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ABSTRACT

Methods for the determination of accessible workspaces of planar Stewart platforms of

general design
by

Alexander Morrison Hay

Supervisor: Professor J. A. Snyman

Department of Mechanical and Aeronautical Engineering

Degree: Master of Engineering
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manipulator, non-convexity, redundancy.

In recent years Stewart platforms have been increasingly studied and developed. These
parallel manipulators offer a number of advantages over traditional serial manipulators
including high rigidity, good positioning accuracy and high load to weight ratio. The main
disadvantage associated with parallel manipulators is that they have relatively limited
workspaces. Numerous researchers have thus emphasized the need to develop refined

methods for the determination of workspaces of such manipulators.

This study is primarily concerned with extensions to a novel optimization approach for the
determination of manipulator accessible output sets. The optimization approach provides a
general method for the determination of workspaces of both serial and parallel manipulators
and has the considerable advantage that it may easily be automated. Furthermore, the
approach allows for the easy and systematic implementation of various physical constraints

acting on manipulators.

Established methods for workspace determination are reviewed and illustrated by application

to a simple two degree of freedom example.



Abstract ii

The original optimization approach is extended and generalized to enable the determination of
non-convex workspaces. Simply stated, the approach consists of finding the points of
intersection of the workspace boundary with a number of successive search elements. The
points of intersection are determined by means of optimization techniques in which a dynamic

constrained optimization algorithm is used.

Two new methodologies, the modified ray method and the chord method, are proposed.
Differences between these methods are illustrated using a simple example. The optimization
approach, embodied in the proposed methodologies, is applied to the determination of
workspaces of planar Stewart platforms of varied designs. A formulation for all constraints

acting on planar Stewart platforms is introduced and implemented in the optimization

approach.

A special case of manipulator geometry, where the orientation of the platform is effectively
redundant in determining the extreme reach of the manipulator, is identified and studied. A
slight modification to the optimization methodologies is introduced to allow for the

determination of workspaces of such redundant manipulators.

The modified ray and chord methods proposed in this study have proven capable of
determining convex and non-convex manipulator workspaces. Of the two new methods, the
chord approach is the most reliable in determining non-convex workspaces. Both optimization
methodologies have been implemented in practical interactive computer systems, which allow

for the easy determination of workspaces of planar Stewart platforms of arbitrary geometry.
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Metodes vir die bepaling van bereikbare werkruimtes van vlak Stewart platforms met
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Gedurende die afgelope paar jaar is Stewart platforms toenemend bestudeer en ontwikkel.
Ingesluit by die voordele wat parallel-manipuleerders bied in vergelyking met tradisionele
serie-manipuleerders, is ‘n hoé stytheid, goeie posisionele akuraatheid en ‘n hoé las-tot-gewig
verhouding. Die hoofnadeel geassosieer met parallel-manipuleerders is hulle relatief beperkte
werkruimtes. Verskeie navorsers beklemtoon gevolglik die noodsaaklikheid om verfynde

metodes te ontwikkel waarmee die werkruimtes van hierdie meganismes bepaal kan word.

Die klem van hierdie studie val of die uitbreiding van ‘n nuwe optimeringsbenadering,
waarmee manipuleerders se bereikbare uitset-reekse suksesvol bepaal is. Die
optimeringsbenadering is algemeentoepasbaar op die werkruimte-bepaling van beide serie-
en parallel-manipuleerders, en bied die beduidende voordeel dat dit maklik geoutomatiseer
kan word. Bowendien is die benadering ideaal geskik om verskeie fisiese begrensings,

waaraan die manipuleerders onderhewig is, eenvoudig en sistematies te implementeer.

Gevestigde werkruimte-bepaling-metodes word beoordeel en geillustreer aan die hand van ‘n

eenvoudige meganisme met twee vryheidsgrade.

iii



Samevatting

Die oorspronklike optimeringsmetode word uitgebrei en veralgemeen om die bepaling van
nie-konvekse werkruimtes te inkorporeer. In eenvoudige terme gestel bestaan die uitgebreide
metode uit die snypunt-bepalings van opeenvolgende soek-elemente met die rand van die

werkruimte. Die snypunte word bepaal deur optimeringsmetodes waarin  ‘n

dinamiesebegrensde optimeringsalgoritme gebruik word.

Twee verskillende soek-elemente word gebruik wat lei tot die kategorisering van die
uitgebreide optimeringsmetode in die gewysigde straal-metode, en die koord-metode. ‘n
Iustratiewe voorbeeld lig die verskille tussen die twee metodes uit. Gevolglik word die
werkruimtes van verskeie vlak Stewart platforms met verskillende ontwerpe bepaal met die
gekategoriseerde optimeringsmetodes. Die voorgestelde formulering van al die fisiese
begrensings, wat ‘n invloed het op die vlak Stewart Platforms se werkruimtes, word gevolglik

ook geinkorporeer in die optimeringsmetodes.

‘n Spesiale manipuleerder-geometrie, waar die beweegbare platform se orientasie inderdaad
oortollig is in die bepaling van die manipuleerder se reikafstand, word ook bestudeer. Met
behulp van ‘n geringe modifikasie, word die voorgestelde optimeringsmetodes suksesvol

gebruik om die werkruimtes van sulke oortollige manipuleerders mee te bepaal.

Die aanduiding is dat die gewysigde straal- en koord-metodes wat voorgestel word in hierdie
studie, in staat is om konvekse en nie-konvekse manipuleerder-werkruimtes te bereken. Die
koordmetode kan uitgesonder word as die betroubaarste van die twee waneer dit kom by die
bepaling van nie-konvekse werkruimtes. Beide optimeringsmetodes is suksesvol
geimplimenteer in praktiese bruikbare interaktiewe rekenaarstelsels, waarmee die werkruimte

van ‘n vlak Stewart platform met ‘n arbitrére geometrie redelik maklik bepaal kan word.
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Chapter 1. OVERVIEW OF STEWART PLATFORMS AND
METHODS FOR DETERMINING THEIR
WORKSPACES

1.1 Introduction
This study is concerned with an extension of a novel optimization approach to the

determination of accessible output sets of planar manipulators. The outstanding feature of the
original optimization approach proposed by Snyman et al. [1] and Du Plessis |2] is that it
provides a technique for the determination of workspaces that may casily be automated.
Furthermore the method allows for the easy and systematic implementation of constraints
acting on the mechanism. In addition to these advantages, the optimization approach is

generally applicable to parallel and serial manipulators.

The method is illustrated by its application to the planar Stewart platform. Stewart platform
parallel manipulators have been increasingly studied and developed over the last few years
(Merlet [3]), and offer a number of advantages over traditional serial manipulators (Fichter
and McDowell [4]). One of the disadvantages of Stewart platforms is that they tend to have
small workspaces in relation to their size. A number of researchers have thus emphasized the
need to develop refined computer codes by means of which manipulator workspaces may be

obtained.

In this chapter, a survey of Stewart platforms, their applications and existing methods for the
determination of their workspaces are given. The different methods are illustrated by
application to a simple example. Chapter 2 deals with an overview of, and extension to the
original ray tracing optimization approach, which is further illustrated in chapter 3 by
application to a generally constrained Stewart platform. A new approach, also based of the
optimization principle, is described and illustrated in chapter 4. Finally a special case of

redundant type behavior is treated in chapter 5.
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1.2 Historical background and applications
In 1965 Stewart [5] proposed a six-degree of freedom platform, shown in Figure 1-1, as a

design for a flight simulator. Parallel manipulators of similar design have subsequently often

been referred to as ‘Stewart platforms’.

Figure 1-1: Stewart's flight simulator
Different parallel architectures have been proposed and studied by numerous authors. One of
the most popular 6 degree of freedom spatial designs to emerge is the 6-3 configuration

shown in Figure 1-2,which will be used here to illustrate the basic structure of Stewart

platforms.

Figure 1-2: 6-3 spatial Stewart platform
The mechanism consists of a mobile platform connected to a fixed base by means of a number

of linear actuators. The position and orientation of the platform can be controlled by varying



CHAPTER 1: Overview of Stewart platforms and methods for determining their workspaces 3

the lengths of the actuator legs. A point P fixed on the top platform, called the working point,
is often chosen and used to describe the motion of the platform. This type of Stewart platform
has also come to be known as a ‘hexapod’ due to the six legs used in this configuration. Many
other types of parallel manipulators have been proposed; some using rotary actuators, for
example the manipulator studied by Gosselin and Angeles [6], or specialized leg structures,

such as the Turin manipulator studied by Ceccarelli [7].

The importance of Stewart platforms is that there are many more practical applications other
than that originally envisaged by Stewart. Gough [5] had in 1949 already used a similar

mechanism, shown in Figure 1-3, for the testing of tyres.

| Figure 1-3: Gough's tyre test machine
A number of interesting prototypes based on the architecture of Stewart and Gough’s
platforms have been proposed and built. These parallel manipulators vary in size and
application from a micromanipulator for ophthalmic surgery (Grace et al. [8]) to a manipulator
for underground excavation (Arai et al. [9]). Other commercial uses include manipulators for
assembly and pick-and-place applications (Sternheim [10]), and application of the parallel
architecture to create six degree of freedom machining centers. Some examples of the latter
are the Giddings and Lewis Variax Hexacenter [11] (shown in Figure 1-4), the Ingersoll

Octahedral Hexapod [12] and the Hexel Tornado 2000 [13].
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Figure 1-4: The Variax Hexacenter by Giddings & Lewis
The multitude of present applications are as a result of the advantages that parallel
manipulators have over traditional serial manipulators. Since the load on the platform is
approximately evenly distributed between the actuator legs, Stewart platforms have a high
nominal load to weight ratio (Merlet [3]). The stresses in the legs are also mostly axial, which
results in high platform rigidity. Parallel manipulators are often used in assembly tasks
because of their high positioning accuracy. This accuracy is as a result of actuator errors being
averaged at the working point, and not compounded as occurs with serial link manipulators.
Furthermore the high stiffness of the manipulator contributes to the positioning accuracy
because leg deformations are minimal. These properties are further discussed in the paper of

Fichter and McDowell [4].

Although Stewart platforms possess a number of advantages, there are also disadvantages
associated with them. Most notable is the tendency of parallel platforms to have small
workspaces. The reason for this is that, in comparison to serial manipulators, the closed loops
of the parallel manipulator impose additional kinematic constraints on the system. Gosselin
[14] emphasizes that it is thus of primary importance to develop efficient tools for the
determination of parallel manipulator workspaces. This is not an easy task since, for a parallel
manipulator, the orientation and position of the working point are coupled in terms of the
inputs to the manipulator. Existing methods for the determination of parallel manipulator

workspaces are examined in the next subsection.
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1.3 Existing methods for workspace determination
Depending on the orientation conditions imposed on the platform, different types of positional

workspaces can be calculated. There is some inconsistency in the literature as to what the

generally accepted terminology for naming different workspaces is. In the paper of Merlet et

al. [15], various classes of manipulator workspaces for planar manipulators are defined and
determined. Their terminology will be adopted in the work that follows. The workspaces
described are:

1. constant orientation workspace: the set of points that can be reached by the working point
of the platform with a specified constant orientation. Gosselin [14] also uses the term
‘positioning workspace’ to describe the constant orientation workspace.

2. maximal workspace: the set of points that can be reached by the working point of the
platform with at least one orientation. The maximal workspace has also been referred to as
the ‘reachable workspace’ (Kumar and Waldron [16], Wang and Hsieh [17]). The major
part of the present study is devoted to the determination of maximal workspaces. In what
follows, the term ‘workspace’ will therefore refer to ‘maximal workspace’ unless
otherwise stated. In a similar way the term ‘accessible output set’ has been used
interchangeably with ‘workspace’ by Haug et al. [18] and Snyman et al. [1] to refer to the
maximal workspace.

3. inclusive workspace: the set of points that can be reached by the working point of the
platform with at least one orientation in a prescribed range. This is a subset of the
maximal workspace.

4. dextrous workspace: the set of points that can be reached by the working point of the
platform for which all possible platform orientations can be attained. In other words the
platform can assume any orientation for a prescribed position in the dextrous workspace.

5. total orientation workspace: the set of points that can be reached by the working point of
the platform at which all orientations in a prescribed range can be attained. The term
‘dextrous workspace’ has also been used to describe the total orientation workspace (Haug

et al. [18], Snyman et al. [1]).

Of the workspaces listed above the determination of the maximal workspace is probably the
most challenging problem, since it represents the case with the fewest constraints present and
thus the form of the workspace will generally be the most complex. Methods for workspace
determination are usually primarily concerned with determining the boundary of the

accessible output set of a manipulator. /nternal boundary curves are also important features of
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any workspace. These curves present possible barriers to the motion of the manipulator within

the workspace (Haug et al. [19]).

Merlet [3,20] classifies the main methods for the determination of parallel manipulator
workspaces. He identifies three main classes, namely discretization methods, Jacobian matrix
techniques and the geometrical approach. In the discussion of these classes below, the simple
planar two degree of freedom manipulator shown in Figure 1-5 will be used to illustrate each

type of method.

P (Xp,yr)

///// ;’t%?"’//tz;;»,
Figure 1-5: A two degree of freedom manipulator

The manipulator consists of two linear actuators, /, and /,, connected to the ground by means
of revolute joints 4 and B and to each other by a revolute joint P with global coordinates
(%p,yr), which is the working point of the manipulator. Point 4 has coordinates (0,0) and point
B coordinates (x3,0). With no limits on the actuator lengths, point P may be arbitrarily
positioned in the x-y plane by controlling the lengths of legs 1 and 2. It is evident that this
manipulator thus has two degrees of freedom. The motion of the manipulator is restricted

when actuator legs have limits associated with them of the form
limin Sll Slimax , i:1,2 (1.1)
These constraints, together with the geometry of the platform, determine the size and shape of

the workspace. In this chapter, the values of the above constants will be taken as x,=4,

[ =1 =225, ™ =3.25 and ;"™ =3.75 expressed in arbitrary units.

