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SUMMARY

TITLE: Bilevel factor analysis models
CANDIDATE: J.J. PIETERSEN

PROMOTER: PROFESSOR S.H.C. DU TOIT
DEPARTMENT: STATISTICS

DEGREE: PH.D. (APPLIED STATISTICS)

The theory of ordinary factor analysis and its application by means of software packages
do not make provision for data sampled from populations with hierarchical structures.
Since data are often obtained from such populations - educational data for example -

the lack of procedures to analyse data of this kind needs to be addressed.

A review of the ordinary factor analysis model and maximum likelihood estimation of the
parameters in exploratory and confirmatory models is provided, together with practical
applications. Subsequently, the concept of hierarchically structured populations and
their models, called multilevel models, are introduced. A general framework for the
estimation of the unknown parameters in these models is presented. It contains two
estimation procedures. The first is the marginal maximum likelihood method in which
an iterative expected maximisation approach is used to obtain the maximum likelihood
estimates. The second is the Fisher scoring method which also provides estimated
standard errors for the maximum likelihood parameter estimates. For both methods,
the theory is presented for unconstrained as well as for constrained estimation. A
two-stage procedure - combining the mentioned procedures - is proposed for parameter

estimation in practice.

Multilevel factor analysis models are introduced next, and subsequently a particular
two-level factor analysis model is presented. The general estimation theory that was
presented earlier is applied to this model - in exploratory and confirmatory analysis.
First, the marginal maximum likelihood method is used to obtain the equations for
determining the parameter estimates. It is then shown how an iterative expected max-

imisation algorithm is used to obtain these estimates in unconstrained and constrained



optimisation. This method is applied to real life data using a FORTRAN program.
Secondly, equations are derived by means of the Fisher scoring method to obtain the
maximum likelihood estimates of the parameters in the two-level factor analysis model
for exploratory and confirmatory analysis. A FORTRAN program was written to apply

this method in practice. Real life data are used to illustrate the method.

Finally, flowing from this research, some areas for possible further research are pro-

posed.



OPSOMMING

ONDERWERP: Tweepeil faktorontledingsmodelle

KANDIDAAT: J.J. PIETERSEN
PROMOTOR: PROFESSOR S.H.C. DU TOIT
DEPARTEMENT: STATISTIEK

GRAAD: PH.D. (TOEGEPASTE STATISTIEK)

Die teorie van gewone faktorontleding en die toepassing deur middel van statistiese
sagtewarepakette maak nie voorsiening vir die ontleding van data afkomstig uit popu-
lasies met hi€rargiese strukture nie. Aangesien data in baie gevalle uit sulke populasies
afkomstig is - onderwys is 'n goeie voorbeeld - behoort die afwesigheid van beram-

ingsprosedures in die ontleding van modelle vir sulke data aangespreek te word.

'n Oorsig oor die gewone faktorontledingsmodel en die beskouing van maksimum aan-
neemlikheidsberaming van die parameters in ondersoekende en bevestigende modelle
word gegee. Die teorie word dan toegepas op werklike data. Daarna word die konsep van
hiérargies gestruktureerde populasies en modelle vir data uit sulke populasies, naamlik
meerpeilmodelle, beskryf. 'n Algemene raamwerk vir die beraming van die onbekende
parameters in hierdie modelle word gegee. Dit bevat twee beramingsprosedures. Die
eerste is die marginale maksimum aanneemlikheidsmetode waarin ’'n iteratiewe verwagte
maksimeringsbenadering gebruik word om die maksimum aanneemlikheidsberamers te
verkry. Die tweede is die bekende ”Fisher scoring” metode wat ook beraamde stan-
daardfoute vir die maksimum aanneemlikheidsberamers van die parameters gee. Vir
beide metodes word die teorie bespreek ten opsigte van gevalle waar geen beperkings
op die parameters geplaas word nie en ook waar daar wel beperkings op hulle geplaas
word. 'n Twee-stadium prosedure - 'n kombinasie van die genoemde prosedures - word

voorgestel vir die beraming van parameters in die praktyk.

Meerpeilfaktorontledingsmodelle word volgende bespreek, en vervolgens word 'n spesi-
fieke tweepeilfaktorontledingsmodel beskryf. Die algemene beramingsteorie wat vroeer

bespreek is, word toegepas op hierdie model - in ondersoekende en bevestigende ontled-



ing. FEerstens word die marginale maksimum aanneemlikheidsmetode gebruik om die
vergelykings te bepaal vir die berekening van die parameterberamings. Dan word aange-
toon hoe 'n iteratiewe verwagte maksimeringsalgoritme gebruik word om die beramings,
met en sonder beperkings, te bereken. Hierdie metode word toegepas op werklike data
deur gebruik te maak van 'n FORTRAN-program wat spesiaal vir die doel geskryf
is. Tweedens word vergelykings afgelei deur gebruik te maak van die ”Fisher scoring”
metode om maksimum aanneemlikheidsberamers te bereken vir die parameters in die
tweepeilfaktorontledingsmodel in ondersoekende en bevestigende ontleding. Weereens
word die gevalle beskou waar beperkings en geen beperkings op die parameters geplaas
word. 'n FORTRAN-program is geskryf om hierdie metode in die praktyk toe te pas.

Werklike data word gebruik om die metode te illustreer.

Ten slotte, voortspruitend uit hierdie navorsing, word 'n aantal onderwerpe vir moont-

like verdere navorsing voorgestel.



Notation

The following notation will be adopted in this thesis:

exp(z)

In z

A:(pxq)

diag[A]
vec[A]

vecs[A]

vecs*[A]

Ooro0,

constant, 7 = 3.14159...

Euler’s constant, e = 2.71828...

€%, —00 < T < 00

natural logarithm of the real number z, z > 0
Kronecker’s delta (1 if ¢ = j and 0 if ¢ # 7)

matrix of order p X ¢

column vector of order p x 1

scalar

transpose of A

transpose of a (a row vector)

the element in the i-th row and j-th column of A

the ¢-th element of a

inverse of A

[A™1];;

determinant of A

trace of A

diagonal matrix with diagonal elements ay1,a22," - -
diagonal matrix formed from the diagonal elements

of A

columnvector formed from the diagonal elements of A
(pg x 1) vector formed from the ¢ columns of the

p X g matrix A

(p(p+ 1)/2 x 1) vector formed from the nonduplicated
elements of the (p X p) symmetric matrix A

(p(p — 1)/2 x 1) vector formed from the nonduplicated
off-diagonal elements of the (p X p) symmetric matrix A
null matrix, [0];; =0

(p x 1) null vector, [0];; =0



Jorj,

Iorl,

A®B

2A
Az

af(x)

x

E(y):(px1)

Cov(y,y’): (p x p)

(p x 1) vector with unit elements, [jl;; =1

(p x p) identity matrix

matrix with all elements equal to zero

with the exception of the element in the i-th
row and j-th column which is equal to unity
column vector with all elements equal to zero
with the exception of the i-th element which
is equal to unity

The right direct product or ”Kronecker
product ” of matrices A and B defined by:

(l]lB (112B v aqu
ang (122B s (lqu
apB apB - a,B

. . . da;,
matrix with typical element —-2
column vector with typical element ﬂg}c‘—l
column vector with typical element g[f;((]?

symmetric matrix with typical element

3?2 f(x
o[x]:19[x];1

expected value of the random vector y with

typical element E(y;)

covariance matrix of the random vector y

with typical element E[y; — E(y:)] [v; — E(y;)]



CHAPTER 1

INTRODUCTION

In many fields of research two important aspects of the process are the collection of
information and its analysis. Data analysis has received much attention over the years;
a variety of statistical techniques have been developed and are used daily to analyse
many kinds of data. The task has been made relatively easy by modern technology.
Many statistical software packages are now available for analysing data, even on personal
computers; and the packages are regularly updated to take care of new developments

in analytic techniques.

Most computer packages are written to analyse data obtained from individuals of a
particular population, or to compare data obtained from individuals of more than one
population. The techniques are not designed to deal with information about popula-
tions in which there are built-in hierarchies - i.e. where the individuals are grouped
into clusters or groups, for a two-level hierarchy, and also where these clusters may be

grouped into even larger homogeneous groups, for a three-level hierarchy.

Incorrect ways of treating hierarchical data that were used in the past, and are probably
still used by some researchers, are to aggregate or disaggregate the observed variables.
By ”aggregation” is meant that variables at the individual level are aggregated to the
higher level and that the analysis is then done at that higher level. By ” disaggregation”
is meant that the higher order variables are disaggregated to the individual level where
the analysis is then done. The aggregation of variables leads to the loss of all the
within-group information, the disaggregation of variables leads to individuals within a
group having the same value on the group variables, and this violates the assumption
of independence of the observations. These two methods of analysing hierarchical data

are therefore unsatisfactory (Bryk and Raudenbush, 1992).

Because of the necessity to take the structure of the data into account in the analysis



process, a general framework for nested data was introduced by Lindley and Smith
(1972). At that time only very simple problems could be subjected to data analysis;
a general estimation procedure was not then available, and the analysis of hierarchical
data requires fairly sophisticated estimation procedures. It was the development of the
EM algorithm by Dempster, Laird and Rubin in 1977 (Bryk and Raudenbush, 1992)
that provided a method of estimation appropriate to the analysis of this kind of data.

Computer software for analysing hierarchical data was developed only in the late 1980s
and is not yet widely available. Four such computer programs for fitting models are
GENMOD, HLM, ML2 and VARCL (Bryk and Raudenbush, 1992). Since they do
not make provision for analysing latent variable models applied to hierarchical data,
the aim of this thesis is to present estimation procedures in the analysis of a specific
latent variable model; namely a factor analysis model for two-level hierarchical data. In
addition to setting out the theory of the estimation procedures, a computer program
written in FORTRAN is used to apply the derived theory to some real life data in order
to show the feasibility of the procedures. A summary of the contents of each chapter in

this thesis will now be provided.

In Chapter 2 a review of factor analysis as a statistical technique is presented. The
classical application of factor analysis to multivariate data obtained from a single pop-
ulation in which no hierarchy is present, is considered. The mathematical model used
in factor analysis is defined, and a procedure to estimate the parameters in the model is
then described. Distinction is made between an exploratory and a confirmatory model.
The whole issue of factor rotation is discussed; and some practical applications of factor

analysis to real life data are offered in the final section of the chapter.

The concept of multilevel models for univariate as well as for multivariate data obtained
from hierarchical populations is introduced in Chapter 3. General linear models are
defined for multilevel data using Goldstein and McDonald (1988) as main reference. The
general models, and two methods for obtaining estimators of the unknown parameters

in the case of a general multivariate two-level model, are described. The first of these 1s



the marginal maximum likelihood method; and the EM algorithm is used here to obtain
the parameter estimates iteratively. The second is the Fisher scoring method to obtain
maximum likelihood estimates of the parameters, also in an iterative way. Both these
methods are then adapted to provide the parameter estimators if constraints are to be

imposed on a subset of the parameters.

Having considered general models in the previous chapter, latent variable multilevel
models are introduced in Chapter 4. A specific latent variable model - namely, a two-
level factor analysis model - is described, and it is shown how this model fits into the
general framework described in Chapter 3. The method of marginal maximum likelihood
in estimating the parameters in this factor analysis model is then discussed in detail.
Expressions are obtained in this procedure that are shown to be ideal for use in an
EM algorithm to obtain the estimates. Typically, non-linear constraints are imposed on
some of the parameters in an exploratory factor model. Since these constraints are also
imposed on the parameters in the two-level model, it is indicated how these non-linear
constraints may be approximated by a set of linear constraints in order to simplify
some derivations. The linear constraints are then imposed on the parameters, and it
is shown how the EM algorithm may be adjusted to obtain the parameter estimates
subject to these constraints. An EM algorithm is proposed for exploratory as well
as for confirmatory analysis. The final section of the chapter is devoted to practical
applications where this method is used to obtain parameter estimates in the modelling

of real life data.

In Chapter 5 a further method of estimating the parameters in the two-level factor anal-
ysis model is described. This is the Fisher scoring method which has the advantage of
providing, in addition to the parameter estimates, an estimate of the covariance matrix
of these estimators. First, the likelihood function for maximisation under normality
assumptions is obtained and is changed to a function for minimisation, called the dis-
crepancy function. Subsequently the gradient vector and expected Hessian matrix of
this discrepancy function are obtained. These quantities are then used in the Fisher

scoring method to obtain the parameter estimates and their estimated covariance ma-



trix, in both exploratory and confirmatory models. It is also indicated how this method
may be used when non-linear constraints are imposed on some of the parameters, as is
the case in exploratory analysis. Some remarks are made on testing the goodness of fit
of this model and on hypotheses that may also be tested. Finally, real life data are used

to show the application of this method in practice.

In the final chapter, namely Chapter 6, a few topics are mentioned which have not been

investigated in this thesis and which may lead to interesting further research.



CHAPTER 2

A REVIEW OF FACTOR ANALYSIS

2.1 Introduction

In this chapter a review of factor analysis will be given as it has been, and still is,
employed by many researchers and other users of statistics. The technique, as described
here, is well known and very popular in some fields of research - specifically in psychology
- and is currently a very useful tool for analysing sample correlation and covariance

matrices.

As a statistical method, factor analysis dates back to the second half of the nineteenth
century (Mulaik, 1972). It has since been developed as a very powerful technique in
data analysis. Many books have been written on the topic, of which the one by Mulaik
(1972), which also provides a brief history of the development of factor analysis as a

linear model, qualifies as an important reference.

There are two distinct stages in factor analysis, namely exploratory and confirmatory
factor analysis. Of these two, exploratory factor analysis was first developed and use was
mainly made of ’approximate’ and easy-to-calculate methods in the era before modern
computers became available. However, in the mid to late 1960s Bock and Bargmann
(1966) and Joreskog (1969) introduced a more confirmatory approach to factor analysis
in the sense that various parameters in the model could be specified a priori, followed
by a goodness of fit test of the model. This means that more meaningful constraints
are imposed on the parameters whereas in exploratory factor analysis arbitrary con-
straints, mainly incorporated for computational convenience only, are used. It is these
advantages of confirmatory factor analysis, namely substantively motivated constraints
and the statistical test of the model, that are responsible for the current tendency of

researchers to gradually move away from exploratory, and more towards confirmatory



factor analysis.

In the next section the mathematical model used in exploratory factor analysis, and the
parameters involved in this model, will be introduced. Section 2.3 will then deal with a
problem inherent to the factor analysis model, namely identification. In Section 2.4 the
estimation of the parameters in the exploratory factor analysis model will be dealt with
while the issue of factor rotation will be discussed in Section 2.5. The last two sections
will be used to discuss parameter estimation in the confirmatory factor analysis model

and to present some practical applications.

2.2 The factor analysis model

A number of distinct rationales can be given to express the basic assumptions of the
common factor model in equivalent ways. Two of these - used by McDonald (1985) in
his definition of the model - are, firstly, that there are a number of unobserved variables
that explain the observed covariances (or correlations), i.e. if these unobserved variables
are partialled out, the covariances (or correlations) between the observed variables are
zero, and secondly, that each observed variable can be expressed as its regression on a
number of unobserved variables plus a residual about that regression, with uncorrelated

residuals.

In order to write the mathematical form for this model, let y be the p x 1 vector contain-
ing the p observed variables y;,vs,...,y,- Assume that E(y) = 0 and Cov(y,y’) =X
where X is a p X p covariance matrix. Let x be an m x 1 vector, the co-ordinates of
which are the m unobserved variables z;,zs,...,Zm, also called the common factors,
and assume that E(x) = 0 and Cov(x,x') = ®. The first definition of the factor
analysis model in the previous paragraph can now be expressed mathematically by the

expression

0 =3 — A®A’



(see e.g. Mulaik (1972) for a derivation of this equation) where X, ; is the covariance
matrix of y with x partialled out, and A is the px m matrix of regression coefficients of y
on x. The partial covariance matrix X, ;, however, is diagonal by definition. Therefore,

let it be denoted by Dy, and consequently the testable common factor model is

¥ = A®A’ + Dy. (2.1)

The second definition of the model can be stated as

Y1 = AnTi + A2+ .o+ AT + €1

Yg = Ag1Ty + AgaZo + ... + Ao T + €2

Yp = Ap1T1 + ApaZa + ... + ApnTm + €

where J;; is the regression coefficient of y; on z; - also called the common factor loading
of variable y; on factor z; - and e, is the residual of y; about its regression on the common

factors, also called the unique factor. These residuals are assumed to be uncorrelated.

In matrix notation it follows that

y=Ax+e (2'2)

which is the common factor model itself (McDonald, 1985).

The parameters in the factor analysis model that need to be estimated from sampled
observations, are the pm factor loadings (regression coefficients) in A, the m(m +1)/2
non-duplicated elements of ® and the p diagonal elements of Dy, i.e. the unique vari-

ances. Before the estimation of these parameters by means of the method of maximum



likelihood is presented, the problem of the uniqueness of the parameters will be given

attention in the next section.

2.3 Identification in the factor analysis model

A model is said to be identified when the parameters in the model are uniquely deter-
mined. In models that are not identified, the estimates of the parameters are arbitrary
and have meaningless interpretation (Long, 1983). It is, however, possible to remove
this unidentifiability by imposing restrictions on the parameters in the model. In the

factor analysis model, the parameters are not uniquely determined and consequently

the model is not identified: Let A* = AT™! and &* = T®T'. It follows that

A*®*AY + Dy = (AT ') (TET') (AT ') + Dy

which indicates unidentification, since A* and ®* are clearly different from A and @
(for all T #I), but the model is unaltered if any of these two sets of parameters is used.
It is therefore necessary to impose at least m? restrictions on the elements of A and @
- since T is of the order m x m and has m? elements - in order to define them uniquely
(Lawley and Maxwell, 1971). In exploratory factor analysis these m? restrictions are
often imposed in the following way: The factor covariance matrix ® is restricted to be
an m X m identity matrix, imposing m(m + 1)/2 restrictions on @, while the remaining
m(m — 1)/2 restrictions are imposed on A in restricting A’'Dg'A to be a diagonal
matrix. These restrictions are chosen for convenience only and does generally not result
in interpretable solutions. However, this does not matter in exploratory factor analysis
since no hypothesis concerning the factors are involved in such an analysis (Joreskog,
1969); subsequent rotation of the factors is usually performed in an attempt to obtain

interpretable solutions.



In situations where some knowledge of the problem under investigation is available -
possibly through previous research - the researcher has certain hypotheses regarding the
population parameters that he may wish to test. A factor analysis done under these
circumstances is called a confirmatory analysis and requires that the values of certain
elements in A, ® and Dy are specified in advance. For example, if previous results
show that variable i has no relationship with factor j, one should specify A;; = 0. Also
if factors r and s are expected to be uncorrelated, one should specify ¢.; = 0. The
parameters that are specified in advance are called the firzed parameters while the

remaining parameters that need to be estimated are called the free parameters.

Let na and ng represent the number of specified parameters in A and P respectively.

Then a necessary condition for uniqueness is that

np +ne > m?.

This condition, however, is not sufficient, since it is not only the number of specified
parameters, but also their position that is important in defining the free parameters

uniquely (see e.g. Everitt (1984)).

One way to determine whether or not a specific model is identified, is to look in detail
at the equations relating the elements of the sample covariance matrix to the model
parameters. The equations need not be solved; one should only try to assess whether

the parameters have unique solutions (Everitt, 1984).

Joreskog (1979) gives a number of sufficient conditions for A to be uniquely determined.
These conditions are valid for oblique solutions with fixed zero elements - the most
interesting case in practice - and are the following;:

i. @ is a symmetric positive definite matrix with unit diagonal elements.

ii. A has at least m — 1 fixed zeroes in each column.

iii. A, has rank m — 1, where A,, s = 1,2,...,m is the submatrix of A that contains

the rows of A which have fixed zero elements in the s-th column.



The fixed unities on the diagonal of ® could be relaxed if one nonzero value is fixed in
each column of A, since both these restrictions merely fix the unit of measurement of

the factors.

2.4 Parameter estimation in exploratory factor analysis

Several methods for estimating the parameters in a factor analysis model have been
developed and can be found in books such as Harman (1976) and Mulaik (1972). A
few iterative methods of factor analysis - one of which is principal factor analysis -
are discussed in an expository paper by McDonald (1970) while an account of three
methods yielding maximum likelihood estimators of the parameters may be found in

Browne (1969).

The method of maximum likelihood is frequently employed to obtain estimators of the
population parameters. In many cases, these estimators have desirable asymptotic dis-
tributional properties. Furthermore, one may perform with them tests of significance
on the goodness of fit of factor analysis models (Browne, 1968). The historical devel-
opment of maximum likelihood estimation in factor analysis may be found in Mulaik

(1972) and also in Jackson (1991) and consists of the following major developments.

The theoretical development of maximum likelihood estimation in factor analysis as it
is known today is mainly due to the work of Lawley (1940) when he made a major
breakthrough in deriving the equations for the maximum likelihood estimators of the
parameters. His computational recommendations, however, were not practical for prob-
lems with many variables since electronic computers were not yet available to do the
complex calculations required by his method. It was later found that even with modern
computing facilities his algorithm did not converge effectively in all applications. In
the 1950s, however, the first computers became available and methods for factor ana-
lytic problems were investigated by a number of workers in this field. Algorithms for

obtaining maximum likelihood estimates were provide by Howe (1955) and Rao (1955);

10



Howe also showed that Lawley’s maximum likelihood estimators could be derived from

a model for which no distributional assumptions are made.

In the late 1960s the major computational problem in maximum likelihood factor anal-
ysis could be seen as something of the past; Joreskog (1966) used a Fletcher-Powell
algorithm in testing a simple structure hypothesis and subsequently used an improved
version of the algorithm to minimise the maximum likelihood discrepancy function in
factor analysis. The algorithm was found to converge to the desired solution and did
so faster than any other algorithm tried before. It should also be mentioned that the
Jennrich-Robinson algorithm was developed independently of Joreskog (1966) and was

found to be superior.

The maximum likelihood equations for the parameters in the factor analysis model
may be obtained by means of the well known method of maximising the likelihood
function of a sample with respect to the unknown population parameters. It has been
general practice to maximise the natural logarithm of the likelihood function. The
latter may be based only on the information in the sample covariance matrix S that
follows a Wishart distribution under the assumption of multivariate normality of the
data vector, or alternatively, the likelihood function may be based on the joint likelihood
of the individual observations drawn from the population. Both these approaches have
been used to derive the equations for the maximum likelihood estimators; Morrison
(1990) and Lawley and Maxwell (1971) use the Wishart distribution of S while the
second approach is used by Anderson (1984) and Mulaik (1972).

A brief indication will now be given as to how the maximum likelihood estimators in
exploratory factor analysis may be obtained by maximising the likelihood function based
on the joint likelihood of individual observations. Note that the restrictions ® = I and
A'Dg'A=diagonal are used here. Assume now that a sample of N p-variate vectors
of observations has been drawn from a p-variate normal population with g = 0 and
¥ = AA’ + Dy, and denote the sample values by x;, X, ...,Xy. The likelihood for this

sample is given by

11



1N
L = (2r)~ N2z~ M2exp (——2- ZxéE"lxi)

1=1

while the natural logarithm of L is

N

1
tmL = ~"Pin(2m) — © tn|S] - Str[ARY (2.3)

where A = YN x;x!.
The estimators of A and Dy are obtained by setting the partial derivatives of £nL with
respect to A and Dy equal to zero. The details of the derivations will be omitted here

since it can be found in many references, e.g. Anderson (1984).

The partial derivatives are given by

OnL N 1 _yp-igw-1).
56, = 3 (=7 - [E7'82 7))
and
oflnL B laan]
S = —N ([S7'A]; - [B7'SZ7'A]y) .

Equating these to zero, the following expressions are obtained for A and Dy:

diag(3!) = diag(EX71SE7?)

and

12



The above two expressions may be simplified further to yield

diag(X) = diag(S) (2.4)

and

SD'A = A0 +1) (2.5)

where ' = [&’f)(f,lz& and is therefore a diagonal matrix.

Equation (2.5) may be manipulated and written in the form
Aol A o1\ [aola Aol a
<D\,,2(s - D\I,)D\I,Q) <D\I,2A) - <D\I,2A) i

ALl A
which shows that the columns of Dy? A are the characteristic vectors of

A1 A el R
Dy?(S — Dy)Dy? and T’ contains the corresponding roots.

Since the estimators A and Dy cannot be obtained in closed form, use must be made
of iterative procedures to obtain the estimates. One such method - the Fletcher and
Powell method - is described by Lawley and Maxwell (1971). Other methods that are
also used include the Newton-Raphson and Gauss-Newton methods (Bentler, 1986).

In the process of estimating the parameters in exploratory factor analysis, it is argued

implicitly that the number of factor variables, m, is fixed and known. This, however,

13



is not always the case in practice. Consequently there is a need to test if m factors are
sufficient for equation (2.1) to hold. The answer to this problem may be found by using
the likelihood ratio principle to derive an appropriate test for the null hypothesis that
¥ = AA’ + Dy where the order of A is p x m.

The test statistic is given by (see e.g. Morrison (1990))

., |
Am = Kén—
S|

where
1 2
K—N—6(2p+11)— 3

The test statistic ),, obtained in this way is asymptotically distributed as a chi-square

variate with v degrees of freedom where

v =3[ —m) ~ (p+m)l.

Often a different function is optimised to obtain the maximum likelihood estimators
and to simultaneously obtain the likelihood ratio test statistic described above. This

function is

F =In|Z|+tr(SEZ7) — In|S| —p (2.6)

whose minimum will yield the same maximum likelihood estimators of the parameters
than the maximum of #nL and also, N —1 times the minimum value of F' is the likelihood

ratio test statistic of goodness of fit (Joreskog, 1969).
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An estimate of the number of factors may now be obtained by using a sequence of
likelihood ratio tests, each time extracting a larger number of factors, until the null
hypothesis is not rejected. The value of m, for which the null hypothesis is not rejected
for the first time, is taken as an estimate for the number of factors. It should be
mentioned that such a series of tests are not independent and that the true significance

level may be very different from the level used with each test (Morrison, 1990).

2.5 Factor rotation

Once an initial solution of A has been obtained in exploratory factor analysis, it may
be transformed into a different solution without changing its ability to represent the
observed covariances. This can easily be seen to be true since for any m x m orthogonal

matrix T it follows that

AT(ATY = ATT'A’ = AA’ (2.7)

since TT' = I. An unlimited number of solutions can therefore be obtained for the
factor matrix once an initial solution has been obtained. Also, because of (2.7), any one
of this unlimited number of solutions equally well reproduces the covariances among the
observed variables. It is also evident that the test statistic for testing the hypothesis
of sufficient number of factors will be identical for all such solutions. The only major
difference between these solutions is the complexity, and therefore the interpretability,
of the factors. It is this issue, namely the interpretability of the factors, that factor

rotation addresses.

To assist in understanding the rotation of factors, the rationale behind rotation will be
demonstrated for the case of two factors. An initial factor matrix for this special case
contains a pair of coefficients (one for each factor) for each variable. These coefficients

may act as co-ordinates to represent the variables in a two-dimensional space that is
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called the common-factor space (Harman, 1976). This space consists of a pair of axes
which are at right angle with each other since the initial factors are uncorrelated. The
points in this space, which represent the variables, may be transformed to another
solution by rotating the axes through some angle while retaining the orthogonality of
the axes. The co-ordinates of the points with respect to these new axes now represent
the coefficients of some other solution. It is shown by Harman (1976) that such a

transformation from one set of axes to another may be put in the form

where B and A are of the order p x 2 and are respectively the coefficients of the new and
the initial solution. The matrix T is of the order 2 x 2 and is called the transformation
matrix because it transforms one solution into another. Harman continues and shows

that this reasoning may be extended to cases where there are more than two factors.

At first, the rotation of factors was done in a subjective manner. A review of such
subjective, graphical transformations to obtain a rotated solution from some initial
solution can be found in Harman (1976) and Mulaik (1972). It was only after the
development of large electronic computers that objective, analytic methods could be

used, because these methods require extensive computations.

Using an objective factor rotation method to obtain interpretable factors, one needs
some kind of criterion, or set of criteria, to evaluate the rotated factors. Of these criteria,
the most important are the five criteria for simple structure proposed by Thurstone in
1947. They are given in Morrison (1990), Harman (1976) and Mulaik (1972). The last
of these references also includes a technical explanation of what is meant by simple

structure.

Several factor analysts came up with criteria for use in orthogonal analytic rotation.
Among the first of these criteria was the one arrived at by Carroll in 1953. It involves

the minimisation of fourth degree terms obtained from cross-products of squared factor
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loadings. The criterion he proposed is that f be a minimum, where

m P
f= 22 D bhbi
k<é=11=1

A year later Ferguson (see Harman(1976)) suggested that the sum of the fourth powers

of all factor loadings should be a maximum, i.e. ¢ should be a maximum where

p

¢=3 20 (2.8)

i=1j=1

In 1954 Neuhaus and Wrigley (Harman, 1976) proposed a criterion in which the vari-
ance of the squared loadings of a variable is maximised. This involves the maximisation
of fourth powers of factor loadings, and consequently - following C. Burt’s suggestion
(Harman, 1976) - the method is termed the ”quartimax” method. The criterion pro-
posed by Niehaus and Wrigley, however, is equivalent to Ferguson’s criterion in (2.8)

under orthogonal transformation.

In 1958 Kaiser introduced a criterion that he called the ”varimax”. It has been used
with great success, and is still probably the most widely employed criterion in orthog-
onal analytic rotation. Harman (1976) and Malaik (1972) provide much detail on the

development of these criteria. The varimax criterion will be discussed briefly here.

Since the quartimax criterion is concerned with the simplification of the rows of a
factor matrix and would frequently give a general factor, Kaiser suggested a criterion to
simplify the columns of a factor matrix. As a measure of a certain factor’s simplicity,
the variance of the squared loadings of the observed variables on that factor was taken.
This variance is maximised so that there will only be a small number of large loadings
on the factor, which will increase its interpretability. The criterion therefore proposed
by Kaiser is the maximum of the sum, over all factors, of these variances. This criterion

can be written as
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. m 1 p 1 p
=3 (33 - 2ooy) (29)
where B = (b;;) is the rotated factor matrix.

