoring in rough machining. The
sensors are fitted on force-carrying machine components to detect the cutting force
indirectly. The identification of a suitable fitting position can only be determined
experimentally, which is a disadvantage.

Measurement of displacement

Non-contact sensors to detect the displacement or bending of tools can be mounted
directly on the tool [19]. However, these sensors are subjected to the high risk of
damage and disturbance due to chips, dirt and cooling lubricant.

Force-measuring bearings

Bearings and bushes can be specially fitted with strain gauges in certain positions t0
measure cutting forces. Force-measuring bearings require a low-pass filter due to
disturbance from the ball contact frequency, and therefore high frequency signal
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processing is not possible. The force-measuring bushes are only accepted in special
cases because they reduce the rigidity of the machine.

e TForce and torque at spindles
These systems can be very complex because they have to monitor the torque of the
spindle with high resolution, and within the entire range of the motor. Furthermore,
the signal must be transmitted on a non-contact basis. The installation of such systems
is not possible on most machines because of a constraint on the available space for
sensor mounting.

C. Measurement of motor current

The measurement of motor current is an easy alternative to the above systems and can be
installed without much difficulty. A wide range of sensors are available for this purpose.
However, due to fluctuations in the signal due to friction, the system is not always
absolutely accurate. Also, tool breakage is not detected directly, but only after damage
has occurred. Spindle power is also proportional to the cutting force in the primary
motion, which is not always sensitive enough for tool wear monitoring. The cutting
process consumes only a small portion of the measured power of the spindle, which also
makes monitoring difficult. However, monitoring systems based on the principle of
spindle current can be successful when used with the right process [18].

D. Vibration

Piezoelectric accelerometers can measure the machine vibration caused by oscillations of
cutting forces. It has been shown by previous authors that the vibration levels change
with tool wear (see references below). Accelerometers fulfil the environmental
requirements for tool wear monitoring because they are generally resistant to the
aggressive media present in machining operations. Accelerometers can be of low cost,
and can measure vibration levels within a very wide frequency range. For these reasons,
accelerometers are often used for TCM [9,18,20-26].

One of the main difficulties of monitoring the tool life through vibration is to identify the
frequency range that is actually influenced by tool wear, since most machining processes
consist of many factors that produce vibrations that are not related to tool wear. The
frequency range for ordinary machining operations is usually between 0 — 10 kHz.
Bonifacio and Diniz [9] suggest that the useful signal falls between 0 — 8 kHz. Some
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authors found that two ranges of frequencies are sensitive to tool wear. The first
relatively close to 0 Hz and the second at a higher value, mostly below 8 kHz [9]. It
would seem that the frequency range sensitive to tool wear is absolutely dependent on the
specific machining operation, and have to be determined experimentally. A ‘global’ range
that would satisfy all machining operations does not exist.

E. Acoustic Emission (AE)

Cutting processes produce elastic stress waves which propagate through the machine
structure. Different sources in the cutting process generate these stress waves known as
Acoustic Emission (AE). Sources of AE in metal cutting are:

- Friction on the tool face and flank.

- Plastic deformation in the shear zone.

- Crack formation and propagation.

- Impact of the chip at the workpiece.

- Chip breakage.

The fact that crack formation generate AE, makes AE very useful for tool breakage
detection. Although a wide range of AE sensors exist, only a few can withstand the
hostile environments of machining processes. AE sensors specially designed for TCM
purposes exist, which can be attached to the machine tool surface. However, a new
concept is to use a coolant stream to transmit the AE waves from the tool to the sensor.
The advantage is that the distance between the cutting area and the sensor is reduced, and
thereby damping effects are minimised. Some problems with this approach is that bubble
free coolant is required, and monitoring may be disturbed when chips pass through the
coolant stream. Another approach is to use non-contact transmission of the signal,
allowing measurement near the process. Many AE based tool wear and breakage
monitoring systems have been implemented successfully [18,27-31].
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F. Other methods

Some of the other methods for indirect / direct tool wear monitoring (excluding surface
roughness approaches) are:

e Ultrasonic systems [32].

e Use of a non-contact capacitive sensor [33].

e Vision systems [34,35].

e Laser scatter methods [36].

¢ Stereo imaging [37].

1.3.5 Decision making techniques

With the sensor information from the different TCM systems described in the previous
section, a decision must be made regarding the tool condition. This decision is generally
referred to as the classification. In complex problems it is always better to combine
knowledge from sensor data in some way for best results. The functions of a modern
TCM system is shown in figure 1.2 [6].

Signal || Feature 1
Processing Extraction

System [P  Senmsor Classifier

Figure 1.2: Functions of TCM system

A discussion on classification techniques for TCM follows here, with an introductory

discussion on features, on which most classification techniques are based.

A. Features

Most decision making techniques for process monitoring are based on features.
Information from the force, vibration or AE signal acquired during machining can be
used for the monitoring of the cutting tool. Features can be extracted from these signals
that show effective and consistent trends towards tool wear. Once these features are
extracted through preliminary processing of the signal, the tool state can be predicted
with a pattern recognition or other classification technique [38].
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These features can be derived from time and / or frequency domain data, for example:
- Mean.

- Variance.

- Skewness.

- Kurtosis.

- Crest Factor.

- Power in a specific frequency band, by means of the Fast Fourier Transform (FFT).

- Auto Regressive (AR) and Auto Regressive Moving Average (ARMA) coefficients.

One useful approach in the literature is the use of AR and ARMA coefficients. AR
coefficients computed for a signal represent the characteristic behaviour of the signal.
When the signal change during the cutting operation as a result of tool wear, the model
coefficients also change and can then be utilised to monitor the progressive tool wear.
Hence, AR coefficients can also be used as features for pattern recognition [38].

El-Wardany et al. [20] found that the instantaneous Ratio of Absolute Mean Value
(RAMV;) was useful in eliminating false alarms that occurs when monitoring drill wear
and breakage in conjunction with kurtosis and cepstrum analysis. They state that the
kurtosis value is useful in identifying transients and spontaneous events within vibration
signals. Cepstrum analysis is used to identify a series of harmonics or side bands in the
power spectrum and to estimate their relative strength. Drill breakage consistently caused
a peak at the quefrency corresponding to one spindle revolution. RAMYV; was used to
trigger the onset of kurtosis and cepstrum analysis. It is calculated as follows:

AMY,

RAMV, =———

T AMY,
Where AMV, represents a base line instantaneous Absolute Mean Value calculated at the
start of the drilling process, and AMYV; is the current Absolute Mean Value calculated at

the i-th revolution of the spindle.

(1.2)

B. Trending, threshold

A very simple decision making technique can be based on the normal ‘trending’ of the
features. When a certain feature, or a set of features, reach certain pre-established set
limits, an estimation of the tool condition can be derived. Certain threshold values for the
features can be established that can be related to a certain tool condition. These thresholds
must be determined experimentally. The difficulty with this method is to determine the
correct threshold value, especially under diverse cutting conditions.
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C. Ratio

Some authors suggested that two frequency ranges must be identified from the original
signal [9]. The one range must be sensitive to tool wear, the other must be insensitive. For
instance, if the measurement was made from 0 — 8000 Hz, it must be split (using
appropriate filters) into a 0 — 4000 Hz signal, and a 4000 — 8000 Hz signal. If the lower
range is more sensitive to tool wear, a ratio between the two ranges can be calculated. If
this ratio exceeds a certain pre-established value, it can be deducted that the end of the
tool life has been reached.

This can also apply for a ratio between the signal recorded from a fresh tool to that
compared with a worn tool. The problem with this method is that it is unable to account
for tool breakage. When the tool breaks, a sudden fall of the signal occurs, and the
rationing method will not detect the breakage.

D. Neural networks

The use of neural networks as a secondary, more sophisticated signal processing and
decision making technique have been researched and implemented by many authors in
various fields of manufacturing. This is also very true for TCM [6,39-53]. The use of a
neural network makes the decision making much more accurate because it can use a lot of
independent data simultaneously to make a correct decision or classification. The
extraction of the underlying information and the robustness towards distorted sensor
signals are two of the most attractive features of neural networks.

This also applies for sensor integration schemes for TCM, by which data from a selection
of sensors are used for classification. Combining features from the vibration, AE, force
and current signals can result in a network that can predict the tool state at any given time
[6]. The most common neural network tested in machining operations is the
Backpropagation algorithm.

Despite the current popularity of backpropagation as a supervised learning algorithm, its
need for a correct tool classification in every training sample limits its successful
application for on-line tool wear monitoring. This is because the machine operation must
be interrupted in order to acquire correct information about tool condition. Since the
system must handle numerous combinations of tool-type, material, and cutting
conditions, a supervised learning procedure like backpropagation is undesirable. Thus, it
would be helpful to have a neural network that can utilise unsupervised training samples
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[6]. The use of a self-organising neural network that can utilise unsupervised training
samples will be demonstrated in this study. The successful implementation of neural
networks is dependent on the proper selection of the network structure, as well as the
availability of reliable training data.

E. Fuzzy logic

Many authors [54-59] have researched the concept of fuzzy logic to classify tool wear. It
has been shown that fuzzy logic systems demonstrate a great potential for use in
intelligent manufacturing applications. While neural-network models cannot directly
encode structured knowledge, fuzzy systems can directly encode structured knowledge in
a numerical framework. Additionally, fuzzy control systems is capable of estimating
functions of systems with only a partial description of the systems’ behaviour. This is
very difficult to construct by simply using neural-network models.

Neural networks and fuzzy systems are also combined into a so-called Fuzzy Net (FN).
FN systems are able to facilitate a simple training procedure for a complex system such
as a machining process. FNs require little memory and have the capability to adapt to the
process when changes are made. An in-process FN system to monitor tool breakage were
designed and implemented successfully by Chen and Black [54], concentrating on end
milling operations.

F. The coherence function method

Li et al. [21] found that the coherence function of two crossed accelerations can be used
as an easy and effective way to identify tool wear and chatter. They found that with
progressive tool wear, the autospectra of the two accelerations and their coherence
function increase gradually in magnitude around the first natural frequencies of the cross-
bending vibration of the tool shank. As the tool approaches a severe wear stage, the peaks
of the coherence function increase to values close to unity. This was also proved in theory
by the authors. However, there are two conditions to be fulfilled when using this
approach: The first is the careful selection of sensor locations on the tool shank. The
second is the high-speed computation required for real-time monitoring on the tool
performance, as well as the need for a fast FFT co-processor.
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G. Other methods

There also exist a number of other decision making methods, which include:
e Knowledge Based Expert Systems (KBES) [10].

e Pattern recognition algorithms [38].

1.4 Surface roughness analysis

1.4.1 Introduction

Surface roughness is one of the most important factors in evaluating the quality of the
machining operation. Because it is sometimes easier to measure the surface roughness of
the machined component than to measure the amount of wear on the tool, surface

roughness estimation can be utilised to monitor the tool wear [60].

Cutting conditions, such as cutting speed, feed rate, depth of cut, tool geometry and
material properties of the tool and workpiece, significantly influence the surface finish of
the workpiece material. If these factors are known and set correctly, an in-process surface

roughness measurement system can also indicate a worn tool [12,61].

Surface inspections in industry have been conducted typically as a poOSt-process
operation, which is both time consuming and uneconomical since a number of non-
conforming parts can be produced prior to inspection. This underlines the importance of
devices to monitor surface finish continuously without interrupting the machining
process.

Several methods have been researched to estimate surface roughness on-line in flexible

manufacturing systems. Some of the other methods are [60]:

- Correlation between surface roughness and cutting vibration to develop an on-line
roughness measuring technique.

- Image processing, stray light and laser focus methods [12].

- Roughness measurement with non-contacting inductance pick-up.

- Direct measurement with a stylus (contacting sensor or profilometer).

- Ultrasonic sensing approach [12].

As with TCM systems, roughness monitoring systems can also be divided into direct and

indirect approaches. This section concentrates on tool wear and vibration monitoring with
relevance to surface roughness monitoring.
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1.4.2 Surface roughness analysis and tool wear

The surface roughness of machined components holds direct correlation with the amount
of wear on the cutting tool [62,63]. A logical next step is to use the roughness
information to control the machining operation as the tool wears. To maintain a certain
roughness, the feed and cutting depth must either be increased or decreased to maintain
the workpiece quality. For this, relatively simple geometric control systems can be
developed, that measure the roughness, calculate an error value, and then change certain
machining parameters accordingly.

The ultimate goal is to develop an automated in-process monitoring system that would
counteract any troublesome external factors. Process parameters could be varied in-
process with an adaptive or geometric control scheme, which would ensure consistent
part quality [12].

Bonifacio and Diniz [9] found that vibration of the tool is a reliable way to monitor the
growth of surface roughness in finish turning, and can be used to establish the end of tool
life for these operations. Flank and groove wear mostly influence surface roughness.
Some researchers found that there is increased amplitude of roughness at the beginning
stages of cut, a lesser tendency in the middle and again an increasing tendency at the end
of tool life. In finish turning, it is important to monitor the surface roughness in order to
establish the moment to change the tool.

1.4.3 Vibration monitoring and surface roughness analysis

The average surface roughness of a machined part can be assumed to be the result of the
superpositioning of a theoretical profile computed from cutting kinematics, and of the
oscillatory profile determined by the relative vibration between the cutting edge and the
workpiece [64]. The cutting kinematics are influenced by parameters like speed and feed
rate, while the relative vibration between the tool and workpiece are caused by the
random resistance against cutting, that causes a stick-slip process between the chip and
the tool.

