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APPENDIX A

Mathematical model of a single D.O.F vibration absorber
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Figure A.1 A single D.O.F. vibration absorber system

The kinetic energy of the system in figure A.1 is given by equation A 1:

T :%(mlybf +m,x, + 1692) (A1)

I is the moment of inertia of the mass mp about its mass centre. The relation between x3, 0,
and x; are given by equations A.2 and A3 (refer to figure A.2):

X, = (1 - E—)xl (A2)

r

621 (A.3)

R

Figure A.2 Schematic of relationship between the variables

Substituting these relations in equation A.1 results in the following:

1 rRY I
T :E[ml-l-(l_?J mB+;G;)

x? (A4)

1
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From equation A 4 the kinetic term in the Lagrange's equations can be derived:
d(ar R  I1,).
E(—ax—l) = [ml + (1 — 7) mg + r—f}cl (A.S)

The elastic energy is given by:

V= %k x? (A.6)

1771

From equation A.6 the potential energy term in the Lagrange's equations can be derived:

ov

a - kl X (A°7)
The Rayleigh function is given by:

R= %cl i (A.8)

From equation A.8 the damping term in the Lagrange's equations can be derived:

R _ c,x A9

ox, 4.9
The complete equation of motion (A.11) can be formulated by substituting the expressions in
Lagrange's equations (A.10) with those found in equations A.5, A.7 and A.9.

a -6_1 —a—T+a—V=Q§."> j=12,..n (A.10)
dr | ox,; Ox, Ox,

RY I.). . .
mobmy| 1= 4S5 ok thx = Fy sin(wr) (A.11)

The frequency response of the system to a force can be found by substituting the assumed
solution and its derivatives (A.12, A.13 and A.14) as well as the harmonic force (A.15) into
the equation motion (A.11). The frequency response to a force Fj(iw) is shown in equation
A 16.

x,(()=X e (A.12)
x,(t)=iaX ™ (A.13)
#,() = —0X e (A.14)
f,)=Fe™ (A.15)
X, = ! F

(A.16)

2
I
_ayz[m1 +m8(1—§) +;%}+ia)cl +k,
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The transmissibility will be defined in terms of forces. For this purpose the force transmitted
by the spring (F,), the damper (#,) and the dynamic force of the absorber (F,) must be
calculated. The first two are simply given by equation A.17 and A.18:

F, =kx (A17)
F, =ci (A.18)

The complete derivation of equation A.19 is shown in Appendix D.

F o= —[mﬂ(l = 5J£ - 1—§}x (A.19)

The transmissibility is given in terms of the forces and as a function of frequency. Equations
A.17 to A.19 are rewritten using equations A.12 to A.14 and added to arrive at the total force
transmitted to the foundation. The force applied at mass m; is given by equation A.15. The

transmissibility is therefore:
[kl +ime + w{mﬁ[l - B} R_ 1‘2’]:|X1
rjr r

B

|

rjr

= 2
k +iax, —a)zlml + m,,(l - —}i) + ]—j}
¥ r

Equation A.20 can be non-dimensionalised as follows:

A.20
kl+ia)cl+a)2[m3[1—R)R I—‘z’] ( )
r

N=

2

{a)] ]
o
T|= e J 8 (A.21)
w w
Hz.” *[Z‘m‘,,]
w? 1w ?
¢:tan"ﬁ—w—"2 —tan™ —fo—z (A.22)
)
L\, o,
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The following transmissibility plot of equation A.20 illustrates the effect of damping. The
importance of low damping in the absorber is clearly evident.

J =
z — ¢=01
= P o
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Circular frequency [rad/s]

Figure A.3 Transmissibility plot of equation A.20 with @,= 1, ®,=0.5

The aim of the absorber is to minimise the force transferred to the foundation. This will be
achieved when the numerator in the transmissibility equation (A.20) is equal to zero:

k, +iaxc, +a)2[m3(1—7)7—r—2] =0 (A.21)

The non-trivial solution for the isolation frequency (c; = 0) is:

J- =5\’m3(1_5)5_1_a (A.22)

