
©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

The exchange of information is an important social, economic and political activity. The

importance of the exchange of information regarding all aspects of life has increased dra-

matically over the last 50 years. This period has seen the emergence of massive communi-

cation systems which have the sole purpose of facilitating the exchange of information. The

proliferation of telephone and computer networks (both local and wide area networks) are

manifestations of this phenomenon. As both the amount of information being exchanged and

the significance attached to that information have increased, the need for ensuring the privacy

and authenticity of the information have increased. This is especially true when considering

communication systems where no human interaction is required. A computer network is a

typical example of such a communication system. The need for privacy and authenticity is

especially acute if a breech in either secrecy or authenticity may result in losses (financial or

otherwise) for the participating parties in a communication system.

Organisations and people that use communication systems often express their needs for in-

formation security and trust in terms of three distinct requirements, frequently referred to as

the CIA-Model of security:

• Integrity - ensuring that data and information is only changed and modified in a spec-

ified and authorised manner

• Availability - ensuring that systems work promptly and correctly, and that service is

not denied to authorised users.

Over the past three decades numerous techniques have been invented and developed to ensure

both privacy, authenticity and availability of information in communication systems. These

techniques are often constructed from a number of basic cryptographic primitives. One of

the primitives most widely used is the cryptographic hash function.

Chapter 1

Informally, a hash function is defined as a function that compresses an input string of arbi-

trary length to an output string of fixed length (see Figure 1.1).

I Message M

~ HashFunctionhO

I Hash Result h(M)

Definition 1.1 (Hash Function) A hash function is defined as an easily computable func-

tion, hO, that maps every binary sequence of length fJ or greater to a binary sequence of

length m, where fJ and m are specified parameters.

A wide range of terminology exists for hash functions used in security applications [2],[3].

These terms include message integrity codes, message authentication codes, manipulation

detection codes, cryptographic hash functions or simply hash functions. In this document

hash functions used for security applications are referred to as cryptographic hash functions

or hash functions for conciseness.

Hash functions have their origin in the field of computer science and were originally used

for data storage and retrieval [4]. For data storage applications a hash function is used to

compute an abbreviated representation of a filename. This abbreviation is then used to index

and store the file. When the file is retrieved, the hash value for the given filename is used to

retrieve the data. Using a hash function reduces the storage requirements for a data retrieval

system, since only the hash value has to be stored, instead of the entire filename.

Chapter 1

A number of other uses have been found for hash functions. Amongst others, hash functions

are used in compiler symbol tables, graph theory problems, transposition tables in computer

games, spell checkers, tests for set equality and security applications [2], [3]. It is the appli-

cation of hash functions in security solutions that constitutes the topic for this dissertation.

A short list of security applications that rely on the use of cryptographic hash functions is

shown below:

Because of the wide ranging applications of hash functions in security solutions they are

considered important cryptographic primitives. The above list of applications can roughly

be split into two categories:

The list of security applications primarily represents authentication and non-repudiation ser-

vices. When using a cryptographic hash function in an authentication scheme the authenticity

of the message is transferred to the hash value. It is then necessary to provide protection and

authentication for the hash value only, instead of the entire message. The hash value serves

as an authentication tag for the message, and can be appended to a message. A number

of cryptographic protocols and electronic commerce implementations rely on cryptograph-

ic hash functions to provide these services. These protocols include S/MIME, SSL, TLS,

WTLS, SET as well as the EMV specifications.

Chapter 1

The non-linear and one-way property of cryptographic hash functions are exploited when

used in encryption schemes. Cryptographic hash functions can be used as non-linear ele-

ments in block ciphers based on the Feistel structure. Four block ciphers, LION, BEAR,

LIONESS and AARDVARK that are based on the existence of secure cryptographic hash

functions were recently proposed in [7], [8] and [9]. It is also possible to exploit the non-

linear and one-way properties of a cryptographic hash functions in the construction of stream

ciphers.

Earlier in this section a hash function is defined as a function that compresses an input string

of arbitrary length to an output string of fixed length. The inherent weakness of all hash func-

tions is contained within this definition. An intuitive explanation of the inherent weakness

of hash functions is presented in this section.

Consider the projection of an M dimensional space onto an N dimensional space with M >
N, f is the mapping (hash) function (see Figure 1.2).

From Figure 1.2 it is clear that the projection of all possible representations in M onto N

is not unique if M > N. The lack of uniqueness of the mapping function f 0 implies that
more than one vector in M is mapped to the same vector in N. This is known as a collision.

A graphical representation of the above statement is given for M = 3 and N = 2 in Figure
1.3.

Chapter 1

10: ml H nl
10: m2 H nl

From the above it follows intuitively that the number of collisions increases as the ratio ~

increases.

This argument leads to the conclusion that collisions exist for all hash functions as previously

defined. The existence of collisions for all possible hash functions is an inherent weakness.

This weakness is, by definition, also present in cryptographic hash functions. Consequently

it is required that cryptographic hash functions exhibit the properties of one-wayness and

collision resistance. These properties make it computationally intractable to find collisions.

The properties of one-wayness and collision resistance allow hash functions to be used in

order to provide the services of integrity, digital signatures and non-repudiation.

Chapter I

From a cryptographic point of view one-way hash functions are of particular interest. The

one-way property is defined in [1] as:

Definition 1.2 (One-Way Hash Functions) A one-way hash function is defined as a hash

function such that, for virtually every binary string y of length m it is infeasible to find a

binary string x of length fL or greater such that y = h(x).

A further desirable property of cryptographic hash functions is that of collision resistance.

The concept of a collision was introduced earlier in this section. It is appropriate to introduce

a more formal definition of a collision before defining the concept of collision resistance [59].

Definition 1.3 (Collisions) A collision is obtained for a given hash function h() if two dis-

tinct messages, M and 1\1, are found, such that for a specific initial value (denoted by IV):

h(IV, M) = h(IV, 1\1).

Definition 1.4 (Collision Resistant Hash Function) A collision resistant hash function is

defined as a hash function for which it is computationally intractable to find collisions.

Generally when referring to cryptographic hash functions it is expected that they exhibit the

properties of one-wayness and collision resistance.

It can be shown that the presence of collisions is a pre-requisite for one-wayness by applying

the principles of information theory and source coding to the hashing problem.In this model

Chapter 1

the message to be hashed represents the source, the hash result corresponds to the encoded

symbols or messages, and the hash algorithm represents the source encoding algorithm. Let

H(X) be the entropy of the message source (X is a random variable). Let each symbol

Xi represent a message for i = 1,2,3, ... ,M. It is then known that H(X) ~ log2 M. It
is also known that for each symbol to be encoded uniquely with N bits, N is chosen such

that N = log2 M. This implies that M should not exceed 2N if no collisions are required.

However, remember that for cryptographic hash functions:

Hash functions used in cryptographic applications have to be one-way. If the hash result

corresponds to one, and only one input, the property of one-wayness is violated.

The requirement that the input alphabet should have an arbitrary size implies that M ~ 2N

or M < 2N• If M < 2N the source encoding algorithm may become inefficient. From

a cryptographic point of view this is a minor problem. If M ~ 2N the probability of an

encoding error, Pe, becomes non-zero. If Pe =1= 0, collisions exist. If Pe approach 1, the

function becomes one-way. In order for Pe to approach 1, N ~ H(X) - E, for any E > O.

By setting N to a fixed size and choosing M ~> 2N, the above condition is satisfied. Thus

the source coding algorithm becomes one-way but produces collisions. Thus collisions exist,

not only as a result of the requirement of encoding messages of arbitrary length but also as a

result of the requirement for one-wayness. As long as it remains difficult to obtain messages

that have the same hash result, the function is called collision resistant.

In order to demonstrate the need for cryptographically secure hash functions consider the
following example:

Consider a typical electronic transaction. Two parties agree to the sale of a specified item for

RlOOOO,OO.An (electronic) contract is drafted. The seller computes the hash value of the

contract and applies his digital signature to the hash value. The buyer does the same and the

sale is agreed upon. However the parties involved did not utilise a collision resistant hash

function. Consequently the seller was able to draft an alternative contract which has the same

hash result as the original, except that the agreed upon price is changed from RI0000,00 to

R20000,00. The buyer now finds that he is committed to purchase the item in question at

twice the agreed upon price.

In the above example the participating parties relied upon the hash function to provide as-

surance of the data integrity. In effect the message integrity was transferred to the integrity

of the hash function. It is shown that the use of a weak hash function compromises the

security objective of data integrity. Similar examples pertaining to authentication protocols

and encryption schemes may be listed where the failure of the hash function undermines

the security objective. For this reason efficient and strong cryptographic hash functions are

required.

Hash functions are widely used in cryptographic applications. As demonstrated in the pre-

vious section the properties of one-wayness and collision resistance are of particular im-

portance in security applications. During the last decade numerous proposals were made to

construct dedicated hash functions that are both one-way and collision resistant. These pro-

posals include MD4, MD5, SHA, SHA-l, HAVAL, RIPEMD-128 and RIPEMD-160. MD4

was published in 1990 by Rivest [10]. By the end of 1991 it was demonstrated that neither the

first two rounds (Merkle) nor the last two rounds of MD4 (Bosselaers and den Boer [11]) are

collision resistant. The lessons learned from these attacks led to the design of MD5 [12] and

SHA [13]. In 1996 Dobbertin showed that MD4 is not a collision resistant hash function by

demonstrating a technique which allowed the construction of collisions for all three rounds

of MD4 [14]. Within six months Dobbertin demonstrated that collisions may be found for

the compress function of MD5 [12]. Although details of this attack have not been published,

it is believed to be based on similar techniques as described in [14]. Dobbertin has also

shown that these attacks are applicable to RIPEMD-128. The speed with which these attacks

could be adapted to different hash functions derived from the same basic construction is a

cause for concern since it may be indicative of a fundamental flaw in the design of the basic

construction. This concern has led to the design of RIPEMD-160 to replace RIPEMD-128

[15]. In 1998 Dobbertin showed that the first two rounds of MD4 are not one-way. The at-

tacks formulated by Dobbertin utilises techniques borrowed from a wide range of disciplines

ranging from genetic algorithms to Boolean algebra. These hash functions are all based on

Chapter 1

the same design principles and criteria. The weaknesses found in these hash functions may

be indicative of a common design weakness.

As shown above a number of the popular dedicated hash function constructions were found

to be cryptographically inadequate. In particular it was found that the requirement for colli-

sion resistance is hard to satisfy. One of the reasons for this is the threat model used when

considering the property of collision resistance. In this threat model the cryptanalyst not only

has full knowledge of the algorithm used (Kerckhoff's principle [59]) but also has control

over all aspects of the input to the hash function. The attacker is often a legitimate participant

in the system and is trusted to a certain extent. Given the above threat model it should remain

computationally difficult to construct collisions or find a specified hash results.

Cryptographic hash functions are important cryptographic primitives and are widely used in

security applications where message integrity is required. The design of cryptographic hash

functions have proved to be a difficult task. A recent spate of attacks showed that a number

of commonly used hash functions exhibit cryptographic weaknesses. The absence of secure

cryptographic hash functions will make dependable message integrity, non-repudiation and

message authenticity impractical. It is therefore important to understand the basis of the

attacks, determine if they share common elements and establish design criteria to foil these

attacks.

It is the hypothesis that the recent spate of attacks formulated by Dobbertin has a common

underlying structure and that these attacks exploit certain architectural properties of the MD4

family of hash functions.

In this dissertation only dedicated, iterated cryptographic hash functions are studied. In

particular the MD4 family of hash functions are considered. Although a general review of

Chapter 1

generic attacks are included in this dissertation only the attacks formulated by Dobbertin are

considered in depth.

3. Generalise the analysis of MD4 and MD5 to create a framework for the analysis of

iterated dedicated hash functions.

5. Formulate design criteria to prevent the successful application of the generalised anal-

ysis framework.

In order to lay a foundation for the analysis and design of cryptographic hash functions we

present an in-depth study of the current state of cryptographic hash functions. Included in

this study are the definitions (Chapter 1), taxonomy (Chapter 2), generic threats (Chapter

3), common requirements (Chapter 4) and general designs of cryptographic hash functions

(Chapter 5). Once a general foundation is laid for the understanding of cryptographic hash

functions the focus is shifted to practical dedicated cryptographic hash functions.

As part of the focus on dedicated cryptographic hash functions the attacks on MD4 and MD5

are reconstructed (Chapters 6 and 7). The C-programs used to reconstruct these attacks are

attached as Appendix B, C, D and E. This is one of the main objectives of the dissertation. A

novel approach is derived that allows the attack on MD4 to be optimised to obtain a reduction

in computation time for a collision by a factor 64.

Based on the reconstruction of these attacks a generalised attack is formulated (Chapter

8). The generalised attack provides a framework for the analysis of the collision resistant

property of any cryptographic hash function.

Chapter 1

The newly derived framework for analysing a cryptographic hash functions is applied to

reduced versions of SHA and HAVAL (Chapters 9 and 10). Extensive simulations were

performed using the C programming language. A sample of the resulting source code is

included as Appendices F and G. To the best of our knowledge this is the first cryptanalytical

result that has been published on the HAVAL hash function. The result shows that a collision

can be established for a reduced version of HAVAL in less than a minute on a 200 MHz

Pentium Pro. This result suggests that three and even four round HAVAL should not be used

for security applications where message integrity and non-repudiation is required.

The dissertation is concluded by presenting design criteria for dedicated cryptographic hash

functions (Chapter 11). The design criteria is based on the common weaknesses identified

in the analysis of MD4, MD5, SHA, SHA-l and HAVAL. It is the intention that the applica-

tion of these design criteria will defeat the generalised attack on iterated cryptographic hash

functions presented earlier in the dissertation.

3. Create a generalised framework for the analysis of iterated dedicated hash functions

based on the MD4 family.

5. Formulate design criteria to prevent the successful application of the generalised anal-

ysis framework.

CHAPTER 2: TAXONOMY OF CRYPTOGRAPHIC HASH

FUNCTIONS

In Chapter 1 the relevant definitions and properties related to hash functions were defined.

In this chapter a taxonomy of practical cryptographic hash functions is presented, along with

the common approaches to the design and analysis of cryptographic hash functions.

The taxonomy is based on the terminology that exists in the banking community and is taken

from [3]. Cryptographic hash functions are divided into the following categories:

Informal definitions for the categories of hash functions are suggested in [16] and refined

in [3]. The distinction made between the different cryptographic hash functions is based

quantitatively on the following definitions.

Taxonomy of Cryptographic Hash Functions

A MAC is a hash function for which a secret key is required. This adds to the security of the

hash scheme, since the attacker's abilities decrease as his knowledge decreases. However the

requirement for a secret key does not protect the users against an attack by an insider. The

addition of a secret key leads to the additional problem of key management. It does ·however

have the advantage that a secure channell is no longer required for the hash value, since the

secret key protects the hash value. It is however necessary to provide a secure channel for

the key used in the MAC. More formally:

1. The description of h() must be publicly known and the only secret information lies in

the key, K, (extension of Kerkhoff's principle).

2. The argument X can be of arbitrary length and the result h(K,x) has a fixed length of

n bits (n ::;32 ... 64).

4. Given h() and X, it is hard to determine h(K,x) with a probability of success signif-

icantly higher than 2-n. Even where a large set of pairs {Xi, h(Xi, K)} is known,

where Xi have been selected by the opponent, it is "hard" to determine the key K or
to compute h(K,x')for any Xi =I=- X'.

A MDC is a hash function that is computed without knowledge of a secret key. These

functions are known publicly. For these hash functions, no key management is required, but

an authentic channel needs to be provided for the hash value.

Two variants of MDCs are identified in [16] and [3]. The following definitions are used to

distinguish between one way hash functions (OWHF) and collision resistant hash functions

(CRHF).

IAn authentic or secure channel could be provided through encryption of the hash value, a separate channel

or a courier.

Taxonomy of Cryptographic Hash Functions

Definition 2.2 A One Way Hash Function is a function h() satisfying the following condi-

tions:

1. The description of h() must be publicly known and should not require any secret infor-

mation for its operation (extension of Kerkhoff's principle).

2. The argument X can be of arbitrary length and the result heX) has a fixed length ofn

bits (n :s; 64).

(a) given a Y in the image of h(), it is "hard" to find a message X such that heX) = y.

(b) given X and H(X) it is "hard" to find a message X' =I- X such that h(X) =

h(X').

Definition 2.3 A Collision Resistant Hash Function is a function h() satisfying the follow-

ing conditions:

1. The description of h() must be publicly known and should not require any secret infor-

mation for its operation (extension of Kerkhoff's principle).

2. The argument X can be of arbitrary length and the result heX) has a fixed length of n
bits (n :s; 128).

(a) given a Y in the image of h(), it is "hard" to find a message X such that heX) = y.

(b) given X and H(X) it is "hard" to find a message X' =I- X such that h(X) =

h(X').

Taxonomy of Cryptographic Hash Functions

5. The hash function must be collision resistant: This means that it is hard to find two

distinct messages that hash to the same result.

The nature of the differences between OWHF and CRHF is discussed in [17]. The underlying

difference between OWHF and CRHF is related to the the type of attack the respective hash

functions are required to withstand. For cryptographic purposes a CRHF is of greater value
than an OWHF.

Implicit to the above definitions are the requirements for one-wayness, computational in-

tractability, collision resistance and simplicity. These requirements are related to both the

functional and security properties of cryptographic hash functions.

A new hash function should therefore be designed to adhere to the above definitions and im-

plied requirements. The definitions and requirements can be made more formal by specifying

quantitative criteria for the terms hard and easy.

2.2 APPROACHES TO THE DESIGN AND ANALYSIS OF CRYPTOGRAPHIC
HASH FUNCTIONS

Two approaches could be considered for the analysis, design and classification of crypto-

graphic hash functions. Since hash functions are used extensively in authentication applica-

tions and protocols [17], hash functions could be classified along the same lines as authenti-

cation codes. In [18] the following classification is given for authentication schemes:

The above classification is not satisfactory when dealing with hash functions. As explained

in Chapter 1 collisions exist for all hash functions. This property of hash functions leaves

only the computation ally secure classification as a viable option. The above classifications

does not contribute a great deal to design criteria for cryptographic hash functions.

Taxonomy of Cryptographic Hash Functions

In [3] Preneel suggests that the same classification scheme be used as that proposed by

Rueppel for stream ciphers. Accordingly one of three approaches are available:

The information theoretic approach and complexity theoretic approach yields interesting

constructions of variable security. In general the constructions based on these two approach-

es are impractical. This leaves the system based or practical approach. In the system based

approach, practical schemes with fixed parameters and dimensions are studied.

There has been numerous proposals for the design of cryptographic hash functions based on

the system based approach to hash functions. Many of these designs are based on existing

cryptographic primitives such as block and stream ciphers. Other proposals utilise modular

arithmetic and the hardness of number theoretical problems as a basis for design. However

the hash functions which have found the widest acceptance in industry are dedicated hash

functions. The following definition of a dedicated cryptographic hash function is presented:

Definition 2.4 (Dedicated Cryptographic Hash Functions) A dedicated cryptographic hash

function is a hash function which has been designed to meet the requirements set for crypto-

graphic applications and is to be used explicitly for hashing purposes.

One family of dedicated hash functions, known as the MD4-family of hash functions, has

found widespread acceptance in industry. Members of this family of dedicated hash func-

tions are used by the Secure Electronic Transaction (SET) protocol specified by Mastercard

and Visa, Secure Socket Layer (SSL) protocol commonly used for securing Internet com-

merce as well as the Secure MIME (S/MIME) protocol used to secure electronic mail to

name a few of the more popular protocols.

In this dissertation the practical approach is used to analyse dedicated cryptographic hash

functions and establish suitable design criteria for dedicated cryptographic hash functions.

Before proceeding to establish requirements for hash functions, it is appropriate to consider

the threats against hash functions. In this chapter both the attackers as well as the attacks

they are capable of are considered.

Attackers are classified with regard to their capabilities and their position regarding the sys-

tem under attack. As the wealth and resources of an opponent increases, the difficulty of

designing a secure hash function increases. For this reason it is important to be aware of

the capabilities of various classes of attackers. When designing a hash function it should be

decided which class of attacker is to be denied a successful attack.

In addition to the attackers and their capabilities, the attacks they are capable of are consid-

ered. A taxonomy of these attacks are presented in this chapter. For the attacks described in

this chapter, the computational power and storage capabilities required for the execution of

these attacks are emphasised. These requirements are stated as a function of the number of

bits, n, contained in the hash length. In this report the attacks specific to MDCs, MACs and

hash algorithms based on block ciphers are considered.

A distinction is made between the capabilities of attackers and their position with regard to

the hash function they seek to attack.

The capability of an attacker is measured in terms of the resources available to him. In

[19] a taxonomy of attackers on tamper resistant devices is presented. This classification is

based on the resources available to the attackers. This taxonomy can be extended to security

mechanisms in general, including hash algorithms. Attackers are categorised as follows:

Class I (clever outsiders): They are often very intelligent but may have insufficient knowl-

edge of the system. They may have access to only moderately sophisticated equipment.

Threats Against Hash Functions

They often try to take advantage of an existing weakness in the system, rather than try

to create one.

Class II (knowledgeable insiders): They have substantial specialised technical education

and experience. They have varying degrees of understanding of parts of the system,

but potential access to most of it. They often have access to highly sophisticated tools

and instruments for analysis.

Class III (funded organisation): They are able to assemble teams of specialists with relat-

ed and complementary skills backed by great funding resources. The are capable of

in-depth analysis of the system, designing sophisticated attacks, and using the most

advanced analysis tools. They may use Class II adversaries as part of the attack.

The threat from Class I and Class II attackers can be dealt with by placing a hash algorithm

in the public domain and allowing experts in the field to analyse and review the algorithm

before widespread implementation. This approach will also ensure that the threat from Class

III attackers are minimised. When designing a hash function it is advised that the hash

function should be able to withstand attacks from a Class III opponent. This is difficult since

it is not always known what a Class III opponent's capabilities are.

In addition to the taxonomy of attackers based on their capabilities, a taxonomy of attackers

is presented with regard to their position concerning the system they seek to attack. Regard-

ing cryptographic hash f~nctions the following attackers are identified:

Legitimate Participants: These are participants who rightfully share in a communication

process. They are allowed to generate, sign and transmit messages. In the case of

MACs they have access to the shared secret key. These attackers can generate two

messages that yield the same hash value and substitute the one message for another
when convenient.

Active Eavesdroppers: These attackers are not allowed to generate, sign and transmit mes-

sages. They are hostile eavesdroppers who seek to intercept and modify messages

without detection. This imply that they would attempt to construct a false message

Threats Against Hash Functions

that has a specific hash value and replace a valid message when intercepted. They are

not expected to have access to shared secret keys for MACs.

These attackers can belong to Class I, Class II or Class III attackers, depending on their
capabilities. The taxonomy of attackers is summarised in Figure 3.1.

} Position

Before proceeding with a description of the generic attacks on hash Functions, it is useful

to consider the terminology used in describing the generic attacks. The terminology intro-

duced in this section serves as an indication of what an attacker could hope to achieve when

attacking a hash function.

Threats Against Hash Functions

Pre-image: Establishing a pre-image is equivalent to finding a message that results in a

specified hash value.

Second pre-image: A second pre-image requires the attacker to find two messages that re-

sults in a specific hash value.

Pseudo-pre-image: A pseudo-pre-image requires that two messages, X and X', with t-

wo different initial values, IV and IV' should be found such that the h(IV, X) and

h(IV', X') result in the same specified hash value.

Collision: A collision is established if an attacker can find two messages X and X' such

that h(IV, X) and h(IV, X') result in the same unspecified hash value.

Collision for different IV's: A collision for different IV's is established if two messages

and two IV's can be found such that h(IV, X) and h(IV', X') hash to the same hash

value.

Pseudo-collision: A pseudo collision is established if an attacker can find two messages X

and X' such that h(IV, X) and h(IV', X') yield the same hash value for two specified
IV's.

Constructing collisions, collisions for different IV and pseudo-collisions are easier than con-

structing a second pre-image or pseudo pre-image. Attacks specific to MDCs are considered
in Section 3.4.

A MAC makes use of a secret key to compute a hash value. Thus for a MAC the collision

is dependent on both public knowledge (the message) and secret knowledge (the key). The

attacker is therefore faced with two problems. The first deals with the key, the second deals

with the construction of collisions. When dealing with a MAC, an attacker could hope to

achieve one of the following objectives [3]:

Chapter 3

Universal forgery: The attacker constructs an alternative algorithm that mimics the MAC

algorithm.

Selective forgery: For a message chosen by the attacker the correct MAC can be deter-

mined.

Existential forgery: An attacker can determine a correct MAC for at least one plaintext.

The resulting plaintext may be random or non-sensical.

Once the secret key is known to an attacker, he can determine the MAC for any message.

With the MAC algorithm and the secret key known, an attacker can proceed to construct a

collision. Techniques describing key retrieval and the construction of forgeries are consid-

ered in Section 3.5. The objectives for generating a collision for a MAC when the secret key

is known are similar to those for a MDC.

In this section a number of generic attacks on MDCs are considered. These attacks can be

classified as belonging to one of two categories. They are:

These attacks are generic and could be used against any hash function. In this section,

these attacks are summarised and evaluated according to the computational power required

to execute them successfully.

For MDCs two attacks are considered to be independent of the algorithm. This implies that

these attacks can be carried out against the ideal cryptographic hash function described in

Chapter 1. These attacks are known as the random attack and the birthday attack.

21
\ 't..< So b3SLt x
±:. ',-, ~ s; (;;,S '1..L

Threats Against Hash Functions

In this attack it is assumed that the attacker is given a message X and requires a message

X' such that X' =1= X and h(IV, X') = h(IV, X) (i.e. the attacker has to find a second pre-
image). This can be accomplished by randomly selecting X' from all possible admissible
messages. The probability of success is 2-n with n the length in bits of the hash value. If

an attacker performs T trials, the probability of finding a valid value for X' so that X' =1= X
and h(X') = h(X) becomes T . 2-n. Thus, the larger n the larger number of trials Tare
required. According to [1] approximately 0.7· 2-n trials are required to find a collision using

this technique. Thus for a n-bit hash value the expected workload to find a second pre-image

is in the order of O(2n).

This attack is based on the the birthday paradox from probability theory. According to this

paradox, it can be shown that the probability that two individuals in a group of 23 people

share a birthday, is approximately 52%. The number of people in the group is much smaller

than expected. A related problem states that for two groups of 17 people, the probability that

two people have a common birthday, is larger than 50%. This property can be exploited to

attack hash functions as explained below.

Pr(h(X) = h(X')) = 1- e-~

Threats Against Hash Functions

1. Fora n bit hash value letTl = T2 ~ 0(2%)

4. Compare the hash values for the Tl variations of X with the T2variations of X'. When

a message X and X' is found for which h(IV, X) = h(IV, X'), a collision is estab-
lished.

The attacker can now generate a message that contains X and then later replace X with X'
and claim that he originally generated X', since the hash values for both messages are the
same.

In [20] and [21] alternative algorithms for efficient collision search is proposed. These tech-

niques are based on Pollard's p method for finding cycles in periodic functions in a finite

domain. These techniques were used in the analysis of DES.

The significance of this attack is that the number of operations required to find a collision

is 0(2%) instead of 0(2n) for the random attack. A similar order of magnitude is required
in storage capabilities. Thus a birthday attack requires less operations than a random attack.

The only way to defend against birthday attacks is by increasing the number of bits n in

order to make it computationally infeasible to launch a birthday attack.

If a message is longer than the maximum block length of the hash algorithm, the message

is segmented. The segments are then processed iteratively (Chapter 5 Section 5.3). This is

known as the Damgard-Merkle scheme [22], [23]. A number of attacks have been derived

which are only applicable if an iterated structure is used. The attacks are summarised below.

Chapter 3

This is a variation of the birthday attack. This attack allows the attacker to construct two

messages, X and X', for which h(X) = h(X'). The messages X and X' should be at least

twice as long as the elementary block length of the hash function. The following algorithm

describes the meet in the middle attack.

Algorithm 3.2 Meet in the middle attackfor hash functions
Consider Figure 3.2.

4. Work forward from the IV and compute rl variations of the intermediate values I Ml

with I Ml = h(IV, XD and save this in a buffer of intermediate values I Ml.

5. Work backward from h(X) and compute r2 variations on h(X) = h(I M2, X~) and

save the intermediate values in a buffer of intermediate values 1M2•

6. Use a search algorithm and search for two intermediate values that are equal in I Ml

and 1M2 respectively. If two equal values are found, a collision is established.

IMI 1M2

Og~oI II t
I II I

[jbj

As in the case of the birthday attack the number of operations required to establish a collision

are in the order of O(2~). The advantage of this attack is that it allows an attacker to hit a

Threats Against Hash Functions

specific hash value. This attack is only possible if the message is longer than an elementary

message block.