1.3.1 The discretization method
The discretization method in its most basic form (Yang and Lee [21], Chrisp and Gindy [22])

will be illustrated by its application to the two degree of freedom manipulator. As shown in
Figure 1-6, a rectangular grid of points ({x.y;} i=1,N; j=1,M) is defined on the output plane at
a given resolution. The working point P is then successively positioned at each of the grid
node points and the leg length constraints checked to determine whether any of the constraints
are violated. Each of these points can then be classified as either a feasible or an infeasible

point. In such a way, an indication of the manipulator workspace can be obtained. Since this
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approach is computationally intensive, various authors have used different methods to speed

up the process.

................................... . Infeasible point
................................... « Feasible point

Figure 1-6: Workspace determination using the discretization method

Fichter [23] uses a more efficient contour-tracing method for determining the workspace of a
six degree of freedom parallel manipulator. The method consists of fixing any four of the
possible six spatial platform parameters (X, y, z, roll, pitch and yaw), thus defining a plane in
which the workspace will be solved. The platform position is incremented with respect to the
remaining two parameters and the inverse kinematics solved to give the leg lengths and
platform configuration. Once more computed leg lengths are compared to the leg length limits
of the manipulator to determine the feasibility of each incremented platform position. The
contour-tracing algorithm is used to determine the next point to be sampled. A similar
approach is used by Arai et al. [24] who also include the effects of limits on the passive joint

angles and leg inferences in their analysis.

In a different approach Masory and Wang [25] and Chrisp and Gindy [22] have used relatively
efficient scarches in a cylindrical coordinate system to determine constant orientation

workspaces of spatial Stewart platforms.

Merlet |20] states that discretization methods are usually not efficient and therefore time-
consuming, especially when a high resolution mapping of the workspace is required.
Furthermore it is difficult to vary more than two parameters simultaneously, which means that

only constant orientation or constant position workspaces may be determined with ease.
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Because of this, internal boundary curves cannot practicably be determined using the

discretization method since these curves are associated with a range of platform orientations.

The discretization approach does however possess a number of advantages. Since the method
consists of simply scanning and sampling the workspace, it is easy to implement as a code for
determining manipulator workspaces. Additionally due to the fundamental nature of the

algorithm the method is very stable.

1.3.2 The continuation method
Merlet [20] describes the second class of methods as Jacobian matrix techniques. Early

application of this approach appears in the work of Jo and Haug [26,27] who refer to this class
of methods as continuation methods. For any point on the boundary of a workspace the
velocity of the manipulator along a normal to the boundary must be equal to zero. This
implies that the Jacobian matrix of the manipulator kinematic constraints is row rank deficient

on the boundary of the workspace.

For the example manipulator previously shown in Figure 1-5 the inverse kinematics relate the
leg lengths to the working point position as follows:

[P =x,+y; 1.2)

Iy =(xp=x,)" +;
The leg length constraints (1.1) may be accounted for either by means of a slack variable
approach or by introducing the transformation (Haug et al. [18])

I =1"+1sin(l}), i=1,2 (1.3)
where [ = (™ +1™)/2and 1] = (™ —1"™*)/2

Defining  u=[u,,u,]"=[xp,y,]" and v=[v,,v,]"=[//,],]" the generalized co-ordinates of the
manipulator are given by q=[xp,y,,v;,v,]"=[u",v"]". Using transformation (1.3), equations (1.2)

can now be written as kinematic constraint equations

(I)(q)={ (I} +1] sinv)? —u —u; }:0 14
(19 + 1 sinv,)* —(u, —x,)* —u’
The sub-Jacobian of ®(q) with respect to v is
® ()= 2(1) +1 sinv,)I cosv, 0 (1.5)
’ 0 2(1y +1} sinv, ) cosv,
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This matrix becomes rank deficient when cosv,=0 or when cosv,=0. When cosv=0,
~i@, Jj=0,1,2,... Without loss of generality, consider only the cases where

=+ —. Substituting these values for v, into transformation (1.3) yields a total of four

|3

solution cases: [, =/’ +1/ () =1" or I, =10 +1/ (-1) = 1™, i=1,2.

lmin

Consider the particular case where /, =™ (i.e. v, = —g). Then, for a prescribed value of v,

in the range [-7/2, ©/2], the set of nonlinear equations contained in the kinematic constraints

(1.4) have two analytical solutions to the pair (u,,u,):

)= Xp + ( 1m"rl )2 - (12 (v, ))2

2x,; (1.6)
u,(v,) = +\/ lmm u (v, ))2

where 1,(v,) =1) +1] sin(v,)

u, (v,

Thus letting v, vary between -n/2 and /2 the loci of the two solution points (u;, u,) given by

(1.6) correspond to curve 1 and curve 1’ of Figure 1-7, depending on the sign chosen in (1.6).

The solution curves for the cases where [, =", [, =" and [, = ;" may be determined in
a similar manner. They are shown in Figure 1-7 as curves 2(2’), 3(3') and 4(4’) respectively.

There are no internal boundary curves.

Figure 1-7: Workspace determination using the continuation method
The above analytical solution is only possible for simple problems. For more complex

problems a numerical procedure is needed to trace the workspace boundaries. Jo and Haug
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[26,27] use a continuation method in which the Jacobian rank deficiency condition is combined
with the kinematic constraints to form a set of non-linear equations defining internal and
external workspace boundaries. By successively varying only one input variable at a time the
solution of the problem becomes much easier. It is then possible to map the solution curves of
the nonlinear equation set, corresponding to different parts of the boundary, using a
continuation method. Note that in the example given above, had a numerical procedure been
used to solve equations (1.4), then either the top or bottom portions of the workspace would
have been determined, depending on the chosen starting point of the procedure. The method is

extensively described in the papers of Haug et al. [18, 28].

The main criticisms that Merlet [20] has of continuation methods is that they are difficult to
implement and do not conveniently and readily allow for the introduction of other physical
constraints of practical importance. Wang and Hsieh [17] state that since it is necessary to
have explicit expressions for the constraint equations and Jacobian matrix of the mechanism,

the method may become complicated for a generally constrained parallel manipulator.

The advantage that the continuation method possesses over other methods is that it is a
broadly applicable numerical algorithm, which can be used for mapping the boundaries of

both serial and parallel manipulator workspaces.

1.3.3 The geometrical method
The geometrical method applied to a planar platform was first proposed by Gosselin and

Angeles [6] and has been further refined and extended by Merlet et al. [15]. For maximal
workspace determination of the manipulators considered here, the method is based on the fact
that the boundary of the workspace is attained whenever at least one of the actuators reaches

an extreme length.

As an illustration of the method, the workspace of the example manipulator (shown in Figure
1-5) is calculated below using the geometrical algorithm. Annular regions limited by the
maximum and minimum leg lengths of leg i are denoted &; (See Figure 1-8). For this two

degree of freedom manipulator the workspace boundary will occur when at least one of the
two actuators is at an extreme length. There are four possible cases: (1), =1, (2)/, = [™™,
(3)1, =1 and (4)/, = 1. Consider the case where /, =" . The points of intersection of

the annular region €, and a circle, centered at A with radius l]““" , are determined. These points
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of intersection are shown in Figure 1-8 as points a, b, ¢ and d. Four arcs; ab, bc, cd and da are
identified. The feasibility of the manipulator configuration corresponding to any arc is
determined by examining the configuration of the manipulator at the mid-point of that arc. If
the other leg length is within the prescribed limits then the configuration is acceptable. For

this case, it is evident that arcs ab and cd are feasible and the others are not.

Figure 1-8: Workspace determination using the geometrical method

Similarly for case 2 feasible arcs ef and gh are identified, for case 3 the feasible arcs are gc
and bf and for case 4 the arcs hd and ae. In this simple example, all of these arcs correspond
to a part of the workspace boundary so the procedure is complete. The workspace of the

manipulator is indicated by the hatched region in Figure 1-8.

For a general planar three degree of freedom manipulator such as that shown in Figure 1-9 an

extreme platform extension can occur either when one, or two legs are at an extreme length.

Figure 1-9: A three degree of freedom manipulator

As discussed below, the workspace boundary therefore consists of circular arcs and portions

of four bar coupler curves.
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Boundary points with one extreme leg length occur when the working point of the

manipulator lies along the line of action of the actuator.

(d)

Figure 1-10: Platform-leg configurations for boundary points with one extreme leg length

For each leg, as shown for leg 1 in Figure 1-10, this condition leads to four possible
combinations of leg extension and platform orientation, which may correspond to the
workspace boundary. (a) /=" and DAP aligned in this order. (b) /=/™" and DPA aligned in
this order. (c) /=/™" and PDA aligned in this order. (d) /=/™ and PDA aligned in this order. In
each case, the hatched side of the section of workspace boundary shown is an infeasible

region.

Considering one actuator leg at a time, and checking all possible configurations using a
procedure similar to the one used in the two degree of freedom example above, feasible arcs,
which correspond to internal and outer workspace boundaries, can be identified.

For boundaries with two extreme leg lengths fixed, the trajectory of the working
point corresponds to the coupler curve of an equivalent four-bar mechanism. Since there are
three legs, each with two possible extreme lengths, there are a total of twelve possible
combinations of paired extreme leg lengths to be considered. The coupler curves
corresponding to each these configurations are determined using the theory of four bar
mechanisms. The next step is to calculate the points of intersection between the coupler
curves, the annular regions €; and the circular arcs determined in the first step. The critical and
limit points of the coupler curves are also determined. Once the coupler curves have been split
into arcs of coupler curves between the calculated points of intersection, feasible arcs are

identified as before.
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The final step in the method is to identify which of the feasible arcs determined above
are components of the workspace boundary. An arc is a component of the workspace
boundary if motion normal to the arc in one direction leads to constraint violations, and

motion in the opposing direction is feasible. To test for this condition the Jacobian matrix of

the constraint equations (/7 =17 (x,y,¢)) as well as two normal vectors to the arc, pointing in
opposing directions, are determined at a point on the arc. The leg velocities are then
calculated for a platform velocity directed along each of these normal vectors. The sign of
these joint velocities can be used in conjunction with the configuration of the manipulator to

determine whether or not the arc is a component of the workspace boundary. For example, if

for an arc corresponding to maximal leg lengths of legs 1 and 2, the leg velocities f, , f2 are
both positive for motion directed in one normal direction, and negative for motion in the

other, then the arc is part of the workspace boundary.

Gosselin [14] has extended the geometrical method to allow for the determination of six
degree of freedom parallel manipulator workspaces, but only considers the extreme leg length
in his approach. Merlet [29] includes the passive joint and leg interference constraints in his

application of the geometrical method to a spatial Stewart platform.

The geometrical method is in essence an evaluation of possible manipulator extreme
positions, the configurations of which follow from an analysis such as that of Jo and Haug
[26,27], to determine which of these correspond to the workspace boundary. By a modification
of the basic algorithm (Merlet et al. [15]) the geometric principle may also be applied to the

calculation of constant orientation, inclusive maximal, dextrous and total orientation

VLS . VA VAL aa i

workspaces. Furthermore the geometrical method allows for the inclusion of the effects of
limits on the passive joint angles as well as leg interference. The main drawback of the
geometrical method is that it requires the calculation of the Jacobian matrix of the system to
determine which arcs belong to the workspace boundary. For more complicated manipulators

this may be a very difficult task.

1.3.4 Other methods
In addition to the mainstream methods classified by Merlet [20] other authors have proposed

different special techniques for workspace determination.



CHAPTER 1: Overview of Stewart platforms and methods for determining their workspaces 14

1.3.4.1 The method of Bajpai and Roth
Bajpai and Roth [30] apply an essentially geometrical method to the determination of

workspaces of a specific class of two degree of freedom parallel manipulator shown in Figure

I-11(a).

(a) (b)

Figure 1-11: The method of Bajpai and Roth (a) a two degree of freedom manipulator and (b) the
workspace of the manipulator

The method consists of fixing one input and examining the end effector motion caused by
varying the other input. See for example Figure 1-11(b) where the dotted line depicts the path
of working point P for a fixed orientation of link 1, and the workspace of the manipulator is
indicated by the shaded region. By applying this and other conditions in an ad hoc manner the

workspace of the manipulator for different link lengths can be determined.

1.3.4.2 The method of Kumar and Waldron
The method of Kumar and Waldron [16], later refined and applied to parallel manipulators by

Kumar [31], is based on the fact that the application of a pure force on the working point
drives a manipulator into an extreme position in the direction of the applied force. Depending
on the configuration of the mechanism, these may correspond to internal or external
boundaries of the workspace. The method thus requires mapping boundary curves
corresponding to all possible special configurations. Figure 1-12 shows a two degree of
freedom manipulator studied by Kumar. Special configurations of the manipulator and the
boundary curves associated with each of the special configurations are given in Figure 1-13(a)

and (b) respectively. The method is formulated using screw theory.
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Figure 1-13: The method of Kumar and Waldron: (a) Special configurations and (b) the workspace of the
manipulator

Kumar [31] also applies the method to the determination of the dextrous and total orientation

workspaces of a three degree of freedom manipulator and a spatial PUMA robot.