The response of the screen to the applied force after the addition of the absorber is of critical
importance since it will influence its effective operation. The response of the screen is given
by equation A.16. From this equation it is evident that the response of the screen will be
influenced by the addition of an absorber. The effect must be minimised through proper
choice of parameters and the applied force must be adjusted to compensate.
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The following figure illustrates the forced response of the system. The response at the

isolation frequency can be low.
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Figure A.4. A typical response of mass m; due to force F; with @,=1, @,=0.5 and {=0.1

The natural frequency can be seen on the FRF plot. The plot also shows the response of the
system at the anti-resonant frequency (the exact point of anti-resonance might not be clear).
The undamped natural frequency for this single degree-of-freedom system is given by

equation A.23:

(A.23)
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APPENDIX B

Mathematical model of a two D.O.F. vibration absorber system
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J ft

% = \/ mg st
r /7 .
-l

Figure B.1 A 2 degree-of-freedom vibration absorber system

Il

The kinetic energy of the system in figure B.1 is given by equation B.1:

r =%(mlitf mg m i+ 16" ®.1)

I is the moment of inertia of the mass mp about its mass centre. The relation between x3, 6,
and x, are given by equations B.2 and B.3 (refer to figure B.2):

x, = (1 - B)xz (B.2)

7

On—22 (B.3)

S

R

Figure B.2 Schematic of relationship between variables
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Substituting these relations in equation B.1 results in the following:
2
T= %{ml)&f + (m2 + (1 —?) m, +i—‘j]xf}
From equation B.4 the kinetic terms in the Lagrange's equations can be derived:
d|oT ..
| A |75
dr\ ox,

iaT =m+1—£2m+1—65c'
dr\ ox, : r) "ot

The elastic energy is given by:

Vv =—;—(kl(xl —xz)z +k2x22)

From equation B.7 the elastic terms in the Lagrange's equations can be derived:

ol
g-:klxl —klxz
gTV:—klxl +kx, +k,x,

1

2

The Rayleigh function is given by:

1 .. .
R :E(cl(xl _xz)2 +sz;)

From equation B.10 the damping terms in the Lagrange's equations can be derived:

OR . .
—=c X —cX,

1771
ox

1

OR . . .
_ax =—C X, +c1x2 +sz2
2
The mass matrix is given by equations B.5 and B.6:

m, 0

2
[M]= 0 mz+(l—£J mB+I—‘j
r r

The stiffness matrix is given by equations B.8 and B.9:
k, k

[K]:[—kl k1_+;cz]

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)
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The damping matrix is given by equations B.11 and B.12:

[c]= [_c; G ] (B.15)

The complete equation of motion (B.17) can be formulated by substituting the expressions in
the Lagrange equation (B.16) with those found in equations B.5 and B.6, B.8 and B.9 and
B.11 and B.12.

™ RO 2 ] ¥, L -c¢, | % N k, —k x| _|F sin(ar)
0 m2+(1——) mB+r—f | |- e e, X%, | |-k k+k | x - 0

The frequency response of the system to a force vector can be found by substituting the
assumed solution and its derivatives (A.12, A.13 and A.14) as well as the harmonic force

(A.15) into the equation of motion (B.17). The frequency response to a force vector F(im) is
shown in equation B.22.

(B.16)

. . -1
—o’m, +iwc, +k, —iwc, —k, [

X7 &Y 1
X, —ioc, -k, —a)z[m2+ma(1——) +—‘2’—}+ico(cl+cz)+k1+k2
r r

F,
! B.17
P ] (B.17)

2

The response at m- can be found by calculating the inverse of the system matrix:
XZ

F,

1

— —a,

3,0y — 0,4y,
ime, +k,

2
1
(—a)Zm1 +ioc, +k1{—a)2lm2 +m3(1—£) +—f]+iw(c1 +c,)+k, +k2]—(ia)c1 +k )
r r

(B.18)

The transmissibility will be defined in terms of forces. For this purpose the force transmitted
by the spring (F,), the damper (F;) and the dynamic force of the absorber (F,) must be
calculated. The first two are given by equations B.19 and B.20:

F =k, (B.19)

F,=c,%, (B.20)

The complete derivation of equation B.21 is shown in Appendix D.