It is possible to defend against these attacks by increasing the number of bits in a hash value

to such an extent that the meet in the middle attack is computationally infeasible. Another

defence against this attack is to constrain the message lengths to less than the elementary

block length.

When imposing constraints on the solutions obtained with the meet in the middle attack, the

attack is called the constrained meet in the middle attack.

To avoid the meet in the middle attack, two-fold iterated schemes were suggested in [6].

These schemes include computing two hash values for a given message using two differen-

t IV's (h(IV, X) and h(IV', X)) or computing the hash value on the concatenation of the

message to itself (h(IV, XliX)). These schemes can be extended to so-calledp-fold schemes

where p hash values are computed for the same message using p initial values, or by concate-

nating the message p times to itself and then computing a hash value (h(IV, XIIXII ... X)).

A graphical representation of these p-fold schemes are shown in Figure 3.3.

Chapter 3

It has been shown in [24] and [25] that the meet in the middle attack can be extended to break

these schemes. The extension of the meet in the middle attack to attack p-fold schemes is

called the generalised meet in the middle attack. For this attack only O(lOP. 2~) operations

are required instead of O(2T) [24], [25].

This attack can be foiled by choosing the number of bits, n, large enough in order to make

the attack computationally infeasible.

Several variants of the correcting block attack exists. The first variant assumes that an attack-

er has a message X for which a forgery, X', has to be constructed. All the blocks in X' are

then changed so that they differ from X. One message block in X', XI is then constructed so

that h(X) = h(X'). The block XI is then designated as the correcting block. The correcting

block is usually inserted as the last block in the message, but may be inserted at the beginning

of a message or in the middle of a message. For this variant of the correcting block attack,

the construction of the correcting block XI may be accomplished with the random attack.

Since a specific hash value has to be generated, the birthday attack cannot be used. If two

correcting blocks are allowed, it is possible to use the meet in the middle attack to generate

two blocks, XI and XI+l' that together cancel the effect that message blocks Xh to XI-l have
on the chaining variable. Another alternative in constructing the correcting block requires

the attacker to have knowledge of the algorithm. By manipulating the algorithm a correcting

block XI can be constructed. Note that the construction of a message block by manipulat-
ing the algorithm depends on the algorithm. If the construction of XI is independent of the
algorithm, the amount of work required is 0 (2~).

Another variant of the correcting block attack is described next. An attacker generates two

messages X and X' and then generates two correcting blocks Y and Y'. The correcting

blocks are then concatenated to X and X'. The correcting blocks Y and Y' should be chosen
such that h(IV, XIIY) = h(IV, X'IIY'). If the final hash value is specified, the correcting
blocks Y and Y' can be constructed using the random attack. If the final hash value is not

specified, the birthday attack can be used to generate a collision. If more than one block is

allowed as a correcting block, the meet in the middle attack can be used. Note that with the

meet in the middle attack the attacker can generate a specific hash value. It is also possible

to construct the correcting blocks Y and Y' by manipulating the algorithm. The attack then

Threats Against Hash Functions

It is possible to defend against block correcting attacks by adding redundancy to the message

before hashing. Redundancy includes padding rules and attaching the number of blocks or

bits in a message as the last block. If the attacker is the originator of the message these

measures are not sufficient, since the attacker can control the number of blocks or the length

of the message under consideration. Choosing the value of n large enough, makes the block

correcting attack computationally infeasible. If the hash function itself can be manipulated

to produce a correcting block, the attack becomes dependent on the algorithm used. The

algorithm should be replaced if that is the case.

A fixed point may be defined as a hash value for which h(Xi, Hi-d = Hi-I. This property

allows an attacker to insert an arbitrary number of blocks corresponding to Xi after the first
occurrence of Xi (see Figure 3.4).

h() h() h(Hi_l ,Xi+l)

h() h() h()

A collision can be established if the chaining variables can be set equal to Hi-I. This can

be accomplished by using the random attack to find a suitable value for Xi-lor the meet in

the middle attack which would allow the attacker to specify Xi-I and Xi-2 so that Hi-I can

be established. It might also be possible to manipulate the hash algorithm to find a suitable

Threats Against Hash Functions

value for Xi-I that will produce Hi-I. It is possible to foil this attack by adding redundancy

to the message. The redundancy should contain the number blocks in the message. The fixed

point can be found by the random attack, or by the meet in the middle attack. This implies

that the work factor is approximately O(2~). By choosing n sufficiently large, it becomes

computationally infeasible to perform the random attack or the meet in the middle attack.

The value of an attack in which one block is repeated a number of times and still yields the

same hash code is debatable.

Differential cryptanalysis is based on the study of the relationship between input and output

differences in iterated cryptographic algorithms. Since hash functions are usually based on

iterated algorithms, differential cryptanalysis is applicable to cryptographic hash functions.

The differential attack against hash functions is a probabilistic attack. An attacker searches

for input differences that will result in specific output differences. If an attacker intends to

create a collision the output difference should be zero.

The differences can be found with a probabilistic search (random attack). For a random

attack, IV, h(IV, X) and IV' are specified. The attacker has to find X' so that h(IV, X) =

h(IV', X'). Another technique that an attacker could use is the birthday attack. For the

birthday attack it is assumed that IV and IV' are specified. It now remains to find values

for X and X' such that h(IV, X) = h(IV', X') with the birthday attack as described in

Section 3.4.1. It is also possible to use the meet in the middle attack to establish a collision.

This requires that the attacker should be able to choose two message blocks in both the

original and the forged message. This places the magnitude of the work factor at O(2~). It
is also possible to execute the differential attack by manipulating the hash algorithm. The

differential attack then becomes dependent on the algorithm. When block ciphers are used,

the differences should be chosen in such a way as to exploit the chaining.

Differential attacks can be launched against the chaining of an iterated hash Function, or

against the hash algorithm itself. In Chapters 6, 7, 9 and 10 it is shown how differential

analysis is employed against the compress function of dedicated hash functions such as MD4,
MD5, SHA and HAVAL.

Threats Against Hash Functions

All of the attacks against MDCs are applicable to MACs if the key for the MAC is known

to the attacker. In addition to the attacks on MDCs, the following attacks are applicable to

MACs.

A key collision occurs when, for two distinct keys, K1 and K2, h(X, Kd = h(X, K2).

Due to the presence of a key, this attack is applicable to MACs. MACs based on block

ciphers are especially vulnerable to this attack, since this phenomenon has been observed in

block ciphers [20], [21]. It was shown in [20] that this attack can be implemented against

the Data Encryption Standard (DES) using the meet in the middle attack. In [21] a refined

technique based on the theory of distinguished points are proposed. Both attacks resulted in

the discovery of key collisions for DES. This attack allows an attacker to construct a message

that yields the same hash value for different keys used. For DES, 21 collisions were found in

[21] and 48 collisions are described in [20]. When the meet in the middle or birthday attacks

are used, approximately O(2~) operations are required (n is the number of bits in the hash

value). For these attacks a large storage space and an efficient sorting algorithm is required.

In [21] a technique is suggested that reduces the storage requirements and eliminates the

necessity of an efficient sorting algorithm.

Another block cipher with a large number of known key collisions is LOKI. It is known that

15 key collisions exist for every key in LOKI [26]. For this reason it is advised that LOKI is

not used as a round function for the construction of a MDC or MAC [27]. For a MDC the

birthday attack or the meet in the middle attack can be used. For a MAC a key collision can

be established.

Exhaustive key search is intended to recover the key for a MAC. For a given MAC both the

hash value, h(K, X), and the message, X, are known. The key is recovered by exhaustively

trying all possible keys, Ki, until a key, K, is found that results in h(K, X). If key collisions
exist for the hash function, hO, several messages Xi and their corresponding hash values,

Threats Against Hash Functions

h(K, Xd, are required to confirm that K is a valid key. Therefore this attack is effectively a

known plaintext-MAC attack. The effort required to find a k-bit binary key is on the order of

O(2k). In [3] it is stated that for a k-bit key and a n-bit hash value the number of plaintext-

MAC pairs, M, required to determine the key uniquely is slightly larger than ~, provided

that no key collisions occur.

This attack allows the generation of a forgery and, in general, does not allow key recovery.

The attack is described [28] and [29]. The attack requires that the MAC is based on an

iterative structure (see Chapter 5 Section 5.3). The basic idea is that for two messages, Xl

and X2, with:

Xl alilb.

X2 a211b.

The MAC results, h(K, Xl) = h(K, X2), are likely to occur given O(2~) chosen messages,

with n the hash length. This is reminiscent of the birthday attack. Given h(K, Xl) =

h(K, X2) it is expected that h(K, ad = h(K, a2)' This implies that for an arbitrary string c,
the MAC values h(K, alllc) and h(K, a211c) are equal. Thus, a forgery can be obtained by
requesting h(K, alllc), and in effect obtaining the MAC for h(K, a21Ic).

This attack imposes requirements on the storage space available to an attacker and also as-

sumes that the secret key, K, is not changed before 0 (2 ~) chosen messages can be requested.
Note that a forgery is obtained without retrieving the secret key K.

This attack is presented by Preneel and van Oorschot in [29]. It is viewed as an extension of

the chosen text attack described above. The attack is outlined as a proof in [29]. Note that

this attack, as is the case for the chosen text attack, generally enables forgery attacks, not key
retrieval.

The attack states that r known plaintexts are required with r = /2 .2~. For the previous

Threats Against Hash Functions

attack it was assumed that the MAC was given by a permutation gO of the hash result, hO
(e.g. the unity mapping). For this attack it is assumed that a random mapping is used with the

resulting MAC having m bits instead of n bits with m < n. When considering this attack,

it is necessary to differentiate between a collision before the random mapping is applied,

(internal collision) and a collision after the random mapping is applied (external collision).

With gO being a random mapping function, 2n-m external collision are expected. Additional

computations are now required to generate a verifiable forgery. An internal collision can be

identified by attaching a known string y to each collision pair and checking whether the

corresponding MACs are equal. This requires 2 . (1 + 2n-m) chosen text-MAC requests.

For internal collisions the resulting MACs are always equal. Retain only the text-MAC

pairs resulting in internal collisions. At this stage 2n-2m external collisions and a single

internal collision should be available. If more than one external collision remains, these

external collisions have to be eliminated by choosing a different value for y and proceed as

before, until a single external collision remains. It is believed to be highly probable that

the remaining external collision is the result of an internal collision. It is expected that the

number of chosen and known texts required to find an internal collision are:

_2·_2
n
_-

m
.2

m
+ 2 r~l~2 . 2n-m + 2 r~l.

2m -1 m m

Known text-MAC pairs

Chosen text-MAC pairs

V2. 2~

2 . 2n-m + 2 r;l.
This attack is extended to cover the case where all the known texts have a common sequence

of s trailing blocks. It is stated that if that is the case, fewer known and chosen texts are

required. In particular it is shown that if:

the probability that the set of known messages, r, contains two messages that collide under
the hash function, hO, is approximately:

Threats Against Hash Functions

Given this probability, an internal collision for hO can be found if the known text-MAC pairs
have s identical trailing blocks. If gO is a random mapping, this attack requires:

In [29] both these attacks are applied to MAA [30] and CBC-MAC (see Chapter 5 Section

5.4). The refined version of this attack with s-blocks is shown to be effective against MAA.

The refined attack cannot be applied to CBC-MAC with maximal feedback, since the round

function is bijective. The unrefined attack described initially can however be employed a-

gainst CBC-MAC.

In [31] these attacks are extended to and tailored for forgery and key recovery for MAA and

the envelope MAC constructions (see Chapter 5 Section A.5).

It is noted that a large number of chosen texts and known texts along with their MAC values

are required. If it is assumed that key collisions does not occur for the chosen MAC, the

secret key, K, may not change while collecting the known and chosen texts. It is therefore

suggested that the chosen text attacks, and known and chosen text attacks, described in this

and the previous section can both be foiled by effective key management. By changing the

secret key at a regular interval, it becomes impossible to collect enough chosen and known

texts to execute these forgery attacks.

It has been suggested that block ciphers could be adapted for use as building blocks for cryp-

tographic hash functions [23], [32], [3]. The motivations for these suggestions are presented

in Chapter 5. It should be noted that when using block ciphers in a hash function config-

uration, additional attacks based on the underlying block cipher are possible. The attacks

discussed in Sections 3.4 and 3.5 are applicable to hash functions derived from block cipher-

s. Specifically the construction of fixed points is considered easy if the underlying block

cipher is either DES or LOKI [3].

Threats Against Hash Functions

Symmetry under complementation was one of the first properties discovered for DES [33].

Let E(K, X) denote the encryption of X with the key K. Then for a message, X, and a key,

K, the complementation property is stated as follows:

with C the ciphertext and C the complement of C. This property is known to exist for DES
and LOKI91 [34]. When used in a hash function construction as a MAC, this reduces the

effort required for exhaustive search by a factor of two. In addition, this property allows the

construction of trivial collisions. It is known that LOKI89 has a large set of keys for which

this property holds [34].

E(K,X)

E(K,C)

C

X, VX.

Thus the encryption, E, and decryption, D, operations are equivalent for a given key K.
Thus for certain keys, some block ciphers are involutions. This property holds for certain

keys of DES, LOKI89, LOKI91 [34] [35] and IDEA [36].

E(K1,X) C

E(K2, C) X, VX.

K1 =J- K2•

These properties of block ciphers can be exploited in certain hash functions based on blocks

ciphers to yield fixed points (see Section 3.4.2).

Threats Against Hash Functions

In addition to the above attacks, the following attacks are considered feasible. These attacks

are not so much an attack on the hash algorithm, than an attack on the interaction of the hash

algorithm with the environment in which it is used.

In [37] an attack on public key systems implemented in hardware is described by Boneh,

DeMillo and Lipton from the Math and Cryptography Research Group, Bellcore. Based

on the attack presented in [37], Biham and Shamir describes an attack that retrieves the

key for a hardware implementation of DES [38]. This attack is termed differential fault

analysis (DFA). Both of these attacks are specifically applicable to algorithms implemented

in hardware, and for this reason are considered as high level attacks.

The attacks described in [38] exploit the effect of a transient error in a hardware device. The

resulting erroneous output is then analysed to determine the secret key. In [38] it is claimed

that less than 200 ciphertexts are required to find the last sub-key in a DES implementation.

The remaining eight key bits can be found by exhaustive search.

In [39] Quisquater claims that this technique is applicable to MACs implemented in hard-

ware. According to [37] attacks based on differential fault analysis can be countered by

verifying results before output and protecting the registers used to store values using error

correcting codes. Thus differential fault analysis imposes conditions on the implementation

of a hash algorithm, rather than on the design of a hash algorithm.

Differential power analysis was first proposed by Kocher []. This attack allows an attacker

to derive the secret key used by an algorithm. This is accomplished by observing the fluctu-

ations in power consumption of the device, while performing cryptographic operations. It is

a non-destructive attack. This type of attack is especially efficient against smart card imple-

mentations. It has been demonstrated that a secret key can be obtained using this approach.

This attack can be used against MACs implemented in hardware.

Threats Against Hash Functions

As remarked in Chapter I hash functions are often used in digital signature schemes. It

has been shown in [40], that even if the hash function is a collision resistant hash function,

the signature scheme can be attacked successfully. The success of this attack is due to the

underlying multiplicative structure of both the hash function and the signature scheme [3].

These attacks are concerned with attacks such as replay of messages and the construction

of valid messages from previously intercepted messages. It is thus in effect an attack on

the protocol. These attacks can be thwarted by the use of a nonce or a timestamp. It is

thus necessary to protect a system in which messages and hash values are vulnerable to

interception with a suitable protocol.

The calculation of the equivalent shift register length for a given stream Cipher, allows an

attacker to construct a linear feedback shift register that mimics the operation of the stream

cipher. This calculation is based on the Massey-Berlekamp algorithm. Similarly an attacker

could attempt to construct an equivalent system for a cryptographic hash function. This

attack is applicable to MACs in particular [3]. The attacker attempts to find a system that

produces the same MAC for a given message, without knowledge of the secret key [3]. No

standard technique is known to exist for mimicking hash functions.

These attacks exploit a weakness in the algorithm. These attacks are usually discovered only

after the publication of a hash algorithm. These attacks are only a threat if the work factor

for finding a collision is substantially less than O(2~). This dissertation investigates attacks

of this nature.

Threats Against Hash Functions

The distinction between classes of attackers are based on their capabilities, the informa-

tion at their disposal and their position with regard to the system under consideration. The

difference with regard to Class I and Class II attackers lie, to a large degree, within the in-

formation at their disposal. The advantage that Class II attackers have over Class I attackers

can be eradicated by publishing the hash algorithm and its design criteria.

All three classes of attackers are capable of executing any of the attacks presented in this

chapter. The probability of success however, increases as the attacker's capabilities increases.

The feasibility of the attacks presented in this chapter are measured in terms of effort required

to establish a collision for a hash function. In general Class III attackers have the largest

resources in terms of computing power, followed by Class II and then Class I attackers.

A further point of interest is the position of the class of attacker with respect to the system

under consideration. A legitimate participant can construct two messages that result in the

same hash value. One message can be signed and transmitted and at a later stage the mes-

sages can be swapped. An active eavesdropper is not allowed to construct and sign messages.

Active eavesdroppers are expected to intercept and modify messages. The eavesdropper is

restricted to finding messages that hash to specific values. As seen in Section 3.3 the com-

putational effort required to construct two messages that result in the same hash value is

considerably less than that required to hit a specific hash value. For example, even though a

Class II attacker might not be capable to construct a message that results in a specific hash

value, it may be possible for the Class II attacker to construct two messages that yield the

same hash value.

Thus although all three classes of attackers are capable of all possible attacks, the probability

of success differs substantially as the attackers' knowledge and capabilities differs. In addi-

tion it appears that legitimate participants require less effort to construct messages that result

in collisions, than active eavesdroppers.

Threats Against Hash Functions

All of the above attacks pose requirements in terms of processing power and storage space.

When designing a hash function the parameters that contribute the security of the function,

such as the hash length, should be chosen in such a manner as to render any of the above

attacks infeasible. In order to make a sufficiently informed choice for these parameters the

capabilities of an opponent has to be known or estimated. Estimating the computational

power of an opponent is a complicated process. The following aspects should be considered

when estimating computational capabilities.

In addition to these aspects, additional factors, such as the opponent's ability to construct

dedicated hardware or hardware subsystems and the interconnection of these systems to

realise the above attacks, should be taken into account. The feasibility of an attack also

depends on the class of attacker dealt with (see Section 3.2).

The generic attacks described in this chapter are not considered feasible for hash lengths of

128-bits or more. It is already considered that 128 bits will not provide sufficient protection

within the next few years, due to the increase in available computational power [41]. The

development of new fields in computing such as quantum computing may also change the

estimate of computationally secure hash lengths [42].

A taxonomy of possible attackers were presented. The taxonomy is based on the attackers'

capabilities and their position with regard to the system they seek to attack.

Threats Against Hash Functions

A review of the general attacks against MDCs were presented in Section 3.4. These attacks

are discussed in [17]. It was shown that these attacks require a maximum of O(2n) operations

and a minimum of 0 (2~). Due to the definition of hash functions, these attacks cannot

be avoided. When designing a hash function, the relevant parameters should be chosen to

minimise the effect of these attacks. The feasibility of a specific attack is measured by the

workload associated with each of these attacks. The workload is expressed in terms of the

number of bits, n, contained in the hash values. This implies that an attack can be made

infeasible by choosing n sufficiently large.

In addition to the general attacks on MDCs, the general attacks on MACs were presented in

Section 3.5. These attacks are aimed at either retrieving the secret key, or obtaining a forgery

for the MAC. The probability of success for these techniques are proportional to the size of

the secret key and the number of bits, n, in the resulting hash function.

When constructing cryptographic hash functions based on block ciphers, additional attacks

are possible. These additional attacks were presented in Section 3.6. These attacks exploit

certain properties of block ciphers and allows the establishment of collisions. As before, a

legitimate participant has a larger probability of success than an active eavesdropper.

Several high level attacks were presented. These attacks concentrate on the environment in

which a hash function is used. Hash functions and the systems within which they are used,

should be implemented in a secure manner to avoid these attacks.

The relationship between attackers and the type of attacks they are capable of were investi-

gated in Section 3.8. It is shown that an attacker operating as a legitimate participant has a

larger probability of success than an attacker operating as an active eavesdropper. Therefore

legitimate participants poses a more significant threat than active eavesdroppers. Likewise,

it is more likely that a Class III attacker will execute an attack successfully than a Class II or
Class I attacker.

When designing a cryptographic hash function, both the attackers and the attacks they are

capable of should be considered. Cryptographic hash functions should be designed to with-

stand the attacks described in this chapter.

CHAPTER 4: REQUIREMENTS FOR CRYPTOGRAPHIC HASH

FUNCTIONS

This chapter contains a description of the requirements for cryptographic hash functions.

These requirements are based on:

The requirements are divided into two classes, namely functional requirements and security

requirements [43]. These requirements are often contradictory. The contradictions are not

restricted to the security requirements and the functional requirements, but are sometimes

found in the functional or security requirements themselves. The conflict between security

and functional requirements are treated in a separate section in this chapter.

The functional requirements deals with the practical implementation of a hash function. The

requirements presented in this section are intended as goals to be met by practical hash

algorithms.

According to the definition of a hash function a message of arbitrary length is compressed to

a string of fixed length. Thus a fundamental functional requirement for a cryptographic hash

function is the reduction of a message of arbitrary length to a string of fixed length.

Concerning the input length of the message, several solutions are possible. The designer

could specify different hash algorithms for different message lengths. This is an impractical

solution. Alternatively a scalable hash algorithm can be used. The third possibility is the use

Requirements for Cryptographic Hash Functions

of padding to extend the message to a specific length, or a multiple of a specific length. This

is the most often used technique.

If the message is longer than the elementary block length of the hash algorithm, the message

is padded to be a multiple of the elementary block length. The padded message is then seg-

mented and processed iteratively by the hash algorithm. This process is known as chaining

and is commonly used in hash functions (see Chapter 5 Section 5.3).

Repeatability is important since it should be possible to produce the same hash value for the

same message.

In Chapter 5 an ideal construction is presented for a cryptographic hash function. In this

construction the hash value is generated independent from the message. The construction

requires the use of a database to produce the same hash value for the same message. The

construction is impractical due to the storage requirements, accessibility of such a database

and the difficulty of constructing binary symmetric sources. Attaining repeatability through

the use of a database is therefore infeasible.

Repeatability can be achieved in a practical hash function by making the hash value depen-

dent on the message. Thus possession of the message implies possession of the hash value.

The hash function should not be dependent on the type of data to be processed. In other
words, a specific file type should be processed in the same manner by the given hash function

as any other file (e.g. a binary executable should be processed in the same manner as an

ASCII file). A hash function should therefore not be designed to process a specific data type,

especially if the hash function is intended for widespread use.

Requirements for Cryptographic Hash Functions

The fast calculation of hash values for messages is an important requirement. When using

a digital signature scheme the hash value instead of the message is signed. For this rea-

son it should be faster to compute and sign the hash value than to sign the entire message.

The reduction in time and bandwidth requirements are important motivations for using hash

functions.

The speed of a hash function can be increased by efficient implementation or efficient design.

A fast hash function can be designed by either optimising the algorithm for a specific com-

puter architecture or by simplifying the design to reduce the number of operations required

by the hash algorithm.

This requirement specifies that the message should be processed only once. This effectively

rules out all of the so-called p-fold schemes. Thus a message is loaded into memory only

once. When computing online this has the advantage that no permanent storage is required.

When computing the hash value for a file on a computer disk drive, the time required to

access the file and load it into memory more than once is eliminated. This requirement

augments the requirement for fast calculation.

This requirement is the main reason why MDCs are preferred over MACs. A MAC requires

that a secret key is shared between two or more users. This introduces the problem of key

management. It also serves as an argument against the use of MACs in an environment where

the issue of key management poses a problem.

The hash function should be designed to be modular. This allows the hash algorithm to

be replaced within a system if a weakness or deficiency in the algorithm is detected after

implementation in a system. Implicit in this requirement is the need for a well defined

Requirements for Cryptographic Hash Functions

interface between the hash function and the system it is used in. The interface components

of importance are:

If the hash algorithm is intended for widespread use, ease of implementation is important.

This requirement ensures the proliferation of the algorithm, since many unskilled users can

implement and use the algorithm independently. It is also important to supply sufficient test

data for an independent user to verify the operation of the algorithm.

An algorithm optimised for a specific architecture is advantageous in terms of speed and ease

of implementation for the architecture concerned [10], [44], [45]. It is, however, possible that

a penalty is paid when transferring the algorithm to another architecture. The penalty may

be paid in both a loss of speed and increased complexity of implementation.

It is important that a hash function's algorithm, test data, documentation and implementation

should be easily obtainable if intended for use in the public domain.

The security requirements for cryptographic hash functions deals with those properties of a

hash function that influences the security of the hash function.

Requirements for Cryptographic Hash Functions

The concepts of confusion and diffusion in cryptography were first introduced by Shannon

[46].

Confusion is described as: "The method of confusion is to make the relation between the

simple statistics of the ciphertext and the simple description of the key a very complex and
involved one" .

Diffusion is described as: "In the method of diffusion the statistical structure of the plaintext

which leads to its redundancy is dissipated into long range statistics." These concepts are

interpreted in [1] as follows:

Confusion: The ciphertext statistics should depend on the plaintext statistics in a manner

too complicated to be exploited by the cryptanalyst.

Diffusion: Each digit of the plaintext and each digit of the secret key should influence many

digits of the ciphertext.

The concepts of confusion and diffusion can be applied to hash functions. For MDCs a secret

key is not required. Thus the security of the MDC depends solely on the concept of diffusion.

In other words, there should be no apparent relationship between the input to the MDC and

the resulting output. For MACs a secret key is required, thus in addition to the requirement

of diffusion the concept of confusion is considered relevant. Thus, for a MAC, a person in

possession of the MAC algorithm, the message, X, and the MAC result, it should be difficult

to determine the key K, used to determine the MAC result.

For the ideal hash function construction presented in Chapter 5 a binary symmetric source

is used to generate the hash function. Thus there is no dependence between the hash value

and the message. In terms of hash functions this is the most secure a hash function could

be, since it is impossible to manipulate a message to yield a specific hash value. The ideal

hash function construction presented in Chapter 5 is impractical due to the requirement for

repeatability. In practical hash functions the hash value depends on the message. For a secure

Requirements for Cryptographic Hash Functions

hash function it is required that there is no apparent or predictable relationship between the

hash value and the message. This requirement is related to the concept of diffusion.

When designing a cryptographic hash function the computational feasibility of the known

generic attacks should be considered. It should be computationally infeasible to employ

any of the generic attacks described in Chapter 3 to construct a collision. It should not be

possible to construct a collision in less than O(2~) operations (n being the hash length).

Several degrees of computational infeasibility is defined.

Collision Resistance: This requirement states that it should be computationally infeasible to

construct two arbitrary messages, X and X', such that h(X) = h(X'). Hash functions

that meet this criterion are called collision resistant hash functions (CRHF).

Finding a Specific Hash Value: This requirement states that, given a message, X, and the

corresponding hash value h(X) it is computationally infeasible to find a second mes-

sage, X', such that h(X) = h(X'). A hash function that satisfies this criterion is said

to be a one way hash function (OWHF). The condition for a OWHF is weaker than the

condition for a CRHF.

Sensical Collisions: A sensical collision is a collision for which X and X' can be construct-

ed such that h(X) = h(X'), and X and X' are meaningful in the context used. This is

the weakest condition imposed on cryptographic hash functions.

It is recommended that a cryptographic hash function is designed to meet the requirements

set for a collision resistant hash function.

Supplementary to the requirements of computational infeasibility of finding collisions for a

hash function is the requirement for the computational infeasibility of finding a combination

of the hash function and the signature scheme that results in a forged signature.

Requirements for Cryptographic Hash Functions

Central to the computational feasibility of finding a collision for a hash function lies the hash

space. The generic attacks described in Chapter 3 are evaluated in terms of the order of

the number of operations required to establish a collision. None of the generic techniques

requires less than O(2~) operations. The hash length n should be chosen large enough to

render the generic attacks harmless, given limited time and resources. Current estimates

recommend that n 2: 128 bits, and preferably n = 160 bits. The length of the hash value
should be updated every 3-5 years to accommodate the increase in computational power and

advances in computing technology.

The matter of key space is applicable to MACs. A MAC key should be chosen long enough

in order to prohibit exhaustive key search. For a k-bit key approximately O(2k) operations

are required to recover a key through exhaustive search. It is proposed that the length of the

key should be at least 64 bits.