1.3.4.3 The method of Wang and Hsieh
Wang and Hsieh [17] present a numerical method based on an optimization approach. They

formulate an optimization problem in order to find the extreme reach of a six degree of
freedom parallel manipulator with rotary actuated joints. Considering successive horizontal
slices through the workspace, as shown in Figure 1-14, and successive search directions
emanating from a fixed base point, the distance between the end effector and the fixed base
point is maximized or minimized depending on the desired objective. A multi-start procedure
is used for each search to ensure that the global minimum or maximum, corresponding to the

actual workspace boundary, and not an internal boundary, is found.
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Figure 1-14: The method of Wang and Hseih: a horizontal slice through the workspace

1.4 Purpose of the present study
The current consensus amongst a number of workers in the field, for example Merlet [20],

Gosselin [14] and Chrisp and Gindy [22], seems to be that the geometrical method represents
the state-of-the-art technique for workspace determination. However, the geometrical method
does not represent a truly general approach for the determination of workspaces of
manipulators of varied design. The continuation method represents an approach that is more
generally applicable to various manipulators, both serial and parallel. This method, however,
does not readily allow for the introduction of all possible constraints. Furthermore, both of the
above methods require the calculation of the Jacobian matrix, which may be a difficult task.
In particular the continuation method appears to be a complicated method and not easily
implementable. The challenge therefore still exists to find a method that is both general and
allows for the easy application of constraints. Snyman et al. [1] and Wang and Hsieh [17] have
independently proposed different numerical optimization approaches that handle constraints
in a systematic way and do not require the computation of the Jacobian matrix. The main
disadvantage of the approach of Snyman et al. is that, as it is currently formulated, it cannot in

general be used to calculate workspaces that are non-convex.

The main purpose of this study is to extend the optimization approach of Snyman et al. [1] to
additionally determine any non-convex workspaces that occur in the cases of planar
manipulators of more general design. A second, and almost equally important objective, is to
adapt the optimization approach to handle any additional physical constraints limiting the

workspaces of planar parallel manipulators.
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Other special problems that occur in the implementation will also be addressed. For example,
when the working point of the manipulator is chosen at one of the leg attachment points, the
manipulator exhibits an interesting redundant behavior along certain portions of the
workspace boundary. This phenomenon will be investigated with the purpose of introducing a
formulation that will allow for the determination of these so-called redundant workspaces.
Finally the validity of the optimization method as a truly general approach for the

determination of manipulator workspaces will be evaluated.
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Chapter 2. THE RAY METHOD FOR THE DETERMINATION
OF PLANAR PARALLEL MANIPULATOR
WORKSPACES

2.1 Overview of the existing ray method for workspace determination
This chapter presents an extension to the novel optimization approach, proposed by Snyman

et al. [1] and Du Plessis [2], for the determination Qf workspaces of planar manipulators. The
work of these authors was motivated by the foundation paper of Haug et al. [18]. In their
paper, Snyman et al. [1] successfully apply the optimization methodology to the determination
of workspaces of manipulators studied by Haug et al. As an evaluation of the method’s
generality the workspaces of both a planar Stewart platform and a planar redundantly
controlled serial manipulator are determined. It is also shown that the optimization approach
is capable of determining interior boundaries of the workspaces. To facilitate the discussion of
results a new and concise method for labelling bifurcation points and curves is proposed’. The
workspace of the planar redundant serial manipulator determined by Snyman et al. [1] using

the optimization approach is shown in Figure 2-1.

N\

Figure 2-1: Planar serial manipulator and maximal workspace

Du Plessis [2] extends the optimization approach to determine the constant orientation and

total orientation workspaces of the planar Stewart platform considered by Snyman et al. [1].

" This proposed method for bifurcation labelling is given in section 4.2.5.
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Using the methodology for mapping spatial workspaces proposed by Snyman et al. [1] the
constant orientation and total orientation workspaces of the 6-3 Stewart platform mentioned in
section 1.2 and shown in Figure 1-2 have been determined. Some of the results obtained by

Du Plessis [2] are given in Figure 2-2.

SCA0PL0%, (=307 - (30)]
X

Figure 2-2: Constant orientation and total orientation workspaces of the 6-3 Stewart platform

In this chapter the work of Snyman and his co-authors is extended and generalized to enable
the determination of non-convex planar workspaces. As a preliminary to the presentation of
the general method, accessible output sets for manipulators are defined and criteria for
determining their boundaries are stated. Based on the definition of the boundary of the
accessible output set, a method for mapping the boundary of a planar non-convex workspace
is developed. Simply stated, the method consists of finding a suitable initial radiating point,
and then finding the points of intersection of a pencil of rays emanating from this point with
the boundary of the accessible set. The points of intersection are determined by means of an
optimization approach in which the proven robust dynamic constrained algorithm of Snyman
[32,33,34] and Snyman et al. [35] is used?. If any segment of the workspace boundary cannot be
determined due to non-convexity, then the missing segment is mapped using a suitably chosen

new radiating point.

2.2 Description of the method

2.21 Coordinates
As described by Haug et al. [28], generalized coordinates q =|q, ,...,qnq]T e R" are defined

that characterize the position and orientation of each body in the mechanism. In the vicinity of

% A brief description of Snyman’s optimization algorithm is given in Appendix B.

19
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an assembled configuration of the mechanism, these generalized coordinates satisfy m
independent holonomic kinematic constraint equations of the form

D(q)=0 @1

where ® : R" — R"is a smooth function.

Mechanisms are usually designed to produce a desired functionality. Specifying the values of
a selected subset of the generalized coordinates, called the input coordinates, defines the
motion of the mechanism. These input coordinate values are controlled by external influences

with the intent of prescribing the motion of the mechanism. The vector of input coordinates is

denoted by v =[v,,...,v,, 1"

To characterize the functionality of the mechanism some measure of output, which is
controlled by the mechanism inputs, must be monitored. Output coordinates are the subset of
the mechanism’s generalized coordinates that define the useful functionality of the

mechanism. Output coordinates are distinct from input coordinates and are denoted by

u=[u,...,u,]" . A choice of input and output coordinates for a mechanism defines a

> nu

mechanical system with an intended function. This mechanism is then called a manipulator.

Generalized coordinates of a mechanism that are neither input coordinates nor output
coordinates are called intermediate coordinates, denoted by w =[w,,...,w, |, where nw=ng-

nv-nu.

2.2.2 Constraints and the accessible output set
Inequality constraints are often imposed on the input variables and may also apply to the

intermediate variables. These respectively take the forms
Pt <y <y 2.2)
and
w™ < w < 2.3)
There may also be additional inequality constraints acting on the system, representing
relationships between the input, output and intermediate coordinates, that must be satisfied

and which take on the general form

gmin Sg(u>v, W) < gmax (2.4)
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The accessible output set of the manipulator is the collection of all possible output
coordinates of the manipulator. To present this more precisely, the generalized coordinates are
partitioned as follows:
g=[u" v W' @2.5)
The constraint equations (2.1) may be rewritten in terms of this partitioning of generalized
coordinates:
O(u,v,w)=0 (2.6)
The accessible output set 4 is defined as:
A={ueR" :®(u,v,w)=0; v satisfying (2.2); w satisfying (2.3); 2.7)
g(u,v,w) satisfying (2.4)}
The boundary 04 of the accessible output set may then be defined as:
0A={ue R™ :ue AandJans e R"™ such that for u' = u+s,

A € R arbitrarily small and either positive or negative, no v and w exist that  (2.8)

satisfy ®@(u',v, w) = 0 as well as inequalities (2.2), (2.3) and (2.4) }

The method for determining the accessible workspace boundary of A4 is described in the next

two sections, and is similar to that proposed by Snyman et al. [1]

2.2.3 Finding a point on FA
With respect to the system of equations (2.1) and (2.6), a distinction can be made between two

possibilities:
Case (i): where m = nv and, given u and w, system (2.6) may easily be solved to give v
in terms of u and w:
v=v(u,w) (2.9)
This is typically the situation with parallel manipulators, where the inverse kinematics can
easily be solved.
Case (ii): where m = nu and, given v and w, system (2.6) may easily be solved to give
u in terms of v and w:
u=u(v,w) (2.10)
This is typically the situation with serial manipulators, where the forward kinematics is

relatively easy to solve.

. 157545

Bis & |6
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Although the application of the method in this study is restricted to parallel manipulators, i.e.

Case (i) only, the general approach is nevertheless presented for both cases (i) and (ii).

Consider Case(i). Assume that a radiating point #° has been chosen and that it is interior to
the accessible set, 4. Consistent with the definition of 64 in (2.8), a point #° on the boundary
in the direction se R™from u’ is determined by solving the following constrained
optimization problem:

Problem (i): maximizeH u—u’ H

such that v™ < y(u,w) < ™™
W™ < w < ™

and g™ < g(u,v(u,w),w) < g™

and subject to equality constraints
h(u,s)=0, he R™"

where M denotes the Euclidean norm. The equality constraints define a point on the

parameterized straight line (L) = u” +As, A € R. (For example, if nu =2, u=(x, y)', u’ = (xo,
Y and s=(s,,s,)", then u=u"+2Ls has the components x = x” + As, and y = ° + As,; it

follows that A(u,s) = (x-x)/sy + (y-yo)/sy =0. See Figure 2-3).

Figure 2-3: Ray in 4 to 04

For Case (ii) the associated constrained optimization problem is:
Problem (ii): maximize”u(v, w)— u°“
vV, W

such that v™" <y < p™>

wmin <w< wmax
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max

and g™ < g(u(v,w),v,w)< g
and subject to equality constraints
h(u(v,w),s)=0, he ™"
where the equality constraints again define a point # on the straight line through u° in the

direction s.

Note that should the radiating point 4’ be chosen exterior to 4, then the above problems will

become minimization problems.

2.2.4 Basic methodology for mapping the boundary of a planar accessible set
Assume a planar manipulator with a two-dimensional accessible set 4, and also for the

moment that 4 is convex, which will not always be the case. Also assume that the radiating

point #” is an interior point as shown in Figure 2-4.

Figure 2-4: Numerical mapping of 04

The boundary 64 may now be numerically mapped by successively solving Problem (i) or (ii)
for successive rays, emanating at regular angular intervals & from u’ = (x° "), with
respective directions s, i=0,1,2,....N. It is assumed here that the solution to the optimization
problem for the first ray yields a point #™ on the external workspace boundary (see Figure
2-4). Thereafter the starting point chosen for each successive optimization problem is the
solution to the previous problem. This is done to ensure that solutions to consecutive
optimization problems trace the same external workspace boundary. If, instead of this
approach, the radiating point was used as the starting point for each optimization problem, the
algorithm would sometimes find local interior solutions to the optimization problem,
corresponding to internal workspace boundaries, instead of the global solution corresponding

to the outer workspace boundary. The angle 0 is measured in the right hand sense from the x-
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axis. Each vector s' thus lies at an angle 6 to the x-axis. The mapping begins at an angle 6°
corresponding to vector s” and sweeps through an angle Né. The mapping process is depicted

in Figure 2-4. For this case 6°=0.

Two inter-related questions arise in connection with the implementation of the methodology.
The first relates to how the radiating point may be obtained. Depending on the particular
geometry of each case, a suitable choice for u” may be self-evident. If not, it is suggested that,
for Case (i), u’ may be obtained from (2.9) by solving for u in:

vV =v(u,w) @2.11)
where

V=" ™) /2

W= (W™ wm) /2
In practice this can be done by solving the least squares optimization problem

minimize|v(u, w) - |’ @.12)
u

For Case (ii), if an obvious choice for 1 is not available, then an indication may be obtained
y

from (2.10):
(2.13)

Figure 2-5: Complication if 4 is non-convex

The second question concerns the strategy to be adopted if non-convexity of 4 interferes with

the mapping of the workspace boundary, as shown in Figure 2-5. It can be seen that, as a
result of non-convexity and the particular positioning of u°, two boundary points uand u)

are possible.

A distinction can now be made between two types of non-convexity:
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Type (i) Non-Convexity: A workspace exhibits type (i) non-convexity if there exists
a radiating point #° € R internal to A, such that there is a unique solution to Problem (i) or (ii)
(as applicable) for all possible search direction s’ radiating from #°. Figure 2-5 shows an
example of type (i) non-convexity. Type (i) non-convexity can be dealt with by simply
choosing a suitable radiating point and applying the methodology described above.

Type (ii) Non-Convexity: A workspace exhibits type (ii) non-convexity if there exists
no radiating point #° € R internal to A, such that there is a unique solution to Problem (i) or
(ii) (as applicable) for all possible search directions s’ radiating from #° . If this type of non-
convexity occurs, then a modified ray approach must be adopted to determine the entire

workspace boundary. This strategy is described in the next subsection.

2.2.5 Strategy for type (ii) non-convexity
The workspace shown in Figure 2-6(a) exhibits type (ii) non-convexity. For any arbitrarily

chosen radiating point u within 4, only a segment aA" of the workspace boundary can be

mapped, as shown in Figure 2-6(b). It can be seen that for this particular positioning of ;,

b(i+1) b(i+1) are not

that segments of the boundary between points #” and u and points u¥ and u
determined. It is clear that similar problems will arise for any other positioning of #, . Missed
sections of the workspace boundary can be visually detected by examining the distribution of
points along the workspace boundary. Large distances between adjacent points are indicative
of such a missed section. Constraint violations, resulting in incorrectly determined boundary

points, often occur in the vicinity of a missed section of the workspace boundary.

t

0A

b(j+1)

(@) (b)

Figure 2-6: Partial determination of the workspace boundary



CHAPTER 2: The ray method for the determination of planar parallel manipulator workspaces 26

If any portion of the boundary cannot be mapped from an initial radiating point #,, then the
missing section may be determined by choosing a new radiating point u,, i=2,3,..., and

mapping the missing section 64’ as shown in Figure 2-7(b). Note that for the sub-section
mapping to be successful, the new radiating point must be chosen so that there is a unique
solution to Problem (i) or (ii) (as applicable) for the chosen search directions. A method
which works well is to choose the new radiating point so that mapping takes place through an

angle of m/2. As an example, consider Figure 2-7(a). Given two points p and ¢ with associated

coordinates u” and u? between which remapping must take place, it is easy to calculate B,
the angle of the line joining points p and ¢ and the x-axis. The coordinates of u., the midpoint

of the same line, are simply

u” +ul (2.14)
Ue =————
The coordinates of the new radiating point u; are then taken as
d| sin 2.15
u) =u. +— b 2.15)
- ~ 2| —cosP

where d is the distance between the two points. Once the missing section has been mapped,

the newly determined points may be merged with the existing boundary points 64",

(b)

Figure 2-7: Mapping a missed section of the workspace boundary (a) Determining a new radiating point
and (b) the newly mapped section 04>

2.2.6 Precise mapping of the bifurcation points
Bifurcation points are important features on a workspace boundary since they often

correspond to extreme positions of a manipulator, where a subset of constraints (2.2), (2.3) and
(2.4) are active. The number of degrees of freedom of a system will determine the dimension
of this subset. Since a discrete method with fixed angular increments is used to map the

boundary, it is unlikely that a bifurcation point will coincide exactly with a search ray. Figure
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2-8 illustrates the importance of bifurcation point mapping. Figure 2-8(a), (b) and (c)
respectively show the actual workspace boundary and the search directions, the discretized
solution obtained without bifurcation mapping, and the solution obtained using precise

bifurcation mapping.