F, = —[mB (1—5)5- —{i;—:|x (B.21)
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The transmissibility is given in terms of the forces and as a function of frequency. Equations
B.19 to B.21 are rewritten using equations A.12 to A.14 and added to arrive at the total force
transmitted to the foundation. The force applied at mass m; is given by equation B.18. The
transmissibility is therefore:

(kz+,-mz+wz[m3(l-£)£_f_g])xz
F rj)r r

A

(e, +kl{k2 tiawc, + a)z[m,,(l— %J? - i—‘z"D

2
(— o’m, +ioc, + kl{— (412[m2 + mﬂ(l - B) + I—‘z] +iole, +¢,)+k, +k2] (o, -k
r r

ey

(B.22)

The following transmissibility plot of equation B.27 illustrates the effect of c,. The
importance of low damping in the absorber is clearly evident.

| | | | | — c;=0.01
z /'\ — ¢,=01
.%100 - /’“\\‘\\— e // S . S i
£ Y
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'
(34
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/
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/
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Frequency [Hz]
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E-N

Figure B.3 A typical transmissibility plot of equation B.26 shewing the effects of damping
(6‘1 = 0, C2= 0.01, mpg= 0.5, m;=m= k1= k2= 1and Rr= 2)
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The aim of the absorber is to minimise the force transferred to the foundation. This will be
achieved when the numerator in the transmissibility equation (B.22) is equal to zero:

I
k, +imcz+w2|:m3(l—§)§—r—g]=0 (B.23)

The non-trivial solution for the undamped isolation frequency (c; = 0) is:

ff?,?\/ [ RJR 7 (B.24)
my|l

The response of the screen to the applied force after the addition of the absorber is of critical
importance since it will influence its effective operation. The response of the screen is given
by equation B.25. From this equation it is evident that the response of the screen will be
influenced by the addition of an absorber. The effect must be minimised through proper
choice of parameters and the applied force must be adjusted to compensate.

Xl

F

1

a22

a21a12

a,.a

n%az

: RY I,
—o\m,+my|1-—| +— +1aJ(c1+c2)+k1+k2
r r

2
(—a)zm1 +ioc, +k1{—a)z[m2 +m8(1—R) +1‘j]+ia)(c1 +e, )+ k, +k2]—(ia)c‘ +k )
r r

(B.25)

The following plot of equation B.25 illustrates the forced response of the system at mass m;.
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Figure B.4 A typical response of mass m; due to force F; (o)
(C]= 0, C2= 0.01, mpg= 0.5, m;=m;,= k1= k2= 1and Rr= 2)

The natural frequencies can be seen on both figure B.4 and B.5. The figures also show the
response of the system at the isolation frequency (the exact point of isolation might not be
clear). The natural frequencies cannot easily be found analytically but are rather calculated

numerically with an eigenvalue approach.

The following plot of equation B.18 illustrates the forced response of the system at mass n2.
The 2 degree-of-freedom model can be used to model a screen mounted on an absorber.
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Figure B.5 A typical response of mass m; due to force F; (0t2)
with ¢;=0, ;= 0.01, mp= 0.5, my=m,=k;=k;=1and Rr=2
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APPENDIX C

Mathematical model of a 3 D.O.F. vibration absorber system
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|

k2. c2

rJ
< R

Figure C.1 A three degree-of-freedom system including a vibration absorber
The kinetic energy of the system in figure C.1 is given by equation C.1:

T :%(mlif m % e mit it +1,67) (C.1)

I is the moment of inertia of the mass mpz about its mass centre. The relation between x4, 6,
x;and x; are given by equations C.2 and C.3 (refer to figure C.2):

X, = (1 - ész + §x3 (C2)
g (C.3)
la
i )
/ 4
s
3
r
I R

Figure C.2. Schematic of relationship between variables
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Substituting these relations in equation C.1 results in the following:

2 2
T = %lmle + [mz + (1 —?] m, +i—fij + (ms + (?) m, +i—j]x§ + (2(1— ?J(?)mg - Zi—jjjczfg}

(C.9)
From equation C.4 the kinetic terms in the Lagrange's equations can be derived:
Al _ sz (C.5)
dr\ ox,

