

© University of Pretoria

ACKNOWLEDGEMENTS

I would like to thank my parents, George and Bertha, for supporting and putting
up with me throughout the lengthy process of my Ph.D. - See Mom, you can still
read and here it is! - I would also like to thank my wife Karen and daughter Colette
for being such an irresistible combination of difficult and delightful. Thanks also
to friends who were interested and/or interesting; to name a few (in alphabetical
order): Cornelia, Frank, Konrad, Paul, Petrus, Raphael, Susan and Tony. Thanks
also to Lizette without whom I'd still not be finished. To the entire department
of Mathematics etc. at UNISA, thank you for making this such a terrific place to
work. Lastly and importantly thanks to my supervisor Willem Fouche for sharing
his love and enthusiasm for mathematics with me over the years.

1

SAMEVATTING

Titel: Kolmogorov Complexity and Recursive Events

Naam: George Davie

Promotor: Willem Fouche

Departement: Departement Wiskunde en Toegepaste Wiskunde

Graad: Philosophiae Doctor

Die proefskrif bestaan uit twee hoofgedeeltes: Hoofstukke 1 tot 3 en Hoofstuk

4, onderskeidelik. In Hoofstuk 1 bespreek ons die geskiedenis en begrippe rondom
willekeurigheid en Kolmogorov-kompleksiteit. In Hoofstuk 2 voer ons die hooftema

van die eerste deel in, naamlik: rekursiewe gebeurtenisse in willekeurige rye. In die

besonder toon ons aan dat die "saamdrukbaarheidskoeffisient" van 'n willekeurige

ry gebruik kan word om oneindig veel lokale inligting in te win oor rekursiewe

gebeurtenisse in die ry. In Hoofstuk 2 pas ons hierdie resultaat toe op waarskyn­

likheidsleer asook op die werk van Fouche en Potgieter. In Hoofstuk 3 vertolk ons

die resultaat in die raamwerk van beskrywende versamelingsleer en ondersoek ons
ook die verbande tussen hierdie resultaat en bestaande werk, veral die van Fouche.

Die tweede tema (Hoofstuk 4) is 'n ondersoek na die verband tussen die beskry­

wingskompleksiteit van 'n versameling (soos gemeet deur die lengte van 'n kortste

program wat die versameling as uitvoer gee) en die rekursiewe (on)oplosbaarheid
van die versameling. In die besonder, blyk dit dat ons in baie gevalle vir beskry­

wingskompleksiteit kan sien as, enersyds, die oorsaak van, en, andersyds, 'n fyner
meting van, onoplosbaarheid.

2

SUMMARY

Title: Kolmogorov Complexity and Recursive Events

Name: George Davie

Supervisor: Willem Fouche

Department: Department of Mathematics and Applied Mathematics

Degree: Philosophiae Doctor

The thesis consists of two main parts: Chapters 1 to 3 and Chapter 4, re­

spectively. In Chapter 1 we discuss the history and concepts behind randomness

and Kolmogorov complexity. In Chapter 2 we introduce the main theme of the

first part: recursive events in random sequences. In particular, we show that the
"compressibility-coefficient" of a random sequence can be used to obtain an infinite

amount of local information about recursive events occurring in the sequence. In
Chapter 2 we apply this result to probability theory and to work of Fouche and

Potgieter. In Chapter 3 we interpret the result in the context of descriptive set

theory and also examine the relation between our work and existing results, par­
ticularly those of Fouche.

The second theme (Chapter 4) is an exploration of the relations between the de­

scriptive complexity of a set (as measured by the length of a shortest program

which outputs the set) and the recursive (un)solvability of the set. In particular, it

turns out that we can in many cases, see descriptive complexity as a cause of, and

a sharper measure than, unsolvability.

3

Contents

1 Complexity and randomness 	 6

1.1 Complexity of finite objects 	 6

1.2 Reservations . 	 8

1.3 Randomness. 	 9

1.3.1 Introduction 	 9

1.3.2 Notation ... 	 10

1.3.3 Using Kolmogorov complexity to define randomness 	 11

1.3.4 Modifying Kolmogorov complexity 	 12

1.3.5 Defining randomness using prefix complexity 	 13

1.3.6 Martin-Lof randomness 	 14

1.3.7 Solovay's criterion . .. 	 15

1. 3.8 The two definitions of randomness are equivalent 	 15

1.3.9 Properties of the set of random sequences 	 16

1.3.10 Small reservations 	 17

1.3.11 An example of a random sequence: Chaitin's n sequence. 	 17

1.3.12 Some properties of n 	 18

2 Compressibility 	 19

2.1 	 The main result 19

2.2 	 Two applications to probability theory 22

2.3 	 Combinatorial configurations generated

by random sequences . 30

4

2.3.1 Every random sequence generates a universal graph 31

2.3.2 Colouring copies of a fixed graph f3 in U 33

2.3.3 A finite version 35

2.4 Discrepancy of random sequences 36

2.4 .1 Introduction and notation 36

2.4.2 Random matrices . 37

2.4 .3 Random partitions 38

3 An application to descriptive set theory 40

3.1 Recursive events in random sequences 40

3.1.1 Probability laws 43

3.1.2 Does Fouche's criterion characterize the random sequences? 44

3.1.3 Early appearances in Fouche's criterion characterize the random sequences 45

3.2 Gambling against a random sequence . 46

3.3 An application to Chaitin's n number 46

3.4 Discussion: Randomness and extensionality 47

3.5 Various generalizations fail 49

3.5.1 Two obvious generalizations fail 49

3.5.2 The oracle form fails 50

4 Complexity and unsolvability 53

4.1 Introduction.. 53

4.2 Rice's theorem 54

4.3 Complexity of finite fragments of uncomputable sets 55

4.4 Convergence of the halting fractions? 58

4.5 Complexity of finite fragments of computable sets. 58

4.6 A gap theorem for outputting consecutive integers 59

4.7 Comparing the methods 60

4.8 Turing completeness . . 62

4.9 An O-like real for each functional computably enumerable predicate 63

4.10 An application to independent statements and proof lengths 64

5

Chapter 1

Complexity and randomness

1.1 Complexity of finite objects

Certain objects or processes are more complex than others. What do we mean by this? A central

aspect of this distinction is that simple objects and processes are easy to describe or explain

and complicated objects and processes are not. The following progression seems reasonable :

x is simple ~ x is easy to describe ~ x has a shori description.

For example, if x is the following binary string (which can be seen as a code for some object

or process):

01,

then although x is quite long, we feel that x is simple since it has a short description: "20

repetitions of the string 01" . If on the other hand we are given the following string y

0100110101011111011000010101100001111010,

then no such short description is apparent. If it turned out that y has no description much

shorter than 40 digits, we would feel strongly that y is complex, since we would then feel

justified in thinking that there is no short recipe or simple pattern underlying y. Since all finite

information can be coded as a finite binary string, we will henceforth restrict the objects to be

described to finite binary strings.

As a first approximation towards formalizing this idea we then say:

6

• 	 an object is simple if anyone of its descriptions is short

and is

• 	 complex if no description of the object is short.

What would qualify as a description? Since we would like any candidate for a description

to be effective, a natural candidate would be that of "algorithm". Let us therefore refine the

tentative definition above using the idea of "algorithm" or "program for a universal computer".

Choose a reference universal computer U (see [Odifreddi, Soare] as general references for recur­

sion/ computability theory). It would then be natural to define the complexity of a finite binary

string x as the length of a shortest program for U which outputs x from an empty input.

For x the string above, the following is then a short program for x:

For i = 1 to 20 :

write 01.

No such short program is apparent for y.

This leads us naturally to our first and fundamental

Definition 1 (Kolrnogorov) Let U be a universal Turing machine and let x be a finite binary

string. The Kolmogorov complexity of x, denoted by Cu(x) , is the length of a shortest

program (Jor U) that outputs x on the empty input.

(See [Chait in 1, Chaitin 2, Kolmogorov 1, Solomonoff 1, Solomonoff 2] .) Unless explicitly

stated we will assume that our universal machine is fixed and will usually write C(x) instead of

Cu(x). It is very convenient to consider only universal machine taking finite binary strings as

inputs and giving finite binary strings as outputs. This allows direct comparison between the

object (as a finite binary string) and its description, or program (as a finite binary string). We

will often describe the relevant programs informally, it should be understood that the actual

program would be the encoding into binary form of the algorithm we gjve informally.

A string is then considered complex if its Kolmogorov complexity is close to its length.

7

Note that:

• 	 The complexity of any string cannot be much higher than the length of the string itself,

i.e. C(x) < Ixl +c, since the program "write x" will output x. That is, a string is obviously

a (possibly unnecessarily long) description of itself.

• 	 Most strings have high complexity. This follows from the fact that there are few short

programs. Indeed, there are 2n strings (as objects) of length n, and only 2n
-

1 strings (as

possible descriptions) of length one less, 2n - 2 codes of length two less and so on. Hence

at most one half of strings of length n have complexity n - 1, and at most 2n
-

1 of strings

of length n have complexity n - t. This agrees with the intuition that most strings are

complicated.

1.2 Reservations

Although Definition 1 certainly captures part of our intuition surrounding complexity, there

are some caveats. In particular, (computation) time is ignored. This leads to the following

observations:

• 	 Consider a dovetailing of the running of all possible programs on some universal computer
1OlOJ O

U. Then "the lO th halting program of length more than 1010" would be considered

"simple" since this description of the program is very short (and much shorter than the

program it describes). We will probably however, never have any idea of what the program

looks like .

• 	 There is a "simple" proof of Fermat's last theorem (FLT). This follows from the fact

that the formulation of FLT along with the axioms of ZFC (Zermelo-Fraenkel set theory

with the axiom of choice), gives a program to output the proof: Search through all the

proofs in ZFC until you find one with last line FLT. Hence the proof is simple. In fact,

any statement provable in any of the usual axiom system (such as ZFC), has a proof

of Kolmogorov complexity at most the Kolmogorov complexity of the statement of the

theorem, plus a constant to cover the axioms of the system and a program that will

generate and search through all proofs (again under some dovetailing) .

8

While in both cases cited above, we are given a valid description, constructing the object

from the description may require enormous resources of time.

• 	 We usually think of complexity as being in some way organized and structured. Om

algorithmic definition cannot, however, distinguish between extreme structmal complexity

and "true randomness" and would, for example, label most coin tosses of length 100, as

maximally complex, even though we would perhaps not think of this type of "noise" as

complex. This shortcoming is, however, an advantage when, in the next section, we give

a definition of randomness for infinite binary sequences using Kolmogorov complexity.

1.3 Randomness

1.3.1 Introduction

We now turn from the meaning of simple and complex to another fundamental question: When

is an infinite (binary) sequence random?

There are processes which we believe to be random and would give as examples of random­

ness. One of the most important is the ubiquitous coin toss. Because of more or less vague

ideas about the symmetry of the coin, the unpredictability of the influences on the coin and the

non-existence of prescience we believe that the (at each stage finite) sequence of heads and tails,

forms a random sequence. This example is not much use if we want a mathematical definition

of randomness, but we will regularly compare the motives and consequences of our attempts at

a formal definition of randomness, with our intuitions regarding a coin toss.

In 	terms of classical logic, a set - along with all its properties - is fully determined by its

elements ~nrl. t.hp mpt.hon in whir.h t.hp ~pt. i~ e;pnprJ'l.t.pn plJ'ly~ no rolp . Now, ~in .. p J'ln infinit.p

binary sequence is extensionally just a set of integers (the positions of Os (or 1 s) in the sequence),

an 	acceptable definition of randomness would be one in which a string is random by virtue of

the corresponding set oj integers only. The question is whether one can define randomness in

this way and in the context of classical (as opposed to e.g. intuitionistic) reasoning. In other

words, is there a satisfactory answer to the following question: "Which classical binary reals

are random?"

Exploring the concept of "random sequence", Borel in 1909 [Borell, Borel 2] introduced the

9

http:e;pnprJ'l.t.pn

idea of a normal sequence. A normal binary sequence is one in w illch every binary word of leng,ih

k appears in the limit with the "expected" relative frequency, namely 2~k. In an extensional

context, normality is usually taken to be a necessary condition for an infinite sequence to

be random. It is not seen as sufficient, however, since there are explicitly constructible (and

hence not intuitively random) sequences willch also qualify as normal, notably Champernowne's

sequence (see for example, p.50 of [Li and Vitanyi]).

One of the most influential and far-reacillng approaches to randomness is that of von Mises,

who defined an infinite sequence to be random (a "collective") if relative frequency limits exist

for the sequence willch are unchanged under "admissible place-selections" [von Mises] . An

admissible place selection is a selection of a subsequence of an infinite sequence W where the

decision whether to select the nth digit Wn does not depend on Wn itself. Imagine betting against

a coin toss (heads you win, tails you lose). The idea is then that any system for choosing when

to bet (selecting a subsequence) cannot be successful in the limit since the relative frequencies

of both heads and tails in tills subsequence, will again be 1/2. This intuitively appealing

characterization is mathematically problematic, and one must necessarily restrict the possible

"place selections" or the definition will give the empty set (see e.g. [Li and Vitanyi]). See also

[van Lambalgen 1] for a revisiting of von Mises' idea and [van Lambalgen 2, van Lambalgen 3]

for wide-ranging examinations of various possible approaches to randomness with emphasis on

the intensional versus extensional problem.

1.3.2 Notation

We denote the natural numbers by N. All our sequences will be binary. We will always denote

infinite binary sequences by the symbol w, with Wn the nth digit of w. We write Wl :n for the

initial segment of W of le~gth nand Wk:m for the segment of W from the kth to the mth digits .