The ideal or theoretical surface profile can be easily calculated from the cutting
kinematics. The actual surface profile can be measured, or it can be estimated by
measuring the relative vibration between the tool and the workpiece. This makes it
possible to determine the surface roughness on-line without interrupting the machining
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process. However, there are a lot of practical problems involved when working in a

realistic machining environment.

One problem is that chatter between the tool and workpiece causes large vibrations that
cannot be superimposed on the surface roughness. Another problem is that loose metal
parts and other external factors easily distort signals from the sensors. However, the
method has been successfully implemented in dry turning with ferrous metals by Jang ef
al. [60]. They suggested that further research be done in this field.

Bonifacio and Diniz [9] did experiments with coated carbide tools in finish turning,
measuring in the 0 — 8 kHz range. The vibration was measured on two channels, one in
the cutting direction and one in the feed direction. The rms value was used to compare
sets of measurements. They also varied the feed and cutting speeds with different
experiments. They found that cutting speed had a much larger influence on the tool life
than the feed. They also found that both vibration and roughness measurements
correspond to a certain amount of tool wear at a given time. They also discovered that an
increase of flank wear causes an increase in vibration in a large frequency range (0-8
kHz), despite the fact that some authors state that only changes in some narrow frequency
ranges take place. However, this discovery is definitely process dependent.

1.4 4 Parameters used in roughness monitoring

A. Surface Texture

A surface which is nominally smooth and flat will always exhibit some roughness, which
may vary from fine to coarse, depending on the finishing operation used. It may also
exhibit some waviness, but some surfaces exhibit roughness and waviness, and may also
be curved, as shown in figure 1.3 [65].
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Figure 1.3: Roughness and Waviness

Figure 1.3 illustrates the two components of surface texture, which are:
e Roughness
The irregularities in the surface texture which are inherent to the production process,
but excluding waviness and errors of form.
e Waviness
This is the component of surface texture upon which roughness is superimposed.
Waviness may result from such factors such as machine or workpiece deflections,

vibrations, chatter or heat treatment.

Each pattern is characterised by the lay (the principal direction of the predominant

surface pattern), the spacing of the principal crests and, in height, its departure from a
reference line.

B. Assessment of surface roughness

The standard method for assessing surface texture is based on traversing a stylus across
the surface to produce an electrical signal, which can generate the surface profile on a
chart or an average reading on a meter. Roughness average, R,, is defined as the
arithmetical average of the profile above and below the reference line throughout the
prescribed sampling length. This is illustrated in figure 1.4. Surface roughness values are

normally assessed as mean results of several sampling lengths taken consecutively along
the surface.
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Figure 1.4: Definition of the centre line

Over a length of surface L, the centre line is a line such that the sum of the areas
embraced by the surface profile above the line is equal to the sum of those below the line,
thus:

areasA+C+E+G+I=areasB+D+F+H+J+K (1.3)

The R, value is the average height of the profile above and below the centre line [65]:

R = h +h,+h+. h,
* L

L (1.4)
=—[|hldL
LO

where & is the height of the profile above or below the centre line at unit distances apart.

The units of L is not added into the equation - R, is normally expressed in pm.

R, = ’{—j;hz(x)dx (1.5)

R, is the peak to valley value for a surface profile.

R, is the rms value forR,:

R, is the largest R, value over a length L.

R, is the mean value of all the R, values within a length L.

R, is the maximum depth of a surface profile from the centre line.
R, is the maximum height of a surface profile from the centre line.

R,, is the mean of R,, thus

1
Tp&e v (1.6)
where n = number of off -cuts
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These are the basic parameters used for surface roughness assessment. The same type of
parameters can also be derived to quantify the waviness of the profile. A W is used
instead of an R as a reference to waviness. Depending on the type of operation, some of

these parameters will be specified to fall within certain limits. In many instances, the R,

value alone is satisfactory.

1.5 Diamond tools

1.5.1 Introduction

The use of diamond tools for ultra-precision manufacturing have gained much ground in
recent years. This includes the use of single-crystal diamonds in the production of optical
and magnetic parts such as magnetic discs, laser mirrors, polygon mirrors and copier
drums [66]. Artificial diamond tools are also preferred in machining of aluminium,
because of diffusion occurring between carbide coated tools and aluminium. This is
especially true in the automotive industry, for the manufacturing of pistons and other
automotive parts. Diamond tools can also generate outstanding surface quality when used
with ultra-precision CNC machines. The overall quality of the product is a function of the
tool edge sharpness and the machine stability. When manufacturing a piston, the surface
finish must possess certain qualities to ensure long life of the part. When the surface of
the piston wears, it must allow grooves for adequate lubrication. This is also the reason

why a certain shape of diamond tool is used for the manufacturing of pistons.

It is known that the surface profile is made of repetitive tool passes on the face
perpendicular to cutting direction. When using diamond tools, it is generally accepted
that the surface is wholly a duplicate of the tool geometry, which is not always the case
with other tools. Also, diamond has very little attracting force to other materials, making
it more efficient in duplicating its own shape on the target surface. Diamond tools can be
resharpened after a certain amount of wear has occurred. This is possible until all the
usable diamond material is finished.

1.5.2 Diamond tool wear studies

Choi and Kim [66] researched the single-crystalline diamond tool wear in the
manufacturing of hard drives for Personal Computers (PCs). The objective was to provide
information on the optimal regrinding time of the diamond tool as well as to minimise

material loss by ensuring machining accuracy. A monitoring system was developed using
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the frequency response from force and acceleration signals. The wear features that were
used included mostly the energy within a specific frequency band.

They found that the diamond tool also display five stages of wear, namely the initial,
normal, micro-fracture, wholly worn and tool breakage stages. The wear features used to
classify the tool wear yielded positive results, and it was found that the dominating wear
pattern is micro-chipping, rather than crater wear and flank wear.

Afaghani et al. [67] studied the effects of diamond tool grain size in machining SiC-
particulate-reinforced epoxy composites. They found that a coarse-grained tool is
preferred in cutting the composite because tool wear increases drastically when the
composite particle size is increased. They also found that the wear mechanism of the
sintered diamond tool involves tearing off of diamond grains, and established an
empirical fatigue-like curve for tool wear. This can help to predict tool life for different
grains of tool and composite particle size.

Wilson and Marinescu [68] studied the machining of granite cylinders on a lathe using
single round Polycrystalline Diamond Compact (PDC) cutters. PDC cutters have found
wide acceptance in drilling soft and medium rock formations, and also in the machining
of non-ferrous metals. The authors discovered that the wear rate of the diamond tool is
not constant when the cutting temperature is constant. Cutter wear rate increases
gradually with increased temperature until cutter burnout occurs at a critical temperature.
They also established an analytical mathematical model for diamond wear, which
correlated reasonably well with the experimental results.

Paul et al. [69] studied the chemical aspects of diamond tool wear and proposed a
chemical theory of diamond tool wear. They state that some wear is always observed with
the diamond cutting of any material. This is because the higher temperatures induced by
extended rubbing of hard objects provide enough kinetic energy to break carbon-carbon
bonds on the surface of the tool. They also state that there is a lack of experimental data
on diamond tool wear in the literature, and that such data could help in providing insight
into comparative wear mechanisms for different processes.

Other diamond tool wear studies, of less relevance, include the wear of an Atomic Force

Microscopy (AFM) diamond tip sliding against silicon [70}, and Aluminium-based Metal
Matrix Composites machining with diamond coated tools [71].
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1.6 Optimisation of manufacturing process

1.6.1 Introduction

Tool wear studies are regularly included in manufacturing process optimisation studies.
For this reason some of the basic concepts regarding process optimisation are discussed
in this section. During the optimisation of most machining and manufacturing operations,
the objective functions are usually related to economic criteria. Previous attempts to
determine the optimal machining parameters can be divided into three main categories
[72]:

e Computer Aided Design (CAD) approaches.

e Operations Research (OR) approaches.

e Artificial Intelligence (AI) approaches.

These approaches could be based on an off-line adjustment system, or an on-line
Adaptive Control (AC) system. On-line AC systems can divided into two categories:

- Adaptive Control Optimisation (ACO).

- Adaptive Control Constraint (ACC).

1.6.2 Literature Survey
The obvious optimisation problem for a turning operation will have feed and speed as

variables, with the aim normally linked to economic criteria. Ermer [73] developed a
geometric programming technique to optimise the control variables for minimum cost,
subject to constraints such as available horsepower, surface finish and available feeds and
speeds. This very early work, one of the first taking constraints into account, did not
account for the tool wear constraints. Da, Sadler and Jawahir [74] presented a computer
aided methodology for predicting optimum cutting conditions in process planning of
turning operations. This also involved the effect of the progressive tool wear on the
performance of the machine.

As Da et al. also state, most past research on machining optimisation made the
assumption that all machining is done with fresh and unworn tools. However, in a ‘real’
machining process, machining performance vary due to tool wear. Empirical equations,
based on earlier research, were used to describe the behaviour of the different variables as
well as their dependence on one another. Non-linear programming techniques were used
to determine the constrained optimum cutting conditions for a certain tool wear state.
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Choudhury et al. [75] utilised an adapted version of the Taylor tool life equation (using
force measurements as input) to predict the optimum cutting conditions in a turning
process. This approached enabled them to predict the optimum conditions with the
minimum amount of experiments, given a database of the various material properties. A
computer program reads the current machining conditions, determines the tool life from
the Taylor equation, and then supplies the optimum parameters using a pre-established
optimisation model. Zhou and Wysk [76] proposed a methodology for probabilistic
optimisation in batch production, also using the Taylor equation. Their approach included
a tool status recording feature (not on-line) to determine a tool wear index. This index

plays an important role in the choice of the optimal machining parameters for the next
batch.

Yen and Wright [77] proposed an optimisation procedure for adaptive control in
machining. A safe working space is determined by the constraints of three different
modes of failure. Control variables such as speed and feed rate are optimised for
maximum metal removal rate. The gradual development of flank wear was also taken into
account to update the optimisation dynamically. An important contribution was the
establishment of a model that links the tool failure constraints with the control and state
variables. Obikawa et al. [78] proposed a tool wear monitoring system integrated with an
optimisation system for cutting conditions. The tool wear is estimated by monitoring the
AR coefTicients representing the power spectrum of the cutting force, and feeding it into
two neural networks. The machining parameters are optimised to ensure that a certain
amount of components can be manufactured reliably before the end of the tool life is
reached.

Jang and Seireg [79] proposed an optimisation procedure by which the machining
parameters are optimised for specified surface conditions. Tool failure, tool wear,
dimensional accuracy and chip formation are taken into account as constraints with a
penalty function formulation. Maximum metal removal rate is achieved in conjunction
with specified surface conditions.

1.6.3 Adaptive Control (AC)

Adaptive Control (AC) involves continuous changing in machining conditions by means
of an on-line strategy, like the fuzzy-based AC system proposed by Tarng ef al. [80].
Running an AC system based on one objective might cause an infraction on other
constraints. This is why an AC system must be based on different control objectives, in
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order to optimise the process for the current machining conditions. Combining a range of
sensors to interpret measured data can also extend the possibilities of an AC system. This
is referred to as so-called intelligent manufacturing [81,82]. The following monitoring
and control functions are considered to be significant for such systems 831
e Advanced process monitoring, to protect from fatal events, with respect to:

- tool wear.

- chipping.

- tool breakage.

- collisions.

- vibrations.

- motor currents.
e Adaptive Control Optimisation (ACO) with respect to:

- maximum productivity.

- maximum production rate.

- mixed function of productivity and production rate.
e Adaptive Control Constraint (ACC) with respect to:

- cutting-forces.

- chatter vibrations.
ACO seek to adjust machining parameters in a direction that will optimise a predefined
performance index. The aim of ACC systems is to adjust the machining parameters to
their maximum possible values given the constraints of the process.

To implement all of these functions in a single monitoring system for a single machine
might be a little ambitious, but simplified versions can be developed, involving only a
few variables, such as:

¢ Advanced process monitoring in accordance with a long term plan.

e ACC of feedrate with respect to cutting-forces.

o ACO of feedrate with respect to maximum productivity.

e In a more sophisticated system, variables such as depth of cut and cutting speed will
also be involved.

1.6.4 Approaches for Optimising a Machining Process

The conventional methods for selecting CNC machining conditions, are based on
textbooks or the knowledge and experience of the programmer. In most instances, the

parameters are selected in a conservative manner, in order to prevent failures such as tool
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breakage. As a result, the Metal Removal Rate (MRR) is low [72]. An optimisation
strategy may consist of one or more of the following approaches:

A. Computer Aided Design (CAD) approaches

This off-line approach use process, tool wear and cutting force models based on prior
knowledge gathered from experiments. Based on these models, a computer simulation,
using the Numerical Control (NC) code, can estimate the cutting force and tool wear.
With these results, the MRR can be optimised without violating the machining
constraints. The advantage of this approach is that it is easy to implement and effective
for most applications. A disadvantage is the fact that the approach can only be used off-
line. CAD approaches can be divided into three sub-categories, namely:

e Machining Process Models.

e Computer Machining Simulation.

e Machining Parameter Optimisation.