(@ (b)

Figure 2-8: Bifurcation mapping, (a) the workspace boundary, (b) discretized solution and (c) solution
with bifurcation mapping

In general, the positions of these bifurcation points can be determined by identifying the
constraints active at the bifurcation point and then solving for the point of intersection of these
constraints using an optimization approach. The exact implementation of the optimization
approach to determine bifurcation points is manipulator dependent and will be discussed

separately.

2.2.7 Voids in the workspace
It may occur that there are infeasible regions, or voids, within the boundaries of the maximal

workspace. The boundary of such a void will be referred to as the void boundary. The dashed

line in Figure 2-9 shows a void boundary.

Figure 2-9: Void in the workspace

As the existence of such a void is not known a priori, the main challenge lies in detecting
whether there are voids within the workspace or not. It is proposed that, once the external

workspace boundary has been mapped, voids may be identified by an application of the ray

27
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tracing principle as shown in Figure 2-9. Problem (i) of section 2.2.3 is applied to successive
rays emanating from a suitably chosen feasible radiating point #°. The starting point for each
of these optimization problems is chosen as the radiating point #°. If there is no void between
the radiating point and the workspace boundary, then the workspace boundary will generally
be found, as is the case with points #"™ and u™. If, however, there is a void between the
radiating point and the workspace boundary the optimizer will converge to a strong local
minimum corresponding to the void boundary (points #™ and ™). By comparing the results of
the ray search with the actual workspace boundary, it is possible to determine the approximate

location of voids within the workspace.

Once a void has been identified, a radiating point inside the void can be chosen, and the
boundaries of the void may then easily be determined by applying the ray methodology as

before and minimizing the distance between the radiating point u’ and point u:

minimize” u—u’ H
u,w

such that v™ < v(u,w) < y™
W <w <™
and g™ < g(u,v(u,w),w) < g™
and subject to equality constraints
h(u,s)=0, he R
2.2.8 Basic modified ray algorithm for mapping the boundary of a general workspace
With reference to the above discussion the following procedure is suggested for the general

determination of convex or non-convex workspace boundaries:

Step (i): Choose a suitable initial radiating point u! . Choose an angular increment 8.
Seti=1, 6 =0 and N, = 2n/s.

Step (ii): Successively solve Problem (i) or (ii) from 0] through a sweep angle of N;&
to determine a section of the workspace boundary 84’. Monitor the active constraints and
determine the position of individual bifurcation points as their existence arises along the
boundary.

Step (iii): If i >2 then merge 84’ with 84",

Step (iv): Examine the workspace boundary 84’ to determine whether or not there is a

boundary section missing. A missing section of workspace boundary may be present if large
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displacements between successively determined boundary points occur. These large
displaceménts occur as the algorithm jumps from one part of the workspace boundary to
another more distant part. The criteria used is that if the distance between two successive
boundary points is greater than twice the distance between the previous two boundary points,
then there is a section of boundary missing.

If there is no section missing then the workspace has been fully determined (end of
procedure). If there is a missing segment then set i=i+1 and proceed to step (v).

bp

Step (v): Prompt for intersection numbers p and g corresponding to points u™ and

u" between which re-mapping will take place. Using the condition that the re-mapping angle
be equal to /2, calculate the new radiating point u, as well as the starting angle 0] and the

number of increments, N;. Go to step (ii).

2.3 Application to the two degree of freedom manipulator
The example two degree of freedom manipulator considered in chapter 1 (see Figure 1-5),

will be used here to illustrate the ray method. In agreement with the definitions given in
section 2.2.1 the input coordinates are the leg lengths, v = (v,,v,)" =(I,,/,)", and the output

coordinates are the coordinates of the working point, u = (u,,u,)" =(x,,y,)" . There are no

intermediate coordinates.

As with the continuation method, the inverse kinematics are performed to give the leg lengths
in terms of the position of the working point:
I[P =x)+y; (2.16)

122 =(xp _xb')2 +y12)
The kinematic constraints relating the input and output coordinates are obtained from (2.16)

and written in terms of the generalized coordinates ¢q:

v:—ul —ul }_ 0 @.17)
2 2 2|
vy = (U —xy)—u,

D(q) = [

Explicit expressions for the leg lengths in terms of the output coordinates are obtained from

(2.17).
\/uf +u, (2.18)

2
\/(u] _xh')2 +u,

The leg length constraints (1.1) imposed on the manipulator take the form

v=v(u)=
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vmin < V(u) < vmax (219)

Whel‘e vlTlll'l = [l]mlll )I;‘lln ]1 and vlTlZlX — [l]max , l;nax ]1 .

From a starting point u,, determined using (2.12), and for a given search direction s, Problem

(i) for this example becomes
maximize” u—u’ ”
u

such that v™ < v(u) < y™

and subject to equality constraint 4(u,s) = (x-x")/sy + (y-yo)/sy =0

For this two degree of freedom manipulator bifurcation points will correspond to positions on
the workspace boundary where two of the leg length constraints (2.19) are simultaneously
active. The precise mapping of the bifurcation points is done by, having identified the subset

of active constraints from (2.19) during the boundary mapping procedure, then minimizing

“v(u) —ye (2.20)

with respect to u. The vector v contains the extreme leg length values associated with the

identified active constraints.

Consider the case where xz = 4. Various length limits considered are given in Table 2-1.

Manipul ator I]min l]max ] ;nin / énax
L1 225 | 325 | 225 | 3.75
L2 2.00 | 3.25 | 2.00 | 3.75
L3 1.75 | 325 | 1.75 | 3.75

Table 2-1: Two degree of freedom manipulator leg length limits

Figure 2-10 shows one part of the workspace of manipulator L1 which was determined using

the ray method. Each point determined is represented by a dot on the workspace boundary.

The distribution of points along the workspace boundary varies greatly. For the ray method,
sections of the boundary closer to the radiating point, or which are close to perpendicular to
the search rays are mapped at a finer resolution than the rest of the boundary. Due to the
symmetry of the example it is known that the workspace is mirrored about the x-axis. The full

workspace of manipulator L1 is shown in Figure 2-11(a).
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Figure 2-10: Part of the workspace of L1 determined using the ray method

Depending on the starting point used for optimization problem (2.12) to obtain the midpoint of
the workspace one of two possible midpoints will be determined. The top or bottom parts of
the workspace can be mapped using the relevant midpoint as the radiating point. Figure
2-11(b) and Figure 2-11(c) respectively show the workspaces of manipulators L2 and L3. In
each of these cases the initial boundary determined using the original ray method is shown as
a dotted line. The large vertical jumps that occur indicate the presence of non-convexity and

the need for remapping. These workspaces were mapped in a counterclockwise manner.
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Figure 2-11: Workspaces of manipulators (a) L1, (b) L2 and (c) L3

2.4 Preliminary evaluation of the ray method
Snyman et al. [1] and Du Plessis [2] have already shown in their studies that the ray method in

its original form can effectively be applied to the determination of convex workspaces and
workspaces exhibiting type (i) non-convexity. Type (ii) non-convexity can usually be

addressed by using the modified strategy suggested in this chapter. There are some cases,
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however, in which even the modified strategy cannot be used to determine the workspace of a
manipulator exhibiting type (ii) non-convexity. This can occur when there is a section of the
boundary for which there exists no radiating point u' € R™, such that, for the corresponding

search directions, Problem (i) or (ii) (as applicable) has unique solutions.

Figure 2-12: Non-unique boundary section
An example of this case is shown in Figure 2-12, where there exist no radiating points that
can be used to uniquely map the bold section of the workspace boundary. In attempting to
map this section of boundary, applying optimization problem (i) or (ii) along ray s* results in
two possible solutions. There is one local minimum corresponding to a point on the bold
section of the workspace boundary, and one global minimum corresponding to another section
of the workspace boundary. If these two solutions are in relatively close proximity, then the
global minimum will almost always be found. It is therefore difficult to map the bold section
of boundary. Type (ii) non-convexity can thus only sometimes be addressed using the

modified ray method described in this chapter.

A further property of the modified ray method is that it requires user inputs during the
determination of the workspace. This approach does have the advantage that, with sufficient
interactions by the user, the workspace can usually be accurately found. This approach,

however, tends to be tedious and time-consuming.

In the next chapter the modified ray method will be illustrated by its application to a generally

constrained planar Stewart platform.
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Chapter 3. APPLICATION OF THE RAY METHOD TO THE
PLANAR STEWART PLATFORM CONSIDERING
LEG INTERFERENCES, SINGULARITIES AND
PASSIVE JOINT CONSTRAINTS

3.1 Geometry of the platform
In this chapter the modified ray approach will be applied to the planar Stewart platform shown

in Figure 3-1. This manipulator is based on the platform studied by Haug et al. [18].

( X, yL) (xp,yl)) (xE’y E) i

Figure 3-1: Planar Stewart platform

The mechanism consists of a platform of length 2r connected to a base by three linear
actuators, which control the three output degrees of freedom of the platform. The actuators
have leg lengths /i, /; and /5 and are joined to the base and platform by means of revolute

joints identified by the letters 4 — E. For the purposes of this paper it will be assumed that y. =
¥p = yr = 0. The coordinates of point P, the mid-point of the platform, are (x,,y,) and the

orientation of the platform is¢,. Unit vectors S}, S, and 3 are defined along the actuators.

Ny is a unit vector perpendicular to the platform. Gy is a unit vector perpendicular to the base.

With reference to the definitions given in sections 2.2.1 and 2.2.2, the actuator leg lengths are

the input variables, i.e. v = [l, NN ]T . The global coordinates of the working point P form the

output coordinates, i.e. uz[x,,, y,,]T. The rotation angle of the platform is the only
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intermediate coordinate, i.e. w=¢,. The generalized coordinates (2.5) for the Stewart
platform are given by:
q= [ur,vr’wT]T
:[uT,vT’wa 3.1

:[xp,yp,ll,lz,l3,(pp]r

3.2 Constraint equation formulation

3.2.1 Kinematic constraints

The Stewart platform has three degrees of freedom, since any three of the coordinates in (3.1)
uniquely define the configuration of the system. This implies the existence of three kinematic
constraint equations of the form (2.6), specifying the interrelationships between the

coordinates.

For any given position and orientation of the platform, the coordinates of points 4 and B are
given as follows:
X, =Xp—rcosQ,

yA :yP_rSin(pP (3'2)
Xp =Xp +7COSQ,

Vg =Yp +rsing,

The inverse kinematics can then be performed to give the leg lengths in terms of x,, y» and @,
I} =(xp=rcos@p —xc)" +(yp —7sing, _yc)2
I} =(xp—7cos@, —x,) +(yp —rsing, —y,)’ 3.3)

132 =(xp +7COSQ, _xE)2 +(Yp +7sing, ")’E)2
This can be rewritten in the standard form for the kinematic constraint equations (2.6) as:

vl —(u, —rcosw-x.)’ —(u, —rsinw-y.)*
D(u,v,w)=|vi —(u, —rcosw-xp)’ —(u, —rsinw-y,)> =0 (3.4)
v:—(u, +rcosw-x,) —(u, +rsinw-y,)’

There are a number of other constraints acting on the system, which limit the working region

of point P.

3.2.2 Leg length constraints
Each of the three actuator legs has a maximum and minimum working length. The constraints

on the leg lengths are formally expressed as:
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0<I™ <[ <I™ ,i=123 3.5)

From (3.4) the explicit expressions for v follow:

\/(u] —reosw-x.)" +(u, —rsinw- y.)’
2 3.6)

v=v(u,w) = \/(u] —rcosw-x,)’ +(u, —rsinw-y,)

\/(u1 +reosw-x,)” +(u, +rsinw-y,)’
The inequality constraints (3.5) may be written in the standard form:
p™ < y(u,w) < v 3.7
where v™ =[1™", LM LMt = (1 1 1" ]" and with u and w specified, v(u,w) is
given by (3.6).

3.2.3 Mechanical joint constraints
To calculate the angles between the actuators, platform and base the following unit vectors are

determined:
T

1
S, :l_[xA —Xe» V4 —J’c]

1

1
S, :—l—[xA —Xp> V4 _yD]T (3-8)
2
1 T
S3 = l_[xB —Xg, Vg _yE]
3
N, =[—sin(p,,, cosq, | (3.9)
G, =0, 1 (3.10)
Consider the dot product between Ny and any leg vector S;, i=1,2,3:
Ny -8, =V, I8 Jeose,
where &; is the angle between the two vectors. Since Ny and §; are unit vectors:
N, -8, =cos&;
and thus
E,=cos (N, -S,), i=123 @3.11)

The direction of rotation is found by examining the sign of the cross product between the two
vectors:

positive angleif a > 0 .
) . where N, xS, =az 3.12)
negative angleif a <0
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and Zdenotes the unit vector out of the plane in the z-direction in agreement with the right

hand rule convention. By using (3.11) and (3.12) the angle between the platform normal vector

and any actuator can be uniquely determined in the range—n <&, <m.