Vve will often call finite binary sequences x - strings or occasionally - words and will use the

same subscript notation for segments of strings. We will denote the length of a string x by Ixl.
We denote the set of binary strings by {O, 1}*. The Lebesgue measure is denoted by p, and p,(x) ,

for x a finite binary string, will denote the Lebesg,lle measure of the interval [O.x , O.x + 2~ i xl).

All our intervals will be of tills dyadic form, i.e. representable as a finite binary string x (for

the interval [O.x , O.x + 2- lxl)). We call a binary real W computable if there is an algorithm

10

which on input any n E N outputs Wl:n. An index for a binary string or computable function

will mean an index of a program which has as output the string or computes the function. Vile

will use recursive and computable interchangeably for computable by a Turing machine. We

will generally use the notation Pi for programs and the Greek notation 4> for algorithms. We

refer the reader to [Odifreddi] as a general reference for computability and recursion theory,

in particular for undefined terms such as recursive, primitive recursive and partial computable

function. We will often abbreviate computably (recursively) enumerable by c.e. We mean by

'for given x we can find effectively an f(x)' that we can write an algorithm which, on input any

such x, will output f(x). We denote by logx the base 2 logarithm of x.

1.3.3 Using Kolmogorov complexity to define randomness

In this section we will use a variant of Kolmogorov complexity to define randomness. Of course

there are many ways we could try to define randomness , but in the following sections some

arguments will be presented to show that the definition is a good one.

We have a strong intuition that there should be no pattern underlying the successive out­

comes of a random sequence, as epitomized in a coin toss, for example. An extremely strong

condition based on Kolmogorov complexity, which could ensure this, would be if every initial

segment of the sequence (of heads and tails, for example) was as complex as possible. This

would imply the following:

• 	 The independence of consecutive outcomes of the random process. Indeed, if consecutive

outcomes were not independent, we would be able to use certain initial segments of length

n to either predict or rule out certain progressions of length k . This in turn would lead

to descriptions of the initial segment of length n + k which would be considerably shorter

than n+ k.

• 	 The irregularity of the sequence. Indeed, the condition would imply that we cannot

discern any pattern in any of the initial segments, even after the fact . (That is , we cannot

study an initial segment after we have generated it and find a pattern underlying the

segment). Thus , irregularity would clearly result from the fact that no initial segment has

a description much shorter than itself, as any pattern to an initial segment would allow

11

us to "compress" the segment.

We formalize the idea of "as complex as possible" by requiring the existence of a constant

c E N such that no initial segment Wl:n of W has Kolmogorov complexity lower than n - c.

A priori there is no reason why this condition should hold for any infinite sequence, as

we may suspect that the independence of consecutive digits does not rule out finding shorter

programs for certain initial segments after the fact. In fact , this straightforward extension of

the definition of Kolmogorov complexity for finite strings does not work for infinite sequences.

In other words, no infinite sequence has the property that there is a natural number constant c,

such that the Kolmogorov complexity of each initial segment of length n, is at least n - c. We

can quite easily see why: It is intuitively clear that a random infinite sequence should contain

all finite strings as subsequences, since if some finite sequence x appears nowhere in w, we would

feel that W is avoiding x and would thus not be random. It therefore follows that, for every n,

the string of IOn Os should appear in each random w.

Now, just as clearly, the Kolmogorov complexity of a finite string is at most a universal

constant more than the Kolmogorov complexity of the same string written backwards (there

is a short program which will reverse any given string). Consider therefore, an initial segment

Wl:n ' of W for which the last lOn digits are O. The reverse of this string is then made up of

an initial piece of length lor" of Kolmogorov complexity around logn ("write Ion consecutive

Os"), followed by ''write y", where y is the remainder of the segment. Clearly, the Kolmogorov

complexity of this string (and hence the original segment Wl: n '), will be, for n large enough

< n - c for any previously given c.

Surprisingly, perhaps, a natural condition on the form of our descriptions, remedies this.

1.3.4 Modifying Kolmogorov complexity

Any program in any real computer language is self-delimiting. This means that if we write

a complete program and then add anything to the end, the added part will be ignored by

the universal machine. Programs are delimited by constructs such as the command "end"

(Pascal etc.) or by the closure of the last open bracket (Lisp) and so on. The modification to

Kolmogorov complexity, consists of precisely this:

12

All pTOgrams must be self delimiting.

This means that any extension of a valid program is either not a valid program, or alterna­

tively, gives the same program (the added digits being ignored). Turing machines which accept

only self-delimi ting programs are called prefix machines. A prefix free set is a set of words (over

{O, I}) such that no word is an initial segment of any other word. Clearly, any self delimiting

set of programs must form a prefix-free set of words.

Definition 2 (Levin,Gacs,Chaitin) Let U be a universal prefix machine fTOm {O, 1}* to {O, 1}*.

For x an arbitrary binary string, the prefix complexity Ku(x) of x, i$ the length of a shortest

program for U which outputs x on the empty input.

(See [Levin 2, Gacs 1, Chaitin 3].) Analogous to the case of Kolmogorov complexity, we will

usually drop the subscript and write K(x) instead of Ku(x).

1.3.5 Defining randomness using prefix complexity

We can now extend the idea of complexity to infinite sequences (see [Chaitin 3]):

Definition 3 (Chaitin) Fix a universal prefix machine U from {O, 1}* to {O, 1}*. An infinite

binary sequence w is complex if there is acE N such that , for all n E N

Under this slightly modified definition, an infinite binary sequence is complex with proba­

bility 1, and crucially, the set of complex sequences does not change if you change the universal

prefix machine (of course, the constant c may change). See e.g. [Li and Vitanyi]. The reason

for this is roughly that, for any two universal machines U and U', we can write a program (a

"compiler") that will translate a program for U into a program for U', adding at most a uni­

versal constant to the program length. We will sometimes denote the set of random sequences

by K.

Since this condition seems very close in spirit to the original one (of Kolmogorov - which did

not work) and in view of the above remarks, it was proposed by Chaitin to define the intuitively

13

mndom infinite sequences to be the complex infinite sequences. Note that defining randomness

in this way is purely extensional in that the randomness of a sequence depends on its associated

set of integers only.

As the coefficient c in the above definition plays a fundamental role in the next few chapters,

we pause here for the following definition (regard the universal machine as fixed).

Definition 4 Let w be complex, that is, there exists a c EN such that K(Wl:n) > n - c, for all

n. We define the compressibility-coefficient of w as the least such c, and denote it by c(w).

We therefore have that for a complex w there exists an n such that K(Wl:n) ::; n - c(w) but

for no c> c(w) do we have K(W1 :n) ::; n - c for any n.

We say that w is c-compressible if and only if c ::; c(w). We denote by K C the set of infinite

binary sequences with compressibility-coefficient at most c. We will often refer to the value of

the compressibility-coefficient of a sequence as the compressibility of the sequence.

1.3.6 Martin-LOr randomness

We now discuss a different approach to randorrmess. A random infinite sequence should be

unexceptional. One way to interpret this is the following: For any w in the unit interval [0, 1] to

be random, we would hope that any set in [0,1] of measure 1, contains w. Vile feel this reflects

the fact that w should never be part of a very small minority of sequences. That is, w should

be typical in every respect.

Of course, as it stands, this cannot hold as w is part of the singleton set {w} and f-L{ [0, 1] ­

{w}} = 1. However, if we consider this criterion in a constructive light, the situation changes.

Consider an algorithm ¢ which generates a sequence of sets Om in the following way: Each

Oi consists of a (perhaps infinite) set of dyadic intervals, and on input any (m, k) we have ¢

outputting the kth interval of Om. Suppose further that f-L(Oi) < 2-i and Oi => 0H1' We call

this a Martin-Laf test (for the reasons below) .

That is, we have a sequence of sets Oi , of intervals, closed under downwards inclusion, such

that the Lebesgue measure of 0i is bounded by 2-i . If we now consider any random sequence

w, we would feel strongly that w should "drop out" of the sequence 0 1 , O2 , 0 3 , ... at some finite

14

stage as the contrary would imply that w is in each of a sequence of sets of which the measure

is rapidly approaching O.

Any sequence w for whlch an 'l exists such that w ri OJ for all j > i, is said to pass the

Martin-Lof test. Thls is the essence of Martin-Lof's definition of randomness ([Martin-Lof 1],

[Martin-Lof 2]). To settle this important idea, we give an elementary example.

Exrunple 5 Let Oi be the set of all sequences starting with 'l 1s (for example 111011 is in 03) .

Clearly J.L(Oi) = 2- i and Oi :J Oi+l' Now for all sequences w, except 1w , there is an i such that

w ri OJ for all.j > i. In other words, all sequences except 1w pass this particular Martin-Laf

test.

Definition 6 (Martin-Lof) An infinite binary sequence w is Martin-Lof random if it passes all

Martin-Laf tests.

Martin-Lof proved that an infinite binary sequence satisfies this condition with probability

one.

1.3.7 Solovay's criterion

Of course, for the sets On in any Martin-Lof test , I:n /1.(On) will converge. One can, however,

show the following generalization of Martin-Lof's criterion to be equivalent to that of Martin­

Lof. The generalization consists of the following: We replace the requirement that J.L(Oi) < 2- i

with the requirement that I: J.L(Oi) < 00. There is therefore no longer a function controlling

the rate at whlch the Lebesgue measure of Oi gets smaller. It can be shown that all Martin-Lof

random sequences satisfy thls stronger condition (see [Solovay, Chaitin 4, Shen']) . In other

words, if we have a computably enumerable sequence (Oi) of sets of intervals and the sum of

the measures of the intervals is fin.ite , then any random w is contained in at most fin.itely many

of the sets Oi of intervals. Thls criterion will play an important role in the next chapter.

1.3.8 The two definitions of randomness are equivalent

Since the defin.ition via prefix complexity and the definition of Martin-Lof are both attractive,

it is very satisfying that they define the same set of infin.ite binary sequences. Thus, we have

the following

15

Theorem 7 (Schnorr, as referee to [Chaitin 3]). A real number is complex if and only if it is

Martin-Lijf random.

For a proof, see for example [Li and Vitanyi].

1.3.9 Properties of the set of random sequences

The common set of ''random sequences" thus obtained has many properties that one would

hope for from such a set:

1. 	 The set has Lebesgue measure I, that is, almost all infinite binary sequences are ran­

dom. Tills follows easily from the fact that our descriptions must be self-delimiting.

[Martin-Lof 1] .

2. 	 Each random sequence satisfies all effective probability laws, such as the law of large

numbers and the law of the iterated logarithm. (Tills follows from the definition of a

Martin-Lof test - We will show in the next chapter how complexity in fact enables us to

lift the effective content of these laws.)

3. 	 Each of the sequences is unpredictable in the following sense: Let ¢ be any algorithm

which takes as input finite binary strings and outputs either "the next digit is a 0", "the

next digit is a I" or "no prediction". Then if ¢ makes infinitely many predictions , it does

no better than chance in the limit [Chaitin 4]. Tills is a very strong condition since the

algorithm could embody any finite information about the sequence.

4. 	 Each of the sequences is "typical" or generic in the sense of being part of no set of

(effective) measure O. Tills is the criterion of Martin-Lof.

5. 	Each of the sequences is Borel normal (see e.g. [Li and Vitanyi]).

6. 	 Each of the sequences is von Mises- Wald-Church random (allowing as "place-selections"

in von Mises' formulation, all partial computable functions), see [V\Tald],[Church].

7. 	 Other definitions of "random sequence", proposed in [Solovay] (quoted in [Chaitin 4]),

[Schnorr]' [Levin 1], [Gacs 2], turn out to define the same set .

16

For these and other reasons, the definition above is widely seen as a good definition of a

random sequence. We will therefore call complex sequences random from now on.

1.3.10 Small reservations

We seem to have a most satisfactory definition of randomness. One of the consequences of

the main result in the next chapter will nevertheless be that we cannot expect absolute un­

predictability even from random sequences. In particular, we will show that infinitely many

finitary facts about a random sequence are deducible from its compressibility-coefficient.

In the next section we define a particular random sequence, one moreover, which has an

important meaning in the context of computability theory.

1.3.11 An example of a random sequence: Chaitin's n sequence

A moment's thought will show that we cannot label any explicit sequence as random, and that

no deterministic algori thm can output a random sequence. This does not mean, however, that

there are no naturally defined random sequences. One very significant such sequence is Chaitin's

omega number ([Chaitin 4]):

Denote by the symbol [2u the halting probability for the universal prefix machine U. This is

defined as follows: If PI, P2, ... is the sequence of halting programs for U, then [2u = L:~=12- IPn I.

When dealing with a fixed U we will drop the subscript and write only [2.

Theorem 8 (Chaitin) For a fixed a universal prefix machine U, the associated number [2 is

random, that is, there is a c EN such that K(n1 :n) 2 n - c for all n.

Proof. (See [Chaitin 4].) Since n is the sum of the numbers 2-lpl where P is a halting

program for U, we can write a program pi for U which on input the first n digits of n, finds a

string of prefix complexity> n, by listing the first unlisted output (say x), that appears after

the measure of the halting set has reached n1:n. Clearly K(x) 2 n, hence K(nl:n) + Ip'l 2 n .

This holds for each n, so setting c = Ip'l, we have K(n1:n) 2 n - c for all n. Therefore [2 is

random.•

We can see n as the probability that our universal machine will halt on a random input

sequence w of Os and Is because [2 is exactly the sum of the measures of the halting inputs.

17

(Any infinite sequence falling within the union of the associated intervals, will lead to a halting

state in finite time, since U will be defined on some initial segment of the sequence.)

1.3.12 Some properties of D

The fact that 0 is both random and the limit of a series of which the partial sums are computably

enumerable, has some interesting consequences. Basically, we can't use any tricks to find digits

of 0 effectively. The proofs of the propositions that follow are similar to those in Chapter 4

and are not given here.