The use of the criterion given by (2.9) was only moderately successful if measured against
intuitive-graphical methods. It was then that (2.9) was modified, at D.R. Saunders’
suggestion (Harman, 1976), by weighting the observed variables equally in the rotation.
To accomplish this, the rows of B are normalised to unit-length vectors by dividing
the loadings of each observed variable (which form the rows of B) by the square root
of that variable’s communality. These weighted loadings are then used to replace the

unweighted loadings in (2.9), which leads to the function for maximisation

7=1 =1

When the maximum of this function has been obtained, the rotated loadings are re-
weighted so that the rows of B assume their original lengths. This is accomplished by

multiplying each variable’s loadings by the square root of that variable’s communality.

The implementation of (2.10) instead of (2.9) resulted in considerably improved orthog-

onal simple structure solutions when compared with intuitive or graphic solutions.

Before we move on to oblique rotation, it is necessary to give meaning to the concepts
"primary” and "reference”, since they form different bases for two types of oblique
solutions. In the case of m factors, the m oblique primary axes are those that pass
through the centroids of clusters of variables, while the m oblique reference axes are
each normal to the m co-ordinate hyperplanes of m — 1 dimensions (Harman, 1976).
An oblique solution is now said to be a primary factor solution if the coefficients in
the solution are the co-ordinates of the variables with respect to the primary axes. An

oblique reference axes solution is defined similarly in terms of the reference axes.
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Different criteria were proposed by several people for obtaining an objective oblique
solution. Carroll (1953) was among the first to propose the same criterion for orthogonal
and for oblique rotation. This method was named ”quartimin” since, as was mentioned
previously, it involves the minimisation of fourth degree terms. Harman (1976) and
Mulaik (1972) provide some detail on a number of other objective oblique rotation

methods and criteria that were proposed and applied in practice by different authors.

These criteria were all used to obtain a simple structure within the reference structure
matrix, i.e. the matrix of correlations between the variables and the reference axes. The
resulting solution is then used to obtain the primary factor pattern through a transition
formula that simply requires multiplication by a diagonal matrix (see e.g. Harman

(1976)).

Jennrich and Sampson (1966) made an important breakthrough by deriving an analyt-
ical procedure to rotate an initial factor matrix directly into a primary factor solution.
They applied this procedure to the quartimin criterion after which it got the name
"direct quartimin”. A consequence of this new development of directly obtaining the
primary factor solution is that the earlier procedure of first obtaining the reference

structure solution is now only of historical interest and is not recommended in practice.

2.6 Parameter estimation in confirmatory factor analysis

After identification of the model in confirmatory factor analysis has been established,
one may proceed to estimate the free parameters in the model and subsequently test
the model for fit. In this case the function that is minimised, F (see expression (2.6)),
is considered as a function of only the free parameters in A, ® and Dy. The first-order
derivatives of F with respect to the free parameters are given by the expressions (see

for example Lawley and Maxwell (1971) and Joreskog (1969))

OF

__=2 -1 _ -1
55 = 22T(T-8)E7Ae,
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61 -1 -1
— ! A

and

OF
0Dy

= diag [£71(Z - 8)=7]

where c=1 for diagonal elements of ® and ¢=2 for non-diagonal elements. Note that the
elements in the derivative matrices on the left that correspond to the fixed parameters

in A, ® and Dy are taken to be zero.

An iterative procedure is described in Joreskog (1969) where the first-order derivative
information is used as well as expectations of the second-order derivatives. The pro-
cedure starts with a few steepest descent iterations, and only then the second-order
derivative information is calculated. Subsequent iterations are then performed using

the Fletcher and Powell method.

It is also pointed out by Joreskog (1969) that after the minimum value of F' has been
obtained, say F, a test for the goodness of fit of 3 to the sample covariance matrix S
is given by the likelihood ratio test statistic (N — 1)}31 This statistic is asymptotically

distributed as x? with degrees of freedom equal to

v=p(p+1)/2—pm-—m(m+1)/2—p+ny +§:max(ri,m)

1=1

where n, is the number of fixed parameters in Dy and r; is the number of independent
restrictions on the i-th factor, including the restrictions on the ¢;; and ¢;; in the factor

covariance matrix .

Practical problems with the use of this test in assessing the goodness of fit of a model
are pointed out by Bentler and Bonett (1980). The main reason for these problems is
the role of the sample size in calculating the test statistic. Consequently it is suggested
by Joreskog and Sorbom (1981) that this test should only be used to give an indication

of fit, rather than as a formal test of a hypothesis. It is recommended that differences
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in the test statistics for two models, the one nested within the other, are used. Such a
difference is also distributed as x?, with degrees of freedom equal to the difference in

degrees of freedom of the two models.

Yet another suggestion made by Joreskog and Sorbom (1981) is to normalize the resid-
uals (s;; — 6;;) by the square root of their asymptotic variances, estimated by (&;;6;; +
6%)/N. These normalized residuals should be approximately normally distributed if the
model fits the data adequately and could therefore be used to assess the goodness of fit
(see also Everitt (1984)).

A further measure of fit - one that is used in RAMONA (Browne and Mels, 1990) -
is the Root Mean Square Error of Approximation (RMSEA). This measure gives an
indication of the fit of the model to the population covariance matrix; one would obtain
this by the minimum value of the population discrepancy function, say Fp, which is the
minimum value of F' with S replaced by the population covariance matrix 3. Since
Fy cannot be calculated, an estimate should be employed: Such an estimate is given
by FF—d /N where F is the minimum of the sample discrepancy function and d is the
degrees of freedom. The RMSEA is now defined as \/FT/d (Steiger and Lind, 1980)
which adjusts Fp for the number of parameters, and does not involve the sample size.

The estimated RMSEA value, RMSEA,, may be calculated as

RMSEA, = \/F—_dd—/ﬁ

and a confidence interval on the RMSEA may be obtained from a confidence interval

on the noncentrality parameter of a x? distribution (Steiger and Lind, 1980).

In order to obtain accurate estimates of the standard errors of the parameter estimates,
Joreskog (1969) suggests that the second-order derivative matrix should be calculated at
the minimum of F' and inverted. If this matrix is denoted by C with diagonal elements
denoted by c;;, ¢ = 1,2,...,q - where ¢ is the number of free parameters - then an

approximate 95% confidence interval for the i-th free parameter, say 6;, is given by
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é,‘ - 2\/(2/(N - 1))6,’,‘ < 9,’ < é,‘ + 2\/(2/(N - 1))cii

where the understanding is that this formula should only be used when the model is

identified.

2.7 Practical applications

The data that will be used to illustrate the use of factor analysis in practice were
provided by the Education division of the Human Sciences Research Council. The data
were captured in 1994 for the purpose of doing item analyses on some tests on cognitive
skills. The respondents are students still in school and the total sample size is N=5635.
For the first application, six highly correlated tests are selected and only one factor
is assumed to account for the covariances between them. In the second application,
six additional highly correlated tests are selected, not strongly correlated with the first
six, and in this example two factors are assumed to reproduce their covariance matrix
sufficiently. In both applications the analysis is done using the covariance matrix instead
of the correlation matrix. This is done so that the results obtained here can be compared
to further analyses on the same data in Chapters 4 and 5, where the covariance matrix

1s analysed.
Example 2.7.1: One factor

Let the six variables for this example be denoted by 1,3, ..., ys and let these compo-
nents make up the six-variate vector y. Assuming that only one factor is sufficient to
explain the covariances among the six variables, the mathematical model to be fitted to

the data obtained from the 5635 students is that the relation

y=Az+e (2.11)
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holds for each student where z is a scalar representing the one factor variable, A is a
6 x 1 column vector containing the six factor loading parameters and e is the 6 x 1
column vector of errors. It is assumed that the random vector y follows a six-variate

normal distribution with covariance matrix

Cov(y,y') = AgA' + Dy (2.12)

since it is assumed that z and e are independent variates and that ¢ ~ N(0,¢) and
e ~ N(0,Dy) where Dy is the 6 x 6 diagonal matrix containing the six error variances

¥,,¥,,..., Vs on the diagonal.

Since there is only one factor, one identification condition is required to obtain a unique

solution. This is done by fixing the scale of z through fixing ¢=1.

The observed data obtained from the sample of 5635 students are now used to obtain
the maximum likelihood estimates A and Dy of the unknown population parameters A

and Dy. The program RAMONA (Browne and Mels, 1990) was used to obtain these

estimates from the sample covariance matrix which is given in Table 2.1.

TABLE 2.1

Sample Covariance Matrix - Six Variables

h1 Y2 Y3 Ya Ys Ye

yi 1,342
y, 0,840 1,121

ys 0,939 0,811 1,186

va 0,834 0,716 0,848 1,234

ys 0,678 0,581 0,673 0,672 0,823

ye 0,713 0,616 0,696 0,674 0,616 0,906
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The results obtained from this analysis are provided in Table 2.2 and Table 2.3.

TABLE 2.2
Matrix (Column Vector) of Factor Loadings

and Standard Errors

Factorl

y: 0,964 (0,013)
y2 0,833 (0,012)
ys 0,949 (0,012)
ya 0,886 (0,013)
ys 0,731 (0,010)
ye 0,759 (0,011)

The above matrix of factor loadings shows that all loadings are highly significant, due

to their small standard errors.

TABLE 2.3

Residual Covariance Matrix - Six Variables

1 Y2 Y3 Yq Ys Ye

Y 0,000
Y2 0,037 0,000
Y3 0,024 0,020 0,000

ye —,020 —,022 0,007 0,000
ys —,027 -,028 —,021 0,024 0,000
¥v¢ —,019 —,017 -,024 0,002 0,061 0,000
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In the table above, the residual covariances are provided. The estimates \i/l, Ty, ..., T,
which are the error variance estimates of the observed variables, and their estimated

standard errors are given below in Table 2.4.

TABLE 2.4

Variance Estimates and their estimated Standard Errors

\i/i Std.Error

0,412 0,010
0,427 0,009
0,285 0,007
0,449 0,010
0,288 0,006
0,330 0,007

In addition to the parameter estimates and their estimated standard errors, RAMONA
provides different measures for assessing the goodness of fit of the model. One is the
RMSEA; a point estimate of 0,097 is obtained, indicating that the fit is fairly reasonable
- Browne and Mels (1990) noted that ” A value of about 0,08 or less indicates a reasonable
fit of the model in relation to the degrees of freedom.” RAMONA also provides a 90%
confidence interval for the RMSEA, being given as (0,090 ; 0,105).

Another methodology for assessing the goodness of fit is the accept/reject strategy using
the test statistic, (IV — 1)F, which has a limiting chi-square distribution with 9 degrees
of freedom. For this data, the value of the test statistic is 489,6, implying rejection of
the null hypothesis that the model fits. Keeping in mind, however, the influence of the
large sample on this testing procedure, and looking at the small residual covariances in
Table 2.3, lead to the conclusion that the fit of the model is not at all that bad and one
should not blindly reject the model.
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Example 2.7.2: Two factors

In this example, six additional highly correlated variables, only moderately correlated
with the six variables of the previous example, are considered. Together, twelve vari-
ables are therefore considered and two factors are assumed to be sufficient due to high
correlations between the six variables in each of the two groups of variables and low

correlations between the two groups of variables.

Let the 12 x 1 vector y contain these twelve variables and assume the model

y=Ax+e.

Now, A isa 12 x 2 matrix of factor loadings, x is a 2 X 1 vector containing the two factor
variables and e is a 12 x 1 vector of error terms. If x ~ N(0,®) and, independently,

e ~ N(0,Dy), then the structured covariance matrix of y follows as

Cov(y,y') = A®A’' + Dy.

Since there are two factors (m = 2) in this application, the model is unidentified and
m?=4 identification conditions need to be imposed on the parameters. In order to fix
the scale of the factors, their variances are fixed at one. The remaining two conditions
are chosen so that there are two reference variables to represent the two factors. y; is
chosen to represent the first factor and y7 to represent the second factor. Therefore, A;;

and A7; are additionally fixed at zero to obtain a unique solution.
The sample covariance matrix of y, using observations made on y for the same 5635

students of the previous example, is provided in Table 2.5. RAMONA was again used

to obtain the maximum likelihood estimates of the free parameters in the model.
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TABLE 2.5

Sample Covariance Matrix - Twelve Variables

n Y2 Y3 Ya Ys Ye yz Ys Yo Yo

vi 1,342
y2 0,840 1,121

ys 0,939 0,811 1,186

ya 0,834 0,716 0,848 1,234

ys 0,678 0,581 0,673 0,672 0,823

ye 0,713 0,616 0,696 0,674 0,616 0,906

yr  —0,827 —0,608 —0,741 —0,756 —0,680 —0,601 9,638

vse —1,006 —0,814 —1,038 —1,030 —0,823 —0,804 5,860 21,011

yo —1,676 —1,318 —1,578 —1,637 —1,524 —1,260 8,268 11,068 26,296

yio —1,386 —1,091 —1,285 —1,393 —1,205 —1,063 6,450 9,925 15,000 21,948
yin —1,224 —0,998 —1,184 —1,258 —1,167 —0,930 6,491 9,959 14,705 14,952
yiz2 —1,309 -1,021 -1,253 —1,183 —0,998 —0,916 5,269 7,925 12,200 9,178

yn Y12

Y 22, 176
Y12 9,370 20,928

‘The maximum likelihood parameter estimates obtained from analysing the above covari-

ance matrix are provided in Tables 2.6 and 2.7 and 2.8. The estimates ¥, \ilz, PRV PP

and estimates of their standard errors are provided in Table 2.9.
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TABLE 2.6

Matrix of Factor Loadings

and Standard Errors

Factorl Factor?

U1 0,965 (0,013) o0O*

Y2 0,849 (0,014) 0,035 (0,014)
Y3 0,957 (0,013) 0,016 (0,013)
Ya 0,870 (0,014) —,035(0,014)
Us 0,702 (0,011) —, 066 (0,011)
Y6 0,763 (0,012) 0,010 (0,012)
yr 0* 1,871 (0, 040)
Ys 0,152 (0,082) 2,800 (0,070)
Yo 0,060 (0,099) 4,128 (0,075)
Y10 0,227 (0,092) 3,825 (0,069)
Y11 0,392 (0,093) 3,875 (0,071)
Y12 —, 153 (0,080) 2,629 (0,069)

A '« indicates a fized parameter value.

TABLE 2.7

Factor Covariance Matrix

Factorl Factor2
Factorl 1, 000*
Factor?2 —,435(0,022) 1,000*

A '« indicates a fized parameter value.
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n
Y2
Y3
Y4
Ys
Ys
Y7
) Ys
Yo
Y10
Yn
Y12

3
0,000
0,036
0,023
—,020
—,027
—,019
-, 043
0,022
-, 003
—,001
0,023
-, 059

Y2

0,000
0,019
—,021
-, 027
—,017
0,017
—, 005
0,011
—,002
—,029
—,015

Variance Estimates and their Estimated Standard Errors

TABLE 2.8

Residual Covariance Matrix - Twelve Variables

Y3

0,000
0,008
—,021
—,024
0,007
—,063
0,015
0,028
-, 007
-, 056

Ya

0,000
0,023
0,003
0,016
—,009
0,013
~,015
—,005
0,038

Ys

0,000
0,063
0,015
0,106
—,035
—, 040
—,014
0,090

Ys

0,000
0,000
—,020
0,019
-, 007
0,018
0,044

TABLE 2.9

¥

0,410
0,425
0,283
0,449
0,285
0,331
6,138
13,517
9,468
8,018
8,323
13,645

yr

0,000
0,746
0,594
~,522
-, 441
0,227

Std.Error

0,010
0,009
0,007
0,010
0,006
0,007
0,126
0,278
0,242
0,206
0,213
0,277
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Ys

0,000
—, 155
—, 293
—,220
0,575

Yo

0,000
—,298
~,512

1,152

Y10

0, 000
1,072
~,838

Y1 Y12
0,000
—,567 0,000



The point estimate of the RMSEA for this example is 0,060, indicating that the fit of
the model is quite good - Browne and Mels (1990) report that a value of about 0,05 or
less indicates a close fit. In terms of the chi-squared test statistic, a value of 903,25 with
43 degrees of freedom is obtained by RAMONA. This value is highly significant, but
since the large sample is greatly responsible for this, and since the residuals indicate a

satisfactory fit, the model should not be rejected.

2.8 Summary

This chapter gives an overview of factor analysis as a data analytic technique. The
model that has been developed and used over many years, is provided together with
the assumptions that go with the model. The problem of identification in the factor
analysis model is discussed, and the (different) identification conditions that are imposed

in exploratory and confirmatory factor analysis are considered.

The maximum likelihood method of parameter estimation is described as it applies to
the exploratory factor analysis model; a test statistic is also given for testing whether
the number of factors being extracted is sufficient. The rationale behind factor rotation
is discussed, and some indication is given on the development of orthogonal and oblique

rotation criteria over the years.

Maximum likelihood estimation of the free parameters in a confirmatory factor analysis
model is considered. Also, a few methods for assessing the goodness of fit of the model

are discussed.

Finally, real life data are analysed by RAMONA - extracting one and two factors respec-
tively from six and twelve variables. In the second example (two factors), a confirmatory

factor analysis model was used.
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CHAPTER 3

INTRODUCTION TO MULTILEVEL MODELS

3.1 Introduction

This chapter deals with a brief introduction to the concept of hierarchically structured
populations and the linear mathematical models that are fitted to data obtained from
them. According to Goldstein and McDonald (1988), it has been shown that it may be

misleading to ignore the hierarchical structure in data where such a structure is present.

In real life, data are often obtained in systems in which there are built-in hierarchies. An
example is education, where pupils are grouped into classrooms and the classrooms are
grouped into schools. This is a typical three-level hierarchy: the pupils are the level-one
units while the classrooms and the schools are the level-two and three units respectively.
Models that specifically take this kind of hierarchy in the data into account are called

multilevel models.

In recent years a few particular models for analysing certain types of multilevel data
have been described in the literature (Goldstein and McDonald, 1988), while a general
multilevel model that includes the particular models as special cases was developed by
these authors. This model is discussed in the following section. Thereafter, two methods
to estimate the parameters in a multilevel model are presented. The first is the marginal
maximum likelihood method (MML method) in which the parameter estimates may be
obtained by means of expected maximisation. This is an iterative procedure, also called
the EM algorithm. The second method is the Fisher scoring method, also an iterative
procedure, that is used to obtain maximum likelihood estimates of the parameters.
The two methods will be described for two situations: one is when no constraints are
imposed on the parameters; the other, when equality constraints are imposed on some

of them. Thereafter a brief discussion is given of some existing work in this field, with
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the emphasis on multilevel models with latent variables.

3.2 A general multilevel model

This section presents a brief discussion of the general multilevel model that was consid-
ered by Goldstein and McDonald (1988). Assume that the population under consider-
ation has a hierarchical structure with h levels of nesting, and let the N x 1 vector y
represent the responses of a sample of N individuals on a single response variable. Let
the elements of y be so ordered that y may be partitioned in h ways, each according to
one of the h levels of the hierarchy. For example, in the case of three levels, say there
are ny,ny,...,Nng students in six classrooms that are in two schools, the three ways of
partitioning y are (a) (Y111 Y112 - - - Yi1ny; Y121 Y122 - - - Y120y} - - -} Y231 Y232 - - - Y23ng ) fOT the
student level, (b) (¥}, ¥12 Yis; Y21 Y52 Yis) for the classroom level, and (c) (y} y3) for

the school level.

The linear model is written as

y=Xp

and in the case of p unknown coefficients, X is an N x p design matrix, and 3 the
p X 1 vector consisting of the unknown coefficients. To suit the hierarchical structure
however, this model may be rewritten after partitioning X and @ in a suitable form
for the hierarchical design. According to Goldstein and McDonald (1988) this general

linear multilevel model is written as

h
y = Xo8, + Z Xk By (3.1)
k=1

In this model provision is made for identifying the fixed parameters as well as the

random parameters that are regarded random at the different levels. The first term in
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(3.1) contains the fixed part of the model with B, a py x 1 vector of fixed parameters.
The second term in (3.1), which is a summation of 2 components, contains the random
part of the model. In this part, 8, contains the parameters that are random at the
k-th level of the hierarchy. If there are n; units at the k-th level, each 3, is partitioned
into n; subvectors, and if there are p; random parameters at level k, each of the ny

subvectors has p; components.

Assumptions made regarding the random parameters in model (3.1) are, first, that
the nj; subvectors of 3,, each of the order p; x 1, are independently and identically
distributed with zero mean and covariance matrix €, of the order p; x px. Consequently

it follows that the covariance matrix of B, is given by

COV(ﬂk,ﬂ;) = I’nk ® Qk'

Secondly, it is assumed that random parameters at different levels of the hierarchy are

uncorrelated; or, equivalently stated, it is assumed that

COV(IBk,IB{m)‘:O, k7ém

An extension of the univariate model in (3.1) will now be given by considering p-variate
vectors of observations in the case of a two-level hierarchical structure. Here also,

Goldstein and McDonald (1988) will serve as reference.

Let y indicate the Np x 1 observed vector where it is assumed that there are M groups

(level two-units) and n; individuals (level one-units) within the i-th group. Further
M

let N = }° n; be the total number of level one-units. A general multivariate two-level

=1
model is now given by the expression

y = Xof + X118, + X2, (3.2)
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where the p-variate vectors of error terms associated with the two levels of the hierarchy

are incorporated into the 8, and B3, vectors, and the first term contains the fixed

parameters.

Taking into account the way the vector y is partitioned, the model in (3.2) may be

rewritten in extended notation as

Yu B / B2
Yin, ,311111 B2
Ya X180 B121 B2

. X0, : .

= w4 +

Yan, : :312112 B2

: XOMIBOM : :
Ywm Bian Bam
YMnn IBIMTLM IBZM

where y;; is the p x 1 observed vector for the j-th level one unit in the i-th level-two

unit.

From the above extended form of the model it follows that for the :-th level-two unit

the model may be written as

Ya B Ba;
: = Xo:B0; + : + :
Yin; lalin,- Bai
or
y: = XoifBo: + X1:81; + X2:8,; (3-3)
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where, in this expression,

Xi=1,0I, =1,

and

X2i = jng b2y Ip-

In (3.3) the pn; x 1 random vector B,; consists of the n; subvectors By, . . . B1in,;» €ach
of the order p x 1, for which independent and identical distributions with common
covariance matrix £, of the order p x p, are assumed. The p x 1 random vector 3,; is
assumed to be distributed with p x p covariance matrix €2,. It is also assumed that the

random parameters at the different levels of the hierarchy are independently distributed.

Using the above assumptions, the covariance matrix of y; can now be written as

W: = Cov(yi,y:)
= Xy1,Cov(By;, B1)X1%; + XoiCov(By;, B) X5,
= L, @21+ (jn; © L)2:(jn, 9 L)
= L., ®Q +juj, @ M. (3.4)

The matrix W is of the order pn; x pn; and unless there is an equal number of level-one

units in all the level-two units, the W; (i = 1,2,..., M) will be of a different order.
Goldstein and McDonald (1988) also show that multilevel models may be applied where

some or all of the random parameters depend on unobservable or latent variables. They

define a 2-level common factor model by writing B1:; and B,; in (3.2) as
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Bui; = Bzi; +ey;

and

,Bzi =Aw; +u;

yielding the model for the ¢j-th observation

Vii = XoBo + Xy1:;(Bz;; + €;;) + Xoi(Aw; + u;).

Of course, different definitions of X; and X, in (3.2) will lead to different model speci-

fications, for example, choosing X; and X3 as in (3.3), the model becomes

Yij = XoijBo + Bzij + €5 + Aw; + u;

which may be regarded as a generalisation of the model for simultaneous factor analysis

in several groups.

Now that a general linear multilevel model has been introduced, we shall proceed with
the introduction of possible ways to estimate the parameters in such a model. The first
method that will be described is the marginal maximum likelihood method (the MML
method) and the EM (expected maximisation) algorithm. The MML method provides
the equations for use in an iterative algorithm, the EM algorithm, to obtain the MML

estimates of the unknown parameters.
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3.3 Parameter estimation using Marginal Maximum Likelihood

The use of this method in the estimation of parameters, has been successful and is
described in the literature in a number of papers - see for example Dempster, Rubin

and Tsutakawa (1981), Bock (1990) and Bock and Aitkin (1981).

This section is based on a theoretical description of the marginal maximum likelihood
method found in Du Toit (1993). Consider a hierarchical structure with two levels.
Assume a random sample of p-variate observations has been drawn with M level-two
units and n; level-one units within the i-th level-two unit. Let y; be the pn; x 1 vector
of observations obtained from the i-th level-two unit, and assume that each y; (¢ =
1,2,...,M) can be described by the general model in (3.3). Also let b; be a vector
containing all the random parameters in the model and let g(b;) be the density function

of b;. Finally, let f(y;|b;) be the density function of y; conditional on b;.

The density function of y; is now written in tetms of the joint probability density

function (pdf) of y; and b; in the standard manner, namely

The joint density can, however, be expressed in terms of the conditional density if we

use the identity

h(yiabi)_

The density of y; can now be written in the form

R(y:) = /b_ f(yilb:)g(b:)db;.

t
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The likelihood function for the M level two units can be expressed as

=11 [, Fvilba)g(bdb,

and the natural logarithm of the likelihood function as

tnL=3tn [ f(ylbg(bi)db, (35)

i=1

The parameter estimators are obtained by setting the partial derivatives of £nL equal to

zero. Expressions for these partial derivatives are provided in the following proposition:
Proposition 3.1

Let @ and T be vectors containing the unknown parameters in g(b;) and f(y:|b;) re-

spectively.

The partial derivative of #nL with respect to a typical element of 8, say 6,, is given by

otnL X dtn g(b;)
= R 3.6
g = L5 (36)

i=1

and the partial derivative of #nL with respect to a typical element of 7, say 7, is given

by

olnL
37—4

B, { Q@%} (3.7)

it)=

where E. indicates the conditional expected value of b; given y;.
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Proof

From (3.5) it follows that

omL M o
=S = [b;)g(b;)db; 3.8
50 = 2 5,00y, Tilbg(b) (3.8)
and
Ol _ 5 pn [ fiy.Ibi)a(bodb, (3.9)
aTe _1-:16’7'@ b YilDi)gibs v ’

The derivative of the natural logarithm of a function has a simple form, namely

Ofnh(z) 1 Oh(zx)

= 3.10
Oz h(z) Oz ( )
This result is now substituted into (3.8) and (3.9) which are then rewritten as
oL M 0g(b;)
db; 3.11
06, Zz: / flys 08, ( )
and
aﬁnL M of(y:|b;)
*—~g(b;)db;. 3.12
=3 ey b e (3.12)
If we rearrange (3.10) to form the expression
Oh(z) Olnh(z)
oz Ae) Oz



and we use this in (3.11) and (3.12), we obtain the following expressions for the deriva-

tives of £nL, namely

8€nL M O0fn g(b ) .
06, & lh(yz)/ g(b:) f(y:[b:)db; (3.13)
and
8€nL M 0ln f(y,]b ) N o
ory - = h(yz) / f(y,lb,)g(b,)db,. (3.14)

By simply rearranging the terms in (3.13) and (3.14), these two expressions may be

written as

BénL_M 0fn g(b;) g(b;)f(y:lb;) ,

96, -3 36 hyn (319
and

denL Otn f(yilb:) g(b:)f(yilb:) .

T

These two equations contain identical second terms that may be simplified as

g(b:)f(y:lb:) h(yu b)) _

which is the conditional density of b; given y;, also referred to as the posterior pdf of

b;.
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As a final step in obtaining the gradient of nL with respect to 8 and 7, we substitute
(3.17) into (3.15) and (3.16), which leads to

0¢nL o¢
= Z/ ng (b;ly:)db;

09,
M 0¢n g(by)
- EEC{ 06, }

and
0inL Ofn f(y;|b;
= Z/ y ‘ )p(bi|y,-)db,‘
67’[
& {5271 f()’ilbi)}
= 5B\ T o
1=1 Te
and consequently the proposition is proved. o

To obtain the MML estimators of the parameters in  and 7, expressions (3.6) and (3.7)

are set equal to zero, that is

S, 2nstl] 529

and

é}a {———-————m" J;(Tf”bi)} =0 (3.19)

and the estimators 6 and # are solved from these equations.
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When (3.18) and (3.19) do not provide expressions for 8 and # in closed form, one has
to use an iterative procedure to obtain these parameter estimates. A procedure that
proved to work well in the current situation is the expected maximisation algorithm, or

in short, the EM algorithm. A description of it will now be given.

In (3.18) and (3.19) the conditional expected value has to be determined for functions
that contain the fixed parameters # and 7 as well as the random parameters b; and
the observed vector y;. Assuming now that b; and y; are normally distributed, (3.18)
and (3.19) will contain b; in the form of moments of p(b;|y;) which are only of first
and second order - i.e. b; will appear in (3.18) and (3.19) only in the form E.(b;) and
Cov¢(b;, b}) where Cov, is the conditional covariance matrix of b; given y;. Expressions
for E.(b;) and Cov.(b;, b’) may be obtained from the joint distribution of y; and b; (see
e.g. Morrison (1990)). Since y; and b; are both assumed to be normally distributed, it
is apparent that they jointly also follow a normal distribution which is given by

Yi | _nJ [ EGY) Cov(yiyi) Cov(yi, b;)
b; E(b;) |\ Cov(b;,y") Cov(b;,b!)
The moments of the conditional distribution of b; given y; may now be obtained by the

expressions

Ec(b;) = E(b;) + Cov(bs,y;) [Cov(ys:, )] (vi — E(y:)) (3.20)

and

Cov,(b;,b}) = Cov(b;,b) — Cov(b;,y!) [Cov(y:, y!)] ™" Cov(yi, bl). (3.21)

It is evident that (3.20) and (3.21) are functions of the data vector y; and of the unknown

fized parameters in the model.
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One may now proceed in the following iterative manner to obtain close approximations
of the unknown parameters in the model. To start the algorithm, the vectors § and
7 need to be assigned some arbitrary initial values. The closer these values are to the
final solution, the faster will the algorithm converge. However, if no prior knowledge is
available as to the estimators # and #, one may start for simplicity’s sake with zeros

and ones as initial values (e.g. ones for variances).