When considering the hash length of a MAC two factors should be kept in mind. First is

the use of a secret key. The secret key adds to the security of the MAC, and consequently

the requirements imposed on the hash length is reduced to half of that specified for a MDC

with a similar level of security (see Chapter 2). The reduction in the hash space reduces the

effort required by an opponent who is in possession of the secret key, K, to find a collision or

establish a forgery. Thus for a MAC the security is derived from the difficulty of retrieving

the key rather than the difficulty of finding a collision. Thus a MDC with hash length n

would afford the same level of security as a MAC with a key of length ~. The second fact

which should influence the choice of a MAC length is the results obtained from the attack

in [29]. In [29] it is shown that the workload for generating a collision doubles if the length

of the MAC value, m is less than the length of the chaining variable, n. The mapping from

n to m should appear random. It is proposed that the chaining variables should be at least

128-bits with the final MAC value chosen as 64 bits.

The importance of key management should be kept in mind when designing a system that
makes use of a MAC.

Requirements for Cryptographic Hash Functions

Due to the functional requirement for repeatability, the hash value depends on the message.

If the hash value depends on the message, it is important that the hash value depends on

every bit in the message. If this is not the case an attacker could easily manipulate the bits

not used in the computation of the hash value to produce another message that yields the

same hash value.

It should be computationally infeasible to reconstruct a message from its hash value. This

is both a functional and a security requirement. From the point of view of security require-

ments, the construction of a message from its hash value allows an attacker to construct the

message even if the message is encrypted. The requirement for one-wayness can be wavered

if both the hash value and the message is encrypted. This solution incurs a time penalty, due

to the additional encryption required.

A cryptographic hash algorithm should exhibit maximum error extension. This implies that

if one bit is changed in the message, approximately half the bits in the hash value should

change. This ensures that an attacker can not expect a collision close to a specific message

with a high probability. This implies that the attacker has to search the entire hash space.

This is similar to the requirements set for a block cipher.

The output values and preimages of a hash function should be distributed smoothly. This

condition is required to prevent an attacker from searching for those preimages which are

known to occur more frequently, thus reducing the effort required for finding a collision.

When a hash function based on the Damgard-Merkle scheme is used, the preimages and

output values of every block should be distributed smoothly to minimise the possibility of a

successful attack on the chaining (see Chapter 3 Section 3.4.2).

Requirements for Cryptographic Hash Functions

In [43] it is proposed that a hash algorithm should not be a decomposable algorithm. This

would prevent an attacker from analysing individual building blocks to construct a collision.

This requirement is intended to prevent attacks dependent on the algorithm.

If the Damgard-Merkle scheme is used every bit in the chaining variables should be used in

the next iteration of the hash algorithm. This ensures that the applicability of the meet in the

middle attack is minimised. An additional condition on the chaining variables is imposed

by the meet in the middle attack. The number of operations required for the meet in the

middle attack are O(2'i), with n the number of bits in the chaining variable. Consequently

the chaining variable should have at least the same length as the hash value. For ease of

implementation the chaining variable is often chosen the same as the hash value. The number

of bits, n, should be at least 128 bits.

Redundancy could be added to the message to prevent certain variants of block correcting

and fixed point attacks. Redundancy is especially useful for detecting the addition of message

blocks. Redundancy appended to messages include:

The use of a time-stamp has the advantage that it prevents replay attacks. The addition of

time-stamps introduces several problems and potential weaknesses which could result in a

successful high level attack. The use of time-stamps require a synchronised clock. Synchro-

nised clocks are expensive to implement over distributed networks. The use of time-stamps

Requirements for Cryptographic Hash Functions

require a timing window to allow for transition times, especially when used in distributed

systems. As the timing window increases, the possibility of a successful replay attack in-

creases. If the timing window becomes too small, synchronisation becomes a problem. An

additional risk is introduced when utilising a small timing window. A small timing window

implies that the grain of the time-stamp becomes small. A time-stamp with a fine grain in-

creases the probability that an attacker could find two messages with a given time stamp that

results in a collision. Once such a pair is generated, the attacker waits for the time specified

by the time-stamp before sending the messages.

The addition of the message length to the message has the advantage that the message length

can not be increased or decreased. When using the Damgard-Merkle construction, padding is

required to extend the length of the message to a multiple of the elementary block length. The

padding scheme should be designed to contain sufficient redundancy to prevent the addition

of blocks.

The addition of the message length to the message before hashing makes it easy to detect

if a segment of the message was added or deleted. It does not allow the user to detect if

a segment of a message was replaced with a different segment. Substitution of message

segments can be detected by adding an intermediate result to the message. When using the

Damgard-Merkle construction, a chaining variable could be appended to the message before

hashing.

Several of the above requirements for cryptographical hash functions are contradictory. In

this section a short review is given of the contradictions. Where applicable resolution strate-

gies for these conflicting requirements are suggested.

Requirements for Cryptographic Hash Functions

This contradiction stems from the definition of an ideal cryptographic hash function. For

practical purposes the repeatability in a hash function can not be achieved through the use

of a database as is the case with the ideal cryptographic hash function. Instead, repeatability

is obtained by deriving the hash value from the message. This implies that the hash value

depends on the message and not on a binary symmetric source. It is therefore possible to

manipulate the message to yield a specific hash value. This is not possible when using a

binary symmetric source to generate the random numbers. Thus by making the hash value

dependent on the message, repeatability is obtained at the cost of reduced security. This

problem can be overcome by using the message as a seed to a good pseudo random number

generator. Therefore it is sufficient to state that there should be no apparent relationship

between the message and the hash function.

In Section 4.2.1 the need for chaining is introduced as a functional requirement. Unfor-

tunately the use of chaining structures make the hash function vulnerable to a variety of

attacks, designed specifically to exploit the chaining mechanism (Chapter 3 Section 3.4.2).

The attacks on the chaining require at least 0(2%) operations. The alternatives to chain-
ing are considered impractical. If possible the message length should be limited to a single

block to avoid chaining and the consequent attacks. If chaining can not be avoided it is ad-

vised that the number of bits, n, be chosen such that the most powerful attack on chaining is

computationally infeasible. Suitable values for n exceeds 128 bits.

Th~ requirement for speed is rooted in limited computing resources and CPU power. Hash

operations are specifically intended to speed-up digital signature schemes. When designing

a hash algorithm for fast execution the designer is often faced with a trade-off between speed

of execution and security [3]. The designer should be careful not to increase the security

and thereby sacrificing an unacceptable amount of processing time. Likewise the designer

should not increase the speed of an algorithm at an excessive cost to the security of the hash

function. The designer should decide what level of security and what hashing times are

Chapter 4

tolerable. Note that a slow algorithm is not necessarily more secure than a fast algorithm (a

badly designed algorithm can be both slow and insecure).

A contradiction between the two functional requirements specified in Section 4.2.4 and Sec-

tion 4.2.9 exist. In order to design a fast hash function without paying severe penalties in

terms of security, hash algorithms are optimised with a specific computer architecture in

mind [10], [44] [45] and [47]. This is acceptable as long as the majority of the intended

users share this architecture. When the specified architecture is not common to the majority

of users, penalties are paid in terms of speed and a lack of ease of implementation. If a hash

function is designed with a specific architecture in mind, the design should be optimised

to make use of the general architecture of the processors or systems concerned (e.g. 32-bit

Intel architecture). The design should not require specific instructions available only to cer-

tain processors if diverse processors architectures are used (e.g. multiply and accumulate

instruction in a DSP is not available in the 80x86 family).

Note that when implementing an algorithm the implementation should be optimised for the

architecture used. However, when defining an algorithm it should not be overly optimised

for a specific architecture.

In Section 4.3.11 it is stated that a hash function should not be decomposable. This implies

that the hash function does not have individual building blocks. This presents a problem in

terms of the functional requirement for ease of implementation. If a hash algorithm is not

composed from individual building blocks, it becomes difficult to implement the algorith-

m step-wise and test the functionality of each block. It is proposed that a hash function is

constructed from individual building blocks, but that analysis of individual blocks and the

interaction of these blocks does not allow the hash function to be manipulated in a determin-

istic way. This approach allows a user to implement and test each block and its interaction

with other building blocks before constructing the entire hash algorithm.

Requirements for Cryptographic Hash Functions

In Sections 4.3.5, 4.3.6 and 4.3.3 security requirements are set which influences the length of

a message and the consequent hash value. These security requirements are formulated to foil

the known generic attacks presented in Chapter 3. Most of these attacks can be made com-

putationally infeasible by increasing the number of bits n. The disadvantage of this defence

mechanism is that as the computational power of computers increase the number of bits n

has to be increased. When the hash values are transmitted over a channel, an increase in n

results in an increase in bandwidth required. Thus, unless bandwidth availability grows at the

rate of computational power, poorer throughput and reduced performance of communication

systems that make use of cryptographically secure hash functions will be the result.

Another defence technique is to add redundancy to the message and then compute the hash

value. The addition of redundancy once again implies reduced performance.

If bandwidth is constrained, a designer could decrease the security to improve the throughput

of a system. If security is deemed to be of greater concern than bandwidth requirements, the

number of bits, n, should be chosen to be secure in terms of computational feasibility.

This chapter contains a description of both functional and security requirements for crypto-

graphic hash functions. The functional requirements deals with the successful implementa-

tion and proliferation of cryptographic hash functions. The security requirements stated in

this chapter are intended to render the known generic attacks on hash functions harmless.

Many of the requirements mentioned in this chapter are conflicting. Some of these contra-

dictions are discussed in Section 4.4. It is the intention of this discussion to make a designer

aware of these contradictions and to suggest strategies to find optimal trade-offs for these

contradictions.

Due to the conflicting nature of the requirements for cryptographic hash functions, a design-

er should consider these requirements as a guideline. The designer should be influenced

by the application for which the cryptographic hash function is to be designed and should

accordingly make appropriate trade-offs between these requirements.

CHAPTER 5: GENERAL DEDICATED HASH FUNCTION

CONSTRUCTIONS

This chapter introduces the notion of an ideal cryptographic hash function construction. This

is an impractical construction and consequently the notion of the iterated cryptographic hash

function is introduced. This construction was independently introduced by Damgard and

Merkle and is commonly used in the construction of dedicated cryptographic hash functions.

Dedicated hash function constructions based on this construction include the MD4 family of

hash functions.

In [48] a construction is proposed for a super or ideal cryptographic hash function. The pro-

posed construction is not dependent on a secret key, but can easily be extended by adding a

key dependent element to the construction. In accordance to the definition of a hash function

in Chapter I, an input of variable length results in a hash value of a fixed length of n bits.

The construction consists of a database and a binary symmetric source. The message, X,

is submitted to the hash function. The database is searched for the submitted message. If

the message is found, the hash value associated with the message, h(X), is presented as an

output. If the message is not found in the database, the binary symmetric source generates a

binary string of n bits. This binary string is presented as the hash value h(X). The message,

X, and the newly generated hash function, h(X), is stored in the database for future use.

Thus, the ideal cryptographic hash function is secure in the sense of cryptographic hash

functions. A representation of this construction is shown in Figure 5.1.

Chapter 5

DB: Database
BSS: Binary Simmetric Source

I. An infinite number of messages exists, and consequently infinite storage space is re-

quired for the database.

2. Due to the use of binary symmetric source all users should have access to the same

database or hash function. This is impractical over large, distributed networks (such

as the Internet).

The construction for an ideal cryptographic hash function is reminiscent of the one time pad

or Vernam cipher. Both the one time pad and the ideal cryptographic hash function are con-

sidered impractical. The goal of stream cipher design is to simulate certain properties of a

one time pad while avoiding those properties which make it impractical. Likewise, when de-

signing cryptographic hash functions, the goal should be to simulate certain properties of the

ideal cryptographic hash function while circumventing the properties which are considered
impractical.

The important design requirement of apparent independence between the message and the

hash value was deduced from this construction (Chapter 4). Various building blocks that

facilitate the construction of a hash function that satisfies this requirement, is presented in

Section 5.5.

Chapter 5

The Damgard-Merkle scheme forms the basis of the majority of known hash functions. This

scheme was independently proposed in [22] and [23]. It is an iterated scheme and hash

functions constructed according to this scheme are referred to as iterated hash functions

[49]. The following three components are identified in the Damgard-Merkle scheme:

By definition the hash function should hash a message of arbitrary length to a fixed length.

The segmentation and padding feature of the Damgard-Merkle scheme allows the hashing of

messages of arbitrary length, which is one of the functional requirements.

The segmentation rule is used to divide a message of an arbitrary length into blocks of fixed

lengths. No special segmentation rules are known to exist. When segmentation is required

the message is simply processed in a serial manner, dividing the message into blocks of a

given length. The fixed block length is referred to as the elementary block length. If the

message is not a multiple of the elementary block length, padding is required (see Figure

5.2).

Message X l~~----- ,,,,,
Segmentation , ,

If the message is a multiple of the elementary hash length, padding is not required, but

dependent on the applications, it is sometimes applied.

The padding rule is used to expand a message so that the message length is an exact multiple

of the elementary block length on which the hash function operates. The padding rule can be

used to add additional information to a message (redundancy). The redundancy provides ad-

ditional security for the hash function against attacks (see Chapter 4). A number of padding

rules have been proposed. A summary of these rules follows:

1. Pad the message with O's until the padded message is a multiple of the block length.

This padding rule is ambiguous, since it is not known how many of the trailing zeros

are part of the message. This rule requires that either the length of the message be

known, or that the message length is included in the message.

2. Pad the message with a single 1 followed, if necessary, by O's until the padded mes-

sage is a multiple of the required block length. If the message is a multiple of the

required block length before padding commences, a block is added to the message.

The additional block contains a single 1 followed by O's.

3. Let z be a number of zeros and let r be the number of bits required for the binary

representation of z. Pad the message with z zeros, except for the last r bits. Let the

last r bits contain the binary representation of z. If less than r-bits remains in the last

block, additional blocks are added until r can be appended to the zero padded message.

4. Let r be the number of bits required for the binary representation of the message length.

Let b be the remaining number of bits in the last message block. Let z be the difference

in the number of bits between band r. Pad the message with z zeros, except for the

last r bits. Let the last r bits contain the binary representation of the message length.

If less than r-bits remains in the last block, additional blocks are added until r can be

appended to the zero padded message.

The choice of padding rule depends on the application. However, padding rule number 4

offers the most security. This rule prevents an attacker from deleting or adding message

blocks. If the attacker is an active eavesdropper, the threat posed by attacks such as the block

correcting attack and fixed point attacks are minimised. It does however not necessarily

prevent a legitimate participant from constructing messages of equal length using the fixed

point and block correcting attacks.

Chapter 5

In [23] Damgard presents a proof that if the round function, fO, is a collision resistant

function (CRF), the construction described results in a collision resistant hash function. This

proof holds only if the message length is appended to the message before hashing [3]. A

variant of padding rule 4 is used for dedicated hash functions such as MD4, MD5, SHA and

SHA-l.

For these reasons, padding rule number 4 or a variant thereof, is suggested for use in crypto-

graphic hash functions.

The second building block is the compress function or round function. The compress func-

tion, f 0, reduces an input block Xi of m bits to a block of n bits. The compression function

is the heart of the hash function since this is where the reduction of the message length

Damgard proved that generating a collision for a hash function based on the iterated scheme

requires that either a collision has to be generated for the round function, f 0, or a problem

has to be solved of comparable difficulty. The proof is given in the framework of compu-

tational complexity theory. This effectively implies that the conditions and requirements

imposed on cryptographic hash functions are transferred to the round function fO. In [3]

it is stated that f 0 should be a bijective function. This statement is based on the results

obtained in [30].

The definitions for MACs, OWHFs and CRHFs can be modified and applied to the round

functions used for these functions as follows:

Definition 5.1 The round function for a MAC is a function f() satisfying the following con-

ditions:

1. The description of f() must be publicly known and the only secret information lies in

the key, K, (extension of Kerkhoff's principle).

Chapter 5

3. The argument Xi is a segment of the message X. Xi has a jixed length of m bits and

the result f(K, Xi) has ajixed length ofn bits.

5. Givenf() and Xi, it is hard to determine f(K, Xi) with a probability of success sig-

nificantly higher than 2-n. Even where a large set of pairs {Xi, f (Xi, K)} is known,

where Xi have been selected by the opponent, it is "hard" to determine the key, K, or

to compute f(K, XI) for any Xi :f= XI-

Note the explicit requirement that the secret key should be used in each application of fO.
This requirement is stated to discourage the use of the initial value, IV, as a secret key, K,
in a MAC. If the IV is used as the key K, the key is used only in the first iteration of fO.
This allows an attacker to add message blocks and update the hash value without knowledge

of K. In certain hash functions, such as MD4, knowledge of the hash value and the message

allows an attacker to determine K if K is used as the IV. For this reason it is advised that

f 0 is dependent on K.

Definition S.2 The round function for a OWHF is a function f() satisfying the following

conditions:

1. The description off() must be publicly known and should not require any secret infor-

mation for its operation (extension of Kerkhoff's principle).

2. The argument Xi is a segment of the message X. Xi has a jixed length of m bits and

the result f(Xd has ajixed length ofn bits.

(a) given a Y in the image of f(), it is "hard" to find a message Xi such that f (Xi) =
Y.

Chapter 5

(b) given Xi and f(Xd it is "hard" to find a message block XI "# Xi such that

f(Xi) = f(XD·

Definition 5.3 The round function for a OWHF is a function f() satisfying the following

conditions:

1. The description of f() must be publicly known and should not require any secret infor-

mation for its operation (extension of Kerkhoff's principle).

2. The argument Xi is a segment of the message X. Xi has a fixed length of m bits and

the result f(Xi) has a fixed length ofn bits.

(a) given a Y in the image off 0, it is "hard" to find a message Xi such that f(Xi) =
y.

(b) given Xi and f(Xi) it is "hard" to find a message XI "# Xi such that f(Xi) =

f(XI).

5. The roundfunctionf() must be collision resistant: This means that it is hard to find two

distinct messages that result in the same image for the roundfunctionf().

Thus, the conditions imposed on a round function used in a MAC, OWHF or CRHF, are sim-

ilar to those imposed on the respective cryptographic hash functions. It is also interesting to

note that the conditions imposed on the round functions are similar to those defined in [3] for

one way functions (OWF) and collision resistant functions (CRF). A number of frequently

used building blocks used in the construction of round functions for secure hash functions

are identified in Sections 5.4 and 5.5.

A large number of attacks on hash functions based on the Damgard-Merkle Scheme, focuses

on the compress function [17]. Although attacks on the compress function are usually spe-

cific to the hash algorithm, the general attacks described in Chapter 3 are also applicable.

The parameters of the compress function should be chosen to render these attacks harmless.

Chapter 5

The third building block is the chaining rule. Chaining is used when the message length

exceeds the maximum allowable input length to the compress function.

When processing the message in blocks, the previous result of the compress function has to

be taken into account. This is accomplished by feeding the result from the previous compress

operation back and combine it in some way with the new block that has to be processed.

The chaining rule determines which part of the chaining variable should be fed back. This

approach is often used when a block cipher is used as a round function, since many block

ciphers has a key length that is shorter than the block length. It is advised that the full result

is fed back and used in the next iteration of the compress function.

Note that the introduction of chaining, allows attacks dependent on the chaining. These at-

tacks include meet in the middle attacks, correcting block attacks, fixed point attacks and

differential attacks (see Chapter 3 Section 3.4). The length of the chaining variables, mea-

sured in bits, should therefore be chosen to render these attacks computationally infeasible.

The interaction of the building blocks identified in the Damgard-Merkle scheme are de-

scribed as follows. For a hash function hO with a compress function JOan initial value IV
and a suitably padded message X, the interaction of the various building blocks are described

by:

Ho IV

Hi f(Xi, Hi-I) i E {I, 2, 3 ... j}

h(X) Hj.

A graphical representation of the interaction of the three building blocks are shown in Figure

5.3.

Chapter 5

i= 1,2,j

h(X) = H .
J

IV=H o
U= Chaining Rule

Z = Unit Delay

The construction shown in Figure 5.3 is specific to MDCs. For a MAC the interaction of

the compress function, f 0, the initial value, IV, the secret key, K, and a suitably padded

message, X, is described as follows:

Ho IV

Hi f(K, Xi, Hi-d i E {I, 2, 3 ... j}

h(X) Hj.

A graphical representation of the interaction of the various components of an iterated hash

function used as a MAC, is shown in Figure 5.4.

i= 1,2,....j

h(X) = H .
J

IV=H
o

U= Chaining Rule

Z = Unit Delay

K = Secret Key

A number of the better known dedicated hash functions based on the Damgard-Merkle

scheme include BCA, MD4, MD5, SHA, SHA-l, Haval, RIPEMD, N-Hash, Snefru and

Tiger.

Chapter 5

The majority of hash functions designed in recent years make use of an iterative structure

(Section 5.3). Hash functions based on iterative structures require secure round functions. A

number of conditions are imposed on the round functions (Section 5.3). Currently there are

three round function constructions in popular use. They are:

In this chapter the MD4-family construction is considered in detail. The use of block and

stream ciphers in round function constructions are considered in Appendix A.

The round function construction used for MD4 is described in [10]. This construction has

been widely adopted in the design of other hash functions such as MD5 [45], SHA-l [13],

Tiger [47] and RIPEMD-160 [15]. The round functions of these dedicated hash functions

are similar in design and construction.

Consider the iterated hash function as represented in Figures 5.3 and 5.4. Note that at most

three inputs are supplied to the round function. These inputs consist of the current message

block, Xi, the previous hash result, Hi-I, and a secret key, K. Note that the secret key

is only applicable when the construction is used as a MAC. The generalised MD4-family

construction does not allow for the inclusion of a secret key. Adaptations of this construction

that does make allowance for a secret key is presented in Appendix A.

The round function used in the MD4-family of constructions is itself an iterated construction.

The round function take as input the previous hash result Hi-I and the current message block,

Xi (see Figure 5.5).

Chapter 5

c::
.9•.... c::ro
"5 .9
E

•....
(,)

c::~ ;::l~ ~,..:.,:
"0(,) c::0 ;::l::0 0

.D ~;::l 4-<en 0~ c::Of) .9ro
r/) •....
r/) ro

~
I-<~•..........

..c -5:--......,,

The message block Xi is segmented into k sub-blocks. The previous hash result is set equal

to the initial chaining variable, C, for the round function. The set of message sub-blocks are

permutated and applied to the j'th iteration of the round functions. The chaining variable,

C, is then updated and applied to the next iteration of the round function. This process is

repeated three or four times. The permutation of the sub-block and the method used for

updating the chaining variable for each round is different for each iteration in the round

function. Each iteration of the round function is constructed from the elementary building

blocks described in Section 5.5.

This section contains descriptions of the building blocks frequently used in the construction

of round functions for cryptographic hash functions. These building blocks facilitate the

Chapter 5

fulfillment of the requirements of diffusion and confusion as defined by Shannon [46] (see

Chapter 4 Section 4.3.1). For this reason the building blocks identified in this section are

also commonly used in the construction of other cryptographic functions.

The use of bit permutations as building blocks in cryptographic primitives are considered

in [48]. A bit permutation of a vector modifies the order of the components of the vector,

without changing the values of the individual bits. In [48] it is recommended that the new bit

positions should be calculated from the old bit positions using a simple expression. As an

example, consider the simple cyclic rotation over a vector of length l. The bit in position i is

rotated over d-positions and the new bit position is given by i+d mod l. These permutations

are popular and are used in a number of dedicated hash functions, including MD4, MD5,

SHA and SHA-I.

If the bit permutation is implemented in dedicated hardware, the bit permutations can be

achieved through "hard wiring" the permutation into silicon. The price paid for this approach

is the large amount silicon required to accomplish such a task [48].

If the bit permutation is to be implemented in software on general purpose processors, a

permutation where individual bits are to be moved around should be avoided due to the re-

duction in performance. Lookup tables can be used to speed-up the bit permutation process,

but as remarked in [48] the size of the lookup tables grows exponentially, rendering this

technique infeasible. Instead it is advised that bit permutations be implemented in a block-

wise manner. Bit permutations which satisfy this requirement include vector rotations, as

described earlier. Note that the choice of a specific vector length, say 32 bits, is likely to

favour certain architectures, while putting others at a disadvantage. Thus, portability of the

algorithm is decreased.

As mentioned previously, vector rotations form popular building blocks for a number of well

known dedicated hash functions. The degree of security obtained from the use of these vector

rotations is considered inadequate in certain dedicated hash functions. The use of vector

rotations in MD4 in particular is shown to add little in terms of additional security [14], [17].

One of the reasons the vector rotations in MD4 are ineffective is that the rotation factor, d,

is a constant for each step. With the rotation constants known, the effect of the rotations

Chapter 5

can be calculated and countered. In the RC5 and RC6 encryption algorithm data dependent

vector rotations are introduced [27], [50]. It is therefore conceivable that security obtained

from vector rotations can be increased by making the rotation factor, d, data dependent when

designing dedicated hash functions.

Thus, when choosing a bit permutation the method of implementation, the portability of

the algorithm, the reduction in speed for a complicated bit permutation technique and the

required cryptographic strength should be kept in mind.

Bitwise Boolean operations are widely used in the MD-family of hash functions (MD4, MD5

and SHA-l). A bitwise Boolean operation treats all individual components of the binary

vector in the same manner. Commonly used bitwise operators are complementation, bitwise
AND, OR and XOR.

Bitwise binary operators are easily described in both hardware and software. For a processor

architecture with word length k, the bitwise Boolean operation on a vector of length n can

be split into rIl operations, if n > k. For these reasons bitwise Boolean operations are

portable, not only between different processor architectures, but also between hardware and

software platforms.

A number of desirable properties of Boolean functions are proposed in chapter 3 of [51].

These properties should be used as design criteria when constructing bitwise Boolean oper-

ations for cryptographic hash functions.

A substitution box, or S-box, is defined as an n x m mapping of a n bit vector to an m bit

vector, m and n need not be equal [51].

S-boxes are traditionally used as building blocks in block ciphers and stream ciphers. S-

boxes have not been used extensively in the design of cryptographic hash functions. An

example of a dedicated hash function that makes use of S-boxes is Tiger [47].

Chapter 5

For ease of implementation and description it is proposed to keep S-boxes small, specify a

way to generate the S-boxes at run time, or limit the number of S-boxes used [48]. When

using hardware implementations the S-boxes should be kept small due to the silicon area

required. In software S-boxes are usually contained in arrays. This limits portability due to

specific data word lengths used by specific processors.

In chapter 4 of [51] it is remarked that if m = 1 the mapping is a Boolean function. Thus a

Boolean function is a special instance of a S-box. The MD family of hash functions makes

use of bitwise Boolean functions rather than S-boxes. This choice is due to the memory and

performance penalties associated with the use of large S-boxes. It is believed that the use of

cryptographically strong S-boxes instead of bitwise Boolean operators will result in stronger

cryptographic hash functions [47]. An extensive treatment of the issue of S-box design and

analysis is given in [51].

Modular arithmetic has been identified as a building block from which hash functions can be

constructed [48]. A number of hash functions have been based on modular arithmetic [2]. In

[2] three arguments are presented in favour of using modular arithmetic:

The schemes based on modular arithmetic are classified according to the size of the modulus

used. Schemes with a small modulus (32 bits) have been proposed in [52]. These schemes

are believed vulnerable to divide and conquer attacks [3]. Schemes with a large modulus

(512 bit or more) are evaluated in [3]. It has been shown in [40] that these schemes are

insecure when used with the RSA signature scheme. The use of modular arithmetic for the

construction of cryptographically strong hash functions is considered limited [2].

Chapter 5

In this chapter, a generic construction for building MACs and MDCs that satisfies the re-

quirements presented in Chapter 4, was introduced. In particular the construction of the

iterated hash scheme used by the MD4 family of functions were considered. The design of

appropriate round functions is considered in Section 5.4 and 5.5. Commonly used building

blocks for cryptographic primitives are discussed in Section 5.5.

In this chapter the MD4 algorithm is considered. The MD4 algorithm is described followed

by the reconstruction of the analysis of MD4 as presented by Dobbertin [14]. In addition

the attack presented by Dobbertin is extended in a novel way that allows the computational

requirements to be reduced by a factor 64.

MD4 is a dedicated hash function proposed by R. Rivest [10], [44]. MD4 is an acronym

for "Message Digest 4". MD4 is an unkeyed dedicated cryptographic hash function (MDC).

MD4 is based on the iterative construction proposed discussed in Chapter 5. The MD4

algorithm was designed to meet the following criteria.

The most prominent design criterion is security. This implies that it should be computa-

tionally infeasible to find two messages, M1 and M2, that hashes to the same value. In other

words, MD4 is intended to be a collision resistant hash function. The remaining three criteria

are concerned with high speed implementation in software.

A complete definition of MD4, including the padding rule is given in [10] and [44]. Since

this chapter is specifically concerned with the cryptanalysis of MD4 it is useful to consider

the operation of MD4 before concentrating on the analysis.

Analysis of the MD4 Hash Algorithm

Before proceeding to describe the operation of MD4 it is appropriate to define the notation

used in this chapter.