B. Operations Research (OR) approaches

The objective of Operations Research (OR) approaches is to minimise global machining
cost by considering multiple criteria related to machining, like the policy developed by
Jeang [84] and Akturk et al. [85]. These methods are used for off-line adjustment due to
their computational difficulty. An advantage is the establishment of a reference model
that can adjust to changes in the machining parameters. Gopalakrishnan and Al-Khayyal
[86] demonstrated a machine parameter selection scheme based on geometric
programming for turning, which is a typical OR approach.

C. Artificial Intelligence (Al) approaches

Artificial Intelligence (AI) based methods can be used to optimise a CNC machining
process. Al methods can be either ACO or ACC based, or may even be an off-line
system. However, an on-line AC system is preferred with Al approaches. Al based
methods attempt to automatically optimise machining parameters based on sensor
information. Reaction of the control system due to changes in process must be carried out
within milliseconds to ensure the reliability of the process. There have been a number of
studies on the application of Al techniques in on-line control [87,89]. These can be
divided into three categories:

¢ Neural Networks ¢ Probabilistic Inference

¢ Knowledge-Based Expert Systems (KBES) [90]
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1.7 Summary of literature

Many concepts from the literature were mentioned in this chapter. One of the main
motivations for research is to make a contribution to the literature of the international
research community. In order to identify aspects regarding the contribution of this study,
table 1.1 was constructed. In this table reference to recent tool wear monitoring studies
are made, showing all the relevant information regarding these studies. This information
includes the type of tools, material, machining process, signal processing and wear
classification methods used. This table is a summary of all the important concepts
mentioned in this chapter, and show how previous authors have combined different
monitoring methods with different classification strategies. The table is arranged from the
oldest to the most recent date of publication.

Table 1.1
Summary of recent and relevant TCM literature
Year |Author(s, Process | Tool aterial |Monitor |Feature Classification scheme Ref.
1986 |Rao Turning  [Tungsten {Steel Vibration [FFT peaks Trend / threshold 1
carbide Dynamic
force
1987 [Jiang, Zhang, Xu Turning Carbide {Steel Vibration |PSD Trend / threshold 22
insert
1993 |Ruiz, Guinea, Barrios{Tuming  |High- Steel Termnpera- [FFT Quality space’ identification methods 14
speed ture Frequency band energy Distance based classifiers
steel Force Standard deviation Neural networks
AE Skewness Informational entropy considerations
Kurtosis
min, max, Max-min
1993 |Ravindra et ai. Turning  |[Coated  Cast iron Dynamic |Force components Muttiple regression (mathematicai model) | 16
carbide force Surface roughness parameters Multiple correlation
Surface F statistic
finish Standard error
Vibration Maximum error
1993 (Barrios ot al. Milling Carbide [Steel Current rms Analysis of vanance (ANOVA) 18
insert Vibration [Mean Empirical model
AE Kurtosis
1994 |Bonifacio, Diniz Finish Coated  {Stesl Vibration |Surface roughness parameters Trend / threshold 9
[Turning carbide ms
1955 [Zhou, Hong, Rahman|Turning  {Carbide Steel Dynamic |Wavelet analysis Backpropagation neural network 42
inserts force (BPNN)
1996 [Das ef al. Tuming  |Uncoated JLow Dynamic  |Force components Regression analysis 47
carbide C-steel force in three directions Three layer backpropagation
neural network
1996 |Hong, Rahman, Zhou [Turning Carbide [Steel Dynamic  [Wavelet analysis Backpropagation neural network 95
inserts force (BPNN)
1996 {Das ot al. Turning Uncoated {Low Dynamic [Force companerts Backpropagation neural network 43
carbide |C-steel force in three directions (BPNN)
inserts
1996 |Dimia, Lister, Turning Dynamic |FFT Single layer perceptron neural network 39
Leighton force
Vibration
1996 |Li, Elbestawi Tuming |Carbide [Steel Dynamic |Mean 57
inserts force Variance Principal component fuzzy neural network
Vibration |ms
FFT
Frequency band energy
1996 |Wu, Du Turning Uncoated JSteel Vibration |Wavelet analysis with Threshold 97
(chatter) |lcarbide Cross-cotrelation,
Drilling Uncoated JCast iron Cross-coherence,
(wear) carbide Correlation coefficient and
twist Power spectrum
1996 [Novak, Wiklund Tuming Dynamic _ [Force components ratios Regression models 35
force ARIMA models
Vision Corretation coefficient
m
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table 1.1 continued. ..

1996 |Obikawa ef al [Tuming  [Carbide  [Steel Dynamic |FFT Neural network 78
insert force AR coefficients
1996 |Coker, Shin Milling Carbide |Aluminium {Ultrasonic |Surface roughness parameters | Analysis of variance (ANOVA) 12
inserts Cast iron  |system Reg \ analysis
1996 |El-Wardany ef al. Drilling High- Cast Vibration |Kurtosis Threshold 20
speed iron Cepstrum analysis
steet-twist Ratio of absolute mean values
PSD
1997 |Luetzig et al. End- Simulated Kohonen feature rmaps (SOMs) 44
milling data Radial basis function network (REFN)
Recurrent neural network (RNN)
1997 [Xiaoli et al. Drilling High- Steel Vibration §FFT Fuzzy neural network (FNN) 55
speed alloy Mear in frequency band
steel-twist
1997 |Xiaoli et al. Drilling High- AE Wavelet analysis Fuzzy neural network (FNN) 96
speed
steel
1997 |Dimla, Lister, Turning Static Mean Muiti-layer perceptron (MLP) neural 41
Leighton force FFT network
Dynamic  |Frequency band energy
force
Vibration
1997 {Fu, Hope, Javed Milling Mild AE FFT Fuzzy pattern recognition algorithm 56
steel Vibration |Frequency band energy
Dynamic  ms
force
Spindle
current
1897 1Venkatesh of a/. Process Artificial neural network (ANN}) 40
parameters
Force
1997 |Chen, Black End- High- Alurnimium |Dynamic _ |Force components variation Fuzzy neural network 54
milling speed force
steel
4997 |Lou, Lin Miiling Carbide JCastiron |AE ms Neural network 53
inserts Dynamic |Mean (multilayer backpropagation
force with Kalman filter)
1997 |Li, Wong, Nee Turning Cubic {nconel Vibration [Coherence Threshold 21
boron
nitride
inserts
1997 |{Wilkinson et al. Face Various [Steel Surface  |Spatial frequency domain 61
milling inserts Stainless  (finish Analysis of surface roughness Trend / threshoid
steel (optical Surface roughness parameters
Aluminium |probe)
alloy
1907 |Abu-Zahra, Nayfeh |Tuming Various  [Steel Ultrasonic|Absolute value of wave form Trend / threshold 32
carbide sensing
inserts
1997 |Tansel ot al. End- High- Steel AE Average values Trend / threshold 31
milling speed Force
steel
1997 |Wilson, Marinescu  {Tuming  {Poly- Analytical mode! 68
crystalline |Granite Surface Off-line roughness measurement
diamond roughness
cutters Tempera-
ture
1997 |Da, Sadler, Jawahir [Turming Carbide  [Steel Surface Surface roughness parameters  |Least square model 74
insert raughness gForce components ratios
Force New wear index
Chip breakability index
1997 |Kurada, Bradiey [Turning Uncoated {Steet Vision Vision parameters Trend / threshold 34
carbide system
inserns
1997 [Wong et al. Turning Carbide [Steel Laser Surface roughness parameters | Trend / threshold 36
inserts system Laser scatter parameters
1997 [Chou, Evans Hard Cubic Steel Surface Off-line roughness and wear 63
turmning boron roughness |measurement
nitride
inserts
1987 |Karthik et al. Carbide Vision Vision parameters Trend / threshold 37
inserts systemn
Stereo
limaging
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table 1.1 continued...

1988 |Tsamas, Szecsi [Tuming Carbide fSteel Force Force components Regression models 17
inserts Cast iron  }(inductive Backpropagation neural network
Aluminium (trans- (BPNN)
ducer)
1988 |Quan, Zhou, Luo Turning  |Carbide {Steel AE FFT Correlation coefficient 45
End- inserts Power Frequency band energy Backpropagation neural network
milling High- (Hal- (BPNN)
speed effect
steel sensor)
cutters
1998 |Grabec et al. Turning Steel Dynarnic  {FFT Empirical modeling 13
force Class scatter criterion
AE
1908 {Silva, Reuben, Tuming |[Coated Mild steet Vibration |Absolute deviation Adaptive resonance theory (ART2) 6
Baker, Wiicox carbide Sound Average value neural network
inserts Strain Kuriosis Self-organising map (SOM)
gauge Skewness Taylor tool-life equation
Current FFT
Frequency band energy
1998 {Lee, Kim, Lee Turning  |Carbide  [Steel Force Force components ratios Multilayer perceptron neural network 48
insert Mean Analysis of variance (ANOVA)
Signal to noise ratio ARX model
1998 |[Jemielniak Turning Stee! AE Skewness Threshold 27
Kurtosis
s
Standard deviation
1998 lLiu, Chen, Drilling High- Stainless |Dynamic  |Average thrust / torque Backpropagation neurat network 50
Anantharaman speed steel force Peak thrust / torque (BPNN)
steel rms thrust / torque
twist integral of theust / torque vs time
1998 |Caiazzo ef &/, Tumning |Carbide [Steel Capacitive |Surface roughness parameters |Trend / threshold 33
insert Sensor
1969 {Braun, Milier, [Tuming  [Carbide {Steel Vibration Analytical model and verification 15
Schutize insert Aluminium jDynamic  |FRF of model by force measurements
force
1999 [Choudhury, Kumar, [Turning High- Steel Dynamic  |Maximum force components Mathematical model 75
Ghosh speed force
steel
1998 |Kuo, Cohen [Tuming  [Carbide  [Steel Dynamic  [MA parameters Radial basis function network (RBFN) 58
inserts alloys force ARMA parameters Attificial neural network (ANN)
Vibration |FFT peaks Fuzzy modeling
AE Self-organising algorithm
1999 |Choudhury, Jain, Rao[Tuming  jHigh- Steel Photo- Change in workpiece diameter Backpropagation neural network 46
speed electronic |Surface roughness parameters (BPNN)
steel sensor
1999 |Choi, Kim Ultra- Single Aluminium [Dynaric  {FFT Trend / threshold 66
precision |crystal force Frequency band energy
turning diamond Vibration

Table 1.1 is of prime importance because it highlights all the recent research activity in
the field of TCM. Tt also shows how this study fits into the global concept of TCM and
where this study has made contributions to the literature. These contributions will be
discussed in Chapter 5.

1.8 Scope of the present work

It is apparent from the discussions in this chapter that the literature on TCM systems
consist of many concepts that can be combined in numerous ways. These concepts and
methods were highlighted in table 1.1. Some of the methods were developed a number of
years ago, and have since been implemented in industry. Other methods are fairly new,
and still in the development stage. The aim of the present work is to combine some of the

successful methods previously proposed for TCM, and to contribute to the literature
where possible.
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The need for more flexible monitoring systems is evident from all the different
approaches proposed by previous authors. It would seem that each manufacturing process
requires a very specific monitoring scheme. The aim of the combination of previously
developed methods is to design a flexible monitoring system that can adapt to different
manufacturing conditions or processes. This monitoring system must be fully automated,
requiring only a little human interaction.

The system must have the ability to automatically select the best features for a certain
process, depending on the monitoring objective. These features must then be used in an
automated classification scheme to interpret the status of the manufacturing process. This
classification scheme must be able to train itself, and update its training during
manufacturing.

Many neural networks have been developed and tested for TCM up to date, but very few
of them implements unsupervised learning that can be automated without human
interaction. For this reason, a self-organising neural network, based on unsupervised
learning, will be investigated and tested in this study. The testing of the system will
commence in a manufacturing plant, with the various random disturbances which 1s
synonymous with a real manufacturing environment. The purpose of implementing the
system in a manufacturing environment, is to design a robust and flexible monitoring
system which will be valuable to the industry.

Another aim of this study is to investigate a unique type of tool that is used for the
manufacture of automotive parts, namely the synthetic diamond tool. Diamond tools were
discussed in detail in section 1.5. Very little literature exits on the implementation of
monitoring strategies with diamond tools. It is within the scope of this work to investigate
the wear modes of these tools, and to investigate the feasibility of the implementation of
an automated monitoring strategy for diamond tools.

Again referring to table 1.1, a comparison between previous studies and the scope of this
study can be made. Table 1.2 summarise the scope of investigation for this study, from
which it can be concluded that this work aims to combine some of the previous methods,
and to contribute in terms of the facts mentioned in this section.
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Table 1.2

Scope of the present work

Process

Tool

Material

Monitor

Feature

Classification scheme

Turning

Synthetic | Aluminium
diamond | Steel

Coated
carbide

Vibration
Dynamic
force
Surface

roughness

FFT

Self-Organising Map

Frequency band energy (SOM)

Rms

Mean

Kurtosis

Crest factor
Variance

Standard deviation
Skewness

AR coefficients
MA coefficients
ARMA cocfficients
Coherence function
Surface roughness
parameters
Wavelet analysis

Pattern recognition
algorithm (investigate)

e emntill) © 4 O GEE———

44




CHAPTER 2

SIGNAL PROCESSING AND WEAR CLASSIFICATION
STRATEGIES

2.1 Introduction

In order to understand the principles of the monitoring strategies proposed in this study, it
is necessary to discuss some of the mathematical details regarding the feature extraction
and the wear classification strategy. The study focused on features extracted from the
time and frequency domains, time series model features, and features extracted from
wavelet packet analysis. Furthermore a self-organising neural network were used for
decision-making regarding the amount of tool wear. The basic mathematical principles
behind each of these aspects in the monitoring strategy are discussed in this chapter.