When these initial values have been assigned to 8 and #, equations (3.20) and (3.21)
are evaluated to obtain initial estimates of E.(b;) and Cov.(b;, b}). This is called the
expected step (E-step). The estimates are now substituted into (3.18) and (3.19) to
obtain a new set of values for § and #, and this is called the maximisation step (M-
step). That is the end of the first EM iteration. These new values of the parameter
estimates are now again substituted into (3.20) and (3.21) in the E-step to obtain a
next approximation of E.(b;) and Cov.(b;, b!). To complete the second iteration, the
values are used in the M-step to obtain the next § and # from (3.18) and (3.19). This
procedure is now repeated until convergence of the parameter estimates 6 and + is

reached.

The EM algorithm described above can easily be applied in practice to obtain close
approximations to the marginal maximum likelihood estimators of the parameters, al-
though the method lacks the utilization of second order derivatives for determining the
standard errors of the estimators. A method that does provide the standard errors of

the estimators will be described next.

3.4 Parameter estimation using the Fisher scoring method

The Fisher scoring method is an iterative method of estimating parameters in a model
and may be used to obtain the parameter estimates that optimise different discrepancy
functions. A description of this method may be found in Browne and Du Toit (1992).

The theory presented in this section is solely based on this reference.
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Examples of discrepancy functions that are typically optimised using this method are
generalised least squares and maximum likelihood discrepancy functions. The discussion
that follows will show the use of the Fisher scoring method to obtain the estimate of the

parameter vector that maximises the likelihood function under normality assumptions.

Consider an identical two-level structure such as the one in the previous section where
the MML method was discussed. Let y be the Np x 1 vector of observations (where

M -« .
N = ¥ n;) which is partitioned into M subvectors representing the level-two units, i.e.

=1

Y1
Y2
Y= )
Yum
Suppose that these M subvectors, y;,ys,...,Yum, represent the experimental units where

each y; is assumed to have a normal distribution with an expected value and covariance

matrix denoted respectively by

E(y:) = &;

and

Cov(yi,y:) = .

Note that both these quantities are functions of the parameter vector 4 and that they
may be written as §; = §(v) and ¥; = ¥;(v). It will be assumed that both these
functions are twice continuously differentiable with respect to the elements of ~. In
the present case where maximum likelihood estimators will be obtained, the density

function for the i-th experimental unit y; is
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£(yi) = (@m)F IS Fexp{— 508 (v — €)(vi — €)'} (322

The likelihood function for the sample of M experimental units which is defined as the

product of the M density functions, follows as

L= l:If(Yi)~

Maximum likelihood estimators of the parameters are obtained by maximising L with
respect to the parameter vector 4. However, since the natural logarithmic function is a
monotonic increasing function, maximising nL will yield the same parameter estima-

tors.

Using (3.22) and the definition of L, it follows that

M
¢nL = _% > {pnin(2m) + £n|Z;| + tr[B7 (y: — &)(yi — €)'} (3.23)

=1

Omitting the constant term in the above expression and changing the sign results in a
function whose minimum will yield the maximum likelihood estimators. This function

is called the discrepancy function and is denoted by F' where

M

F(9) = 5 S{enl i + (27 (v - €03 — €)1} (324)

is a function of the parameter vector «.

The Fisher scoring method makes use of first order and second order derivative infor-
mation in the form of the gradient and expected Hessian of the discrepancy function in

the minimisation process.
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Let the gradient vector of F(7y) be denoted by g where

OF(7)

g(v) = oy (3.25)

The elements of the gradient vector are given by the expression (Du Toit, 1993)

[8()]k = — f} {tr [Q,- gjk} + —;—tr lpigi"]} (3.26)

i=1

where
Q= (y:i— &)zt
and
P =3 ((yi — &)y — &) - Z)E

Instead of the Hessian matrix of F(+), which is defined as the matrix of second order
derivatives of F'(4y) with respect to the parameter vector, the expected Hessian is used as
an approximation since the Hessian matrix may be difficult to obtain (Lee and Jennrich,

1979). Let the expected Hessian matrix be denoted by H where

=
2
|

9’F(v)
E ( aliad
0*F(7)
ovoy'

Q

The elements of H(+y) are given by the expression (Du Toit, 1993)
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[H(y)u_z{ [ iyl 6EJ+ —tr [Z;Zk ; 62]}. (3.27)

= I ' Oy e

In the iterative procedure, (3.26) and (3.27) are used to obtain an increment vector that
1s added to the current estimate of <, to obtain a new estimate that will be closer to the
minimiser of the discrepancy function. If 4, is the estimate of 4 obtained at the ¢-th
iteration, the quantities g, = g(%,) and H, = H(%,) are evaluated and the increment

vector is obtained by

6t = —Ht_lgt. (328)

The next approximation, 4,,,, is now obtained by the expression

Yep1 = e T by (3.29)

where o, is a parameter that is chosen to ensure that F(%,,,) < F(4,) and where

0< (077 S].

An advantage of this method is that at convergence, the minimiser 4 of the discrepancy
function is obtained as well as an estimate of the covariance matrix of these parameter
estimators. This covariance matrix is given by N"'H~! where H™! replaces H;! at the

point of convergence (Browne and Du Toit, 1992).

Two other methods of obtaining the minimiser 4 of the discrepancy function which also
provide the estimated covariance matrix of the parameter estimators are the Newton-
Raphson and Gauss-Newton methods. They differ only slightly from the Fisher scoring
method. The Newton-Raphson method uses, instead of the approximate Hessian as in
the Fisher scoring method, the complete Hessian of the discrepancy function. It will

therefore be more time consuming when applied in practice, since more computations
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will be required. In the Gauss-Newton method the weight matrix is not respecified at
each iteration. An estimate of the weight matrix is obtained and used, without changing

its value, in the iteration process.

3.5 Contraint estimation in the MML method

Nowhere in the literature has the MML method been used to estimate parameters in a
model when equality constraints are imposed on some of the parameters. In this section
it is shown how the MML method described in Section 3.3 may be adjusted to obtain

the parameter estimators under such circumstances.

Consider a two-level hierarchical structure and a model with some parameters to be
estimated subject to equality constraints. Let the ¢ x 1 parameter vector v be parti-
tioned into two subvectors, as was similarly done in the section where the unconstrained
parameter estimation was discussed. In the present situation, however, let 8* denote
the t; x 1 parameter subvector that contains the parameters in g(b;), and let 7* denote
the ¢, x 1 parameter subvector that contains the parameters in f(y;|b;). In terms of
the constraints imposed on the parameters, consideration will here be given only to the
case where r; equality constraints are imposed on the parameters in  (¢; x 1), where
6 C 6” and r; equality constraints are imposed on the parameters in 7 (g X 1), where
7 C 7*. Constraint functions containing parameters from both 8* and 7* will not be

considered here.

Write the two sets of constraints as

cs(6) =0 (3.30)

and

c.(r)=0 (3.31)

where ¢y and c, are respectively r; x 1 and r, x 1 vector valued constraint functions.
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Assume that these functions are continuously differentiable with respect to § and T

respectively.

In many practical applications it may happen that the constraint functions are not lin-
ear. Consequently complicated derivations of formulae and computations in practice
will have to be performed. This, however, is unnecessary since it is possible to de-
rive linear constraint functions that approximate (3.30) and (3.31). Such functions are

obtained by expressing (3.30) and (3.31) as first order Taylor series.

In order to show how this linearisation is accomplished, let Ly be the r; x q; Jacobian

matrix of c5. Consequently it follows that

Ly,(0) = %ce(a).

Let 6y be a ¢; x 1 arbitrarily known vector. The constraint function cy can now be

approximated by the linear function

Cg(e) ~ Cyg, + Lgo (0 — 00) (332)

where cg, = ¢4(8o) and Lg, = Lg(0,).
Substitution of (3.32) into (3.30) will show that the linear approximation to the con-

stralnts can be written as

Leo(a — 90) = —Cy,- (333)

Exactly analogous to the linearisation of the constraints ¢y = 0, it can be shown that

the constraints ¢, = 0 may be written as the linear approximation
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L, (T — 7o) = —¢x (3.34)

where T is a ¢ X 1 arbitrarily known vector, L,, = L.(7,) is the r; x ¢ Jacobian

matrix of ¢, at the point 7 = 74 and ¢,, = ¢, (70).

Now that the constraint functions have been rewritten and expressed in forms that are
generally easier to work with, namely as linear functions, it will be shown how the
parameter estimators 8 and 7 are obtained which maximise the log-likelihood function

while simultaneously satisfying these linear constraints.
The method of Lagrange multipliers is used to add the constraints to the log-likelihood

function to form a new function for maximisation, say L*, where

L* = 4nL + Aglcg, + Loy (60 — 00)] + Alc,, + L, (T — 70)] (3.35)

and Ay (r; X 1) and A, (rz x 1) are vectors of Lagrange multipliers.
To obtain 8 and #+ which maximise L~, the gradient of L* with respect to 8 and 7 as
well as to Ay and A, will be obtained. These gradients will then be set equal to zero

and solved for 8, #, X and A,.

The gradient of L* with respect to the elements of 8 is given by the expression

oL* onL 0

20 ~ oo T+ agteled
oénL
- a—Z,JrA;,LgO (3.36)

since
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0’

Similarly it follows that the gradient of L* with respect to the elements of T is obtained

from the expression

dL* _ denL

AL, . 3.37
or' or' + AL ( )

The first terms in (3.36) and (3.37) were evaluated earlier (see Proposition 3.1). Substi-
tution of (3.6) and (3.7) into (3.36) and (8.37) respectively, and setting the latter two

expressions equal to zero, leads to

M dtn g(b; < ,
S E. {-—%} + X)Ly, = (3.38)
1=1
and
L [0 f(yib) | ,
> E g0 TALn =0 (3-39)
i=1

Now that the gradient of L* has been obtained with respect to the two parameter vectors
0 and T and set equal to zero, the gradient of L* will now be obtained with respect to
the two vectors of Lagrange multipliers Ay and A,. These two vectors appear only in
the second and third terms of equation (3.35) and therefore the derivative of L* with

respect to Ag and A, follow respectively as

oL*
O

= ceo + L90(0 - 00)

and
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OL*
O,

= Cp + L (7 — 7o)

These expressions, if set equal to zero, give

Coy + Lg,(6 — 85) =0 (3.40)

and

Crn+Ly(F—79)=0 (3.41)

which give the two sets of linear constraints that were derived earlier in (3.33) and

(3.34).

To obtain the desired solution @ of 8 and # of 7, i.e. the parameter estimators that
satisfy the constraints as well as maximise L*, it will now be necessary to solve (3.38) and
(3.40) simultaneously for @ and Ay, as well as to solve (3.39) and (3.41) simultaneously

for # and A,.

The following propositions will show that if (3.38) and (3.39) can be expressed in a

certain form, expressions for @, 7, Ay and X, can easily be obtained.
Proposition 3.2

Let Y be a ¢; X ¢; non-singular matrix and z a ¢; X 1 vector. If (3.38) is expressed in

the form

YO+ Ly =z
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the solutions for @ and A, are obtained from the expressions

0 =Y (z—LjX) (3.42)

and
s = Sw (3.43)

where

S = (LgoY_ngo)_l,

w=0L,Y 'z —x,

X = Loooo — Cgy -

Proof

Suppose there exist a ¢; X ¢; non-singular matrix Y and a ¢; X 1 vector z such that

(3.38) can be rewritten in the form

YO + Ly X = z. (3.44)

Rewrite (3.40) as

Lgoe =X (345)

where

X = Lgoeo — Cyg,

is an r; X 1 known vector.
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To obtain a simultaneous solution for  and Ay from (3.44) and (3.45), the latter two

expressions are combined to yield the single expression

= . (3.46)

Straightforward matrix algebra may now be applied to the above expression, which

yields the solution

A -1
o Y L
- bo ‘. (3.47)

Xg Lgo 0 X

However, since the inversion of a partitioned matrix is required, it is possible to write
this solution in a more simplified form - particularly helpful in practical applications,
since the matrix to be inverted may be extremely large. This will cause the estimation
procedure to be extremely time consuming, especially when the estimates are iteratively

obtained.

Standard results on partitioned matrices, which may be found in Morrison (1990), are

used to write

Y Li | [ YoYU SL, YT YUULS

Ly, © SL;, Y1 -S

where

S = (Lg, Y™'Ly,) .

Substitution of this result into (3.47) leads to
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TN

¥ o

~———
Il

Sw

Y-!(z — L Sw) )

where

w=L, Y 'z —x.

Y'z - Y'Lj S(Lg, Y™ 'z — x)
S(Ls Y 'z — x)

(3.48)

Expressions (3.42) and (3.43) now follow directly from expression (3.48), which proves

the proposition.

Proposition 3.3

O

Let Y be a gy X g, non-singular matrix and let # be a g2 X 1 vector. Then, if (3.39) is

expressed in the form

Y+ + LA, =3,

# and X, may be obtained from

and

where

(3.49)

(3.50)



w=L,Y 'z -x%,

%=L,

oTO — C,

Proof

The proof of this proposition will be omitted since it is exactly analogous to the proof

of Proposition 3.2.

It is possible that Y and z in Proposition 3.2 and Y and 7 in Proposition 3.3 may contain
elements of the parameter vectors 6 and + respectively. If so, the expressions for the
parameter estimators are not in closed form, and these estimates should be obtained by
means of an iterative algorithm. The algorithm used to obtain the parameter estimates
in the unconstrained case, namely the EM algorithm, will be adjusted and used also

when constraints are imposed.

Generally the EM algorithm, adjusted for estimation subject to constraints, will proceed
with the following basic steps: after each EM iteration, the values obtained in the M-
step for 8 and + are used as starting values for a separate iterative process aimed at
obtaining values for § and # that satisfy the constraints; when the iterations for the
constraints are completed, the values obtained for @ and # are used in the E-step of the

next EM iteration.

These basic steps will now be used to write down in more detail the steps which should be
followed in the adjusted EM algorithm. Assigning initial values to the parameter vectors
6" and +* is the first step in the EM algorithm. The E-step in the first EM iteration
follows now by substituting 6 and #* into (3.20) and (3.21) in order to obtain initial
estimates for E.(b;) and Cov.(b;, b}). The estimates of these moments are now used in
the M-step to obtain first approximations to * and 7*. The equations for this step are
(3.18) and (3.19). For the parameters on which no constraints are imposed, the first
EM iteration is now completed. For the constrained parameters (8 and 7), however, the

approximate values obtained in the M-step are used as starting values, and 8 and + are
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repeatedly calculated using equations (3.42) and (3.49) until the constraints are smaller
than some prescribed value. Now the first approximations to the full parameter vectors
0" and T have been calculated, and this completes the first EM iteration. The values
obtained for 8" and #* are now used as starting values for the second EM iteration.
This process is continued until convergence is met by both the parameter estimates and

constraints, or until a desired number of iterations has been completed.

3.6 Constraint estimation in the Fisher scoring method

The Fisher scoring method described in Section 3.4 to obtain maximum likelihood esti-
mators of the parameters may also be adjusted to estimate the parameters when equality
constraints are imposed on some of them. In this section it will be shown how this ad-
justment is made to obtain the parameter estimators under such circumstances. This

section is also based on the work by Browne and Du Toit (1992).

Suppose the set of r equality constraints on the parameters in the model is written as

c(v)=0 (3.51)

where ¢ is an r X1 vector valued function and is assumed to be continuously differentiable

with respect to the parameters in «.

The constraint function in (3.51) will in many practical applications not be linear, and
in order to simplify derivations and calculations in such situations, this function will

now be linearised.

A linear constraint function, as an approximation to c(v) in (3.51), may be obtained
by making use of a first order Taylor expansion of the non-linear constraint function.

Let the Jacobian matrix of ¢ be denoted by the r x ¢ matrix L where
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The linear approximation of the constraint function follows now as

c(7) ~ e+ Li(y — 4) (3.52)

where ¢; = ¢(4,), L; = L(4,) and ¥, is the t-th approximation to < in the iteration

procedure.

If expression (3.52) is now substituted into expression (3.51), it follows that the non-

linear constraints are approximated by the linear constraints given by

Li(vy =4 = —cu. (3.53)

In order to obtain the increment vector to be used in the iteration procedure, let A; be
an r X 1 vector containing Lagrange multipliers and let D; be an arbitrary r x r diagonal

matrix. The increment vector is now

-1

& H,+LDL, L — LD
t ] _ ++ LD L (g: + LiD:c;) (3.54)
At Lt 0 —C;

and the approximation of the minimiser of F(v) at the (¢ + 1)-st iteration is obtained
using this §; and 4, in expression (3.29). The function for choosing the step size param-
eter a;, however, is now different in the sense that it progresses to a point where the
constraints are satisfied. This is accomplished by initially taking a;=1 and, if necessary,

halving it successively until
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F(¥p1) + Al leesa] < F(F,) + (Al el

where || is a vector formed by taking the absolute values of the elements of ;.

When the procedure described above converges at 4, = 4, the increment vector will be

zero at that point, i.e. 8; = 0 in (3.54). This implies that the equality

holds, which is a necessary condition for 4 to be a minimum of F(+) subject to the

constraints in (3.51).

This procedure now also provides a method of obtaining estimates of the covariance
matrix of the parameter estimators as well as the covariance matrix of the vector of
Lagrange multipliers. As in the unconstrained case, these covariance matrices are ob-
tained from the inverted information matrix. In the present situation these matrices are
obtained from the inverted matrix that appears in expression (3.54). To indicate how
these matrices may be determined, write the inverted matrix in (3.54) at convergence

as

-1

H, +L'D,L, L, S, Sy
L; 0 Sy Sa

The estimated covariance matrix of the parameter estimators is now given by the ex-

pression

Cov(%,4") = N7'S,, (3.55)
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while the estimated covariance matrix of the Lagrange multipliers may be obtained from

the expression

Cov(A,X) = —=N7(§,, + D). (3.56)

3.7 Proposed estimation procedure

Two methods of estimating parameters in multilevel models have been discussed. In the
first of them, the MML method, an iterative algorithm called the EM algorithm may
be used to obtain the parameter estimates. The second is the iterative Fisher scoring
method. Both have advantages and disadvantages when implemented in practice; but
in combination they provide a very useful method of obtaining estimates of parameters

and their approximate standard errors.

An advantage of the EM algorithm is that the parameter vector is split into two subvec-
tors; consequently the vectors and matrices appearing in the equations for this method
are of smaller dimension. This means less computation in practice and therefore less
computation time to complete the iterations. A disadvantage is that it does not make
use of second order derivative information; consequently convergence of the process is

very slow. Also, no estimates of the standard errors are available.

On the other hand, the Fisher scoring method does make use of second order derivative
information, and so provides standard error estimates and converges more rapidly. But
its equations use vectors and matrices of much larger dimension, and these require larger

storage and more computation time.
Following from the above arguments, it seems to be good practice to combine the

two methods to obtain parameter estimates and approximate standard errors. Since

the iterations for the EM algorithm are much faster than those for the Fisher scoring
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algorithm, a good way to start the process is to initialise the parameter vector to some
values, e.g. zeros and ones, and use the EM algorithm to obtain close approximations
of the parameter estimators. This may be achieved after, say, 50 to 100 EM iterations.
The close approximations of the parameter vector may now be used as initial values in
the Fisher scoring algorithm. With them as starting point, the Fisher scoring algorithm

should converge within a very few iterations (less than 20).

3.8 Existing work in this field

Various topics in the field of multivariate multilevel modelling have received attention,
also specifically when latent variables are included. Of the latter type, the work of
Muthén (1989), McDonald and Goldstein (1989) and McDonald (1994) will now briefly

be considered.

The work of Muthén (1989):

Muthén (1989) recognizes that, when engaged in latent variable modelling, heterogeneity
between several populations may exist in that each population may have a different set of
parameter values. He then discusses three methodologies for uncovering various forms of
population heterogeneity. They are: Regular multiple-group latent variable modelling,

multiple indicators multiple causes (MIMIC) modelling and multilevel modelling.

In the case of regular multiple-group latent variable modelling, the following factor

analysis model in G groups is assumed:

ijVj+AT7]-+E]', ;j=12,...,G

where v; and A respectively contain intercept and slope parameters.
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If it is assumed that E(n;)=a;, Cov(n,;n;)=® and Cov(e;e;)=0, and that
E(y;) =vi+Aa; = p;
Cov(y:y:)) = A®PA'+ © = X,

it follows that the variable means are not invariant across groups while the covariance

matrix is.

For a mixture of normal distributions with a common covariance matrix, denoted by
3., and mixture proportions w;, the mean and covariance matrix (for the mixture dis-
tribution) follow by generalizing a two-group result as (the subscript M represents the

mixture distribution)

G
Hy = Z Wi
Jj=1

and

G
Tp =2+ 3 wi; — mar) (B — #ar)

i=1

It is pointed out that the second term in the expression for X3/ is in general such that
the model that holds for ¥ does not hold for Xy, because of across-group heterogeneity.
This means that even when a covariance structure model holds for each group, it may

not hold for the mixture.

Two examples are given - one with and one without invariance of the measurement in-
tercepts. In both cases distorted results are obtained, indicating that regular multiple-
group latent variable modelling cannot always satisfactorily uncover population hetero-

geneity.

Next, Muthén (1989) proposes MIMIC modelling to capture population heterogeneity.
These models incorporate a set of regressor variables to predict the latent variables and
the set of observed response variables - the latent variables play an intervening role

between the predictor and response variables.
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The inclusion of predictor variables makes heterogeneity detection and modelling pos-
sible. It is shown that heterogeneity can be studied in two ways, each time making use
of grouping variables among the predictor variables. In the first case, across-group vari-
ation in factor means is allowed for, while the second approach allows for across-group

heterogeneity in measurement intercepts.

Two examples are given where MIMIC modelling was applied. In one example it is
shown that this approach solves the problem of groups with too small sample sizes to
produce stable correlations, by using a set of dummy predictor variables representing
the groups, thus allowing for variation in factor means across the groups and also for

variation in measurement intercepts.

The second example considered a model with a general and specific factors, and was
carried out in two steps, effectively resulting in the analysis of a pooled within tetrachoric
correlation matrix. This MIMIC-based analysis, with dummy predictor variables to
account for group differences, was compared and found superior to a regular tetrachoric

analysis with no predictors.

The two examples using MIMIC modelling also do not seem to satisfactorily uncover

heterogeneity among different groups.

While the regular multiple-group latent variable modelling and MIMIC modelling have
a fixed effects approach, an alternative modelling procedure is proposed by Muthén
(1989) that incorporates random parameters. Such parameters are viewed as continuous

random variables rather than varying over a finite number of groups.

Whereas the random parameter approach is well-established in regression with fixed
regressors, the same cannot be said for the case of random and latent regressors, such as
in factor analysis. The third methodology, namely multilevel modelling, is a contribution

towards this field of research.
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Since population heterogeneity often gives rise to a hierarchical structure in the data,
models for such data - multilevel models - have become increasingly important. They
relax both the assumption of identical distributions and of independent observations,

the two parts of the well known i.i.d. assumption in classical modelling.

To illustrate the multilevel approach, Muthén (1989) considers a model he terms the
Muthén-Satorra varying factor means model. This model was motivated by applications

where heterogeneity could be expected for the levels of the factors.

For individual ¢ in group j, the model is

Yij =v+An; +€;

where E(€;;)=0 and Cov(e;;, €};)=0, and

N = O + wij

a; =a+Tz; +6,,

where o; and w;; are respectively a group-level and individual-level random component,
and z; is a vector of observed group-level variables. It is also noted by Muthén (1989)
that across-group variation in measurement intercepts can be allowed for by replacing

v by v;, expressed as a function of z; and an error term.

The likelihood for hierarchical data under the above model is given; also for the special

case of balanced data (equal N,’s across groups) and no z-vector.

It 1s shown that the likelihood expression can be reformulated which permits optimiza-

tion via software such as LISCOMP.

An example is provided for balanced data and where LISCOMP was used to carry out
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the analysis. It was found that the above model fitted sufficiently, and it was therefore
unnecessary to include across-group variation in the measurement intercepts in the
model. It is noted that a regular structural analysis of the regular sample covariance
matrix gave similar results to those of the within covariance matrix. Such an analysis

is of course incapable of uncovering between-group variation.
The work of McDonald and Goldstein (1989):

McDonald and Goldstein (1989) introduce a general two-level model for multivariate

data, written for individual 7 in group j as the ¢ X 1 vector

Yi; = ¥Y2; + Yuij

where it is assumed that Cov(y,j,y};;)=0 and, if x; is a p x 1 measurement vector

characterizing the j-th group, then Cov(x;,y1;;)=0.

Let

¥, = Cov(yz;,¥3;)
and

3 = Cov(yiij, y;ij)-

Then the model implies that

Eyy = COV(Yijyygj)
- 22+21.

These covariance matrices, however, could be structured if a general two-level common

factor model is defined as
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Y2; A, €y;
and

Yii; = Avy + ey

where Cov(vy, vy)=®, and Cov(v,,Vv))=®; and
Cov(es;,e.;) = ¥,
Cov(ey;,ey;) = W,

This model specification now implies the following structured covariance matrices:

Yoy = A PA,
22 = A2@2A,2 + ‘1’2

21 = A1@1A,1 + ‘I’I

and consequently

P, O Al
Yy =(Az Ay) ’ 4w, 49,
0 &, Af

The log-likelihood function for the general model is given, and expressed in a form that
requires only matrix inversion or computation of determinants of matrices of the order
max(p, ¢). It is also shown that in the balanced case, the log-likelihood function can be

expressed in terms of a convenient set of sufficient statistics.
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Further, the first order derivatives of the log-likelihood with respect to the model pa-

rameters are provided. Again, results are presented separately for the balanced case.
The work of McDonald (1994):

McDonald (1994) extends the RAM model of McArdle and McDonald (1984) - a model
for path analysis with latent variables - to a model for analyzing two-level data. He

defines a two-level RAM model as the level-two model

X; _ A;m Arg X; n Ug; n
Y2, Ay Ay Y2 Uy;
with the level-one model

Yi; = A1y + ew;.

Here, the vectors x; (measures on the level-two units), y,; and y;; contain observable

as well as latent variables.

The above model statements yield

Cov(y1ij, ¥1i) = (T— A1) 7181 (T— Ay

and
-1
X]‘ ’ I-— Azz ’_Az2 Srz Sz2 I- Azz —Az2
Cov ,(x;. Y2j) =
Yy —Ay;, I-Ay Saz Saz —Ayp I-Ayp
where
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uxj S:L':c S:L'2
I I
’(u:cj u2j) =
uy; Szz  Siz

Cov

A program, BIRAM, has been developed to apply the above model. For recursive
models, the program allows a reparameterization at both levels to obtain standardized

coeflicients with correct standard errors.

3.9 Summary

The concept of hierarchically structured populations and data obtained from them,
are introduced in this chapter. A general multilevel model for the analysis of such
data is then discussed in detail. The univariate case is then extended to a general
multivariate two-level model. Two estimation procedures for estimating the unknown
parameters in this two-level model, are presented. The first is the method of marginal
maximum likelthood. This method is used to obtain general equations which lend
itself to be used in an iterative EM algorithm to obtain the parameter estimates. The
second method is the well known Fisher scoring method. The general equations for the
maximum likelihood parameter estimators are derived for use in the iterative Fisher
scoring algorithm. It is shown next how both estimation procedures may be adjusted to
estimate the parameters when constraints are imposed on them. Subsequently, a two-
stage procedure which makes use of both the MML method and Fisher scoring method
1s proposed for practical use. The last section of the chapter provides a summary of
some work that has been done in the analysis of multilevel models, specifically when

latent variables are included.
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CHAPTER 4

BILEVEL FACTOR ANALYSIS MODELS AND EXPECTED
MAXIMISATION

4,1 Introduction

In this chapter a two-level factor analysis model will be defined and it will be shown how
its parameters may be estimated by means of expected maximisation. Two situations,
namely exploratory and confirmatory analysis will be considered. Model identification,
a general problem in factor analysis models, and methods to ensure identified models
are considered. The final section of the chapter gives a practical application of this

method of parameter estimation using real data.

4.2 Factor analysis models for hierarchical data structures

A general two-level multivariate model is defined by Goldstein and McDonald (1988)
and is discussed in Chapter 3. McDonald and Goldstein (1989) consider a two-level
model for linear structural relations. McDonald (1993) shows that there is a sense in
which this is a special (but degenerate) case of Goldstein and McDonald (1988). We
note that Goldstein and McDonald (1989), and likewise Longford and Muthén (1992)
and the present work, does not allow a ”slopes as outcomes” model, with factor load-
ings random over level two. McDonald and Goldstein (1989) give, under normality
assumptions, the likelihood and its first order derivatives as a basis for determining the
parameter estimates. They show that, in the balanced case, the sample mean vectors
and covariance matrices are minimal sufficient statistics, and that these (or functions of
them) are maximum likelihood estimates of the unrestricted parameter matrices. They
also derive a likelihood ratio test to test restricted parameter matrices against a general

alternative (in the balanced case).
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Longford and Muthén (1992) consider a two-level factor analysis model that is a special
case of the model of McDonald and Goldstein (1989). They assume a general unbalanced
design, whereas McDonald and Goldstein (1989) concentrated on efficient estimation in
balanced designs. Longford and Muthén (1992) give the log-likelihood function and
rewrite it in a computationally more efficient form, and also present it for the balanced
case. First and second order partial derivatives of the log-likelihood (general unbalanced
case) are derived and they suggest that a Fisher-scoring algorithm should be used instead
of a Newton-Raphson algorithm, since the expectation of the second order derivative
matrix is substantially simpler than the matrix of exact derivatives. They also note that
the algorithm can be adapted to handle constraints by applying the chain-rule or the
method of Lagrange multipliers. They base their hypothesis testing and model checking
on how much the deviance (-2 log-likelihood) of a restricted model differs from that of

the saturated model - the difference is a chi-squared variate.

4.3 A two-level factor analysis model

This section summarizes the two-level factor analysis model of Longford and Muthén

(1992).

In many cases the classical factor analysis model is applied to inappropriate data because
of the assumption of independence of the vectors of observations. This assumption may
not be entirely true in hierarchically structured data where, for example, students are
observed within classrooms. In such a situation it is often reasonable to assume that the
students in a classroom are more similar, since they share a common environment. It
may therefore be necessary to model this within-group homogeneity (or between-group
variation) by a group-level (or between-group) covariance structure, but also to model
the within-group variation by an individual-level (or within-group) covariance structure

(Longford and Muthén, 1992).