32-bit word, j E {O,1,2 ... 15}

Alternative 32-bit word, j E {O,1, 2, ... 15}

Hash variables

Chaining variables after step i, i E {O, 1,2, ... 47}

X[j]
X[j]

(AA, BB, CC, DD)

MD4 is an iterated hash function. Each iteration requires the application of the compress

function. For MD4 the compress function is defined by the sequential application of three

distinct rounds. The elementary size of a message block is 512 bits. If the message is not

a multiple of 512 bits, a padding rule is used. Before the message block is processed it is

divided into 16 blocks of 32 bits each. Four 32-bit chaining variables are used to produce a

128-bit hash value. The following steps are identified in the MD4 algorithm.

Chapter 6

(a) No: Repeatfrom step 4.

(b) Yes: Continue.

3. Hash and chaining variable initial-

isation.

8. Has the entire message been pro-

cessed?

A block diagram of the steps in the MD4 algorithm is shown in Figure 6.1. A description of

each of the steps identified in the MD4 algorithm is presented next.

The first two steps ensure that the message length is a multiple of 512 bits. This allows the

message to be processed in blocks of 512 bits at a time. The padding rule is described in [10]

and [44].

Analysis of the MD4 Hash Algorithm

Ao

Bo

Co

Do

Ox67452301
OxEFCDAB89
Ox98BADCFE

The hash variables contains the hash value for each iteration and is initialised as shown

below:

AA Ao

BB Bo

CC Co

DD Do.

Steps 4-8 performs the iterative computation of the hash value. The hash value is computed

by applying three distinct rounds to each 512 bit block of the message. The hash function

derives its strength from these three rounds. The hash variables are updated once all three

rounds have been completed. If all of the 512 bit blocks have been processed the updated

hash variables contains the final hash value.

R(S, T, U, V, X, K, W, r, j)

S

(S + fr(T, U, V) + X[j] + Kr)«<wrj

R(S, T, U, V, X, K, W, r, j)

Analysis of the MD4 Hash Algorithm

X[j] j'th 32 bit word of the message, j E {O,1,2 ... 15}

r Round r r E {I, 2, 3}

Circular rotate x left byWrj bits

Modulo 232 addition of x and y.

Each round differs from the other with regard to Kr and fro The index j in X[j] is used

to permutate the 512 bit input in 32-bit blocks for each round of the hash function. In each

round W takes on one of four values.

F(X, Y, Z)

G(X, Y,Z)

H(X, Y,Z)

(X A Y) V (-,X A Z)

(X A Y) V (X A Z) V (Y A Z)

XEBYEBZ

Bitwise NOT

Bitwise XOR.

The function G (X, Y, Z) is a majority function. Thus for each bit position in X, Y, and Z the

binary value that occurs more than once is selected. The function F(X, Y, Z) is essentially a

selection function. A graphical representation of the selection function F(X, Y, Z) is shown
in Figure 6.2.

Analysis of the MD4 Hash Algorithm

Three distinct rounds are identified for MD4. These rounds constitutes the compress function

for MD4. It is therefore considered appropriate to give a detailed description of the rounds of

MD4, since all the known attacks on MD4 focuses on the compress function. The equations

describing the round functions are presented with this fact in mind.

For the first round K1 = OxOOOOOOOOand is omitted from the equations. The boolean

function II = F(X, Y, Z) for the first round. The four possible rotation constants for the

first round of MD4 are defined as:

f81

f82

f83

f84

Chapter 6

The complete set of equations for the first round are shown below:

A3 (Ao + F(Bo, Co, Do) + X [0]) <<<fsl (6.1)

D3 (Do + F(A3, Bo, Co) + X [1]) <<<fs2 (6.2)

C3 (Co + F(D3, A3, Bo) + X[2])«<fs3 (6.3)

B3 (Bo + F(C3, D3, A3) + X [3]) <<<fs4 (6.4)

A7 (A3 + F(B3, C3, D3) + X[4])«<fs1 (6.5)

D7 (D3 + F(A7, B3, C3) + X [5]) <<<fs2 (6.6)

C7 (C3 + F(D7, A7, B3) + X [6]) <<<fs3 (6.7)

B7 (B3 + F(C7, D7, A7) + X [7]) <<<fs4 (6.8)

Au (A7 + F(B7, C7, D7) + X[8])«<fs1 (6.9)

Du (D7 + F(Au, B7, C7) + X[9])<<<fs2 (6.10)

Cu (C7 + F(Du, Au, B7) + X[1O])«<fs3 (6.11)

Bu (B7 + F(Cu, Du, Au) + X[1l])<<<fs4 (6.12)

A15 (Au + F(Bu, Cu, Du) + X[12])«<fs1 (6.13)

D15 (Du + F(AI5, Bu, Cu) + X[13])«<fs2 (6.14)

C15 (Cu + F(DI5, A15, Bu) + X[14])«<fs3 (6.15)

B15 (Bu + F(CI5, D15, A15) + X[15])«<fs4 (6.16)

For the second round K2 takes on the value as defined previously. The boolean function

h = G(X, Y, Z) for the second round. The four possible rotation constants for the first

round of MD4 are defined as:

gsl

gs2

gs3

gs4

Analysis of the MD4 Hash Algorithm

The complete set of equations describing the second round are shown below:

A19 (A15 + g(BI5, 015, D15) + X[O] + K2(<<gSI (6.17)

D19 (D15 + g(AI9, B15, 015) + X[4] + K2)<<<gS2 (6.18)

019 (015 + g(DI9, A19, B15) + X[8] + K2)«<gs3 (6.19)

B19 (B15 + g(019, D19, A19) + X[12] + K2)«<gs4 (6.20)

A23 (A19 + g(BI9,CI9, D19) + X[l] + K2)«<gsl (6.21)

D23 (D19 + g(A23, B19, 019) + X[5] + K2)«<gs2 (6.22)

023 (019 + g(D23, A23, B19) + X[9] + K2)«<gs3 (6.23)

B23 (B19 + g(023, D23, A23) + X[13] + K2)«<gs4 (6.24)

A27 (A23 + g(B23, 023, D23) + X[2] + K2)«<gsl (6.25)

D27 (D23 + g(A27, B23, 023) + X[6] + K2)<<<gs2 (6.26)

027 (023 + g(D27, A27, B23) + X[IO] + K2)«<gs3 (6.27)

B27 (B23 + g(027, D27, A27) + X[14] + K2)<<<gS4 (6.28)

A31 (A27 + g(B27, 027, D27) + X[3] + K2)<<<gSI (6.29)

D31 (D27 + g(A31, B27, 027) + X[7] + K2)<<<gS2 (6.30)

031 (027 + g(D31, A31, B27) + X[ll] + K2)«<gs3 (6.31)

B31 (B27 + g(031, D31, A31) + X[15] + K2)«<gs4 (6.32)

For the third round K3 takes on the value as previously defined. The boolean function h =

H(X, Y, Z) for the third round. The four possible rotation constants for the first round of

MD4 are defined as:

hsl

hs2

hs3

hs4

Chapter 6

The complete set of equations describing the third round are shown below:

A35 (A31 + h(B31, C31, D31) + X[O] + K3)«<hsl (6.33)

D35 (D31 + h(A35, B31, C3d + X[8] + K3)«<hs2 (6.34)

C35 (C31 + h(D35, A35, B3d + X[4] + K3)«<hs3 (6.35)

B35 (B31 + h(C35, D35, A35) + X[12] + K3)«<hs4 (6.36)

A39 (A35 + h(B35, C35, D35) + X[2] + K3)«<hsl (6.37)

D39 (D35 + h(A39, B35, C35) + X[lO] + K3)«<hs2 (6.38)

C39 (C35 + h(D39, A39, B35) + X[6] + K3)«<hs3 (6.39)

B39 (B35 + h(C39, D39, A39) + X[14] + K3)«<hs4 (6.40)

A43 (A39 + h(B39, C39, D39) + X[l] + K3)«<hsl (6.41)

D43 (D39 + h(A43, B39, C39) + X[9] + K3)«<hs2 (6.42)

C43 (C39 + h(D43, A43, B39) + X[5] + K3)«<hs3 (6.43)

B43 (B39 + h(C43, D43, A43) + X[13] + K3)«<hs4 (6.44)

A47 (A43 + h(B43, C43, D43) + X[3] + K3)«<hsl (6.45)

D47 (D43 + h(A47, B43, C43) + X[ll] + K3)«<hs2 (6.46)

C47 (C43 + h(D47, A47, B43) + X[7] + K3)«<hs3 (6.47)

B47 (B43 + h(C47, D47, A47) + X[15] + K3)«<hs4 (6.48)

A graphical representation of the three rounds that constitutes the compress function of MD4

is shown in Figure 6.3 (derived from [11D.

AA = Ao

BB = Bo

CC = Co

DD = Do

A47 + AA

B47 + BB

C47 + CC

D47+DD

Analysis of the MD4 Hash Algorithm

BB, CC, and DD. If there are unprocessed message blocks remaining, Ao, Bo, Co, and Do

contains the new initial values for the next iteration of MD4.

The MD4 hash function has been extensively analysed since its introduction in 1990 [10],[44].

In 1991 an attack on the last two rounds of MD4 was presented by Bosselaers and den Boer

[11]. An unpublished attack on the first two rounds of MD4 is credited to Merkle. In 1994

Vaudenay published an attack on the first two rounds of MD4 [53]. In 1995 Dobbertin p-

resented a technique to cryptanalyse the MD4 hash function [14]. The result included in

this chapter builds on the results obtained by Dobbertin by presenting an algorithm which

requires 0(26) times less iterations for finding a collision.

This contains selected results obtained from the cryptanalysis of MD4. The remainder of

this chapter is organised as follows. First the notation used for the cryptanalysis of MD4 is

introduced. A review of the attack in [14] is then presented. This is followed by a description

of an alternative algorithm which can be used to speed up the attack proposed in [14]. The

results obtained from the use of the alternative algorithm are then considered. The source

code that implements this attack is included for reference purposes as Appendix C.

Before proceeding with a description of the cryptanalysis of MD4 the following notation is

introduced.

x [j] 32-bit word

j E [1,16]

M1 Message 1

M2 Message 2

Zi Chaining variable for M1 after step i

Zi Chaining variable for M2 after step i

Z E {A,B,C,D}

i E [0,47]

Chapter 6

X[12] = X[12] + 1

COMPRESS;- = Value of chaining variables after steps

y to z of the compress function is performed.

(A- - A B- - i3. e- - C- D - D)z z, z z, z z, z z

z<<<X

_z<<<x

Left circular rotation of Z by X bit positions.

_(Z<<<X).

The following relationship exists between the notation used in [14] and the notation used in

this appendix.

V D15 A* A19

B Bll V D15 B* B19

C Cll W C15 B* B19

U A15 W C15 C* C19

U A15 Z B15 C* C19

Z B15 D* D19·

The cryptanalysis of MD4 is described in [14]. The attack could be viewed as a divide and

conquer attack. The attack is divided into two parts. The first part is concerned with the

establishment of a so-called inner almost-collision. The second part of the attack is based

on a differential attack and the matching of initial values. The differential attack can only

succeed if the criteria set for the establishment of the inner almost-collisions has been met.

Analysis of the MD4 Hash Algorithm

In order for the differential attack to be successful the above condition has to be met. Thus

obtaining an inner almost-collision is central to the success of the attack described in [14].

The above condition implies that the following relationship should hold between the chaining

variables obtained for message M1 and M2 after step 19.

A19

B 1<<<2519 -

Using these relationships and conditions the following set of non-linear equations were de-
rived in [14].

1

F(.A15, Bll, Cll) - F(A15, Bll, Cll)

F(D15, .A15, Bll) - F(D15, A15, Bll)

F(015, D15, .A15) - F(C15, D15, A15)

G(fh5, 015, D15) - G(B15, C15, D15)

G(.A19, B15, 015) - G(A19, B15, C15)

G(D19, .A19, B15) - G(D19, A19, B15)

.A~<29 _ A~<29

D~<25 _ D~<25

0~<21 _ C~<21

B~<13 _ B~<13

A15 - .A15

(6.50)

(6.51)

(6.52)

(6.53)

(6.54)

(6.55)D15 - D15

C15 - 015 +
oi'§<23 - ci'§<23

B15 - B15 - 1+
Bi'§<19- Bi'§<19

Chapter 6

X[13]

X[14]

X[15]

X[O]
X[4]

X[8]

X[12]

Dll

All

Arbitrary

C~<21 - Cll - F(DI5, A15, Bll)

B~<13 - Bll - F(CI5, D15, A15)

Alt<29 - A15 - F(B15, C15, D15) - K1

D'Ji<27 - D15 - F(AI9, B15, C15) - K1

C~<23 - C15 - F(DI9, A19, B15) - K1

B~<19 - B15 - F(CI9, D19, A19) - K1

D~<25 - F(AI5, Bll, Cll) - X[13]

A~<29 - F(Bll, Cll, Dll) - X[12].

(6.58)

(6.59)

(6.60)

(6.61)

(6.62)

(6.63)

(6.64)

(6.65)

(6.66)

B15 = B15 - G(C\9, D19, lh9) + G(C19, D19, A19) +
.8lt<19 - Blt<19 - 1

615 C15 - G(DI9, A19, .815) + G(DI9, A19, B15) +
6~<23 _ C~<23

D15 6~<21 _ C~<21

D15 D15 - G(AI9, B15, 615) + G(AI9, B15, C15)

Cll D~<25 - D~<25.

(6.68)

(6.69)

(6.70)

(6.71)

The solutions obtained for the above equations should also satisfy the following two condi-
tions.

G(.815,615,DI5) - G(BI5,CI5,DI5)

F(615, D15, A15) - F(CI5, D15, A15)

(6.72)

(6.73)

Analysis of the MD4 Hash Algorithm

In his paper Dobbertin suggests an algorithm to solve the set of non-linear equations de-

scribed by (6.67) to (6.73). This algorithm is replicated below.

1. Choose A19, B19, G19, D19, B15 and G15 randomly. Compute B19, C\9, B15, 615, D15

and D15 as described in (6.67) to (6.71). Test if (6.72) is satisfied. If the test is passed

goto 2.

2. Take A19, B19, G19, D19, B15 and G15 found in 1 as "basic values". Change one

random bit in each of these variables, compute B19, 619, B15, 615, D15 and D15 and
test if (6.72) is satisfied. Then test if the left 4 bits of (6.73) are equal to O. If this

test is passed take the corresponding values A19, B19, G19, D19, B15 and G15 as the

new "basic values". The next is doing the same as before, but now testing if the 8 left

bits of (6.73) instead of 4 bits are zero. Continue with the left 12,16 ... left bits until

(6.73) is fulfilled.

3. Now (6.72) and (6.73) are satisfied and we obtain an inner almost-collision by setting

Bll = 0 and defining All, Gll, Dll and Xli] according to equations (6.58) to (6.66).

For the inner almost-collision to be admissible, it is required that the following equation

holds:

If equation (6.74) does not hold the differential attack is unlikely to succeed. Algorithm 6.2

has to be repeated until equation 6.74 is satisfied.

In the next section an alternative algorithm for solving the above set of non-linear Boolean

equations is presented.

In this section we proceed to describe an alternative algorithm that leads to the solution of

equations (6.50) to (6.57) and the establishment of inner almost-collisions.

Analysis of the MD4 Hash Algorithm

OxOOOOOOOO
OxOOOOOOOO

The choice of A15 and A15 immediately satisfies equation (6.50). The choices for Bn and

On implies that D15 and D15 are equal. A collision can now be established by setting:

D15 OxFFFDFFFE
D15 D15

015 OxEDFFCFFF
615 OxFDFFDFFF
B15 B + B«<19 - B«<19 - 1

15 19 19

The values for D15, D15, 615 and 015 are chosen to satisfy equations (6.52) and (6.53) and
to facilitate the easy manipulation of the functions F(X, Y, Z) and G(X, Y, Z). The choice
of the relationship between B15 and B15 ensures that it is easy to find a solution to equation
(6.57). The following set of equations now needs to be solved.

F(615,DI5,AI5) - F(CI5,DI5,AI5)

G(BI5, 615, D15) - G(BI5, C15, D15)

G(AI9, B15, 615) - G(AI9, B15, C15)

G(DI9, A19, B15) - G(DI9, A19, B15)

(6.75)

(6.76)

(6.77)o
C15 - 615 +
6{t<23 - C{t<23 (6.78)

(6.79)

Thus equations (6.50) to (6.57) can be reduced to equations (6.75) to (6.79). Note that

equations (6.75) to (6.79) each contain a single unknown variable. It is now possible to

define an algorithm that has a high probability to yield an admissible inner almost-collision.

The suggested algorithm for finding an inner almost-collision is defined below:

Analysis of the MD4 Hash Algorithm

1. Choose a random value for B15 and compute B15• Repeat this step until equation

(6.75) and (6.76) are satisfied.

3. Choose a random value for D19, B19, 019 and compute B19 and G19• Repeat this step

until equation (6.78) and equation (6.79) are satisfied.

(a) If equation (6.74) holds an admissible inner collision was found. Proceed to

construct M1 and M2 as described by equations (6.58) to (6.66).

(b) If equation (6.74) does not hold, repeat this algorithm from step 1.

Once an admissible inner almost-collision is found, the differential attack described in [14]

may be used to find a collision for all three rounds of MD4.

When comparing the performance of Algorithm 6.2 with that of Algorithm 6.3, two obser-

vations are made.

It is noted that when Algorithm 6.3 is used to find an admissible inner almost-collision, only

a subset of all possible admissible inner almost-collisions is produced. This is due to the

selection of A15, A15, B15, B15, G15 and 015, When constructing an admissible inner almost-

collision the attacker is free to choose 5 variables at random. This leaves the attacker with

2160 options. Each random choice does not however guarantee an admissible inner almost-

collision. On average the attacker has to make 28 random choices for the 5 variables before

an inner almost-collision is found. This reduces the number of inner almost-collisions to an

estimated 2152. According to [14] approximately one in every nine inner almost-collisions

are admissible. Thus approximately 2149 admissible inner almost-collisions can be found

with Algorithm 6.3. It is pointed out in [14] that it is possible to construct approximately 2106

message pairs that yield a collision for each admissible inner almost-collision under the MD4

Analysis of the MD4 Hash Algorithm

hash function. Thus with the use of Algorithm 6.3 it is possible, to generate approximately

2255 message pairs that hash to the same value using MD4. When using Algorithm 6.2 the

number of message pairs that result in a collision are estimated at 2281•

Algorithm 6.3 has an advantage over Algorithm 6.2 when the number of operations required

to find an admissible inner almost-collision is considered. A practical measurement of Al-

gorithm 6.2 shows that approximately 0(214) trials are required to find an admissible in-

ner almost-collision. A similar measurement shows that Algorithm 6.3 requires on average

0(28) trials to find an admissible inner almost-collision. This represents a speedup factor of

approximately 64.

An example of two messages that were constructed using Algorithm 6.3 for finding ad-

missible inner almost-collisions is shown below. The common hash value is included for

reference.

X[O] OxD6E3C2EA X[8] Ox25BOC32D
X[l] Ox31759BA4 X[9] OxDIE9E09B
X[2] Ox09028A49 X[lO] OxEC08A64A
X[3] OxOODC9F7B X[ll] Ox32CC035A
X[4] Ox9688334C X[12] Ox669080A4
X[5] Ox6A848F6B X[13] Ox31C4794B
X[6] OxB5E292DD X[14] OxFFFFBFFB
X[7] Ox4DCC5516 X[15] OxA281EB3F

X[12] = Ox669080A5

Analysis of the MD4 Hash Algorithm

This chapter contains a concise description of the operation of MD4. Attention has been paid

in particular to the three rounds that constitutes the compress function for MD4. This is due

to the importance of these rounds in the cryptanalysis of MD4 as presented in this Chapter.

An implementation of the MD4 algorithm is attached as Appendix B.

The description of MD4 is followed by a description of the attack by Dobbertin on MD4. It

is shown that a speedup of the attack on MD4 is possible. The speedup factor is estimated

to be a factor of 64. The improvement in speed is attained at the cost of a reduction in the

number of possible messages which result in a collision. These results were also presented

at the Comsig 97 conference [56].

Chapter 6

In this chapter we begin with a concise description of the MD5 hash algorithm. We then pro-

ceed by reconstructing the attack on MD5 as formulated by Dobbertin. The reconstruction

is based on the source code used by Dobbertin to implement the attack. This is the first time

a detailed description of the attack on MD5 is published.

MD5 is a dedicated hash function proposed by R. Rivest [45]. MD5 is the successor to MD4.

MD5 is an extension of MD4. In extending MD4 to become MD5, a more conservative

approach was taken. MD5 has the following features not encountered in MD4:

7. The elementary function used in the second round was changed from (X 1\ Y) V (X 1\

Z) V (Y 1\ Z) to (X 1\ Z) V (Y 1\ (-.Z)). The intention of this change is to reduce the

symmetry in g().

The most prominent design criterion is security. In [45] it is conjectured that it is computa-

tionally infeasible to find two messages, M1 and M2, that hashes to the same value, or to find

a message that results in a specified hash value. In other words, MD5 is intended to be both

collision resistant and pre-image resistant.

A complete definition of MD5, including the padding rule is given in [45]. In view of the

analysis of MD5 it is useful to consider the operation of the algorithm.

Analysis of the MD5 Hash Algorithm

Before proceeding to describe the operation of MD5 it is convenient to introduce the follow-

ing notation:

Xj

Xj

(AA, BB, CC, DD)

(A, Bi, Ci, Di)

32-bit word, j E {O, 1,2 ... 15}

Alternative 32-bit word, j E {O,1,2, ... 15}

Hash variables

Chaining variables after step i, i E {O,1, 2, ... 47}

(a) No: Repeatfrom step 4.

(b) Yes: Continue.

3. Hash and chaining variable initial-

isation.

9. Has the entire message been pro-
cessed?

Analysis of the MD5 Hash Algorithm

MD5 is an iterated hash function based on the Damgard-Merkle construction [22], [23]. Each

iteration requires the application of the compress function. The MD5 compress function

is defined by the sequential application of four distinct rounds. The elementary size of a

message block is 512 bits. If the message is not a multiple of 512 bits, a padding rule is used.

Before the message block is processed, it is divided into 16 blocks of 32 bits each. Four

32-bit chaining variables are used, producing a 128-bit hash value. Algorithm 7.1 presents

the main steps in MD5 along with a block diagrammatic representation of the structure of

MD5 (see Figure 7.1). A description of each of the steps identified in the MD4 algorithm is
presented next.

The first two steps ensure that the message length is a multiple of 512 bits. This allows the

message to be processed in blocks of 512 bits at a time. The padding rule is described in
[45].

Ao Ox67452301
Bo OxEFCDAB89
Co Ox98BADCFE
Do Oxl0325476.

The hash variables contains the hash value for each iteration and is initialised as shown

below:

AA Ao

BB Bo

CC Co

DD Do.

Analysis of the MD5 Hash Algorithm

Steps 4-9 perform the iterative computation of the hash value. The hash value is obtained

from the application of four distinct rounds to each 512 bit block of the message. The hash

function derives its strength from these four rounds. The hash variables are updated once

all four rounds have been completed. If all of the 512 bit blocks have been processed the

updated hash variables contain the final hash value. The elementary operation within each

round is described by:

S + Ur(T, U, V) + Xj + Ii) «< Wrj

R(S, T, U, V, X, K, W, r, j)

Xj j'th 32 bit word of the message, j E {O,1,2 ... 15}

r Round r r E {I, 2, 3, 4}

z Step(r-1)·16+j

Circular rotate x left byWrj bits

Modulo 232 addition of x and y.

Each round differs from the other with regard ir. The index j in Xj is used to permutate the

512 bit input in 32-bit blocks for each round of the hash function. In each round W takes on

one of four values. For each step the additive constant Ii is unique.

i(X, Y,Z)

g(X, Y,Z)

h(X, Y,Z)

i(X, Y, Z)

(X 1\ Y) V ((,X) 1\ Z)

(X 1\ Z) V (Y 1\ (,Z))

XEBYEBZ

Y EB (X V (,Z)).

Bitwise NOT

Bitwise XOR.

The constants for ~ are defined in [45] and may be found in Appendix D which contains the

source code for an implementation of MD5.

Four distinct rounds constitute the compress function for MD5. The following equations

describe these rounds.

fs1

fs2

fs3

fs4

Chapter 7

A3 Bo + (Ao + !(Bo, Co,Do) + Xo + To)«<f
s1 (7.1)

D3 A3 + (Do + !(A3, Bo, Co) + Xl + Td«<f
s2 (7.2)

C3 D3 + (Co + !(D3, A3, Bo) + X2 + T2)<<<fs3 (7.3)

B3 C3 + (Bo + !(C3, D3, A3) + X3 + T3)<<<f
s4 (7.4)

A7 B3 + (A3 + !(B3, C3, D3) + X4 + T4)«<f
s1 (7.5)

D7 A7 + (D3 + !(A7, B3, C3) + X5 + T5)<<<f
s2 (7.6)

C7 D7 + (C3 + !(D7, A7, B3) + X6 + T6)«<f
s3 (7.7)

B7 C7 + (B3 + !(C7, D7, A7) + X7 + T7) <<<fs4 (7.8)

Au B7 + (A7 + !(B7, C7, D7) + Xs + Ts)«<f
s1 (7.9)

Du Au + (D7 + !(Au, B7, C7) + Xg + Tg)«<f
s2 (7.10)

Cu Du + (C7 + !(Du, Au, B7) + XlO + TlO(<<f
s3 (7.11)

Bu Cu + (B7 + !(Cu, Du, Au) + Xu + Tu)<<<f
s4 (7.12)

A15 Bu + (Au + !(Bu, Cu, Du) + X12 + T12)«<f
s1 (7.13)

D15 A15 + (Du + !(A15, Bu, Cu) + X13 + T13)<<<f
s2 (7.14)

C15 D15 + (Cu + !(D15, A15, Bu) + X14 + T14) «<fs3 (7.15)

B15 C15 + (Bu + !(C15, D15, A15) + X15 + T15)<<<fs4 (7.16)

gs1

gs2

gs3

gs4

Chapter 7

A19 B15 + (A15 + g(B15, G15, D15) + Xl + T16)«<gSl (7.17)

D19 A19 + (D15 + g(A19, B15, G15) + X6 + T17)«<gS2 (7.18)

G19 D19 + (G15 + g(D19, A19, B15) + Xu + TIS) «<gs3 (7.19)

B19 G19 + (B15 + g(G19, D19, A19) + Xo + T19)<<<gS4 (7.20)

A23 B19 + (A19 + g(B19, G19, D19) + X5 + T20)«<gSl (7.21)

D23 A23 + (D19 + g(A23, B19, G19) + XlO + T2d<<<gS2 (7.22)

G23 D23 + (G19 + g(D23, A23, B19) + X15 + T22)«<gs3 (7.23)

B23 G23 + (B19 + g(G23, D23, A23) + X4 + T23)«<gs4 (7.24)

A27 B23 + (A23 + g(B23, G23, D23) + X9 + T24)«<gsl (7.25)

D27 A27 + (D23 + g(A27, B23, G23) + X14 + T25)«<gS2 (7.26)

G27 D27 + (G23 + g(D27, A27, B23) + X3 + T26)«<gs3 (7.27)

B27 G27 + (B23 + g(G27, D27, A27) + Xs + T27)«<gs4 (7.28)

A31 B27 + (A27 + g(B27, G27, D27) + X13 + T2S)<<<gSl (7.29)

D31 A31 + (D27 + g(A31, B27, G27) + X2 + T29)«<gs2 (7.30)

G31 D31 + (G27 + g(D31, A31, B27) + X7 + T30)«<gs3 (7.31)

B31 G31 + (B27 + g(G31, D31, A31) + X12 + T3d«<gs4 (7.32)

hsl

hs2

hs3

hs4

Chapter 7

A35 B31 + (A31 + h(B31, C31, D3d + X5 + T32)«<hsl (7.33)

D35 A35 + (D31 + h(A35, B31, C3d + Xs + T33)«<hs2 (7.34)

C35 D35 + (C31 + h(D35, A35, B31) + Xu + T34)«<hs3 (7.35)

B35 C35 + (B31 + h(C35, D35, A35) + X14 + T35)«<hs4 (7.36)

A39 B35 + (A35 + h(B35, C35, D35) + Xl + T36)«<hsl (7.37)

D39 A39 + (D35 + h(A39, B35, C35) + X4 + T37)«<hs2 (7.38)

C39 D39 + (C35 + h(D39, A39, B35) + X7 + T3S)«<hs3 (7.39)

B39 C39 + (B35 + h(C39, D39, A39) + XlO + T39)«<hs4 (7.40)

A43 B39 + (A39 + h(B39, C39, D39) + X13 + T40)«<hsl (7.41)

D43 A43 + (D39 + h(A43, B39, C39) + Xo + T4d«<hs2 (7.42)

C43 D43 + (C39 + h(D43, A43, B39) + X3 + T42)«<hs3 (7.43)

B43 C43 + (B39 + h(C43, D43, A43) + X6 + T43)«<hs4 (7.44)

A47 B43 + (A43 + h(B43, C43, D43) + X9 + T44) «<hsl (7.45)

D47 A47 + (D43 + h(A47, B43, C43) + X12 + T45)«<hs2 (7.46)

C47 D47 + (C43 + h(D47, A47, B43) + X15 + T46) «<hs3 (7.47)

B47 C47 + (B43 + h(C47, D47, A47) + X2 + T47) «<hs4 (7.48)

is3

is4

Analysis of the MD5 Hash Algorithm

A51 B47 + (A47 + i(B47, C47, D47) + Xo + T4S)«<isl (7.49)

D51 A51 + (D47 + i(A51, B47, C47) + X7 + T49) «<is2 (7.50)

C51 D51 + (C47 + i(D51, A51, B47) + X14 + T50) «<is3 (7.51)

B51 C51 + (B47 + i(C51, D51, A51) + X5 + T5d«<is4 (7.52)

A55 B51 + (A51 + i(B51, C51, D5d + X12 + T52)«<isl (7.53)

D55 A55 + (D51 + i(A55, B51, C5d + X3 + T53)«<is2 (7.54)

C55 D55 + (C51 + i(D55, A55, B5d + XlO + T54)«<is3 (7.55)

B55 C55 + (B51 + i(C55, D55, A55) + Xl + T55)«<is4 (7.56)

A59 B55 + (A55 + i(B55, C55, D55) + Xs + T56) «<isl (7.57)

D59 A59 + (D55 + i(A59, B55, C55) + X15 + T57)«<iS2 (7.58)

C59 D59 + (C55 + i(D59, A59, B55) + X6 + T5S)«<is3 (7.59)

B59 C59 + (B55 + i(C59, D59, A59) + X13 + T59)«<is4 (7.60)

A63 B59 + (A59 + i(B59, C59, D59) + X4 + T60)«<isl (7.61)

D63 A63 + (D59 + i(A63, B59, C59) + Xu + T6d«<is2 (7.62)

C63 D63 + (C59 + i(D63, A63, B59) + X2 + T62)«<is3 (7.63)

B63 C63 + (B59 + i(C63, D63, A63) + X9 + T63)«<is4 (7.64)

AA = Ao

BB = Bo

CC = Co

DD = Do

A47 + AA

B47 + BB

C47 +CC

D47 +DD

Once the last 512 bit message block have been processed, the final hash value is given by

AA, BB, CC, and DD. If there are unprocessed message blocks remaining, Ao, Bo, Co,

and Do contains the new initial values for the next iteration of MD5.