Similarly for the angles between the base normal vector and the actuators:
€, =cos™(Gy -S,), i=123 (3.13)
The sign of the angle is once more defined as follows:

positive angleif a > 0 .
) . where G, xS, =az 3.14)
negative angleif o <0

giving ¢ uniquely in the range [-7t,7].

The actuators are physically connected to the platform at one end and the base at the other by
means of revolute joints. The construction of these joints will impose certain limits on the
maximum and minimum angles that the leg can attain relative to the platform or base. These

constraints are formally expressed as follows:

EMN<E, SEM, i=123 (3.15)
and

g <, <eM™, i=123 (3.16)
Since the angles &; and &; depend on the output and intermediate coordinates, (3.15) and (3.16)

may be rewritten in the standard form as

gmin Sg(u, W) ngax (3.]7)

where g =[§1,§2,§33C1>C2,€3]T-

3.2.4 Leg interference constraints
If the mechanical joint constraints, presented in section 3.2.3, are not enforced or not

sufficiently restrictive, then the platform may attain an inverted position as shown in Figure
3-2(a). Depending on the mechanical construction of the Stewart platform, such a
configuration may not be physically attainable due to interference between the actuator legs 2
and 3, and 1 and 3 occurring at points I' and I" respectively. Figure 3-2(b) shows the limiting
cases of leg interference when the platform is in positions AB' and AB". By inspection of this
figure it can be seen that possibility of leg inference at I' and I" for this geometry can be

excluded by simply implementing the following constraints:
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T max T min .
§2S5:§2 and§3__—5: : (3.18)

The limiting cases given in (3.18) clearly correspond to platform positions AB' and AB" with

£, =m/2 and &, =—m/2 respectively.

T T
SIS A \ SRR AR

" by

Figure 3-2: Leg interference
Leg interference may also occur between legs 1 and 2 when {; =n/2 or when &, =-n/2 ,

i=1,2. The possibility of this interference may be excluded by ensuring that:

i i

Qi >__72£:(;min and Ci <§:C’max , i=1,2 (3-]9)

This could be alternatively be formulated as

Yp >Fsing, (3.20)

(See Appendix A)

3.2.5 Singularity constraints
Singular positions are often associated with real restriction on motion control of the platform.

Vijaykumar et al. [36] note that, for serial manipulators, it is possible to almost completely
eliminate singular positions by limiting the ranges of joint motion. In Appendix A it is shown
that the planar Stewart platform is in a singular configuration when the platform is collinear
with leg 3 or when legs 1 and 2 are collinear. It is thus possible to eliminate the occurrence of
singular configurations within the workspace by the imposition of joint angle constraints. The
imposition of the following constraints prevents the platform from assuming the first singular
configuration of Appendix A:

T mi T max 3.21
‘E~3>_E= 3nand§3<5= 3 (3:21)

Constraint expression (3.19) or (3.20) prevents the second singular case of Appendix A from

occurring.
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For the given geometry of the Stewart platform, the use of constraints (3.21) makes the use of

the leg interference constraints (3.18) redundant.

3.2.6 Implementation of angular constraints
In general, when implementing constraints (3.15) to (3.21), care should be taken to ensure that

there are no redundant constraints present. If these redundant constraints run close to other
constraints in x-y-¢ space, they can cause the optimization algorithms to misidentify the

actual active constraints. As an example of the elimination of redundant constraints, consider
the case where the specification & =-1.5and &/ =1.5, i=1,2,3 is made in (3.15). This

means that constraints (3.18) and (3.21) are redundant, as &; can never attain a value of +7/2,

and therefore they do not need to be included in the optimization problem.

3.3 Calculation of bifurcation points
For a planar parallel manipulator with three degrees of freedom a bifurcation point will occur

on the workspace boundary either when any three constraints are simultaneously active or

when two constraints are active and one of the actuators and the working point are collinear.
For the case where three constraints are active at a bifurcation point, the precise

mapping of the bifurcation point corners is done by, having identified the subset of active

constraints from (2.2), (2.3) and (2.4) during the boundary mapping procedure, then solving for

ext 2

(3.22)

min|\p(u, w) — p

e
where p(u,w) and p*' respectively correspond to the constraint functions and the associated
set of extreme values of the identified vector of active constraints.

For the case where two constraints are active at a bifurcation point, it is necessary
to introduce an extra condition to ensure that the working point and relevant extreme actuator
leg remain collinear. Assume that @' is a vector pointing along leg i, which is to remain
collinear with the working point P of the manipulator. Vector &' is perpendicular to the line

going from the platform attachment point of leg 7 to point P. Leg i will be collinear with the

working point when vectors &' and b’ are perpendicular, which is mathematically stated by the

condition @’ -b" =0. The position of the bifurcation point can thus be determined by, once

having identified the relevant constraints and collinear leg, then solving

ext

minf(p, (u,w) = p* | +(py aw) = i | + (' ()5 ()] (3.23)

“in the first two terms correspond to the constraint functions and

where p(u,w) and p™
associated extreme values of the identified active constraints and the last term contains the

collinearity condition.
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3.4 Implementation of the method
Equations (3.7), (3.17), (3.4) and (3.6) for the planar Stewart platform correspond to Case (i) of

Section 2.2.3, specified in the general case by expressions (2.2), (2.4), (2.6) and (2.9). The
boundary 04 of the accessible set of the planar Stewart platform may therefore be numerically
determined by applying the methodology described in Section 2.2.8, in which optimization
Problem (i) is successively solved. For the cases depicted here, boundary mapping was done

at regular intervals of 6 = 5°. Note that there is no explicit restriction (2.3) on w.

The techniques described here have been implemented in an interactive computer code
WSPCON. The user specifies the geometry of the platform as well as the limits on the joint
angles and leg lengths. The code then automatically maps the workspace boundary including
the bifurcation points. Once this is completed the boundary can be displayed and visually
inspected for discontinuities that may indicate non-convexity. The user then specifies two
points on the boundary between which re-mapping should take place, and the code calculates
a new radiating point and start and end angles and writes a restart file containing this
information. When the program is executed again, the new section of boundary is remapped
and the merged with the existing boundary. The above procedure can be repeated indefinitely

until the entire workspace boundary has been completely mapped.

If any constraint violations occur, the intersection points at which these occur are reported to

the user who can use this information when choosing the section of boundary to be re-

mapped.

The specific constrained optimization method used in solving the optimization problems is the
dynamic trajectory method of Snyman [32,33] for unconstrained optimization applied to
penalty function formulations (Snyman et al. [35], Snyman [34]) of the constrained problems.

The particular computer code used is LFOPC [34].

3.5 Results for the planar Stewart platform
As an illustration of the proposed method for determining the workspace, an investigation of

the effect of varying the bounds on the leg lengths was carried out on a normalized Stewart
platform. The values of the constants defining the geometry of this normalized Stewart

platform are given in Table 3-1 (also refer to Figure 3-1).
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r Xc Ye Xp ¥Yb Xg YE
1.0 |-1.0 0.0 |1.0 0.0 |2.0 [0.0

Table 3-1: Planar Stewart platform constants

The values for the mechanical limits on the joint motion are chosen as &' = ™" = —7/2

and & =M™ =m/2. The effects of (3.15), (3.18) and (3.21) are then included in the following
constraints, which are used in determining the workspace:

E, >-m/2 and &, <7/2 (3.24)
For the platform configurations considered in the rest of this section, constraints (3.16) and

(3.19) never become active.

In addition to the above, constraints (3.5) are imposed with leg length limits assuming various
values different from that of the standard case defined in Table 3-2. This standard case,

defined by Table 3-1 and Table 3-2, corresponds to the configuration and limits used by Haug

et al. [28].
i limin l;nax
1 2
2 2

sl

3

NG

Table 3-2: Planar Stewart platform actuator length limits

The effects of respectively varying the maximum and minimum actuator lengths of legs 1 and
2 on the character and size of the workspace are shown in Figure 3-3 and Figure 3-5. In each
of these figures, the central plot shows the workspace of the standard case. The plots to the
right of this central case show the workspaces with the appropriate limit of Leg 1 increased by
25% and to the left decreased by 25%. The plots above the central plot show the workspaces
with the limit of Leg 2 increased by 25% and below decreased by 25%. The mid-point (initial
radiating point) of each workspace, as determined using equation (2.11), is indicated by a ‘+’.
Similarly, the effects of varying the limits of legs 1 and 3 are shown in Figure 3-4 and Figure

3-6.
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3.6 Conclusion
A comparison of the workspace boundary for the standard case, depicted as the central plot in

Figures 3-3 to 3-6, with the results of Haug et al. [28], shows that equally accurate results are
obtained using the optimization approach. Furthermore, the current method is capable of
easily determining the workspaces of platforms of arbitrary geometry relative to the standard
case. Of particular importance is the ease with which non-convex workspaces are determined
An example of a non-convex workspace determined using the method is shown in Figure 3-7.
This non-convex case differs from the standard case in having all of the maximum leg lengths
increased by 25% and the minimum leg lengths of legs 1 and 2 decreased by 25%. As
expected the analysis shows that the size of the workspaces of the Stewart platform increase

in relation to the platform size with an increase in actuator stroke lengths.

2.4

22| 1
2| ]
18] ]
16| ]
o 14 ]
12| !
1l ]
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-0.5 0 0.5 1 1.5 2 2.5

Figure 3-7: Non-convexity
The optimization approach, previously proposed by Snyman et al. [1], has successfully been
extended in this chapter to allow for the determination of workspaces of planar Stewart
platforms of arbitrary geometry. A formulation for accommodating additional planar
constraints has been proposed. It has been shown that the optimization approach is capable of
handling the additional constraints of leg interference, passive joint constraints and even
singularity constraints with ease. The method, as embodied in a practical interactive computer

system, allows for the easy determination of most non-convex workspaces.



Chapter 4. THE CHORD METHOD FOR THE
DETERMINATION OF NON-CONVEX
WORKSPACES

4.1 Introduction
It has been shown in the previous two chapters that the original ray method and the modified

ray method are capable of determining most non-convex workspaces of planar Stewart
platforms. However as pointed out in the chapter 2, there do arise certain cases in which the
ray method cannot be used to determine the workspace. In this chapter, an alternative general
approach, also based on optimization techniques, is proposed. This new approach retains the
advantages of the original optimization approach, while being able to determine any non-
convex workspace. A further advantage of the new approach is that it allows for a more

automated determination of non-convex workspace boundaries.

The new chord method consists of choosing a suitable initial radiating point, and then finding
the points of intersection of a ray emanating from this point with the boundary of the
accessible set. Once this initial point has been determined, the workspace boundary is traced
using constant chord length searches in which the points of intersection of constant radius
circles, centered at each previous solution point, and the workspace boundary are determined.
The points of intersection are once more determined by means of the dynamic constrained

algorithm of Snyman [32,33,34] and Snyman et al. [35].

4.2 Description of the method

4.21 Coordinates

As described in chapter 2, generalized coordinates ¢ =[ql,...,qm[]T € R™ are defined that

characterize the position and orientation of each body in the mechanism and which, in the
vicinity of an assembled configuration, satisfy m independent holonomic kinematic constraint
equations of the form

@(q)=0 (.1

where® : R™ — R"is a smooth function.
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The generalized coordinates are once more divided into the input coordinates,

T . T . . .
v=[v,...,v,,]”, output coordinates, wu=[u,,...,u, | and intermediate coordinates

> " nv > hu

> " hw

w=[w,,...,w,,|". The constraint equations (4.1) are rewritten in terms of this partitioned

generalized coordinates g =[u”,v",w"]" as follows:

O(u,v,w)=0 4.2)

4.2.2 Constraints and the accessible output set
Inequality constraints are often imposed on the input variables and intermediate variables.

These take the form
Pt <y < P 4.3)
and
W™ <w < W™ 4.4
There may also be additional inequality constraints acting on the system, representing
relationships between the input, output and intermediate coordinates, that must be satisfied

and which take the general form

gmin Sg(u,v,W) < gmax (4.5)

The accessible output set A and boundary 04 of the manipulator are as defined by (2.7) and

(2.8) of section 2.2.2.

The discussion below will be restricted to parallel manipulators, but the general methodology

is equally applicable to serial manipulators as well.

4.2.3 Finding an initial point on A
Assume a planar manipulator with a two-dimensional accessible output set 4. An initial

radiating point #” inside the accessible output set, A, is chosen using the method outlined in
section 2.2.4. As explained there, if an immediate choice for the radiating point is not evident,
then u° may be obtained from (2.9) by solving for u in:

v=v(uw) 4.6)
where

_ (vmin + pmax )/2

<

g

— (wmin + )/2
If m = nv, given u and w, system (2.6) may easily be solved to give v in terms of u and w:

v=v(u,w) 4.7)
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Consistent with the definition of 04 in (2.8), an initial point #”=(x", **)" on the boundary in
an arbitrarily chosen direction, designated by a unit vector s' € R™ , from " is determined by
solving the constrained optimization Problem (i), which has been stated in Chapter 2 and is

repeated here:

Problem (a): maximize“ u—u' H

such that v™ < y(u,w) < p™
W < gy < M

and g™ < g(u,v(u,w),w) < g"*

and subject to equality constraints
h(u,s')=0, he R™"

The solution of Problem (a) is illustrated in Figure 4-1

Figure 4-1: Finding an initial point on 04

Application of problem (a) will usually result in an initial point on the outer workspace
boundary. It is possible, however, that a point on an interior boundary curve corresponding to
a local minimum of problem (a) is determined instead. If only a portion of the apparent
workspace boundary is mapped before breakdown occurs then it is possible that the initial
boundary point had been incorrectly determined. The algorithm must then be restarted using a
different search direction s' so that a new initial point on the outer workspace boundary can be

determined.