A two-level factor analysis model that assumes a common factor structure at each level
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(group- and individual-level) was discussed by Longford and Muthén (1992). That same
model will be considered in this chapter as a special case, and it will be shown how it

fits into the general model given by (3.3).

Consider the same two-level hierarchical structure that was introduced in Chapter 3,
where there are M groups and in group i there are n; observations. Let each p-variate
observation made on an individual, say the j-th individual in the i-th group, be denoted
by the p x 1 vector y;;. These vectors are assumed to be normally distributed random

M
vectors of observations where, in total, there are N = ) n; observations.
=1

The model described by Longford and Muthén (1992) assumes that, conditional on the
group mean m;, observations made on individuals within each group have a common
factor structure. This means that the observations in a specific group, say group ¢, are

independently and identically distributed and follow the model

yi; :mi—i—Aldl,,-j—i—el,ij , ] =1,2,...,n;. (41)

It is further assumed that the M mean vectors, m;, my,...,mys, also have an un-
derlying factor structure and consequently that they are independently and identically

distributed according to the mathematical model
mi:M+A2d2,i+egy,’, 221,2,,M

An alternative form to specify the two-level model would be to write

Yi; = [l.—i—Agdz,,' +e2,i+A1d1,ij + €145, 1 =1,2,..., M, ] =1,2,...,n; (4.2)

Assumptions regarding the random parameters in this model are the following: at level
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one it is assumed that d;;; ~ N(0,®;) and e;,;; ~ N(0,D,), while at the second level
it is assumed that d,; ~ N(0,®,) and e,; ~ N(0,D,). Further, it is assumed that

these random parameters are mutually independent normal random samples.

The vector p, the two A-matrices, the two ®-matrices and the two D-matrices contain
the fixed parameters of the model. p represents an overall mean effect, while the A’s
contain the factor loadings with A; a p x r; matrix and A; a p X r, matrix, indicating
ry and r; factors in the within- and between-group structures respectively. The ®’s
represent factor covariance matrices while the D’s are assumed to be diagonal matrices

representing the error variances.

To write down the model for the i-th group, let the vector of observations for this group

be denoted by y;, where y; is the pn; x 1 vector defined as

Ya

Yi2
Y. = .

Yin,

In a similar fashion define d;; of order rin; x 1 as

and define e; ; of order pn; x 1 as
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€141

€1,i2

€, =

€1.in;

For the :-th group, the model (4.2) can now be written as

Yi =Jn @m; + (I, ® Ay)dy; + ey (4.3)

To show how this model fits into the general framework provided in Chapter 3, note

that the first term in (4.3) may be rewritten as

jn,‘ ® m; = j'n,,' & H +jn,‘ & (A2d2,i + e2,i)

= (jn.' ® IP)I" + (j"h' ® IP)(A2d2,i + 92,1')'

If the last part of (4.3) is also rewritten in a slightly different form, namely as

(I, ® Ad; e, = L. [T, ® A))dy; + e,

it is evident that the two-level factor analysis model given by (4.3) is a special case of

the general multivariate two-level model given by (3.3), with the random vectors B;;

and 3,; defined by

By = (L, @ Ay)dy; + ey

which contains the n; subvectors By;; ... 8,,, where
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Buj=AMAdy;;+e;, J=12,...,n;

and

Bz = Axd2; + €3,

The expected value and covariance matrix of the n; observations in the i-th group can

now be obtained for the model in (4.3), namely

E(yi) zjn.' ® p

and the covariance matrix for y; may be obtained using the general expression given by

(3.4), namely

W; = Cov(yi,y:)

= In.‘ ®V, +jn.‘j;;.< ®V, (4'4)

where

VvV, = COV(ﬁuJ'aﬁ/m')
= A1Q1A,1 + D1

and
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Vi = Cov(By,B%)
== AQQQA;-{-DQ

It is clear from (4.4) that W, depends on n; for determining its order. Consequently, the
W.’s will be of different order unless all the n; are equal, which is called the balanced

case, implying that there is an equal number of individuals in each group.

4.4 The model parameters

The model description in the previous section shows that each p-variate vector of ob-
servations is expressed as a factor model with fixed slope parameters (A;), and random
measurement intercepts (m;) that allow for across-group variation. The model in (4.1)
therefore has the two vectors containing random parameters, m; and d,;;;. The fixed
parameters in the model are the elements of u, Ay, ®;, D;, A3, ®, and D,. In total

there are therefore ¢* fixed parameters that need estimation, where

¢ = pH+pri+r(ri+1)/24p+pratra(ra+1)/2+p

= 3p+p(ri+ra)+ri(ri +1)/2 +ry(re + 1) /2.

In order to ensure that the estimators for ®, and @, are positive definite matrices, ®,
and @, are written as the product of a lower triangular matrix with its transpose - the

number of parameters is therefore not affected. In particular, we write

Ql = UlUll

and
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Qz = U2U,2

where U, and U, are respectively an r; x r; and an r, x r; lower triangular matrix. In
a practical application, estimates for the ri(r; + 1)/2 and ry(r; + 1)/2 elements of U,
and Uj respectively are obtained, and then the estimates for ®; and ®, are calculated

using the above expressions, yielding positive definite estimates for ®; and ®,.

It should be noted that no constraints are placed on D; and D, to ensure positive

definiteness. See, for example, Martin and McDonald (1975) in this regard.

4.5 Model identification and constraints

Similar to the identification problem that exists in classical factor analysis, the pa-
rameters in the bilevel factor analysis model are not uniquely defined unless 2 and r2
independent restrictions are imposed on the elements of (Ay,®,) and (A,, B,) respec-
tively. Identification problems arise from the relative scale of factor variances at the
two levels. Choices include: (i) setting factor variances to unity, (ii) equating a loading
to unity at both levels, (iii) equating loadings across levels and setting factor variances
to unity at one level (McDonald, 1994), and (iv) employing correlation structures at
one or both levels (McDonald, 1994). The choice made here to represent ®; and ®, by
their Cholesky factors preclude (iii) and (iv). In exploratory analysis one could employ
similar constraints as in the classical case, namely to fix the scale of orthogonal factors
by constraining ®; = I and ®, = I (choice (i)), and then the remaining ry(r; — 1)/2
and ry(r; —1)/2 identification conditions are imposed on the elements of A; and A, re-
spectively by constraining A{D7'A; and A3}D; A, to be diagonal matrices. In classical
factor analysis, this method of removing the indeterminacies leads to a mathematical
convenient way of parameter estimation, involving eigenvalues and eigenvectors. Such
convenience, however, leading to efficient parameter estimation, is not possible in the

bilevel model since it involves non-linear constraints at both levels. This method will
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also lead to a solution that will generally not be interpretable, and subsequent rotations

will have to be employed.

In a confirmatory model, the indeterminacies are removed by specifying certain param-
eter values in advance. Most of the times the factor variances are fixed at unity to fix
the scale of the factors, and the remaining identification conditions are then imposed
by fixing elements of the loading matrices at zero. Another method to fix the scale of
the factors is to fix a loading on each factor at unity, and leave the factor covariance

matrix free for estimation.

Since not only the number of fixed parameters is sufficient to ensure identification, but
also their position, some guidelines will now be provided that may assist in deciding

which parameters to fix at pre-specified values.

Some existing work in this field include contributions by Howe (1955), Joreskog (1969),
Jennrich (1978) and Dunn (1973). These contributions were summarised by Jéreskog
(1979) and the conditions for a unique solution were given for four cases. These were:
(i) orthogonal solution with fixed zero elements, (ii) orthogonal solution with arbitrary
fixed elements, (iii) oblique solution with fixed zero elements and (iv) oblique solution

with arbitrary fixed elements.

We shall only consider case (iii) since the practical examples we shall present are like
that. Also, in practice in general it is the most interesting and used case. Suppose now
we have a px m factor matrix and that the m factor variances are left free for estimation.
This means that each column of A should contain a parameter that is fixed at unity to
fix the scales of the factors. These fixed parameters should be in different rows. This
leaves at least m? —m = m(m — 1) more parameters that need to be fixed (at zero) and
can be accomplished by fixing m — 1 parameters in each column. It may happen that
the positions of these fixed zeroes will result in the third condition of Joreskog (1979),
as set out in Section 2.3, not being satisfied. A trivial example of this would be if there

are m zeroes in the same row - which is non-practical since it means that the relevant
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variable is not associated to any of the factors. The third condition will also not be
satisfied if more than one zero is specified in m — 1 rows, and the zeroes are in the same

columns and they are the only zeroes in at least one of the columns.

It seems that when zeroes are specified, one should try not to specify too many in the

same row, and their positions in the rows should as far as possible not be the same.

4.6 The MML estimators of the free parameters

As indicated in Chapter 3, the MML method depends on two density functions, each
being a function of a subset of the unknown parameters, in order to obtain the gradient
of énL. These two functions are g(b;) and f(yi|b;), where b; is a vector containing the

random parameters, and is therefore defined as

my

dy,;

b; =

The two density functions, g(b;) and f(y;|b;), are normal density functions according
to the assumptions. If we write E(b;) = 8 and k; = p + rin; it follows that they are
given by

\D 0
0 In,’ ®§1

k.

g(bi) = (2m)~= exp{ —gtr ( V2 0 ) (bi — B)(b; — B) }
0 I,,®%®

B \' 0 m; — p
(2m)" | Vol 3Ly, @ &1 Fexp{ —ftr| 7 X ‘ ((mi =)' 5 1)
0 I, o®; di;

_k 1 n Vg_l 0 m; — p
(2m)7 7 V|73 81" Fexp{ —5 ((mi—p); di;
2 (e W I, ® &7 di

LN i - n; _
(2m)" 7|V, [~ 5| @, eXP{ ~5(m; — p)' Vi (m; — p) - % _Eld'l,;j‘l’l o }
]:
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and

Fb) = (2m) L ® Dyl Fexp { ~Ltr(L,, © D) (i — sy )y — iy, |
= (@0 Dy Fep{ Ly - V(L. © D)y — ny,) )
where
By, =jn, @ my; + (I, ® Aq)dy ;.

Inspection of the above expressions will show that g(b;) contains the unknown param-
eters pu, Uy, Ay, U, and D, while f(y,|b;) contains A; and D;. Let these two sets
of parameters now be denoted by the ¢; x 1 vector 8 and the #, x 1 vector T where

t1=p(ra+2) + ro(ra +1)/2 4 r1(r1 + 1)/2 and ¢, = p(ry + 1), and where

vec(A,)
0 = | vecs(U,)
diag(D;)
vecs(U;) )

and
. vec(Ay) .
diag(D;)
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Consequently 6 represents the unknown parameters in g(b;) and T represents the un-

known parameters in f(y;|b;).

Use will now be made of Proposition 3.1 to obtain the partial derivatives of the log-
likelihood function of the y; (¢ = 1,2..., M) vectors with respect to the elements of 8
and 7. First, the natural logarithms of g(b;) and f(y;|b;) must be obtained. Omitting

the constant terms, the logarithms of these functions are given by

1 n; 1 _ 1& -
tn g(bi) = =5 €| Vo] — = £n|®,| - 5(m; — p)'V3 H(m; — p) - 3 > di; @7 d
i=1

and
n; 1 7 -1
In f(yilbi) = —E-fn]D1| - '2‘(yi — y,) (I, ® DT )(yi — my,)
n; 1& m-1
= ————€n|D1| - = Z(yil - #yi,) Dl (yil - I‘l‘y;‘l)
2 2 =1
where

My, =m; + Aid; .

The next step will be to obtain the partial derivatives - see (3.6) and (3.7) - of £n g(b;)
and £n f(yi|b;) with respect to the elements of § and 7 respectively. Since both these
functions are natural logarithms of normal density functions, well known results - cf.
expression (3.26) - can be used to obtain the derivatives. In particular, the expressions
for the derivative of Zn g(b;) and ¢n f(y:|b;) with respect to a general parameter in 8

and 7 respectively, are
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Otn g(b;) _ 1 -1 i ) r —1aV2
—&él— - §tr -V2 {(ml—'”’)(mi—_”’) V2}V2 69@

0
+tr (m p)Yv;? 8%]

L | &- _,0®,
+ 2| (Z gy = ) e 86, (4.5)
and
9n f(yi|b:) 1o ) / oD,
T = Z tr Dl 1 {(yu - ﬂy.-,-)()'ij - I-l'yij) — Dl} Dl 1 87.[
ny [ o 8[145,'.].
* Ztr _(yij ~ My, )'Di la—n] : (4.6)

Expressions (4.5) and (4.6) give the general form of the derivatives with respect to
the unknown parameters. The following propositions provide identities necessary for

obtaining the MML estimators of the parameters.
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Proposition 4.1

!

Ec [(m; — p)(m; — p)'] = Cov.(m;, m}) + (Ec(m;) — p) (Ec(mi) — p)

Proof

Rewrite (m; — p)(m; — p)’ in the equivalent form

[(m; — Ec(mi)) + (Ee(mi) — p)][(m; — Ee(m;)) + (Ec(my) — )]

The conditional expected value of this expression is

Ec[m; — Ec(my)][m; — E.(m;)] + [Ec(m;) — p](E(m;) — p]f
+Ec (m; — E.(my)) (Ee(m;) — p)" + Ec (Eo(m;) — p) (m; — Ec(my))’

= Cove(my, m;) + (Eo(m;) — p) (Ec(m;) ~ po)’

where Cov.(m;, m}) denotes the conditional covariance matrix of b; given y;.

The two cross products have vanished, since

E. [mE.(m;)’ + E.(m;)p’ — m;p’ — E.(m;)E.(m;)’]

= Eo(mj)E.(m;) + E.(m;)p’ — Eo(m;)p’ — Ec(m;)Ec(m;)’
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A similar derivation will show that the other cross product term also vanishes. This

proves the proposition. O

Proposition 4.2

Ec(rn.,‘d,l,”) = COVC(midllyij) + Ec(mi)Ec(dl,‘ij),

Proof

E((md] ;) = Ec[m; - E(my)+ E(m;)] [dy; — Ec(dy ;) + Eo(dy )]
= E. (mi - Ec(mi)) (dl,ij - Ec(dl,ij)), + Ec(mi)Ec(dl,ij),

from which the required result follows. .

Proposition 4.3

Ec(di,;dy ;) = Cove(dyij,d ;) + Ec(dy i) Ec(dy i)’

1,ij

Proof

Ee(di;dy ;) = Ec(dii; — Eo(dy ;) + Ec(dyy)) (dayi; — Ee(dy i) + Ec(dy ;)
= Ec(dii; — Ec(d135)) (duij — Ec(dy,i5)) + Eo(dy,i;)Ee(dy ;)

from which the required result follows. =
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Proposition 4.4

E(mm;) = Cove(m;, m}) + E.(m;)E (m;)’

Proof
Eo(mm;) = E(m; - E.(m;) + E(m;)) (m; — E;(m;) + Eo(m,))’
= Ec(m; — Ec(my)) (m; — Ec(my))’ + Eo(m;)Ec(m;)’
from which the required result follows. O

In addition to Propositions 4.1 to 4.4, use will also be made of the well-known identities

tr[AB] = tr[A'B]

for A and B of suitable order, and

tI‘[AJgk] = [A]kg

in the derivation of the MML estimators.

The following five propositions will provide expressions for the MML estimators of the

five natural subsets of the parameter vector.

Proposition 4.5

The MML estimator for p is given by the expression
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1 M
= Vi ZEc(mi)' (4.7)

Proof
Consider the derivative of ¢n g(b;) with respect to a typical element of p, say px (k =

1,2...,p). This derivative, using (4.5), is given by

9tn g(b;)
Buk

so that the derivative of n g(b;) with respect to the vector g becomes

9n g(b;)

— -1 . —
M =V (m; — p).

This result has to be substituted into (3.6) to obtain the gradient of ¢n L with respect
to p. Therefore

omL M _
el = ZEc(Vz 1(m,- - )
=1

and setting this expression equal to zero and solving for u, gives

M M
; E. (i) = Z_: E.(m;)
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which proves the proposition.
Proposition 4.6

The MML estimator for A, is given by the expression

-~ M ~ ~
Ra= 223 (Cove(my, mi) + (Bufmy) — w)(Ee(my) — u)'} V5 A

Proof

Consider the derivative of ¢n g(b;) with respect to a typical element of A,, say
[AcJke (k=1,2,...,p;€=1,2,... ,72). Using (4.5) to obtain this derivative yields

Oln g(b;) 1 - , _; OV,
TrhgDi)_ 2 - —p) -V, v 2
6[A2]k£ ztr V2 {(II'I,L ”’)(mi ”) 2} 2 6[A2]k[

However, V, = A;®;A} + Dy, so that

Ve  9A®,A,

= = J P AL + A, DT
6[A2]kg 6[A2]kg kX 2419 2X2J ¢k

and the derivative of £n g(b;) therefore becomes

9fn g(b;)

1 , _
Str{Va{m; — p)(m; — p) — Vo } V3 (J0@,AL + Ay ®,3,,)]
O[A2]ke 2

= o[V {(my — p)(my — ) — Vo3 VIA,8,3,]

= [V {(m; — p)(m; — p) — V2 } Vi A 85k
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The above result leads to the conclusion that the p x ro matrix of derivatives is

On g(b;)

= VoH{(mi — p)(m; — p) — V33V 4,9,
OA,

Substituting this result into (3.6) leads to the following expression for the gradient of
¢n L with respect to Aj:

otmL M
A = Y E[ViH{(my — p)(m — p) — V3 ViA,®,)
2 =1

To obtain the maximum likelihood estimator of A,, this expression is set equal to zero

and solved for A,.

Therefore

M
2BV {(mi — p)(m; — p) — V,} VA, 8,) = 0

i=1

or, since V{ ! and &, are constant with respect to the conditional expected value oper-

ator and V;! # 0 and &, # 0, it follows that

E[{(m; — p)(m; — p)' = V,}V7'A)] = 0

Mz

1

It
—

or, equivalently,

M . M R R
Z:Ec[Azl = Z:Ec[(nu — k) (m; — p)' V3 Ag]

and therefore
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~ 1 X f L a
Ay = 27 ) Elf(mi — p)(m; — p)]V; "As.
i=1
Use of Proposition 4.1 and the above completes the proof. O

Proposition 4.7

The MML estimator for U, is given by the expression

~ oA n—=1 a1 M N o132
U = (AjAq) " Ap 723 {Cove(my, m() + (E(mi) — p)(Ee(my) — u)'} V51 A,0,(4.9)
i=1

Proof

Consider the derivative of ¢n g(b;) with respect to a typical element of U,, say
[Usglke (k=1,2,...,7r9;£=1,2,...,k). Using (4.5) to obtain this derivative yields

0fn g(b;) _ 1 1 . . , _; OV,
6[U2]kl - 2t1‘ V2 {(m1 - I‘l’)(mi - I‘l’) - V2} V2 a[U2]kl :

However, V; = A,U,U,A) + Da, so that

8V,  9A,U,UjA,
O[Uz)ke O[Uq]ke

= AJi ULAY + AU, Al

and the derivative of ¢n g(b;) therefore becomes

0¢n g(b;)

1
StV H{m; — p)(m; — p) — Vo3 Vi (A3 UsAG + A UzJ e As))]
O[Uy)ke 2
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= tr[ AV H{(mi — p)(m; — p) — Vo } Vi A, U Ty
= [ASV7H{(my; — p)(m; — p) — V3 } VITA Uk

The above result leads to the conclusion that the ry x ry lower triangular matrix of

derivatives is

d¢n g(b;)
o0U,

= A3V {(m; — p)(m; — ) = Va}V5IA,U,.
Substituting this result into (3.6) leads to the following expression for the gradient of
¢n L with respect to Uj:

omL M R , )
ou, = ZEc[A2V2 {(m; — p)(m — p)" =V} V3 AU,
1=1

To obtain the maximum likelihood estimator of Uj,, this expression is set equal to zero

and solved for U,.

Therefore
M ~ ~ ~ ~ ~ ~
Y EJAVIH{(mi — p)(m; — ) — V23 V1A U =0
=1

or, since V3! and A, are constant with respect to the conditional expected value oper-

ator and V;! # 0 and A, # 0, it follows that

M
> El{(m; — p)(mi — )~ V2} VA, 0] = 0

or, equivalently,
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M M . A
ZEC[AZUZ] = Z EC[(m - ”)(ml - ”),V2_1A2U2]
=1 =

and therefore

M
N PO -1 ~ A A
U, = (A44,)" IZM Z [(my — p)(m; — Y| V;1A,U,.

Use of Proposition 4.1 and the above completes the proof. 0
Proposition 4.8

The MML estimator for D; is given by the expression

~

M A
D, = —;7 E Diag [Cove(m;, m}) 4 (E.(m;) — p)(E(m;) — p)'] — Diag [A2‘I’2A,2] :
(4.10)

Proof

Consider the derivative of ¢n g(b;) with respect to the elements in D,. For a typical
element in Dy, say [Do]i (k = 1,2,...,p), the derivative of ¢n g(b;) is (cf. (4.5))

ot g(by) 1 - 0D,
EnS ot Vi — p)(m; — p) = V,} V3! 0Dz ]

This expression, however, can be simplified by using the reparameterisation theorem
(Browne, 1991). It may be applied here since D, and D;! have the same structural

form - namely they are both diagonal matrices - and consequently the derivative may

be written as (if D} = D;*)
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Olngb;) 1 . —p) — _OD;
BDIL = "3t | ((mi - w)(m: - ) = Vi) 5o

1
= —gtr[{(m; — p)(m; — p) = Vo} Iyl
so that the derivative with respect to the p unknown parameters in D% becomes

Obn g(b,‘) 1.
W = —§D1ag [(m; — p)(m; — p) = V,].
This expression now has to be substituted into (3.6) yielding

0¢n L
oD%

f Ee {—%Diag [(m; — p)(m; — p)" — Vz]} :

1=1
Setting this expression equal to zero and solving for D} will give the maximum likelihood
estimator for Dj. However, one may solve directly for D, since D;' = Dj* (the

transformation from D, to D, is one-to-one).

The solution for D, therefore has to satisfy

2 E. {Diag[V;]} = Y. {Diag (m; - pu)(m; — )}

which, using Proposition 4.1, completes the proof of this proposition. a
Proposition 4.9

The MML estimator for U, is given by the expression
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M ~ ~
> E. (diyds ;) #7710, (4.11)

Proof

Consider the derivative of £n g(b;) with respect to a typical element of U, say
[Uilee (k=1,2,...,r;£=1,2,...,k). Using (4.5) to obtain this derivative yields

o ou,U;
Q_l d i'dl ;o TL,'@ Q_l
1 (; 1,05 1,45 ) 1 a[Ul]kl:I

Evaluating the partial derivative in the above expression, yields

On g(bi) _ 1.
OUilee 2

9ln g(b;)
O[U1] ke

'I’l_l (Z dl,ijdlly,'j — n,-ih) QI_IUIJZk:I
j=1

& ! (Z dyd) g — @1) &;'U,
j=1

k¢

The above result leads to the conclusion that the r; x r; lower triangular matrix of

derivatives is

0fn g(b;)

0, (Zdl” e )QIIUI'

Substituting this result into (3.6) leads to the following expression for the gradient of
¢n L with respect to Uj:

& (Z d;; 1,] ‘I’l) ®7'U;
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To obtain the maximum likelihood estimator of Uj, this expression is set equal to zero

and solved for U;.

Therefore
M . g . . .
Z Ec Ql—l Z dl,‘ijd,l,ij — TL,:QI QI_IUI = 0
=1 7=1

or, since ®; is constant with respect to the conditional expected value operator and

7! #£ 0, it follows that

M n; . . .
>3 Ec(diyd;,;) 710, - NU, =0

i=1j=1
which completes the proof. u

So far, expressions for the MML estimators of the elements of 8 (i.e. the elements of
M, A;, U,, Dy and Uj) have been obtained. The next two propositions will provide
expressions for the maximum likelihood estimators of the elements of T (i.e. the elements

of A; and D) that are contained in ¢n f(y;|b;).
Proposition 4.10
The MML estimator for A; is given by the expression

A [ M~
A, = ZZ {yijEc(dl,ij), — Cov(m, d,1,ij) - Ec(mi)Ec(dl,ij),}:l X

[i=1 j=1
(M n;

3> {Cove(dyy, di ) + EC(dl,ij)EC(dl,ij),}J - (4.12)

| i=1 j=1
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Proof

Consider the partial derivative of ¢n f(y,|b;) with respect to a typical element of A,
say [Ai]ee (K =1,2,...,p;£=1,2,...,7). Using (4.6) this derivative is (note that A,

is contained in gy )

9tn f(yilbi) _ <" p-1. My,
9fn flyilbi) tr | (y; ) 4.13
O[A1lre =217 (¥ = py,, D A[A ke (4:13)

ij=1

However, g, = m; + A;d;;;, so that
”yl] fLV ]

Opy, _ OA
OA1lke  O[A1]ke

dy;; = Jeedyij

and substituting this result into (4.13) gives

ofn f(yilbi) n; )
T OAgke gtr [(yij—uyq)’Dlleedl,ﬁ]

= Ztr [Dl_l(y,'j - ”’y;j)dll,ij‘]ek] .
Therefore, the p X r; matrix of derivatives is

atn f(yiby) & ,
T ZD l(yU ,"’y,J)dl i7°

i=1

To obtain the gradient of £n L, the above expression needs to be substituted into (3.7),

which gives

onL M _ ,
8A1 ; {ZD 1(y” ,l'yu)dl "J}
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and setting this expression equal to zero, gives

M i
0 = ZEC{ZD;I(}’,] m; — Aldli])dlu}
i=1 1=1

M n; .
= 23 {¥uBu(dl,;) - E(mid] ;) - A, Eo(dy 5idf )}
=1 j=1
so that
. M n; M n;
AIZZEC(dIU ll])—ZZ{yUE (dlt] -E (m dl‘l.])}
1=1j5=1 i=1j=1
and consequently
. M n; M n -1
A = ZZ{yUE (dlu E(mdlu)}} l:ZZE(dlu 1,47 :I .
=1 j=1 i=1 j=1

Propositions 4.2 and 4.3 are now used to complete the proof of this proposition.
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Proposition 4.11

The MML estimator for D, is given by the expression

. 1 M n;
D, = ZZDmg(y,]yU) + = 7 - Zn Diag [Cov.(m;, m}) + E.(m;)E.(m;)’]
M ng
+Diag | A ZZ{Covc(dlu, di ;) + Be(dy ) Ee(dy ;) }| A
=1 j=1

{f)iyu dm)}

2 X 2
—FZZ la:g [yu ml)] - _Dla’g

i=1j5=1
2 M n; .
+— Dlag ZZ {Cov (my,d} ;) + Ec(m;)Ec(dy ;) }A (4.14)
i=1 j=1

Proof

Since D; is diagonal, we choose to use the reparameterisation theorem as in Proposition

4.8 where an expression for D, was obtained.

Therefore let D} = D7'. The partial derivative of ¢n f(y:|b;) with respect to a typical
element in DY , say [D¥] (k =1,2,...,p), is given by

otn f(yib) _ 13 oD;
o~ 2t {08 )0 D

= _% itr [{(Yij - ﬂy.-,)(Yij — Hy,; ) - Dl} Jkk] '
j=

The p x p diagonal matrix of derivatives is therefore
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o¢ i|b; 1 !
L‘Bf]()),*_lz Z Dlag [(yu ”y.'j)(yij - ”yij) o Dl]
1

] =1

and substitution of this result into (3.7) gives

onL K ,
B]T:L)»f = E E {_— Z Dla‘g [(yU ”y.-j)(yij - ”y.-j) - Dl] } ’

i=1 i=1

To obtain the maximum likelihood estimator for D7 we now have to set the above

expression equal to zero and solve for D} (or for D, ).

Therefore

[\Dlr—l
ﬁMg

i: {Dlag [(YU by Nyi; — py,,) — Dl]} =0

and consequently

M n M n;
Z; Z; E.{D,} = Z; Z; Diag [Ec {(yi — #y,,)(vij — ty,,)'}]
=1 = =1y
which leads to
1 M n;
= % & 2 Ding [B {(v — 1y, )y — 1y, )}
i=1j=

However, By, =m; + A;d; ;;, so that

(Vi =y )i = my,) = (vi5 — my = Agdag)(yi; — m; — Agdy)

97



= yiyi; + mm] + Aydyid) AL — ygm) — yid) A

1,45

—miy:f +midy ;i Aq - A1d1,,-jy§j + A,d;;;m,

1,25

with conditional expected value

Ee(yij — py, )(¥is = py,,) = yi4¥i; + Eo(mim}) + A1E(dy;d] ;;)A]

~Yi;Ee(m;) — yi;E(dyi;)' A — Bo(my)y;;

+Ec(mid] ;;)A] — A1Ec(dy 55)yi; + AiEc(dy ;ym)).

17ij

The use of Propositions 4.2, 4.3 and 4.4 completes the proof of this proposition. O

It is evident from the estimators of the unknown parameters g, A, Uy, D;, A, U;
and Dy, that the conditional distribution of b; given y; plays an important role in these
parameter estimators, since they are completely determined by the moments of this

distribution.

From well-known normal distribution theory, the moments of the conditional distribu-
tion function p(b;]y;) can be obtained from the joint density h(b;,y;) - see e.g. Morrison
(1990). The moments of the joint distribution function of b; and y; will therefore now

be given.

From the column vector that contains b; and y; in the following way, namely
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y:
the expected value is obtained as
m; H
E dl,i = 0 (415)
Y: j'ﬂi Q p
and the covariance matrix as
m; Cov(m;, m;) Cov(m, di;) Cov(my)
Cov d,; ,(mi dll,i y:) = | Cov(d,;, m;) COV(dl,i,dll,,') Cov(dy,i, yi)
Vi Cov(y;, m}) Cov(y;,dy;) Cov(y:,y:)

In this matrix, the six non-duplicated submatrices are

1.
Cov(m,', m;) = A2¢2A’2 + D2
ii.
COV(dl,i, dll’z) == I-n," ® Ql
1ii.

Cov(yi,yi) = W;
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1v.

Cov(d;;,m)) = 0

Cov(y;,m)) = Cov[(jn, ® m; + (I,;, ® Ay)d;; + e;;), m]]

= jn,' ®V2
vi.