Chapter 7

MD5 is a dedicated hash function as described in Section 7.4. As noted in Section 7.4

MD5 is an extension of MD4. MD5 was designed to be a more secure hash function and

is therefore more conservative in design than MD4. In 1996 Dobbertin presented an attack

on MD4, showing that it is possible to find collisions for MD4 in less than a second on a

personal computer. The cryptanalysis of MD4 is presented in [14]. Additional work relating

to the cryptanalysis of MD4 is presented in [17]. Dobbertin applied similar cryptanalytical

techniques to RIPEMD and found that the first two rounds and last two rounds of RIPEMD

are not collision resistant [54]. At the rump session of EUROCRYPT'96 it was announced

that it is possible to find collisions for the compress function of MD5 [54]. An outline of

this attack was published in [55]. In [12] it is stated that using these techniques, the attack

requires approximately 10 hours on a personal computer with a Pentium processor. From

these publications it appears as if the techniques employed in the cryptanalysis of MD5 are

similar to those used on MD4 and RIPEMD.

The attack on MD5 as described in this chapter is based mostly on the notes of Antoon

Bosselaers and the C source code developed by Dobbertin.

Z Message word, chaining variable or a collection of chaining variables.

Z Alternative value for Z.

-Z>>>Y = -(Z>>>Y) bits.

Analysis of the MD5 Hash Algorithm

The attack on MD5 is based on the assumption that all the message words are identical except

for one message word Xi. The difference between Xi and Xi is given by:

where ~ is a 32 bit word with a small Hamming weight. For the attack on MD5 as described

by Dobbertin in [12] and [55], the following choices are made:

(7.66)

(7.67)

It is stated in [55] that it may be possible to utilise other message words as well as other

values for~. The message word X 14 is used in equations (7.15) (7.26), (7.36) and (7.51)

(once in each round). Using the notation defined in Section 7.5.1 the following definitions

are presented.

Value of chaining variables after equations

y to x of the compress function was applied to the message.

Value of chaining variables after equations

y to x of the compress function was applied to the modified message.

----------- 7.15
COMPRESs+:~g - COMPRESS7.26 = 0

7.36 ----------- 7.36
COMPRESS7.51 - COMPRESS7.51 = 0

If these conditions are met, so-called inner collisions are established. The attacker then has

to find suitable message words which would link equation (7.26) to equation (7.36). From

the above it appears that the attack on MD5 is a divide and conquer attack. Three phases are

identified in this attack.

Analysis of the MD5 Hash Algorithm

The inner collisions may be found by deriving two sets of difference equations (one for each

step). These equations then has to be solved simultaneously due to the large overlap in words.

At the same time a link between these equations has to be sought.

Each of these steps are discussed in a separate section in this chapter. Reference implemen-

tations are attached as appendices. An efficient technique exists to determine if solutions to

certain Boolean expressions of a particular form exists. This technique is common to the first

two phases of the attack and is therefore discussed in a separate section. Use is also made of

the continuous approximation techniques used in the analysis of MD4 and RIPEMD.

The first phase deals with the solution of a set of difference equations with the specific aim
of finding an inner collision, such that equation (7.68) is satisfied. The difference equations
are derived from equations (7.15) to (7.26) and are written as:

(C15 - DI5f»/s3 - (\5 - DI5f»/s3

(B15 - CI5f»/s4 - (fh5 - C'15f»/s4

(A19 - Bl5f»gsl - (..419 - ih5f»gsl

(D19 - Al9f»gs2 - (D19 - ..419f»gs2

(C19 - Dl9f»gs3 - (619 - Dl9f»gs3

X14 - Xl4. (7.70)

1(CI5, D15, A15) - 1((\5, D15, A15) (7.71)

g(BI5, C15, D15) - g(ih5, 615, D15) (7.72)

g(AI9, B15, C15) - g(..419, fh5, 615) (7.73)

C15 - 615 + g(DI9, A19, B15) -

g(DI9, A19, ih5) (7.74)

B15 - ih5 + g(CI9,DI9,AI9)-

g(619, D19, ..419) (7.75)

Analysis of the MD5 Hash Algorithm

AI9 - AI9 + g(BI9, GI9, DI9) -

g(BI9, GI9, DI9) (7.76)

DI9 - DI9 + g(A23, BI9, GI9) -

g(A23, BI9, GI9) (7.77)

GI9 - GI9 + g(D23, A23, BI9) -

g(D23, A23, BI9) (7.78)

BI9 - BI9 + g(G23, D23, A23) -

g(G23, D23, A23) (7.79)

A23 - A23 + g(B23, G23, D23) -

g(B23,G23,D23) (7.80)
- - (7.81)D23 - D23 + XI4 - XI4·

Equations (7.70) to (7.81) may be simplified by making appropriate choices for certain chain-

ing variables. From equation (7.81) the following condition is imposed on D23 and D23:

By setting A23 = A23 and BI9 = BI9 the conditions imposed by equations (7.80) and (7.79)

are satisfied if:

Equations (7.84) and (7.85) are satisfied relatively easily due to the low complexity and

consequent ease with which the Boolean function gO can be manipulated. If equations

(7.84) and (7.85) holds, a high probability exists that:

g(D23, A23, BI9) = g(D23, A23, BI9).

Analysis of the MD5 Hash Algorithm

(C D »:»gs3 (C D- »:»gs3 - (D- D):»>gs323 - 23 - 23 - 23 - 23 - 23

Given the above assumptions, the set of difference equations from (7.70) to (7.81) may be
reduced to:

(C15 - Dl5f:»fs3 - (G15 - Dl5f:»fs3

(B15 - GI5»:»fs4 - (B15 - Gl5f:»fs4

(A19 - Bl5f:»gsl - (A19 - Bl5f:»gsl

(D A »:»gs2 (D- A-):»>gs219 - 19 - 19 - 19

(G19 - Dl9f:»gs3 - (G19 - ih9f:»gs3

Xl4 - X14· (7.89)

!(GI5,DI5,AI5) - !(GI5,DI5,AI5) (7.90)

g(BI5, G15, D15) - g(BI5, G15, D15) (7.91)

g(AI9, B15, G15) - g(AI9, B15, G15) (7.92)

C15 - G15 + g(DI9, A19, B15) -

g(ih9, A19, B15) (7.93)

B15 - B15 + g(CI9, D19, A19) -

g(GI9, ih9, A19) (7.94)

A19 - A19 + g(BI9, G19, D19) -

g(BI9, G19, D19) (7.95)

D19 - D19 + g(A23, B19, G19) -

g(A23, B19, GI9). (7.96)

Analysis of the MD5 Hash Algorithm

Valid solutions to C15, (\5 and D15 may be found by setting:

substituting equations (7.98) and (7.66) in (7.97) the following expression for C15 is ob-

tained.

((_1)»>183 + 1«<9)«<183 + D15

(-1 + 1«<9)«<183 + D15

(-1 + 1«<9)«<17+ D15.

(7.99)

(7.100)

(7.101)

With equations (7.98) and (7.101) in hand the difference between C15 and 615 is obtained

as:

615 - C15

615 - C15

((-1 + 1«<9)«<17+ D15) - (D15 -1)

((-1 + 1«<9)«<17+ 1

Ox03FEOOOl.

(7.102)

(7.103)

(7.104)

C15 and 615 are easily computed as:

OxFEOOFFFF

OxOlFFOOOO.

(7.106)

(7.107)

(7.108)

(7.109)

Analysis of the MD5 Hash Algorithm

This simplification is a direct result of the manipulation of the bitwise Boolean function gO.
With these simplifications the condition imposed by expression (7.68) may be written as:

with:

cSl OxOOOOOOOO (7.112)1

cSl OxOOOOOOOO (7.113)2

cSl Ox08000000 (7.114)3

cSl OxF8000000. (7.115)
4

o X14 - X14 - (GIS - D1Sf»js3 + ((\s - D1Sf»js3. (7.116)

- <<<j 4 - <<<j 4 -a GlS-G1S+j(G1S,D1S,A1S) s -!(G1s,D1S,A1S) s -B1S+B1S(7.117)

- <<< 3 - - <<< 3 -OBIS - B1S + g(B1S, GIS, D1S) gs - g(B1S, GIS, D1S) gs - A19 + A19 (7.118)

o (D19 - A19f»gs2 - (D19 - A19f»gs2 -

g(A19, B1S, GIS) + g(A19, Fits, (\s)
»> 3 - - 3 -(G19 - D19) gs - (G19 - D19f»gs - GIS + GIS -

g(DI9, A19, B1S) + 9(DI9, A19, Fits)
- >>> 4 - <<<S »> 4 -(A19 - A19) gs - (A19 - A19 - 1) gs - B1S + B1S -

g(G19,D19,A19) + g(G19,D19,A19)

A19 - A19 + g(B19, G19, D19) - g(B19, G19, D19)

D19 - D19 + g(A23, B19, G19) - g(A23, B19, C\9) -

(D23 - A23f»gs2 + (D23 - A23f»gs2.

(7.121)

(7.122)

A solution to equations (7.89) to (7.96) will probably result in an inner collision for the first

two rounds of MD5, given the assumptions and choices described earlier in this section.

Algorithm 7.2 presents the procedure used by Dobbertin to find a solution to the set of

difference equations as defined by equations (7.89) to (7.96).

Analysis of the MD5 Hash Algorithm

1. Make initial choicesfor D15, G15, (\5, D19 and D19 as defined by equations (7.105)-

(7.109). Set a counter n = O.

4. Choose a random value for B15 and calculate fh5 from the result obtained in step 3.

Proceed to step 6.

5. 1fn > 0 use the values for A15Basic' B15Basic and G15Basic as determined in step 14.
Choose values with a small Hamming distance from these basic values for A15, B15

and G15 and proceed to step 6.

10. Determine, for each valid value of A19 and A19, a possible solution to (7.119) by

determining all possible valid values for B15 and fh5 (note that infuture computations,

these values for B15 and fh5 should be used, instead of the values computed in step
4).

11. Confirm whether equation (7.118) holds for the newly computed results obtained for

B15, H15, A19 and A19.

12. If equation (7.118) holds, confirm if equation (7.117) holds. If equation (7.118) does

not hold, proceed to step 2.

14. (a) If the left 4· n bits of equation (7.120) are equal to zero, set n = n + 1. Preserve

the current values for A15, B15 and G19 as A15Basic' B15Basic and G19Basic·

(b) If 0 < n < 8 and the left 4· n bits of equation (7.120) are not equal to zero,

return to step 5.

(c) If the left 4· n bits of equation (7.120) are not equal to zero, and n = 0 return to

step 1.

Analysis of the MD5 Hash Algorithm

15. If n = 8, determine if the assumptions made when reducing the set of difference e-

quationsfrom equations (7.70) - (7.81) to equations (7.116) - (7.123) holds. Confirm
the validity of equations (7.78) - (7.81). Specifically confirm whether equation (7.123)

holds. If all of these conditions are satisfied, there exists a high probability that an

inner collision was found. If any of these conditions are not satisfied, return to step 1.

Algorithm 7.2 may be modified to restart after a number of iterations to prevent dead ends,

while searching for a solution. An algorithm which allows the construction of all possible

solutions to an expression of a certain form is described in Section 7.5.6. Algorithm 7.2

produces an inner almost collision for the first two rounds of MD5 in less than one hour on

a 120 MHz Pentium Pc. An implementation of Algorithm 7.2 is attached as Appendix E.

The second phase is similar to the first phase insofar as it involves the solution of a set of
difference equations, with the specific aim of finding an inner collision such that equation
(7.69) is satisfied. The difference equations are derived from equations (7.36) to (7.51) and
are written as:

(B35 - C35f»hs4 - (B35 - C35f»hs4

(A39 - B35f»hsl - (..439 - ih5f»hsl

(D A)»>hs2 (D- A- »»hs239 - 39 - 39 - 39

(C39 - D39f»hs3 - (039 - D39f»hs3

(B C)»>hs4 (B- C-)»>hs439 - 39 - 39 - 39

X14 - X14 (7.124)

h(B35, C35, D35) - h(ih5, C35, D35) (7.125)

h(A39, B35, C35) - h(..439, ih5, C35) (7.126)

h(D39, A39, B35) - h(D39, ..439, ih5) (7.127)

B35 - B35 +
h(C39,D39,A39) - h(039,D39,..439) (7.128)

A39 - ..439 +
h(B39, C39, D39) - h(ih9, 039, D39) (7.129)

D39 - D39 +
h(A43, B39, C39) - h(..443, 1339, 039) (7.130)

C39 - 039 +
h(D43, A43, B39) - h(D43, ..443, ih9) (7.131)

Analysis of the MD5 Hash Algorithm

B39 - B39 +
h(C43,D43,A43) - h(043,D43,A43) (7.132)

A43 - A43 +
h(B43, C43, D43) - h(B43' 043, D43) (7.133)

D43 - D43 +
h(A47, B43, C43) - h(A47, B43, 043) (7.134)

C43 - 043 +
h(D47, A47, B43) - h(D47, A47, B43) (7.135)

B43 - B43 +
h(C47,D47,A47) - h(047,D47,A47) (7.136)

o A47 - A47 +
i(B47, C47, D47) - i(B47, 047, D47) (7.137)

o D47 - D47 +
i(A51, B47, C47) - i(A51, B47, 047) (7.138)

o C47 - 047 + X14 - X14. (7.139)

Two stages are distinguished in this phase of the attack. The first deals with the differen-

tial properties of the set of equations and the second deals with the solution of the set of

difference equations.

Before proceeding to find solutions to equations (7.124) to (7.139) the following observations

are made. Dobbertin defines the differences for the chaining variables B39, A43, C43 and D43

as:

A43 A43 - Ei (7.140)

B39 B39 - d (7.141)

C43 C43 - E~ (7.142)

D43 D43 - d (7.143)

(7.144)

Chapter 7

c2 Ox40004000 (7.145)1

d Ox80004000 (7.146)

c2 OxFFFBFEOO (7.147)
3

c2 Ox40000200. (7.148)4

The values chosen for ci, c~, c~, and d may be obtained from a differential attack. The
differential attack is applied to equations (7.132) to (7.139). By starting at equation (7.139)
and working back to equation (7.132), the following differential relationships are observed:

C47 - 047

D47 - D47

A47 - A47
B43 - .8

43

X14 - X14

i(A51, B47, 047) - i(A51,B47, C47)

i(B47, 047, D47) - i(B47, C47, D47)

(B47 - C47 f»hs4 - (B47 - 047 f»hs4 -

h(C47, D47, A47) + h(047' D47, A47)

(C47 - D47 f»hs3 - (047 - D47)»>hS3 -

h(D47, A47, B43) + h(D47, A47, .843)

(D47 - A47 f»hs2 - (D47 - A47 f»hs2 -

h(A47, B43, C43) + h(A47, .843, 043)

(A47 - B43f»hsl - (A47 - .843f»hsl -

h(B43, C43, D43) + h(.843' 043, D43)

(B43 - C43f»hs4 - (.843 - 043)»>hs4 -

h(C43, D43, A43) + h(043' D43, A43)

(7.149)

(7.150)

(7.151)

C47 - C47 ~

Ox00000200

By setting A51, B47 and 647 to zero and observing the difference obtained from equation

(7.149), equation (7.150) yields:

Analysis of the MD5 Hash Algorithm

For randomly chosen values for A51, B47 and 047 the relationship defined in equation (7.158)

holds with a probability of 19%. Consider equation (7.151). By setting B47, 047 and D47

to zero and by observing the differential values defined by equations (7.157) and (7.158) the

following difference is obtained from equation (7.151).

For randomly chosen values of B47, 047 and D47 the relationship defined by equation (7.159)

holds with a 19% probability. By setting A47 to one and B47, 047 and D47 to zero, we obtain

the following differential from equation (7.152).1

For randomly chosen values of A47, B47, 047 and D47 the relationship in equation (7.160)

holds with a probability of 33%. By setting 047 and D47 to zero and by setting A47 and 1343

to -I, the following relationship is observed from equation (7.153).

The relationship in equation (7.161) holds with a probability of 11% if the values for 047,

D47, A47 and 1343 are chosen at random and the previously determined differential values

are observed. From equation (7.154) the following differential relationship is observed by
- - - -setting D47 equal to zero, A47 and B47 to -1 and 043 to - OxFFFBFEOO.

This relationship holds with a probability of 8% for randomly chosen values for D47, A47,

1347 and 043• If the following settings are made:

A47 OxO 0 0 0 0 0 0 0

B43 OxOOOOOOOO

043 -OxFFFBFEOO

D43 -(Ox4 0000200 + Ox4 0000200»)

'This relationship only holds when (-C47)»>hs4 = -(C47)»>hs4

Analysis of the MD5 Hash Algorithm

Equation (7.163) holds with a probability of 5% if A47, B43, 043 and D43 are chosen at

random and the previously computed differentials are used. Consider equation (7.156). By

setting:

B43 OxOOOOOOOO
043 - OxFFFBFEO 0
D43 -(Ox4 0000200 + Ox400 00200))
A43 Ox4 0000200 - Ox4 0004 000

- - -This equation holds with a probability of 1.8% for randomly chosen values for B43, C43, D43

and A43•

Let Pr(~i,j,k,l) denote the probability that a differential associated with a specific step holds.

The differential attack is summarised in Table 7.1.

{i, j, k, I} Ai - Ai Bj - Bj Ck - Ok Dl-Dl Pr(~' 'kl)t,J, ,

{51, 47, 51, 51} 0 0 0 0 -

{51,47,47,51} 0 0 OxOOOOO200 0 1.0

{51, 47, 47, 47} 0 0 OxOOOO0200 OxOOOOO200 0.19

{47,47,47,47} OxOOOOOOOO 0 OxOOOO0200 OxOOOO0200 0.19

{47,43,47,47} OxOOOOOOOO OxFFFCOOOO OxOOOO0200 OxOOOO0200 0.33

{47,43,43,47} OxOOOOOOOO OxFFFCOOOO OxFFFBFEOO OxOOOO0200 0.11

{47, 43, 43, 43} OxOOOOOOOO OxFFFCOOOO OxFFFBFEOO Ox40000200 0.08

{43, 43, 43, 43} Ox40004000 OxFFFCOOOO OxFFFBFEOO Ox40000200 0.05

{43,39,43,43} Ox40004000 Ox80084000 OxFFFBFEOO Ox40000200 0.018

Analysis of the MD5 Hash Algorithm

Let Pr(~) denote the probability that the differential pattern in Table 7.1 holds. Assuming

statistical independence between successive steps the probability that the differential attack

holds is approximately:

However, a practical implementation has shown that the assumption of statistical indepen-

dence is not valid. There exists a high probability that, given that one differential is satisfied,

that the following differential will also be satisfied. A practical implementation of the differ-

ential attack has shown that the probability that the differential attack described in Table 7.1

holds is approximately:

1
Pr(~) = 26000'

It appears that there exists a number of differentials which may be used instead of those

shown in Table 7.1.

If the following constraints are imposed on B39, A43, C43 and D43 the probability that the

differential attack holds is increased. Choose A43 at random except for bits 10, 15 and 31

which should be set to one and bit 19 which should be set to zero. C43 may be chosen at

random except for bits 15 and 31 which should be set to one and bits 10 and 19 which should

be set to zero2• Let D 43 be specified by:

where 11 is a 32 bit binary vector with a low Hamming weight. In a similar fashion let B39

be defined as:

The condition imposed by expression (7.69) for determining an internal collision may be

re-written as:

4 ---------- 7.44
0= COMPRESS+.·tl - COMPRESS7.51

Analysis of the MD5 Hash Algorithm

If the constraints described above are imposed on B39, A43, C43 and D43 the probability that

expression 7.167 holds is approximately:

1
Pr(~) = 1500'

Thus, the differential attack described here allows the problem of finding a solution to ex-

pression (7.69) to be reduced to finding a solution to the following expression:

(B C »~hs4 (B- C)~>hs435 - 35 - 35 - 35

(A39 - B35f~hsl - (A39 - Fh5f~hsl

(D A »~hs2 (D- A- »~hS239 - 39 - 39 - 39

(C39 - D39 f~hs3 - (639 - .D39f~hs3

(B C »~hs4 (B- C- »~hs439 - 39 - 39 - 39

h(B35,C35,D35) - h(Fh5,C35,D35) (7.170)

h(A39, B35, C35) - h(A39, B35, C35) (7.171)

h(D39,A39,B35) - h(.D39,A39,B35) (7.172)

B35 - B35 +
h(C39,D39,A39) - h(639,.D39,A39) (7.173)

A39 - A39 +
h(B39, C39, D39) - h(B39, 639, .D39) (7.174)

D39 - D39 +
h(A43, B39, C39) - h(A43, B39, 639) (7.175)

C39 - 639 +
h(D43, A43, B39) - h(.D43, A43, B39).(7.176)

Additional simplifications to equations (7.124) - (7.139) can be achieved by making the
following observations:

(B35 - C35»~hs4 - (B35 - C35f~hs4

(B C)~>23 (B- C)~>2335 - 35 - 35 - 35

(7.177)

(7.178)

Analysis of the MD5 Hash Algorithm

B35 ((B35 - 035)<<<9- 1«<9)«<23 + 035. (7.180)

B35 B35 - 035 - 1 + 035. (7.181)

B35 B35 - 1. (7.182)

(A B)»>hSl (A- B- »»hsl39 - 35 - 39 - 35

(A B »
»hsl (A- B- »»hsl39 - 35 - 39 - 35

h(-1,035, D35) - h(O, 035, D35) (7.185)

035 EElD35 - 035 EElD35 (7.186)

XEBY+XEBY=l

XEBY=l-XEBY

(7.187)

(7.188)

1 (A B)»>hsl + (A- B- »»hsl- 39 - 35 39 - 35 2· (035 EB D35) (7.189)

(1 - (A39 - B35f»hsl -

(A39 - B35f»hsl f»l (7.190)

D - (1 (A B)»>hsl (A- B- »»hSl)»>l tI'lO35 - - 39 - 35 - 39 - 35 Q7 35·

Analysis of the MD5 Hash Algorithm

(C D)»>hs3 (C- D-)»>hs3 DAB D- fT'I A- tT\ B-39 - 39 - 39 - 39 = 39 EB 39 EB 35 - 39 Q7 39 Q7 35

D39 EB A39 EB B35

D39 EB A39 EB B35

(7.193)

(7.194)

D39 EB A39

D39 EB A39

(7.195)

(7.196)

X X- - (C D »»hs3 (C- D-)»>hs3- - 39 - 39 - 39 - 39 .

(B C »»hs4 (B- C- »»hs439 - 39 - 39 - 39 B35 - B35 +
h(C39, X, 0) - h(C\9' X, 0) (7.199)

(A B »»hsl (A- B- »»hsl43 - 39 - 43 - 39 (X EB D39 - X EB D39) + h(B39, C39, D39)

-h(B39, 039, ih9) (7.200)

Chapter 7

(7.201)

(7.202)

1. Choose B35 and B35 as specified by equations (7.183) and (7.184)

2. Find valuesfor A43, B39, C43, D43 which will satisfy the differential attack summarised

in Table 7.1.

3. Determine C39 - C39from equation (7.176).

4. Choose a random value for C39 and determine 039 from the result obtained in step 3.

Now determine D39 - D39from equation (7.176).

5. With D39 - D39 in hand determine all possible solutions to C39 and 039 using an
iterative search procedure.

8. Determine solutions for D39 and D39 from equation (7.200) using an iterative ap-
proach.

(a) If the assumption in expression (7.198) does not hold return to step 1.

(b) If the assumption in (7.198) holds, determine all possible solutions to C35 using

equation (7.171).

Analysis of the MD5 Hash Algorithm

The third phase requires that the solutions to the sets of equations obtained from the previous

two phases are connected. When commencing with the third phase of the attack, the chaining

variables C15, B15, A19, D19, C19 B19 and A23 are known from phase one of the attack. The

chaining variables C35, D35, A39, B39, C39, D39, A43 and D43 are known from phase two

of the attack. A number of message words and chaining variables may now be computed.

Message words Xl, X6, Xu, Xo and X5 may be computed from equations (7.17), (7.18),

(7.19), (7.20) and (7.21). Likewise message words X4, X7, XlO and X13 may be obtained

from equations (7.38), (7.39), (7.40) and (7.41). In addition chaining variables D23 and D43

are be obtained from equations (7.22) and (7.41) respectively.

A connection is obtained if solutions to X2, X3, Xs and X12 is found such that equations

(7.203)-(7.203) holds.

C27

B27

A31

D31

C31

B31

A35

D35

C35

D27 + (C23 + g(D27, A27, B23) + X3 + T26)«<gs3

C27 + (B23 + g(C27, D27, A27) + Xs + T27)«<gS4

B27 + (A27 + g(B27, C27, D27) + X13 + T2S)«<gSl

A31 + (D27 + g(A31, B27, C27) + X2 + T29)<<<gs2

D31 + (C27 + g(D31, A31, B27) + X7 + T30)«<gs3

C31 + (B27 + g(C31, D31, A31) + X12 + T3d«<gs4

B31 + (A31 + h(B31, C31, D3d + X5 + T32)«<hsl

A35 + (D31 + h(A35, B31, C3d + Xs + T33)«<hs2

D35 + (C31 + h(D35, A35, B3d + Xu + T34)«<hs3

(7.203)

(7.204)

(7.205)

(7.206)

(7.207)

(7.208)

(7.209)

(7.210)

(7.211)

Equations (7.203)-(7.203) are bounded by the chaining variables A27, B23, C23 and D23 as

obtained from phase one of the attack, as well as by chaining variables A35, B31, C35 and

D35, obtained from phase two of the attack. Thus the only chaining variables which may be

manipulated without affecting the previous phases of the attack, are A31, B27, C27 and D31•

An additional constraint is imposed by the fact that X5, X7, Xu and X13 are determined by

phase one and two of the attack. This leaves only four message words namely X2, X3, Xs
and X12, which may be used to establish a connection. The fact that expression (7.68) is

simplified to expression (7.111) gives an attacker additional degrees of freedom and allows,

to a limited extent, the manipulation of chaining variables B23 C23 and D27• Note that D23,

which is associated with the first stage of the attack, depends on X 10 which is obtained from

Analysis of the MD5 Hash Algorithm

the second phase of the attack. Thus the chaining variables in the two previous phases are

interdependent on each other. This requires that the results obtained from the previous phases

has to be manipulated simultaneously when attempting to establish a connection between the

two phases.