2
i a,T =|m,+ l—£ mg +£G_ ¥, + 1_5 EmB_I_G X, (C.6)
dt\ ox, r r rjr r’
dfar RY I,). RI\R L),
R

The elastic energy is given by:

V:_;_(kl(xl _xz)2 +kz(xz _x3)2 +k3x32) (C.S)

From equation C.8 the elastic terms in the Lagrange's equations can be derived:

ov

== kx, —kx, (C.9)
oV
o —kx +kx, +kx, —k,x, (C.10)
Z—V =—k,x, +k,x, +k,x, (C.11)
x3
The Rayleigh function is given by:
R= %(cl(xl _3&2)2 +cz(j€2 _)bs)2 +63x32) (C.IZ)

From equation C.12 the damping terms in the Lagrange's equations can be derived:

OR . .
—=c,X —CX, (C.13)
0x,
OR . . . .
——=-—CX t+ox, tex, —¢,x (C19)
ox,
oR . . .
—=-C,X, +C,X, +C,X; (C.15)
Ox

3
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The mass matrix is given by equations C.5, C.6 and C.7:

m, 0 0
2
[M]=| 0 m, +(1—5) m, +£§ (1—5]5% —I—j (C.16)
r r r)r r
2
0 (I—EJ5 3—[—‘2’ 3+(£J mB+I—j
r)r r r r |
The stiffness matrix is given by equations C.9, C.10 and C.11:
k= -k 0
[K]= _kl kl +kz _kz (C.17)
0 -k, k,+k,
The damping matrix is given by equations C.13, C.14 and C.15:
c, -c 0
[C]= -¢ ¢ t+e¢, -c (C.18)
0 -c, ¢,+c

The complete equation of motion (C.20) can be formulated by substituting the expressions in
the Lagrange's equations (A.10) with those found in equations C.5 to C.7, C.9 to C.11 and
C.13to C.15:

[ K+ [cTed+ [k K} = 1) (C.20)

The frequency response of the system to a force vector can be found by substituting the
assumed solution and its derivatives (A.12, A.13 and A.14) as well as the harmonic force

(A.15) into the equation of motion (C.20). The frequency response to a force vector F(im) is
shown in equation C.25.

The transmissibility is calculated numerically from equations C.21 and C.22

X, £
X, ! = [F o’ M)+ iolc]+ KT F, (C.21)
X, F,
Xi
T, = i (C.22)

The following transmissibility plot (7%;) described by equation C.22 illustrates the effect of
¢. The importance of low damping in the absorber is clearly evident. It is not always possible
to see all the natural frequencies on the transmissibility plot. The position of the natural
frequency is however extremely important and will be discussed later in this appendix.
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Figure C.3 A typical transmissibility plot of equation C.22 (73;) showing the effects of damping
(c,=03=0,m3=0.5,m3=k3=k2= l,IG=0 andR/l‘=2)

In order to be able to formulate an expression for the isolation frequency, an analytical
expression will be found for the transmissibility between mass m> and mass m;. Equation
C.23 was found by substituting the assumed solution and its derivatives (A.12, A.13 and
A.14) in the 3™ equation of the set of equations described by equation C.20.

I
k, +ioc, +*|m, 1—5 5——3
X; r)r r

X, g
’ k2+k3+ia)(cz+c3)—a)2[m3 +m8(£) +-<
r

rZ

J (C.23)

The aim of the absorber is to minimise the force transferred to the foundation by minimising
the motion of mass ms. This will be achieved when the numerator in the transmissibility
equation (C.23) is equal to zero:

k, +ia)cz+co2[m8(l——)———zj=0 (C.29)

The non-trivial solution for the undamped isolation frequency (c; = 0) is:

f‘_zn\, ( R)R d (C.25)
my| 1
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Figure C.4 A typical transmissibility plot of equation C.23 (7;;) showing the effects of damping
(c,=C3=0,mB= 0.5,m3=k3=k2= I,IG=0 andR/r=2)

The response of the screen to the applied force after the addition of the absorber is of critical
importance since it will influence its effective operation. The response of the screen is given

by equation C.21. From this equation it is evident that the response of the screen will be

influenced by the addition of an absorber. The effect must be minimised through proper

choice of parameters and the applied force must be adjusted to compensate.