Cov(yi,di;) = Cov|(Gn ® my+ (L, ® A1)dy; + 1), d, ]
= (L, © A1, @ @)
= L, AP,

From the above it follows that the covariance matrix of (b’ y’) is given by

mi Vs 0 (n; ® V2)'
Cov d,; , (m; dll,i y)| = 0 L,e®, (I, Q0A,®9,) (4.16)
y: jn.- ® V, In,‘ QA P, W,

so that the moments of the joint distribution of b; and y; are given by (4.15) and (4.16).

Consequently the moments of the conditional distribution of b; given y; is

Ei(b;) = E(b;)+ Cov(b;,y;i)[Cov(y:,y)] " (y: — E(y:))
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_ ( u ) n ( (Jn, ® V) ) Wl (y: —jm © p) (4.17)
(L, ® A1 ®,)

and

Cov(b;, b)

= Cov(b;,b;) — Cov(b;,y!) [Cov(y,-,yg)]—1 Cov(y;, b})

A 0 i QV,) .
= 2 _— (J ' 2) W:I(Jn ® V2 In; ® A]@l). (418)
0 In.‘ ® ¢1 (In.‘ ® A1¢1 ),

Using the above two results, it is now possible to get expressions for E.(m;), E.(d; ),
Cove(m;, m}), Cov.(d, ;, d ;) and Cov.(m;,d] ;) which are necessary in determining the

maximum likelihood estimators of the unknown parameters.

From (4.17) it follows that

El(mi) = p+(n ® V)W y:i — jn ® 1) (4.19)

and

Ec(dl,i) = (In.‘ & Al@l)lwzt-l(yi _jn.' ® "‘L)

of which the latter can be used to obtain an expression for the conditional expected

value for the j-th individual, namely
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E(dii) = (I @ A1 @)W (yi — jni @ p). (4.20)

From (4.18) it follows that

Cove(my, m}) = Vi — (ju; ® V2) Wi (jn, ® Va), (4.21)

Cov(d,,, dll,i) =L, @® — (I, ® A1 ®,) W (1, ® A, ®))

and

Covc(mi’dll,i) = _(jn;' & VZ),WJ—I(In.’ ® Alél)-

The latter two expressions can be used to obtain the conditional covariances for the

J-th individual, namely

Cov(d;;,d} ;) = @1 — (J;1 @ A1 B ) WH(T;, @ A, B) (4.22)
and
COVC(Ini’ dll,ij) = _(jni ® VZ),Wi_l(‘]jl ® Al@l)' (4'23)

In expressions (4.19) to (4.23), W, appears only in its inverse form. Since this matrix
is quite large (pn; x pn;), use can be made of its partitioning to use a standard result -
see e.g. Browne (1991) - to write W ! also as a partitioned matrix, and thus to express

(4.19) to (4.23) in computationally more efficient forms.
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Recall that W; =1, @ V, + jnidn, ® V2 and note that this is equivalent to

W, = In.‘ ®V;+ (jn.' ® IP)VZ(jn-' ® IP)I'

This expression is of the form A + BCB’ where

(A+BCB')'=A"71-A"'B(C™' + B'A™'B)"'B’'AL

Applying this identity to W;!, noting that

A == In'» ®V1,
B zjn,' ®IP
and
C:V27

it follows that

Wl — Ini®V;1—jnij;‘®C,-

S; —-C; —-C,;
-C; S; -+ —C;
= _ . . (4.24)
_Cz —Ci Sz
where
S, = Vl‘l - C;



and

C,= Vi (V' +n, VY IV

This expression for W' requires only the inversion of p x p matrices. However, it will
now be shown that (4.24) can be rewritten so that only matrices of order r; x r; and

re X 79 need be inverted. Since
Vil =(D; + A ®;A))7?,
it follows that
Vi =D;' - D'A(®;1 + ADT'A,) A D!

so that the only inversions necessary are those of an r, x r; matrix and of a diagonal

matrix. In (4.24), C; can be equivalently written as

[Vi(Vi +nViOVY T = (ViVEV 4 nVy) T
= (ViV;'V, +n,V,V;1V,) ™!
= [ViVii(Vi+niVa)] -
= (V; +n;Vy) 1V, Vil

It will now be shown how (V; + n;V;)™!, which is a p x p matrix, can be rewritten so

that it will be necessary to invert only r; x r; and r, X r, matrices.

Use the structure of V, and write
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(Vi +n V)™ = [V +n;(A,8,A, + D,)]™}

= [(Vi+nDy)+ niA2q’2A/2]_l

Let V = Vi + n;D,, then

(V1410 Vo) =V VA, (n71®5 + AYVTIA,) 1ALV

while the inverse of V can be written as (using the structure of V; and Khatri’s result)

(Vi+nD;)™ = [(nD;+Dy)+ A 8,47

= D' —D7'A(®71 + AD A A D!

where D = n;D, + D;.

Consequently W', of order pn; x pn; can be obtained by inverting ry x r; and 5 X 73

matrices. This is a useful result since, in general, ry << pn; and r, << pn;.

Expression (4.24) can now be applied to rewrite (4.19) to (4.23) in computationally

more efficient expressions. Doing this, (4.19) becomes

EC(Int) = p+ (j’ﬂi b2 V2)lwi—l(yi _j’ﬂi & ”‘)
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S; -G, --- -C; Yii— M

-C; 5 - —C; Yo — M

= p+(VyVy---Vy) )
-G, -C; --- S Yin; — B

= p+Vy(Vit =n,C)(D yij — nims) (4.25)
J=1

while (4.20) becomes

E(di;) = (Jji®A1®) W, (yi —jn, ® p)

S; - =G Yii— M
_C‘L S‘L yin.‘ "

= (=®,A/C; - B,A'S; - — &;A.C))
Yin, — K

= @A |Vii(y; —n) - Ci(z Yij — nip) | (4.26)
| i=1

Substituting the expression for W;! in (4.24) into the expressions for the conditional
g i p

covariance matrices given by (4.21) to (4.23), it follows that

Covc(mi, mi) = V2 - (jn. ® V2),Wi—1(jni ® V2)
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S; - —C;

V,
= V2_(V2V2...V2) .
-C; --- S,
V,
= V2 - niV2(V1_1 - niCi)Vg (427)
and
COVc(dl,ij,d;,ij) = &, — (le R Alq)l)lwi—l(.]]‘l K A]@l)
0
Sz —Ci
_Ci Sz :
0
- @1 - QlAIIS,'Alq’l. (428)
Finally,
Cove(my, dy ;) = —(Jn, @ Vo) W '(Jj1 ® A1 ®y)
0
S; —-C;
= —(V,V,;--.V,) CT : AD,
-G, S; :
0
= —Vz(Vl_l — n,-C,-)A1<I’1. (429)

The expressions (4.25) through (4.29) now give computationally efficient formulae for
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the moments of p(b;|y;) that are of primary importance in the EM-algorithm.

4.7 Constrained estimation in the exploratory case

In an exploratory analysis one could remove the r? 4+ 2 indeterminacies in the bilevel
model by assuming orthogonal factors with unit variances on both levels (i.e. having
®, = I and ®;, = I), and also require that A{D7'A; and A;D3 A, are diagonal
matrices. The structures imposed on the individual-level and group-level covariance
matrices in this case are therefore Vi = AjA} +D; and V, = A2A, + D,;. The MML
estimators of i, D; and D in this orthogonal model may be obtained using Propositions
4.5, 4.8 and 4.11, where @, and ®, are replaced by identity matrices. Since constraints
are imposed on the elements of A; and A,, Propositions 4.6 and 4.10 can not be used
to obtain the MML estimators of these two matrices, but need some adjustment. This

will now be considered.

The constraints imposed on the elements of A; and A, are non-linear. The next proposi-
tion will show how such non-linear constraints may be linearised, and subsequently, the
MML estimators of A; and A, will be obtained subject to the (approximately) linear

constraints, using the Lagrange multiplier method.
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Proposition 4.12

Suppose A is a general p X r matrix of factor loadings, and D is a p x p diagonal matrix
with d;; > 0 (¢ = 1,2,...,p). Suppose further that the elements of A are required to
satisfy the r(r — 1)/2 equality constraints given by A'/D"'A = diagonal, or

c(A) = vecs*(A'D™'A) = 0.

These non-linear equality constraints may be approximated by the set of linear equality

constraints given by
Lvec(A) = vecs*(A(D ™' Ap)

where L is the matrix of first order partial derivatives of c(A) with respect to the
elements of A at the point where A = Ay and where Ay is some arbitrary known p x r

matrix.
Proof

The r(r — 1)/2 vector valued function ¢ may be approximated by a first order Taylor

function. This approximation is given by
c(A) =~ c(Ap) + Lvec(A — Ayp)

where Ag is some known matrix and L is the r(r —1)/2 x pr known matrix of first order
partial derivatives of c(A) with respect to the elements of A at the point where A = A,.

Consequently the matrix L is given by the expression

_ _9c(Ar)
- Ovec’(A) A=Ao.
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To derive an expression for this matrix of derivatives, first consider a typical element
of A, say [Alee (k= 1,2,...,p;£=1,2,...,7r). Then the column of L containing the
derivative of ¢(A) with respect to [A] is

Oc(A) Ovecs*(A'D7IA)
a[A]kl - G[A]M

= VeCS*(Jng_lA + AID_IJM)

= [Jng—lA-i-AID—leg]ij, 1=2,3,...,1;7=1,2,...,1 -1

= tr[inJng_lA+J_7','A,D_1Jkg] , 1= 2,3,... y Ty ] = 1,2,. ,’L -1

= tr[J,‘jAID_le[+J_7'1'AID_1JM] , 1= 2,3,...,7‘; ] = 1,2,... ,’i -1

= [Ir]g,’[AID_l]jk + [Ir]gj[AlD_l]ik , 1=23,...,r57=12,...,1—-1

= [IT ® (A,D_l)]jg,k,' + [IT ® (A,D_l)],’g,kj,’i = 2, 3, [ ,T‘;j = 1,2, . ,’i - 1.

Fixing 7 and j in this expression and taking all the values of k and £ to obtain a specific

row of L, the expression shows that this row is the sum of two different rows of the

matrix I, ® (A'D~!). However, the second-last expression in the above derivation shows

that only one term will have non-zero values, for ¢ and j cannot simultaneously be equal

to £ (since ¢ # 7).

To see more clearly how L may be determined from I, ® (A'D™!), write
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A'D! 0 0
0 AD! ... o0
I, (A'D™Y) =

0 0 -+ A'D7!

and note that a typical element of this kronecker product is written as [I, ® A’'D™1)],.cq
where ab = 11, 21,...r1, 12, 22...,72,...,1r, 2r,...,rr and cd = 11, 21,...p1,
12, 22...,p2,...,1p, 2p,...,pp. Inspection of the above shows that the first row of L
(i.e. when ¢ and j are fixed at 2 and 1 respectively) will contain in its first p positions
(ie. for £ =1 and k = 1,2,...,p ) the second row of A’'D-!, while in positions
p+1, p+2,...,2p (e for £ =2and k= 1,2,...,p) will be the first row of A’'D~L.

The other p(r — 2) positions in the row will have values equal to zero.

Generally, in each row of L there will be 2p elements that correspond to two of the
rows of A'D™, while the other p(r — 2) elements will be zero. The positions of the 2p

non-zero elements are determined by the values of 7 and j.

Even closer inspection of the above shows that an r(r — 1)/2 x r? selection matrix may
be used to select the necessary rows from I, ® (A'D~!) to form L. This selection matrix,
say H, turns out to be the selection matrix such that Hvec(S) = 2vecs*(S), where S
1s a ¢ X ¢ symmetric matrix and vecs*(S) = (sa1, 831, 532, Sa1, S42, S43, - - + , Sq g—1)'» defined

similarly as vec(S) except that the diagonal elements are being omitted.

It has therefore now been shown that L = H[I, ® (A'D')] at the point where A = Ag,

or

L = H[I, ® (A,D™1)].

The first order Taylor expansion of c(A) can thus now be written as
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c(A) ~ c(Ao) + H [I, ® (A)D™)] vec(A — Ao)

and if this expression is set equal to zero, it follows that the constraints can be approx-

imated by
Lvec(A)=H [IT ® (AE,D_I)] vec(Ag) — vecs*(AgD 1 Ay)

(since c(Ag) = vecs*(AgD1Ay)).

It can easily be shown that [I, ® (A{D!)] vec(Ag) = vec(AgD™1Ay) so that the con-

straints become

Lvec(A) = Hvec(AjD ™ 'Ap) — vecs*(ApD ™! Ag)
= 2vecs*(AjD™'Ag) — vecs*(AjD ™ Ap)
= vecs*(AgD'Ay)

which completes the proof of this proposition. O

Proposition 4.12 will now be used to linearise the constraints imposed on the elements
of A; and A,. The method of Lagrange multipliers will then be applied to maximise the

log-likelihood function #n L in estimating A; and A, subject to these linear constraints.

First consider the equality constraints on A;, namely A{D7'A; = diagonal. Making

use of Proposition 4.12 shows that these non-linear constraints may be approximated

by
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Livec(A;) = vecs*(A},D1' Aqo) (4.30)

where Ajg is a p X r; known matrix, and L, is the r;(r; — 1)/2 x pr; known matrix

defined by
Ly = Hy[I,, ® (A;oD7")]

and H, is a selection matrix (see the proof of Proposition 4.12).

Consider the non-linear constraints on the elements of A; where these elements should
satisfy the equality constraints A5D;'A, = diagonal. Proposition 4.12 may then be

used to approximate these non-linear constraints by the linear constraints given by

Lavec(A;) = vecs* (A Dy Ay) (4.31)

where Ay is a p X ry known matrix, and L, is the rp(ry — 1)/2 X pr known matrix

defined by
L; = Ho[I,, ® (A3D3")]

and H; is a selection matrix as defined in the proof of Proposition 4.12.

Let Ay bean ri(r; —1)/2x 1 and A; an ry(r; —1)/2 x 1 vector of Lagrange multipliers,

and form the new function for maximisation, L*, where
L* = tn L+X] [Lyvec(A) — vecs*(A5D7 Aso)] + A5 [Lovec(As) — vees*(A%D; " Ax)|
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Expressions for [\1 and :\1 that maximise L* will now be derived. Therefore, the gradient
of L* with respect to the elements of A; and A, is required and, respectively, these

gradients are given by

oL  dinL + 0
dvec'(Ay)  dvec'(A;)  Ovec'(A,)

Al [leec(Al) - vecs*(A'lODl‘lAlo)] (4.32)

and

OL*
oA,

= Lyvec(A;) — vecs* (A, Dy Ago)- (4.33)

These two expressions have to be set equal to zero and simultaneously solved for A;
and A;. The resulting solution A, for A, will then satisfy the constraints, since for this

particular choice of A, (4.33) will be zero which gives the constraints.

The first term in (4.32) was determined in the previous section (see the proof of Propo-

sition 4.10). The second term is

0
Frec Ay uLiveelAn) = XL
and therefore it follows that
———6L* - 3 ! -1 ' ' 4.34
6V€C’(A1) = ZIEC z:lvec {Dl (yl] - #y;'j)dl,i]' + AlLl' ( . )
i= j=

Setting (4.33) and (4.34) equal to zero, results in

Lyvec(A;) = vecs*(A,yDi'Ayo), (4.35)
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which gives the constraints, and

M ng R R
> Ec |3 vee (D' (yi; —m; — Aydy)di ;)| + L1k =0 (4.36)

=1 Jj=1

-,

since [J.y',j =m, + Aldl,ij .

It will now be indicated how (4.36) can be rewritten in a form that will make the use

of Proposition 3.3 possible in obtaining the solution for A, and ;.
First, rewrite (4.36) as

M n; ~
ZZVGC{D (le 11]) E( dllz]) AlE (dllJ 11_1 )}+L,A1:0

i=1 j=1

or, combining all terms that do not involve A, or Xl,

M n; . M n;
vec { 1A1 Z Z E.(dy,;d; i) }—L'IAI = vec {Di’1 Z Z (yiJE (d; i) = Ec(m,-d'l,ij))}
i=1j5=1 =1 j5=1

(4.37)

Now, if A and B are defined, for the case of simplifying the above expression, as

M n
A =) Ec(dy;d] ;)
i=1j=1
and
M ny
B = ZZ (yU l 1_1 —E ( dll z]))
=1 j=1
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expression (4.37) can be rewritten in the simple form
vec (DI_IAIA) — L'l:\l = vec (DI_IB) ,

or

(A ® D7 )vec(A;) — L\ A; = vec(D['B). (4.38)

This equation is of the form that permits the use of Proposition 3.3 to obtain f\l and

A1, since (4.38) may be written as

Y#+L A =%

T0

where
Y = A® D7},
# = vec(Ay),
L, = L,
A =X
and

z = vec(D]'B).

It now follows directly from Proposition 3.3 that

vec(A;) = (A~ @ Dy)(vec(Dy'B) — L\ A;) (4.39)

116



and

A1 = Sw, (4.40)
where

S = (Li(A™' @ D)L},

W =L;(A7' @ D;)vec(D;'B) — %

and

X = Lyvec(Ap) — vecs*(A,D; Ayo)
= vecs* (A, D7 Ap).

An expression for A; that will satisfy the constraints imposed on its elements, and Ay,
the vector of Lagrange multipliers, have therefore been obtained and are given by (4.39)

and (4.40).

Subsequently, expressions for A, and X, will be derived. The gradients of L* with

respect to the elements of A, and A, are respectively given by

oL  Oin L + 0 X\
Ovec'(Az) — Ovec/(A;) | Ovec/(A;)” 2

[LzVCC(Az) - vecs*(A'ZODz_lAgo)] (4.41)

and

oL*

a7 = Lavec(A;) — vees* (AL D7 Ag). (4.42)
oA,
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As before, these two expressions have to be set equal to zero and simultaneously solved

for A; and ;.

The first term in (4.41) was determined in the previous section (see the proof of Propo-

sition 4.6), while the second term is

0

— ] = A, L.
avec,(Az)AzLQVeC(Ag) L)

Consequently it follows that

oL~

Brac(Ay) ~ 2 [vee { V3! ((m; — p)(m; — ) = Vo) V' A} + A5Ls. (4.43)

=1

Setting (4.42) and (4.43) equal to zero, respectively yields

Lyvec(Az) = vecs* (AjD3" Aso) (4.44)

which gives the constraints, and

Ms

E. [vec {V;l (m; — p)(m; — p) — V2)V;1[\2}] + L'zig =0.

..
1
—

To obtain expressions for Ag and Xg, the above expression will be rewritten in a form
that will permit the use of Proposition 3.2 to obtain the estimators. It follows that it

may be rewritten as

M
Mvec(VQIAZ) —LiX; = vec {Vz'1 [Z E.(m; — p)(m; — #),l V2—1A2}

=1
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or, equivalently as

2 1 < M u
vec(V71Az) — 'Mlef\z = %vec {V{1 [Z E.(m; — p)(m; — u)'} V{lAz} . (4.45)

1=1

In the above equation, write

~

vec(V;'A;) = vec(V;1A,L,)

= (I, ® V;')vec(Ay). (4.46)
Substitution of (4.46) into (4.45) gives
,\ 1 -
(I, ® Vi )vec(Ay) — M—L'zz\z = vec(U) (4.47)

where

1

v= o {vy [f: B~ )ms — | Vi*Aa

Expression (4.47) is now in the form that permits the use of Proposition 3.2 to obtain
equations for A, and ;. Inspection of (4.47) shows that this expression resembles (3.44)
of Proposition 3.2 in that



-

Aa = —M_1X2
and

z = vec(U).

The use of Proposition 3.2 now shows that the equations for A, and X, are

vec(A;) = (I, ® V3)(vec(U) — M~ILLA,) (4.48)
and
A, = MSw (4.49)
where
S = (Ly(I,, ® V3)Ly) ™,
w = Ly(I,, ® V2)vec(U) — x
and

x = Lyvec(Ay) — vecs* (AL Dy Ag)
= vecs*(A5D; Ag).

An EM algorithm will now be outlined that may be used to obtain the MML estimates

of the fixed parameters in an exploratory bilevel model.

Since the expressions for calculating A; and A, make use of some initial value (Ao

and Ay), an iterative procedure will be used to obtain Al and Az which satisfy the
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constraints. These iterations are nested within the iterations of the EM algorithm. This

process of iterations within iterations proceeds as follows:

Initial values need to be provided for the EM-algorithm. It was indicated in the previous
section that initially one may set g = 0, D; = Dy = I,,, while arbitrary values may
be assigned to A; and A;. These initial values are used in the E-step to calculate
the moments of the conditional distribution of b; given y; from (4.25) to (4.29). The
moments may now be employed in (4.7), (4.8), (4.9), (4.10), (4.11), (4.12) and (4.14) to
obtain new estimates for u, A, U;, D;, Ay, U, and D, - which is the M-step.

The values for A; and A,, however, are used as the initial values in an iterative proce-
dure in which A; and A, are repeatedly obtained by applying (4.39) and (4.48). The
iterations are continued until the largest absolute constraint is less than 0,1 for both A,
and A;. The EM algorithm may now continue by using this set of parameter estimates
to calculate the moments in the next E-step. The moments again are used in the next
M-step to obtain the next set of estimates for g, A;, Uy, Dy, A;, U, and D,. Again the
values for A; and A, are used as initial values in an iterative procedure where A, and
A; are repeatedly obtained from (4.39) and (4.48) until the largest absolute constraint

is less than the largest absolute constraint of the previous EM iteration.

This process is repeated until both the estimates and the constraints have reached
convergence. The criterion used for the convergence of the constraints, namely that the
largest absolute constraint be less than the one of the previous EM iteration, is not
implemented throughout the entire iteration procedure. As soon as the largest absolute
constraint becomes practically zero (less than 107°), the EM iterations are continued
when the largest absolute constraint becomes less than 107%, and no longer than the

value obtained in the previous iteration.

The above procedure may be summarised by the following steps (which includes the

case of no constraints):
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Step 1:

Initialise the parameter estimates g = 0, D, = D, = L, A, = A1o, Ay = Az Set

c; = ¢4 = 0,1 (initial criterion for constraints).

Step 2:

Calculate the moments of p(b;|y;) from (4.25) - (4.29).

Step 3:

Calculate the next set of parameter estimates fi, A;, Uy, D1, Ay, U, and D, from (4.7),
(4.8), (4.9), (4.10), (4.11), (4.12) and (4.14).

Step 4:

i1.

1il.

Step 5:

il.

1il.

Step 6:

If , > 1 use A; as initial value and calculate the next A; from (4.39),
otherwise proceed with Step 5.

Calculate the largest absolute constraint, ¢; .

If ; < ¢ set ¢f = maz(cy,107¢) and proceed with Step 5, or else return

to Step 4 (i).

If r, > 1 use A, as initial value and calculate the next A, from (4.48),
otherwise proceed with Step 6.
Calculate the largest absolute constraint, c,.

If ¢; < ¢ set ¢y, = maz(cy, 107%) and proceed with Step 6, or else return

to Step 5 (i).

Repeat Step 2 to Step 6 until convergence is met by both the constraints and the

parameter estimates.
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4.8 Estimation in the confirmatory case

A confirmatory analysis is performed when knowledge about the particular variables is
available, or when one wants to test specific hypotheses regarding relationships between

the observed and latent variables.

The prior information or the specific hypotheses are in these cases used to pre-specify
certain parameters in the model. This means that certain parameters are fixed at pre-
specified values, for example a loading parameter is fixed at zero if it is believed that
there is no association between the relevant observed and latent variables. Also, since
the scale of the latent variables are arbitrary, it should be fixed. This is done either by
fixing the variances of the latent variables at unity, or by fixing a loading parameter on
each of the latent variables at unity. The first method will result in standardized latent
variables while the second method will result in latent variables with the same scale as

those observed variables whose loading parameters are fixed at unity.

These parameter specifications should be done in such a way as to ensure that all the
free parameters (i.e. the parameters that have to be estimated) are identified, in which

case the model will be identified.

For the present model, the scale of the latent variables (factors) will be fixed by fixing
a loading parameter on each factor to unity, which means that the factor variances will
be left free for estimation. The remaining indeterminacies, namely 72 — r; on level 1
and r — r; on level 2, will be removed by fixing r; — 1 and r, — 1 loading parameters
at zero in each column of A; and A, respectively. The positions of the parameters that
are fixed at one and zero are chosen using the guidelines set out earlier in this chapter.
If there is only one factor at any level, the only indeterminacy at that level is the scale

of the factor that may then be determined by fixing any loading parameter to unity.

Once it has been decided which parameters should be fixed at unity and which should

be fixed at zero, the estimation of the remaining (free) parameters can proceed. The
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following EM algorithm is proposed for this estimation.

As a starting point, the algorithm needs some initial values to be assigned to all the free
parameters. These values for the free parameters and the pre-specified values (zeroes
and ones) for the fixed parameters are now used in the E-step to calculate the moments
using (4.25) to (4.29). These moments are subsequently used in the M-step to obtain
an updated set of parameter estimates. The equations for this step are (4.7) to (4.12)
and (4.14), in which the pre-specified values of the fixed parameters are kept unaltered.
Alternately computing the E and M steps until the estimates of the free parameters

have converged will maximize the likelihood for the data being analyzed.

4.9 Practical applications

To illustrate the estimation procedure presented in this chapter, the same data set that
was used in the application section of Chapter 2 is again considered. These analyses have
been carried to the point where a subject-matter expert acquainted with the content of
the tests could draw inferences about the empirical meaning of the results, but it is not

considered part of the scope of this work to engage in interpretation.

The two-level model defined in Section 4.3 will be fitted to the data. The additional
information that the sample of N=5 635 students is drawn from M =139 schools will
be incorporated. Two models, one with only one factor at each level and one with two
factors at each level will be considered. For these two models, the parameters will be
estimated in both the exploratory and confirmatory case. In the first model, the six
tests described in the one-factor example in Chapter 2 will be used to fit a two-level
factor analysis model with one factor on each level. In the second model, the twelve
tests used in the two-factor example in Chapter 2 will be used to fit a two-level model

with two factors on each of the levels.
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Example 4.6.1: One factor at each level (Exploratory analysis)

Let the 6x1 vector y contain the six variables for this example. The observed vector
for the j-th student in the i-th school is denoted by y;; where : = 1,2,...,139 and
J=1,2,...,n; while y; denotes the 6n; observations made on the i-th school. The n;’s
for this data set take on values that range from 17 to 60 students, or level-one units,
within the 139 schools, or level-two units. It is assumed that the model defined by (4.2)
holds for each school or, equivalently, that for the i-th school the covariance matrix of

y; has the structure

Cov(yi,yi) = I, ® V1 + juidl, ® V3

where

Vl = AlAll + D1

and

V2 = A2AI2 + D2.

The unknown parameters that have to be estimated are the 6x1 mean vector g, the
two 6x1 vectors of factor loadings A; and A,, and the two 6x6 diagonal matrices D,

and D; containing the variance parameters on the different levels.

A computer program EMBIFAC - written in the FORTRAN language - was used to
obtain estimates of the unknown parameters, applying the EM algorithm to the bilevel
factor analysis model. In this case, the iterative procedure was terminated when the
parameter estimates differed from one iteration to the next by less than 0,001. These
parameter estimates were merely obtained so that they could be used as starting values

in the Fisher scoring algorithm in the next chapter.
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The convergence criterion was satisfied after 15 iterations. The parameter values used as
starting values for this iterative procedure are provided in Table 4.1, and the estimates

obtained after convergence are given in Table 4.2.

TABLE 4.1

Initial parameter values

2,740 0,500 0,500 0,500 0,100
2,257 0,500 0,500 0,500 0,100
2,549 0,500 0,500 0,500 0,100
2,593 0,500 0,500 0,500 0,100
2,636 0,500 0,500 0,500 0,100
2,607 0,500 0,500 0,500 0,100

As initial values for the parameters in g, mean values were calculated from the sampled
observations: This vector was calculated as
A 1 M 1 2
i (o)

1=

—
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TABLE 4.2

Parameter estimates: after 15 EM iterations

~ ~ ~ ~

i:l, Al D1 A2 D2
2,744 0,849 0,413 0,369 0,022
2,257 0,736 0,414 0,315 0,025
2,553 0,835 0,298 0,354 0,011
2,595 0,773 0,440 0,357 0,022

2,637 0,647 0,267 0,270 0,031
2,608 0,683 0,325 0,250 0,014

Since the change from one iteration to the next is fairly small, it indicates that the
estimates may have taken on values that are close to the true solution, and that these
will be good starting values for a Fisher scoring procedure.

Example 4.6.2: One factor at each level (Confirmatory analysis)

In this case, the variance of the factor at the first and second level is not fixed at unity,
but is left free for estimation. The scale of the factor is now determined by fixing the

first variable’s factor loading at unity (at both levels).

These settings do not change the model, except that V; and V; are now

Vl = AIQIA; + Dl

and

V2 = A2¢2A,2 + D2.

127



The scalars ®; and ®; represent the variances of the factors at the two levels. A; and

A; now have the form
Al =(1,05 dais Asis Aais Asi; Aei)

for :=1 and 1=2.

The program EMBIFAC was used to obtain the estimates of the unknown parameters.
The iterative procedure was terminated when the parameter estimates differed from one
iteration to the next by less than 0,001. In the present application this criterion was

satisfied after 24 iterations.

The parameter values used as starting values for the iterative procedure are provided

in Table 4.3, and the estimates obtained after convergence are given in Table 4.4.

TABLE 4.3

Initial parameter values

g A D U A D, U

2,74 1,00 0,30 0,80 1,00 0,01 0,40

2,26 0,50 0,30 0,50 0,01
2,55 0,50 0,30 0,50 0,01
2,59 0,50 0,30 0,50 0,01
2,64 0,50 0,30 0,50 0,01
2,61 0,50 0,30 0,50 0,01

As initial values for the parameters in g, mean values were calculated from the sampled

observations.
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TABLE 4.4

Parameter estimates: after 24 EM iterations

~ ~ ~ ~ ~ ~

I’:L A] Dl @1 A2 D2 ¢2

2,744 1,000 0,393 0,803 1,000 0,001 0,180

2,258 0,866 0,400 0,635 0,039
2,553 0,988 0,272 0,718 0,029
2,596 0,909 0,426 0,707 0,042
2,638 0,760 0,257 0,552 0,039
2,609 0,803 0,315 0,483 0,024

Example 4.6.3: Two factors at each level (Exploratory analysis)

Let the 12x1 vector y contain the twelve variables for this example. It is assumed that
the model in (4.2) will also provide an adequate description of the data, and that the
covariance structure has the same form as in the previous example. The dimensionality

in this application, however, is larger.