2.2 Time, model based and frequency domain features

2.2.1 Time domain features

The time domain features are extracted directly from the calibrated time domain signals
as recorded by the sensors and analyser. All of these features can be calculated very
easily and fast, and can therefore also be used in an on-line monitoring system. The time
domain features were: mean, rms, crest factor, variance, skewness, and kurtosis. The
choice fell on these features due to information gained from experimentation and the
literature. A brief discussion on the chosen features follows [91}]:

A. Mean

The mean value of a function X(#) over an interval T is
|7 x(t)at

X = 2.1
X = @n

B. Root mean square (rms)

The rms value of a function X(f) over an interval of T is

[ xtat

Xopa =\ "7 2.2)
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C. Crest factor

The crest factor is the ratio of the peak level to the rms level

X
CF = _m 2.3
X... (2.3)

D. Variance

The variance is the mean square deviation about the mean

1 _
o == [T ixt)-x]*at 2.4)
E. Skewness

The skewness is the third statistical moment of a distribution

1 T 4
S=03T [ox dt (2.5)

F. Kurtosis
The kurtosis is the fourth statistical moment of a distribution

1

K =
o*T

| OT x*dt (2.6)

2.2.2 Time series model based features

Time series models can also be used to monitor a process, where the model coefficients
are used as features. The model coefficients represent the characteristic behaviour of the
signal. Depending on the order of the model, a number of model coefficients can be
chosen. Normally only the first model coefficient, or sometimes the first three to four
model coefficients are chosen, because they are most descriptive of the signal [28,58,78].
Higher coefficients can actually become descriptive of noise within the signal, and
therefore they are not preferred as wear monitoring features.

For the purpose of this study, the first coefficients from the Auto Regressive (AR) model,
Moving Average (MA) model, and the Auto Regressive Moving Average (ARMA)
model, were used as features for tool wear estimation. The models are calculated directly
from the calibrated time signals recorded by the sensors and analyser. A brief discussion
of each of the models follows [92-94]:

46



Chapter 2: Signal processing and wear classification strategies

A. AR model

In a p-th order AR model for a time series x(n), where n is the discrete time index, the
current value of the measurement is expressed as a linear combination of p previous

values:
x(n)=a1x(n—1)+a2x(n—2)+...+apx(n—p) 2.7

where a,,8,...a,are the AR coefficients. The first AR coefficient was chosen as a feature.

B. MA model

In a g-th order MA model, the current measurement is expressed as a linear combination
of q previous values from a sequence of independent identically distributed (i.d.d.)
random variables with a certain probability density function.

x(n) = bu(n—1)+bu(n~2)+... +b,u(n-q) (2.8)
where b,,b,...b, are the MA coefficients and u(n) is assumed to be an i.d.d. sequence.

The first MA coefficient was chosen as a feature.

C. ARMA model
The ARMA model is a combination of the above two models:
p q
x(n)=—_a(x(n —k))+ Db, (u(n-k)) (2.9)
k=1 k=1

The first two coefficients from this model were chosen as features.

2.2.3 Frequency domain features

The spectral energy in a certain frequency band is one of the most effective features that
can be used in a monitoring system. The spectral energy in the frequency band around the
natural frequency of the tool and tool holder system is sensitive to tool wear due to the
loss of material at the tool tip. This loss of material can have two influences on the
chosen frequency band energy:

e The first is an increase of energy due to excessive vibration caused by the worn tool.
The worn tool causes the machining process to change from smooth cutting to an
irregular breakaway process, which causes the normal vibration amplitudes to
increase. This is especially true for normal flank wear situations, which will cause the

vibration amplitudes over a wide frequency range to increase.
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e The second scenario is a decrease of spectral energy, caused by the fact that the
natural frequency of the tool and tool holder system shifts. This is caused by failure
modes such as crater wear, where the cutting process remains smooth and within
tolerance, but the wear causes a change in the dynamic characteristics of the tool and
tool holder system. The natural frequency shifts a little and the spectral energy in the
chosen band decreases.

The calculation of the frequency band energy is based on the Power Spectral Density
(PSD) function, which is very common in vibration analysis. The energy in the frequency
band can be expressed as [22]:

vl = [ S, (fdf 2.10)

with S, (f) the one-sided PSD function and 1 and fh chosen to reflect the energy in the

regions of interest.

2.3 Wavelet analysis

2.3.1 Introduction

The wavelet transform is a relatively new method of signal processing that has been
applied to many engineering studies with great success. Recent studies also proved that
wavelet analysis could be utilised for monitoring of machining processes [95-97]. The
success of the wavelet transform is generally attributed to the natural shape of the
wavelet, which is more descriptive of most natural processes than the sine function used
in Fourier analysis. Signals with sharp and sudden changes might be better analyzed with

an irregular wavelet than with a smooth sinusoid.

Wavelet analysis is capable of revealing aspects of data that other signal analysis
techniques miss, like trends, breakdown points, discontinuities in higher derivatives, and
self-similarity [98]. In this study, wavelet packet analysis was used to generate features
that may show consistent trends towards tool wear. In this section, the basic principles of
wavelet analysis will be discussed, as well as the principle of wavelet packet analysis
used in the study.

2.3.2 Wavelet analysis background

Fourier analysis breaks down a signal into constituent sinusoids of different frequencies,

which transforms our view of the signal from the time to the frequency domain. The
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drawback of Fourier analysis is that the time information is lost, which may be important
if the signal contains non-stationary characteristics. This drawback may be overcome by
the Short-Time Fourier Transform (STFT), but is of limited precision and not very
flexible. These methods are based on windowing the signal and analysing each short time
window separately, from which the signal can be mapped onto a two-dimensional display
of time and frequency [98].

To overcome the limitations of the STFT, wavelet analysis are based on a windowing
technique with variable-sized regions. Wavelet analysis allows the use of long time
intervals where more precise low frequency information is desirable and shorter regions
for high frequency information. A wavelet is a sometimes irregular and asymmetric
waveform of effectively limited duration that has an average value of zero. A variety of
wavelets exist, and an analyst can choose the wavelet that suits his application best. A
typical wavelet function, Daubechies (db) 10, named after one of greatest wavelet
researchers, is shown in figure 2.1.
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Similar to Fourier analysis, wavelet analysis is the breaking up of a signal into shifted and
scaled versions of the original wavelet. The Continuous Wavelet Transform (CWT) is
defined as the sum over all time of the signal multiplied by scaled and shifted versions of
the wavelet function y [98]:

C(scale, position) = j: f(t)w(scale, position,t)dt (2.11)

The result of the CWT is many wavelet coefficients C, which are functions of scale and
position.

2.3.3 Scaling and shifting

Scaling a wavelet means stretching or compressing it, which is denoted by the scale
factor a. The smaller the scale factor, the more “compressed” the wavelet, therefore the
scale factor is related to the frequency of the signal. In wavelet analysis the low and high
frequency contents of the signal are referred to as Approximations (A) and Details (D),
respectively.

e Low scale / Compressed wavelet / High frequency / Details.

e High scale / Stretched wavelet / Low frequency / Approximations.

Shifting a wavelet simply means delaying or hastening its onset. For example, delaying
wavelet functiony(f) by K will be represented by w(t—k) [98].

2 3.4 The Discrete Wavelet Transform (DWT)

If the scales and positions are chosen based on powers of two, the analyses are much
more efficient and just as accurate. This is called the Discrete Wavelet Transform
(DWT). An efficient way to implement the DWT is by using filters. The filtering process
is actually very complex, and will only be discussed in principle. At its most basic level,
the filtering process can be illustrated as shown in figure 2.2 [98].

The original signal, S, pass through two complementary filters to separate the
approximations and the details. This causes computation to end up with twice the amount
of data points of the original signal. To correct this, the signals are downsampled, and the
aliasing caused by the downsampling is accounted for later in the process. The whole
process, including downsampling, produces the DWT coefficients as diagrammatically
illustrated in figure 2.3 [98].
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2 .3.5 Multiple-Level Decomposition and Reconstruction

The decomposition process can be iterated, with successive approximations being
decomposed in turn, so that one signal is broken down into many lower-resolution
components. This is called the wavelet decomposition tree, which in theory can be
calculated to an infinite level, but in practice can only continue until the details consist of
a single data point. In most cases, the optimal level of decomposition can be calculated
based on an energy approach, such as entropy. The wavelet decomposition tree, as shown

in figure 2.4, illustrates the multiple-level decomposition diagrammatically [98].

—

CA; cDy

-

CA; cD2

—

CA3 cD 3

Figure 2.4: Wavelet decomposition tree

The wavelet decomposition tree can now be used to reconstruct the original signal, which
is called the Inverse Discrete Wavelet Transform (IDWT). The IDWT process consists of
upsampling and filtering. A specific choice of filters for IDWT will cause the effect of
the previously mentioned aliasing to ‘cancel out’. During the IDWT, the Approximations
and Details are reconstructed with the wavelet coefficients, as illustrated in figure 2.5
[98].

The original signal can now be reconstructed with a number of combinations from the
Approximations and Details on the decomposition tree, for example:
S=A+D,
=A, +D, + D, (2.12)
=A,+D,+D,+D,

The wavelet tree with reconstructed components is illustrated in figure 2.6 [98].
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7 3.6 Wavelet Packet Analysis

The wavelet packet method offers a wider range of possibilities for signal analysis. With
normal wavelet analysis, only the approximations are split in every step. In wavelet
packet analysis, the details as well as the approximations are split in every step, as
illustrated in figure 2.7 [98). The signal can be reconstructed using any number and
combination of packets on the wavelet packet decomposition tree, for example:

S = A, + AAD, + DAD, + DD, (2.13)
S
‘ '
A; D,
A
l_ AA; l_ DA; AD: l_J DD
AAA; DAA, ADA; DDA; AAD, \ DAD; \ ADD; DDD;

Figure 2.7: Third order wavelet packet decomposition tree

Choosing one out of all these possible encodings presents an interesting problem. An
entropy-based criterion can be used to select the most suitable decomposition of a given
signal. The entropy is an indication of the information gained by performing each split. A
number of entropy types exist, like Shannon, Threshold, Norm, Log energy and SURE
(Stein’s Unbiased Risk Estimate). In this study, the Shannon entropy formula was used,
which is a non-normalized entropy involving the logarithm of the squared value of each
signal sample — or, more formally [98]:

E=-Y s?log(s?) (2.14)

The wavelet packets with the highest entropy contain the most information regarding the
process. By neglecting the packets with low entropy values during signal reconstruction,
the signal can be de-noised or compressed effectively. This is also the reason why the
packets with high entropy values were chosen for feature extraction. This ensures that
only the most significant information from the signal is extracted, and any changes in the
signal due to tool wear can be identified with ease. The manner in which features were
extracted from wavelet packet analysis will be discussed in a following chapter.
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2.4 The Self-Organising Map (SOM)

2.4.1 Introduction

The Self-Organising Map (SOM), developed by Teuvo Kohonen [99], is a fairly new and
effective software tool for data analysis. The SOM has been implemented successfully in
numerous applications, in fields such as process analysis, machine perception, control
and communication [6,100-103].

The SOM implements the orderly mapping of high-dimensional data onto a regular low-
dimensional grid. Thereby the SOM is able to identify hidden relationships between high-
dimensional data into simple geometric relationships that can be displayed on a simple
figure [104]. The SOM can generally be described as a neural network with self-
organising capabilities. Most neural networks require information and interaction from
the user for classification. The training of the SOM is based on unsupervised learning,
which means that the data is automatically arranged without human interaction. Although
the SOM was originally intended as a data visnalisation tool, it can be used for data
classification as well. The SOM automatically arranges the data on a two dimensional
grid of neurones where similar observations are placed close to one another and
dissimilar ones further away. If the classes of some of the observations are known, certain
regions on the grid could be allocated for these classes.

2.4.2 Computation of the SOM
A. Structure of the SOM

A SOM is formed of neurones located usually on a -dimensional grid. Higher
dimensional grids can also be used, but their visualisation is very problematic. Each
neurone i of the SOM is represented by an n-dimensional weight or reference vector m; =
[mi; miz ... mi], where n is equal to the dimension of the input vectors. The map shape is
usually rectangular, but other shapes have also been used successfully. The number of
neurones is set before the training phase commences. The number of neurones affects the
accuracy and the generalisation capability of the SOM. As the size of the map increases,
the training phase becomes very time consuming.

B. Neighbourhood relation

The neurones on the map are connected to adjacent neurones by a neighbourhood
relationship. Immediate neighbours belong to the 1-neighbourhood Nis of the neurone I.

In the 2-dimensional case the neurones of the map can be arranged either on a rectangular
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or a hexagonal lattice. Neighbourhoods of different sizes in rectangular and hexagonal
lattices are illustrated in figure 2.8 [105].
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Figure 2.8: Neighbourhood structures

C. Initialisation

Before the training phase initial values are given to the weight vectors. The SOM is
robust regarding the initialisation, but a proper initialisation allows the algorithm to
converge faster to a reliable solution. Typically one of the three following initialisation
procedures are used [105]:
e Random initialisation, whereby the initial values of the weight vectors are
selected randomly.
¢ Sample initialisation, whereby the initial values of the weight vectors are selected
based on samples from the training data.
e Linear initialisation, whereby the initial values of the weight vectors are generated

Jinearly from the lowest to the highest value of the training data.