The following figures show the response at mass m; and ms due to a force acting on mass 71,.

The three natural frequencies are clearly visible. The figures also show the response of the

system at the anti-resonant frequency. Figure C.6 shows that mass m1; has low response at

anti-resonance.

The 3 DOF model can be used to model a screen mounted on an absorber when the stiffness

of the support must be taken into account.

The development of a vibration absorber for vibrating screens



Appendix C — Mathematical model of a 3 D.O.F. vibration absorber system Page 139

10 T T T T T T
L
S10"F T / . e i
Ja \{ \\‘/:/
10‘5 1 | L 1 L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0 [

1
—
T

Phase angle [rad]
L

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Frequency [Hz]

IS

(=]

Figure C.5 The response of mass m; due to force F; (ct11)
(C] =C'3=0, C2=0.01,mg=0.5,m1 =m2=m3=k1 =k2=k3=1,IG=0 and R/r=2)

10 T T T T T T
_10°F | :
o . \
biloo F//.// S o \\ / \ |

N //// \\\
7 & - \_\ 1
\
10 2 I I &/ L L -

—
kT

Phase angle [rad]
S o

] | |

0 0.05 0.1 0.15 0.2 0.25 03 035 0.4
Frequency [Hz]

Figure C.6 The response of mass m; due to force F; (cs1)
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Analysis of the inertial absorber force
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Figure D.2 Schematic of absorber pendulum
The sum of the moments about fixed pivot C is given by:
M, =1«
D.1
— D.1)
The sum of the forces in the x and y directions are:
Z Fx =—mga,
R, =-m,(R-r)o’ (D-2)
2F, =ma,
F+R, =m,(R-r) ®.3)
The trigonometric relationship between the linear and angular acceleration is given by:
in-ra {D.4)

By substituting equation D.1 in equation D.3 the force R, can be found as a function of the
angular acceleration:

R, :mB(R—r)a+1—ca (D.5)
r

The angular acceleration can now be substituted with the relationship given by equation D.4:

R, =—1"f(R—r)a‘c‘—i—jﬁé D.6)
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The following expression can be written for the moment of inertia about C using Steiner’s
theorem:

I,=m,(R-r) +1, D.7)

Substituting this relationship into equation D.6 results in:

R, =[—1"-"—(R ~r)-"2(R-r) —I—j]x
r r r

[ ( RJR 1] 08
={m,|1-=|=-=2|%
r r r
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APPENDIX E

Computational fluid dynamics analysis
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E.1. Introduction

Viscous damping is a damping force that is proportional to the velocity of the fluid. To find
the force it is necessary to solve the shear force on the port wall and the pressure drop across
the port. Analytical equations that describe both these quantities were discussed in chapter 2,
but they exist only for simple geometries. To find the total force acting on the port used in the
final design computational fluid dynamics had to be used. The objective was to compare the
final design with the theoretical model in order to show that a smooth inlet will reduce the
amount of damping. The force found from the analytical equations was compared to CFD
results for the theoretical case. This gave confidence in the method. The force acting on the
port used in the final design was solved using CFD and compared to the theoretical case. This
was a qualitative study and showed a marked improvement in the damping when a smooth
inlet/outlet geometry was used.

E.2. Method and Model parameters

Computational fluid dynamics produce a prediction of how fluid will flow for a given
situation (Shaw, 1992). To do this the numerical solutions to the equations that govern the
flow must be solved. These equations can be found from the knowledge that mass and
momentum must be conserved. The package used to solve the flow was STAR-CD. This
package uses the finite volume method to solve the equations for the fluid flow, which is
described in detail by Patankar (1980). Turbulence was included in the model using the A-&
turbulence model. This method calculates the kinetic energy 4 and the distribution of the
dissipation rate of k& denoted by ¢.