Firstly, the sum over the halting programs converges incredibly slowly to 0:

• 	 The number of dovetailed computation steps before the first n digits settle, is larger than

any number specifiable in less than n - K(n) digits. (This is enormous: for example more

steps than a tower of 2n- K (n) n's!).

We may try to specify the first n digits of 0 = L;~=12-IPn l by using the fact that once

the first n digits of L;n=12- IPnl become Ol:n, these digits can no longer change. Hence Ol:n is

obviously the unly value uf Lhe fm;L n digits which will not change again. We could therefore

try to specify Ol:n by a program which waits until the first n digits stay the same for very long,

and then outputs these n digits as 0l:n. This also does not work:

• 	 The number of times that the first n digits do not change for more steps than a tower of

2n- K (n) n's , is of order 2n- K (n) .

18

Chapter 2

Compressibility

2.1 The main result

We have noted that the complex sequences are exactly the Martin-Lof (and Solovay) random

sequences. A proof of this fact, due to Schnorr, can be found in, for example [Chaitin 4,

Li and Vitanyi, Calude] . Our main technique (Theorem 9) in this and the following chapter

can be stated as a modification of the criterion of Solovay. Recall that a real w is Solovay

random, if w is contained in at most finitely many of the Oi for any computably enumerable

sequence (Oi) of sets of intervals with the property that L f.L(Oi) < 00.

Chapters 2 and 3 are written in the context of prefix algorithms. We will try to make it

clear in our proofs and discussions that all programs or algorithms we treat are either clearly

elements of a self delimiting class of programs, or could trivially be made so.

Theorem 9 is the main result of Chapters 1 to 3 and can be stated roughly as follows:

If we have a computably enumerable sequence of dyadic intervals h, h, ... , and the

Lebesgue measure of U: Ii is a computable real 7T', then there is a stage in the
1

interval enumeration, computable in c, after which no w with c(w) = c can appear.

We will use this result and small modifications of it extensively in this and the next chapter.

We will show in Section 3.5.2 that the analogous result does not hold for the original condition

of Solovay or Martin-Lof.

19

Theorem 9 We can find a constant kEN such that the following holds: Let (Ii) be a com­

putably enumerable sequence of dyadic intervals with p,(U: Ii) a computable real7r . Further,
I

let PI be a program enumerating the sequence (Ii) and P2 be a program for 7r. Then no w E K C

can appear in the interval enumeration after the measure of the enumerated intervals has reached

7r1 :lpll+lp21+ c(w)+21og c(w)+k

Roughly, c(w) establishes a cut-off point for the appearance of w in the enumeration (Ii).

Importantly, this is also a cut-off time in that no w E K C can appear after this point. It follows

that there is also a cut-off length n(c), such that no initial segment longer than n(c) , of any w

with c(w) = c, can appear.

Proof of Theorem 9. We can assume, without loss of generality, that the length of the

listed strings (as intervals) increases monotonically in time and that the intervals are disjoint,

since

i) if not , we can subdivide the intervals , for example: 0.01 = 0.010 U O.Oll, and

ii) we are interested in the Lebesgue measure of the union of the intervals, not the sum of the

Lebesgue measures of the individual intervals.

Now assume that some w appears in the enumeration between the following two occurrences:

The measure of the enumerated intervals reaches 7r1:lpll+lp21+c+21ogc+s and

the measure of the enumerated intervals reaches 7r1:lpll+lp21+c+21og c+s+I' (Both may occur to­

gether, of course). Let the maximum of the lengths of the strings enumerated between these

two occurrences be l.

Then WI:l is contained in this set of strings and hence is specifiable by giving its position

in this set. Since this set of strings of maximum length l has associated Lebesgue measure less

than 2-(lpll+lp21+c+21og c+s), there are at most 2l-(lpll+lp21+c+21og c+s) strings in the set. We can

therefore specify the position of Wu in this set, using at most

l- (IPII + Ip21 + c+ 210gc+ s)

digits.

There is thus a program P3, which can specify any such Wu on an input of length bounded

20

by

l- (IPll + Ip21 + c + 210gc + S).

Besides the position, our program P3 will of COUl'se also require the programs Pl and P2 and the

natural numbers c and s.

Hence such a P3 would need input lengths at most

IPll + K(c) + K(s) < IPll + 210gc + 210gs

to specify any such Wi:l. The program P3 would therefore need at most

IPll + Ip21 + 210gc + 210gs + l- (IPll + Ip21 + c + 210gc + s)

l - c - s + 210g s < l - c

digits and Wl:l would therefore be compressible by more than c.

We can therefore take k = Ip31 + Ip41 where P4 is any program transforming a particular

4-tuple (P3,P2, c, s) into a program for Wl:l for the universal machine U.•

What exactly is the relation between this test and those of Martin-Lof and Solovay? Note

firstly that we can change any test of the above form into a Martin-Lof test (and hence Solovay

test) by setting Oi equal to the set of all (disjoint) intervals enumerated after the correspondence

with the computable meaSUl'e is accurate to i digits after the binary point. It then follows that

J.L(Oi) S 2- i and Oi ::) 0Hl. Conversely, it will follow from the last section in Chapter 3 that

time limits in terms of c(w) do not hold in general, for Martin-Lof or Solovay tests. Note,

however, that for Martin-Lof tests for which the total meaSUl'e of enumerated intervals is a

computable real, time limits will hold. In particular, if there is a computable function ¢ which

on input i gives a time ti after which the enumeration of Oi is complete, then time limits in

terms of c(w) will hold, since the conditions for Theorem 9 will apply.

The underlying thesis of this and the next chapter will be:

The value of the compressibility-coefficient of a random sequence plays a governing role in the

behaviour- of the sequence.

21

jILJ0U::' 2-oC

~ \ U % 'Y CJ5 /

We will illustrate this in the context of probability theory and in the context of the work

of [Fouche 1, Fouche 2, Fouche 3, Fouche and Potgieter]. In Chapter 3 we apply the result to

descriptive set theory. In each of these contexts, there are natural associated "waiting times"

which will be shown to be computable in the compressibility coefficient c(w) of the

relevant infinite binary sequence w. In general , by showing that the measure of each of some

class of events is computable, Theorem 9 will imply that we have computable upper bounds on

the waiting times .

2.2 Two applications to probability theory

In this section we will use compressibility to refine two basic theorems of probability theory:

the law of large numbers and the law of the iterated logarithm. We will stick closely to

the notation of [Feller]. Before we state these two fundamental laws , some

Notation 10 For w an infinite binary sequence, we let Sn denote the sum of the first n dig-
S - '!J:. 1 I 2

its of wand set S~ = ~Vn2 . Let ¢(x) = ;;ce- 2'X be the normal density function and
"2 n v27r

h 2
<I>(x) = ~J~oo e- dy be the normal distribution function. The notation an A.J bn means

that the ratio of the two sides tends to 1.

In the context of binary sequences, the strong law of large numbers (first formulated by

Cantelli, see [Feller] for references), is the following:

Theorem 11 (Strong law of large numbers) With probability one we have

In the words of [Feller]; with probability one Sn - ~ "becomes and remains small".
n 2

The law of large numbers is clearly equivalent to the following:

22

Theorem 12 (The law of large numbers) For every E > 0, with probability one, there oc­

cur only finitely many of the events

Sri 111-' -- >E.
n 2

The law of the iterated logarithm (due to Khintchine, see [Feller] for references) gives upper
S -!!

bounds for the fluctuations of S~ = ?.;n2 .
'2 n

Theorem 13 (The law of the iterated logarithm - Khintchine) With probability one we

have:

S _:>:':.

lim sup n n 2 = 1.
n---+oo J"2 log log n

This means: For A > 1, with probability one, only finitely many of the events

n n
Sn >"2 + A "2loglogn (2.1)

occur; and for A < 1, with probability one, infinitely many of the events

n n
(2.2)Sn>"2 + A "2loglogn

occur.

Note that these two laws are non-effective on (at least) two counts. Given a randomly chosen

sequence w, the laws firstly only hold with probability one and, secondly, we are told nothing

about the waiting times involved. That is, nothing is stated about any of the following:

• In the strong law of large munbers. For a given E, the largest m for which 1:- -~I> E

or

• In the law of the iterated logarithm:

For a given A > 1, the largest n for which Sn > ~ +AJ~ loglogn

or

23

For a given A < 1 and n, the smallest n' > n such that Sn' > ~' + AJ~' log log n'.

Regarding the above objections: The fact that each random sequence satisfies all effective

probability laws, means that we can change the statement:

P holds with probability one

to:

P holds for each random w.

We can also use the definition of randomness to address the waiting time objection. In

particular, we will show the following:

The compressibility of a random sequence determines upper bounds on the

waiting times for the events involved in the probability laws.

We will prove the following stronger versions of these two laws:

Theorem 14 (Strong law - effective form) Let w be random and let c(w) c. For any

given E we can effectively find an n(c, E) such that for all n > n(c, E)

Theorem 15 (Law of the iterated logarithm - effective form) Let w be random and let

c(w) = c.

1) For a given A > 1, we can find effectively an n(c, A) such that, for all n > n(c, A)

n
"2loglogn. (2.3)

2) For a given A < 1 and mEN, we can find effectively an n(c, A, m) such that, for some n

such that m :::; n :::; n(c, A, m)

n n
Sn > "2 +A "2log10gn. (2.4)

24

Proving the effective versions above via compressibility requires explicit upper bounds on the

probabilities of the various events involved in these laws. The proofs in the classic text [Feller],

are well suited to this goal and will require only small modifications to prove the versions above.

In particular, unless otherwise stated, we will assume all numbers to be computable. This should

clearly not lead to a loss of generality. We will need the following:

X3
Lemma 16 ([Feller]) If .Tn --+ 00 in such a way that in --+ °then

Proof. (See e.g. [Feller].) Let ak = b(v + k; 2v,!) where b is the binomial distribution,

informally, b(v + k; 2v,!) is the fraction of binary sequences of length 2v containing exactly

v + k Is. For h = 2/ fo we have (see [Feller])

ak h¢(kh) 	 (2.5)r'J

k3
with error smaller than 2"' Hence

v

P{S~ > xn} r'J 	 L
00

h¢(kh) (2.6)
k=rn

where rn is an integer such that Irnh - Xn I < h.

Now L
co

h¢(kh) lies between 1 - cf>(xn - 2h) and 1 - cf>(xn + 2h). Using the inequality
k=rn

(2 .7)

(see [Feller]) we get that

cf>(Xn + 2h) - cf>(xn - 2h) < 4h¢(xn - 2h) --+ 0,

25

and it follows that

L
00

h¢(kh) rv 1 - <p(xn)
k=rn

and using 2.7 again we get that

It should be clear that we can, given any EO > 0, choose k large enough in 2.5 such that

(2.8)

holds . •

Proof of the law of large numbers. The idea of the proof is simply that the compress­I: I> EO-ibility of a sequence must be high if, for given EO, ~ for a large enough n. Let a > 1

and let Ak be the event

3
. (2a log k)"2

Now, smce v'k -t 0 we have by Lemma 16 that we can choose n large enough such that

1
P{IS~I > J2alogn} < e-alogn =-.

n a

Since 2:%"=1 :a converges for a > I, we can find for any given CT, an n such that 2:~n P{ISkl >
1

y'2a log k} < 2:%"=n ka< 2-a. So for given EO and a we can find an n such that the measure of

the tmion of the events Ak , k ~ n, converges effectively, hence is a computable real. Theorem

9 then gives the result. •

For the law of the iterated logarithm we also need the following

26

Lemma 17 (See e.g. [Feller]) There exists a constant (J independent of n such that

n
P {Sn > 2"} > (J for all n.

Furthermore) if x is fixed and A is the event that for at least one k with k < n, we have

Sk - ~ > x , then

Proof of the law of the iterated logarithm. The idea of the proof is simply that the

compressibility of a sequence must be high if, for given .A > 1 and for a single large enough n

we have

n n
Sn > 2" +.A 2"loglogn. (2 .9)

And similarly, that the compressibility must be high, if for a given .A < 1 and for many consec­

utive large n, we have

n
2"loglogn.

We now prove part (1) of Theorem 15, again following the proof in [Feller] where possible: Let

.A > 1, let, be a number between 1 and .A and let nr be the integer nearest to ,r. Let B r be

the event that the inequality

S
n

n
-->.A2

nr2 log log nr (2.10)

holds for at least one n with nr ~ n ~ nr+l.

Clearly 2.9 can only hold infinitely often if 2.10 holds infini tely often.

27

We will show that 2: P{Br } converges effectively.

By Lemma 17 we have that

-1 {S nr+l nr
{} ~ loglognr} = a-I P{S~r=l > A 2--loglognr}.P Br :::;; a P + l - -2- > A?'1.r

nr+l

Now nr+dnr rv 1 < A, and we can therefore choose r large enough such that

By Lemma 16 we can choose r large enough such that

and (1 1)A is as close as we like to (1)A ' Thus we can choose for any given k, an s
a og nr a rlog 1

such that 2:~s P{Br} < 2- k and hence 2:~s P{ Br} - the sum of the Lebesgue measures of

the events Br - is a computable number. Part (1) of Theorem 15 then follows by Theorem 9.