Three stages are identified in the third phase of the attack. The first stage is concerned with

finding suitable values for the chaining variables 023, E23, A27 and D27• The second stage

requires that a connection be made between phase one and two. During the third stage it is

required that the existence of an inner collision obtained for the second phase is verified.

Remember that the attack on the first phase is simplified in Section 7.5.3 by requiring that

condition (7.111) instead of condition (7.68) has to be met. From Section 7.5.3 it is known

that if condition (7.111) is met, condition (7.68) holds with a high probability. The following

procedure is proposed by Dobbertin to find suitable values for 023, E23, A27 and D27•

(a) If condition (7.68) does not hold, restart from step 1.

(b) If condition (7.68) does hold, proceed to stage two of phase three.

Analysis of the MD5 Hash Algorithm

The second stage is directly concerned with establishing a connection between the two phas-

es. The following simplification to equation (7.209) is of particular importance:

(A35 - B31f»hs1 - A31 - X5 - T32

(A35 - B31f»hs1 - A31 - X5 - T32

D31

h(B31, 031, D3d (7.213)

B31 EEl 031 EEl D31 (7.214)

((A35 - B31)»>hs1 - A31 - X5 - T32)

EElB31EEl 031. (7.215)

Dobbertin proposes the following algorithm to establish a connection between the two phas-

es.

(a) If equations (7.204) and (7.210) yields the same result for Xs a connection was

found.

Analysis of the MD5 Hash Algorithm

(b) If equations (7.204) and (7.210) yields different results for Xs continue from step

80

(a) If the current Hamming distance is less than the previous Hamming distance,

save the current Hamming distance and set B27B . = B270 Return to step 4.
as'l.C

(b) If the current Hamming distance is not less than the previous Hamming distance,

proceed from step 9.

9. Set: 023 = 023 - (XJ - Xl), B23 = B23 - (XJ - Xl) and recompute D27• Confirm
if equation (7.212) holds.

(a) If equation (7.2 I 2) does not hold, restart from step 1.

(b) If equation (7.212) does hold, proceed to step 10.

100 Determine if the changes made in step 9 still allows an inner collision for the first

phase.

Step 8 in Algorithm 7.5 is reminiscent of the continuous approximation used in phase one of

the attack on MD5.

Upon successful completion of Algorithm 7.5 X2, X3, Xs and X12 may be computed from

equations (7.206), (7.203), (7.204) and (7.208) respectively. Once the first two stages have

been completed, only the third stage of the third phase remains.

The third stage requires that the existence of an inner collision for the first two stages be

confirmed. If an inner collision is not found, the attacker should restart from stage 1 of

the third phase. If the inner collision for the second phase exists, a collision for the round

function of MD5 was found. The message words and initial value for which the collision

holds may now be calculated.

Analysis of the MD5 Hash Algorithm

The following collision was constructed for the round function of MD5 The initial value for

which a collision was found is given by:

AO = OxF7987AA4

EO = Ox6EFOOD2B

CO = OxCAFBC OA2

DO = Ox7678589B

Xo = OxAAIDDA5E

Xl = OxD97ABFF5

X2 = OxA5CA745B

X3 = OxC9DDCECB

X4 = Oxl006363E

X5 = Ox7218209D

X6 = OxEOIC135D

X7 = Ox9DA64DOE

Xs = Ox4CIE82F6

Xg = OxAF5B46C9

XlO = Ox236BB992

Xu = Ox6B7A669B

Xl2 = Ox40CC7121

Xl3 = OxD93E0972

Xl4 = Ox95FACCCD

Xl5 = Ox72409780

Note that due to the overlap in message words (specifically XlO) and the consequent interde-

pendence of the chaining variables in phases one and two of the attack, considerable effort is

required to find solutions to both phase one and two which will allow a successful connection

Analysis of the MD5 Hash Algorithm

to be made. Given a solution to the second phase the probability that the solution to the first

phase will still result in an inner collision for the first phase is estimated at 25%.

The techniques used to construct a connection described in this section, manipulates the

results obtained from phases one and two of the attack simultaneously. However the potential

effort required to solve the sets of equations simultaneously is avoided by finding a solution

to expression (7.111) instead of (7.68). This allows the limited manipulation of the chaining

variables B23, C23 and An. Thus, the chaining variables which are most influenced by the

interdependence between phase one and two, may be manipulated to a limited extent. An

implementation of the third phase of the attack is attached as Appendix E.3.

In Sections 7.5.3 and 7.5.4 it is assumed that an algorithm exists for determining if solutions

to certain Boolean expressions exist. This section gives a description of such an algorithm

as used by Dobbertin in the analysis of MD5. Dobbertin's attack requires the solution of sets

of difference equations. From the previous sections it is observed that these equations are of

the form:

with 10 a bitwise Boolean function which operates on binary words of length t. The vari-

ables Xl and X2 are related by:

Analysis of the MD5 Hash Algorithm

It is important to note that due to the nature of bitwise calculations, the i'th bit of the solution

corresponds to the i'th bit of Xl' To be more specific, if a bit in position i is changed in Xl,

this can at most cause bit changes ranging from bit position i up to the MSB (allowing for

carry) when equation (7.218) is evaluated.

In [55] it is stated that all solutions of Xl has the structure of a binary tree and can be com-

puted using a bitwise recursive process. This process is presented as Algorithm 7.6.

1. Initialise aI, bl, a2, b2, T and Xl. Set 6x to represent the desired difference between Xl

and X2.

4. If the current depth of the tree, i, equals I (the length ofa binary word), record Xl as a

valid solution. Decrement the depth counter i by one. Return to the instruction (step)

following the most recent entry or re-entry into Algorithm 7.6. If control is returned

to the instruction following the original entry into Algorithm 7.6, Algorithm 7.6 is

terminated.

5. Calculate the right hand side of equation (7.218). Determine if the i'th bit of the result

equals zero.

6. If the i'th bit of the right hand side of equation (7.218) equals zero, increment the

tree-depth counter i and re-enter Algorithm 7.6 at step 3.

7. Toggle the i'th bit in Xl. Re-compute the right hand side of equation (7.218). Deter-

mine if the i'th bit of the result equals zero.

8. If the i'th bit of the right hand side of equation (7.218) equals zero, increase the tree-

depth counter i by one. Re-enter Algorithm 7.6 at step 3.

9. Toggle the i'th bit in Xl and return the number of valid solutions found for Xl' Decre-

ment the tree-depth counter i by one. Return to the instruction (step) following the

most recent entry, or re-entry into Algorithm 7.6. If control is returned to the instruc-

tionfollowing the original entry into Algorithm 7.6, Algorithm 7.6 is terminated.

Analysis of the MD5 Hash Algorithm

Algorithm 7.6 may be modified to search only for a limited number of solutions. In order to

illustrate the relationship between Algorithm 7.6 and a binary tree, the following example is

presented.

Let l equal 4. Thus all the variables in equation (7.218) are 4 bit words. For these 4 bit

words, let the LSB be numbered 0 and the MSB 3. Let 10 be a bitwise Boolean function
defined by:

Let the subscript 2 denote the base 2. The following is an example of the application of

Algorithm 7.6 to the four bit problem. Set:

Choose a random value for Xl, say 10012• A numerical example of the use of Algorithm 7.6

to find solutions to the given expressions is presented in Table 7.2.

Eight distinct headings are included in Table 7.2. The Operation nr. indicates the number

of the operation. The Step nr. indicates which step in Algorithm 7.6 is associated with the

given operation number. The column denoted i contains the tree-depth counter. The column

marked i = 4? indicates a test condition. The fifth column is marked Xl and contains the

present value of Xl. The column marked Equation (7.218) contains the value to which equa-

tion (7.218) evaluates. The Resume From column contains an operation number. Associated

with the operation number is a step number. If the Resume From column contains an oper-

ation number, the next step which should be executed is the step following the step number

associated with operation number in the Resume From column. The Node column contains

the current node in the binary tree depicted in Figure 7.3. The variables which are updated

in each operation are marked in

Analysis of the MD5 Hash Algorithm

Operation Step z i = 4? Xl Equation Resume From Node

nr. nr. (7.218) Operation nr.

1 2 0 No 10012 - - r

2 3 0 No 10012 - - r

3 5 0 No 10012 110) - r

4 6 No 10012 11102
y-\

- [j

5 3 1 10012 11102 - B

6 5 1 No 10012 I I) - B

7 7 1 No - B

8 9 No :; - 4

9 7 0 No .'101 - r',>

10 8 No 10002 00002 -

11 3 1 No 10002 00002 - A

12 5 1 No 10002 - A....

13 6 No 10002 00002 - (

14 3 2 10002 00002 - C

15 5 2 No 10002 - C
' ..

16 6 No 10002 00002 -

17 3 3 10002 00002 - G

18 5 3 No 10002 - G

19 6 No 10002 00002 - 0

20 3 4 10002 00002 - 0

21 4 No 10002 00002 1

22 7 3 No - G> ..

23 8 No 00002 00002 -

24 3 4 00002 00002 - P

25 4 No 00002 00002 .,

26 9 No 1 - 16

27 7 2 No 1 - C..... .

28 8 No 11002 10002 -
29 3 3 11002 10002 - H

30 5 3 No 11002 II - H

31 7 3 No [) j I 'I - H
'.

Analysis of the MD5 Hash Algorithm

Operation Step ~ i = 4? Xl Equation Resume From Node

nr. nr. (7.218) Operation nr.

32 9 No -

33 9 No ! - I".. ,)

34 7 1 No 1 I I; - A,.,

35 8 .. No 10102 00002 -

36 3 2 10102 00002 - D

37 5 2 No 10102 I - D,.

38 6 No 10102 00002 - ;

39 3 3 10102 00002 - I

40 5 3 No 10102 - I,

41 6 No 10102 00002 -

42 3 4)cs 10102 00002 - T

43 4 No 10102 00002 1 1

44 7 3 No) L - I. "

45 8 4 No 00102 00002 - S

46 3 4 00102 00002 - S

47 4 No 00102 00002
I
I

48 9 No
'L

-

49 7 2 No II 1 - D

50 8 No 11102 10002 - J

51 3 3 11102 10002 - J

52 5 3 No 11102 I - J..

53 7 3 No 1 1 - J

54 9 No ,
- DI

55 9 No -.

56 9 {) No ' ..!
- 10 I

57 9 0 No I - I r....

An implementation of Algorithm 7.6 with reference to the example given above, is listed in

Appendix E.

Analysis of the MD5 Hash Algorithm

Since all possible values of Xl are included in this tree, all possible solutions to equation

(7.218) are also included in this tree. The relationship between the binary tree in Figure 7.3

and Algorithm 7.6 may be observed from the above example by tracing the node positions at

each step of the example. It is noted that if the children of a node (for instance node B) does

not yield solutions, the entire branch may be pruned from the search space. Thus Algorithm

7.6 in effect searches through a binary tree. The pruned binary tree which contains only the

solutions to the above example is shown in Figure 7.4.

/

/

/

0,..."'/
/

/

/E //
'", \, \, \, \

0/ "1, \, \

K / \ L
1\ 1\

I \ 1\
I \ I \

I \ I \

01 \ 1 0 / \ I
I \ I \

f \ I \

I \ I \

\
\
\
\
\ I

\
\

\

" HII

/ \

/ \

/ \

0/ \ I
/ \

/ \

/ \

\
\
\
\

\1
\

\

" JII

/ \

/ \

1 \o 1 \ I
/ \

1 \

/ \

Pruned Branches
Solution Branches

,,,
0',,,

M'•
II

/ \

/ \

/ \

0/ \ I
/ \

/ \

/ \

\
\
\
\ I
\

\
\

" NII

1 \

1 \

1 \

01 \ I
1 \

1 \

/ \

Analysis of the MD5 Hash Algorithm

It should be remembered that Algorithm 7.6 only yields results if the Boolean functions oper-

ate bitwise on a multiple bit word. Any rotations or other sources of diffusion in the Boolean

function, renders the above approach ineffective. The power of this search algorithm lies in

the ability to reject entire branches at a time (e.g. in operation Of. 3, all the children nodes

which are attached to node A are immediately rejected as possible solutions). The ability

to reject entire subsets of possible solutions has the result that the existence of solutions, as

well as the solutions themselves, can be determined quickly and efficiently.

This chapter contains a description of the cryptanalysis of MD5 as developed by Dobbertin.

The attack on MD5 is similar to the attack on MD4 in a number of aspects. Both attacks

require that sets of difference equations should be solved. Furthermore both attacks rely, to

some extent, upon the fact that certain differential patterns are more likely to propagate than

others. Furthermore both attacks depend on the fact that the Boolean expressions used in the

compress functions may be manipulated. In both attacks, the fact that the rotation operations

may be separated from the Boolean equations by the use of counter rotations allows the

attacker to establish and solve equations of a certain form.

The attack on MD5 is however considerably more complex than the attack on MD4. The

additional complexity of this attack is reflected in the amount of time required to find a

collision for the compress function of MD5 when it is compared to the time required to

find a collision for the compress function of MD4. The additional complexity appears to

be due mainly to the use of an additional round. A further contribution to the complexity

is the use of the XOR function in the third round. In the attack on MD4, Dobbertin avoids

dealing with the XOR function (except briefly during the differential attack on MD4 [14]).

In the attack on MD5 this is not the case. The contribution of the constants to the security

of MD5 is considered to be low. The constants are only brought into play during the third

phase of the attack, when a connection between the results obtained for phase one and two

are established. Certain choices and conditions are imposed which appears to speed up the

process of finding an inner collision for the second phase of the attack. It is unclear why

these choices are made.

Of particular interest is the algorithm used by Dobbertin to determine if solutions to Boolean

equations of a specific form exist. This algorithm is presented in Section 7.5.6. It appears

Analysis of the MD5 Hash Algorithm

that this algorithm is particularly suited to evaluate Boolean equations which has no diffusion

properties over a certain number of bits. It is therefore particularly useful when dealing

with bitwise operations as used in MD4 and MD5. If other cryptographic primitives, which

utilises bitwise operations are analysed, this algorithm may be a useful tool. It is not known

if this algorithm is described in the literature.

I would like to make use of this opportunity to thank Antoon Bosselaers and the personnel

at the COSIC group at the Katholieke Universiteit Leuven for their assistance and support

during this investigation into the cryptanalysis of MD4 and MD5. The algorithms and tech-

niques presented in this chapter were derived from the programs written by Dobbertin and

the notes of Bosselaers.

CHAPTER 8: GENERALISED ANALYSIS OF THE MD4 FAMILY

OF DEDICATED HASH FUNCTIONS

The vast majority of hash functions (MDCs and MACs) are based on the iterated model

known as the Damgard-Merkle scheme [22], [23]. This generalised construction is discussed

in Chapter 5 Section 5.3. It was proved by Oamgard that the security of the overall construc-

tion relies on the security of the compress function. Dedicated hash functions, including

the MDx family of hash functions, are primarily based on the iterative model presented by

Damgard and Merkle.

In 1996 Dobbertin presented an attack against RIPEMD-128 and MD4 [54], [14]. These

attacks showed that it is possible to construct collisions for MD4 and RIPEMD-128. In

addition to the above attacks Dobbertin presented an attack on the compress function of

MD5. This attack demonstrated that it is computationally feasible to establish collisions for

the compress function of MD5 [12], [55].

The similarity in the structure of the hash functions (MD4, MD5 and RIPEMD-128) suggests

a common factor in the attacks. If a common factor could be found in all of the attacks, it

may be indicative of a weakness in the design of an entire hash function family. Once

this weakness is identified it may be possible to derive design criteria for dedicated hash

functions. Hash functions designed according to these design criteria would be immune to

these attacks.

For these reasons the attacks against MD4 and MD5 were reconstructed and studied (Chapter

6 and 7). Many interesting techniques and properties were discovered in the course of this

analysis. Specifically a technique was discovered to speed-up the construction of collisions

against MD4. This work resulted in a publication [56].

In this chapter the attacks on MD4 and MD5 are generalised to provide a framework for the

analysis of any iterated cryptographic hash function.

Generalised Analysis of the MD4 Family of Dedicated Hash Functions

The attacks described by Dobbertin applies directly to the compress function of the hash

functions. It is the aim of these attacks to find two messages M and £1 with length equal to

a single block such that:

I(IV, M) = I(IV, £1)

with 10 the compress function and IV the initial value used. The compress functions of

the dedicated hash function under consideration are constructed by applying a number of

steps iteratively. Each step may be expressed as an equation containing Boolean mappings,

rotation operators, additive constants and addition mod 232 operators.

Let J! 0 represents the application of the compress function from step i to step j. Before

proceeding it is appropriate to state the following definitions.

Definition 1 (Inner-Collision) An inner-collision is defined if, between steps i and j of the

compress function, I! (C, M) = Jl (C, £1). Ci is the internal chaining variable and is given

by C = Ij(IV, M) = Ij(IV, £1).

Definition 2 (Almost Inner-Collision) An almost inner-collision is defined if, between step-

s i and j, of the compress function I! (C, M) = I! (C, £1) +~i with ~i a specified difference.

As before Ci is the internal chaining variable.

1(IV, M) = 1(IV, £1)

Ij(IV, M)
I!+l (Ci, M)
Jf+l (Cj, M)

Ij(IV, £1)
J!+l(Ci, £1)

k -Ij+l(Cj, M)

Generalised Analysis of the MD4 Family of Dedicated Hash Functions

for a compression function defined by l steps. Thus a number of consecutive inner-collisions

may be used to construct a collision. It is noted that an inner-collision may be constructed

from an almost inner-collision if differences and chaining variables are found such that:

fl(Ci, M)

f;(Cj + ~j, M)

fl(Ci, 111) + ~j

fjk(Cj, M)

The attacks defined by Dobbertin are focused on finding inner-collisions and almost inner-

collisions for sections of the compress function which would result in the construction of

collisions for the entire compress function. These attacks share two elements. The first ele-

ment deals with the derivation of sets of difference equations. The second element requires

a solution to these sets of difference equations.

The chaining variables in MD4 and MD5 are 32 bit words. For these hash functions a

difference equation is defined as the difference mod 232 between two expressions. This

may be written as:

The first expression, E1(Mi), describes a given step. The variables in this expression are

associated with the first message. The second expression, E2(Nli), describes the same step

as the first. The variables used in the second expression are associated with the second

message. Expression 8.1 is referred to as a difference equation. A set of difference equations

is obtained if difference equations can be derived for a number of consecutive steps in the
hash function.

Obtaining a set of difference equations for all the steps of a hash function is possible but not

recommended since the dedicated hash functions described in the literature has upwards of

48 steps (MD4), and writing difference equations for all the steps results in a large number

of interrelated non-linear equations which are difficult to solve.

For this reason the difference between two messages is restricted to a single message word.

In MD4, MD5 message words are re-used in consecutive rounds. The order in which the

Generalised Analysis of the MD4 Family of Dedicated Hash Functions

message words are processed is changed for each round. In the analysis of MD4 and MD5

the message words in which the differences occur are selected according to the number of

steps separating the occurrence of the given word in consecutive rounds.

There exist no exact rule for selecting the message word which will be altered. Instead a

general guideline is that the number of steps between the occurrence of a given word should

not be too small (less than four steps for MD4 and MD5) since this makes it difficult to derive

a set of solvable difference equations. At the same time the number of steps between the

occurrence of two steps should not be too large since this increases the number of variables

which has to be solved.

In hash functions with an even number of rounds, a trade-off between the number of steps

separating the message word in each pair of rounds has to be found. The difference equations

should be setup to yield inner-collisions for each pair of rounds.

If the number of rounds are uneven, difference equations should be established for any com-

bination of even rounds. One of the sets of difference equations should be setup to result in

an almost inner-collision. This almost inner-collision should be specified in such a manner

that a difference pattern propagates and interacts with the message word in the unmatched

round. This interaction should result in a collision or inner-collision. As an example consider

MD4 where it was shown that

1(IV, M) = 1(IV, M)

111;' (C12, M)

l]g(C19 + ~19, M)

Thus by limiting the difference between two messages to a single word, the number of equa-

tions in the set of difference equations are reduced to a manageable size. However it should

be noted that there does not necessarily exist solutions to such a set of difference equations.

Generalised Analysis of the MD4 Family of Dedicated Hash Functions

Once a set of difference equations is obtained, the problem remains to solve these equations.

Dobbertin proposed one technique which resembles the operation of a genetic algorithm

[14]. An investigation into the use of genetic algorithms to solve expressions similar to those

encountered in the MD4 family are presented in [57]. The techniques used by Dobbertin

to solve these sets of difference equations are summarised in [17] and [58]. The techniques

required to solve these sets of equations are fairly specific to each set of equations. However,

some common elements may be obtained from these techniques.

In both the analysis of MD4 and MD5 the difference between the messages are restricted

to a single word. The Hamming distance between the two message words are kept small,

since it is generally easier to manipulate the effect of a small number of bits on the chaining

variables. The position at which the difference in the message word is introduced depends on

the diffusion mechanisms of the hash function. One of the diffusion mechanisms in MD4 and

MD5 is rotation. The bit positions in which differences are introduced are chosen specifically

to counter the effect of rotation.

Another technique employed in both the attacks on MD4 and MD5 is the choice of specific

values to simplify the sets of difference equations. These choices effectively allows the ma-

nipulation of the Boolean mappings. In the attack on MD5 this approach is used to establish

certain differential patterns which simplifies the sets of difference equations.

The utilisation of a technique called iterative approximation is encountered in the attacks on

MD4 and MD5. This technique evaluates the result obtained from a random initial setting.

These initial settings are referred to as the basic values for the set of equations. The basic

values are then changed by small increments and the corresponding result is observed. If the

result is a closer approximation to the desired result, the changed basic values becomes the

new basic values. This process is repeated until the desired result is obtained.

Another approach used to find solutions to sets of difference equations is used in the analysis

of MD5. This technique requires that a large number of possible solutions are collected and

then tried one after the other. This process is combined with the iterative approximation

technique. A large number of basic values and possible solutions are generated. These

possible solutions are then tried one after the other. The best solution is retained and serves

as the basis for the next iteration. The techniques used to produce a large number of possible

Generalised Analysis of the MD4 Family of Dedicated Hash Functions

The generalisation of the attack as described in this chapter was applied to a limited number

of rounds of the HAVAL and SHA hash functions. Both are part of the MDx-family of hash

functions. Using the generalised technique it can be shown that collisions can be establihed

for limited rounds of HAVAL and single rounds of SHA. The details of these attacks are

included in Chapters 9 and 10. To the best of my knowledge this is the first publicly published

cryptanalytical results for SHA and HAVAL.

This chapter generalises the approach used by Dobbertin in the cryptanalysis of MD4 and

MD5 as discussed in Chapters 6 and 7. The attacks on MD4 and MD5 focus on reducing

the problem of finding a collision to solving a limited number of interrelated equations. This

may be viewed as a divide and conquer approach. The complexity of finding collisions are

reduced through two mechanisms. The first mechanism reduces the number of equations

to be solved and the second simplifies these equations to facilitate the establishment of a

solution. Detailed descriptions of these mechanisms may be found in [14], [17] and [57].

The application of this generalised technique to two other hash functions in the MD4 family,

SHA-l and HAVAL, is presented in the next two chapters.

CHAPTER 9: ANALYSIS OF THE SHA AND SHA-l HASH

ALGORITHMS

In this chapter the SHA and SHA-l hash functions are analysed. First the SHA and SHA-l

hash functions are described along with the relevant notation used in this chapter. This is

followed by describing the algebraic structure of the message expansion algorithm used by

SHA. We then proceed to exploit this algebraic structure of the message expansion algorithm

by applying the generalised analysis framework presented in Chapter 8. We show that it is

possible to construct collisions for each of the individual rounds of the SHA hash function.

The source code that implements the attack is attached in Appendix F. The same techniques

are then applied to SHA-l.

SHA is an acronym for Secure Hash Algorithm. SHA and SHA-l are dedicated hash func-

tions based on the iterative Damgard-Merkle construction [22] [23]. Both of the round func-

tions utilised by these algorithms take a 512 bit input (or a multiple of 512) and produce a

160 bit hash value. SHA was first published as Federal Information Processing Standard 180

(FIPS 180). The secure hash algorithm is based on principles similar to those used in the

design of MD4 [10]. SHA-l is a technical revision of SHA and was published as FIPS 180-1

[13]. It is believed that this revision makes SHA-l more secure than SHA [13] [50] [59].

SHA and SHA-l differ from MD4 with regard to the number of rounds used, the size of the

hash result and the definition of a single step. A further difference between SHAISHA-l and

MD4 is the use of a message expansion algorithm instead of re-using the message blocks

in different orders in each round. SHA-l was designed to be both pre-image resistant and

collision resistant [13].

Chapter 9

Step 1 ensures that the message is padded to a multiple of 512 bits. Steps 3 to 5 are repeated

for each 512 bit block until the entire padded message has been processed.

The purpose of padding is to produce an· 512 bit message. The message is padded by

appending a 1 to the message, followed by m D's followed by a 64 bit integer. The 64 bit

integer is the binary representation of the length of the original message t. If t is less than

232 the first 32 bits of the final 64 bits are zero.

Analysis of the SHA and SHA-l Hash Algorithms

Ho Ox67452301
HI OxEFCDAB89
H2 Ox98BADCFE
H3 Oxl0325476
H4 OxC3D2EIFO.

The message is processed in 512 bit blocks. The padded message M is the concatenation of

n blocks of 512 bits. Let I denote concatenation, then:

Each message block Mi is divided into 16 words Wo, WI, W2, ... ,WI5. Each word has a

length of 32 bits. The execution of the compress function involves 80 steps. The first 16 steps

are performed on Wo, WI, W2, ... ,WI5. The remaining 64 steps are performed on message

words W16, W17, W18, ... ,W79 which are obtained from the following message expansion

algorithm:

Analysis oithe SHA and SHA-l Hash Algorithms

(a) TEMP = A<<<5 + ft(B, C, D) + E + Wt + Kt.

(b) E = D D = C C = B«<30 B = A A = T EM P" "

Kt Ox5A827999 (0 :::;t :::;19)

Kt Ox6ED9EBAl (20 :::;t :::;39)

Kt Ox8FIBBCDC (40 :::;t :::;59)

Kt OxCA62CID6 (60 :::;t :::;79)

(B 1\ C) V (--,B 1\ D)
B(fJC(fJD
(B 1\ C) V (B 1\ D) V (C 1\ D)
B(fJC(fJD

(0 :::;t :::;19)

(20 :::;t :::;39)

(40 :::;t :::;59)

(60 :::;t :::;79)

Figure 9.1 shows a graphical representation of a single step of the SHA and SHA-l round

function.

Analysis of the SHA and SHA -1 Hash Algorithms

Upon completion of the compress function the chaining variables are updated as shown be-

low:

Ho Ho+A

Hi Hi + B

H2 H2+C

H3 H3+D

H4 H4+E

Once the n'th 512 bit block has been processed the resulting values of the chaining variables

serve as the hash result of the message.

The message expansion algorithm used in SHA-I is defined as the message expansion algo-

rithm defined by expression 9.1 with the addition of a left rotation by one bit position. The

message expansion algorithm as used in SHA-1 is defined by expression 9.2.

This modification "corrects a technical flaw that made the standard less secure than had been

thought" [50].

In this chapter the basic elements encountered in the attacks on MD4 and MD5 as formulated

by Dobbertin are applied to SHA and SHA -1. A direct application of the attacks formulated

Analysis of the SHA and SHA-l Hash Algorithms

by Dobbertin requires the establishment of a set of difference equations, followed by a solu-

tion of these equations (see Chapter 8). The use of message expansion algorithms in SHA

and SHA-l instead of the permutation of message words in consecutive rounds prevents an

attacker from deriving sets of difference equations according to the principles laid down in

Chapter 8. Thus when dealing with message expansion algorithms the approach described in

Chapter 8 should be modified. This chapter describes these modifications. Specific attention

is given to the properties of the message expansion algorithms. It is shown that the modified

approach may be used to construct a collision for the first round (first twenty steps) of SHA.

Based on this attack, an attack on the first two rounds of SHA is proposed. Certain elements

(but not all) of the proposed attack are confirmed. The extent to which these attacks are

applicable to SHA-l is considered.

The secure hash algorithm (SHA) is described in Section 9.4. In this section certain proper-

ties of the message expansion algorithm is considered. It is shown that these properties may

be exploited to construct sets of difference equations which are readily solved. A solution to

these difference equations results in the construction of collisions for the first round of SHA.

An attack which exploits the properties of the message expansion algorithm is then proposed
for the first two rounds of SHA.

The message expansion algorithm used in SHA is presented in Chapter 9. The algorithm

expands a 16 word input to 64 words. The expanded message is concatenated to the orig-

inal message to form an 80 word message block. Remember that the message expansion

algorithm is given by:

where all message words, Wf, are 32 bit variables. It is observed that this expansion algo-

rithm is in effect 32 identical linear feedback shift registers which operate in parallel. This

observation may be represented graphically as shown in Figure 9.2.