4.2.4 Basic methodology for mapping the boundary of the workspace
Starting at the initial boundary point u*, the workspace boundary is traced by successive

circular searches with constant chord length / as depicted in Figure 4-2.
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7 g#2)

Figure 4-2: Mapping the workspace boundary

Consider any boundary point #” with an associated wunit vector s" pointing our of the

workspace. A vector ¥ from u” to an arbitrary output point u=(x, )", corresponding to the

y {x—xb’} (4.8)
s = bi
y-y

Dropping the superscript i, the angle » between the unit vector s' and the vector s?, defined in

position of the working point P, is

the right hand sense is

ifo>0

o] s s?
COS 2
Hs H 4.9)

1 2
Alstos?
271 -cos” H—2 ifa<0

where s' x s> = az and Z is the unit vector in the z-direction.

Clearly o is a function of the output coordinates u.

The next boundary point #""" may then be found by solving the following optimization
problem:

Problem (b): minimize ®

uw

such that v™ < v(u,w) <v™
wmin <w< wmax

and g™ < g(u,v(u,w),w)< g™

and subject to the equality constraint

h(wl) = (x=x")" +(y=p")* =" =0
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Having solved problem (b), s with components s;' and s’ is precisely known and the new

reference vector s'" associated with the new boundary point u*®" can be determined as

follows’:
2i
a1 Sy o
cos| tan2™ = |-=
s ) 2 (4.10)

2i
. a1 s T
sin| tan2~! = |-=
S 2

which defines a vector perpendicular to s* and pointing out of the workspace.

s](i+|) =

Since it has already been shown how a initial radiating point #* and reference vector s'° can
be found, it follows that the boundary of the workspace 04 may be mapped numerically by
successively solving the above optimization problem (b) for i = 0,1,2,..., and, each time using
the solution to the previous problem as the starting point for the new optimization problem.

Expression (4.10) is used to determine the associated reference vector for each new point.

It is evident that, if too large a chord length / is chosen in relation to the size of the workspace,
entire sections of the workspace boundary may be missed. This must be borne in mind when
selecting the chord length for a particular problem. As a starting choice, the chord length may
be chosen as approximately one twentieth of the average actuator range. Should a greater
workspace resolution be required, then a smaller chord length may be used, at the expense of

computational time.

The algorithm is terminated when a specified maximum number of iterations is exceeded or
when
Hu"i —u"OH <land 4.11)
Hubi —ub'” <]
The area corresponding to the termination condition (4.11) is shown as the shaded region in

Figure 4-3. Termination in this area is an indication of closure of the boundary, as is evident

for the example depicted in the figure.

? The function tan2" has two input arguments and returns an angle in the range [0,27].
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Figure 4-3: Termination of the algorithm

The algorithm formulation given above maps the workspace boundary in a counter-clockwise

manner. In order to map in the clockwise direction it is necessary to modify the definition of

© (4.9) to

2

1
Al stes? .
cos™ “ ifa<0

S2H (4.12)

2m-cos”

1 2
s -85,
—— |ifa>0

where s' x5’ = az

and to change calculation (4.10) of the reference vector s'“*" to

r .
2—1 S)z’,
cos| tan ST +5 (4‘13)

sl(/+]) — ;‘
]

. 41 8 o

sin| tan27'| = |+ —

S 2

The same termination conditions (4.11) apply.

4.2.5 Bifurcation paths and bifurcation points
Whenever the manipulator moves along a trajectory such that motion is restricted in some

direction, the manipulator is said to be moving along a bifurcation path. For the planar
manipulators considered here this will occur either when two legs remain at extreme lengths
while the third varies between extreme values or when one leg is at an extreme length and
remains collinear with the working point while the others vary between extreme values. As is
to be expected, the boundary of the maximal workspace consists of portions of bifurcation

paths. The remaining portions of the bifurcation paths are internal bifurcation paths, which
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correspond to positions within the workspace where the manipulator motion is restricted
(Haug et al. [19]). Points of intersection of bifurcation paths in the output space usually®

correspond to bifurcation points.

Bifurcation points are positions in the output space where the manipulator can branch or
change directly from following one bifurcation path to another. For the accurate mapping of
the workspace boundary, it is necessary to determine the exact position of bifurcation points
along the workspace boundary. The precise determination of bifurcation points is done as

described in section 2.2.6.

Snyman et al. [1] propose a new notation for labelling bifurcation points and curves which will
be used here. The state of each leg i, i=1,2,3 is indicated by setting X;=0 for a leg at its
minimum length or X=1 for a leg at its maximum length. Setting X;=- indicates a leg
somewhere between its maximum and minimum lengths. The configuration of the platform at
a specific bifurcation point is then indicated and labeled as a triplet enclosed in round brackets
(X1 X2 X3). For example, a bifurcation point (111) corresponds to a platform position where all
of the legs are at their maximum length. Note that there may be more that one platform

configuration for a given bifurcation labelling.

As mentioned above, it is also possible for a bifurcation point to occur when two legs, i and j,
are at extreme lengths and either leg i or leg j is collinear with the working point of the
platform. In this case the state of the remaining leg, %, is indicated by Xj=-. As an example, a
bifurcation point labeled (10-) has leg 1 at a maximum length, leg 2 at a minimum and leg 3 at
an intermediate length. Examination the bifurcation curves connecting with the bifurcation
point will ascertain the identity of the leg collinear with the working point. One of these
bifurcation curves will consist of only one leg at an extreme length and the other two at
intermediate lengths. The leg at an extreme length is identified as the leg collinear with the

working point.

The bifurcation curves are labeled in a similar way to the bifurcation points. Using the same
conventions as outlined above for indicating the state of each leg, the bifurcation curve is

labeled by a triplet enclosed in square brackets [X; X, X3]. Thus, for example, the curve

* The exception are P-I points, discussed in section 4.2.6
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connecting bifurcation point (011) to bifurcation point (111) is labeled [-11]. Along this curve
legs 2 and 3 remain at their maximum lengths while leg 1 varies between its minimum and
maximum lengths. Note that, in general, a leg need not vary between its maximum and
minimum lengths for the platform to travel between two bifurcation points, but may also vary
from an extreme length to some intermediate length, and then back to the same extreme
length. This will occur when the bifurcation curve links two distinct bifurcation points, both

corresponding to the same leg states.

Bifurcation curves corresponding to cases where one leg, i, remains at a constant extreme
length, while one of the other two, j, varies between extreme values are labeled in a similar
manner. In this case the third leg varies so that leg i and the working point of the platform
remain collinear. As an example, bifurcation points (10-) and (11-) might be linked by the

curve [1- -].

4.2.6 Projection-intersection points
At certain positions of the working point P within the workspace, and of particular interest, on

the workspace boundary, it may occur that it is physically impossible for P to move directly to
an adjacent workspace point. In such a case it is necessary for the working point to first move
away from the initial point, so that a different orientation can be attained, before motion to the

adjacent point can be achieved. Figure 4-4 shows an example of such an occurrence.

Figure 4-4: A projection-intersection point
For the example shown in this figure, point / can be approached moving along the workspace
boundary in a continuous manner by bifurcation path B, from one side. From the other side
point / can be approached along bifurcation path B,. There exists, however, no normal
bifurcation point at the apparent point of intersection of these two bifurcation curves, because

the configuration reached from the one side differs in a discontinuous manner from the other



CHAPTER 4: The chord method for the determination of non-convex workspaces

with respect to the orientation angle ¢. If (x')’) denote the position of point /, then the two
configurations at / are given by (x)/, ™) and (x)/, ") where the respective orientation

angles ¢” and ¢” may differ drastically. Point I does therefore not correspond to a normal

bifurcation branch point where the paths B, and B, intersect in the x-y-¢ space. Here
intersection only appears to occur at / when the two paths are projected onto the xy-plane. An

intersection point such as / will be named a projection-intersection point (P-1 point).

Since in the optimization approach the previous solution point is used as the starting point for
each optimization problem (b), the paths traced correspond to the continuous physical
bifurcation paths followed by the manipulator as it moves along the workspace boundary.
Thus, if the manipulator follows a bifurcation path to the inside of the workspace, as depicted
by the dashed lines in Figure 4-4, the algorithm will also trace this path to the inside of the

workspace.

The occurrence of a P-I point on the boundary can be dealt with by mapping the workspace
boundary near to the P-I point in both clockwise and anti-clockwise directions, as described in
section 4.2.4. The coordinates of the P-I point can then be obtained by determining the

projected point of intersection of these two boundary curves in x-y space.

If there are no P-I points or only one P-I point on the boundary then the workspace can be
completely determined by mapping in clockwise and counterclockwise directions and then

superposing the solutions to determine the intersection point.

The presence of more than one P-I points will be apparent if, after clockwise and
counterclockwise mapping, there is no projected point of intersection of the two solutions.
Some user interaction is then required in selecting different starting points so that all sections

of the workspace boundary can be determined.

4.2.7 Voids in the workspace
Voids in the workspace can be detected exactly as described in section 2.2.7. The first

boundary point and associated reference vector used by the chord method are directly

obtained from the ray search.
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4.2.8 Scaling the optimization problem
In any optimization problem, it is necessary to pay attention to the scaling of the problem. In

the method presented here scaling is of particular importance as angles, measured in radians,
and lengths, measured in arbitrary units, are combined in the formulation. Scaling should be
carried out on the leg lengths to ensure that they are of approximately the same order as the
angular measurement. If incorrectly scaled, the optimization algorithm may take a long time

to converge, or may not even converge at all.

Penalty function
contours

) Feasible region
Feasible region

Objective + penalty

Penalty function

‘,..A,--"""Objective function

0 e
| s A 0 k=" I ....................... l ................... ] ' ©
! -
u(l ub 0 uh, T 27'C
(@) (b)

Figure 4-5: Penalty function approach for (a) the ray search and (b) the chord search

Another aspect of particular importance when using the chord method is the scaling of the
objective function. This is due to the particular search geometry used in the chord approach.
Figure 4-5 shows the differences between the variation in the penalty function along (a) ray
search directions and (b) circular search directions. For the ray approach it is evident that the
further the search point travels along the search ray into the infeasible region, the larger the

contributions to the penalty function, due to the violations of the constraints, become.

For the chord approach the same is true along the circular constraint close to the workspace
boundary. As the point travels further from the boundary along the circle, however, the

penalty function levels off, and its gradient has less of an influence. In these cases it is
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possible for the search point, during the optimization process, to travel past 0 and back to 2.
If this happens the search point may repeat its behavior and the algorithm may cycle without
terminating. By correct scaling of the objective function this phenomenon can be eliminated.
Another way of controlling this behavior is by limiting the maximum step size taken by the

optimization algorithm.

4.2.9 The chord algorithm for mapping the boundary of a general workspace
To summarize, the algorithm consists of the following steps:

Step (i): Choose, or calculate using equation (2.12), a suitable initial radiating point

u,0 . Choose a chord length /. Choose K, the maximum number of iterations. Set i =1.

Step (ii): For an arbitrarily chosen unit search vector s', solve Problem (a) to give an
initial boundary point #*. Note that s’ will always point out of the workspace and is thus a
valid reference vector to be associated with the initial boundary point. Record the coordinates
of u™ as well as the constraints active at this point.

Step (iii): Solve Problem (b), with @ defined by (4.9) or (4.12) to find the next
boundary point #”. Record the coordinates of u” as well as the constraints active at this point.

Step (iv): Determine the new reference vector s using expression (4.10) or (4.13).

Step (v): If condition (4.11) is violated or if i<K,,, then set i=i+1 and proceed to Step
(iii).

Step (vi): Scan through the calculated boundary points and associated active constraint
information to determine where bifurcation points occur, and calculate these bifurcation
points. Insert the coordinates of these points at the correct place in the sequence of boundary

points. (End of procedure).

4.3 Application to the two degree of freedom manipulator
The two degree of freedom manipulator, shown in Figure 1-5 of chapter 1 and considered in

chapter 2, will be used to illustrate the proposed chord method. As before, the origin is at
point 4 and the coordinates of point B are (4,0). The various length limits considered are as
given in Table 2-1. One part of the workspace of manipulator L1, mapped using the chord
method, is shown in Figure 4-6. Each dot in the figure represents a point determined along the
workspace boundary. These are, excluding the bifurcation points, equally distributed along
the workspace boundary in contrast to the distribution given by the modified ray method.

Constant chords of the boundary have thus been determined.
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Figure 4-6: Part of the workspace of manipulator L1 determined using the chord method

Figure 4-7(a), (b) and (c) respectively show the workspaces of manipulators L1, L2 and L3.
With the exception of the workspace L1, which requires two runs of the algorithm with
different starting points to determine the top and bottom sections of the workspace, the
workspaces were determined completely automatically. This demonstrates a definite

advantage over the modified ray method (see section 2.3)
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Figure 4-7: Workspaces of (a) L1, (b) L2 and (¢) L3

4.4 Application to a general three degree of freedom planar manipulator

441 Geometry of the manipulator
A general three degree of freedom planar parallel manipulator is shown in Figure 4-8.
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Figure 4-8: General planar Stewart platform

The manipulator consists of a mobile triangular platform with side lengths ry, r, and r3 and
angle p between sides 7| and r,. Three linear actuators /;, /, and /3 connect the vertices of the
platform to the ground by means of revolute joints 4 — F. In what follows, it is assumed that
the origin of the global coordinate system x-y is fixed at point D and that point £ lies on the x-
axis (xp=yp=ye=0). This is only done for convenience and does not affect the general
applicability of the algorithm in any way. The local coordinate system &-m is fixed to the
platform at point P, the working point of the platform. The orientation of the platform ¢ is
defined as the angle between the x-axis of the global coordinate system and line going from 4

to B.