The unknown parameters that have to be estimated are the 12x1 mean vector p, the
two 12x2 matrices of factor loadings A; and A,, and the two 12x12 diagonal matrices
D; and D, containing the variance parameters on the different levels. Since the number
of factors is more than one on both levels, the parameters for the factor loadings are
estimated subject to the usual constraints. In this case there is only one constraint
at each level that is imposed on the factor loading parameters for that level. On level
one, the off-diagonal element of A{D7!A, is constrained to zero, while on level two, the

off-diagonal element of A;D; A, is constrained to zero.

The computer program EMBIFAC was used to estimate the unknown parameters, ap-
plying the adapted EM algorithm that handles constraints (cf. Section 4.5). Asin

the previous example, the iterative procedure was terminated when the parameter esti-
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mates changed by less than 0,001 from one iteration to the next. The solution obtained
here was subsequently used as initial values in the Fisher scoring algorithm in the next

chapter.

The initial parameter values used for this EM application are given in Table 4.5. The

algorithm converged after 25 iterations and the solution obtained is given in Table 4.6.

TABLE 4.5

Initial parameter values

~ ~ ~ ~

iL A, D, A, D,
2,740 0,400 0,400 1,000 0,200 0,200 0, 200
2,257 0,400 0,400 1,000 0,200 0,200 0, 200
2,549 0,400 0,400 1,000 0,200 0,200 0,200
2,593 0,400 0,400 1,000 0,200 0,200 0,200
2,636 0,400 0,400 1,000 0,200 0,200 0,200
2,607 0,400 0,400 1,000 0,200 0,200 0,200

19,623 1,500 —1,500 5,000 1,000 —1,000 1,000
13,148 1,500 —1,500 5,000 1,000 —1,000 1,000
24,352 1,500 —1,500 5,000 1,000 —1,000 1,000
10,744 1,500 —1,500 5,000 1,000 —1,000 1,000
12,670 1,500 —1,500 5,000 1,000 —1,000 1,000
20, 087 1,500 —1,500 5,000 1,000 —1,000 1,000

The initial parameter values for the elements of j were also calculated from the sampled

observations, as described in the previous example.
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TABLE 4.6

Parameter estimates: after 25 EM iterations

~ ~ ~ ~

P A, D, A, D,
2,745 0,124 0,897 0,390 0,135 0,338 0,022
2,258 0,123 0,776 0,399 0,152 0,276 0,024
2,554 0,107 0,883 0,273 0,181 0,312 0,005
2,596 0,070 0,814 0,424 0,135 0,316 0,024
2,638 0,085 0,682 0,256 0,001 0,278 0,020
2,609 0,100 0,720 0,314 0,078 0,221 0,014

19,610 1,377 —0,617 5,590 0,515 —0,916 0,461
13,127 2,263 —0,861 11,962 0,607 —1,125 1,081
24, 348 2,441 —1,230 7,462 1,717 —2,519 1,656
10, 740 2,461 —1,032 7,619 1,534 —1,970 0,375
12,660 2,577 —0,887 7,789 1,476 —1,929 0,531
20, 089 1,699 —0,833 12,045 0,526 —1,835 1,426

The largest absolute constraints after 25 iterations are 0,22E-13 for A; and 0,27E-06
for A2.

Example 4.6.4: Two factors at each level (Confirmatory analysis)
In this application, ®; and ®; are 2 x 2 covariance matrices left free for estimation.
The four constraints that are imposed on the parameters in A; and A; are indicated in

the table below. The two parameters that are fixed at unity are used to determine the

scale of the two factors.
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TABLE 4.7

Free and fixed parameters

A;
1,0 0,0
A1 Aoz
Ai-31 A1'-32
A2.41 A1.42
A1'51 A1'52
A1'61 A1'62
0,0 1,0
Ais1 Aiga
A1'91 A‘1'92
)‘i,lo,l )‘i,10,2
A1',11,] A1',1],2
A1.,12,1 )\i,12,2

In this table, A,;; represents the (jk)-th parameter in A;, 2=1 or 2. The ones and zeros

in their specific positions represent the values at which those parameters are fixed.

The computer program EMBIFAC was used to estimate the unknown parameters. As

in the previous examples, the tolerance limit was set at 0,001 to indicate convergence.

The parameter starting values for the iteration procedure are given in Table 4.8. Con-
vergence was reached after 32 iterations and the estimates at that point are given in

Table 4.9.
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TABLE 4.8

Initial parameter values

o A, D, A, D,
2,740 0,400 0,400 1,000 0,200 0,200 0,200
2,257 0,400 0,400 1,000 0,200 0,200 0,200
2,549 0,400 0,400 1,000 0,200 0,200 0,200
2,593 0,400 0,400 1,000 0,200 0,200 0,200
2,636 0,400 0,400 1,000 0,200 0,200 0,200
2,607 0,400 0,400 1,000 0,200 0,200 0,200

19, 623 1,500 —1,500 5,000 1,000 —1,000 1,000

13,148 1,500 -1,500 5, 000 1,000 -1,000 1,000

24,352 1,500 —1,500 5,000 1,000 —1,000 1,000

10, 744 1,500 —1,500 5,000 1,000 —1,000 1,000

12,670 1,500 —1,500 5,000 1,000 —1,000 1,000

20,087 1,500 —-1,500 5,000 1,000 -1,000 1,000
U, U,

0,9 0,0 0,5 0,0
-0,5 1,5 —0,5 1,0

The initial parameter values for the elements of i were also calculated from the sampled

observations.
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TABLE 4.9

Parameter estimates: after 32 EM iterations

~ ~ ~

i’ Ay D, A, D,
2,745 1,000 0,000 0,398 1,000 0,000 0,023
2, 258 0,877 0,006 0,410 0,941 0,021 0,025
2, 554 0,985 —0,013 0,285 1,184 0,008 0,007
2, 596 0,889 —0,014 0,435 0,994 0,005 0,026
2, 638 0,766 —0,002 0,262 0,602 —0,138 0,021
2,609 0,820 —0,000 0,343 0,707 0,021 0,016
19, 610 0,000 1,000 5,919 0,000 1,000 0,466
13,127 0,118 1,761 12,022 0,011 1,288 1,088
24, 348 0,111 1,890 7,903 0,757 3,883 1,663
10, 740 0,051 1,932 8,263 1,091 2,712 0,384
12, 660 0,177 1,955 8,528 0,905 2,749 0,581
20, 089 —-0,009 1,329 12,884 ~1,516 1,552 1,529

&, &,
0,815 0,156

—0,537 2,554 —0,248 1,203

4.10 Summary

In this chapter, multilevel factor analysis models are introduced and it is shown how
they fit into the general framework of Chapter 3. A two-level factor analysis model,
assuming common factor structures at both levels, is then discussed. The parameters in
this model are examined, and the necessity of imposing constraints in exploratory and

confirmatory analysis is investigated.

The MML method that was discussed in general in Chapter 3 is applied to the model,
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and the necessary equations for the EM algorithm are derived. This is done for un-
constrained and constrained estimation. For both these situations, the basic steps that
should be followed in the EM algorithm are given. Also, the basic steps used in the
computer program EMBIFAC - written to apply this estimation procedure in practice

- are provided.

Finally, four practical examples are given. In the first, only one factor is extracted at
each level in an exploratory analysis - this therefore demonstrates the procedure in the
case of unconstrained estimation. The second example is the confirmatory analogue
of the first example, demonstrating how parameters may be fixed at one and zero.
The third example demonstrates non-linear constrained estimation in an exploratory
analysis, since two factors are extracted at each level, and the fourth example is the

confirmatory analogue, specifying zeroes and ones.
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CHAPTER 5

BILEVEL FACTOR ANALYSIS MODELS AND NORMAL
MAXIMUM LIKELTHOOD

5.1 Introduction

In this chapter attention will be given to a specific estimation procedure and its ap-
plication to the bilevel factor analysis model defined in the previous chapter. The
estimation procedure that will be discussed is the so-called Fisher scoring method and
its use in obtaining the maximum likelihood estimates of parameters under normality

assumptions.

The method of maximum likelihood requires the maximisation of the likelihood function
with respect to the parameters in the model. This likelihood function will be derived in
Section 5.2. Thereafter, in Sections 5.3 and 5.4, the gradient vector and the expected
Hessian matrix will be obtained, which are the necessary components in the Fisher scor-
ing method in order to estimate the parameters and standard errors of these estimates.
In Section 5.5 the details of the estimation procedure is presented; this is done for ex-
ploratory as well as for confirmatory models. In Section 5.6 the goodness of fit of the
model criterion and hypothesis testing is discussed. The final section contains practical

applications.

5.2 The likelihood function

Suppose a random sample is drawn from a hierarchically structured population with
two levels. Let M indicate the number of level two units in the sample and suppose
there are n; level one units drawn from the i-th level two unit. All together there are

M
therefore N = Y n; observations in the sample.

=1
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Now suppose that each observation is a p-variate random vector. Denote the M level

two units by the pn; x 1 vectors

Yin,

It is now assumed that these vectors of observations can be described by the two-level

factor analysis model defined in Section 4.3. This model states that

Vi =Jn, @m; + (I, ® Ay)dy i + ey (5.1)

where

m;, = g+ Axd;; + ey

and it is assumed that d,; ~ N(0,®,), e;; ~ N(0,I,, ® Dy), d;; ~ N(0,®,) and
e;; ~ N(0,D,) and that they all are mutually independent.

From the assumptions above, it follows that

Yi~ NG, ® 0, W), 1=12,...,M

where g is a p x 1 vector of population means and W; is the pn; X pn; population

covariance matrix of y; and which is assumed to have the structure indicated by (4.3).

The density function of y; can now be written as
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F(yo) = (2m) B Wil hexp { St [WI 1G] | (5.2)
where

G, = (Yi _jn; &® I-l«) (Yi _jn; ® I‘l‘)l

= Iy I‘i

say, where the symbol r is chosen to indicate residuals. The likelihood function of y;

(1=1,2,...,M) is given by

and the natural logarithm of this function follows as

¢ L——lf{ n(27) + en|Wi| + tr [W'Gi] } (5.3)
nl = 21.=1pn,n7r i i it .

To obtain the maximum likelihood estimators of the parameters in this model, énL has

to be maximised with respect to the parameters, or equivalently, minimisation of

F(y) = —¢nL

will yield the parameter estimators.

Note that here, as was the case in MML estimation, we shall also take ®, = U, U] and

®, = U,U), where the U, matrices are lower triangular.
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5.3 The gradient vector

In this section expressions are derived for the gradient vector of the function F' () which

will be minimised by means of the Fisher scoring method.

The unknown parameters in the model to be estimated are the elements of g, Ay, Uy,
D,, A;, U, and D,. Let the g x 1 vector containing all these parameters be denoted by

~ where

( g ~H
vec(A,) A
vecs(Uy) U1

v=| diag(D,) | = P,
vec(As) A2
vecs(U,) ~U2

\ diag(D:) ~P

and q= p(Tl + T2 + 3) + 7‘1(7‘1 + 1)/2 + 7‘2(7‘2 + 1)/2

The gradient of a general discrepancy function under normality assumptions has already
been defined in Chapter 3 (cf. (3.26)). For the discrepancy function F(+) which has
been derived in the previous section, the expression for a typical element of the gradient

vector is now given by

sl = - 5 {utw B0y Luwoia - wown ) o

The partitioning of 4 into natural subsets of parameters provides a useful way to par-

tition g(+) accordingly. Consequently g(y) is now written as
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g(v*)
g(v™)
g(v")
g(v) =] gln
g(v*?)
g(v"?)
g(vP?)

D1)

The subvectors of g(«) will be derived using (5.4) by first obtaining expressions for

typical elements of the different subvectors and then generalizing these results.

In advance, note that the inverse of the population covariance matrix, W, 1. plays an
important role in the derivations. It is therefore necessary to use a specific form of W’ !
to obtain the required results. This form of W' has been derived in Section 4.4 and is

given by the expression

W = L, @V —j.i, ®C;

S, —-C; —-C;
-G, S; -C;
= . (5.5)
—-C; -C; S,
where
S; =V -C; (5.6)
and
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C,= VYV +n, VY VIL (5.7)

In addition, to simplify expressions in later derivations, define

Sng = Vl_l - n,-C,-. (58)

The following two propositions provide identities which will be extensively used in de-

riving the gradient vector.
Proposition 5.1

The n; submatrices, each of the order p x p, on the main diagonal of the pn; X pn;

partitioned matrix

WG, - W)W (I, ®T)

where Y is a p X p matrix, are the matrices

(Wiuwh —S)Y, (Wiwl, —S)HY, ... , (Win,wi, —S;)Y

ing

where w;; is the j-th p x 1 subvector of W} 'r;.

Proof

Write

W HG - W)W = Wilrriw; ! - Wt
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where

Consequently we obtain

W (G- W)Wt

Note that

and post-multiplication of (5.9) with the above proves the proposition.

w;, = W/ lr; =

K

/
WiaiW,

/
Win, W1

/
Wi Wi —S;

/
w‘ingwil + Ci

I'n,'®T:
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Proposition 5.2

The n; submatrices, each of the order p x p, on the main diagonal of the pn; x pn;

partitioned matrix
WG = W)W iy, ® T)
where Y is a p X p matrix, are the matrices
(:; waw; —S,.)Y, (j; wowi — S0, .., (;;1 Win, Wi —S,)Y

where w;; is the j-th p X 1 subvector of W 'r;.

Proof
Note that
Y ... T
jn.’j-,n‘- KX Y =
Y ... Y
and post-multiplication of (5.9) with the above proves the proposition. a

The following five propositions provide expressions for the gradient vector of F(=).

Proposition 5.3

The gradient of F(4) with respect to the elements of p is given by the p x 1 vector
defined as
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M n;

g(vH) = -3 wi;. (5.10)

1=1j3=1
Proof

A typical element of g(yH), say the s-th element, can be written as

Ojn; ® I":|

M
My, = =D tr|riw;!
(&(v) > [ =

= S Wi, @ 3] (511

=1

where w; has been defined in the proof of Proposition 5.1.

Note that
Jsl
. Jsl
.]n,* ® Jsl -
Jsl
and if the partitioning of w; into its n; subvectors w;; (j = 1,2,...,n;) is used it follows
that

1=1

M ny
[g(v")]s == -3 tr[kZ_: wiJal.

However, if we use the fact that tr(a’J,;) = a,, where a; is the s-th element of the vector

a, then we can write
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i=1 k=1

M n;
r#)) = |- 3235w
for a typical element of g(4#), and consequently the proposition is proved. a

Proposition 5.4

The gradient of F'(«y) with respect to the elements of A; is given by the pr; x 1 vector
defined as

g(7™M) = — ZZvec{[WU — Si]A @1} (5.12)

i=1j5=1

Proof

First we derive an expression for a typical element of g(‘yAl), say with respect to [Aq]ze.
Now assume that the (k,£)-th position in A corresponds to the s-th position in vec(A; ).
Then it follows that

OW;
O[A1)ke

(™)) = —%;tr I:W;l(Gi—Wi)Wi—l

tr [Wi‘l(Gi - WHW (L, ® (A1 @y + Jkl‘I'lAi))}

...
1]
—

fl
!
N =

and since tr[AB] = tr[A'B/], it follows that

g(v*)) = Ztr[W'l(G WIW (I, @ Ar@130)].

1=1

Using Proposition 5.1, the expression for the gradient with respect to the s-th element
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in vec(A;) becomes

M n;
g(v*), = - Ztr Z[Wz‘jwfj —5,]A:1 @14

However, taking the construction of J4 into account, the above expression can equiva-

lently be written as

[ M
(™) = -] ~ [wiwl, — S A2,

k£

= - vec{zi[w” S]A1<I’1}

i=1 j5=1

S
and consequently the proposition is proved. .
Proposition 5.5

The gradient of F'(«y) with respect to the elements of U, is given by the ry(r; +1)/2x 1

vector defined as

M n;

gy = - DD vec {A’l [wiwi; — S,-]AlUl} . (5.13)

=1 j5=1
Proof

First we derive an expression for a typical element of g(yY!), say with respect to
[Ui]ke. Now assume that the (k,£)-th position in U; corresponds to the s-th position
in vecs(U;). Then it follows that
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oW,
O[U1)ke

[s(+V), = —%Z)tr [Wfl(Gi—Wi)Wi’l

1 M 7 A !
5 > tr [W{l(Gi - W))W (L, ® (A U JA] + AlezU1A1))] :

=1

Using Proposition 5.1, the expression for the gradient now becomes

g

1 M
g(v")], = ~3 dotr [E[Wz‘jwﬁj — Si](A1Jk Ui AL + A U JiAY)
1=1

J=1

iy

M
= =) tr [Z (A;(Wingj - Si)AlUlJlk)
i=1

i=1

However, taking the construction of Jy into account, the above expression can equiva-

lently be written as

(M n;
Y9, = - |3 A [WijW:'j - Si] AUy
_i:l 7=1 )
[ M n
= — |vec E EA'I [WijW:]' - S;]A Uy
L =1 j=1 s
and consequently the proposition is proved. o

Proposition 5.6

The gradient of F'(4) with respect to the elements of D, is given by the p x 1 vector
defined by the expression
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Dl):

g(~v diag {w,] Si} . (5.14)

|
Mz
M#

..
1]
—

.
1]
—

Proof

Consider a typical element of D, say the s-th diagonal element. From (5.4) it follows
that

[g(v>)l; ——*th[ TG - WyHw ! oW ]

a[DI]ss

and using the special partitioning of W; to obtain the derivative, we have

g(+P1)], = _% z_: tr [Wfl(Gi — W)W (I, ® Jss)] :

From Proposition 5.1, it follows that

[g(‘YDl )]3 = T4 Ztr I:Z(wu - 5; )Jss]

- - [Z S(wigw — s,-)]

=1 j=1
and consequently the proposition is proved. a
Proposition 5.7

The gradient of F'(+) with respect to the elements of A, is given by the pry, x 1 vector
defined by the expression
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M n; i
g('yA2) = — Z Z vec{ [Z Wi]'lng — S, Ag@g} ) (5.15)
i=15/=1 j=1

Proof

First consider a typical element of g(42), say with respect to [A3]xe, where it is assumed
that the (k,#)-th position in A, corresponds to the s-th position in vec(A;). It then
follows from (5.4) that

1M OW;
A -1 -1 1
D), = —=3 tr |[W7Y(G; — W)W;
s = = s [WrG - wow? g
1 M 1 . o/ ’
= 5 2t [Wi(Gi - WoWi ' (judh, ® (As@2du + Jue®:A)))]
i=1

and again using tr[AB] = tr[A’B’], it follows that
M
[B(Y*))s = =Y tr [WiH(Gs = WOW? (g, ® A2®adsi)] -
i=1

The use of Proposition 5.2 yields

[8(v*)), = —Ztr !i (i Wi Wi — Sn,-) A2®yJdu

[ M ni [
= — vecZ Z (Z Wij'ij - Sn.‘) A @,

1=1j'=1 \j=1

and therefore the proposition is proved. O
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Proposition 5.8

The gradient of F'(«) with respect to the elements of Uy, is given by the ry(r, +1)/2 x 1

vector defined by the expression

Z Wi W J AgUg} ) (5.16)

g(‘)’U2) = Z i vec {A'

=] j/=

Proof

First consider a typical element of g(vY#), say with respect to [U,], where it is assumed
that the (k, £)-th position in U, corresponds to the s-th position in vecs(U,). It then
follows from (5.4) that

M R
[8(vY2)], = —égtr [W:l(Gi—Wi)er ow. ]

O[Usz)ke

1 il !/ ! /!
= 5 2t [Wil(Gi— W)W (judl, ® (A:UnJ Ay + AzJUAY))] .
i=1

The use of Proposition 5.2 yields

1 M ng ng
[s("2), = —§Ztr > (Z Wi Wi — ) (A2U2J Ay + Ay J i UjAL )}
i=1 3'=1 \y=1
M

A, Z (Z Wi Wi — Sn.») A2U2Jlk}

M n;
= — (Z Z (Z W”IW ) A.2U2
[i=1j/=1 ")
M ng
= - vecz Z A, (Z WUIW ) A.2U2
=1 j'=1 s
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and therefore the proposition is proved. O
Proposition 5.9

The gradient of F(+) with respect to the elements of D, is given by the p x 1 vector
defined as

g(v"?) =

M n i
>3 diag {E Wik Wi, — Sn,‘} : (5.17)

=1 k=1 j=1

DN —

Proof

An expression for the gradient with respect to the s-th diagonal element of D; follows

from (5.4) as

1M OW.
D, —_ _ = .—1 . . '—l ¢
[g(v ) = 2;& [W, (G; — W))W, 6[D2]“]
1 M
= —5 2 tr [Wi(Gi - W)W (o ® J..)] -
=1

From Proposition 5.2, it follows that

1 M n; ng
[g(+P%)], = —Eztr [ (E Wi W Sn.) Jss]
=1 [k=1 \j=1
1 M n; ng
= 1S3 (Swawy -,
i=1 k=1 \j=1
and consequently the proposition is proved. O
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By combining the results of the previous five propositions, a general expression for the

gradient of F'(y) with respect to the full parameter vector 4 can now be given:

Wi
VeC{(WijWi»j — S,')AIQI}
VeC{All(WijW:j — S,')AIUI}

M n %diag{w,-jwfj —S:}

g =-22 : (5.18)

i=1j3=1 .
vec {(Zwikwﬁ-j - Sn;)A2Q2}
k=1
vec {A;(Zwikng - Sm)AzUz}
k=1
1diag {(Zwikwﬁj — Sni)}
k=1
The vectors w;; (1 =1,2,...,M; j =1,2,...,n;) play a prominent role in determining

the gradient vector since they appear in every subvector of the gradient. An expression
which may be used in calculating these vectors in practical applications will now be

provided.

Recall from the proof of Proposition 5.1 that w;; is the j-th p x 1 subvector of the pn; x 1

partitioned vector w; = W 'r;. Making use of (5.5) and if we write



where each r;; is the p x 1 subvector of residuals defined by

i; =Yij — H,
1t follows that
ra
Sz _Ci
Wi_ll't _ | )
-C; .- S,
Tin;

n
—1
Viry— kE Ciri
=1

Ty
-1
Viri,— kE Ciri
=1

ny
Vilri,, — ¥ Ciri
k=1
Consequently w;; may be computed using
iy
W,']' = V;lri]‘ - C,‘ Z rL.
k=1

Having obtained expressions for the different subvectors of the gradient g(v) of F(v),
we shall now derive expressions for the different submatrices of the approximate Hessian

matrix, H(«y).

5.4 The expected Hessian matrix

In this section expressions are derived to obtain the elements of the expected Hessian

matrix of F(«). An expression for a typical element of the expected Hessian matrix of
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a general discrepancy function under normality assumptions was given in Chapter 3 (cf.
expression (3.27)). For the discrepancy function F(v) which was derived in Section 5.2,

it now follows that a typical element of the expected Hessian matrix is given by

il Oin: ® )1 0 ®ul [ oW, aw}}
H = E t e wol=n —tr |[W:1 ‘Wit : . (.19
7 lie = { ' [ Ok B 7 T3 YOt O (5:19)

Using the specific partitioning of the parameter vector 4, it is convenient to write H(~)

as
Hpyp
0 Hp A,
0 Huy, Huyu,
H(v) = 0 Hp,a, Hp,u, Hp,p,
0  Ha,a, Hp,u, Ha,p, Ha,a,
0 Hy,a, Hy,u, Huy,p, Hu,a, Hu,u,
0 Hp,a, Hp,u, Hp,p, Hp,s, Hp,u, Hp,D,
where

Hypy=H (‘Y”,(‘Y”)’) ;

Hp,a, = H(v™, (v*)),
HUlAl _H( Ul Al))’
and similarly for the other submatrices of H(~).

Before we proceed to derive expressions for the elements of the expected Hessian matrix,
it is necessary to simplify specific matrix expressions to be used in these derivations.

Let X and I be two p X p matrices.
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Proposition 5.10

The n; submatrices, each of the order p x p, on the main diagonal of the pn; X pn;

partitioned matrix

WL, @ )W (T, ®T)

are identical and have the form

S,-‘I‘S,-P + (TL,' — 1)C,TC,P

Proof

Note that

;Y -C,Y --- -C;Y
~C,Y SY - -CY

WL, Q)= . T _ (5.20)
~C,Y -GY - ST

and similarly for W7 (I,, ® I'). Multiplication of these two pn; X pn; matrices will yield

the required result. o
Proposition 5.11

The n; submatrices, each of the order p x p, on the main diagonal of the pn; x pn;
partitioned matrix

Wi (Gnidn, ® Y)W (jojn, @ T)

are identical and have the form

n,-Sn','I‘Sn‘.P.
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Proof

Note that

S;Y¥ —(n; —1)C;Y --- S, —(n; —1)C,Y
Wi (Gndn, ®X) = : ' :
S, ¥ —(n; — 1)C;X -+ S, X —(n; —1)C, Y
S, Y -+ S, T
= ST (5.21)
S, Y - S, Y

and similarly for W;'(j,j,. ® T'). Multiplication of these two pn; x pn; matrices will
yield the required result. O

Proposition 5.12

The n; submatrices, each of order p X p, on the main diagonal of the pn; x pn; partitioned
matrix

Wi (Gnidn, @ TIW YT, QT)

are identical and have the form

S, YS,.T.

Proof

Multiplication of the two pn; x pn; matrices of the forms provided in expressions (5.20)

and (5.21) in the previous two propositions, will yield the required result. a

The simplified forms of some important matrix expressions which are given by Propo-

sitions 5.10, 5.11 and 5.12 will now be particularly helpful in obtaining expressions for
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the elements of the expected Hessian matrix. Use will also be made of the results
tr[AB] = tr[A'B’],

tr [AJ,'J'BJ,-S] = tr[JijBJTSA] = [A]si [B]jr
(see Browne (1991)), and

[A];;[B],s = [A ® Bl

see e.g. Magnus and Neudecker (1988)).
g g

Proposition 5.13

The (k,£)-th element of H(vH#,(4#)’) is given by the expression

([, [7#],) = Sl

(5.22)
Proof

Equation (5.19) may be used to write

H([vH)i, [v*],) .

O(in: ® 1Y _1ajn.-®"]
= Y tr - W:
=1 [

: Ok Opie

M
S b0 (G ® T ) Wi (i, ® Tir)]
=1

and using the special construction of the J-matrices and the partitioning of W' , the
above result simplifies to

M
H([vH)i, [v#]0) = Z:ni[vfl —1;C; ke
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which proves the proposition.

Proposition 5.14

The (u,v)-th element of H(y*1, (4A1)") is given by the expression

M
H([yM] []) = Sn{ (i) @ (VitAi@) - (S, 4181 © (CoAsdy)],

i=1

+[Si® (214, Vi A1 1) — S, ® (<I>1A§C,-A1<I>1)]h,sk} .(5.23)

Proof

Consider a typical element when the derivative is obtained with respect to [A;] and
[Ai]rs. Assume now that the (k,£)-th and (r,s)-th positions in A; correspond to the
u-th and v-th positions in vec(A;) respectively. Then, from (5.19), we have

H (], ],)

1M OW ; OW,;
= =) tr [W]! L wi!t :
22[ COALee a{Aﬂm]

1 M
= St Wi (L, ® (A1 @10 + @A) Wi (L, ® (A1 @13, + T,,81A1))]
1=1

Proposition 5.10 may subsequently be used to simplify this expression further. Conse-

quently it follows that
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1 M
St [Si( A1 T + T B ADS(A1 1T, + T, 81 A))
=1

+(ni — 1)C;(A1®1 I + JkZQIAll)Ci(Al P,J,, + Jrs@lAll)]

M
Znitr [SiA 1Pk S A1 1T, + STk P AS A DT,
i=1

+(TL,‘ - 1)C,’A1@1JsziA1@1Jsr + (TL,' — 1)C,'Jk[@1A’IC,'A1@1Jsr] .

To simplify further, use will be made of the result (see Browne (1991)) tr[AJ;;BJ,,| =
tr [35BI,,A] = [A],[B],,

We then have

H ([7A1] ’ ['YAIL) = %"i {[SiA1®1]2[SiA1 P1]ks + [Silk[®1A1Si A1 By ]2

u

i=1

+(ni — 1)[CiA1B1]re[CiA1®1]ks + (ni — 1)[Ci],4[®1A]C:A1 P15}

in which (5.6) is substituted to obtain

H ([v*]u, [v2].)

M
don {[SiAl‘I’l]rz[(Vfl — C)A1Py s

=1

+(Si]rk[@1A (VT — C)AL @14,

+ (n; = D)[CiA1®1],[CiA1®1]ks + (n; — 1)[Cy],x[®1ACi A1 D105}

M
> i {[SiA1 @] o[V A1 @1k, — [SiA1B1],e[CiA1 By,
=1

+ [Si]k[®1ATVI AL @] rs — [Si]ri[®1 A CiA1 D],
+ (ni = D)[CiA1®1]1¢[CiA1®1]ks + (i — 1)[Ci]ri[®1A]Ci A1 D105}
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M
= Y n {[SiAl'i’l]re[VflAﬁI’l]ks — (V7! = n;C)A1 81 ] [Ci A1 @1 ]
=1

+ [Si1k[B1ATVT A ®y]p, — [Vi! = n.Cilok[@1A5CiA @1 s}

M
= 3o {[S:A181)e[VT A @, Ji, — [S0, A1 1], e[CiA1 By,
i=1

+ [Si]rk[élAllvl_lAlél]ls - [Sng]rk[élAllciAIQI]ls} .

Finally (see e.g. Magnus and Neudecker (1988)) we use [A];;[B],s = [A ® Bl,.; to write

the final result as

kr,sl

M
H ([, [v].) = > { (SiA18:) ® (VA1 @) — (S, A1 1) ® (CiA1 &)

+ [Si &® (Q1AI1V1_1A1@1) — 5., ® (QlAllciAlél )] ‘fTvSk}

which proves the proposition. O
Proposition 5.15

The (u,v)-th element of H(yUt, (4A1)) is given by the expression

H ([v*], . [»™],) (5.24)

n; {[(S,-AlUl) ® (ATVI'AL®)) — (S,,A,Uy) ® (A[CiA1)]

I
.ME

1l
—

kr,st
i

+ [(SiA) ® (ULALVTIA &) — (S, A1) ® (U;A;c,-A@l)}h,sk} . (5.25)
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Proof

Consider a typical element when the derivative is obtained with respect to [Uy]x, and
[A1];s. Assume now that the (k,£)-th position in U; and the (r,s)-th position in A,
correspond to the u-th position in vecs(U; ) and the v-th position in vec(A;) respectively.