Analysis of the SHA and SHA -1 Hash Algorithms

I q====4===~
2 q====4===~
3 q==---'~4===~

, ', ', ', ', ', ', ', ', ', ', ', '

32 q~1~I4==&$6

monic primitive polynomials of degree m in Zp[x] (¢(n) is the Euler function) [59]. For the

case in hand this corresponds to 2048 possible monic primitive polynomials in Z2[X]. The

reason for the specific choice of f (x) has not been disclosed, but at least two arguments in

favour of using f (x) have been found. The first argument deals with performance. The poly-

nomial f (x) has a low weight (5), and consequently requires fewer instructions to expand

the message. The second argument deals with the positioning of the non-zero coefficients

in the polynomial. The non-zero coefficients should be spread as evenly as possible over

the polynomial. This requirement ensures that each word is used in the expansion within a

small number of steps. This makes it more difficult for an attacker to hide or minimise the

effect of a specific word. There are 52 primitive polynomials of degree 16 with a weight of

5. It is found that the maximum number of consecutive coefficients which are equal to zero

varies between 5 and 10. There are only 16 primitive polynomials with a maximum number

Analysis of the SHA and SHA-l Hash Algorithms

of consecutive zero coefficients equal to zero. They are:

fl (x) X16 + xlO + x5 + x3 + 1 (9.4)

12 (x) X16 + xlO + x7 + X + 1 (9.5)

h(x) X16 + xlO + x7 + x3 + 1 (9.6)

f4(X) X16 + xlO + x7 + x4 + 1 (9.7)

f5(X) X16 + x10 + x7 + x6 + 1 (9.8)

f6(X) X16 + x10 + x9 + x6 + 1 (9.9)

h(x) x16 + X12 + x6 + X + 1 (9.10)

f8(X) X16 + X12 + x7 + X + 1 (9.11)

fg(x) X16 + X12 + x9 + x6 + 1 (9.12)

flO(X) X16 + X13 + x8 + x2 + 1 (9.13)

fu(x) X16 + X13 + x9 + x6 + 1 (9.14)

!I2(X) X16 + X13 + XU + x6 + 1 (9.15)

!I3 (x) X16 + X14 + x8 + x3 + 1 (9.16)

f14(X) x16 + x15 + x9 + x4 + 1 (9.17)

!I5(X) X16 + X15 + x9 + x6 + 1 (9.18)

f16(X) X16 + X15 + x10 + x4 + 1 (9.19)

(9.20)

Eight of these polynomials has two consecutive non-zero coefficients (12 (x), is (x), f6 (x),

h(x), f8(X), f14(X), !I5(X) and f16(X). The primitive polynomial used in the message

expansion algorithm of SHA (and SHA-l) is found among the remaining eight polynomials

UlO(X).

It is observed that the message block of 512 bits is divided into 16 32-bit words and that each

round requires 20 steps. This differs from hash functions such as MD4 and MD5 where the

number of message words in a message block are equal to the number of steps in each round.

Before presenting a motivation for this design choice consider Proposition 1.

Proposition 1 If the message expansion algorithm defined for SHA is used, it is possible

to construct two distinct messages which, after expansion, are identical in 15 consecutive

expanded words.

Chapter 9

Proof. Consider a single linear feedback shift register with a connection polynomial f (x)
of degree n which is monic and primitive in Z2[X]. It is known that all non-zero sequences

generated by such a linear feedback shift register have n - 1 consecutive zeros. In addition it

is known that any possible output sequence of such a linear feedback shift register is a cyclic

shift of every other possible output sequence of the same linear feedback shift register [60].

Thus there exists a non-zero sequence, a, generated by the linear feedback shift register with

feedback pol ynomial f (x) such that a has n - 1 consecutive zeros starting at a specified

position in the sequence a.

Let f(x) = Co + CIX + C2X2 .•. + cnxn with coefficients from GF(2). Then the companion

matrix of the polynomial f (x) is the n x n matrix, C, which has 1's in the diagonal above the

main diagonal and n'th row entries Co, Cl, C2 ... Cn-l [61]. Then the t'th state of the linear

feedback shift register is given by:

with a(t) a 1 x n vector representing the state of the linear feedback shift register. The

elements of the vector a(O) represents the initial state of the shift register. Let the sequence

a be the concatenation (denoted by I) of the n'th element of the vector a (t) for all values of

t> O. Thus:

al a;(1)la;(2)la;(3)1 /a;(t)

a2 a; (1) Ia; (2) Ia; (3) I Ia; (t) .

The states, a1(t) and a2(t), of the linear feedback shift registers which generates the se-

quences al and a2 are given by:

a1(t) Cta1(O)

a2(t) Cta2(O).

Analysis of the SHA and SHA -1 Hash Algorithms

eta1 (0) EBet a2 (0)

et(a1(0) EB a2(0)).

et(a(O))

a(t)

The message expansion algorithm used by SHA consists of 32 identical linear feedback

shift registers applied in parallel. Let the initial conditions a1(0) and a2(0) for all 32 linear

feedback shift registers represent two distinct messages. All elements in a1 and a2 are taken

as the result of the message expansion algorithm. Find values for a1(0) and a2 (0) such that

expression (9.21) is satisfied for all 32 registers. Then, upon expansion, the message words

will be identical in n - 1 consecutive bit positions. The primitive polynomial used by the

linear feedback shift register in the message expansion algorithm in SHA has degree 16. It

is therefore possible to construct two messages which upon expansion will be identical in 15

consecutive words. Thus the proposition is shown to be true. •

With Proposition 1 in hand the use of 20 steps in a round rather than 16 becomes obvious.

If the number of steps in each round is set to 16 instead of 20 and the number of rounds are

retained it would be possible to construct two distinct messages which, in one of the four

rounds, would differ in only one position, thus effectively stripping a round from the hash

function. By defining 20 steps in each round this attack is prevented. However if the number

of steps are limited to 16, and the number of rounds is extended from four to five, the total

number of steps required by the hash function remain at 80.

Thus it appears that the message expansion algorithm was chosen with specific aims, and

that the number of steps in each round was chosen to complement the message expansion

Analysis of the SHA and SHA-l Hash Algorithms

algorithm. One property, and a potential weakness, of the message expansion algorithm is

the fact that if two messages differ only in a single message word, and if that difference is

limited to a single bit position, the words obtained from the message expansion algorithm

will, at most, differ in the same bit position. Even if the differences occur in more than

one message word, as long as these differences occur in the same bit position, the expanded

words would at most differ in the same bit positions. This property is considered a possible

salient point and the extent to which this may be exploited is considered in the next section.

In this section specific attention is given to the exploitation of the message expansion algo-

rithm in order to obtain sets of differential equations.

It is possible to obtain a set of difference equations over all 80 steps of the compress function

of SHA. As remarked in Chapter 8 this is impractical due to the large number of interrelated

equations which have to be solved. An attempt should therefore be made to reduce the

number of difference equations. It is observed that by direct application of Proposition 1 the

number of difference equations may be reduced from 80 to 65. This reduction is obtainable

by requiring that the last 15 words resulting from the message expansion algorithm should

be identical. Although this reduces the effort required to find a collision, the effort required

to solve this set of equations is unknown.

Before proceeding with the analysis of SHA and the construction of difference equations it

is convenient to state the following definition.

Definition 3 A difference pattern is the sequence generated by Mi - Mi for all i. Mi and Mi

represents the first message and second message words at a specific step i of the dedicated

hash function.

The difference operator may be either the difference mod 2 or the difference mod 232• In

order to illustrate the derivation of a set of difference equations consider only the first round.

It is readily observed that for six consecutive steps, the following difference pattern (mod

Analysis of the SHA and SHA-l Hash Algorithms

Mi !vIi 1

MHI MHI -1

MH2 MH2 -1

1VIH3 MH3 0
1'v1iH MH4 0

MH5 MH5 -1

The difference mod 232 is chosen to be either 1,0 or -1 since these differences may be writ-

ten in terms of the rotation invariant integers 0 and -1. By limiting all differences to the LSB

a difference pattern mod 2 may be obtained. The difference pattern mod 2 is given by:

Mi EB Mi 1

MHI EB MHI 1

MH2 EB MH2 1

MH3 EB MH3 0

MH4 EB MiH 0

MH5 EB MH5 1

Mi-Mi

A«<5 A-«<5 M M-
HI - HI + i+1 - i+1

(9.22)

(9.23)

!(Bi+3, CH3, Di+3) - !(BH3, CH3, DH3)

!(BiH, CH4, DH4) - !(BH4, CH4, DiH)

(9.25)

(9.26)

(9.27)

The Boolean mapping! 0 is the mapping defined for the first round of SHA. The variables

are updated as described in Section 9.4. This set of expressions may be solved by setting the

chaining variables C2, D2, B3 and B4 to appropriate values.

There exists many difference patterns for the first round which yields sets of solvable differ-

ence equations. It now remains to determine if the difference pattern leading to this set of

equations can be found in the first round. It is now appropriate to state Corollary 2.

Analysis of the SHA and SHA-l Hash Algorithms

Corollary 2 Each sequence, a, generated by a linear feedback shift register with feedback

polynomial f(x) represents a difference pattern which may be generated by two distinct

sequences, a1 and a2.

This implies that if the k'th element of the sequence ak = 0, al = a%. Conversely it implies

that if ak = 1, al i= a%. Thus the sequence a represents the difference between the two

sequences a1 and a2 if condition (9.28) holds .•

As before, all differences are limited to the LSB of the message words. This causes all dif-

ferences in the expanded message to be generated by a single linear feedback shift register.

An attacker may now search for the desired difference pattern mod 2. Once the difference

pattern mod 2 is found it is expanded to the difference pattern mod 232 through the appli-

cation of Corollary 2. The attacker is free to choose values for a1 (0) and a2(O) as long as

expression (9.28) holds. A difference pattern mod 232 may be established by remarking

that for al EBa% = 1, either al = 1 and a% = 0 or al = 0 and a% = 1. This implies that if

al EBa% = 1, either al- a% = -1 or al- a% = 1. According to Corollary 2 the attacker may

choose whether al - al = 1or al - al = -1 for k < n.

Thus, the attacker searches for an initial value which, in combination with the expanded

message word, would allow the establishment of the set of difference equations defined by

equations (9.22) to (9.27) as the only set of difference equations for the first round. If such

a pattern is found, it is expanded to the desired difference pattern mod 232 by applying

Corollary 2. It is found that there exists only one difference pattern which allows equations

(9.22) to (9.27) to be the only set of difference equations in the first round. The difference

Chapter 9

Mll EEl Mll 1 (9.29)

M12 EEl M12 1 (9.30)

M13 EEl M13 1 (9.31)

M14 EEl M14 0 (9.32)

MIS EEl MIS 0 (9.33)

M16 EEl M16 l. (9.34)

It is observed that Mll to MIS forms part of the initial value and according to Corollary 2 any

combination of the LSB's of Mll to MIS may be chosen in an attempt to obtain the desired

difference pattern mod 232 for message words Mll to M16• There exists a combination

which allows the attacker to find the required difference mod 232.

The difference pattern defined by equation (9.29) to (9.33) results in the set of difference
equations shown below:

A12 - A12 Mll - Mll (9.35)

0 A<<<s - A<<<s + M - M (9.36)12 12 12 12

0 M13 - M13 + !(BI3, C13, D13) - !(BI3, C13, D13) (9.37)

0 !(BI4, C14, D14) - !(B14, 014, D14) (9.38)

0 !(B1S, CIS, D1S) - !(B1S, CIS, ihs) (9.39)

0 M16 - M16 + E16 - E16. (9.40)

Updating of chaining variables are performed as specified in Section 9.4. This set of equa-

tions implies that:

Chapter 9

(9.41)

(9.42)

(9.43)

These choices for A12 and A12 ensures that equation (9.36) is satisfied. Equation (9.37) is

satisfied if:

By setting B14 = 0, equation (9.38) is satisfied. Likewise equation (9.39) is satisfied if

B15 = -1. Equation (9.40) is automatically satisfied due to the choices initially made for

A12 and A12•

It is noted that this is not the only technique which results in a solution for the set of difference

equations given by (9.35) to (9.40). Other more elaborate techniques exist, but are slower

and do not guarantee that a solution is obtained.

Given appropriate choices for the chaining variables in question, it is possible to reconstruct

the message. For the initial values specified for SHA, the following messages result in a

collision for the first round of the compress function of SHA.

Analysis of the SHA and SHA-l Hash Algorithms

Mo = Ox20760CFl Mg = OxF4AD6572

M1 = OxOCIF14 7 5 Mg = Ox5F059EA3

M2 = Ox56139C91 MlO = Ox050A6650

M3 = OxA904D458 Mll = Ox5279Al15

M4 = Ox07F3FF32 Ml2 = OxBB4E5B88

M5 = Ox69B971AD Ml3 = Ox724D80BA

M6 = Ox13E8DD88 Ml4 = Ox438ECCBO

M7 = Ox40CA61AC Ml5 = OxAIEDDF3D

Mll Ox5279Al14

Ml2 OxBB4E5B89

Ml3 Ox724D80BB.

An implementation of this attack on the first round of SHA is attached as Appendix F. At-

tacks similar to that described above may be readily applied to rounds two, three and four if

these rounds are considered individually.

The attack presented above may be extended to other difference patterns. This allows the

formulation of the following attack on the first round of SHA.

First a number of relatively short difference patterns which result in inner collisions are

obtained. It should then be determined if any of these short difference patterns occur in the

first round of SHA. If none of these patterns are found in the first round, a search should

Analysis of the SHA and SHA-l Hash Algorithms

be conducted for concatenations of these difference patterns. If a concatenation of these

difference patterns are found, it is known that the resulting set of difference equations may

be solved and a high probability exist that a message may be reconstructed which would

result in a collision for the first round. Note that the construction of a message which results

in a collision is not assured. This is due to the fact that even though the difference pattern

results in a set of solvable difference equations, the specific choices made to solve these

equations may contradict the bounds incurred by the message expansion algorithm.

It may be possible to extend the attack described in the previous section to the second and

possibly third and fourth rounds. As before, short difference patterns which results in in-

ner collisions should be obtained for all the rounds in question. The output of the message

expansion algorithm should then be searched for the concatenation of a number of these

patterns. If a difference pattern is found which is composed from the concatenation of the

shorter difference pattern, it may be possible to find a solution to the set of difference equa-

tions. If a solution is obtained, it should be verified if a message may be reconstructed which

would result in a collision. As before the specific choices made to solve these equations may

contradict the bounds incurred by the message expansion algorithm.

An application of this proposed attack showed that it is possible to find difference patterns

which are solvable. Unfortunately it was found that the choices made for a number of the

chaining variables which allow solutions to be found for the short difference equations leaves

a limited number of degrees of freedom. This limits the attackers ability to reconstruct a mes-

sage which results in a collision for more than one round. If more sophisticated techniques

are found to solve the sets of difference equations, fewer explicit choices would have to be

made and it may become possible to find solutions to the sets of difference equations which

allows the construction of messages which result in collisions for two or more rounds.

As remarked in Chapter 9, the only difference between SHA and SHA-I lies in the message

expansion algorithm. In this section the message expansion algorithm used in SHA-I IS

considered and a number of its characteristics are discussed.

Analysis of the SHA and SHA-l Hash Algorithms

The message expansion algorithm used in SHA-l is defined by:

Wt = (Wt-3 EEl Wt-8 EEl Wt-14 EEl Wt_16)«<1.

It is noted that the only difference between the message expansion algorithms used in SHA

and SHA-l is the addition of a rotation by one bit position. A graphic representation of the

message expansion algorithm used in SHA-l is shown in Figure 9.3

The rotation operator introduces diffusion in the message expansion algorithm. A difference

introduced in a single bit position is no longer limited to the same bit position in the expanded

message (as is the case for SHA), but is spread over a number of bit positions. As the original

message is expanded a larger number of bit positions are affected by changing a single bit

in the message word. Thus the addition of diffusion to the message expansion algorithm is

believed to increase the security offered by SHA-I.

The use of the rotation operator makes it difficult to specify a difference pattern which is

easily related to an initial message. Thus the analysis of SHA presented in Section 9.7 is

not directly applicable to SHA-l. It is believed that the addition of the rotation operator to

the message expansion algorithm makes it considerably more difficult to obtain and exploit

difference equations. At present no analysis of the message expansion algorithm used by

SHA·l has been published in the open literature.

Chapter 9

The analysis presented in this chapter leads to the conclusion that SHA-I is more secure

than the original SHA. The additional security of SHA-l is derived solely from the modified

message expansion algorithm. It was shown that it is possible to exploit the characteristics

of the message algorithm defined for SHA by constructing a collision for the first round of

SHA. In addition an attack on more than one round of SHA is proposed. It may be argued

that the ease with which the message expansion algorithm used in SHA is manipulated may

have served as one of the reasons for the modification to the message expansion algorithm
used in SHA-l.

Additional factors which complicates the analysis of SHA and SHA-I have been found.

Specifically the method used for updating the chaining variables and the use of a rotation

over 30 bits for chaining variables Ci, Di and Ei contributes to the difficulty of solving sets

of difference equations. The method used for updating the chaining variables ensures that a

difference introduced in a message propagates to each of the chaining variables. This is not

the case for MD4 and MD5 where a difference may be manipulated to appear only in certain

selected chaining variables. An additional difficulty is the use of rotation over chaining

variables Ci, Di and Ei. A single rotation is introduced when Ci is updated. This rotated

value is re-used in chaining variables Di and Ei. If a set of difference equations is obtained,

the use of the rotation limits the number of choices which could be made for the chaining

variables involved. This in turn reduces the number of solutions which are easily obtained

for the difference equations. It is these factors which, at present, prevent the proposed attack

on the first two rounds of SHA to be successful. If improved solution techniques becomes

available, it may become possible to execute the proposed attack and be able to construct

messages which result in collisions for the first two rounds of SHA.

In this chapter the HAVAL hash function is analysed within the generalised framework pre-

sented in Chapter 8. First we describe the HAVAL hash function and the relevant notation

needed in this chapter. We then show how the generalised attack formulated in Chapter 8

can be applied to the last two rounds of three round HAVAL to establish a collision. This is

the first published cryptanalytical result for the HAVAL hash function. The source code that

implements the attack is attached in Appendix G.

HAVAL is an iterated hash function based on the Damgard-Merkle scheme. The HAVAL

construction is closely related to the MD4 family of hash functions. HAVAL was designed by

Zheng, Pieprzyk and Seberry in 1994 [62]. The HAVAL hash function specification includes

15 variations [62]. These variations are based on the number of iterations (or rounds) used

by the round function (3, 4 or 5) as well as the number bits used as output (128, 160, 192,

224 or 256). The round function of HAVAL takes message blocks in multiples of 1024 bits

and produces an output of 256 bits which can then be reduced to 128, 160, 192, 224 or 256

bits, depending on the security requirements. In this dissertation we focus on three round

HAVAL for all possible output lengths. This is the first time any cryptographic analysis of

HAVAL has been made public. The analysis presented in this chapter may also be applied to
4 and 5 round HAVAL.

Before proceeding with a description of HAVAL and the cryptanalysis of HAVAL it is ap-

propriate to introduce the notation to be used in this chapter. The following operators are

Analysis of the HAVAL Hash Algorithm

Bitwise Exclusive OR (XOR).

Bitwise Complement of X

Bitwise rotation to the right of X by Y positions.

Bitwise AND

In this chapter the bitwise AND between two variables are often indicated by Xl X2 rather than

Xl /\ X2 for brevity. The notation of ordiO for i = 1,2,3,4,5 indicates the word processing

order for round i of the round function. The constants used by the HAVAL hash function are

indicated by Kj,i with j = 2,3,4,5 and i E {32, 33, 34, .. , , 160}. There are a total of 128

additive constants used in the round functions and a further 8 constants that define the default

initial values for HAVAL. The constants can be found in [62]. The constants are defined as

the first 4352 bits of 7r. The 136 constants are not explicitly defined in this Chapter since

they play no role in the analyses presented in this Chapter.

In this section a short description of the HAVAL hash function is presented. For a more

complete description refer to [62].

Analysis of the HAVAL Hash Algorithm

(a) No: Repeatfrom step 3.

(b) Yes: Continue.

3. Order words for each round in the

round function.

6. Has the entire message been processed
?

Step 1 ensures that the message is padded to a multiple of 1024 bits. Steps 3 to 5 are repeated

for each 1024-bit block until the entire padded message has been processed. Step seven is

used to construct the appropriate hash length (128, 160, 192, 224 or 256). Step seven is

performed once the final message block is processed.

The round function of HAVAL requires a 1024-bit message block as input. Consequently

the message to be hashed has to be a multiple of 1024-bits. This is accomplished by using a

padding algorithm. Message padding is applied even if the unpadded message is a multiple

of 1024 bits in length.

Chapter 10

The message is padded by appending a 1 to the message, followed by m O's (m :s: 0) until

the length of padded message equals 944 mod 1024. Once the message is padded to this

length a three bit VERSION field, followed by a 3-bit PASS field and a 10-bit FPTFIELD is

appended to the padded message. Once these fields are appended a 64-bit MSGLEN field is

appended to form a message with a length that is a multiple of 1024. The fields mentioned

above has the following meaning:

VERSION: This is a 3-bit field representing the version of HAVAL in use. The current

version is 1.

PASS: This is a 3-bit field defining the number of rounds or iterations used by the round
function of HAVAL. Valid values are 3, 4 or 5.

FPTFIELD: This is 10-bit field that specifies the length of the hash result. Valid values are

128, 160, 192, 224 or 256.

MSGLEN: This is a 64-bit field representing the length of the original message. The 64-bit

integer is the binary representation of the length of the original message l. If l is less

than 232 the first 32 bits of the final 64 bits are zero.

Ox03707344
Ox13198A2E
Ox85A308D3
Ox243F6A88.

Ox082EFA98
Ox299F31DO

The 1024-bit message block is divided into 32 words of 32 bits each. These words are

processed in a different order for each round or iteration of the round function. The word

Analysis of the HAVAL Hash Algorithm

ardl0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ord20 5 14 26 18 11 28 7 16 0 23 20 22 1 10 4 8

30 3 21 9 17 24 29 6 19 12 15 13 2 25 31 27

ord30 19 9 4 20 28 17 8 22 29 14 25 12 24 30 16 26

31 15 7 3 1 0 18 27 13 6 21 10 23 11 5 2

ord40 24 4 0 14 2 7 28 23 26 6 30 20 18 25 19 3

22 11 31 21 8 27 12 9 1 29 5 15 17 10 16 13

ard50 27 3 21 26 17 11 20 29 19 0 12 7 13 8 31 10

5 9 14 30 18 6 28 24 2 23 16 22 4 1 25 15

The compress or round function is discussed in this section. Each round in the compress

function utilise a different boolean function and a different word order. Each boolean func-

tion takes seven bits as input and produces a single bit as output. The boolean functions

are expanded to form boolean mappings by operating bitwise on 32-bit words. The boolean

mappings used in HAVAL are defined by equations (10.1) to (10.5).

Fl(Bi, Ci, Di, Ei, Fi, Gi, Hi)

F2(Bi, Ci, Di, Ei, Fi, Gi, Hi)

GiDi EBFiCi EBEiBi EBHiGi EBHi.

~~&EB~~~EB~~EB~~EB~~EB
CiEi EBCiDi EBHi~ EBHi'

F3(Bi, Ci, Di, Ei,~, Gi, Hi)

F4(Bi, Ci, Di, Ei, Fi, Gi, Hi)

GiFiEi EBGiDi EB~Ci EBEiBi EBEiHi EBHiOO.3)

~~&EB~~~EB&~~EB~~EB~~EB
EiDi EBEiCi EBEiBi EBDiCi EBDiBi EB

Analysis of the HAVAL Hash Algorithm

{

Fl 0 <P3,1 (Bz, Oz, Dz, Ez, Fz, Gz, Hz) ~fPASS:3
l)P Fl 0 <P4,1 (Bz, Oz, Dz, Ez, Fz, Gz, Hz) If PASS-4

Fl 0 <PS,I (Bi, Oi, Di, Ei, Fj, Gi, Hi) if PASS=5

2)R p>>>7 + At>l1 + Wordl(i).

Note that the permutation defined by <Pj,l, j E {3, 4, 5} is performed before the function Fl

is executed. The permutations are defined in Table 10.2.

Permutations B C D E F G H
4- 4- 4- 4- 4- 4- 4-

<P3,1 G H E C B F D

<P3,2 D D G H C E B

<P3,3 B G F E D C H

<P4,1 F B G D C E H

<P4,2 E C F H G B D

<P4,3 G D E B H F C

<P4,4 B D H C F G C

<PS,I E D G H C F B

<PS,2 B F G H E D C

<PS,3 F B H D E G C

<PS,4 G C E F H D B

<Ps,s F C H B D E G

Analysis of the HAVAL Hash Algorithm

The second round of the HAVAL hash function is repeating the following steps for 32 :::;i :::;

63.

{

F20 cP3,2(Bi, Ci, Di, Ei, Fi, Gi, Hi) if PASS=3

l)P F20 cP4,2(Bi, Ci, Di, Ei, Fi, Gi, Hi) ifPASS=4

F20 cP5,2(Bi, Ci, Di, Ei, Fi, Gi, Hi) if PASS=5

2)R p>>>7 + At»ll + Word2(i) + K2,i.

Note that the permutation defined by cPj,2, j E {3, 4, 5} is performed before the function F2

is executed. The permutations are defined in Table 10.2.

{

F30 cP3,3(Bi, Cil Di, Ei, Fi, Gi, Hi) if PASS=3

l)P F3 0 cP4,3(Bi, Ci, Di, Ei, Fi, Gi, Hi) if PASS=4

F30 cP5,3(Bi, Ci, Di, Ei, Fi, Gi, Hi) if PASS=5

2)R p>>>7 + A»>ll + Word3(i) + K3,i.

3)A B, B = C, C = D, D = E.

E F, F=G, G=H, H=R.

Note that the permutation defined by cPj,3, j E {3, 4, 5} is performed before the function F3

is executed. The permutations are defined in Table 10.2.

Analysis of the HAVAL Hash Algorithm

The fourth round of the HAVAL hash function is repeating the following steps for 96 :::;;i :::;;

127.

{
F40 cP4,4(Bi,Ci, Di, Ei, Fi, Gi, Hi)
F40 cP5,4(Bi,Ci, Di, Ei, Fi, Gi, Hi)

P>'»7 A'»>11 W K+ + ord4(i)+ 4,i·

ifPASS=4

ifPASS=5

2)R

3)A

E

B, B=C, C=D, D=E.

F, F = G, G = H, H = R.

Note that the permutation defined by cPj,4,j E {4, 5} is performed before the function F4 is

executed. The permutations are defined in Table 10.2.

The 01 round of the HAVAL hash function is repeating the following steps for 128 :::;;i :::;;

159.

I)P { F5 0 cP5,5(Bi,Ci, Di, Ei, Fi, Gi, Hi) ifPASS=5

2)R p>'»7 A'»>11 W K+ + ord5(i)+ 5,i·

3)A B, B=C, C=D, D=E.

E F, F=G, G=H, H=R.

Note that the permutation defined by cP5,5is performed before the function F5 is executed.

The permutations are defined in Table 10.2.

A single step in a round of the round function is graphically represented as shown in Figure
10.2.

Chapter 10

HAVAL can be used to produce a hash length of 128, 160, 192, 224 or 256 bits, depending

on the security requirement. In this dissertation only the case where the output is 256-bits

(maximum security) is considered. For a detailed description of the procedure used to select

an output of less than 256 bits refer to [62]. Note that a collision for the 256-bit output

implies a collision for all subsets of the output.

In this section the principles derived in Chapter 8 are applied to HAVAL. In order to demon-

strate the applicability of the attack it is shown that the last two rounds of three round HAVAL

is not collision resistant. The last two rounds of three round HAVAL are described by steps

32 to 95. The equations describing the second round of three round HAVAL is described by

Analysis of the HAVAL Hash Algorithm

Hi+1 (F2 a cP3,2(Bi, Ci, Di, Ei, Fi, Gi, Hi)f»7 + A;»ll + Word2(i) + K2,io

Ai+1 Bi, Bi+1 = Ci, Ci+l = Di, Di+1 = Ei

The equations describing the last round of three round HAVAL is described by equation

(10.7) for i E {64, 65, 66, 0 0 o95}.

Hi+1 (F3 a cP3,3(Bi, Ci, Di, Ei, Fi, Gi, Hi)f»7 + A;»ll + Word3(i) + K3,io

Ai+1 Bi, Bi+l = Ci, Ci+l = Di, Di+1 = Ei

In order to establish a collision for the last two rounds of three round HAVAL an inner

collision has to be established as described in Chapter 8. It is possible to derive a set of

difference equations that allows a collision for the full 256-bit output of the last two round of

three round HAVAL. One approach which results in an inner collision for the last two rounds

of HAVAL is described below.