With respect to the definitions given in section 4.2.1, the actuator leg lengths form the input

coordinates v = [11,12,13 ]T. The global coordinates of the working point P form the output

coordinates, i.e. u= [x,,,yp ]I The rotation angle of the platform is the only intermediate

coordinate, i.e. w=¢. The generalized coordinates for the platform are given by:

q= [uT,vT,w]T (4.14)
= [xp,y,,,ll,lpl_;,(p]y'
Note that if 7,=0 and y,=0 then the above reduces to the planar Stewart platform which has

already been analysed in Chapter 3.

4.4.2 Constraint equation formulation
In this analysis only the kinematic and leg length constraints will be considered, although

there is no reason why other constraints, such as those used in the analysis of Chapter 3,

cannot be used.
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4.4.2.1 Kinematic Constraints
In the platform local coordinate system, the coordinates of the leg-platform attachment points

A, B and C are (§4m4), (EgMs) and (§c,nc) respectively. The standard transformation from a

local coordinate system with origin at (x,,y,) and orientation ¢ to the global coordinate system

b
y] [vp] [sine cosg |n

Using transformation (4.15) the global coordinates of points 4, B and C can easily be obtained.

is

The inverse kinematics of the platform can then be performed to give the actuator leg lengths
in terms of the position and orientation of the platform:
112 =(x,(xp,Yp,0)— xl,))2 + (Vs (xp,p,9) _J’n)z
122 =(x5(Xp,¥p,9) = xl;‘)z (Y (xp,yp,0) = y/:)2 (4.16)
l32 = (xc (X, Vp,0) =Xy )2 + (Ve (Xp,Yp.9) — yl:')2
This can be rewritten in the standard form for the kinematic constraint equations as:
v12 —()CA(M, W) _xl))2 - (yA(ua W) - yl))2
(I)(u,v, W) = v22 - (xli (ua W) - xlf)2 - (yli (ua W) - yl£)2 =0 (4.17)

V32 = (x¢(u,w) —xli‘)z _(yc(u> w) _y/<')2

4.4.2.2 Leg Length Constraints
The constraints on the leg lengths are:

0 < ijin < l,- < ljmax ,i — 1’2,3 (4.18)

From (4.16) the explicit expressions for v are:

Ve, W) =x,)2 + (v, (W) = y,)?

v=v(u,w)= \/(x,, (W) =x,)" +(,(w,w)—y,)’ (4.19)
\/(x(l' (u’ W) - XF)2 + (y(,'(ua W) - yp )2
These may be written in the standard form:
vmin < V(u, W) < vmax (420)

where v™" = ["", LM, 0T wm ™ =1 00 1M )T and with u and w specified, v(u,w) is

given by (4.19).
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4.4.3 Results for the general planar platform
Numerical values of the dimensions for the different manipulator geometries considered in

this chapter are given in Table 4-1. These are purposely chosen to correspond to the

manipulators considered by Merlet et al. [15].

Manipulator T r r3 XEg XF YF )7
M1 25 25 25 20 0 10 60°
M2’ 20.839 | 17.045 [ 16.549 | 1591 | 0 10 52.74°
M3 25 25 25 20 10 | 17.23 60°
M4 2 2 2 10 5 8.66 60°

Table 4-1: General planar Stewart platform manipulator dimensions

Workspaces for these manipulators determined using the chord method, and with the working
point positioned at the centroid of the platform, are shown in Figure 4-9. In all cases the leg
limits used are 2 </, <8, 5</, <25 and 10</, <25. P-I points are indicated by an i. The
workspace of M3, shown Figure 4-9(c), is of particular interest as it is both highly non-convex

and is an example of a workspace boundary containing two P-I points, indicated by i1 and i2.

20t 1 15 /\

10

-10 ] -10 ~

20f 1 10}
i2
10- \//) “ |
i1

-10} — 10y
L . . . L 15 s .
-10 0 10 20 30 -10 0 10
X X
(c) (d)

Figure 4-9: Maximal workspaces of (a) M1, (b) M2, (¢) M3 and (d) M4

5 In Merlet et al. [15] =16.54.
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4.5 Preliminary evaluation of the chord method
It has been shown in this chapter that the chord method is capable of determining extremely

non-convex workspaces. The chord method has the advantage over the modified ray approach
that less user interaction is required during the calculation of workspace boundary. In its
present form, the chord algorithm successfully maps the workspace boundary from a starting
point until a P-I point is reached. The workspace boundary can be automatically mapped if
there are no P-I points or one P-I points present. If there are two or more P-I points then some

user interaction is required in determining the workspace boundary.
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Chapter 5. REDUNDANCY AND ITS TREATMENT BY BOTH
THE RAY AND CHORD APPROACHES

5.1 Introduction
In the previous chapters the optimization approach has been applied to manipulators where

the extreme reach of the parallel manipulator is dependent on the orientation of the platform.
In this chapter a case will be studied where there are no unique orientations of the platform for
certain portions of the workspace boundary. For these sections of the boundary the orientation
is effectively redundant in determining the extreme reach of the manipulator. Such
manipulators, defined here as redundant manipulators, are used by Merlet et al. [15] in
illustrating the geometrical method. They make no mention of the special behavior associated

with such manipulators.

A slight modification to the optimization approach, which is equally applicable to the chord
and ray methods, is required in order to determine the workspaces of such redundant
manipulators. In this chapter this modified approach is presented and the workspaces of the

manipulators studied by Merlet et al. [15] are determined.

5.2 Geometry of the parallel manipulator exhibiting redundant behavior
The dimensions of the manipulator are defined in Figure 5-1.

Figure 5-1: Redundant manipulator platform geometry

The geometry of the manipulator is the same as that considered in the previous chapter. The
local coordinate system &-m is fixed at point C, which is also chosen as the working point of

the platform. The orientation of the platform ¢ is defined as the angle between the x-axis of
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the global coordinate system and line going from A to BC. It is once again assumed that the

origin of the global coordinate system x-y is fixed at point D and that point £ lies on the x-

axis (xp=yp=ye=0).

The same type of redundant behavior would be obtained if the working point were fixed at

point 4 or point B.

The actuator leg lengths once more form the input coordinates v =[v,,v,,v,|" =[1,.1,,,]" .

The global coordinates of the working point, point C, now form the output coordinates, i.e.

uz[u,,uz]T =[x.,v.]'. The rotation angle of the platform is the only intermediate

coordinate, i.e. w=¢. The generalized coordinates for the platform are given by:

q= [uT,vT,W]T .1)
,
=[xC’yC’ll’12’l3’(P]
Numerical values of the dimensions for the different manipulator geometries considered in

this chapter, and once more taken from Merlet et al [15] are given in Table 5-1.
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Manipulator 7| 19 r3 XE XF YF )7
M1 25 25 25 20 0 10 60°
M2’ 20.839 | 17.045 | 16.549 | 1591 | O 10 52.74°
M3 25 25 25 20 10 | 17.23 60°
M4 2 2 2 10 5 8.66 60°

Table 5-1: Redundant Stewart platform manipulator dimensions

5.3 Constraint equation formulation
The kinematic and leg length constraints can be derived using the same procedure as that

given in section 4.4.2.

5.3.1 Kinematic constraints
In the local coordinate system, the coordinates of the leg-platform attachment points 4, B and

C are (E4M4), (Esms) and (E;Me)=(0,0) respectively. The transformation from a local

coordinate system located at (x.,y.) and orientation ¢ to the global coordinate system is

® Note that this definition differs from that chosen by Merlet who chooses the orientation angle ¢, as the angle
between the x-axis and the line going from C to 4. For manipulators with £=60° and r;=r,=r; the transformation
required is @-¢ - -180°=¢, -240°.



CHAPTER 5: Redundancy and its treatment by both the ray and chord approaches

b =l
y Ve sing cos¢ | n

Using transformation (5.2) the global coordinates of points 4, B and C can easily be obtained.
Note that since (&,1¢)=(0,0) the global coordinates of C are not dependant on the orientation
of the platform ¢. The inverse kinematics of the platform can then be performed to give the
actuator leg lengths in terms of the position and orientation of the platform:

1= (0, (s Ve @) = %) + (0, (s Ve s ) = ¥p)’

1=y (s Yer @) = X,)" + (0 (ks v, @) = )’ 53)
L= =x:) + e —y;)°

This can be rewritten in the standard form for the kinematic constraint equations as:

V|2 _(xA(uaw)_x[))z —(yA(u,w)—y,))z
D(u,v,w) = v22 = (x (u, W)_xzz)z —(yp(u, W)_yu)z =0 (5.4)

V32 = (u, _xl:‘)z —(u, _yl?')Z

5.3.2 Leg length constraints
The constraints on the leg lengths are:

0<I™ <[, <I™ ,i=123 (5.5)

From (5.4) the explicit expressions for v are:

VO (W)= x)? + (7, (W) — )

v =) = | (e, (W) = x,)) + (0 () = )’ G0
VG =x,) + (= )’
These may be written in the standard form:
™ < y(u,w) < ™ (5.7)
where v™" =[1[™", 1", 1T, ™ = (1,00, 1" )" and with u and w specified, v(u,w) is

given by (5.6).

5.4 Redundancy on the workspace boundary
For a redundant type manipulator, as described in section 5.2, there exist portions of the

workspace boundary for which the formulations of problem (i) and problems (a) and (b) do
not have unique solutions. Along these boundaries, a range of platform orientations are
possible. The reason for this redundancy is that the working point of the platform coincides

with a leg attachment point and thus the extreme objective function value may not implicitly

" In Merlet et al. [15] #=16.54
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be affected by the orientation of the platform, as is otherwise the case. For the ray approach, a
unique solution may be obtained by altering the objective function when non-uniqueness is

detected. The objective function then becomes:

maximize“ u—u’ “ +o (5.8)

For the chord approach the objective function is similarly modified:

minimize® * ¢ (5.9)

In both cases, the modified objective function forces the platform to attain either a maximum
clockwise or counter-clockwise rotation depending on the sign chosen, without affecting the
reach. Note that it is possible for even the modified objective function not to have a unique
solution in some cases. This will occur when the manipulator can rotate completely about a

point without violating any constraints.

Non-unique boundary portions can be detected by examining the constraints active on the
workspace boundary. When the only active inequality constraint is the constraint limiting the
length of the leg associated with the working point of the platform, then non-uniqueness will
be present. It is possible to have only one active inequality constraint and still have a unique
solution, as is the case when the only active constraint is associated with one of the other legs

(in this case leg 1 or 2).

Redundancy, or non-uniqueness, does not usually cause a severe problem in the determination
of the workspace boundary, and using the standard objective function, the correct boundary
may still be determined in x-y space. However since the uniqueness of the orientation angle of
the platform affects the uniqueness of the bifurcation path which the platform follows in x-y-
¢ space, redundancy may affect the bifurcation path followed and thus the projection on the

x-y-plane in giving the boundary of the workspace.

5.5 Bifurcation paths in x-y space
To illustrate the effects of redundancy on determining the workspace boundary, consider the

workspace of manipulator M3 with leg limits 5 </, <20, i=1,2,3, shown in Figure 5-2, which

has been determined using the ray method with u; =(10, 25)" and the modified objective

function (5.8).
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Figure 5-2: Maximal workspace of M3

The manipulator is a symmetrical about the line x=10. It is thus only necessary to map one
side of the workspace boundary to determine the full maximal workspace. The symmetry has
further implications on the character of the workspace. Gosselin [37] notes that the stiffness of
such a manipulator becomes very low when the platform is positioned symmetrically near the

center of the workspace. Portions of the workspace boundary where non-unique behavior

occurs are indicated in Figure 5-2 as lines d-a-d’ and m-n-m.

-5 0 5 10 -5
X X
(@) (b)

Figure 5-3: Bifurcation paths in x-y space (a)+¢ modification and (b) -¢ modification
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Figure 5-3 shows the calculated projected bifurcation paths followed by the platform in x-y
space as it moves along the workspace boundary from a to h and j to h. These were calculated
using the modified ray method with the modified objective function. The bifurcation path
followed by the platform and projected as the workspace boundary is uniquely decided by the
orientation of the platform, as it moves from a (or j) and approaches the bifurcation point k.
After point k two different boundary curves are mapped depending on the form of the
modified objective function (5.8). Figure 5-3(a) shows the path followed for a +¢ modification
and (b) the path followed for a -¢ modification. If the method is applied without the objective
function modification, path (b) will always be followed. Superpositioning of boundaries (a)

and (b) gives the maximal workspace shown in Figure 5-2.

5.6 Detailed analysis of boundary bifurcation paths in x-y-¢ space
To illustrate why the platform follows different bifurcation paths, consider Figure 5-4, which

shows a plot of the platform orientation ¢ [rad] versus the search direction 0 [rad] with
u’=(10, 25)". The bifurcation points and curves are labeled using the notation proposed by
Snyman et al. [1]. As the search direction 6 varies from 0 to © the nature of optimization
Problem (i) changes. Various regions corresponding to the different classes of solution may

be identified.

2
{ (111)
d

[1-1]

(101)i

0.5

0.5 1 i I 1 1 1
0 B .

Figure 5-4: Bifurcation paths in 6-¢ space
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Figure 5-5 gives a two-dimensional representation of how the ray method objective function®

f= —Hu - uOH in the specified direction 6 might look in the f~¢ plane for a number of fixed

search directions 6 as one moves from left to right in Figure 5-4.

Ve /A
(a) (b)
I . ¢

-d — >id" - > d -

/ * 7k

(©) d)
| * . i L . @
[0} > d - [o} ¢

/A 7k

(e) ®
1 i - (P 1 (p

* — L * 4’

Pi o0, ¢

Figure 5-5: Objective function sections for different fixed 6 values

With reference to Figure 5-4, Figure 5-5(a) corresponds to a search direction in the region of
0,<6<23 2 In this case the original objective function f; corresponding to Hu— uOH in the

specified direction, does not have a unique minimum. Instead there is flat solution plain of

width d". Note that over this region of ¢ the x and y coordinates of the workspace boundary

(x¢, o) remain constant.