Then, from (5.19), we have

H ([, ™))

1M OW,; OW,;
= > tr|[W/! L w;t ‘
22[ AP a[AI]”]

1 M
= EZtr [W:l (In' ® (AlUngkAll + A]Jk[U,IAll)) W:l (In' ® (A]QIJST + JTsQIAll))] .
=1

Proposition 5.10 may subsequently be used to simplify this expression further. Conse-

quently it follows that

1 M
H ([‘7U1]u ; [‘YAl]u) = §thr [Si(A1U1JeA] + ArJpUTAL)Si(A1 21T, + 31,21 A7)
i=1

+(n,~ — 1)C,‘(A1U1JgkA,1 + AlJuU,lAll)C,'(Aléler + Jrs@lA’l)]

M
= Zn,-tr [S,'AIUIJUCA,IS,'AlﬁlJST + SiAlegUllA,IS,'AIQIJ”
=1

+(n; — 1)C;A U J 4 A1C A1 81T,
+(Tl,' — 1)C,'A1Jk1U,1A,IC,'A1@1J3T] .

To simplify further, use will again be made of the result tr [AJ;;BJ,] = tr [J;;BJ,;A] =
[Al,; [B];; .
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We then have

H([Y"] ,[v™]) = S ([S:Ay Ul (AL, Ar @+ [S:Ar] £ [USALS:AL @,
i=1

+(”z’ - 1)[CiA1U1]r£[AllciA1‘1’1]ks
‘|"(TL,' — 1)[C,’A1]Tk[UIIAIIC,'AIQJ[S}

in which (5.6) is substituted to obtain

H([y"]w [v™)) = ini {[SiM UL [AL(VT! = €A1 B4,
;[SiAl]rk[UllAll(Vl—l — C)A1®4]e,
+ (1 = D[CiA UL, AL CiA1 @1 ]ss
+(n; — 1)[CiA1]k[UTALC A1 Py )5 }

M

= > {[S:A UL [AL VI A @i, — [SiA1Un) e[ A CiA @1 1
i=1
+ [SiA1]k[UT ATV A @445 — [S:AL] £ [ULALCi A B1],,

+ (n; — 1)[CiA1 U] [ALC: A1 @1 ks + (i — 1)[CiA]£[UATCiA1 P o6 }

M
= 3 0 {[S:A U [AT VI A1 @1k, — [Sn, AU [ACiA 1),
i=1

+ [SiAl]rk[UllAllvl_lAl‘I’l]zs - [SniAl]rk[UllAllciAl'I’l]zs} .

Finally (see e.g. Magnus and Neudecker (1988)) we use [A];;[B],s = [A ® B),i; to write

the final result as
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M
H ([‘YUl]u, [‘YAl]v) = > { [(SiAlUl) ® (ATVITA18,) — (S, AL UL © (A1CiA @, )] kst
=1

+ [(8iA1) ® (DAL VA1 8:) — (Sn A1) ® (UiASCiAl‘I’l)]h,sk}
which proves the proposition. =
Proposition 5.16

The (u,v)-th element of H(yY:, (V)" is given by the expression

H (], [],)

M
= Sn { (U1A18:A,U1) ® (A Vi Ar) — (UL ALS, AU ® (ALCiAy )]
i=1

kst

+ [(U1A[S;A1) ® (UjAL ViiAy) — (UAL S, A1) ® (U’IA’IC,AI)][S’HC} -(5.26)
Proof
Consider a typical element when the derivative is obtained with respect to [U;]x, and

[Uilrs. Assume now that the (k,£)-th and the (r, s)-th position in U; correspond to the
u-th and the v-th position in vecs(U;) respectively. Then, from (5.19), we have

H (%], [™],)

1M W, AW,
= =) tr|[W;! LWl '
22[ i TAME a[UILJ
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M
= %Ztr (Wi (L, ® (AU TaA] + AT UL AD) Wi (L, @ (AU, AL + A3, USAY))
i=1

Proposition 5.10 may subsequently be used to simplify this expression further. Conse-

quently it follows that

H(™],"],)

1 M
= 5Zn,-tr [Si(A1U1 Ik A + A1 UL A)S(AL U T, AL + AT, ULAY)
i=1

+(Tl,’ - I)Ci(AIUIJ[kAII + AleeUIIAll)Ci(AIUIJ"AII + AIJ.,-SUIIAII)]

M
= > nitr[SiA UrJ A1 A UL T, A) 4 S;A T, U A S; AU T, A
i=1

+(ni — 1)C;A U I A1CiA U I, Al + (n; — 1)CiA1 33 U AL CiAL UL T, AL

To simplify further, use will again be made of the result tr [AJ;;BJ,,] = tr[J;;BJ,,A] =
[A]; [Bl;, -

We then have

H (], [r™],)

M
= Y n; {[UIAISiA1 U o[ASi A ke + [ULASSiA1 ]k [UL AL S Adler
=1

+(TL,' — 1)[U;AllciAIUl]se[AIICiAl]kr + (ni - 1)[U1A101A1]3k[UllAIIC,Al]e-,-}

in which (5.6) is substituted to obtain
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H (7], [v"'],)

M
= Y n: {[ULALSAL U o [AL (V! — C)AY,
=1

+ULAISi Aok [US AL (VT = C)AL e
+ (n: — D[UTAIC AU [ACoA ke + (ni — D[UTAIC Ak [UAC A, e }

M
= Y n {[ULAIS: AL UL [AL VI Al — [ULALSAL U oA, CiAy i
=1

+ [ULAIS: Ak [UT AT VI AL, — [UTALS:AL 4 [UL AL CiA,
+ (ni = D[UTATC A1 Uy [A CiAL i + (i — D[UIATCiA ]k [UTATCiA e }
M
= n; {[U;AllsiAlUl]sl[Allvl—lAl]kr — [UTA1S,; A1 Up ] [ATCi AL e
1

1=

+ [U1AIS ALk [UT AL VT A — [USASS,, ALk [US AL oA b

Finally (see e.g. Magnus and Neudecker (1988)) we use [A];;[B],; = [A ® B],.,; to write

the final result as

M
H( Y9 0%h) = 3 om {[(UIA18:A101) @ (A1V72AL) — (U} A18,,A1Uy)  (A1CiA)],,

i=1

+ [(U1A1S:A1) ® (U{ALVIIAL) — (UJA[Sn A1) ® (UllAiCiAl)]h’,.k}

which proves the proposition. O
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Proposition 5.17

The (u,v)-th element of H(yP:, (4A1)) is given by

n; {[V;l ® (SiA1®,) — C; ® (SniAlél)]ur’su} . (5.27)

M=

H([y™],. [],) =

..
Il
—

Proof

The (u, v)-th element of H(4P?, (421Y') is obtained as the expected second order partial
derivative of F(v) with respect to [Di]y, and [A;],,. Use is made of (5.19) to write

M oW, oW,
tr |W1 WSl
ig; ' l: ' a[Dll‘uu ' a[Allrs

N =

H([v™], b™],) =

tr (Wi (L ® 3.)Wi (L, ® (A1, +3,,8,A0))]

1

Il
N =
.FﬂE

i
L

This expression may further be simplified using Proposition 5.10 and hence may be

written as

H([v) L [r4]) = 2 S rntlSduSi(Asdid, +3,8,A0)

[\Dlr—l

=1

+(n; —1)C;3,,Ci(A,®,3,, + J,,8,A))]

M
= Znitr [SiJuuSiAIQIJsr + (ni - 1)CiJuuCiA-1@1Jsr]

i=1

Using the result tr[AJ;;BJ,,] = [A];[B];, and (5.6), it follows that
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n{[Vi' - Ci| [S:A1®4],, + (ni — 1) [C,, [C:A14],, }

M=

H([y>],.["],) =

-
Il
—-

n{ [Vi7] [Sidi®4],, — [Cil,, [(VT! = niC)A ]}

Il
Mk

.
1]
-

n; { [Vl_l ®(S:A®1)-Ci® (S"iAlq)l)] }

ur,su

..
1l
A

|
Mz

where we used [A];;[B],; = [A ® B|,;;; to obtain the final expression, which proves the

proposition. O
Proposition 5.18
The (u,v)-th element of H(4P, (4Y1)") is given by
D U ul
H ([7 l]u , [,.), 1]v) = Z n; { [(UIIAIIS,) & (Vl_lAl) - (U;A;Sn;) ® (CzAl)} us Tu} .
1=1 ’
(5.28)

Proof

Suppose the (7, s)-th element of U; corresponds to the v-th element of vecs(U;). The
(u,v)-th element of H(4P1, (4Y1)") is then obtained as the expected second order partial
derivative of F(«) with respect to [D],, and [Uy],,. Use is made of (5.19) to write

i oW, oW,
tr [W:1 * wl :
; ' l: ' a[Dl]‘u‘u ) a[-U-l]rs

H (™), [v"],) =

N =

tr (Wi (L, ® Ju) W' (L, ® (A3, USAS + A ULT,AD)]

f
N —

-
Il
—-
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This expression may further be simplified using Proposition 5.10 and hence may be

written as

H([*yD][*yU]) - 1% #r[S: 300 Si( AT, ULA, + A ULT, AL

[\

( )CiJuuCi(AlJrsUllAll + AlUlerAll)]

M
= Z TL,'tI‘ [S,‘JuuSiAlUlerAll + (TL,’ - 1)CiJuuC,’A1U1JSTA,1]

i=1

Using the result tr[AJ;;BJ,;] = [A],;[B];» and (5.6), it follows that

M
= Y mi{[UiA18],, [SiAdl,, + (i — 1) [UAL G, [CiAd],, )
i=1

M
= Y m {[U1A18i,, [Vi'Al],, — [U1A[Si],, [CiAdl,, + (n: — D) [USALC,, [CiAd], )

i=1

M
= Y m{[UiA18d,, [V, — [UIAL(VT! =€), [CiAdl,, + (ni — 1) [UJALCI,,, [CiA L], }
i=1

M
= Y ni {[UjA1Si],, [VT'A1],, — [ULA[SA],, [CiAdl,, }

i=1
M

= Yo {[(ULA1S) @ (VIiAL) - (UIALS,) © (CiAL)], 0 )
i=1

where we used [A];;[B],s = [A ® B],;,; to obtain the final expression, which proves the

proposition. =
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Proposition 5.19

The (u,v)-th element of H(~P?, (4P1)) is given by

ni {[8:%, + (ni = 1)[C, } - (5.29)

N =

..
Il
—

H([y™],. /™)) =

Proof
It follows from (5.19) that the (u,v)-th element of H(4P*,(4P1)’) can be written and

simplified as

1M OW. oW,
D, D, P — W ~1 —W . l
H ([’7 ]ua [7 ]‘U) - 2 ; tr [ ' a[Dl]uu : a[Dl]uv]

M
= % St [Wi (I, ® 3,,) Wi (L, ® 3.)]
=1

and, using Proposition 5.10, it further follows that

nitr [SiJuwSiJuy + (ni — 1)C;J 0 CiJ o)

-
1l
—

N —
Mz

H ([vP4],,[4P1].) =

N

n; {[Sil,, [Sily, + (ni — 1)[Cilou[Cilus}

N | =

-
it
fa

which proves the proposition.
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Proposition 5.20

The (u,v)-th element of H(vA2, (1)) is given by

H([v%] ,[v™]) = ﬁn {((50,A222) ® (S, A1), o0 + [Sn; @ (22415, A1 1), 01}
= (5.30)

Proof
Suppose the (k, £)-th element of A, corresponds to the u-th element of vec(A;) and the

(r,s)-th element of A, corresponds to the v-th element of vec(A;). Then, using (5.19),
the (u,v)-th element of H(~v42, (421Y) can be written as

H (%], b))

Il
N | =
i<

tr [W.'l OW: o1 OW ]

O[A2lke ' O[Ai]rs

tr (Wi (udh, ® (Aa®@2uk + Tu®2A%)) Wi (L, @ (A1813,, +3,,8,A)))] .

..
Il
-

il
N =

Using Proposition 5.12, it follows that

TL,'tI‘ [Sn,-(A2¢2Jlk + Jkl@2Alz)Sn,'(AlQ1Jsr + Jrs@lA;)]

N =
Mz

H([y*],.["],) =

-
I
A

1 M
= é’ Enitr [Sn,‘A2@2JlkSn,'A1@1Js'r + Sn,‘Jkl@2Alzsn,'Al@1Jsr
=1

+ Sn,'A2@2JlkSn,‘Jsr@1AI1 + Sn,'Jkl@2A{_)Sn,‘J'rs¢lAll]
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M
= Z n,-tr [Sn,'A2Q2JZkSn,-A1@1Jsr + Sn;JkZQZAIQSngAIQIJsT]

i=1

M
- Zni {[Sn,—AZQZ]rl[Sn,'AIQI]ks + [Sn;]rk[Q2Alzsn.‘A1@1]18}

i=1

M
- Z n; {[(Sn,A2¢2) ® (SH;AIQI)]kr,sZ + [Sn, ® (QZAlzsn.‘Alﬁl)]lTySk}
i=1

which proves the proposition. o
Proposition 5.21

The (u,v)-th element of H(~A2, (4Y1)") is given by

M
H (['YAZ],, J ['YUI],,) = Z”i {[(UllAllsn;‘AZQZ) ® (SmAl)]ks,re +[(U1A18.) ® ('I)ZAIZS""AI)]“W’C
i=1
(5.31)

Proof
Suppose the (k, £)-th element of A, corresponds to the u-th element of vec(A;) and the

(r,5)-th element of U, corresponds to the v-th element of vecs(U;). Then, using (5.19),
the (u,v)-th element of H(~4A2, (4Y1)’) can be written as

H (v, ™))

1M OW,; OW.
= - t W.—l ! W._l !
32 [ C A a[Ul],s]

Il
N =

s
1l
o

tr (Wit (Jndl, ® (A2@2dek + 310@2A%)) Wit (L, ® (A UL, AL + AT, USAL)]
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Using Proposition 5.12, it follows that

M
= Z n,»tr [Sn'-AzézJ[kSmAlUlerAll + Sn,.Jkg@zA;Sn,.AlUlerA'l]

i=1

M
= E n; {[UllAllsn,‘AZQZ]sl[Sn.‘Al]kr + [UllAllsn,']sk[QZAlzsn.‘Al]l’r}

i=1
M
= Z n; {[(UllAllsm‘ A2(I)2) ® (Sn.‘AI)]ks,rl + [(UllAllsn.') ® (¢2AIZSMA1 )]lwk}

i=1

which proves the proposition. O
Proposition 5.22

The (u,v)-th element of H(y42, (421" is given by

H ([‘YAz] ’ [‘YDI] ) an [(SniA2®2) ® Sniliy e - (5.32)

“ =1

Proof

Let us consider the submatrix H(~A2, (4P1)") of H(~). Suppose the (k,£)-th element of
A; corresponds to the u-th element of vec(A;). The (u,v)-th element of the submatrix

can now be written as (see (5.19))

1M . OW; | OW;
B ™) = 32 [W Sasle " D,

172



M
S tr (Wit (jud, ® (As®oTes + Jee®2A5)) Wit (L, @ o)
i=1

N —

and using Proposition 5.12, this simplifies to

H (['Ym]u ’ [7D1]v) - %f: ntT [Sp (Ae®oT ek + Jie®2A5)S0, T o)

i=1

M
= Z nitr [Sn'-AzélekSvav]

i=1

M
= Z n; [SmAzéz]vg [Sn.']kv

=1

M
= Z n; [(SniAZQZ) X Sni]kv,vf

=1

which proves the proposition. g
Proposition 5.23

The (u,v)-th element of H(v42,(yA2)') is given by

H ([7A2]u, [7A2]v) - %nf {[(Sn,‘A2Q2) ® (Sn.‘AZQ?)]kT,sl +[Sn: ® (Q2AI28"~‘A2Q2)]h,sk} :
= (5.33)

Proof

Consider the (u,v)-th element of the submatrix H(~A2,(4%2)") where the u-th and v-th
elements of vec(A;) correspond to the (k,£)-th and (r, s)-th elements of A, respectively.
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Consequently (5.19) can be used to write

H (][]

Il
N —
.ME

oW, IW,;
tr W1 Wl :
[ C ALk a[Azlm]

=1

tr (Wi (indh, ® (A2@2ds + 31e@:A)) Wi (3o o @ (A®2d,, + 3,.8:A5))] .

s
Il
—

Il
N[ —
.ME

From Proposition 5.11 it follows that the above equation may be simplified further, so

that

H ([71\2]“7 [,YAz]v) - %%n?tr [Sm(Azq’szk + sz@zA;)Sni(qu)str + Jrsq)zAlz)]

i=1

M
= DR [Su Ar®aT S, AsBod.s + S, Ar2T S, J, o B2
i=1

+ S5 e ®2ALS, A ®2T,, + S, T P2ALS,, T, PyA))

M
= Zn?tr [SniA2®2J S, Ay @2, + S, @2 ALS, A ®,T,,]

=1
M
= Zn? {[Sn,‘AZQZ]rl[Sn,‘A2@2]ks + [Sni]rk[@2A,28n,‘A2@2]ls}

1=1

M
= y.n! {[(Sn;Az‘pz) ® (Sn,A2®3)]krse + [Sn; ® (@2A;S”iA2@2)]£r,sk}

1=1

which proves the proposition. U
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Proposition 5.24

The (u,v)-th element of H(yYz, (vA1)") is given by

H ([197], [r].) = 5o {80 A0) 8 (U458, Ar 1)l + [(SusAsUs) © (A5, Anr e
=1

(5.34)

Proof
Suppose the (k,£)-th element of U, corresponds to the u-th element of vecs(U,) and the

(r,s)-th element of A; corresponds to the v-th element of vec(A;). Then, using (5.19),
the (u,v)-th element of H(vYz, (4A1)’) can be written as

H(y™],. ™)

il
N =
.Mg

oW oW,
tr |[W;! —W ]
r[ © Ukt O[Arls

1

1

..
il
[

Il
N =
.Mg

Using Proposition 5.12, it follows that

H([v%],, ™))

Il
N =
Mz

Il
[

nitr [Sn, (A Usd e Ag + A J U AL)S, (A1 81T, + J,,8,A))]

1

M
= D nitr[S, AU I ALS, A8, T, + S, AT ULALS, A&, J.,]

=1
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M
== Zni {[Sn,‘A2U2]rl[A,28n¢A1Q1]ks + [Sn,'AZ]'rk[U;A;SniAlél]fS}

=1

M
= S ni{[(SnA2U2) ® (A4Sn A1®1)krse + [(SniAz) ® (U5A;Sn Ay ®y)]er sk}

=1

which proves the proposition. o
Proposition 5.25

The (u,v)-th element of H(vYz,(4Y1)") is given by

u

M
H([y%],,[],) = Lni{(UA1S.A) © (U3ALS, A,
i=1

+[(U} A, S AsU3) ® (AbSn,A)]kore ) - (5.35)

Proof

Suppose the (k,£)-th element of U, corresponds to the u-th element of vecs(Uz) and
the (r, s)-th element of U; corresponds to the v-th element of vecs(U;). Then, using
(5.19), the (u,v)-th element of H(yV2,(4Y*)) can be written as

M
1 oW, OW;
= —§ tr (W1 P Wl t ]
2 r[ i B[Uske ¢ O[Utlrs

M
1 .. -
= 52 tr (W (jnudn, © (A2U2Jae AL + A2JeeUpA%)) Wit (I, @ (A1 UL AL + A1, ULAD))]
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Using Proposition 5.12, it follows that

H([v"],.[r™],)

M
> nitr [Sn (A2UsJ A} + Ay T4 ULAL)S, (AU T, AL + Ay T, UL AL)]
=1

N =

M
= D mtr[Sn Ay UsJnA}S, AU T, A + S, Ay J i ULALS, A ULT, Al

1=1

M
= Z n; {[UllAllSn,-A2U2]s£[Alzsn,'Al]kr + [UllAllsn,AZJSk[U;A;SnsAl]ZT}

i=1

M
= Z n; {[(UllAll Sn.'A2U2) & (A;Sn,*Al)}ks,rf + [(U‘ILAQ Sn,'AZ) X (U;A;SniAI)]fs,rk}

i=1

which proves the proposition. o
Proposition 5.26

The (u,v)-th element of H(4V2, (4P1Y) is given by

H ([7U2]u , [‘yD‘]U) = ini [(Sﬁ;A2U2) ® (A25n)]ky e - (5.36)
Proof

Let us consider the submatrix H(yY2, (vP1Y) of H(v). Suppose the (k,£)-th element of
U; corresponds to the u-th element of vecs(U,). The (u,v)-th element of the submatrix

can now be written as (see (5.19))
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(b7, b7 - SEaE

M
tr [W:! w!
§ r[ " OUglke * O[D1luy

N =

tr (W7 (jndl, ® (AsUsduAl + AgdiiUpAY)) Wi (L, @ 3.,)]

Il
N =
.b1g

-
1l
—_

and using Proposition 5.12, this simplifies to

H ([7U2]u , [‘)’Dl]u) = % f: nitt Sy, (AU J e Al + ApJ U3AL)S,, Joy]

i=1

M
= 3 nitr[S,,A2UsJ ;4 ALS, 0]

i=1

M
= Z n; [Snz‘AzU?]ul [A;S’"i]ku

i=1

M
= Y n;[(SnAU2) ® (Alzsn.')]ku,uz

i=1

which proves the proposition. s
Proposition 5.27

The (u,v)-th element of H(~Yz, (‘yA?)’) is given by

H ([‘YUz]u, [‘YAz]v) = i”? {[(SniAZ) ® (U3A38,,A2®5)],, 1 + [(Sn;A2U2) ® (A,ZSno‘A2@2)]kr,sl}
= (5.37)
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Proof

Consider the (u,v)-th element of the submatrix H(yY2, (4A2)") where the u-th element
of vecs(U;) corresponds to the (k,£)-th element of U, and the v-th element of A,

corresponds to the (r, s)-th elements of A;. Consequently (5.19) can be used to write

H (7], [*])

N | —

M oW, oW, }
tr [W:1 Wl :
; ' [ ' a[Uz]kf ' a[1\2]7'3

N

tr [Wi (il ® (A2UadeeA) + ApdieUpAL)) Wit (il ® (Ar@ader + 3,,82A1)) |
1

N —

-
1l

From Proposition 5.11 it follows that the above equation may be simplified further, so

that

H([+%],, [r*],)

M
- %Zn?tr (S0, (A2 UsJueAL + AgTeeULAL)S, (Ag®, T, + ,,8,A%)]

=1

M
= antr [SniAzUzJ[kAlzsn,—Azéstr + Sn,ﬂAkagU,zAlzsniAzéstr]

=1

M
= > nZ{[Sn A2k [UsALS Ag®o)ss + [Sn; A2 Uz [ALS Ay ®s)is }

=1

M
= Zn? {[(Sn.’AZ) & (UIZAIZSn,‘AZ'I,2)]lr,sk + [(Sn,'A?U?) &® (AIZSMAZ'I,Z)]kr,sZ}

i=1

which proves the proposition. =
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Proposition 5.28

The (u,v)-th element of H(~vV2, (4Y2)") is given by

M
H (7% (7)) = Yon?{{(U;A;8,,4,U5) ® (A38,,A)];, 0
=1

+[(U4A380,A2) ® (UA3S0, Ay, i - (5.38)

Proof

Consider the (u,v)-th element of the submatrix H(yY2, (vY2)") where the u-th and v-th
element of vecs(Uj) respectively correspond to the (k,£)-th and (r, s)-th elements of
U,. Consequently (5.19) can be used to write

M
1 OW; OW;
= - ) tr|W;t W ! }
7 2 r[ 8Tz ¢ 00l

M
1 . 1 s
= 52 tr[Wih (Gndh, © (AUdeeA) + ApJkeUpAL)) Wit (in,h, ® (A2U2d,r A + AzJ,, UpAY))]

From Proposition 5.11 it follows that the above equation may be simplified further, so

that

H([v%],.["],)

1 M
= EZn?tr [Sni(AngJ[kAlz + Aka{U;A;)Sni(AgUzJSTA; + AgJTSU;A;)]

i=1
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M
= 3 nltr[Sn A UsJ i ALS, AU, AL + S, Ay J i ULALS, A ULT, Al

i=1

M
= Zn? {[U;A;Sn.‘A2U2]sl-’[Alzsn.'A2]kr + [U;AlzsniAZ]sk[U;A;SniAﬂh}

1=1

M
= 2 oni{[(U5A38,,82U2) ® (AjSn Ag)lksre + [(UpA]S 0, As) ® (U ALSniAs), i}

=1
which proves the proposition. O
Proposition 5.29

The (u,v)-th element of H(yPz, (4A1)") is given by

H ([VDz] ’ [VA‘]U) = f:n [Sr; ® (S A1P1)],; 40 - (5.39)

u

Proof

Assume that the (r,s)-th element of A, corresponds to the v-th element of vec(A;).
Then, according to (5.19), we have the (u, v)-th element of H(~P?, (4A1)") given by

1M _ aW, - aw’
H (™), [v™]) = EZ}“ [W" R 1('3[1\1]wl

= -i;f)tr (Wi (Jndl ® Jus) Wi (L, © (A1@13,, + 3,,@1A1))]
=1

which simplifies further, using Proposition 5.12, to
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H ([.YDz]u’ [,YAI]U) = %%nitr [Sn,JuuSn, (A1 @1, + J. @A)

i=1

M
prsad antr [SniJuuSn,‘AIQIJST]

i=1

M
= Zni [Sn,-]ru [Sn,-Al @l]us

=1

M
= Zni[sn,' & (Sn;AIQI)]uT,su

1=1
which proves the proposition. O
Proposition 5.30

The (u,v)-th element of H(4P?,(4Y1)) is given by

B ([72] L %)) = D [(U4ALS0, © (SnAn e (5.40)

i=1

Proof

Assume that the (r,s)-th element of U, corresponds to the v-th element of vecs(Uy).
Then, according to (5.19), we have the (u,v)-th element of H(yP?, (V1Y) given by

1M 1 OW, 1 W,
([P, [0 = S W gmn W F o

1 v ! !
= str (Wi (§ndl; ® Juu) Wi (T, @ (A ULT o AG + A1 USAY)]

=1

which simplifies further, using Proposition 5.12, to
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H([.YDz]u’[,YUx]v) _ %%nitr[SmeSm(AlUle,A’l+A1J”U’1A’1)]

i=1

M
= Enitr [Sn‘.JuuSn,—AlUl JsrAll]

i=1

M
= Eni [UllAllsn,']su [Sn,' Al]ur

i=1

M
= En,[(U'lA'ISn,) &® (Sn,‘Al)]us,ru

=1
which proves the proposition. o
Proposition 5.31

The (u,v)-th element of H(~4P2, (4P1)') is given by

H (2], (™)) = 52 [Sal, (5.41)

=1

Proof

The (u,v)-th element of H(~Pz, (vP1)") follows from (5.19) as

1M W, . OW;
SGRGIAE A e e

_ l%t [W—l(. ¥ 23 )W-"I(I QJ )]
= 2i=1 r i AJInidn; uu i n; vu

and the use of Proposition 5.12 leads to the further simplification
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M
H([,Ynz]u7[.yDl}v) = %Znitr[stwSme]

i=1

1 M )
= - : Sn-
22” [ z]uv

which proves the proposition. O
Proposition 5.32

The (u,v)-th element of H(vP2, (vA2)") is given by

H([yP2), [y™],) = 302 (S, © (S As®s)],, .. (5.42)

i=1

Proof

Suppose that the (r,s)-th element of A; corresponds to the v-th element of vec(Ay).
Then the (u,v)-th element of H(yP2, (yA2)") can, by using (5.19), be written as

LM L OW: o) OW;
BRI = S v ]

= %ftr (Wi (jnidy ® Jus) Wi (nidl, ® (A2®2dr + J,,82A5))]
i=1

and, using Proposition 5.11, it now follows that

(2], [r]) = $Eniir(Sndusn (Al +3.2:00)

i=1
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M
= Zn?tr [Sr; JuuSn, A2 ®2J ]

i=1

M
= Yon(S]., SnAs®il,,

=1

M
= anz [Snz ® (S'ﬁ-z‘A2@2)]u'r,su
=1

which proves the proposition. o
Proposition 5.33

The (u,v)-th element of H(~4P2, (yY2)") is given by

H([+P]., [v"].) = f)n? [(U3A355.) ® (SnA)lus ru - (5.43)

1=1

Proof

Suppose that the (r,s)-th element of U, corresponds to the v-th element of vecs(Uy).
Then the (u,v)-th element of H(yP2, (4V2)) can, by using (5.19), be written as

H (|7, [v"%],)

1M W, oW,
= =Y tr W1 L V.7t :
29[ 0Dy a[UZLS]

= %ﬁt (Wi (il ® Ju) Wit (il @ (A2Udo AG + A23,,USAS))]
=1

and, using Proposition 5.11, it now follows that
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H([>] ,[+%]) = %f:nftr[sn,.Juusn,.(AzUZ,Js,A;+A2J,SU'2A'2)]

=1

M
= antr [SngJuuSniA2U2JsrA,2]

=1

M
= ZTL? [U,2A,287h]su [S'"-iA2]u'r

i=1

M
= ZTL? [(U;A;S"h) ® (S'"-iAz)]us,'ru

=1

which proves the proposition. O
Proposition 5.34

The (u,v)-th element of H(vP2, (vP?Y) is given by

M

H( > (777)) = 530 8. (5.44)

Proof

An expression for a typical element of H(yP2, (yP2)"), say the (u, v)-th element, follows
from (5.19) as

1M W, _, OW;
H ([‘)’Dz]u’ [7D2]v) - 5,2:;“ [Wi la[Dz]uuWi 18[D2]WJ

- 3 W (g 23 W (1 0 )

i=1
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and, using Proposition 5.11, this simplifies to

H ([‘)’Dz]u, [7D2]v> — %%n?tr [Sn: TS, T

=1

which proves the proposition. =

Expressions for calculating typical elements of all the submatrices of H(+) have now
been derived and are given by Propositions 5.13 to 5.34. These expressions can now be
used to calculate H(+) and H™!(), where the latter is a necessary element in the Fisher
scoring algorithm to obtain the maximum likelihood estimate % of the parameter vector
~, and also, at convergence of the algorithm, provide an estimate of the covariance

matrix of the parameter estimates.