We now prove part (2) of Theorem 15. Let A < 1 and choose a number 1] so close to 1 that

1-1
and choose for 1 an integer so large that -- > 1] > A. Put nr = 1r. Let Dr = Sn-,. - Sn-,.-l

1
and let Ar be the event

D _ nr - nr-l (2.11)r 2 > 1]

28

1
Note that the events Ar are independent. We will show that P{ Ar } > -.

r

Indeed

Using Lemma 16 again, we can choose T large enough such that

P {Ar} > 1 e-'I) log log 11r = 1
log log nr (log log nr)(log nr)'I)

Since nr = "'/ and TJ < 1, we can choose r large enough such that P{Ar} > ~. This means
r

1
that the probability that none of the events Ar, Ar+1 , ... , Ar+n occur, is at most (1 - -)(1 -

T
1 1 . . r-1

--)... (1 - --) whIch IS exactly (--). Vve can therefore effectively find, given >., nr and
r+1 T+n r+n
c, a number n such that

1 1 1 - c- k(1- -)(1- -)..... (1- -) < 2.
r r+1 T+n

In other words, we can choose r large enough to make the intersection of the events An , n > T

karbitrarily small (note that we could describe the intersection above of measure 2- c- using

only around log(c) + log(k) digits), hence, by the ideas of Theorem 9, it follows that we can

find, given c(w), an n such that w cannot be in Ar n Ar+l n ... n Ar+n.

Can Snr-l be so much smaller than 0 as to make Snr too small? Since the first part of the

theorem states that for each £ > 0, we can find an N such that, with probability 1- £ or better,

and for all r > N

nr-l
-2- log log nr-l· (2.12)

29

By our choice of rJ we get

and hence 2.12 implies

nr
Snc-J -->-'11-,\nr-l ()

2 	 " 2 log log nr ,

If we therefore add tills to 2.11 we get 2.4 with n = n r . Part (2) of Theorem 15 follows .•

2.3 	 COInbinatorial configurations generated

by randoIn sequences

One of the main themes of the work in [Fouche 1], [Fouche 3], [Fouche and Potgieter] is to ex­

amine random sequences in contexts which make apparent certain properties of these sequences

which are not so when seen only as binary sequences of Os and Is. A second theme is to use

random sequences to bring to the fore the self reflexive characteristics of certain important

combinatorial configurations.

An illustration of these themes is obtained by considering a random sequence as a code for

an infinite graph.

In particular,

• 	 if we let any random sequence generate an infinite graph (number the edges of the count­

able, complete graph KN in some canonical way and let Wn = 1 mean that edge n is in

the graph) , then the graph will be isomorphic to the universal (Rado) graph ([Rado]), a

most symmetric and self-reflexive object. In particular, every finite or countable graph

can be imbedded into it , including itself. Further, and as illustration of the second theme

• 	 if we use a random sequence to colour all copies of some fixed finite graph f3 in a universal

graph U, then there will be a copy U' of U inside U wi th all the copies of f3 in U' of the

same colour.

In a strong sense, this shows that the structure of (a random object coded as) the universal

30

graph is invariant under a large class of partitions. Put another way, partitioning the universal

graph in a random way (and bear in mind that the probability that a partition is random is

one) we find that we can recover the universal graph in one of the partitions (actually both).

The organization of the universal graph is therefore immune to (almost all) partitions. Since

every random graph is a universal graph, this means that each random graph is extremely

robust under partitions. That is, the graph is self reflexive to such a strong degree, and the

organization of the graph is contained in so many different ways in the graph, that any random

partition leaves us with 'the same' organization. In a sense, the structure of the graph survives

any random partition.

The above results can be found in [Fouche 3] . We will use the compressibility-coefficient to

lift the effective content of these results by showing, similarly to the probability laws, that the

associated waiting times are computable in c(w). Our notation is based on that of [Fouche 3]

and our proofs differ mainly in the details of the induction step.

In this work, the Lebesgue measure of the appropriate enumerated set will always be one

as we will be dealing with events which occur with probability one.

2.3.1 Every random sequence generates a universal graph

We let a random sequence w generate an infinite graph as follows. Start with the complete graph

KN on N vertices, numbered 1, 2,3.... Also number all the edges. The following "dovetail"

mapping N 2
-4 N is an example:

edge {I, 2} -4 1, edge {I, 3} -4 2, edge {2, 3} -4 3 and so on.

Whatever mapping we use is required to be a computable bijection between N 2 and N in the

sense that both 1 and 1-1 should be computable and onto functions . That is, there is a program

for 1 which on input any vertex pair {i, j} E N 2
, gives as output the number of the edge {i , j}

and there is a program for 1-1, which on input i E N, gives as output the vertex pair {k, l}

which has number i. This will play an important role.

A given infinite binary sequence w then acts as a code for an infinite graph in the following

31

way: Delete the ith edge of KN if and only if the ith digit of w is a O. The graph obtained

in the limit we call the graph generated by w. As in [Fouche 3], we show that every countable

graph can in fact be imbedded into the graph generated by w.

Consider therefore any random sequence wand let w generate a subgraph Gw of KN as

follows:

Gw contains the edge {m, n} if and only if wJ(m,n) = 1.

Now consider any countable graph C. We want to show that C can be imbedded into Gw . We

can clearly consider C as a graph with vertices natural numbers by relabelling the vertices if

necessary.

To show that we can imbed C into Gw we will find an infinite sequence va, VI, ... of vertices in

Gw such that, for each n, the subgraph of C spanned by 0, 1, ... , n is isomorphic to the subgraph

of Gw spanned by Va, VI, ,.. , Vn . We denote these graphs by C n and Gn respectively.

The proof is by induction:

Basis step: Set va = O.

Induction step: Suppose that VO,Vl, ... ,Vn-l have been defined with va < VI < ... < Vn-l·

That is, we have found a graph Gn - 1 isomorphic to Cn-l.

\Ve will now show that we can continue this embedding to Cn. To do this, we must find a

vertex Vn in the graph Gw such that the graph spanned by vertices Va, VI, "'Vn-l, Vn is isomorphic

to the graph spanned by vertices 0, 1,2, ... , n of C.

Let O! = 0!00!1" .O!n-l be the binary word of length n such that O!i = 1 if {n, i} is an edge of

C, and 0 otherwise.

Now, in order to extend our imbedding to Cn, we systematically test as candidates for Vn

the following vertices of Gw : Vn-l + 1 ,Vn -l + 2, ... (in this order).

Since w generates the graph Gw , we must, for each such candidate Vi, examine the digits

in w corresponding to the (possible) edges between vertices Vi and vertices Va, VI, ... , Vn-l. The

32

candidate Vi is then successful if and only if

Let Wi = Wf{vo,vdWf{Vl,vd ...wf{vn_l,V;} be the word obtained for candidate vertex Vi·

It is clear that any digit Wm is examined in connection with at most one of the candidate

vertices Vi. In other words, the positions m at which we examine digits Wm of w, are disjoint

for different candidate vertices Vi.

Consider now those binary sequences which code for edge partitions for which none of the

I consecutive candidate vertices Vn-l + 1, Vn-l + 2, ... , Vn-l + I is successful. There are clearly

at most

such sequences. Hence the Lebesgue measure of the computably enumerable set of infinite

sequences which do code for an extension, converges to 1 as I -----+ 00. Hence by Theorem 9 we

have that we can find in terms of c, a number of vertices I such that we must have an extension

of the imbedding to Cn+1 within I attempts if the edges are chosen by a random W with c(w) :S c.

In particular, while [Fouche 3] shows that the imbedding of any countable graph C into the

randomly generated graph G is computable in C, G and w, it follows from the above that it is

in fact primitive recursive in (c and) C, G and W in the sense that we have upper bounds on

the number of steps taken during each construction stage. To be precise, we have a primitive

recursive relation between the stages of imbedding and the number of steps taken to complete

each stage.

2.3.2 Colouring copies of a fixed graph f3 in U

We now show that if we colour the copies of some fixed finite graph in a universal graph U, we

will get a copy U' of U in U with all copies of {3 in U' of the same colour.

We use a particular universal graph U for our construction, namely J[N], our notation for

the intersection graph on the set of natural numbers (defined below). As all universal graphs

are isomorphic, this will prove the above proposition.

33

Let I[n] therefore denote the intersection graph on [n], that is, the vertices of I[n] are the

non-empty subsets of [n] and there is an edge between a and b if and only if a and b are not

disjoint (and a of- b) .

Example 18 Consider the graph 1[0, 1,2]. Note that replacing any number in the set {O, 1, 2}

by a number not in the set will give an isomorphic graph, so, Jor example, 1[0,1,3] will give the

same graph, as will 1[4, 1,2]. This will play an important role in constructing a copy oj I[N] in

I[N].

We now fix some finite graph f3 and colour all the copies of f3 in I[N] in the following way:

Let ¢ be an effective and computable enumeration of all the copies of f3 in I[N]. A natural

example would be to systematically number, in some canonical lexical order, all the copies

found in larger and larger subgraphs of I[N], such as 1[1], 1[2], ... , I[n],

Now let w be a random sequence and suppose that these subgraphs of I[N] are coloured by

w in the following way:

If the nth digit of w is a 1, we colour the nth copy of f3

by colour 1 and the same for O.

We want to show that , for this colouring, we can find a copy of I[N] in I[N] in which all

copies of f3 are the same colour.

Note that the colour oj the nth f3 effectively gives us the nth digit oj our random sequence.

We shall show that there is an infinite sequence of numbers io, i l ... such that for each i, I[n]

is isomorphic to I[io, iI, ...in] and all the copies of f3 in I[io, iI, ...in] are the same colour. The

proof is by induction:

Basis step: Set io = O.

Induction step:

Suppose that we have found i l < i2 < ... < in such that I[il, i2, ... , in] is isomorphic to (===) I[n]

and all the copies of f3 in I[i l , i 2 , ... , in] are the same colour.

We therefore want to find a number in+l such that Ih, i2, ... , in, i n+ l] === I[n + 1] with all

copies of f3 in Ih, i2, ... , in, i n+l] of the same colour. We do this by examining the vertices

in +1, in +2, ... and checking whether anyone of these is a successful candidate for in+l' (Note

34

that, from the example above, f[il, i2, ... , in, in + m] == f[n + 1] for every m.)

Let the number of new copies of f3 in f[n + 1] be equal to a number kEN.

Given a random and uniform colouring, the probability that a vertex in +1 is not successful is

then clearly (1-2- k
). As no new copy of f3 in f[il' i2, ... , in , in +m] can be in I[il' i2, ... , in, in +m']

for m i- m', the probability that none of the I consecutive vertices in + 1, in + 2, ... , in + I will

be successful, is

Now vertex in + m failing, means that the digits of w which correspond to the colours of

the new copies of f3 in f[il' i2, ... , in, in + m], are not all O's (or 1 's, depending on the colouring

of the copies in f[il' i2, ... , inD. Since we can find these digit positions from the number in + m,

we can enumerate all strings of length s for which the appropriate digits are not correct. We

can do this for each of the I consecutive numbers in + 1, in + 2, ... , in + I.
Let m(l) be the largest digit position associated with the colourings in the I extensions.

Then the number of sequences of length m(l) which do not code for the correct colours for any

of the I new vertices is at most (1 - 2-k)l.

So, like the construction above where we extended the graph-imbedding, the Lebesgue

measure of the c.e. set of infinite sequences here which do eventually code for the correct

colours converges to 1 as I ----+ 00. Hence by Theorem 9 we can find in terms of c, a number I

such that we must have a coding for the correct colours within I attempts if the edges are chosen

by a random w with c(w) :S c.

So again, while Fouche shows that constructing a copy of U inside the universal graph f[N]

coloured by w with all copies of f3 contained in it of the same colour, is computable in f3 and

w , it follows from the above that it is in fact primitive recursive in (c and) f3 and w since we

have upper bounds on the number of steps taken for each stage.

2.3.3 A finite version

We give a finite version of the previous construction. Let [H, f3] be the set of induced copies of

the graph f3 in the graph H.

35

Theorem 19 For given finit e graphs (3, H with [H, (3J i- 0 and given a constant c, we can

effectively find an n such that if we colour the copies of (3 in I[n] by any binary string x of

length I(I~I) 1= n with C(x) ;?: n - c, there will be copies Ho, HI of H in In such that [Hi, (3] is

of colour i with respect to x.

Proof. Given c, we will effectively find an n such that a colouring of I[n] by any x of length

I[Ho, (3JI (= m say) with C(x) ;?: m - c will gjve an Ho with all copies of colour O.

Consider all the disjoint copies of Ho and the colours of their (3s. Say there are l disjoint

copies of Ho and none of them has all (3s of colour 1. The probability of any single copy of Ho

containing only (3s of colour 0 is 2-m , so the probability that none of the l contains only such

(3s is (1_2-m)l. We need only take n (hence m) large enough such that (1_2- m)-1 saves more

digits than C(n) and the other inputs llSP. Tn othpr worns , n sllr.h th~t (1 - 2- m)-1 < 2-d ,

where the length of all other necessary inputs together is d digits . That is, since we are able to

specify any particular string which does not code for a single colour Ho by its position amongst

such strings, and we can specify this set for given n on input n , we need only copy the last few

steps of either of the above constructions to prove the theorem. •

The same theorem will hold for the prefix complexity K.

2.4 Discrepancy of random sequences

2.4.1 Introduction and notation

Let cjJ be a universal prefix machine, fixed in what follows. The paper [Fouche 2] is a continuation

of the themes explored above and studies the discrepancy of random sequences when seen as

coding for set systems. We use similar methods as those used above to lift the effective content

of the results in [Fouche 2].

For the sake of clarity and direct comparison with [Fouche 2], we modify our notation to that

in [Fouche 2]. Let A be a family of subsets of a finite set A and L be a set of mappings X from A

to the set {-I, I} . The discrepancy of A with respect to Lis minXEL maXXE.A ILXEX x(x)l . If

L is the entire set of mappings from A to {-I, I}, we will talk of the discrepancy of A. Denote

the discrepancy by O'(A) . Since we are going to view binary sequences as codes for the entries of

matrices, we let (i,j) f-----*< i , j > be a computable bijection from N x N onto N. For a binary

36

sequence w, we define the family A(w) = (Aik~ l of subsets of N by j E Ai ¢:} Wij = 1, where we

now write ij for < i , j >. For n 2': 1, let An(w) be the family of sets Ai n [n], i = 1, ... , n. That

is, we can see An(w) as the set system given by the n x n matrix in the top left-hand corner

of the infinite matrix generated by w. For brevity, when dealing directly with the matrix, we

will often talk of the discrepancy of the n x n submatrix instead of the discrepancy of the set

system given by the sub matrix.