Figure 5-6: Objective function modification
The modified objective function (5.8) has the effect of sloping the floor of the valley and thus

forcing the optimization problem to have a unique solution as shown in Figure 5-6.

¥ Negative sign here because optimization algorithms usually perform a minimization and consequently one is
conditioned to visualize the minimization problem.
? The value of 6 for any point n will be denoted 0,.
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Depending on whether a positive or negative modification is used, the most clockwise or anti-

clockwise orientation of the manipulator may be determined.

From 6=2.3 to 6y the solution plain splits into two separate plain solution regions of width d,"
and d," respectively as shown in Figure 5-5(b). Once again the x and y workspace boundary
coordinates remain constant over both regions, while the platform orientation is non-unique.
The four bounding values of the platform orientation can be determined by using the objective
function modification and selecting a suitable starting point. Note that if the starting point is

chosen to lie in one plain, then a solution will generally be found inside that plain.

Figure 5-5(c) gives a representation of the third case (6, <0 <0,) in which one of the plains

has become a valley with one strong local minimum ¢, and a non-unique global solution
region of width d," is the other remaining plain. Once again the bounds of the non-unique
region may be determined using the objective function modification. There are distinct
coordinates (x¢, Yc, @) corresponding to ¢, and constant (x., y) coordinates but varying ¢

corresponding to the region of width d,".

In the region 04 <0 <0, the remaining plain also becomes a valley and there is either one
strong local minimum @, and one global minimum ¢,  as shown in Figure 5-5(d) or the
inverse case occurs of a global minimum at ¢," and a strong local minimum at ¢, as shown in
Figure 5-5(e). The final case (0, <0<0,) is shown in Figure 5-5(¢) where one unique

solution ¢ exists.

Since in the method used, the starting points for consecutive sub-problems are chosen as
solutions to the previous sub-problems, and @ is always increasing, it is evident that only one
complete valley can be mapped for every run of the program. The valley to be followed can
be chosen by changing the sign of the objective function modification used in the non-unique
region. This forces the platform into an extreme clockwise or counter-clockwise orientation
corresponding to path j-k or a-b-c-d respectively. From k path k-I-g-h can be followed and from
d path d-e-f-g-h. Since we are unsure from the outset as to which portions of each valley

correspond to the global minimum, it becomes necessary to map both extremes and then
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compare the results to find the maximal workspace boundary. Note the jump at f, which

corresponds to the solution moving from a local minimum valley to the global minimum.

5.7 Maximal workspace determination
The maximal workspaces of the parallel manipulators listed in Table 5-1 can be determined

by applying the method for determining non-convex workspaces, described in the previous
chapters, to equations (5.4) with constraints (5.7). The maximal workspaces of M1 and M3 are

shown in Figure 5-7. These were determined using the modified ray approach with the

modified objective function and leg length limits 2 </, <8, 5</, <25 and 10</, <25.
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Figure 5-7: Maximal workspaces of (a) M1 and (b) M3

Figure 5-8 shows the maximal workspaces of M2 and M4, which were determined using the

chord method with the objective function modification and leg length limits 2 </ <8,

5<1,<25 and 10</, <25.
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Figure 5-8: Maximal workspaces of (a) M2 and (b) M4
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5.8 Conclusion
The workspaces determined are highly non-convex, proving the effectiveness of the described

optimization methods. Furthermore, except for the workspace M2, they correspond exactly
with the workspaces determined by Merlet et al. [15]. The reason for the discrepancy between
the workspaces for M2 is that the dimensions of the manipulator are not accurately given in

the paper of Merlet et al. [15]. The basic forms of the respective workspaces are however very

similar.
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One of the main advantages of the optimization approach, previously proposed by Snyman et
al. [1], is the ease with which constraints of all forms can be implemented and handled. In this
respect the optimization approach is superior to the continuation method of Jo and Haug

[26,27].

The advantage that the continuation method has over other existing methods, particularly the
geometrical method (Gosselin and Angeles [6], Merlet et al [15]), is that it is a numerical
method which is generally applicable to both serial and parallel manipulators. Snyman et al.
[1] have shown that the optimization approach also possesses this property. Indeed the
optimization method should be even more generally applicable to manipulators of hybrid
design. In this study, the original ray approach of Snyman et al. [1] has successfully been
modified to determine most non-convex workspaces. Another optimization approach, the
chord approach, has been proposed and shown to be even more reliable in determining non-
convex workspaces. Both methods, embodied in practical interactive computer systems, allow

for the easy determination of convex and non-convex workspaces.

Work has so far primarily been concentrated on the determination of maximal workspaces.
Other workspaces, particularly dextrous, total orientation and constant orientation workspaces
are also of practical importance. Using the optimization approach, Du Plessis [2] has
computed some of these workspaces for planar and spatial Stewart platforms and has thus
shown that such workspaces can also be calculated using the optimization approach.
Extension of the current methods for non-convexity to allow for the calculation of these

workspaces will be of great practical use.

Although much success has been attained with the optimization approach, further study is
needed before the method can be seen as truly automated. One particular aspect that needs to
be addressed is the inability of the optimization algorithms to trace the extreme workspace
boundafy past a projection-intersection point. The main difficulty in dealing with such a
situation is that there is no indication of the occurrence of such an P-I point until breakdown

of the algorithm occurs.
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Complete automation of the algorithm would lead to many possibilities for further work to be
carried out on the geometrical optimization of manipulators. Some problems that could be
addressed are maximization of the manipulator workspace and the determination of the

geometry of a manipulator for a prescribed workspace.

Du Plessis [2] has already shown, for the specific case of a 6-3 Stewart platform, that the
planar optimization approach can easily be extended to determine the spatial workspace. It is
therefore believed that the current planar system can also be refined to determine the
workspaces of spatial Stewart platforms of more varied designs. Future research will therefore

be directed at developing such a general system for the characterization of spatial workspaces.



Appendix A: SINGULARITY ANALYSIS OF THE PLANAR
STEWART PLATFORM

Consider the Stewart platform shown in Figure 3-1 and the vector of coordinates
q=[xp,Yp,P »>1,0,,0,]". Writing expressions (3.3) in the standard form of the constraint
equations, and substituting the specifications for the normalized design, given in Table 3-1

gives:

112—(xP—COS(PP+1)2_(yP_Sin(pP)z (A.1)
D(q) = 122 —(xp —cOsQ, -1)° —(Vp _Sin(PP)2 =0
12— (xp +0080, ~2)* — (¥, +5i00,)°
Differentiating (A.1) with respect to time yields

(I)qq =0 (A.2)

where
—(x,—cos@, +1) —(y,-sing,) —sing,(x,-cosg,+1)i/ 0 0

+ COS(pP(yP —sin (PP) ;

® = —(x,—cosq,—-1) —(y,-sing,) —sing,(x,—-cosp,—1) 0 4 0 (A-3)
+C08Q,(y, —sing,) |
—(x,+cosq,-2) —(y,+sing,) sing,(x,+cosp,—2) 10 0 IR
i —c08Q,(y, +5ing,) | ]
=[4 B]
Using the above partitioning (A.2) can now be separated as follows:
Xp [,
A vy |=-B|, (A.4)
Op L,

In accordance with Gosselin and Angeles [38], a distinction can be made between three
different types of singularities:

Type I singularities occur when det(B)=0. Mathematically, this condition leads to /;=0
or [,=0 or 3=0. However, since the actuators have a finite range of motion, this type of
singularity will occur when one of the actuator legs reaches its minimum or maximum length

| (Sefrioui and Gosselin [39]):
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L =I"orl, =", i=123 (A-5)
The corresponding configurations occur on the boundary of the manipulator workspace or on
internal boundaries between regions of the workspace. On these boundaries, the platform can

be controlled, but cannot move in all possible directions.
Type II singularities occur when det(4)=0. From expression (A.3) the determinant of 4

is
det(A)=2sin’ ¢, —y,” cos@, —x,sin’ @, +x,y,sin¢, +y,sine, cosp, -2y, sin ¢, (A.6)
=(sin@, —y,)2sin¢, -x,sin¢, +y, cosg,)

Setting expression (A.6) equal to 0 results in two possible solutions:

Yp (A7)
X, =2

1. (2sin@, —x,sin@, +y,cos¢,)=0=tan¢, =

This corresponds to the configuration shown in Figure A-1(a) where the platform and

the third leg are collinear.

Figure A-1: Singular configurations

2. (sing,-y,)=0=>y,=0 (A.8)

This configuration is shown in Figure A-1(b) where the legs 1 and 2 are collinear.

In these configurations the platform is locally moveable, even if the actuator leg lengths are
fixed. In such a position, the platform cannot be controlled.

Type III singularities, also known as architecture singularities, occur when 4 and B
are simultaneously singular. When this occurs, finite output motion is possible even when the
actuators are fixed. For the Stewart platform considered one example of this would occur if
xc =xp, and [; = [,. A platform in a type III singular configuration cannot be controlled. It is
assumed that these types of singularities are avoided by the proper choice of geometric

parameters.
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Haug et al. [18] have determined that the same planar Stewart platform is in a singular position
when the platform and any one of the actuator legs are collinear, and the same leg is at a
minimum or maximum length. The apparent additional singularities can be accounted for by
the fact that Haug et al. introduce an input coordinate transformation to ensure that the leg
length constraints are automatically satisfied. Their singularities therefore correspond to type I
singularities (Haug et al. [19]). Incidentally, in the optimization approach used in this study,
the use of leg length constraints during workspace determination ensures that leg length

constraints are never violated.

Although the preceding analysis was performed on a specific normalized geometry, it is
evident that the results should hold true for any planar Stewart platform that is configured as

shown in Figure 3-1 with y-=y,=y;=0.



Appendix B: SNYMAN’S DYNAMIC TRAJECTORY
OPTIMIZATION METHOD

B.1 Background
The dynamic trajectory method (also called the “leap-frog” method) for the unconstrained

minimization of a scalar function fix) of n real variables represented by the vector

X=(X1,%y,...,X,)' was originally proposed by Snyman [32,33]. The original algorithm has

recently been modified to handle constraints by means of a penalty function formulation.

(Snyman et al [34,35]). The method possesses the following characteristics:

e Uses only function gradient information Vf{x),

e No explicit line searches are performed,

e Extremely robust: handles steep valleys, and discontinuities in functions and gradients,

e Algorithm seeks low local minimum — can be used as a basic component in a methodology
for global optimization, and

e Not as efficient as classical methods on smooth and near-quadratic functions.

B.2 Basic dynamic model
The algorithm is modeled on the motion of a particle of unit mass in a n-dimensional

conservative force field with potential energy at x given by f{x). At x, the force on the particle

is given by
a=x=-Vf(x) (B.1)
from which it follows that for the time interval [0,t]
2 2
@] = 5]%0)] = £(x(0)) - £ (x(2)) ®2)
r@-10)=f0)-f®
or

f(t)+T(t) = constant {conservation of energy}

Note that since Af =—-AT as long as T increases f decreases. This forms the basis of the
dynamic algorithm.

B.3 LFOP: Basic algorithm for unconstrained problems
Given f{x) and a starting point x(0)=x°

e Compute the dynamic trajectory by solving the initial value problem (IVP)
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X(1) = =Vf(x(1)) (B.3)
x(0)=0, x(0)=x°
e  Monitor x(¢) =v(t). Clearly as long as T = %Hv(t)”2 increases f(x(t)) decreases — OK!

e When “v(t)“ decreases apply some interfering strategy to extract energy and thereby

increase the likelihood of descent.
e In practice a numerical integration “leap-frog” scheme is used to integrate the IVP (B.3)

Compute for £=0,1,2,... and time step At

X = xF gy viAr (B.4)

. vk+l — vk +ak+lAt
where a* = -Af(x*), v’ =1a’Ar
e A typical interfering strategy is

If Hvk+l

> Hv" H continue

else

kel K \ XA 4 ik (B.5)

y
set v =——— xF =

compute new v**' and continue.

e Further heuristics are used to determine an initial Af, to allow for magnification and

reduction of Az, and to control the step size.

B.4 LFOPC: Modification for constrained problems

Constrained optimization problems are solved by the application, in three phases, of LFOP to

a penalty function formulation of the problem [34,35]. Given a function f{x), with equality
.1"'.

constraints 2=0 (i=1,2,... /) and inequality constraints gi<0 (j=1,2,...,m) and penalty parameter

u>>0, the penalty function problem is to minimize

A m
" A
Plep) = () + 3 () + 3B, g2() ®.6)
0if g,(x) <0
where B, = {u if g,(x)>0

Phase 0: Given some x’, then with the overall penalty parameter p = p,(=10?) apply

LFOP to P(x,u,) to give x*(p.o)
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Phase 1: With x°= x (1), p=p,(=10") apply LFOP to P(x,u,) to give x'(u,) and
identify active constraints ,=1,2,....n,; g, (x (1) >0
Phase 2: With x°= x"(i,), use LFOP to minimize

.
B.7
B,(x,ul):fulhf(xHZu.g?(x) (B7)
i=1 i,=1

to give x'.

B.5 The use of LFOPC in the optimization approach
The dynamic trajectory algorithm is essential to the successful implementation of the

optimization approach. This method is a proven robust method. The trajectory nature of the
algorithm ensures controlled and stable convergence to the optimum. In particular, when
solving the successive optimization problems inherent in the optimization approach the
trajectory method is more reliable in tracking the local “optimization valley”, which
corresponds to the workspace boundary, than other more established classical optimization
techniques. This local convergence property can be controlled in the optimization algorithm
by means of a maximum step size parameter (DELT). Furthermore LFOPC provides a
convenient method for determining the bifurcation points by means of the minimization of an

error function.
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