The inputs needed by the CFD package are:
the geometry of the flow domain including the computational mesh

fluid properties
boundary conditions

solution control parameters

Due to its simplicity, the geometry for the theoretical model was created in STAR-CD. The
geometry for the design was imported from CAD. A mesh of hexahedral cells was created.
Only 1/8™ of the port was modeled to reduce the solution time. The fluid properties were the
same for both models.
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Table E.2 Fluid properties
Property Value
Density [kg/m’] 1000
Absolute viscosity | 1x107

The boundary condition was treated as a constant axial velocity inlet at the bottom and a
constant axial velocity outlet at the top. It was assumed that the fluid flow would have the
same velocity as the port that is forcing it. The port is moving relative to the sleeve and it is
therefore possible to specify the boundary condition on the sleeve and keep the port fixed.

The velocity of the port is equal to the inlet velocity and is related to the amplitude and
circular frequency by:
#(t) = i caXe™

By solving the damping for different inlet velocities, a lookup table can be constructed. For a
fixed amplitude the damping coefficient is only a function of frequency.

The SIMPLE algorithm was used for the solution. The solution converged in 3000 iterations.
The y~ values were checked and fell within the acceptable range of 30 to 100.

The following two paragraphs will give detailed results for the two models. Graphical output
of the CFD program is also included to give physical insight in the processes that cause

damping.

F.3. Theoretical model

Figures E.1 to E.3 show the grid of hexahedral cells. A constant axial velocity outlet
boundary condition was specified at the top and a constant axial velocity inlet at the bottom.
The walls had a no-slip boundary condition. A symmetry plane was defined to reduce the size
of the model. No flow is allowed perpendicular to this plane.

The port inlet and outlet are sudden contractions and expansions, which will create the
maximum flow losses for this port and reservoir diameter.
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Port inlet

/

Figure E.1 3D grid for 1/8" of the flow region

Y, Outlet boundary

/
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Figure E.2 Grid at the outlet
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Figure E.3 Grid at the inlet
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E.4 Relative pressure

On figure E.4 it can be seen that the flow separation at the inlet cause a pressure drop at the
wall. The flow separation reduces the effective flow area, which accelerates the fluid. This

condition can be seen in figure E.5 and E.7.
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The wall had a no-slip boundary condition the effect of which can be seen in figure E.5.
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E.6 Velocity vectors at the outlet

Re-circulation at the outlet is caused by flow separation as can be seen in figure E.6. This
condition will increase the damping.
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Figure E.8 Total pressure drop (Apr) as a function of port velocity (x)

The total pressure drop is shown in figure E.8. The pressure drop at the outlet is shown in
figure E.10 and is clearly much more that predicted analytically. The reason for this is the
proximity of the boundary.
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The pressure varies quadratically as can be expected from its relation with velocity (figure
E.13) while the damping coefficient varies linearly as can be seen in figure E.12.
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E.4. Design

Uniform velocity boundary

ﬁ

Cyclic symmetry plane

No-slip wall <

Figure E.13 3D grid for 1/8" of the flow region

Figure E.14 Grid at the outlet
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Figure E.15 Grid at the inlet

The mesh used for the final design is shown in figures E.13 to E.15. The boundary condition
was a constant velocity in the z-direction on the ends of the grid. Figure E.16 show that the

gradual change in area causes less flow disturbance.
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Figure E.16 Relative pressure
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Figures E.17 and E.18 show that the flow still gets separated at the outlet where a re-
circulation region develops causing backward flow in the outlet. This will increase the
damping. At the inlet (figure E.19) hardly any separation occurs.
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Figure E.20 The pressure drop at the inlet (Ap,) as a function of port velocity (x)

Figure E.20 shows that the pressure drop at the inlet is far less than for square inlets/outlets.
The pressure drop decrease at the outlet is not as dramatic (figure E.21).
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Figure E.22 shows that changes to the inlet/outlet geometry can have a major impact on the

total pressure drop.
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Figure E.24 Viscous damping (c) as a function of port velocity (x)

The conical inlets/outlets reduced the viscous damping significantly as can be seen in figure

E 24.
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E.S. Conclusion

The CFD analysis proved to be worthwhile. The total pressure drop of the design is 2.5 times
less than the theoretical model. The viscous damping coefficient is 5 times less. The design
was done only with knowledge based on theory and empirical data and further improvements
are therefore possible. Manufacturability also played a major role in the eventual choice of
geometry. The port geometry can however be optimized using CFD. Optimization of the port
geometry could significantly reduce damping further and is recommended for a future study.
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F.1. Component mass