Fouche, in [Fouche 2], firstly examines the case where the matrix is infinite and is generated

by a random sequence w. For each of the top left-hand n x n submatrices, the discrepancy

of the set system represented by this submatrix is considered, which leads to Theorem 1 of

[Fouche 2]. Secondly, the case where the matrix is computable and the colouring random is

examined. This leads to Theorem 3 in [Fouche 2].

In this section we use compressibility to prove sharper versions of these results, again showing

the associated waiting times to be computable in the relevant compressibility coefficients.

2.4.2 Random matrices

Theorem 1 of [Fouche 2] states:

Theorem 20 There exists a universal constant r > 0 such that, for each random string w,

there exists a natural number nw such that, for all n 2': nw, the discrepancy of An (w) satisfies

In some sense then, set systems generated by random sequences have maximal discrepancy,

since [Spencer] has shown that for any set system A consisting of n subsets of [n] we have

u(A) S 6fo·

The idea in using compressibility is to show that for given c, if the discrepancy An(w) stays

low for too large n , then the compressibility of w must be larger than c. Thus:

Theorem 21 There exists a universal constant r > 0 such that, for each random string w with

c(w) = c we can find a natural number nw such that, for all n 2': nw , the discrepancy of An(w)

satisfies u(An(w)) 2': rVTi.

37

In other words, the stage after which the discrepancy must be at least Ty'n, is computable

in c(w). We need the following lemma:

Lemma 22 Let (Wi,j : 1 ~ i, j ~ n) be n 2 random variables such that each Wi,j assumes

each of the values 0 and 1 with probability 1/2. For each v = (V1,V2, ... ,Vn) E {-l,l}n, put

Li(v) = '2:;')=1 VjWi,j. Then we can find numbers T, c, CO < 1/2 - c and n* such that

Proof. Directly from Lemma 1 in [Fouche 2]. The effectivity follows from the proof of the

lemma and the error terms in Section 2.2 for convergence to the normal clistribution. •

Proof of theorem 21. Consider a random sequence w with c(w) = c. Let cP: N x N ~ N

be our computable bijection. Now consider the sequence of n x n submatrices in the top left­

hand corner of the generated infinite matrix. It follows from the lemma and the choice of values

that for size n x n, n> n*, the probability that the submatrix has cliscrepancy lower than TVn
is less than (1/2 - 2c)n We can therefore specify an An, n > n* with cliscrepancy lower than

TVn, by giving the lexical position of An amongst the n x n matrices with cliscrepancy less than

TVn. Now, clearly L~=n.(1/2 - 2E)n is a computable real. Since w codes for An, the result

follows from Theorem 9.•

2.4.3 Random partitions

We now consider the case where our countable matrix is computable and our partition (column

vector) is random.

Notation: For A an w x w matrix over {O, 1}, let An be the n x n submatrix in the upper

left-hand corner of A. For X a countable column vector over {-1, 1}, write X(n) for the first

n entries of X. For an n X n matrix B and column vector X as above, we write IIBXII for

sup{IBiXI : i = 1, ... , n}, where Bi denotes the ith row of B.

The following theorem appears in [Fouche 2].

38

Theorem 23 Let A be a computable countable matrix oveT {O, I}. TheTe is a univeTsal constant

C> 0 such that, fOT every mndom w, theTe is some nw, such that, fOT all n 2 nw

IIAn(w(n))11 :s; CJnlogn.

We prove the following version of this Theorem:

Theorem 24 Let A be a computable countable matrix oveT {O, I}. TheTe is a universal constant

C > 0 such that, for every mndom w with c(w) = c we can find effectively in c, an nw , such

that, for all n 2 nw

IIAn(w(n))11 :s; CJnlogn.

We use the following

Lemma 25 [Fouche 2] Let M be an n x n matrix and let X be a mndom column vector over

{-I , I} taking each of the values -1 and 1 with probability 1/ 2. Then

k2

Proof of theorem 24. Choose D > 4, then 2 Lk?:2 kD/ 2 is a computable real and the

result follows from Theorem 9.•

So even though we clearly can, given a random vector w, tailor-make initial segments An of

A to render the discrepancy of the set system given by An very high, the prefix complexity of

wand the recursiveness of A rules out the discrepancy being high infinitely often.

39

Chapter 3

An application to descriptive set

theory

In this chapter, we make full use of Theorem 9 to deduce some results in descriptive set theory.

The treatment here can be seen as the general case of the examples of the previous chapter.

We also prove some results relating Theorem 9 to results obtained by W.L. Fouche (see bibli­

ography). We then take the opportunity to remark on randomness and extensionality. Finally,

we examine various possible generalizations of Theorem 9, all of which fail.

3.1 Recursive events in random sequences

Let P be a computable predicate defined for all finite binary strings. We can see P as an event

which mayor may not occur in an infinite binary sequence w. We are interested in the following

question: Does P occur in w? If so when?

Of course, this class of questions is not solvable. Even the following class:

Given w, does P hold for w?

is not solvable in P and w.

Indeed, if P is a computable predicate, the set of reals Sp = {wl::lnP(wl:n)} is called a

semirecursive set of reals partly because the membership problem for the set is analogous to that

40

of the membership problem for finite sequences in computably enumerable (or semi recursive)

sets of integers.

Thus, to decide whether W ESp, we can in general do no better than to wait for (an initial

segment of) w to appear in the enumeration of strings x for which P (x) holds. If this happens

then of course wE Sp, if not, we may be forced to wait forever.

Now many such computable events P occur with probability a computable real. Let C

denote this subclass. That is C = {PIj.t(Sp) is computable}. So consider the following class of

questions : Given w, does PEe hold for w?

It follows directly from Theorem 9 that this class of questions is solvable in P, j.t(Sp) and

w for every random w. In particular:

Given an arbitrary binary real w. If w is random, there is a computable function which takes

as input (any) indices for PEe and j.t(Sp) and outputs an n E N such that P occurs within

the first n digits of w, or not in w at all.

We will call any information of the form "P occurs in wm:n", local information about w,

in order to contrast it with that of the form "w ESp" which tells us nothing about where P

occurs.

As a direct consequence of Theorem 9, we get:

Theorem 26 Let P be a computable predicate with j.t{wl=:3nP(wl:n)}, a computable real7r. Then,

given C E N, there is an n EN such that, for all w E K C
, P holds for some initial segment of w .

shoTter than n, or not at all. Further, there is an algorithm finding n on input indices for c, P

and 7r.

Minor modifications of the proof give the following version of Theorem 9:

Corollary 27 Let S be a computably enumerable set of binary reals with j.t(S) computable and

let p be a program enumerating S. Then, given c E N, p and a program for j.t(S), we can

effectively find a stage t(c) in the enumeration after which no w E KC can appear for the first

time. That is, w must appear before t(c) or not at all.

This form of Theorem 9 will be useful later. In terms of individual random sequences we

can state the following :

41

Corollary 28 Let w be a random sequence. Then there is an algorithm, easily constructible

from c(w), which on input of programs/indices for P E C and f-t(Sp) , outputs an n such that P

either occurs before the nth digit of w or not at all.

Note: This algorithm clearly requires no access to the digits of w. If one has access to an

oracle for w, the question as to whether P would ever occur is answerable in finite time for each

P E C.

Remark 29 Andreas Blass has given an alternative proof of the following form of Theorem 9

(e-mail correspondence): For almost all binary sequences there is an algorithm which can decide

the membership problem for all Sp for which f-t(Sp) is computable, when given indices for P

and f-t(Sp).

Proof. For this proof consider any program Pi enumerating those strings for which the

predicate Pi holds, and consider those infinite sequences which appear in the enumeration of

intervals (binary strings for which Pi holds) only after we are closer than 2-Pi to f-t(SpJ.

Since L 2-Pi converges, it follows from the Borel-Cantelli lemma that only measure 0 of

infinite binary sequences can appear this late for infinitely many predicates Pi. For each w in

the measure one complement of this set, we can therefore keep a list of each of the finitely many

Pi's for which w appears this late. Given any Pi E C we can then consult our list and if Pi is

not on the list we can start enumerating intervals until our element is listed or we get closer

than 2-Pi to f-t(SpJ .•

Note that one can frame this proof of Blass in terms of Solovay's criterion for infinite

sequences, namely, define the sequence of sets Sl, S2, ... with Sl the set of sequences enumerated

after we are closer than 2- 1 to f-t(SPJ and S2 the set of sequences which, in addition, are

enumerated after we are closer than 2-2 to f-t(SP2) and so on. Since L f-t(SpJ < 00 we have,

by Solovay's criterion, that no random sequence can be in infinitely many of the sets SPi' Blass

has also remarked that f-t(SpJ need not be recursive, but that it suffices to have an index for

computing a sequence of rationals converging to f-t(SPJ from above. This turns out however,

not to be a generalizatinn for our particular form of the result by the following converse to

Theorem 9:

42

Proposition 30 Let P be a computable predicate. If there is an algorithm which, given c EN,

finds an n such that for all w E K C
, P occurs before the nth digit of w or not at all, then J1(Sp)

is a computable real.

Proof. By hypothesis, we can find for each c a length n(c) such that all enumerated strings

of greater length are compressible by more than c. As the total measure of such sequences is

less than k· 2-c (see e.g. [Li and Vitanyi]), the cumulative measure at this stage must be closer

than k . 2-c to the total measure. In other words, we can on input c, compute J1(Sp) to an

accuracy within k· 2- c , therefore J1(Sp) is a computable real. _

3.1.1 Probability laws

In [Fouche 1], Fouche proves that every random sequence is contained in every recursively rr~

set of measure one of binary reals. This is done by showing that we can consider the complement

of any computably enumerable set of measure one, as a Marlin-Laf test, hence every random w

must drop out of the complement at some stage. Since a rr~ set of measure one is the union of a

c01llltable number of computably enumerable sets of measure one, the result follows . This result

is used extensively in the papers [Fouche l],[Fouche 3],[Fouche and Potgieter] to examine the

properties of random sequences when seen as codes for combinatorial objects, some examples

of which we discussed in the previous chapter.

The method in the proof of Theorem 9 leads to a stronger result than in [Fouche 1]:

Theorem 31 Let (Oi) be a c.e. infinite sequence of sets of intervals with the properly that

LJ1(Oi) = 1. Let PI be a program enumerating the sequence (Oi). Then there is (effectively) a

universal constant k such that every w E K C must appear before the measure of the enumerated

intervals differs from 1 by less than 2-(lpll+c(w)+21ogc(w)+k).

Proof. Consider any binary real w which has not appeared in the enumeration by this

time. Any such sequence has an initial segment specifiable as part of the complement of the

enumerated strings of length l, say.

We can therefore specify any such ini tial segment using PI, c as well as its posi tion in this

complement. Since the complement has Lebesgue measure less than 2-(lpJI+c(w)+2 1ogc(w)+k) we

43

need at most

\Pl\ + 2 log c + l - (\Pl\ + c + 2 log c)

l - c digits.

Hence some initial segment Wl:l of W is compressible by at least c. The value of k can be found in

an analogous way to that of Theorem 9. Therefore, for each computable event P which occurs

with probability one and each c EN, we can find a length n such that P must occur in Wl:n in

all W E K C
• •

Consequently, not only must every probability law P hold, but we can also find, in terms

of the compressibility, upper bounds on the waiting time for each event P in the rr~ set. Our

results on the law of large numbers and the law of the iterated logarithm are examples of this.

Let us call the criterion of being in every sernirecursive set of measure one, Fouche's criterion

for random sequences.

For certain simple predicates P we can see directly that the prefix complexity of a segment

must be low if P does not occur for a long time. One example is {x E Sp +--> x contains a O}.

Given any c, we could easily find an m such that no segment Wl:m of an W E K C can consist

only of Is. This is because the probability that the initial segment contains no Os is easy to

find and decreases rapidly with increasing m.

However, many more complicated predicates will not lend themselves to this type of treat­

ment. The advantage of Theorem 9 is the idea that strings which have not yet satisfied P at

a late stage in the enumeration, are sandwiched between the total measure and the measure of

the listed segments which is converging to a computable real.

3.1.2 Does Fouche's criterion characterize the random sequences?

In other words: Let W be an infinite sequence appearing in all computably enumerable sets of

intervals with Lebesgue measure one. Must W be random? The answer is no.

Theorem 32 There is a nonrandom sequence W which is contained in all computably enume'f'­

able sets of measure one.

44

Proof. Let {Pi} be the entire sequence of predicates which hold for Lebesgue measure

one of all infinite binary sequences. Let Pi be a shortest program for P i (this is clearly not

an enumerable list!). We will now construct a non-random sequence w whlch satisfies all the

predicates p(

We construct the sequence in stages, starting with the segment S1 consisting of 2\P1\ Os.

Now enumerate those finite strings satisfying P 1 until some extension e1 of S1 appears. Extend

S1 to e1 and append 2\P2\ Os to e1 to obtain a string S2 and iterate the process. That is, we

enumerate those strings satisfying the predicate P 2 until some extension e2 of S2 appears . Then

extend S2 to e2. We repeat thls process for each Pi .

Clearly, since each of the sets has measure one, some extension of Si must appear in the enu­

meration of strings satisfying PH1' Hence w has an initial segment Si in each of the computably

enumerable sets.