D. Training the SOM

The computation of the SOM is a nonparametric, recursive regression process. In each
training step, one sample vector X from the input data set is chosen randomly and a
similarity measure is calculated between it and all the weight vectors of the map. The
Best-Matching Unit (BMU), denoted as ¢, is the unit whose weight vector has the
greatest similarity with the input sample x;. The similarity is usually defined by means of
a distance measure, typically Euclidian distance. Formally the BMU is defined as the
neurone for which [99]:
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vi, |x()-m.(t)] < x()- m®)] (2.15)
which means thatm_(t)is the model that matches best with x(t). This is the Best
Matching Unit (BMU).

After finding the BMU, the weight vectors of the SOM are updated. The weight vectors
of the BMU and its neighbours are moved closer to the input vector in the input space.
This adaptation procedure stretches the BMU and its neighbours towards the sample
vector. This is illustrated in figure 2.9, where the input vector given to the network is
marked by an x [105]. The SOM update rule for the weight vector of the unit iis:

m,(t +1) = my{t) + by, (x () - m, 1) (2.16)
where t is the index of the learning step, and learning is performed recursively for each

presentation of a sample of x, denoted x(f). The scalar multiplier h,,, is called the

neighbourhood function, which causes similar observations to be placed in the same
region on the map [99].
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Figure 2.9: Updating the SOM in each learning step
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E. Neighbourhood function

The neighbourhood function is a non-increasing function of time and of the distance of
unit 7 from the winner unit c. It defines the region of influence that the input sample has
on the SOM. The function is formed of two parts: the neighbourhood function h(d,f) and
the learning rate function a(f):

hc,.(t)=h( Ir. —r| ,t) a(t) 2.17)

where r; is the location of unit / on the map grid.

The simplest neighbourhood function is the bubble: it is constant over the whole
neighbourhood of the winner unit and zero elsewhere. Another is the Gaussian
neighbourhood function. It gives slightly better results, but is computationally somewhat
heavier. Usually the neighbourhood radius is bigger at first and is decreased linearly to

one during the training. Figure 2.10 displays the two common neighbourhood functions
[105].

Gaussian

Figure 2.10: Two common neighbourhood functions

58




Chapter 2: Signal processing and wear classification strategies

F. Learning rate

The learning ratec(t) is a decreasing function of time. Two commonly used forms are a

linear function and a function inversely proportional to time, such as:
A
a(t) =++——
®) (t+ B)

where A and B are some suitably selected constants. Use of this function type ensures

(2.18)

that all input samples have approximately equal influence on the training result.

G. Training phases

The training is usually performed in two phases. In the first phase, relatively large initial
o values and neighbourhood radii are used. In the second phase both the a values and
the neighbourhood radii are small right from the beginning. This procedure corresponds
to first tuning the SOM approximately to the same space as the input data and then fine-
tuning the map. If the linear initialisation procedure is used, the first training phase can be
skipped. There are several rules-of-thumb, found through experiments, for choosing
suitable values.

H. Batch-algorithm

Another variant of the basic SOM is the batch algorithm. In it, the whole training set is
gone through at once and only after this the map is updated with the net effect of all the
samples. The algorithm converges usually after a couple of iterations, and is much faster
to calculate in MATLAB than the normal sequential algorithm [105].

2.4.3 Examples of SOMs

The SOM is best explained with simple examples. Two examples are discussed here in
order to clarify the use of SOMs in subsequent chapters. For more information on SOMs,
see references [104] and [105].

A. Speech data
The SOM in figure 2.11 was calculated with speech data (Finnish) [105]. The model

vectors are shown on each neurone. Note that similar patterns are arranged close to one

another on the map. This technique can be used for voice or word recognition.
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B. Simple 2-dimensional scenario
The principles of a SOM can easily be explained by considering a 2-dimensional case.
Say, for instance, that a data set exists which clearly displays two clusters, as shown in
figure 2.12. The one cluster may correspond to an error (err) situation, and the other to an
acceptable (OK) region, for example:
W=[xyl
W =[0.3 0.3] —err (2.19)
w=1[0.7 0.7]- 0K

Figure 2.13 shows the SOM after linear initialisation of the model vectors, on a
rectangular grid.
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Figure 2.14 shows the SOM after training, which resembles a 'net' folding over the
‘cloud" of data. The neurones move closer to one another where the data is dense.

+
* +
+ + *
08
+
Y os
+
+
0.4
++
0.2 +
N +
+
0 +
-0.2 0 0.2 0.4 0.6 X 0.8 1.2

Figure 2.14: Grid after training

Figure 2.15 shows the SOM for variables X and y. Note that the SOM is only one entity,
but a picture in the direction of each variable (dimension) can be shown. Also note that
the colours of the neurones are an indication of the value of the variable, as shown on the
colourmap axis on the figure. The labels of the training data are also shown in figure
2.15, and it is clear that the 'err' and 'OK' regions have been identified. Figure 2.16 shows
the BMUs for a test data set:
W=1 03 03 (err)
05 05
0.7 0.7] (OK)

The three BMUs for this test data, have each been marked on figure 2.16. A trajectory,
showing how the test data moves through the SOM, is also shown in figure 2.16.
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CHAPTER 3

WEAR MONITORING OF A COATED CARBIDE INSERT IN
TURNING

3.1 Introduction

Before attempting to implement some of the monitoring strategies discussed in previous
chapters in a manufacturing plant, experiments under controlled laboratory conditions
were conducted. The reason for this is to determine if vibration monitoring is suitable for
tool wear monitoring, and to solve some of the practical problems that may occur during
experimentation. This may be considered as a first case study to prepare for further
testing in a manufacturing plant.

3.2 Experimental conditions

Experiments were carried out on a 2-axis CNC, with a coated carbide tool insert. EN24
(BS970 817M40) steel rods with a 20 mm diameter were used as the workpiece material.
Machining with 0.5 mm/rev feed at 840 rpm accelerated the tool wear. The machine
vibration was measured with two 10 mV/g PCB accelerometers, coupled to amplifiers
and a Diagnostic Instruments PL202 real time FFT analyser. The measured acceleration
signals were then carried over to a PC for further processing in MATLAB. A bandwidth
of 0-5 kHz was considered. To prevent aliasing, the signals were sampled at 12.8 kHz,
with. 4096 points per 0.32s time interval, or 1600 frequency lines spread over the 5 kHz
bandwidth.

Care was taken to ensure the safety of the accelerometers against cutting fluid and chips
breaking away from the workpiece. The chips are also very hot and their sharp edges can
easily damage the thin sensor wires. A sensor can also be permanently damaged if any
cutting fluid penetrates it. This is one of the main problems with vibration monitoring in a
manufacturing environment — measurement close to the machining process is virtually
impossible without sacrificing the safety of the equipment.

The recorded signals were examined in the frequency as well as the time domains. Three
different states of tool wear were identified, using features extracted from the recorded

64




Chapter 3: Wear monitoring of a coated carbide insert in turning

signals. The experimental parameters are summarised in Table 3.1. Figure 3.1 shows a
schematic of the experimental setup.

Spindle Workpiece

| Jq_—j Amplifiers

Carbide insert

Accelerometers

| |4
P
1 c
Tool holder \l
Y
X /
7 PL202 analyser g g g g g
ooooo
Figure 3.1: Schematic of experimental setup
Table 3.1
Experimental parameters
Lathe Colchester CNC-2000L
Workpiece EN24 (BS970 817M40) 20 mm diameter
Holder type ISCNR model MTINR-2020k-16W
Insert type Coated Carbide, Seco model TNMG 160404-M5 P200
Feed rate 0.5 mm/rev
Speed 840 rpm
Sensors Accelerometers: PCB model 353B17
Amplifiers PCB model 480E09 ICP
Data acquisition | Diagnostic Instruments PL202
Pentium PC, Matlab 5.1
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3.3 Experimental results

Three different states of tool wear were identified. The three different states are:

1. New tool (N -1)
2. Medium wear (M -2)
3. Severe wear (S-3)

A typical signal that was recorded during the 'new tool' state is shown in figure 3.2.
Channel 1 is the vibration signal in the Z-direction and channel 2 is the signal in the X-

direction.
Channel 1
100
50
N
0,
E 0
u
u
<
-100
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time Js~
dpme &
100
50
o,
E 0
u
u
< &
-100
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time [51

Figure 3.2: Typical time signal recorded by PL202 analyser

3.3.1 Frequency domain analysis
The frequency spectra for the three different states of tool wear are shown in figures 3.3

& 3.4. The spectra were calculated by processing the calibrated time signals from the
PL202 analyser. The time signals were divided into overlapping sections, windowed, and
then the FFT was taken. The average of many such FFTs were used to determine the
average spectrum for each intensity of tool wear.



It is clear from these figures what influence tool wear has on the frequency response. The
amplitudes at the peaks become much greater with increasing tool wear. The peak around
1 kHz corresponds with the first natural frequency of the tool assembly (proven in a
different case study). The reason for this increase is the fact that with a worn tool, the
workpiece material is tom away from the workpiece, instead of cleanly cut. This causes
the vibration to increase excessively between the tool tip and the workpiece, and
therefore causes the larger amplitudes at the natural frequency. This is not the case with
all types of tool failure modes. The dominant failure mode in this case is flank wear,

which causes vibration amplitudes to increase.
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3.3.2 Time domain analysis

The objective of the time domain analysis was to determine if any characteristics or
features from the time signal change dramatically with increasing tool wear. If a given
feature trends with increasing tool wear, it can be utilised to predict tool wear at any
given time. Typical features that can be extracted from each time signal are rms, kurtosis,
variance, skewness, standard deviation, and crest factor. The same signals from which the
above FFTs were derived, were used to obtain the features. The following figures (3.6;
3.7; 3.8) contain two lines, corresponding to channell and channel 2.the figures are also
divided in three sections with a vertical green line. The three sections represent the data
recorded from a new tool, medium worn tool and severely worn tool. Note that the x-axis
is not a time scale, but the measurement number.

It can be seen from the figures that that all features are defmitely influenced by tool wear
to some extent. Some of the features were, however, more influenced by the tool wear
than others. There was also good correlation between the data from the two respective
channels.
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3.3.3 Conclusion.

The purpose of this investigation was to determine if vibration monitoring is fit to
identify tool wear. The answer is a very defmite yes. Accelerometers coupled to the
PL202 FFT analyser were used for this purpose. Data from the time as well as from the
frequency domains are useful for predicting tool wear.

The next step will be to identify values of the chosen features that correspond to a certain
amount of tool wear. A very simple decision making technique is of course the 'trending'
of the features that was described earlier. When a certain feature, or a set of features,
reaches certain set limits, an estimation of the tool condition may be derived. These
trends in the features are indicative of deteriorating tool condition. The difficulty with
this method is to determine the correct threshold value for each feature. For the purpose
of this investigation, the Self-Organising Map (SaM), as discussed in Chapter 2, was
used to automatically classify the tool wear states from the given features, and to identify
possible hidden relationships between the features.
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3.4 Wear classification

3.4.1 Introduction

As was stated in Chapter 2, the Self-Organising Map is a type of neural network which
can automatically identify classes in data without human interference. With most neural
networks, the user of the network specifies the output, and the network models the system
to reach the specified output. The SOM arrange the given data in a network of neurones
where similar neurones are placed close to one another on the map [99].

The normal practice with neural networks is that the number of observations
(measurements) must be ten times the number of features to train the network. In this
case, it was not possible because only 25 observations were obtained. However, this does
not mean the results will be faulty. It only means that more observations will be needed to
train the network more accurately.

3.4.2 SOM with given features

For the purpose of this case study, the usefulness of the SOM to distinguish between data
taken from a new and worn tool was investigated. Figure 3.9, 3.10 and 3.11 shows the
result of feeding the calculated features from both channels into a 12 x 8 SOM. Figure
3.11 shows one of the features with labels from the original training data.

Each observation was labelled 'new', 'med' or 'sev'. After the map was trained, a simple
command can determine to which neurone a specific observation corresponds best. This
is referred to as the Best-Matching Unit (BMU). The number of BMUs on each neurone,
as well as the label of these hits, can be plotted directly onto the SOM. This gives an idea
of which regions on the map correspond to new tools, and which regions correspond to
worn tools. When a new observation is made, the SOM can easily calculate the BMU and
use the new observation to update the map.
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3.4.3 SaM with thresholded features

A further advantage of the SaM is that it can handle discrete variables. For instance, if
the threshold value for each feature is known, one can easily threshold the value to 0 for
normal conditions, or 1 if the threshold value is exceeded. An advantage of this approach
is that a new variable can be defmed, namely the intersection between the thresholded
variables. The intersection value for each observation is the sum of all the variables for
the observation. This enables the definition of a single variable that can combine all

information supplied by features. Figures 3.12, 3.13 and 3.14 show the thresholded
features.

The concept of thresholding and using discrete variables with the SaM was also
proposed by Cser et al. [103] for improving the geometric quality parameters for hot-
rolled strips. They also proposed the defmition of the intersection variable, which can
show how certain values of the quality parameters directly influence the process. To the
author's knowledge, this is a fairly new approach of utilising the SaM.