Table F.1 Component mass

Item # | Solid model [kg] | Actual [kg]
M14 threaded rod 2 0.00766
Lid 1 (445 4.18
M8 allencap 6 0.02132
Washer 6 0.00125
Connector 1 |17.6 16.98
Connector block 1 1 |11 1.12
Connector block 2 1 | 1.1 1.10
M10 flat head socket screw | 2 0.00234
MS flat head socket screw 4 0.00186
Sleeve 1 |84l 7.92
O-ring 2 0.0036
Top plug 1 |3.68 3.70
M6 1 0.0066
Washer 1 0.001
Spring 1 [1.14 0.9
Port 1 4.74
Bottom plug 1 [3.68 3.64
Table F.2 Volume
Item Solid model [L]
Spring 1.071
Port 0.078
Reservoir | 0.110
Total fluid | 0.298
Table F.3 Density

[kg/m’]
Polyurethane | 1060
Steel 7850
Water 1000

System mass 15.28 kg

The development of a vibration absorber for vibrating screens



Appendix F — Detail design Page 161

F.2. Detail of the tuning port

Section F-F

m

1
|
|
o |
! |
50 |
T
o SRR SN P S, S - N——
o < ~ 4 <
v v 9 v E L:’—)
|
. = = = — = f/\f\ = mpme—e e
9P
|
¥
o F
A
] ©

Section E-E

The development of a vibration absorber for vibrating screens



Appendix G — Test results of an absorber with a 55-Shore A spring Page 162

APPENDIX G

Test results of an absorber with a 55-Shore A spring
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Table L.2. Test results for stiffness [MN/m].

Hysteresis loop equation

Sine curve fit

Frequency ko ko Akiky ko ko Aklky
[Hz] [o] [7o]

5 3.06 2.98 2.51 3.05 3.03 0.49

10 3.40 3.24 4.47 3.39 3.23 4.63

15 3.54 3.38 4.67 3.54 3.36 5.00

19 3.63 3.53 2.84 3.63 3.54 2.64

26 4.14 4.10 1.06 4.15 4.10 1.22

30 4.65 4.26 8.56 4.66 4.25 8.73

35 4.51 4.19 7.08 4.50 4.19 6.94

40 5.06 488 3.60 5.06 4.89 3.38

Curve fit not successful, Ak =kp - ko

Table L.3. Average test results for stiffness [MN/m].

Frequency | ko ke Aklky
[Hz] [%]
5 3.05 3.01 1.50
10 3.39 3.24 4.55
15 3.54 3.37 4.83
19 3.63 3.53 2.74
26 4.15 4.10 1.14
30 4.66 4.25 8.64
35 4.50 4.19 7.01
40 5.06 4.88 3.49
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Table L4. Test results for the loss factor.

Average peak method Phase shift from curve fit | Energy method
Frequency | 1o Ne | Animo | 1o Ne | Anlmo | mo Mo | Aimo
[Hz] [*o] [%] [7o]

5 0.27 0.27 1.78 0.28 0.27 4.42 0.34 0.32 431

10 0.42 0.40 298 0.42 0.41 3.79 0.46 0.45 3.02

15 0.48 0.47 1.73 0.49 0.48 2.39 0.51 0.50 1.70

19 0.50 0.50 0.62 0.50 0.50 1.38 0.53 0.51 3.15

26 0.53 0.52 2.33 0.53 0.53 -0.01 0.55 0.54 1.89

30 0.56 0.52 6.68 0.56 0.52 6.55 0.57 0.53 6.84

35 0.51 0.51 0.57 0.52 0.51 0.77 0.51 0.51 0.01

40 0.54 0.53 2.22 0.54 0.49 9.52 0.57 0.55 2.42

Curve fit not successful, Anp = mp - N

Table L.5. Average results for the loss factor.

Mo N Al
%]
5 0.30 0.29 3.57
10 0.43 0.42 3.26
15 0.49 0.48 1.94
19 0.51 0.50 1.74
26 0.53 0.53 1.41
30 0.56 0.52 6.69
35 0.51 0.51 0.45
40 0.55 0.52 4.70
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