It is furthermore clear that the compressibility of w is unbounded since we need only around

iP1i + ... + iPii digits to obtain Wl:2(IP11+ .. +lpi l)· •

3.1.3 	 Early appearances III Fouche's criterion characterize the random se­

quences

Theorem 9 implies that a random sequence should appear early (with a short initial segment)

relative to the length of each associated predicate P i , or not at all. For measure one, it must

appear (early) in all the enumerable sets of measure. We are led to ask: If a sequence appears

early with regard to the length of predicates of measure one, is it random? The answer is yes .

Theorem 33 Any infinite sequence w which satisfies each effective probability law Pi early, is

random.

Proof. 	'''Ie prove the contrapositive, that a non-random sequence appears late in certain

enumerations of measure one. Particularly, w does not satisfy any of the allowed appearance

schedules in Theorem 9.

Let w therefore be non-random. Hence there exists, for each C E N, an initial segment of

length n(c) such that K (Wl:n(c») < n (c) - c. In particular, there is a program Pc of length n - c

whlch outputs the initial segment of w of length n.

45

We associate with each such program Pc a program p~ (with which we can associate a

predicate P c holding with probability one): The program p~ enumerates intervals as follows: p~

first uses Pc to obtain (but not yet enumerate) Wl :n. The program p~ then enumerates all other

sequences of length n and only then enumerates Wl: n .

Now p~ clearly need have length l no more than IPcl + k = n - c + k with k independent

of c. Clearly l drops arbitrarily far below n. Therefore W appears in the enumeration only after

we are closer than 2-n to 1. All W E Kr would have had to appear before we were closer than

r2- n +c- to one. Since n - c + k drops arbitrarily far below n for increasing c, none of the

schedules in Theorem 9 can be met. •

3.2 Gambling against a random sequence

It easily follows from the method of Theorem 9, that for any given random wand events P which

occur infinitely often with probability one (such as the occurrence of some fixed subsequence),

c(w) will enable us to find, for each m, an m' such that P must occur somewhere in W m :m '.

This means that there exists, for each random infinite sequence, a gambling strategy whlch

enables us to win an unlimited amount of money by gambling against the sequence. Our only

requirements are c(w) and a generous banker/benefactor who is willing to repeatedly loan us

arbitrarily large sums of money. Note that we can guarantee a payback time at each time of

borrowing.

Indeed, imagining the process as a coin toss, we can use c(w) to find at the mth toss, an

m', then borrow 2m '-m units, betting repeatedly on "heads", starting our bet at 1 unit and

doubling it at each toss until "heads" appears - thls is sure to happen before the m'th toss. We

can repeat thls process indefinitely.

It is somewhat ironic that it is the very randomness of the sequence whlch guarantees the

existence of the strategy.

3.3 An application to Chaitin's n number

Clearly, finding c(w), even given an oracle for a random sequence w, is in general highly non­

effective since, intuitively, we would need to use an oracle for the halting problem on each of

46

the infinitely many initial segments of w.

However, there is an important special case in which we can effectively find an upper bound

for c(w) without having even an oracle for w. This is the case w = n. Indeed, it follows directly

from Theorem 8 that Ipi is in fact find an upper bound for c(n) .

Since we can easily write p for any reasonable universal machine U and we need no knowledge

of the digit values of n, we can effectively find a c such that n E K C •

So although we are denied any knowledge of individual digits III the sequence n (see

[Chaitin 4]), we have access to an infinite amount of local information about n. For exam­

ple, we can find:

(i) an n E N such that Wm = 1 for some value m :::; n,

(ii) an n EN such that for some m ::; n, the munber of Is in Wl:m is exactly ~ ,

(iii) for each k, a value for n such that there is a run of k consecutive Os in Wl:n,

(iv) for each m and word s in {O,I}k, a value m' such that the word s appears in W m :m "

In [Chaitin 4], a Diophantine equation is constructed which has finitely many solutions if

the nth bit of n is a 0 and infinitely many if the nth bit is a 1. Similar considerations to those

above hold for this equation.

The halting probability n has widely been seen as a striking example of a completely random

object which arises naturally in mathematics, but about which we can probably not know much

more than that n must possess all statistical properties, such as being normal and satisfying

the law of large numbers, these properties following from the fact that n is random. (see

[Bennet and Gardner],[Chaitin 4],[Li and Vitanyi],[Rosenberg and Salomaa]).

It is therefore perhaps unexpected, that we can deduce, in a uniform and completely effective

way, an infinite amount of local information about n.

3.4 Discussion: Randomness and extensionality

Theorem 9 shows that certain aspects of random sequences are predictable. In fact, it should

be clear from the proof of Theorem 9, that for each random w, there is a canonical algorithm

47

· (incorporating the compressibility-coefficient of w) willch on input (any program (index) for)

a computable predicate P holding with probability one, gives as output an upper bound for

the occurrence of the event described by P. This stands in contrast to the fact that for each

random w there is no algorithm that can successfully predict digit values.

Note that it is easy to see that a much weaker version of Theorem 9 holds, namely that

random binary sequences exist for which we can know that each of an infinite sequence of

predicates hold. For example: find an nl such that more than measure 1 - k contain a 1 before

nl, now find an n2 such that more than measure 1 - k2 contain a 1 between nl and n2, and so

on, with ni chosen in such a way that (1 - k)(l - k2) '" converges to a number larger than O.

Then tills set certainly contains some random sequences (since the set of random sequences has

measure one) and for these random sequences we can make the set of predictions "a 1 appears

between each n i and niH'" But we cannot do this for all computable predicates since the set of

computable predicates is not a computable set. So we cannot "run through" all possibilities.

The type of predictability discussed in the first paragraph certainly seems to rule out re­

quiring that a random string has a particular compressibility-coefficient , such as in statements

of the form: "Let w be random with compressibility 1".

Further, since each w E K is considered random, we should be able to think of each such

w as an outcome of a coin toss. In particular, taking initial segments of increasing length of

an w E K should reflect our intuitions regarding a developing coin toss. It would however be

completely contrary to the spirit of a real coin toss to tillnk of an a priori fixed constant c which

fixed upper bounds for all computable events willch have computable probability of occurring

in the coin toss. Tills is because we feel that , whatever finite information we are given now, a

real coin toss will develop independently of it . This is closely associated to the idea that a real

coin toss is at every stage free.

Now the point is not that the "real" random sequences are some other extensional set,

but that the problem may be the extensional viewpoint itself willch treats infinite sequences as

completed objects and allows us to talk about global properties of sequences (such as c(w)). Not

surprisingly then, expecting a sequence to conform to some a priori compressibility-coefficient

seems to impinge on the independence and freedom of the sequence when we again view it

as developing. Since c(w) is not uniquely determined by any finite initial segment, one must

48

question whether talking about global constants such as c(w) makes sense in the context of

random sequences. It is perhaps particularly striking that c(w), which is a type of certificate of

incompressibility intended to guarantee randomness , can be used to the opposite end, namely

to predict aspects of the sequence!

3.5 Various generalizations fail

3.5.1 Two obvious generalizations fail

We show in tills section that some more or less plausible generalizations of Theorem 9 fail. We

firstly show that there are (non-random) binary sequences for which Theorem 9 fails. For tills

section we use the following notation: We say that w is c-compressible before m if K(wl:n) :::; n -c

for some n < m, that w is c-compressible after m if K (W l:n) :::; n - c for some n > m and that

w is c-compressible only after m if K(Wl:n) :::; n - c for some n > m but for no n :::; m. We

use the same notation for strings. We firstly give an example of a (non-random) infinite binary

sequence for willch Theorem 9 fails:

Example 34 Let W be the infinite binary sequence willch is defined as follows: Let U be any

universal machine, not necessarily prefix. Now dovetail the computations of all programs p for

U and record the halting inputs in a binary string, as follows: For each step i of the dovetailed

computation, if no halting state is reached at step i, add a 0 to the binary string. If a halting

state is reached at step i, (program p halts, say) then append to the string a 0 followed by

p consecutive l's followed by a O. It is clear that W will then contain a string p' if and only

if p' halts. Note that a sequence contains each string of this form with probability one. Any

algorithm willch could give an upper bound on the waiting time for each event P, would solve

the halting problem for U. This gives a contradiction.

Secondly, we present an example of a computably enumerable set (with non-computable

measure) for willch Theorem 9 fails.

Example 35 Let U be a universal prefix macillne and consider the sequence of halting pro­

grams Pl,P2 .. · and the associated computably enumerable set S = U:1 O.Pi' Now, if we could

effectively find for each c a stage t(c) such that no wE KC could appear for the first time after

49

t(c) , then Ou would be a computable real by reasoning similar to that in Proposition 30.

But not only is Ou not computable, it is in fact itself random. This gives a contradiction.

The above is perhaps not surprising, since f-L(Sp) played a crucial role in the proof of Theorem

9, and in the above example we have no access to the non-computable f-L(Sp). Therefore a more

natural generalization would be the following

Oracle form of Theorem 9: Can we, given c, a program for a computable predicate P and

an oracle for f-L(Sp), find an n(c) such that, for all W E K C , P must hold in Wl :n(c) or not at all?

There are other reasons we may expect this to hold. For U a non-prefix Ul1.iversal machine,

the corresponding compressibility of elements in any computably enumerable set with finite

Lebesgue measure must increase, and since Kolmogorov complexity and prefix complexity are

asymptotically equal (K(x) < C(x) + 2IogC(x)), one could expect that the same may hold for

prefix complexity.

We can prove, however, that the oracle form also fails by showing that there exists com­

putably enumerable sets of intervals for which upper bounds on the waiting times for the

appearance of W E K C need not even exist. This also shows that neither the criterion of Solovay

or Martin-Lof give explicit appearance schedules for W E K C in terms of c. The reader will un­

doubtedly not be interested in the fact that the result below took the author eighteen months

to prove.

3.5.2 The oracle form fails

Corollary 20 implies the following: For each computable enumeration of intervals with total

measure a computable real , there exists for each c EN, a stage tc such that any real listed for

the first time after stage tc , must be at least c-compressible. Our counter example will be the

enumeration of strings which are themselves 1-compressible.

If the oracle form is to hold for our (counter)example, we should have for each c, a stage

t e , such that each W enumerated in the set of I-compressible sequences after stage t c , must in

fact be c-compressible too. For large c this seems unlikely as we feel that we should be able to

modify an w with c(w) = I, at arbitrarily large n in such a way that K(Wl :n) < n - 1 for the

first time.

50

Let n(te) be the greatest string length up to stage te. Let Sl be the set of sequences which

are I-compressible only after n(te) and let Se be the set of sequences which are c-compressible

only after n(te). We will show that f.L(Sl) > f.L(Se) for c large enough. This will suffice to show

that the oracle form fails.

An upper bound for f.L(Se) follows from the following well known lemma (see e.g. [Li and Vitanyi]) .

Lemma 36 There is a constant k1 such that for each n, the number of sequences x of length

n for which K(x) :::; n + K(n) - r, is at most k1 . 2n- r . Hence f.L(Se) :::; k1 . ~~=n(tc)2-K(n)- e .

We now find a lower bound for the measme of Se.

Lemma 37 There is a constant k2, such that for each m, the measure of binary sequences w,

which are I-compressible only after m, is larger than k2 . ~~=m2-K(n). Hence

Proof. Since fewer than k1 . 2n - K (n)-e strings of length n have prefix complexity lower

than n - c and I:~=o 2-K(n) < I, more than measme ~ of infinite binary sequences are not

I-compressible (at all) . Hence, for each m, more than ;easure i of binary strings of length

m, are not I-compressible before m. Let Nm be the set of strings of length m which are not

I-compressible before m . Now each x E Nm has a program Px which outputs x and has length

Ixl +l, where l :::; K(m) (see e.g.[Li and Vitanyi]). We will now take each of these strings x and

extend them to I-compressible strings Xe.

Consider the prefix program p (of length r say) which on input Px, outputs x followed by a

1 and a string of Os up to length Ipx I + r + 1. This extension Xe of x of length Ipx I + r + 1 has

K(xe) :::; IPxl + r and is thus (at least) I-compressible.

Hence all infinite extensions of Xe are at least I-compressible. Now, since IPxl :::; Ixl +K(m),

it will suffice to add a 1 and K(m) + r zeros to every string in Nm . Each of these strings

of length m + K (m) + r + 1 will then have prefix complexity at most m + K (m) + r and all

infinite extensions of these strings will be I-compressible (only) after m. We do this for every

set Nn , n > m and denote the set obtained from Nm by N:n.

51

We now show that the sets NI are disjoint. There are only two possibilities for sets N~ and

Nj with h < j. Either j ~ h + K(h) + r + 1 and we have the following (note carefully the

(non)overlap of the 10 0 sequences):

~
CYICYh 10 0 ...
~

f31 f3 j 10......... 0 .. .

with the sets disjoint because of the 1 preceding the 0 sequence III WEN;, or we have

j > h + K(h) + r + 1 as follows:

"..-"--.
CYI ... CYh 10 ... 0 ...

"..-"--.
f31 f3 j 10 ... 0 .. .

in which case each W E N~ is I-compressible before j and can therefore not be in Nj. There is

therefore a constant k2 such that /L(U:=m N~) ~ k2 . L~=m 2-K(n) for each m. -

Hence /L(SI) > /L(Sc) for c large enough, and the oracle form fails.

Note that this also implies that there are Martin-Lof (and Solovay) tests for which, given c,

no stage exists after which no W E K C can appear. Indeed, consider the result above and take

Oi as the i-compressible sequences. Then /L(Oi) < 2-i and Oi :2 0HI.