Figure 3.13: Thresholded values of standard deviation and skewness with increasing
tool wear



It is clear from these figures of the thresholded features that some of the features are less
sensitive to tool wear than others. For instance, skewness could not provide any
information regarding tool wear. Kurtosis and crest factor provided data which shows
ones and zeros in the severe wear region. This proves that although these features are
influenced by tool wear, they are not sensitive enough to base decision making process on
them alone. Variance, mean and standard deviation on channel 1 proved to be the best
features for tool wear identification.

Figures 3.15 and 3.16 display the SOMs for the thresholded values of the variables. Note
that each map is divided into basically two regions, a zero and a one region,
corresponding to an acceptable and an unacceptable region. Figure 3.17 shows the
intersection variable discussed earlier, together with the labels and BMUs on each
neurone. All the features from both channels were used to calculate the intersection
variable. This figure shows that the SaM divided the data in a blue region in the upper
right hand corner corresponding to new tools, a light blue section corresponding to
medium worn tools and a yellow, orange and red region corresponding to severely worn
tools.
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3.4.4 Conclusion

The purpose of this investigation was to determine if the Self-Organising Map could be
used to identify classes in tool wear data. It was shown that the SOM can be used not
only to classify the tool wear data correctly, but it can also handle discrete values of the
variables that may be very useful if threshold values for the variables are known. This is a
relatively new approach of utilising the SOM, which can be used to determine which
regions on the map can be allocated for certain conditions.

The SOM s also useful to identify hidden characteristics within the data, such as the
sensitivity of a certain feature regarding the objective of the investigation. The reason
why the SOM is more fit for the purpose for this study, is the fact that the ideal 'output’ of
the system is unknown. The [mal conclusion is that the SOM is fit for data analysis for
future case studies.



CHAPTER 4

MONITORING OF THE SYNTHETIC DIAMOND TOOL
WEAR IN A MANUFACTURING PROCESS

4.1 Introduction

One of the main focuses of this project was to do research which would directly benefit
the South African manufacturing industry. The need for a monitoring strategy on machine
tools in the South African manufacturing industry was investigated through discussions
with various companies and experts in the field. Different companies experience different
machine monitoring needs, but a common need in most cases is the identification of tool
wear and breakage. Federal Mogul (Pty) Ltd (formerly AE Goetze (Pty) Ltd) indicated
that it would co-operate in the research and development of a system that would monitor
the wear of synthetic diamond tools. These diamond tools are very expensive and the
company has to optimise its use of these tools. Federal Mogul (FM) manufactures
automotive pistons for various vehicle manufacturers. The pistons are precision machined
from aluminium casts.

Up to date, FM monitored the wear of the synthetic diamond tools based on the

following:

- The number of machined components.

- If regular offset changes have to be made, it is an indication of volumetric loss at the
tool tip. This is an indication of wear.

- Surface roughness, which is only done once a day for this specific process.

- A built-in monitoring option in the machine monitors the spindle current. The
operators found that this is not satisfactory, because the alarm levels are not sensitive
enough. It was found that it is only helpful to monitor tool breakage in some
instances.

None of these methods could give the operator an indication of the residual tool life. The
result of this strategy is that all tools are replaced at the start of the manufacturing of a
new batch of components. The amount of components in a batch depends on the order
from the vehicle manufacturers. The pro-active replacement of tools minimise down time

on the machine, because the machine has to be set for the current component at the start
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of each new batch. The end result is the waste of many acceptable tool tips. FM also
found that their tools followed the so-called ‘bathtub curve’ behaviour. This means that
the tool goes through an initial rapid wear stage, a normal wear stage and a final rapid
wear stage before breakage. This 'bathtub’ phenomenon also had to be investigated.

4.2 Monitoring system
4.2.1 Introduction

In order to identify the diamond tool wear in a real manufacturing process, a monitoring
strategy was devised using three sensors, located near the diamond tip on the tool holder.
The sensors consisted of the following:

¢ Piezo strain sensor in the X-direction (direction of feed force).

e Piezo strain sensor in the Y-direction (direction of thrust force).

e Accelerometer in the Z-direction.

The reason for the choice of three sensors is to record as much as possible data from the
process. This will enable the generation of a large number of features which may be used
with the SOM to identify the stages of tool wear. A large number of features may be
required due to the fact that the influence on the machine vibration and wear mode of the
synthetic diamond tool is unknown.

The synthetic diamond tool is commonly referred to as Syndite in the industry. The
reason for the use of the Syndite tip is due to the fact that normal tool tips can diffuse
with aluminium, and because the Syndite tip lasts longer it is also more economical.
However, the Syndite tips are still very expensive, and the company would prefer to
utilise each tip to its full extent without wasting parts, and with minimum down time of
the machines. The Syndite tip can be re-sharpened five to six times before it is scrapped.
If a tip breaks due to extensive wear, a tool that still could have been resharpened a few
times is wasted.

The process from which measurements were obtained, consisted of quick metal removal
before the final finishing of the component commences. Because FM manufactures a
large variety of pistons, it was decided to design a robust monitoring system that can
adjust to changes in the process. During the measurement phase, only one type of
component was manufactured, but the operator was allowed to change the feed rate
randomly (using the manual override button) within certain set limits. The feed rate has a
large impact on the subsequent vibration, which forced the implementation of a robust
monitoring system. A robust monitoring system can later be adjusted to monitor the tools
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when manufacturing other parts as well. An Analysis of Variance (ANOVA) was carried
out to ensure that the disturbances in the recorded data are truly randomly distributed.

4.2 .2 Experimental setup

Figure 4.1 display schematic details of the experimental setup. It is very important to
ensure that the sensors are well isolated against cutting fluid and chips, without disturbing
the dynamics of the cutting process too much. Furthermore, measurements have to be
made as close as possible to the physical cutting process, because, as mentioned in
previous chapters, tool wear causes very small changes in a process with a very wide
dynamic range. Another problem with the placement of the sensors was a limitation on
the amount of available space on the tool holder. Due to the fact that this is a precision
process, any deflection of the tip is undesirable. Therefore, the holder is clamped on all
four sides, very close to the tool tip. For this reason, only three sensors were used, instead

of four as was originally intended.

Spindle Workpiece

(Piston)
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Amplifiers

/ Synthetic diamond tip
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Figure 4.1: Schematic of experimental setup

Another problem that was encountered was with the isolation of the sensor wires. The

specific machine chosen for monitoring is a 4-axis CNC, with two turrets machining
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simultaneously. Each turret is capable of holding four tools. The turret indexes between
tools regularly during a cycle, resulting in the risk of breaking a sensor wire. These
practical problems were overcome by isolating the sensors with various substances, like
nitrile varnish, rubber and silicon. The sensor wires were housed in plastic pipes, sealed
with silicon. Furthermore, the operator was instructed to program the machine in such a
manner as to prevent the turret to rotate through 360 degrees. Figures 4.2 to 4.9 display
details of the complete experimental setup.

Door



Figure 4.4: Part before machining, with diamond tip and mounting of sensors and

wires visible






423 Experimental parameters
Table 4.1 summarise the cutting parameters and instrumentation. The DSPT Siglab was

used to record a ten-second time signal on all three channels, sampled at 25.6 kHz. The

Siglab, driven from the MATLAB environment, automatically filters the signals against

aliasing and then stores the signals in MATLAB format on the Pc. All data processing
were done in the MATLAB environment.
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Table 4.1
Experimental parameters
Lathe Okuma LU 15
Workpiece Aluminium
Holder type Sandvic SDJCR 2020k11
Insert type Synthetic diamond (Syndite)
Feed rate 0.5mm/rev + 10%
Speed 3600 rpm
Sensors Accelerometer: PCB model U353B65
strain sensors: PCB model 740B02
Amplifiers PCB model 480E09 ICP
Data acquisition DSPT Siglab model 20 — 42
Pentium PC, Matlab 5.1

Measurements were taken on an hourly basis, and three samples were recorded in each
instance. This ensured that three data sets were available for data processing with a neural
network. Two sets can be used for training a network, and the third for testing the
network. Approximately fifty components are manufactured in one hour, although this
number varies quite a lot. The experiment ran over six days, during which approximately
2300 components were manufactured. Ninety-nine samples were taken, which resulted in
thirty-three samples in each data set. The total amount of recorded data occupied 600Mb
of hard disk space.

4.3 Signal processing
4.3.1 Introduction

As discussed earlier, a number of different signal characteristics have been used by
previous authors to identify tool wear. Some characteristics will, however, not yield
satisfactory results in all instances. Many signal processing techniques have proven
themselves to be very accurate in monitoring tool wear in a turning process. However,
much of the previous work focused on laboratory experiments, with dry turning and
normal carbide / tungsten tool tips. Very little work investigated the implementation of
such a system in a real manufacturing environment. Furthermore, only a few references
were found dealing with diamond tips, which do not display the same behaviour as
carbide coated tools [66-71].
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The focus of the signal processing is to extract features from the recorded signals, and
automatically select the features that display a consistent trend towards tool wear. To
increase the reliability of the tool wear monitoring system, a monitoring strategy was
devised based on features extracted from the time and frequency domains, as well as
features extracted from time series models and wavelet packet analysis.

4.3.2 Single observation

A typical time signal, or single observation, is shown in figure 4.10. Each observation
consisted of a ten-second time signal on three channels, sampled at 25,6 kHz. The signals
were also filtered before feature extraction, allowing the 10 Hz - 10 kHz frequency band
to pass. Three sets of data were collected with the aim to train and test a neural network
based monitoring strategy.

Piezoelectric strain sensor - channel 1

Strain®

-10 1 1 i 1 1 i 1 1 1

2 3 .4 . 5 6 7 a 9 10
lPlezoelectrlc strain sensor - channel 2
¥ T T T T

Strain’

1 1 1 1 1 | 1

3 4 5 <] 7
Accelerometer - channel 3
1 T T 1 T

Figure 4.10: Typical observation showing five parts of signal
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As can be seen, the signal consists of five distinctive parts, labelled A, B, C, D and E.
Each of these parts correspond to a certain cut on the workpiece, schematically shown on
the figure. The signal contains 256 000 data points, which is too many too analyse
effectively at once, especially if the ultimate goal is to devise an on-line system.
Therefore the signal was broken up into the shown parts, by an automatic triggering
algorithm in MATLAB. Certain parts of the signal may contain more information on the
progressive tool wear, and it is also possible that the different cuts may cause different
failure modes to be dominant. Breaking the signal can expose such behaviour. The
breaking of the signal also enables the generation of more features, as will be shown later
in this chapter.

4.3.3 Feature extraction

After the signal was broken up in the five parts, the feature extraction program starts
analysing the data, treating each part as a separate signal. The following time domain
features were extracted from each of the parts: mean, rms, crest factor, variance,
skewness and kurtosis. Furthermore, coefficients from time series models were used as
features, in this case: AR coefficients, MA coefficients and ARMA coefficients. The
mathematical principles of these features and models were discussed in Chapter 2.

The most common frequency domain characteristic found in the literature is the spectral
energy around the first natural frequency of the tool-workpiece system. It was established
that the first natural frequency for this system lies at about 5 kHz. The spectral energy in
the 5 kHz region was taken as a feature. However, some authors also found that useful
information about the process can be found in the low' frequency domain. Investigations
proved that the spectral energy between 100 - 1000 Hz also displays a significant trend
towards tool wear. Therefore, this was also taken as a feature.

Li et al. [21] also found that the coherence function between two crossed accelerations is
very useful to identify tool wear. In this study, the coherence between the two dynamic
force signals in the 5 kHz frequency band was taken as another feature. However, the
coherence function did not yield satisfactory results. This may be due to the fact that the
dynamic forces in the two directions are too closely related. The principle of calculation
of the frequency band energy was discussed in Chapter 2. Figures 4.11 to 4.15 display
parts of the signal and their PSDs, with the signals filtered with a bandpass filter of 1-10
kHz, in order to display the activity at 5 kHz clearly.