5.5 Estimation of parameters and standard errors

Exploratory factor analysis

It has been pointed out in the previous chapter that, in an exploratory analysis, the
indeterminacies in the model may be removed by having ®; and ®, as identity matrices
and constraining AJD7'A; and A;,D;' A, to be diagonal matrices. This method has the
disadvantages of non-linear constraints that have to be imposed, and uninterpretable

solutions that will require some kind of rotation.

However, if one chooses to do exploratory factor analysis employing the above method-
ology, the Fisher scoring method may be used. This method reduces the discrepancy
function by iteratively updating the vector of parameter estimates 4 using equation

(3.29). At iteration t+1 the vector of estimates at the previous iteration, 4,, is updated
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by adding an increment vector &, to it. The expression for calculating é; is found in
(3.28) when no constraints are imposed, i.e. only one factor at each of the two levels,
and (3.54) when constraints are imposed, i.e. when there is more than one factor at any

one of the levels.

In calculating §;, the gradient vector g(4,) may be obtained by means of the expression
provided in (5.18) while expressions for obtaining the elements of H(%,) are provided
by Propositions 5.13 to 5.34. In practical applications it is possible that H(%,) becomes
near singular in the iteration procedure. A solution to this problem is to replace H™'(%,)
by a reflexive generalised inverse using a stepwise regression approach (see Browne and
Du Toit, 1992) and, in unconstrained estimation, an estimate of the covariance matrix

of the parameter estimators is given by N 'H~!(4) where 4 replaces 4, at convergence.

In constrained estimation it does not matter if H; (= H(4,)) becomes singular dur-
ing the iteration procedure since D, in (3.54) may be chosen such that the submatrix
H; + L{D;L; will be positive definite, even if H; is singular (Browne and Du Toit,
1992). Expressions for obtaining the approximate covariance matrix of the parameter
estimators and of the vector of Lagrange multipliers are given by (3.55) and (3.56)

respectively.

Confirmatory factor analysis

When one enters confirmatory factor analysis, one has to make sure that the model
is specified in such a way that the free parameters are uniquely defined and that the
scale of the factors are fixed before estimation of the model parameters can proceed.
Once these issues have been satisfactorily solved, the Fisher scoring method may be
employed in a similar way as described for exploratory factor analysis. The gradient
vector is again calculated using (5.18), but with the difference that zeroes are entered in
the positions that correspond to the fixed parameters. In the expected Hessian matrix,

the corresponding rows and columns are replaced by zeroes.
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At the point of convergence, the Fisher scoring method provides estimates of the stan-
dard errors of the parameter esimates. However, since the factor covariance matrices ®,
and ®, were factorized in terms of lower triangular matrices U; and U, respectively,
the estimated standard errors will be available for the elements of U, and ﬁz, and not
for &, and ®,. Fortunately, the Delta method (see for example Bishop, Fienberg and
Holland (1975)) can be used to obtain the required estimated standard errors. This is

done as follows:

We have @, = U,U], and the Fisher scoring method will provide the estimates for the
elements of Cov(Vecs(U,), Vecs'(Uy)). In order to obtain the estimates for the elements
of Cov(Vecs(®,), Vecs'(®1)), note that the elements of Vecs(®;) are functions of the

elements of Vecs(U,), and this relation can be written as

Vecs(®,) = f(Vecs(Uy)).

According to the Delta method, one may now obtain the covariance matrix of the

elements of Vecs(®,) from the expression
Cov(Vecs(®,), Vecs'(®,)) = JCov(Vecs(U,; ) Vecs'(U;))T, (5.45)

where

_ OVecs(®,)
~ HVecs'(Uy)

in which Uj is replaced by its maximum likelihood estimate.

In a practical application, the following procedure can therefore be followed to obtain
the elements of (i’l and their estimated standard errors. At the point where the Fisher
scoring method has converged, U; and Cov(Vecs(Uy ), Vees'(U,)) are known. It follows
straightforward that @; = U, U,. The Jacobian matrix J can now be calculated since
the relation between the elements of ®; and Uj is known (see for example Graybill
(1976)). Replacing U; by U; in (5.45) will now yield the estimated covariance matrix

of the elements of (i’l.

Exactly the same procedure as described above is appropriate for calculating ®; and
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Cov(Vecs(®,), Vecs'(®;)) from U, and Cov(Vecs(Uy), Vecs'(U,)).

5.6 Goodness of fit and hypothesis testing

In the traditional case, i.e. where a hierarchical structure is not present in the population
under consideration, testing the goodness of fit of a model in which it is assumed that
the p x p population covariance matrix has a certain structure, usually proceeds by

testing the null-hypothesis

H: I=3(v)

where 4 is identified, against the general alternative

H, : 3 is any non — negative p X p matrix.

If 4 is the maximum likelihood estimator of 4 under Ho, then X(%) is the maximum
likelihood estimator of ¥ under Hy. Let S be the maximum likelihood estimator of ¥

under H;. The likelihood ratio test statistic for testing Hy against H, is given by

L LEG)

L(8)

where L(X) is the likelihood function for the N x p matrix variate X whose rows are
independently and identically distributed according to the p-variate normal distribution

with covariance matrix X.

If Hy is true, —2¢n) is asymptotically distributed as a chi-squared variate with degrees

of freedom equal to the difference in the number of parameters estimated under Hy and

H;.
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In order to use the likelihood ratio test described above for hypothesis testing, the
models under Hy and H; should be estimable and the parameter space for Hy should be

a subset of the full parameter space.

For the present model, i.e. the two-level factor analysis model, let

Ym

be the Np x 1 vector variate where each y; is a pn; X 1 vector corresponding to the i-th
level two unit. Following from the model (cf. (5.1)), the covariance matrix of y is given

by the Np x Np matrix

W, 0 -- 0
®=Cov(y,y)=| . ' . (5.46)
0 0 -+ Wy

where each W, (: = 1,2,..., M) is assumed to be structured according to (4.3). The

null hypothesis for testing the goodness of fit of this covariance structure model, is

H, : ¥ has the structure given in (5.46).

This restrictive hypothesis may now be tested against an unrestrictive hypothesis along
the lines of McDonald and Goldstein (1989). Their work in this regard will now briefly
be discussed.

McDonald and Goldstein (1989) show that it is possible to express the log-likelihood,
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in the balanced case, as a function of a set of sufficient statistics. They further show
that the likelihood equations - i.e. the derivatives of the log-likelihood function with
respect to the parameters - for unrestricted parameter matrices are satisfied by simple
functions of these sufficient statistics, leading to closed form expressions for the maxi-
mum likelihood estimates of the parameters. In the unbalanced case, the log-likelihood

is the sum of M terms, and the likelihood equations cannot be solved in closed form.

A discrepancy function that has a minimum of zero, where the minimum is attained if
and only if the model fits perfectly, is proposed as a suitable testing procedure. This
discrepancy function is based on the ratio of likelihoods and also yields an asymptotic

chi-square test for identified models, and is given by
U=1,-Iq

where [, is the likelihood for the restricted parameter matrices and lg is the likelihood

for the unrestricted matrices, in both balanced and unbalanced cases.

In the present work, it is also possible to perform hypofhesis testing on the number of
factors required in the model to adequately fit the data. Suppose one wishes to test the
hypothesis that r; and r, factors at levels one and two respectively, are sufficient. The

null hypothesis in this case would be

Hp : Y has the structure given in (5.46) while the matrices on
the diagonal have the structures W; =1, ® V1 +jn.j,, ® Va2
with A;: pxryand Ay: p X rs.

This null hypothesis may now be tested against the alternative hypothesis that k1 (> 0)
additional factors are required at level one and k, (> 0) additional factors are required
at level two. The integers k; and k, cannot both be zero since Hg and H, will then be

identical. This alternative may now be stated as

192



H, : ¥ has the structure given in (5.46) while the matrices on
the diagonal have the structures W; =1, ® V; +jn,-j;i ®V,
with A;: pX (r;+k1)and Ay : p X (73 + k2).

The likelihood ratio test statistic for testing Ho against H; is obtained as the ratio

where L is the likelihood function for y and 3%, and 3, are the maximum likelihood

estimators of ¥ under Hy and H; respectively. The test statistic A may be obtained, if

we use (5.2), as

|W,~0|'%exp{—%tr [W,-Bl G,-] }

=

1

A="1

R

W |"%exp{—%tr [Wi—llGi] }

1

i

where W;o and W;; are the estimators of the block diagonal matrices respectively in

3% and 3.

If Hy is true, the limiting distribution of

—2n) = —2(fnL(3o) — nL(3;))
M
= Y {tn|Wio| — £n|Wa| + tr [(W5! — W;)Gi) (5.47)

is the chi-square distribution with v degrees of freedom where

193



v = (pri+pr;—ri(ri —1)/2 —r3(r; —1)/2)
—(pri + pra — ri(r1 — 1)/2 = ry(r2 — 1)/2)

with rf =7y + k1 and v} =72 + ka.

5.7 Practical applications

The practical applications given in this section are continuations of those presented in
Chapter 4. The parameter estimates obtained in the previous chapter are regarded
only as rough estimates. These parameter estimates are subsequently used as starting
values in the Fisher scoring method, using the computer program FSBIFAC - written
in FORTRAN - to apply the theory derived in this chapter to real life data.

Example 5.7.1: One factor at each level (Exploratory analysis)

For this example, the same model is assumed as in the one-factor application in Chapter
4. The parameter estimates obtained there - provided in Table 4.2 - are used as starting
values in FSBIFAC. The Fisher scoring iterations are terminated when the norm of the

gradient vector becomes sufficiently small. The norm is calculated as

1
gl =7+ +-.-+7)?

where ¢=30 in this case. It was decided that when the norm becomes less than 0,2 the
parameter estimates have converged satisfactorily. Applying this criterion, the program
FSBIFAC carried out seven iterations before convergence occurred. The parameter
estimates at the point of convergence are given in Table 5.1 below. Their estimated
standard errors are also calculated by the program and are given in brackets in the

table. These estimates are obtained from the inverse of the approximate Hessian matrix
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for the parameter estimates (cf. Section 5.5). This matrix is calculated at each iteration
and, at the point of convergence, it provides the estimated standard errors, which are

given in Table 5.1.

TABLE 5.1

Parameter estimates and standard errors

~

Q

2,744 (,037)
2,258 (,033)
2,554 (,034)
2,595 (,036)
2,637 (,030)
2,608 (,026)

~

Ay

0,896 (,012)
0,776 (,012)
0,885 (,011)
0,814 (,012)
0,681 (,010)
0,719 (,011)

~n

D,

0,392 (,009)
0,400 (,009)
0,273 (,007)
0,427 (,009)
0,258 (,006)
0,315 (,007)

~

Az

0,365 (,031)
0,312 (,028)
0,351 (,028)
0,355 (,030)
0,265 (,026)
0,246 (,023)

~

D,

0,023 (,005)
0,025 (,005)
0,011 (,003)
0,022 (,005)
0,032 (,005)
0,014 (,003)

It is evident that the convergence criterion used here worked well, since from iteration
six to seven, no changes occurred in the parameter estimates in the first four decimal
places. The next table gives, for each of the seven iterations, the norm of the gradient

vector in order to show the speed of convergence.
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TABLE 5.2

Norm of gradient vector

Iteration Norm

782, 745
34,347
8,521
2,266
0,876
0,296
0,121

-] O Ot W N -

It is evident from Table 5.1 that all the factor loading parameter estimates are signif-
icantly different from zero, indicating that all six observed variables are significantly

related to the factor - at both levels.

Example 5.7.2: One factor at each level (Confirmatory analysis)

In this example, the scale of the factor is determined by fixing the first parameter in
A; and A, - they are both 6 x 1 matrices - to unity. The parameter representing the

factor variance is left free for estimation.

It was decided to terminate the iteration procedure when the norm of the gradient
becomes smaller than 0,2. The EM solution (Table 4.4) is used as starting point.
Running this application, the program FSBIFAC carried out eight iterations before
convergence occurred. The parameter estimates at the point of convergence are given
in Table 5.3 below. Their estimated standard errors are also calculated by the program

and are given in brackets in the table.
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2,744 (,037)
2,258 (,033)
2,554 (,034)
2,595 (,036)
2,637 (,030)
2,608 (,026)

Parameter estimates and standard errors

A,

1,000
0,865 (,013)
0,987 (,013)
0,908 (,014)
0,760 (,011)
0,802 (,012)

D,

0,392 (,009)
0, 400 (, 009)
0,273 (,007)
0,427 (,009)
0, 258 (,006)
0,315 (,007)

TABLE 5.3

A;

1,000
0,855 (, 063
0,962 (, 057
0,972 (,065

0,726 (,061
0,674 (, 050)

)
)
)
)

D,

0,023 (

0,025 (,005)
0,011 (,003)
0,022 (,005)
0,032 (,005)
0,014 (,003)

D,

,005) 0,803 (,022)

P,

0,133 (,022)

The next table gives the norm of the gradient vector at each iteration in order to show

the speed of convergence.

TABLE 5.4

Norm of gradient vector

Iteration Norm

1334,912
506, 466
119,221

32,778
7,695
2,271

0 3 O Ot B W N -
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Example 5.7.3: Two factors at each level (Exploratory analysis)

In this application the parameter estimates obtained by the EM algorithm, and set out
in Table 4.6, are used as initial values in the computer program FSBIFAC. As in the
previous example, the iterative procedure was terminated when the norm of the gradient
vector became smaller than 0,2. This criterion was reached after 11 iterations, and the
parameter estimates after convergence are given in Table 5.5 below. The estimated
standard errors - obtained from the inverse of the approximate Hessian matrix after

convergence - are provided in brackets.

TABLE 5.5

Parameter estimates and standard errors

i Ay D,
2,745 (,037) 0,176 (,011) 0,879 (,013) 0,391 (, 009)
2,258 (,033) 0,167 (,011) 0,758 (,012) 0,400 (, 009)
2,554 (,034) 0,159 (,010) 0,870 (,012) 0,273 (,007)
2,596 (,035) 0,118 (,011) 0,807 (,012) 0,425 (,009)
2,638 (,029) 0,125 (,009) 0,671 (,010) 0,258 (, 006)
2,609 (,026) 0,142 (,010) 0,706 (,011) 0,315 (, 007)

19,609 (, 113) 1,304 (,039) —0,911 (,044) 5,609 (, 119)
13,125 (,152) 2,152 (,058) —1,344 (,068) 11,993 (, 261)
24,346 (, 286) 2,301 (,050) —1,752 (,065) 7,588 (,190)
10,738 (,224) 2,354 (,050) —1,559 (,065) 7,573 (, 190)
12,658 (, 222) 2,474 (,051) —1,437 (,067) 7,745 (,198)
20,087 (, 199) 1,603 (,056) —1,197 (,060) 12,006 (, 248)
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TABLE 5.5 (continued)

Parameter estimates and standard errors

A, D,
0,145 (,052) 0,335 (,041) 0,022 (,005)
0,160 (,044) 0,273 (,041) 0,024 (,005)
0,188 (,044) 0,307 (,046) 0,006 (,003)
0,146 (,049) 0,314 (,040) 0,024 (, 005)
0,014 (,043) 0,280 (,025) 0,021 (,004)
0,089 (,035) 0,221 (,028) 0,015 (,003)
0,514 (,155) —0,914 (,136) 0,459 (,078)
0,633 (,200) —1,109 (,180) 1,085 (, 178)
1,702 (,406) —2,534 (,387) 1,603 (, 268)
1,495 (,307) —1,985 (,327) 0,417 (,122)
1,452 (,307) —1,939 (,320) 0,554 (, 131)
0,531 (,208) —1,828 (,195) 1,430 (, 229)

It appears that convergence has also been obtained to a satisfactory degree in this
application, since no changes occurred in the parameter estimates from the 10th to the

11th iterations in the first four decimal places.

The off-diagonal element of A/D7!A; at the point of convergence is 0,36E-14 with
Lagrange multiplier equal to 0,30E-14, while the off-diagonal element of A'Qf); 1A, is
0,73E-9 with Lagrange multiplier 0,43E-16. This indicates that the constraints have

also converged at this point.

From the results presented in Table 5.5, it is apparent that all factor loading parameter
estimates at level one are significantly different from zero. Two clear factors can be
detected here - the one being identified by the first six variables, and the second one by
the last six variables. This follows from the fact that all loadings are positive on the first

factor and that the second factor is bipolar (the first six variables being positive and
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the last six being negative). A similar interpretation follows for the second level results

- only at this level the loadings on factor one for variables 5 and 12 are not significant.

For each of the 11 iterations, Table 5.6 below gives the norm of the gradient vector in

order to show the speed of convergence.

TABLE 5.6

Norm of gradient vector

Iteration Norm

1 352, 795
2 61,638
3 18,045
4 15,293
5 7,352
6 4,194
7 2,129
8 1,075
9 0, 529
10 0, 259
11 0,126

Example 5.7.4: Two factors at each level (Confirmatory analysis)

In this application the parameter estimates obtained in the previous chapter by the EM
algorithm (Table 4.9) are used as initial values in the computer program FSBIFAC. The
criterion that the norm of the gradient vector should be smaller than 0,2 was reached
after 12 iterations, and the parameter estimates after convergence are given in Table

5.7 below. The estimated standard errors are provided in brackets.
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TABLE 5.7

Parameter estimates and standard errors

—0,010 (, 00

0,000
0,010

—0,029

—0,007 (,00

-0,000

TABLE 5.7 (continued)

1,000
1,629
1,784
1,794
1,859
1,240

(,009)
(,008)
(,009)
(,007)
(,008)

,056)

55)
55)
57)

(
(,0
(;
(;
(,049)

0
0
0

D,

,009
009
007
009
006
007
119
261
190
190
198

)
)
)
)
)
)
)
)
)
)
)
,248)

(
(
(
(
(
(
(
(
(
(
(
(

Parameter estimates and standard errors

i A
2,745 (,037) 1,000
2,258 (,033) 0,873 (,015)
2,554 (,034) 0,979 (,015)
2,596 (,035) 0,888 (,015)
2,638 (,029) 0,756 (,012)
2,609 (,026) 0,803 (,014)
19,609 (,113) 0,000
13,125 (,152) 0,160 (,092)
24, 346 (, 286) —0,143 (,089)
10,738 (,224) 0,086 (,090)
12,658 (,222) 0,291 (,092)
20,087 (,199) —0,077 (,080)
A,
1,000 0,000
0,937 (,082) 0,046 (,027
1,079 (,076) 0,060 (,025
0,967 (,083) 0,012 (,028
0,513 (,069) —0, 118 (,023
0,640 (,062) —0,007 (,021
0,000 1,000
0,024 (,491) 1,223 (,163
0,824 (,893) 3,075 (,280
1,131 (,705) 2,587 (,236
1,080 (,698) 2,518 (,233
1,490 (,575) 1,454 (,191

)
)
)
)
)

)
)
)
)
)

D,

0,022 (, 005)
0,024 (,005)
0,006 (,003)
0,024
0,021

(
(,0
(,0
(,0
(,0
0,015 (,
(;
(;
G
(;
(
(

05)
04)
003)
078)
178)
268)
122)
131)
229)

0,459
1,085
1,603
0,417
0,554
1,430
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®,

0,134 (,022)
-0,232 (,019)

0,805 (, 036)

—0,571 (,027)

1,099 (,011)

2,529 (,019)



It appears that convergence has also been obtained to a satisfactory degree in this
application, since no changes occurred in the parameter estimates from the 11th to the

12th iterations in the first four decimal places.

For each iteration, Table 5.8 below gives the norm of the gradient vector in order to

show the speed of convergence.

TABLE 5.8

Norm of gradient vector

Iteration Norm
1 3611,098
2 1918, 345
3 995,426
4 508,482
) 244,188
6 132,777
7 61,575
8 15,814
9 4,974
10 0,748
11 0,505
12 0,124

Example 5.7.5: Testing ordinary factor models against two-level models

In this example we formally test the null-hypothesis that ordinary factor analysis models

adequately describe the data that were used in the previous examples, against the
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alternative that two-level models are necessary. Two tests are performed: fitting a one-
factor model to describe the covariances among six variables, and fitting a two-factor
model to describe the covariances among twelve variables. The null- and alternative

hypotheses can, for both examples, be written as

Ho : yy=p+Ady;; +ey;
and
Hy : yiy=p+ Aidy; + e + Axdyi + €2

The only difference between the two hypotheses is the additional parameters which have

to be estimated under H;.

As before, let the Np x 1 vector of observations be represented in terms of the M

clusters, by

w
Y2

Ym

and let V; and V, be defined as in Example 4.6.1. Then Hy and H; can equivalently

be written as
Ho : Cov(y,y') = Diag(W;,W,,..., W) where W; =1,, ® V;

and
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1 : Cov(y,y’) = Diag(W,,W,,...,Wy) where W; =1,, ® V, + Jnidn, ® Vo

Under Hg, the log-likelihood is

M
tn Lo = —2 Y (pnibn(2r) + tn|L,, ® V1| + tr [(L, ® V1) 'Gi) (5.48)

i=1

N

However, since G; = (¥; — Jn, ® p)(¥: — jn, ® p)’, it follows that

tr [(In,. ® Vl)"lG,-] =tr | V]! Z(yij —pu)(yi; —n)

and, since ¢n|L,, ® V| = n;fn|V,|, it follows that (5.33) can equivalently be written as

bn Ly = —%N (p@n(27r) +4n|Vy| + tr[Vl_lA]) (5.49)
where
1 M n
!
= 5 2 2 vi —m)(yis —n)-
i=1j5=1

Under H,, the log-likelihood is

f: (pn,[n(27r) + In|W,| + tr [W;lGi]) )

i=1

In L1

[\DI»—A

Inspection of (5.34) shows that the estimator of V; under Hg is the ordinary maximum

likelihood estimator obtained by maximising the likelihood function for a sample of N
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observations. The estimators of V; and V, which are used to build W, W,,... Wy
under H,, have been determined in Chapters 4 and 5, using the hierarchical structure

in the population.

The likelihood ratio test statistic, A, for testing Hy against H, is given by (5.32) and, if
H, is true, -2 #n ) is asymptotically distributed as a chi-squared variate with degrees of

freedom equal to

v = B4ri+r)p—ri(rs —1)/2 = ra(ry —1)/2 = [(2+r1)p — r1(r1 — 1)/2]
= (ro+ Dp—ry(ra —1)/2.

It follows that
—20n XA = —2(4nlo —Inky)

1 -1 f a1 1M
i=1 =1

= N (en|V,|+t[VT'A)) - fj (en|Wi| + t[W;1Gy))

1=1

where Vl and A are the maximum likelihood estimators of V; and A under Hy, and

VVi and G,- are the maximum likelihood estimators of W; and G, under H;.

The test procedure described above was used to test if the ordinary factor analysis
models fitted in Examples 2.6.1 and 2.6.2 are adequate to describe the data, or if the
use of additional information - in this case the fact that the data were collected at two

levels - used in Examples 5.7.1 and 5.7.2 produced significantly better fits.

In the case of six variables and one factor, the value of -2 ¢n Lo is 75 918,357 and the
value of -2 én 131 is 74 418,445. The difference between these two values results in a
value of 1 499,912 for -2 #n X, and with 12 degrees of freedom, this suggests that the
evidence in favour of H; is highly significant. With twelve variables and two factors,
the values of -2 #n Lo and -2 £n L, are respectively 259 930,778 and 252 420,562 which
results in the value of 7 510,216 for -2 #n X, and with 35 degrees of freedom, this also
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suggests that the two-level model provides a more adequate fit.

5.8 Summary

This chapter presents a discussion of how to obtain the maximum likelihood estimators
of the unknown parameters in a two-level factor analysis model by means of the Fisher

scoring method.

The likelihood function is given, and subsequently the gradient vector and expected
Hessian matrix of this function with respect to the parameters are derived. It is then
shown how this information is used in the iterative Fisher scoring method to obtain the

maximum likelihood parameter estimators in unconstrained and constrained estimation.

The goodness of fit and hypothesis testing of the model are discussed next, pointing out
some difficulties in the unbalanced case - i.e. when the n;’s are unequal. In the practical
application section, the same data as in the examples in Chapters 2 and 4 are used to
fit the two-level factor analysis model by means of the Fisher scoring method. The
computer program FSBIFAC - written in FORTRAN - was applied to do the analyses.
The same models are fitted as in Chapter 4, using the rough estimates obtained there
as starting values for the program FSBIFAC. As a final application, formal hypothesis
tests were performed to test whether two-level models provide better descriptions of the

data than ordinary factor analysis models.
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CHAPTER 6

SUGGESTIONS FOR FURTHER RESEARCH

This final chapter will be devoted to presenting a few topics or ideas that may lead
to interesting further research in the field of multilevel factor analysis and its practical

application.

One of the first things that may cross the mind of someone who reads this thesis is
the issue of standardised versus unstandardised observed variables. It is common prac-
tice in ordinary factor analysis to perform the analysis on the correlation matrix of
the observed variables, which is equivalent to analysing standardised variables. This
practice simplifies the interpretation of results. In the case of multilevel latent variable
models, however, their introduction and application have mostly been in terms of the
unstandardised form of the observed variables, and the analyses are performed on the
covariance matrices (see e.g. Goldstein and McDonald (1988) and Longford and Muthén
(1992)). One exception is the work of McDonald (1994). Consequently it seems that
further research is required in the area of standardisation of the observed variables in

multilevel latent variable models.

When it comes to parameter estimators, it is well known that in ordinary factor analysis
there are several methods that may be chosen from to obtain them. Some do not require
extensive calculations and may be considered suitable for obtaining quick estimates to
be used for exploration only. Here, the principal factor method is an example. Other
methods, of which that of maximum likelihood is one, require many more calculations,
but the estimators then obtained have desirable asymptotic distributional properties,
and testing the goodness of fit of the model is also possible. Since only the maximum
likelihood method was considered as a method of obtaining the parameters in a multi-
level factor analysis model, there is much room for research on using different methods
of parameter estimation in multilevel factor analysis, especially methods that can be

used to obtain quick approximations of the parameter estimates.
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In Section 2.4 a test is provided for testing statistically whether a specified number of
factors in ordinary factor analysis is sufficient for the model to hold. Throughout the
thesis, however, it is assumed that the number of factors on both levels is fixed and
known. The problem when this number on either or both the levels is unknown, and
has to be estimated from the data, has received no attention. Possibly, similar methods
for deciding on the number of factors which are used in ordinary factor analysis, such as
the scree test and Kaiser’s rule of number of eigenvalues greater than one, may be used

in multilevel factor analysis. There is, however, room for more research in this area.

The fitting of different two-level factor analysis models, using the estimation procedures
provided in this thesis, may be worth considering. This area has been left untouched in
the sense that estimation and testing procedures are provided in a very general frame-
work and, subsequently, only one specific two-level factor analysis model is subjected
to this theory. It would be a good idea to investigate the possibility of fitting different
models into the framework. One such model is that for varying factor means (Muthén,

1994) which states that

yi; = p+ Adij + e

and that only the parameters for factor means vary across the groups. The means are

now specified in terms of random effects and are written as

d;j = v+ nBi + Nwi;

where v is the overall mean for d;;, and np; and nw;; are the random between-group
and within-group effects respectively, each having zero mean. In addition to considering
this model, further research could also be aimed at extending it to include more than

one factor.

The distributional assumptions that are made, where the data and the random pa-
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rameters are concerned, do not deviate from standard procedures in that the normal
distribution is used in all cases. Consequently there is obvious space for further research
in the estimation and testing procedures provided here when non-standard distributional

assumptions are involved.

There are three issues regarding the implementation of constraints in the two-level fac-
tor analysis model (or other multilevel latent variable models) that deserve mention as
possible further research areas. The first issue - namely, when constraints are consid-
ered which simultaneously involve parameters on both levels (in the case of a two-level
model) - is mentioned in Chapter 3 and is not considered in this thesis because such
constraints are not necessary in the specific model being analysed here. Constraints of
that kind may, however, be of importance in other multilevel latent variable models,

which indicates a direction for further research.

The second issue is concerned with imposing constraints different from those considered
in this thesis. For the two-level model, where the within-group and the between-group
variation is assumed to follow factor structures, constraints of the kind provided by
Browne and Du Toit (1992) may be extremely useful. The parameter estimates that
satisfy these constraints are simultaneously those that maximise the varimax criterion. If
these constraints are imposed separately on the parameters at both levels, the estimated
factor matrices obtained will then have a simple structure and need not be rotated.
Constraints are also provided by Browne and Du Toit (1992) that lead to the parameter
estimates minimising the direct quartimin criterion. Further investigation in this area

may yield useful results in the analysis of multilevel factor analysis models.

Thirdly, the method used here to obtain constrained parameter esimates in both the
EM algorithm and Fisher scoring method has been to approximate the non-linear con-
straints by linear constraints and then to apply the method of Lagrange multipliers to
estimate the constrained parameters. It may be worth looking into the possibility of

using different methods to impose constraints on the parameters in this kind of model.
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Applying the EM algorithm in practice requires initial estimates of the parameters to
get the iteration procedure started. In the thesis these initial values are merely provided,
and nothing is said about where they come from. No analytic method was used to obtain
them - they are simply arbitrarily chosen. The first choice, however, was not always
successful. From this experience gained in applying the EM algorithm in preparing the
practical examples, it seems that the iteration procedure in this specific case is fairly
sensitive to the initial values being used. As a consequence, difficulties are frequently
encountered during the first few iterations - namely, negative variance estimates are
obtained that lead to the inversion of negative definite matrices, and this causes all
kinds of computational problems. The problems may be overcome by changing the
initial values, but that involves an extremely tedious procedure just to get the iteration
process going. A simple procedure was used in the applications to reduce this - namely,
whenever a variance parameter became negative, it was replaced by its value in the
previous iteration, or sometimes by a small positive value (e.g. 0,005). This is very
much a practical difficulty, and further research to obtain a feasible solution will be

useful.
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