52

Chapter 4

Complexity and unsolvability

4.1 Introduction

In this chapter we examine the relation between complexity and unsolvability. To demonstrate

the usefulness of (Kolmogorov) complexity in studying unsolvability, we start the chapter by

using complexity to give a proof of Rice's theorem. We find that complexity gives us more

information than the classical proofs of Rice's theorem (via an imbedding into the halting

problem or via the recursion theorem). Since complexity is a finitary concept (as opposed to

unsolvability, which is strictly infinitary) we can (and do) examine the relation between the

unsolvability of a set and the complexity of finite subsets of the set. We also prove a "gap­

theorem" for outputting consecutive integers. We then give some examples of problems which

are easy to show unsolvable via complexity but are (at least) awkward to show unsolvable by

an imbedding into the halting problem. We also examine the relation between our method

and TUring completeness. Finally we deduce some easy results relating to proof lengths and

independent statements. Unless explicitly stated, we work in the context of Kolmogorov (not

prefix -) complexity. We will often refer to initial segments of sets and mean by this initial

segments of the associated characteristic functions.

53

4.2 Rice's theorem

Notation: We will denote universal (additively optimal) Turing machines by the notation U

and denote by Pn the program for U with index n. VYe will denote various classes of programs

by C, and by Cn, the members of C up to length n. We will denote the special class of all

programs by P, with Pn the obvious set. A set X ~ N is decidable or solvable if there is an

algorithm ¢ which can decide, for all x E N, on input x, whether or not x EX.

Let F be any class of partial computable functions and let C F be the class of programs p,

such that P computes some function in class F. Rice's theorem states that {n : Pn E CF} is a

computable set if and only if CF = 0 or C F is the class of all partial computable functions.

In other words we cannot recursively sort programs according to t he functions they compute.

Rice's theorem is generally proved in one of two ways, either the problem of classifying the pro­

grams is reduced to the halting problem, or the recursion theorem is used to show that no algo­

rithm exists which could sort the programs correctly. See for example [Rosenberg and SalomaaJ .

We give a proof of Rice's theorem using the idea of "shortest program for a function". For

this, we extend the idea of Kolmogorov complexity (of strings) to functions. The method is

simple and can be used in a variety of situations.

Theorem 38 Let 0 be the nowhere defined function and let C be any class of functions not

containing 0. Then {n : Pn E C} is not a computable set.

In other words, the nowhere defined function is recursively inseparable from any other class

of functions. The crucial part of the proof will be that every program in C halts on some input,

which allows us to diagonalize against C .

Proof. Suppose by contradiction that there is a program P which can decide on input the

index i of a program Pi, whether or not Pi is in C. We can then construct the following sequence

of programs (p~) : On input any integer i, p~ first uses P to enumerate all programs in Cn

(there is an effective mapping from a program to its index so P can do this). Let Pc be the first

program enumerated in Cn. For n small, Cn may be empty, we assume n large enough that

this is not the case.

After p~ has used P to find all programs up to length n which are elements of C, it dovetails

the computation steps for each of the programs in Cn on all possible inputs until each of them

54

has halted on some input. This is certain to happen as none of them compute the nowhere

defined function. Let the total number of steps used in this dovetailing be tn . The program p~

then loops for another tn steps, and then simulates Pc on input i.

Since the length of p~ need be no longer than Ipi + log n + k, and p~ computes the same

function as Pc, we must have that p~ is in Cn.

The program p~ however, differs from all the programs in Cn since, for all p E C(n), there

exists an i such that p halts on i within 2tn steps, while p~ runs longer than 2tn steps on any

input . We obtain a contradiction. •

Corollary 39 Rice's thforem.

Proof. Any classification of programs according to the functions they compute must place

all the programs computing the nowhere defined function in the same class. We can then

diagonalize against the programs in the other class, as above. If neither class contains the

nowhere defined function we can diagonalize against either class. •

Henceforth we will refer to the "new" program we construct, given a class of programs we

assume by way of contradiction, to be computable, as the diagonal program.

4.3 Complexity of finite fragments of uncomputable sets

Usually, classes of programs are shown to be uncomputable by reducing them to the halting

problem. This method of course only applies when we are dealing with an infinite class . A

moment's thought on the construction above leads us to the observation that if we are classifying

programs, and the complexity of the classification increases with increasing program length,

the classification should be uncomputable. In this sense we can see complexity as a cause of

unsolvability. In Section 4.5 we show, however, that initial segments of solvable sets can also

be maximally complex.

In this section we take a complementary perspective and show that it is a property of many

unsolvable problems (or sets) that each initial segment of the set has maximal complexity, given

the fact that it is c.e .. It follows from the proof of Theorem 2.7.2 in [Li and Vitanyi], that the

complexity of the characteristic function X of the halting set has C(Xl:n) > log n for all n. This

implies that the complexity of the number of halting programs up to length n is > n - c for

55

all n and universal c. Since the proof of Theorem 38 works for any index complete set, we have

the following generalization of this result:

Theorem 40 Let C 1 and C2 be two disjoint classes of partial computable functions and let p~

be a program which correctly classifies all programs up to length n as in C 1 or in C 2
. Then

C(p~) ~ n - c,

where c depends on C1 and C2 only. In particular, c depends only on the lengths of the programs

used to enumerate C 1 and C 2 .

Proof. Let p be a program which uses p~ to diagonalize against the programs in C~ or

C~. Since p can get n from p~, p need have length no greater than Ip~1 + k, k independent of

n. Also, since p must differ from all programs in C~ (or C~), P must have length > n. Hence

C(p~) + k > n thus C(p~) > n - k. •

Corollary 41 Given a program p which supposedly recursively divides the set of all programs

into two function classes, we can effectively find a length n(lpl) such that p incorrectly classifies

some program of length < n.

In general, let P be some computable property which we suspect most halting programs

have. Let p be a shortest program for testing programs for property P . Then at least

2n- logn-!p!- O(1) of strings of length n that halt, do not have property P. In some sense then,

halting programs seem to have very little in common except the fact that they halt.

Restricting the halting problem to programs shorter than n, is a special case:

Corollary 42 There exists a constant c such that any program p~ which correctly classifies the

programs in Pn as halting or not (on the empty input), must have length at least n - c.

This means that the halting problem for programs shorter than n is in some sense as

complicated as possible. Indeed, it will suffice to solve the halting problem for Pn to give

the exact number of the programs in Pn which do halt (we then dovetail the running of these

programs until this number have halted - we then know no more will halt). We therefore need

56

at most n + 1 digits to specify the number of these halting programs since the number of

programs (binary strings) of length at most n is < 2n +1 and we therefore need at most n + 1

digits to specify this number. Further, by the above result we also need at least n - c digits.

This enforces the idea that there is very little pattern to the halting set. From the fact that we

can construct p~ from the exact number of halting programs of length at most n, we get the

following:

Corollary 43 The number hn of (non) halting programs in Pn , has Kolmogorvv complexity at

least n - c.

Proof. Since we can construct p~ from this number hn, i.e. n - c < C(p~) < C(hn) + CI,

we must have that C(hn) > n - C - CI .•

This leads immediately to

Corollary 44 The number hn of (non) halting programs in Pn is at least 2n-c.

Proof. Since C(hn) > n - c, it follows that the number hn must have at least n - C - C2

cdigits (C2 universal), and hence it must be larger than 2n - - c2 .•

vVe now show, analogous to the fact that there must be many (non)halting programs in Pn ,

for each n, that many computably enumerable properties must be well represented amongst

programs up to length n. This is because, as in the halting set, we can use the exact number

of programs up to length n with a particular property, to find all such programs up to length

n. If there were few such programs, we could use the small number to diagonalize against the

set of programs as in our main proof, giving a contradiction. The only way around this is that

the number of such programs is maximally complex and hence of length around n.

Theorem 45 Let P be a c. e. functional property of programs enumerated by a program p and

let Ipi = c. If both P and not-P hold for at least one program each, the number Xn of programs

cin Pn which have/don't have the property P is at least 2n - -Cj, CI independent of n.

Proof. Let p~ output Xn. We can then use p~ to construct a diagonal program p with

property P. Since we can get n from p~, p need have length no more than Ip~ 1+k, k independent

of n. Since p must differ from all programs in Pn , p must have length> n. Hence Ip~1 + k > n

or Ip~1 > n - k. Since a candidate for p~ is just Xn itself, we must have that C(xn) > 2n-c.•

57

Corollary 46 Let P be a c.e. functional property of programs with associated program P with

Ipi = c. If both P and not-P each hold for at least one program, the number of programs x of

c Qlength exactly n which have/don't have the property P is at least 2n - - , Cl independent of n.

Proof. All we need do is change P to P where P I is: "P holds and the program is of I

length n". The rest of the proof is the same except that we may have to pad the diagonal

program up to length n . Since log n becomes arbitrarily smaller than n, we will always have

space to start the program with a string whlch says "Ignore until digit m" for suitable m. ­

4.4 Convergence of the halting fractions?

. . I{i : Pi halts Pi E Pn}l)
It IS clearly unlikely that the sequence of halting fractIOns (2 n converges.n

Whether or not thls is the case, the sequence cannot converge to any computable real and in

fact, no computable real can be a limit point for this sequence of fractions. This is because

each such fraction must have maximal complexity and hence cannot even start with a simple

segment (for example, a long initial segment of a computable real) since thls would mean that

an initial segment (with length of very low complexity) of some fraction for n large, would be

easy to specify and would therefore diminish the complexity of the entire fraction.

4.5 Complexity of finite fragments of computable sets

In thls section we apply complexity to finite subsets of computable sets and give an example of

a trivially computable set for whlch each initial segment has maximal complexity.

Consider the set of natural numbers whlch are outputs of programs. Thls is clearly N , a

computable set. We find, however, that restricting the set to outputs of programs in Pn , gives

a finite subset of N with maximal complexity.

Theorem 47 Let On be the set of outputs on the empty input, over all programs in Pn . That

is, s is in On if a program in Pn outputs s on the empty input. Then On has Kolmogorov

complexity larger than n - c for c universal.

Proof. Similar to the proofs above. _

58

It follows that the number of different such outputs must have complexity around n - c

cand hence be at least 2n - . It also follows that the number of different functions computed by

programs in Pn is large, i.e. around 2n-c.

4.6 A gap theorem for outputting consecutive integers

We show that there are consecutive integers m and m + 1 such that the shortest running time

of any program in Pn to output m + 1, is enormously longer than the shortest running time of

any program in Pn to output m.

Theorem 48 For all n large enough the following holds, for c universal. Let t(m) be the

shortest running time to output m over all the programs in Pn . Then there are integers m and

m + 1, both outputs of programs in Pn such that

t(m + 1) - t(m) > s for all s with C(s) < n - c.

Proof. Let Xn be any number larger than the largest time-gap between the first outputs

of consecutive integers. In other words, if any program in Pn outputs an integer s in t steps

and s + 1 is not outputted by any program in Pn running for t + Xn steps, then s + 1 is not an

output of any program in Pn . We show that C(xn) > n - c. Note that such Xn exist.

Consider the program p : "dovetail the running of the programs in Pn till you find a newly

outputted integer m such that, even after running all the other programs in Pn for this running

time plus X n , you do not get as output m + 1. Now output m + 1" .

Note that there is such a p with Ipi < IXnl + c.

It follows from the definition of Xn that p is not in Pn , which means that p must have length

at least n + 1. Hence n < IXnl + cor IXnl > n - c.

Clearly m will have Kolmogorov complexity around n. •

One may well suspect that the shortest program for m + 1 is really, "that integer one larger

than the one outputted before gap x n "!

59

4.7 Comparing the methods

The condition for Rice's theorem is that the classes into which we divide the programs should

be complete index sets. This means that all programs computing a function in the given class,

must be in the class. An example of a class which is not index complete is "those programs

defined on their own index": Let Pj be a member of this class, hence Pj (j) is defined. It is clearly

not enough for a different program Pk to be defined on j, to be in the class . In other words,

the class may contain an index of a program computing a function J, but not all programs

computing f. This requirement is often not crucial for an imbedding into the halting problem

(the way the standard proof of Rice's theorem goes) but it does make the imbedding easier. An

example may be helpful:

Let us denote by A the class of programs which compute functions which are not nowhere­

defined. We will use A as our basic undecidable class, as it is easy to show that A is unsolvable

using our method, and using A avoids the self-referential details of the usual basic unsolvable

class of programs (those programs defined on their own index).

Consider the process of showing that the class B of programs computing functions which are

defined on 1, to be unsolvable. The standard method of imbedding B into the halting problem

(but using our basic unsolvable class A) would associate to each program p, a program pi such

that p is in A if and only if pi is in B. Clearly then, if we could decide B we could also decide

A. We would generally construct pi to be a program which halts on input 1 if and only if p halts

on any input. To do this, we could write pi to be some program which on input 1 simulates a

dovetailing of p on all possible inputs and halts if and when p halts on some input. Clearly, pi

will halt on input 1 if and only if p halts on any input. The index completeness of B assures us

that

however we construct pi, as long as pi halts on input 1, it is in B, (A)

so B has permissive entry criteria.

We will shortly give an example of a set of programs which we have explicitly designed to

thwart this freedom but which is easily shown unsolvable via program length. Note first that

the following two sets of programs are not index complete but are easily shown to be unsolvable

60

using program length:

Example 49 The set of programs defined on their own index (Note that this is not a complete

index set): As in the proofs above, consider all those programs in Pn which are defined on their

own index. Now run all of these programs till they halt on their index and then write a diagonal

program that runs longer than any of these but halts for all inputs (since we want to be sure it

halts on its own index).

Many classes involving running time (the number of steps that a program takes for certain

tasks) are especially easy to deal with.

Example 50 The set of programs which are defined on at least two con.secutive inputs and run

at least twice as long on the second input than on the first: All we need do is find the maximum

multiple of the first running time that is run on the second input and write a short diagonal

program to exceed this.

The following example is perhaps harder to imbed into the halting problem than the two

above.

Example 51 Let B be the set of indices i, where Pi is the first program (under some standard

dovetailing) to halt with a new output: that is, for some Xi EN, Pi is the first program to halt

and output Xi.