87



0.8
0.6

0.4
0.2

2.4

2.6 2.8
Time [s]

PSD: Strain sensor 1

0
20X1

4000 6000 8000 1oDoO
Frequency [Hz]

44 45 46 4.7 48

Time [s]

PSD: Strain sensor 1

0
20X1

4000 600J 8000 100rn
Frequency [Hz]

2.4

2.6 2.8
Time [s]

PSD: Strain sensor 2

20X1

4000 6000 8000 10000
Frequency [Hz]

44 45 46 47 48

Time [s]

PSD: Strain sensor 2

0
20X1

4000 6000 8000 1oooo
Frequency [Hz]

8

14

12

B~ O

N

2.4 2.6 2.8
Time [sl

x 10~ PSD: Accelerometer

2000 4000 6000 8000 loooo
Frequency [Hz]

44 45 46 4.7 438
Time [s]

x 10* PSD: Accelerometer

0
2000 4000 6000 0000 1()J)J

Frequency [Hz]



54 55 56 57 58 54 55 56 57 58 54 55 56 57 58

Time [s] Time [s] Time [s]
PSD: Strain sensor 1 PSD: Strain sensor 2 x 10! PSD: Accelerometer
6
0
2000 4000 6000 8000 10cm 2000 4000 6000 8000 1vooo 2000 4000 61J)() 8000 1ovoO
Frequency [HZ] Frequency (Hzj Frequency [HZ]
6.6 6.8 7 6.6 6.8 7 66 6.8 7
Time [s] Time [s] Time [s]
PSD: Strain sensor 1 PSD: Strain sensor 2 x 10° PSD: Accelerometer
15
0 0
20X1 4000 60XI 800J 1000J 2000 4000 6000 BODO 1oDOO 20X1 4000 6IDJ 800J l1oooo

Frequency [HZ] Frequency [Hz] Frequency [HZ]



.2C0J
76 77 78 79 8 76 77 78 79 8 76 77 78 79 8

Time [s] Time [s] Time [s]

PSD: Strain sensor 1 PSD: Strain sensor 2 x 10~ PSD: Acceleromeler
4

0.05

0 0 0
2C0OJ 4000 6000 8000 1DOOO 2C0OJ 4000 6000 8000 1000D 2DDO 4000 6DDO 8000 1DODO
Frequency [Hz] Frequency [Hz] Frequency [Hz]

Wavelet analysis and its significance in process monitoring were also discussed in
Chapter 2. An approach proposed by Wu and Du [97], was adapted for this study for
feature extraction from wavelet packet analysis. The method requires that a reliable
wavelet packet analysis be established for the given signal. The reliability of the wavelet
packet analysis can be investigated in a number of ways, such as assessing the cross-
correlation, rms error and cross-coherence between the original signal and the
reconstructed signal.

A number of packets containing the most energy representative of the original signal
must then be chosen. The order of the decomposition tree will determine the maximum
number of representative packets that may be chosen. In this case, four packets were
decided upon. The different parts of the original signal yielded different choices for the
packets containing the most energy. The Shannon entropy formula, as discussed in
Chapter 2, was used to choose the packets containing the most energy.



The four representative packets containing the wavelet coefficients are then treated as
separate signals, and each is characterised according to their rms, standard deviation,
crest factor and kurtosis. These wavelet coefficient characteristics are then treated as
features for wear classification. Figure 4.16 display a schematic representation of the
wavelet packet tree, and figure 4.17 display the specific wavelet chosen for the analysis,
which was the coiflet 3 wavelet. The coiflet 3 wavelet was chosen because it yielded the
best results after experimentation with a number of different wavelets.
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Figure 4.18 display an example of an original signal (part A), with the chosen packets
containing most energy (E), calculated by Shannon entropy formula. In this case the
chosen packets on the tree were packets 1,2, 3 and 4.
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4 3.4 Feature selection

The total number of acquired features was 6 time, 3 model, 2 frequency and 16 wavelet
features, which is a total of 27. These features were calculated for the data from all five
parts of the signal, thus 27 x 5 = 135. Of course, there were three measurement channels,
which makes it 135 x 3 = 405 individual features from which the best ones must be
selected. Many of these features will not show significant trends towards tool wear, and

therefore some means of feature reduction must be implemented.

In most similar studies, authors have correlated the trend in the features with the
measured tool wear in order to select the best features. In this case it was not possible to
disturb the production process for wear measurement. Also, due to the specific wear
mode of the synthetic diamond tools, and the fact that the process is a not finishing
operation, surface roughness analysis did not yield information on progressive tool wear.
Calculating the correlation coefficient between the feature vector and an ‘ideal trend'
function solved the problem. The ideal trend function was taken as a straight line with a
slope of 40 degrees. Although this is not representative of the true tool wear, it can give
an indication of which features show consistent trend in time, and whether the trend is
towards higher or lower values of the feature. The correlation coefficient can be
expressed as a percentage, and features with a correlation higher than a certain threshold
value were taken as the final features for tool wear classification. This is an adapted
version of the correlation coefficient approach proposed by previous authors, such as
Quan et al. [45].

The correlation coefficient (expressed as a percentage) between the selected feature x and
ideal trend value y can be calculated as follows:

p=| Z,-(xi -xXy; - ¥) '
>0 -P Y, - 7)|

where X and ¥ are the means of x and y, respectively; pis the correlation coefficient

x100 (@.1)

whose value indicate linearity between X and y. When pis approaching 100%, there
exists a relationship between x and y. The lower the value of p, the lesser the chance for

the selected feature to show any trend towards tool wear. A last test to determine if the
trend of a certain feature is due to chance is to check if roughly the same correlation
coefficient is reached for the same feature in the two training data sets.
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4.3.5 Wear estimation

The final features are used in a self-organising neural network for wear classification.
Different SOM geometries were experimented with in order to obtain the best results.
The whole system of vibration measurement, feature extraction, feature reduction and the
final wear classification cumulates to a complete monitoring system. This system, with
some adjustments, can be implemented on-line if required. Figure 4.19 shows a

diagrammatic representation of the proposed monitoring system.
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Figure 4.19: Diagrammatic representation of monitoring system
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4.4 Experimental results

4.4.1 Selected features

The features selected by the automated monitoring strategy as described above, are
shown in Table 4.2. Although a number of other features also displayed considerable
trends towards tool wear, only thirteen were selected due to the fact that a limited number
of observations for training the SOM were available. The normal practice is to have ten

times more observations than features .

Table 4.2
Selected features for wear classification
Feature Channel Part

mean 1 B
rms 2 C
rms wavelet packet 1 2 C
rms wavelet packet 3 2 C
mean 2 C
rms 2 D
al from AR model 2 D
spectral energy 5 kHz 2 D
rms wavelet packet 1 2 D
kurtosis 2 E
rms 2 E
kurtosis wavelet packet 1 2 E
rms wavelet packet 1 2 E

It is also interesting to note that that no features were selected from the accelerometer
signal. Although some features from the accelerometer did display consistent trend
towards tool wear (especially the frequency band energy features), the trends were not
consistent enough to be selected by the monitoring system. The strain sensor signals were
more sensitive to the tool wear. This discovery leads to the conclusion that force sensors
are more fit for the purpose of tool wear monitoring than accelerometers, which

corresponds to results obtained by previous authors for another process [18].
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However, the placement of the sensors, the type of sensor mounting and the specific
process which is monitored, have a very strong influence on the final results. It would
seem that the channel 2 strain sensor was most sensitive to tool wear. The reason for this
could be because the channel 2 sensor was mounted nearest to the tool tip, and because it
was mounted in the y-direction, which is the direction of the thrust force, which is
normally the direction most sensitive to tool wear, depending on the operation. The
channel 3 strain sensor was mounted in the direction of the feed force, which can also be

very sensitive to tool wear under some circumstances.

Tool breakage occurred shortly after the last observations were recorded. Unfortunately,
data on the breakage event is not available. This means that the monitoring system could
not be trained to identify the onset of a breakage event. In principle, however, the system
could be trained to set off an alarm when the risk of tool breakage becomes high. For this
to be possible, data on the breakage event would have to be collected, which may be a
difficult task, due to the high expense of breaking a diamond tool, together with down
time on the machine and scrapping a part.

The selected features with respect to the number of machined components are shown in
Figures 4.20 to 4.22. The three coloured lines on the graphs represent the features
extracted from the three data sets (blue = 1, red = 2, green = 3). Note that the irregular
shapes of the graphs are due to the changes in the feed rate, and other dynamic influences
on the process. A very irregular deviation is visible in the kurtosis features in figure 4.22.
The kurtosis is especially sensitive to any sudden changes in the process. The two big
irregularities in the first data set may be due to an unwanted hard spot in the workpiece
material formed during casting, or some other external factor.

These irregular trends make decision making very difficult when it is based on a normal
thresholding or some other conventional technique. However, artificial neural networks
such as the SOM, can handle such noisy inputs efficiently. Irregularities such as the ones
visible in figure 4.22 does not have a very large influence on the final classification if
enough training samples are available. The effect of the events causing the irregularities
are ‘smeared out’ on the SOM with values from the other features.
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The selected features from the two learning data sets were used to train a SOM. Two map
sizes were used to illustrate the classification capabilities of the SOM. In the first case, a
small number of neurones were used. The reason why only a small number of neurones
were used, was because it makes classification easier. In this case, only two or three
neurones correspond to a new tool, and one correspond to a worn tool. The other
neurones all correspond to a used or medium worn tool. In the second instance, when
more neurones are used in the network, the regions corresponding to a certain
classification becomes larger, and classification becomes more flexible.

The data is normalised before map training commences, although the figures presented
here display the data without normalisation. The data is normalised to prevent ill-
conditioned calculations during map training. Different normalisation techniques are
available, but in this case, a linear normalisation between 0 and 1 for each feature were
used.

Some pattern recognition algorithms (k-means, fuzzy and Gaussian clustering) were also
tested on the training data. The algorithms could not succeed in forming clusters



indicative of tool condition. This does not mean that the algorithms cannot be used for
tool condition monitoring, because previous authors have used them with much success
[38]. It would rather seem that neural networks are less sensitive to random disturbances
in the data, and is more fit for process monitoring in some instances. The fact that the
SaM is based on unsupervised learning makes it even more attractive because it is easier
to use, and much more flexible.

A. Results with 3x 3 SOM

For each of the selected features, a 3 x 3 representative SaM can be shown. It is
important to note that although a SOM for each feature is available, the SaM is actually a
single entity. A view on a selected feature is only the view in the direction of that
dimension. The SaM can represent multidimensional data in this manner. This is
illustrated in figure 4.23, where all the selected variables are shown on a single figure.
From this figure, it is easy to observe how the values of the features relate to one another.

The observations in the data sets were all labelled 'new', 'used' or 'worn', corresponding to
the number of machined components. The best matching units for this data were looked
up on the SaM, and the program was instructed to place the labels of the test data on the
corresponding best matching neurones. In figure 4.24, it can be seen that neurones 1 and
4 correspond to a new tool and neurone 9 to a worn tool (neurones are numbered from top
to bottom and from left to right). The neurones in-between correspond to used or medium
worn tools. The number of hits on a certain neurone is also shown in brackets in figure
4.24. It is important to note that the third data set displays very good results. This data set
was not used to train the map, but only for testing.

In figure 4.25, atrajectory was drawn corresponding to the best matching units of the test
data. It can be observed that the trajectory moves in time from the 'new' to the 'used' to
the ‘'worn' region. The monitoring system obtained a near 100% success rate in
distinguishing between new and worn tools. In figures 4.15 and 4.16, the selected feature
is the rms of part C of the signal, from channel 2.
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B. Results with 12x 8 SOM

In order to make the classification of the tool wear more flexible, a 12 x 8 SOM were also
trained in the same manner as before, with two training data sets and one testing data set.
A map containing more neurones can, for example, enlarge the 'worn' region on the map
in order to distinguish between a worn tool and a severely worn tool. Training a map with

more neurones, is computationally much more challenging and therefore training takes
longer.

Figure 4.26 displays the multidimensional view on all the selected features, where the
hidden relationships between the features are revealed. It can be seen which features are
related to one another, and which tend to display a unique characteristic. For example, the
rms from wavelet packets one and three from part C of the signal, seem to display more
or less the same trend. However, some of the features trend towards lower values and
some features trend towards higher values. The physical explanation for this behaviour
will be discussed in the next section.
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Figure 4.27 displays the number of hits and hit labels for the BMUs of the three data sets.
The time trajectory of the BMUs are displayed in figure 4.28. Once again, it can be noted
that the trajectory moves from a 'new’, to a 'med' to a ‘worn' region. It would seem like the
trajectory moves around the dark blue area in the worn region and then stops somewhere
in this region. Due to the fact that data on the tool breakage is not available, as explained
earlier, a single neurone where the risk of tool breakage becomes high cannot be
identified here. However, it would be safe to say that a hit in the dark blue region is
evident of a worn tool, with some risk of tool breakage in the near future.
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4.5 Investigation

4.5.1 Introduction

Due to the fact that the wear status of the diamond tool could not be investigated during
the experimental process, conclusions regarding the mode of failure of the diamond tool
are based on the trends in the features and the investigation of the surface roughness of
the machined parts. A physical explanation for the trends in the selected features must be
found in order to validate the accuracy of the proposed monitoring system.

4.5.2 Surface roughness

The surface roughness of the machined parts were investigated throughout the
experimental monitoring process. A Talysurf 10 stylus were used to analyse and record
the surface roughness. Various surface roughness parameters were recorded: Rq, R, Ry,
Rim and Ry, None of these parameters displayed any trends that could be correlated with
tool wear. Although certain set limits for each of the parameters are specified for the
operation, none of them were violated before tool breakage occurred.

The reason for this is twofold:

1. The process is not a finishing operation, but a metal removal operation, which means
that surface finish is not very important during this operation.

2. The mode of progressive failure of the tool is such that it does not influence the
surface roughness significantly, which means that flank wear is not the dominant tool

failure mode. This is a very important conclusion.

4.5.3 Tool failure mode

It is in actual fact very difficult to identify a single failure mode that caused the visible
trends in the features for this case study. A number of failure modes are probably present,
and some are more dominant in certain parts of signal than others. At this stage, it is
definitely possible to say that channel 2, which was a piezoelectric strain sensor in the
thrust direction, was most sensitive to tool wear. In second place was channel 1, which
was also a piezoelectric strain sensor. The acceleration signal was less sensitive to the
tool wear. This result is similar to the results of another recent study with diamond tools
[66], which found that force signals are more sensitive to the diamond tool wear than

acceleration signals.
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The so-called 'bathtub’ behaviour of the tool could not be proved by the selected features.
However, it may be possible that these tools exhibit such behaviour, because it is a
common characteristic of most machine tools. Due to all the external influences on the
process, it was not possible to prove that the initial and final wear stages during this case
study occurred faster than the regular wear stage.