Note that the example above allows us very little freedom to simulate the halting/non­

halting question for an arbitrary program. In particular, we encounter problems with A above:

If we attempt to imbed the halting problem into the above example, we cannot easily associate

to any program p, a program p' such that p' is in B if and only if p is in A. Tills is because B

has stringent entry criteria willch depend on the running time of p' and not only on its output,

and a long simulation of a program p by p' would already disqualify p' as an element of B.

We have made some attempts to set up problems willch are even more difficult to reduce to

the halting problem:

Example 52 Let B be the (c.e') set of all pairs (n, i) where i is an output string of some

program of length at most n and we further have that all (n,j) for j < i have been enumerated.

61

Direct attempts at imbedding this problem in the halting problem are thwarted for similar

reasons as in the example above.

Remark 53 It is awkward to find the exact conditions for which the method will work. On the

one hand we can say that it suffices, given a short program which gives an exhaustive list of

programs in Pn with property P, to be able to construct (or weaker, show there exists)a program

or programs different to all these, with property P , and of length < n. On the other, although

our sets need riot be index complete, i. e. exha'ustive with regard to the functions they compute,

they must at least be exhaustive amongst a certain class of programs, since we must be sure that

the diagonal program is forced to be one of them. In the next section we will make some remarks

that seem to imply that this method will only work for Turing complete sets of programs. This is

in contrast to the examples above, where it seem ed that the method may be able to show classes

which are not Turing complete (see [OdifreddiJ,[SoareJ) , to be unsolvable.

4.8 Turing completeness

Can we diagonalize against c.e. sets which are not reducible to the halting problem? (Particu­

larly, can we show c.e. sets of degree less than that of the halting problem to be unsolvable using

program length?) The following remarks seem to indicate that any set for which our method

works is reducible to the halting problem, albeit not necessarily in the form of a straightforward

imbedding.

Consider in each of the above sets C, that program pin Pn which is enumerated last amongst

all the programs in Cn, say after tp steps. Clearly if p had complexity much lower than n, we

could use p to create a diagonal program pi in Cn. Hence C (p) > n - c for each nand universal

constant c. Now since C(p) > n - c, and any t ~ tn would specify p uniquely, we must have that

C(t) > n - c, for all t > tn. But then tn as a number of steps would suffice to solve the halting

problem for all programs in Pn- k for k some universal constant, since no program in Pm can

run for more steps than tm if C(t) > m - c, for all t > tm , by the defirution of Kolmogorov

complexity.

A similar argument shows that if a c.e. set is such that the sum of the halting elements up

to length n has complexity greater than n - c for each n , the set is complete. This is because

62

such a sum cannot be reached in fewer than tn steps where C(t) > n - c, for all t > tn, hence

the running time must be longer than any number outputted by a program shorter than n - c.

But any such number solves the halting problem for programs of length at most n - c - k.

Hence in this case maximally complex implies complete.

In [Li and Vitanyi] the remark is made that almost every c.e. set which is complete under

the usual reducibilities, has the property that C(Xl:n) > log n for all n. For Thring reducibilities

we can therefore say a little more.

Theorem 54 There is an algorithm ¢ which will transform the characteristic function X of a

c.e. set S into a sequence with Kolmogorov complexity C(Xl:n) > logn fOT all n if and only if

S is Turing complete.

Proof. (Only if) By hypothesis, we would have that C(Xl:2n) > n for all n and hence the

time tn it takes to compute Xl:2n must have Kolmogorov complexity C(tn) > n. Hence we

could solve the halting problem up to length n given any time t > tn. Hence S is complete.

(If) If we have a Thring complete c.e. set S then, by definition, there exists an algorithm trans­

forming its characteristic sequence into that of the halting sequence, which has characteristic

sequence C(Xl:n) > log n for all n. _

It follows from this theorem that "modulo the computable functions" all complete c.e. sets

must have a certain density of elements in that there must be an algorithm which maps the

characteristic sequence to that of the halting sequence, and this set has a high density of

elements.

4.9 	 An O-like real for each functional computably enumerable

predicate

Recall Chaitin's halting probability n: That is, if Pl,P2, ... is the sequence of halting programs

for a universal prefix machine U, then nu = ~~=12- IPnl . Now consider such a universal prefix

machine U and any c.e. functional property P of programs and consider for (Pi), the sequence

of programs enumerated with property P, the sum S = Lx 2- lpil . Clearly, we can write a

program p, which on input the first n digits of S, creates a diagonal program p' of complexity

63

larger than n, with property P , but running longer than all of the Pi in Pn . Hence K(p') ~ n,

so K(Sl:n) + ipi ~ n . This holds for each n so setting c = ipi we get that K(Sl :n) ~ n - c for

all n . Hence S is random.

4.10 An application to independent statements and proof lengths

Short statements with no short proofs have been examined for various axiomatic systems (see

for example [Pudhik]). In this section we will make some informal, elementary remarks on proof

lengths using complexity.

Let Xn be the number of halting programs in Pn .

Proposition 55 Since C(xn) > n - c for a universal c EN, each of the statements "The

number of halting programs in Pn is xn" will be independent of any of the usual axiom systems,

for n large enough.

If this were not the case, we could on input of a large n (length logn) and a search program,

systematically search through all proofs in the axiom system to find the first statement of this

form and output (the maximally complex) Xn. Clearly this is closely related to the analogous

result for statements of the form "x is maximally complex" (see for example [Li and Vitanyi]

for a discussion of the latter type of statement).

Note also that

Proposition 56 Each of the statements "The number of halting programs in Pn is at least Sn "

is provable for each Sn :S Xn for the usual axiom systems, but for Sn close to Xn the proofs of

such statements must be incredibly long. Indeed, consider as an example Sn = Xn . Then we

cannot find the associated statement as the last line in any proof of which the length is specifiable

in fewer than n bits!

This follows from the following description of the number of halting programs in Pn : Search,

for a fixed n, through all proofs up to length m which have as last line a statement of the form

"The number of halting programs in Pn is at least sn", now output the largest Sn appearing in

such a statement.

64

Clearly if m was large enough, Sn would equal X n , hence the fact that Xn is a maximally

complex number means that m cannot be specifiable by a program much shorter than n digits.

Hence the only proof of "The number of halting programs in Pn is at least xn" is of enormous

length. In fact, it is quite easy to see that the length of this proof is comparable to the running

time of the longest running program in Pn!

65

Bibliography

[Bennet and Gardner] 	 C. H. BENNET and M. GARDNER, 'The random number omega bids

fair to hold the mysteries of the universe' Scientific American 241

(1979) 20-34C.

[Borell] 	 E. BOREL, 'Les probabilites denombrables et leurs applications arith­

metiques' Rend. Circ. Mat. Palermo 27 (1909) 247-271

[Borel 2] 	 E. BOREL, Ler;ons sur la theorie des fonctions (Gauthler-Villars,

Paris, 2nd ed., 1914)

[Calude] 	 CALUDE, Information and Randomness (Springer-Verlag, 1994)

[Chait in 1] 	 G. J. CHAITIN, 'On the length of programs for computing finite binary

sequences' J. Assoc. Comput. Mach. 13 (1966) 547-569

[Chaitin 2] 	 G. J. CHAITIN, 'On the length of programs for computing finite bi­

nary sequences: statistical considerations' J. Assoc. Co mput. Mach. 16

(1969) 145-159

[Chaitin 3] 	 G. J. CHAITIN, 'A theory of program size formally identical to infor­

mation theory' J. Assoc. Comput. Mach. 22 (1975) 329-340

[Chaitin 4] 	 G. J. CHAITIN, Algorithmic Information Theory (Cambridge Univer­

sity Press, 1987)

[Church] 	 A. CHURCH, 'On the concept of a random sequence' Bull. Amer.

Math. Soc. 46 (1940) 130-135

66

[Davie] G. DAVIE, 'Discrepancy of Complex Sequences via Compressibility'

JCMCC to appear.

[Feller] W. FELLER, An introduction to probability theory and its applications

(Wiley, 1968) 3rd ed.

[Fouche 1] W. 1. FOUCHE, 'Descriptive Complexity and Reflective Properties of

Combinatorial Configurations' J. London Math. Soc. 54 (1996) 199-208

[Fouche 2] W. L. FOUCHE, 'Discrepancies of Hypergraphs of high Kolmogorov

complexity' JCMCC to appear.

[Fouche 3] W. L. FOUCHE, 'Identifying randorrmess given by high descriptive

complexity' Acta Appl. Math. ;)4 (Hl!::l4) 313-328

[Fouche and Potgieter] W. L. FOUCHE and P. H. POTGIETER, 'Kolmogorov Complexity

[Gacs 1]

[Gacs 2]

[Hinman]

[Kolmogorov 1]

[Kolmogorov 2]

[Levin 1]

and Symmetric Relational Structures' J. Symbolic Logic 63 (1998) 1083­

1094

P. GACS, 'On the symmetry of algorithmic information' Soviet Math.

Dokl. 15 (1974) 1477-1480; Correction Ibid. 15 (1974) 1480

P. GACS , 'Exact expressions for some randomness tests' Zeitschrift

fur Math. Logic Grundlag. Math. 26 (1980) 385-394

P. G. HINMAN, Recursion- Theoretic Hierarchies (Springer-Verlag,

1978)

A. N. KOLMOGOROV, 'Three approaches to the quantitative defini­

tion of information' Problems Inform. Transmi,ssion 1 (1965) 1-7

A. N. KOLMOGOROV, 'Logical basis for information theory and prob­

ability theory' IEEE Tmns. Inform. Theory IT-14 (1968) 662-664

L. A. LEVIN, 'On the notion of a random sequence' Soviet Math.

Dokl. 14 (1973) 1413-1416

67

[Levin 2]

[Li and Vitanyi]

[Martin-Lof 1]

[Martin-Lof 2J

[Odifreddi]

[Pudlak]

[Rado]

L. A. LEVIN, 'Laws of information conservation (non-growth) and as­

pects of the foundation of probability theory' Problems Inform. Trans­

mission 10 (1974) 206-210

M. LI and P. VIT ANYI , An Introduction to Kolmogorov Complexity

and Its Applications (Springer-Verlag, 1993)

P. MARTIN-LOF, 'The definition of random sequences' Inform. and

Control 9 (1966) 602-619

P. MARTIN-LOF, 'Complexity oscillations in infinite binary sequences'

Zeitschrijt Jur Wahrscheinlichkeitstheorie und Verwandte Gebiete 19

(1971) 225-230

P. ODIFREDDI, Classical Recursion Theory (North-Holland, 1989)

P. PUDLAK, 'The lengths of proofs' Handbook of proof theory (North­

Holland, 1998)

R. RADO, 'Universal graphs and universal functions' Acta Arith. 9

(1964) 393-407

[Rosenberg and Salomaa] G. ROSENBERG and A. SALOMAA, Cornerstones of Undecid­

ability (Prentice Hall, 1993)

[Schnorr] C. P. SCHNORR, 'Process complexity and effective random tests '

Comput. System Sci. 7 (1973) 376-388

J.

[Shen'] A. Kh. SHEN', 'Connections between different algorithmic definitions

of randomness' Soviet Math. Dokl. 38(2) (1989) 316-319

[Soare] R. 1. SOARE,

Verlag, 1987)

Recursively Enumerable Sets and Degrees (Springer­

[Solomonoff 1] R. J. SOLOMONOFF, 'A preliminary report on a general theory of

inductive inference' Technical report ZTB-138, Zator Company, Cam­

bridge, Mass. November 1960.

68

[Solomonoff 2]

[Solovay]

[Spencer]

[van Lambalgen 1]

[van Lambalgen 2]

[van Lambalgen 3]

[von Mises]

[Wald]

R. J. SOLOMONOFF, 'A formal theory of inductive inference' part 1

and part 2 Inform. Contr. 7 (1964) 1-22 and 224-254

R. SOLOVAY, Lecture notes on algorithmic complexity (UCLA 1975

Unpublished)

J. SPENCER, 'Six standard deviations suffice' Trans . Amer. Math.

Soc.289 (1985) 679-706

M. VAN LAMBALGEN, 'Von Mises' definition of random sequences

reconsidered' The Journal of Symbolic Logic 52 (1987) 725-755

M. VAN LAMBALGEN, 'The axiomatization of randomness' The

Journal of Symbolic Logic 55 (1990) 1143-1167

M. VAN LAMBALGEN, 'Independence, randomness and the axiom of

choice' The Journal of Symbolic Logic 57 (1992) 1274-1304

R. VON MISES, 'Grundlagen der Wahrscheinlichkeitsrechnung' Math­

ematische Zeitschrijt 5 (1919) 52-99

A. WALD, 'Die Wiederspruchsfreiheit des Kollektivbegriffes der

Wahrscheinlichkeitsrechnung' Ergebnisse eines mathematischen Kol­

loquiums 8 (1937) 38-72

69

	Front
	Title page
	Acknowledgements
	Samevatting
	Summary
	Contents

	Chapter 1
	1.1 Complexity and randomness
	1.2 Reservations
	1.3 Randomness

	Chapter 2
	Chapter 3
	3.1 Recursive events in random sequences
	3.2 Gambling against a random sequence
	3.3 An application to Chaitin's...
	3.4 Discussion: Randomness and extensionality
	3.5 Various generalizations fail

	Chapter 4
	4.1 Introduction
	4.2 Rice's theorem
	4.3 Complexity of finite fragments of uncomputable sets
	4.4 Convergence of the halting fractions?
	4.5 Complexity of finite fragments of computable sets
	4.6 A gap theorem for outputting consecutive integers
	4.7 Comparing the methods
	4.8 Turing completeness
	4.9 An Omega-like real for each functional computably enumerable predicate
	4.10 An application to independent statements and proof lengths

	Bibliography