An attempt to find an explanation for the tool failure modes are made here, treating each
part of the observation signal separately:

A. Part A

No features from part A of the signal were chosen for wear classification, although some
features from this part of the signal displayed a trend towards tool wear. This operation is
the removal of metal from the face of the piston. It is most likely that the part of the tool
tip which is in contact with the workpiece during this operation differs slightly from the
rest of the operations, because the direction of the cut differs. Because this part is also a
shorter cut than the rest of the operations, it may be that the tool wear in this direction is
relatively small compared to the other operations. This information could be of value to
the manufacturer because it shows that excessive tool wear will not occur due to this part
of the cut.

B. Part B

This part of this signal did not contain much information on the tool wear. Only one
feature from this part of the signal were selected for classification. The mean value in this
part of the signal increases with progressive tool wear, which in itself cannot give an
indication of the dominant wear mode. The cut performed in this case is metal removal
on the edge of the piston, and may cause a little flank wear on a small section of the
diamond tool.

C. PartC

This part of the signal contained significant information on the tool wear. The selected
features from this part of the signal are all related to the rms of the signal, which is an
indication of the energy contained within the signal. However, in this part of the signal,
the energy decreases, which is an indication that the dominant failure mode is not flank
wear. The decrease of energy could have been caused by crater wear or micro-chipping.
The mean of the signal, on the other hand, showed an increase, which is an indication of
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increasing force which is caused by the wear at the tool tip, especially after many
components have been manufactured. This may be an indication that micro chipping at
the tool tip is present. However, it is not possible determine which failure mode is

dominant, because the tool could not be investigated during manufacturing.

D. Part D

This part of the signal contained the most significant information on the tool wear, with
four features selected for wear classification. The same arguments as in part C applies
here. All the features indicates a decrease of energy. The 5 kHz spectral energy also
indicates a decrease of energy, which is again an indication that flank wear is not the
dominant wear mode for this cut. The fact that the most features were selected from this
part of the signal, indicates that this part of the signal would be the best choice for
analysing with an on-line wear monitoring system.

E. ParntE

Three features were selected from this part of the signal, but all of them are very noisy
and the trends in these features are not really visible with the naked eye. The selected
features in this case are once more the rms, which displays a decrease, as well as the
kurtosis of the signal and the first wavelet packet. It is also very interesting to note that
the crest factor also displayed a trend towards tool wear in this part of the signal, although
it was not selected for final classification. This could be attributed to the dominant failure
mode, which may be micro-chipping. The cut at the edge of the piston cause a bigger
instantaneous force which can cause features like the kurtosis and the crest factor to
increase. Although these features are normally not very reliable, as found in the earlier
case study and by previous authors, they could be useful when used with a process like
this. However, the results obtained here are not very smooth, and these features alone
would not be sufficient for a monitoring scheme.

4.6 Conclusion

A diamond tool wear monitoring strategy, based on vibration measurements, was
presented. Measurements were taken from a piston manufacturing process, and
information on the progressive wear of the diamond tip was unavailable. Due to the fact
that the diamond tool wear induces very small variations in the overall machine vibration,
a large number of monitoring features were extracted from the data. The monitoring
system automatically selected features displaying the most consistent trends towards tool
wear, by evaluating a correlation coefficient with an ideal trend function. The selected
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features were used to train and test a self-organising neural network. A near 100% correct
classification was obtained with the test data set. Although the SOM was not originally
developed for process classification, very good results can be obtained if the best features
for the specific process are selected.

The monitoring system can extract and select features quick enough to enable the
implementation of an on-line monitoring system. This system will enable the

manufacturer to optimise the use of the diamond tools, which will be a significant cost

saving. Further conclusions will be discussed in the following chapter.
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CHAPTER S

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
RESEARCH

5.1 Conclusions

5.1.1 Introduction

In this chapter the final conclusions are discussed regarding the different aspects of the
study. Recommendations for future research are also made based on conclusions drawn
from this study. The different aspects of the study from which conclusions are made, are
some aspects regarding the two case studies, the use of the Self-Organising Map and
wavelet analysis.

5.1.2 Case study 1: Wear monitoring of a coated carbide insert in turning

In this case study two important aspects were investigated under controlled experimental

conditions. The first important conclusion was the fact that vibration monitoring is

suitable for tool wear identification in a normal turning process. Further conclusions

regarding this are:

e The dominant failure mode for this process is flank wear.

e The spectral energy at the natural frequency of the tool post system increase with
increasing flank wear.

e The increase in the energy of the signal also causes an increase in certain features
extracted from the signals.

The second important investigation of this case study was to determine if the Self-
Organising Map can be used for wear classification based on features extracted from
sensor data. It was demonstrated that the SOM can be used successfully to distinguish
between new and worn tools. The unsupervised learning capability of the SOM allows
automatic wear classification without human interaction. The only interaction the SOM
requires is data inset and map size specification. As with all other neural networks, the
training data must be reliable in order to obtain an accurate classification. A general rule
of thumb is that the number of observations supplied to the network must be at least ten
times the number of features. The map can be trained with the original training data, and
when more observations become available, they can also be used to update the training of
the map.
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The use of the SOM with discrete variables was also demonstrated for this case study. If
threshold values for the variables are known, their values can be fixed to a discrete 0 or 1.
This can make classification more accurate, and allows for the definition of a new feature

which is the intersection value of all the other features.

5.1.3 Case study 2: Monitoring of the synthetic diamond tool wear in a manufacturing
process

This study investigated a number of aspects regarding synthetic diamond tool wear

monitoring. Conclusions from case study 1 were used for the planning of this
investigation, like the use of vibration sensors and the use of a SOM classification
strategy. The study was conducted in a real manufacturing environment under which the
experimental conditions had to comply with the manufacturer’s demands. Conclusions
from this study are similar to conclusions from case study 1, as well as conclusions made
by previous authors in similar investigations. However, certain aspects of this case study

are quite unique, and these aspects will be highlighted in the following section.

The highlights of this investigation were:

o The use of synthetic diamond tools instead of normal carbide coated tools.

e Accelerometers and piezoelectric strain sensors used for process monitoring.

¢ The implementation of an automatic feature extraction and feature selection strategy.
e The use of wavelet packet analysis to extract features for tool wear monitoring.

e The use of a SOM for wear classification.

The synthetic diamond tools used in this investigation displayed quite unique wear
characteristics. It has been shown that failure modes such as micro-chipping and crater
wear dominates diamond tool wear. Flank wear of the diamond did not have a large
influence on the diamond wear and resulting tool breakage. It can be concluded from this
and previous studies, that diamond tools display unique modes of failure which are not
fully understood by researchers yet.

The fact that the failure modes of the diamond tools differ from that of other tools have a
large influence on the features that can be selected for wear monitoring, as well as the
resulting trends of these features. This is the reason why an automatic feature extraction
and feature reduction strategy were implemented. A correlation coefficient approach was
used for feature selection. Very good results were obtained with this strategy, which can
be implemented in an on-line monitoring system. The conclusion from this part of the
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study is that it is sometimes necessary to generate large numbers of features, and then
select the most appropriate ones for classification with a neural network. This enables
monitoring of a process which cannot be characterised in any other way.

Tt was also shown that the features extracted from the piezoelectric strain sensors showed
more consistent trends towards tool wear than the accelerometer. This means that the
force signal is more sensitive to tool wear than the vibration signal. In this case, the thrust
force was more sensitive to tool wear than the feed force. Previous authors also found
that the force signal can sometimes produce better results than the vibration signal.
However, accelerometers are sometimes more fit for the purpose of process monitoring
due to reasons discussed in Chapter 1.

The piezoelectric strain sensors used in the study are a relatively new type of sensor, and
have many advantages above other sensors. One advantage is that the sensors are
extremely small, and can be mounted comfortably on the tool holder without obstructing
the process. Another advantage is that the sensors are sensitive to tool wear and can also
sample within the same frequency range as the accelerometer. A disadvantage is still the
fact the sensors must be protected against cutting fluid and chips, but this is the case with
almost all sensors. A definite conclusion is that these sensors are fit for process

monitoring, if they can be protected when used in an aggressive environment.

Wavelet packet analysis were used for feature extraction, based on a method proposed by
previous authors. It was shown that wavelet analysis can be very useful for feature
generation, because the original signal is de-noised and compressed by wavelet analysis.
This means that only the most relevant information from the original signal are present in
the wavelet packets. Another advantage of wavelet analysis is that the calculation is fairly
quick, which makes it an option for an on-line monitoring system. The conclusion from
this study is that wavelet analysis is a very useful tool for process monitoring, and should
be experimented with in other processes as well.

The SOM was investigated for wear classification of the diamond tools. Although the
input data contained much noise, very good results were obtained. The input data was
chosen to be noisy (refer to Chapter 4) in order to design a robust monitoring system.
Different map topologies were experimented with, and the advantage between choosing

more or less neurones for the map was demonstrated.
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The SOM produced much better results than a pattern recognition algorithm that was also
tested with the tool wear data. As was concluded in case study 1, the SOM can be used
for process monitoring, although it was originally intended as a data visualisation tool.

5.1.4 Contribution of study

In Chapter 1 a range of literature regarding TCM studies were discussed. Table 1.1 was

used to place this study in context with some of the recent relevant literature. This table is

also very useful to summarise the contributions made to the literature by this study. From

table 1.1 it can be seen that the study contribute to the literature in terms of the following:

¢ A unique type of tool is investigated.

e The monitoring strategy proposed in the study combines many of the methods
investigated in other recent studies.

e The use of the SOM for wear classification is also fairly unique, with only two other
studies also investigating the use of SOMs [6,44].

e The large number of features generated and investigated is also a contribution with
regard to the literature.

There still exist many unanswered questions regarding this particular field of study, and

recommendations for future research are made in a forthcoming section.

5.1.5 Summary of conclusions

To summarise, the conclusions can be described as follows:

e Accelerometers and piezoelectric strain sensors can be used for tool wear monitoring.

e The force signal is more sensitive to the diamond tool wear than the vibration signal.

e The thrust force is more sensitive to the diamond tool wear than feed force.

e Wavelet packet analysis can be used for feature generation in tool wear monitoring

e Feature reduction can be done successfully with a correlation coefficient approach.

e The SOM can be used for classification of tool wear data.

e An automated diamond tool wear monitoring system was developed, that can be
implemented on-line if the manufacturer requires it.

e The monitoring system was designed to be robust to changes in process, and can be
modified to monitor a wider range of processes than the one discussed in case study
2.

¢ Synthetic diamond tools display unique wear characteristics, by which failure modes
such as crater wear and micro-chipping dominates the flank wear.
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5.2 Recommendations for future research

5.2.1 Tool wear monitoring systems

The justification for the purchase of tool monitoring systems by manufacturers were
discussed in Chapter 1. Although some tool monitoring systems are commercially
available today, there still exist many research opportunities in this field. Most of the
commercially available systems monitors tool breakage, and are also limited to a specific

Process.

However, recent developments in sensor technology will enable manufacturers to
purchase sensor integrated tool holders. The recommendation from this study is that the
sensors used for such systems are of the piezoelectric strain sensor type, with adequate
shielding characteristics when built into the tool holder.

A recommendation for future work from this study is to investigate the possibility of
smart sensor integrated tool holders that can be supplied to industry on a cost-effective
basis. These monitoring systems must be able to operate with inexpensive software on a
PC (or ‘black box’ format) that can adjust to a certain process or range of processes
(similar to the system developed in the study).

5.2.2 Self-Organising Map

Although the data from case study 2 were analysed with the SOM and with a pattern
recognition algorithm, the data was not analysed with any other neural network. It would
be interesting to compare results from the SOM with other neural networks.
Unfortunately, not many neural networks are based on unsupervised learning, which will
make the training procedures more complex.

Many neural network strategies today are also combined with fuzzy modelling, and it
would be very interesting to investigate the possibility of combining a unsupervised
neural network with a fuzzy modelling procedure, especially in the field of process
monitoring. The implementation of the SOM with other process monitoring systems
could also be very interesting subjects for future research.

5.2.3 Diamond tools

The wear mechanisms of diamond tools in general are not fully understood yet. More
studies investigating diamond tools are necessary before the failure modes of these tools
will be fully understood. Data on the wear of diamond tools must be made available by
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researchers in order to achieve a better understanding of the subject by researchers world
wide. It is a great advantage for any study to be conducted and implemented in a real
manufacturing environment. The disturbances always present in manufacturing plants
force the design of robust monitoring systems. Robust monitoring systems can easily be
adjusted to monitor other processes as well. However, laboratory experiments with
diamond tools could reveal some of the hidden wear characteristics that have not been
widely researched yet.

5.3 Epilogue

The development of an automated tool wear monitoring system was the main objective of
this study. It was shown that such a system can be implemented in a real manufacturing
environment successfully. The system can adjust to changes in process, and will also be
able to adjust to the manufacturing of other parts as well. TCM systems for virtually any
combination of machines, tools and workpieces will be available soon thanks to the wide
variety of research already conducted in this field. The on-line implementation of such
systems is the next step. These systems will be a standard commodity on most machines
used in manufacturing plants in the future.

el © 4 © GEE———
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