Chapter 10

H57 (F2o cP3,2(B56, C56, D56, E56, F56, G56, H56))»>7 + A~ll + Word2(56) + K2,56o

A57 B56, B57 = C56, C57 = D56, D57 = E56

E57 F56, F57 = G56, G57 = H560 (10.8)

H58 (F2o cP3,2(B57, C57, D57, E57, F57, G57, H57)f»7 + Agrll + Word2(57) + K2,57o

A58 B57, B58 = C57, C58 = D57, D58 = E57

E58 F57, F58 = G57, G58 = H570 (10.9)

H59 (F2 0 cP3,2(B58, C58, D58, E58, F58, G58, H58)f»7 + A?fll + Word2(58) + K2,58o

A59 B58, B59 = C58, C59 = D58, D59 = E58

E59 F58, F59 = G58, G59 = H580 (10.10)

H60 (F2o cP3,2(B59, C59, D59, E59, F59, G59, H59)f»7 + A~ll + Word2(59) + K2,59o

~ ~, ~=~, ~=~, ~=~
E60 F59, F60 = G59, G60 = H590 (10.11)

H61 (F2o cP3,2(B60, C60, D60, E60, F60, G60, H60))»>7 + Aifi511 + Word2(60) + K2,60o

A61 B60, B61 = C60, C61 = D60, D61 = E60

E61 F60, F61 = G60, G61 = H60. (10.12)

H62 (F2o cP3,2(B61, C61, D61, E61, F61, G61, H61)f»7 + A~ll + Word2(61) + K2,61.

A62 B61, B62 = C61, C62 = D61, D62 = E61

E62 F61, F62 = G61, G62 = H610 (to.13)

H63 (F2o cP3,2(B62, C62, D62, E62, F62, G62, H62))»>7 + A~ll + Word2(62) + K2,62o

~ ~, ~=~, ~=~, ~=~
E63 F62, F63 = G62, G63 = H620 (10.14)

H64 (F2 0 cP3,2(B63, C63, D63, E63, F63, G63, H63))»>7 + A~ll + Word2(63) + K2,63o

~ ~, ~=~, ~=~, ~=~
E64 F63, F64 = G63, G64 = H63. (10.15)

H65 (F3o cP3,3(B64, C64, D64, E64, F64, G64, H64))»>7 + Aif:ill + Word3(64) + K3,64.

~ ~, ~=~, ~=~, ~=~
E65 F64, F65 = G64, G65 = H640 (10.16)

Note that ord2(56) and ord3(64) both select message word 19 (WI9). Consider two mes-

sages, M and M that differ only in message word 19. It is then possible to derive a set of

Analysis of the HAVAL Hash Algorithm

difference equations using the principles stated in Chapter 8. In the notation of Chapter 8 we

show that a message can be constructed such that:

f~t(T, M) = f~t(T, M).

where T represents the chaining variables A56, B56, C56, D56, E56, F56, G56 and H56• Once

the inner collision is established it is shown that:

The required inner collision can be established by solving the following set of difference

equations

(F2o cP3,2(B56, C56, D56, E56, F56, G56, H56)f~7 + A~l1 + Word2(56) + K2,56 -

((F2o cP3,2(B56, 656, D56, E56, F56, 656, H56)f~7 + A~l1 +
WOrd2(56) + K2,56) (10.17)

(F2o cP3,2(B57, C57, D57, E57, F57, G57, H57)f~7 + A~l1 + Word2(57) + K2,57 -

((F2o cP3,2(B57, 657, D57, E57, F57, 657, H57)f~7 + A~l1 +
WOrd2(57) + K2,57) (10.18)

(F2 0 cP3,2(B58, C58, D58, E58, F58, G58, H58)f~7 + A~l1 + Word2(58) + K2,58 -

((F2 0 cP3,2(B58, 658, D58, E58, F58, 658, H58)f~7 + A~l1 +
WOrd2(58) + K2,58) (10.19)

(F2o cP3,2(B59, C59, D59, E59, F59, G59, H59)f~7 + A~l1 + Word2(59) + K2,59 -

- - - - - - - >~7 -~>11((F2 0 cP3,2(B59, C59, D59, E59, F59, G59, H59)) + A59 +
WOrd2(59) + K2,59) (10.20)

Analysis oime HAVAL Hash Algorithm

(F2 0 rP3,2(B60, C60, D60, E60, F60, G60, H60))»>7 + A~11 + Word2(60) + K2,60 -

- - - - - - - ';»7 -»>11((F2 0 rP3,2(B60, C60, D60, E60, F60, G60, H60))"53 + A60 +
WOrd2(60) + K2,60) (10.21)

(F2o rP3,2(B6I, C6I, D6I, E6I, F6I, G6I, H6I)?»7 + Atf11 + Word2(6I) + K2,6I -

- - - - - - - ';»7 ->>>11((F2 0 rP3,2(B6I, C6I, D6I, E6I, F6I, G6I, H6d? + A6I +
WOrd2(6I) + K2,6d (10.22)

(F2 0 rP3,2(B62, C62, D62, E62, F62, G62, H62)?»7 + A~11 + Word2(62) + K2,62 -

- - - - - - - ';»7 -»>11((F2 0 rP3,2(B62, C62, D62, E62, F62, G62, H62))"53 + A62 +
WOrd2(62) + K2,62) (10.23)

(F2o rP3,2(B63, C63, D63, E63, F63, G63, H63)?»7 + Airf11 + Word2(63) + K2,63 -

- - - - - - - ';»7 -»>11((F2o rP3,2(B63, C63, D63, E63, F63, G63, H63))"53 + A63 +
WOrd2(63) + K2,63) (10.24)

(F3o rP3,3(B64, C64, D64, E64, F64, G64, H64)?»7 + A~11 + Word3(64) + K3,64 -

- - - - - - - ';»7 -»>11((F3o rP3,3(B64, C64, D64, E64, F64, G64, H64)) "53 + A64 +
WOrd3(64) + K3,64) (10.25)

H57 =I- H57 B56 = B56 C56 = C56 D56 = D56

E56 E56 F56 = F56 G56 = G56 H56 = H56

WOrd3(56) =I- Word3(56) A56 = A56

H65 H65 B64 = B64 C64 = 664 D64 = D64

E64 E64 F64 = F64 G64 = 064 H64 = H64

Word3(64) =I- Word3(64)0

The reader is reminded that Word3(64) = WOrd3(56) = WIg and WOrd3(64) = WOrd3(56) = WIg.

Analysis of the HAVAL Hash Algorithm

WI9 - W19

(F2 0 ¢3,2(B57, 057, D57, E57, F57, G57, H57) f»7 -

(F2 0 ¢3,2(B57, 057, D57, E57, F57, G57, H57))»>7

(F2 0 ¢3,2(B58, 058, D58, E58, F58, G58, H58)f»7 -

(F2 0 ¢3,2(B58, 058, D58, E58, F58, G58, H58))»>7

(F2 0 ¢3,2(B59, 059, D59, E59, F59, G59, H59)f»7 -

(F2 0 ¢3,2(B59, 059, D59, E59, P59, G59, H59)f»7

(F2 0 ¢3,2(B60, 060, D60, E60, F60, G60, H60)f»7 -

(F2 0 ¢3,2(B60, 060, D60, E60, F60, G60, H60)f»7

(F2 0 ¢3,2(B61, 061, D61, E61, F61, G61, H6df»7 -

(F2 0 ¢3,2(B61, 061, D61, E61, F61, G61, H6df»7.

(F2 0 ¢3,2(B62, 062, D62, E62, F62, G62, H62)f»7 -

(F2 0 ¢3,2(B62, C62, D62, E62, F62, G62, H62))»>7.

(F2 0 ¢3,2(B63, 063, D63, E63, F63, G63, H63))»>7 -

(F2 0 ¢3,2(B63, 063, D63, E63, F63, G63, H63)f»7.

A~l1 + W19 - (A~l1 + W19)

(10.33)

(10.34)

From equations (10.26) to (10.34) it is observed that the chaining variables listed in Table

10.3 are affected when trying to solve the set of difference equations.

A56 B56 056 D56 E56 F56 G56 H56

A57 B57 057 D57 E57 F57 G57 H57 H57

A58 B58 058 D58 E58 F58 G58 G58 H58

A59 B59 059 D59 E59 F59 F59 G59 H59

A60 B60 060 D60 E60 E60 F60 G60 H60

A61 B61 061 D61 D61 E61 F61 G61 H61

A62 B62 062 C62 D62 E62 F62 G62 H62

A63 B63 B63 063 D63 E63 F63 G63 H63

A64 B64 B64 064 D64 E64 F64 G64 H64

Analysis of the HAVAL Hash Algorithm

Table 10.3 will be used to indicate which of the chaining variables are affected in each step

of the solution of the set of difference equations. Once a chaining variable is chosen to have

certain value it is marked in

In this section one technique that allows a solution to the set of differential equations de-

scribed by equations (10.26) to (10.34) is described. In order to solve the set of differential

equations the following properties of Boolean algebra are used [63].

For two boolean variables, denoted by Xl and X2, where Xl =F- X2, the following expressions

hold:

(10.35)

(10.36)Xl 1\ (Xl V X2)

Xl 1\ (Xl V X2)

These expressions aid in the solution of the set of differential equations defined by the next

8 steps.

An inner collision can be established by finding a solution to equations (10.26) to (l0.34).

In order to find a solution to this set of difference equations it is useful to remember that

A64 = B63 = C62 = D61 = E60 = F59 = G58 = H57 and A64 = 1363 = 662 = D61 =
E60 = P59 = 058 = fI57• By taking the above relationships into account the following

condition has to be satisfied in order to solve the set of equations.

H57 - H57

H>>>ll _ A»>ll
57 57

(10.38)

(10.39)

A-»>ll H»>ll - H H-
57 - 57 - 57 - 57·

Chapter 10

Let the difference between H57 - H57 and WI9 - WI9 be denoted by:

I::1H57 = H57 - H570

I::1WI9 = WI9 - WI90

I::1WI9 = I::1H57 °

(10.41)

(10.42)

(10.43)

In order for equation (10.40) to be satisfied, I::1H57 can be chosen as OxAAAAAAAAA,

OxAAAAAAAAB, Ox55555555 or Ox55555556. The probability that equations (10.38)

and (10.39) holds for each of the possible values of I::1H57 are given in Table 10.4.

I::1H57 Pr

OxAAAAAAAAA 0.112

OxAAAAAAAAB 0.448

Ox555555555 0.448

Ox555555556 0.110

Table 10.4: Probability that a given I::1H satisfies (10.38) and (10.39) for random values of

H57

Here H57 can be selected at random. Note that any choice for H57 implies a selection for

H57 through the chosen relationship of I::1H57• If equation (10.38) and (10.39) holds for the

chosen H57, continue with Step 2. The affected chaining variables for Step 1 are shown in

Table 10.5.

A56 B56 D56 H56

A57 B57 D57

A58 B58 D58 H58

A59 B59 H59

A60 B60 H60

A61 B61 H61

A62 B62 H62

A63 H63

H64

Analysis of the HAVAL Hash Algorithm

Once suitable values for H57 and H57 have been found, a solution has to be found to equation

(10.33). Equation (10.33) can be solved by applying the permutation (P3,2 and considering

the resulting function F2. Equation (10.33) can then be written as:

O=(~~~ffi~~~ffi~~ffi~~ffi~~ffi~~ffi~~ffi
B63C63 ffiB63) - (E63C63H63 ffiF63G63C63 ffiE63C63 ffiE63G63 ffiC63D63 ffi
F63H63 ffiF63G63 ffiB63C63 ffiB63). (10.44)

(B63C63 ffiB63) - (B63C63 ffiB63)

(B63C63 ffiB63)

(10.45)

(10.46)

(10.48)

(10.49)

Thus our choice for C63 satisfies equation (10.46). The chaining variable table after the

completion of step 2 is shown below.

A56 B56 D56

A57 B57 D57

A58 B58 D58

A59 B59

A60 B60

A61 B61

A62 B62

A63

Analysis of the HAVAL Hash Algorithm

The next step is to solve equation (10.32). As before equation (10.32) can be solved by

applying the permutation ¢3,2 and considering the resulting function F2. Equation (10.32)

can then be written as:

O=(~~~ffi~~~ffi~~ffi~~ffi~~ffi~~ffi~~ffi

B62C62 ffi B62) - (E62C62H62 ffi F62G62C62 ffi E62C62 ffi E62G62 ffi C62D62 ffi

F62H62 ffi F62G62 ffi B62C62 ffi B62). (10.50)

If only the terms that differ from each other are considered equation (10.50) reduces to:

o = (E62C62H62 ffi F62G62C62 ffi E62C62 ffi C62D62 ffi B62C62) -

(E62C62H62 ffi F62G62C62 ffi E62C62 ffi C62D62 ffi B62(62).

E62C62H62

E62C62

F62G62C62 ffi C62D62

B62C62

E62C62H62.

E62C62.

ffiF62G62C62 ffi C62D62.

B62C62.

(10.52)

(10.53)

(10.54)

(10.55)

B62C62

C62C62C62

E62C62

C62C62C62

C62 V C62.

C62 V C62.

(10.56)

(10.57)

B62C62

C62C62C62

(10.58)

(10.59)

(10.60)

E62C62

C62C62C62

(10.61)

(10.62)

(10.63)

Chapter 10

E62C62H62

C62 C62662 H62

o· H62

o

E62C62H62.

662662C62H62.

o· H62.

o.

(10.64)

(10.65)

(10.66)

(10.67)

Note that no explicit choice is made for H62. Chaining variable D62 is already determined

through the choice for C63• By setting:

C62 V 662.

C62 V C62.

(10.68)

(10.69)

A56

A57

A58

A59

A60

A61

A62

In this step equation (l 0.31) is solved. Equation (10.31) can be solved by applying the

permutation cP3,2 and considering the resulting function F2. Equation (10.31) then reduces

Analysis of the HAVAL Hash Algorithm

o (E61 C61H61 EEl F61 G61 C61 EEl E61 C61 EEl E61 G61 EEl C61D61 EEl F61H61 EEl

F61G61 EEl B61C61 EEl B6d - (E61C61H61 EEl F61G61C61 EEl E61C61 EEl

E61 G61 EEl C61 D61 EEl F61 H61 EEl F61 G61 EEl B61 C61 EElB61). (10.70)

The choice for B62 in Step 3 also ensures that equation (10.70) holds. Consequently the

chaining variable table remains unchanged (see Table 10.7) after the completion of Step 4.

In this step equation (10.30) is solved. Equation (10.30) can be solved by applying the

permutation cP3,2 and considering the resulting function expression. Equation (10.30) can
then be written as:

O=(~~~EEl~~~EEl~~EEl~~EEl~~EEl~~EEl

F60G60 EEl B60C60 EEl B60) - (E60C60H60 EEl F60G60C60 EEl E60C60 EEl

E60G60 EEl C6oD60 EEl F60H60 EEl F60G60 EEl B60C60 EEl B60). (10.72)

E60C60H60 E60C60H60' (10.74)

E60C60 E60C60. (10.75)

E60G60 E60G60. (10.76)

(10.77)

Analysis of the HAVAL Hash Algorithm

The value for G60 is already determined by the choice made for E62 in Step 3. The value

chosen in Step 3 for E62 satisfies equation (10.76). Similarly the previous choice for F62

implies that the value for H60 is fixed. Likewise it is found that this particular choice for F62

assures that equation (10.74) holds if C60 is chosen such that:

This choice for C60 also assures that equation (10.75) holds. The chaining variable table can

now be updated to reflect the additional choices made. Table 10.8 is shown below.

In this step equation (10.29) is solved. Equation (10.29) can be solved by applying the

permutation rP3,2 and considering the resulting function expression. Equation (10.29) can

then be written as:

O=(~~~ffi&~~ffi~~ffi~~ffi~~ffi&~ffi
FS9GS9 ffiBS9CS9 ffiBS9) - (ES9CS9Hs9 ffiFS9GS9CS9 ffiES9CS9 ffi
ES9GS9 ffiCs9Ds9 ffiFS9Hs9 ffiFS9GS9 ffiBS9CS9 ffiBS9)' (10.79)

Analysis of the HAVAL Hash Algorithm

F59G59C59 EB F59G59

F59H59

F59G59C59 EB F59G59.

F59H59·

(10.81)

(10.82)

(10.83)

The values for G59 and H59 are already determined by the choices made for D62 and E62

in Step 3. The values chosen in Step 3 for D62 and E60 also satisfies equations (10.81) and

(10.82) C59 is chosen such that:

In this step equation (10.28) is solved. As before consider the expression obtained by apply-

ing the permutation ¢3,2 to equation (10.28) and considering the resulting function expres-

sion. Equation (10.28) can then be written as:

o = (E58C58H58 EB F58G58C58 EB E58C58 EB E58G58 EB C58D58 EB F58H58 EB -

F58G58 EB B58C58 EB B58)(E58C58H58 EB F58G58C58 EB E58C58 EB

E58G58 EB C58D58 EB F58H58 EB F58G58 EB B58C58 EB B58). (10.85)

Analysis of the HAVAL Hash Algorithm

o = (F58G58C58 EB E58G58 EB F58G58) -

(F58G58C58 EB E58G58 EB F58G58).

F58G58C58 F58G58C58' (10.87)

E58G58 E58G58· (10.88)

F58G58 F58G58. (10.89)

(10.90)

The value for F58 is determined by the choice for B62 in Step 5. This choice for F58 also

ensures that equations (10.87) and (10.89) holds. The value for E58 is determined by the

value chosen for C60 in step 5. This choice also assures that equation (10.88) holds. The

chaining variable table remains unchanged after the completion of step 7.

In this step equation (10.27) is solved. As before consider the expression obtained by apply-

ing the permutation cP3,2 to equation (10.27) and considering the resulting function expres-

sion. Equation (10.27) can then be written as:

o = (E57C57H57 EB F57G57C57 EB E57C57 EB E57G57 EB C57D57 EB F57H57 EB

F57G57 EB B57C57 EB B57) - (E57C57H57 EB F57G57C57 EB E57C57 EB

E57G57 EB C57D57 EB F57H57 EB F57G57 EB B57C57 EB B57). (10.91)

o = (E57C57H57 EB F57H57) -

(E57C57H57 EB F57H57).

E57C57H57'

F57H57.

(10.93)

(10.94)

Analysis oithe HAVAL Hash Algorithm

The value for F57 is determined by the choice for C60 in step 5. This choice also satisfies

equation (10.94). Similarly the value of E57 is determined by the choice for C59 in step 6.

Given this value for E57 equation (10.93) holds if C57 is chosen such that:

After the completion of step 8 the set of difference equations defined by equations (10.26) to

(10.34) are solved. The chaining variables not marked in can take on randomly selected

values.

Once the set of difference equations is solved it remains to construct the two messages that
will result in a collision for the last two rounds of three round HAVAL. In general a message

word for the second round can be derived using the following equation:

Word2(i) = Hi+1 - (F2o ¢3,2(Bi, Ci, Di, Ei, Fi, Gi, Hi)?»7 - Arll
- K2,i. (10.96)

By applying equation (10.96) for 32 ~ i ~ 63 two messages, M and M can be derived.

In order to meet a specific initial value (i = 32) appropriate selections should be made for

H32, H33, H34, H35, H36, H37, H38 and H39• An implementation of this attack is included in

Appendix G.

Analysis of the HAVAL Hash Algorithm

A collision for the last two rounds of HAVAL was constructed using the techniques described

in this chapter.

For the initial values of:

A32 OxEC4E6C89
B32 Ox082EFA98
e32 Ox299F31DO
D32 OxA4093822
E32 Ox03707344
F32 Ox13198A2E
G32 Ox85A308D3
H32 Ox243F6A88.

Analysis of the HAVAL Hash Algorithm

Wo Ox3A379EDO W16 Ox79F23F4E
WI OxlEB81543 W17 Ox9C1596E8
W2 Ox279COO73 WI8 OxB62B4D8B
W3 OxC9295C45 WI9 OxDEC04668
W4 Ox6988BCBA W20 Ox4BA12694
W5 OxEEIE55A2 W2I Ox9D8DED5C
W6 OxDE458436 W22 Ox456CFCB4
W7 OxBIC55B3C W23 Ox7253D2B9
W8 OxBDA229EB W24 Ox61ED5DB4
W9 OxE27926BE W25 OxE4C2E748

WlO Ox8BACAC22 W26 OxFD80A2AD
Wll OxBDF710B4 W27 OxC033F56E
WI2 Ox6516723B W28 Ox3010FDA9
WI3 Ox26991773 W29 Ox344A7F71
WI4 Ox9EA6FDIF W30 OxODB561C7
WI5 OxOBB27961 W3I OxC7AIE175

The alternative message is identical to the first with the exception that WI9 is chosen such
that:

The resulting collision (including the feed forward step) for the last two rounds of three

round HAVAL is:

fi~(IV, W) Ox4DF09D997588F9C7BE20863B2EED2AAC
D5BIEl16D927279E250D19CB00850706.

In this chapter it was shown that the generalised technique described in Chapter 8 can be

applied to the HAVAL hash function. In particular it is shown that the last two rounds of three

Analysis of the HAVAL Hash Algorithm

round HAVAL is not collision resistant. It is demonstrated that a collision can be established

for all 256 output bits produced. This attack is considerably more efficient than the birthday

attack which would require 2128 evaluations of the last two rounds of HAVAL. This is the

first cryptanalytical results obtained for the HAVAL hash function. It is believed that it is

possible to extend the attack to all three rounds of HAVAL. The attack can be executed on

a 200 MHz Pentium Pro in less than a minute. Source code that implements this attack is

attached as Appendix G.

CHAPTER 11: DESIGN CRITERIA FOR DEDICATED HASH

FUNCTIONS

In this chapter guidelines and design criteria for the design of dedicated hash functions based

on the MD4 family of hash functions are presented. The discussion of the design criteria in

this chapter is based on the experience gained from the analysis of dedicated hash functions

included in the MD4 family of hash functions. These hash functions include MD4, MD5,

HAVAL, SHA and SHA-l. These hash functions share a common ancestry (MD4), and

consequently they share a number of features. These hash functions also differ in a number

of respects, such as the Boolean mappings and the message word re-use mechanisms.

Each of the components encountered in the MD4 family of hash functions is discussed with

regard to their contribution to the security of the hash functions in which they occur. In this

chapter the emphasis is on the security requirements expected from the building blocks with

occasional reference to the functional requirements.

The compress function construction used for MD4 is described in [10]. This construction has

been widely adopted in the design of other hash functions such as MD5 [45], SHA, SHA-I

[13] and Tiger [47]

The MD4 family of hash functions takes two parameters as inputs namely the previous hash

result and the message block. If the first message block is processed, the previous hash result

is replaced by the initial value. The generalised MD4 family construction does not allow for

the inclusion of a secret key. A survey of a number of adaptations of this construction that

does make allowance for a secret key is presented in Chapter 5.

The compress function used in the MD4 family of constructions, is an iterated construction.

The compress function takes as input the previous hash result Hi-1 and the current message

block, Mi.

Chapter 11

number of steps. Each step is constructed from a number of elementary operations, including

Boolean mappings, rotations and additions mod 232 •

The message block Mi is segmented into k sub-blocks. The initial chaining variable, C,

is set equal to the previous hash result. The set of message sub-blocks is divided into a

number of i-bit message words. These message words are re-used in consecutive rounds of

the compress function according to a specified rule. The chaining variable, C, is updated in

each step of each round of the compress function. The output of the compress function is

obtained by adding the initial value of the chaining variable C (i.e. the previous output of the

compress function or the initial value) to the final value of the chaining variable. The final

hash value for the message is the output obtained from the final application of the compress

function.

A number of basic building blocks are used in the construction of the compress functions of

the MD4 family of hash functions. These include message expansion algorithms, message

block permutations, rotations, addition mod 232 and Boolean mappings or S-boxes. In this

section the contribution of each of these basic building blocks to the security of the dedicated

hash functions is considered.

The Boolean mappings used in MD4, MD5, SHA, SHA-I and HAVAL are constructed with

the same technique and exhibit similar properties. The Boolean mappings used by these

functions take a number of 32 bit input words and produce a single 32 bit output word.

The Boolean mappings utilised by these hash functions are constructed from Boolean func-

tions. A number of design criteria for Boolean functions are established in Chapter 3 of

[51]. These criteria deal with the zero-one balance, high non-linearity values and the prop-

agation properties of the Boolean functions. In the definition of MD4 [10] and MD5 [45]

it is stated that if the inputs to the Boolean function are independent and unbiased, then the

output of the Boolean function will be independent and unbiased. The functions defined for

MD4 and MD5 are used in both SHA and SHA-l. It should be noted that a number of the

Design Criteria for Dedicated Hash Functions

Boolean functions defined for use with MD4 and MD5 do not satisfy the criteria set forth

in [51]. HAVAL represents a family of hash functions derived from MD4 and is defined

in [62]. The Boolean functions used in HAVAL are derived from bent functions and were

designed to have zero-one balance, a high non-linearity and satisfy the strict avalanche crite-

rion (SAC). In addition these functions are linearly inequivalent in structure and are mutually

output -uncorrelated.

Having obtained a Boolean function which satisfies the desired properties, a Boolean map-

ping is constructed by applying the Boolean function to a number of bits in parallel. Boolean

mappings constructed in this manner inherits the properties of the Boolean function. The

number of bits are chosen to reflect a specific computer architecture. Currently 32 bit ma-

chines are in common use and consequently the Boolean mappings are defined over 32 bit

variables. Many general purpose processors contain logical bitwise operators in their,instruc-

tion sets. Thus the use of bitwise logical functions as Boolean mappings are advantageous,

if the overall performance of the hash function is considered.

It is maintained that the design criteria applied to construct the Boolean mappings used by

the MD4 family are necessary, but not sufficient. The practice of extending the Boolean

function to a Boolean mapping by applying the Boolean function in parallel to a number

of bits, has proved to be a salient point in the cryptanalysis of MD4, MD5 and HAVAL

(Chapters 6 7 10). If a single input bit used by the Boolean mapping is changed, at most a

single output bit of the Boolean mapping is changed. In addition, the compliance to the SAC

by the Boolean function used to construct the Boolean mapping, implies that a single input

bit may be changed without any changes occurring in the output of the Boolean mapping.

For these reasons it is proposed that the Boolean mapping should be constructed to satisfy

the bit independence criterion (BIC) as described in [51].

The only dedicated hash function which uses randomly generated Boolean mappings is Tiger

[47]. This hash function was designed with 64-bit architectures in mind. For this reason it

utilises four 8 x 64 bit S-boxes. The following design criteria for the Boolean mappings are

quoted verbatim from [47].

1. All the entries of all the S boxes should be distinct. Moreover, no two entries should

have more than three equal bytes.

Design Criteria for Dedicated Hash Functions

3. The columns of all the S boxes should be as different as possible, and have some long

cycles.

4. No two differences of S box entries (Si(td EEl Si(t2) and Sj(t3) EEl Sj(t4)) should have

more than four equal bytes.

5. The speed of the generation should not be too slow, in order to enable applications to

generate the S boxes on the fly.

6. This algorithm, and the structure of the S boxes of Tiger, were chosen in a way which

reduces linear and differential properties, and similarities of these properties in the four

S boxes (between other things, by reducing the number of S boxes, and making them

independent, unlike some original idea we had, which was intended to reduce the total

memory size of the S boxes, and by choosing the large S boxes, which reduce linear

and differential properties).

Items 1-4 as well as item 6 address the security properties of the S-boxes while items 5 and

7 deal with the functional requirements of the S-boxes. It is claimed by the designers of

Tiger that the use of randomly generated Boolean mappings increase the security of the hash

function. No quantitative arguments are presented to support this statement.

The randomly generated Boolean mapping used in Tiger is more difficult to manipulate than

the Boolean mappings constructed from Boolean functions which are applied in parallel.

This is due to the design criteria which have to be met by the randomly generated Boolean

mappings. The design criteria applied in the generation of the Boolean mappings used by

Tiger has the effect that it is impossible to construct a collision for a given Boolean mapping.

Furthermore, a change in a single input bit is likely to cause a difference in more than one
output bit.

Thus, it appears that the use of well chosen, randomly generated Boolean Mappings, avoid

the problems and potential weaknesses observed in the bitwise Boolean mappings. Howev-

er, the use of randomly generated Boolean mappings may result in an increase of resource

requirements, such as storage capability and processor time. It is recommended that random

mappings are utilised for optimal security.

Design Criteria for Dedicated Hash Functions

The rotation operator is used by all members of the MD4 family of hash functions. Rotations

may be described in a number of ways. In [48] a rotation is described as a bit permutation.

The rotation of x by n bits may also be viewed as a linear feedback shift register of length d

with a feedback polynomial

The rotation operation provides diffusion of bits throughout the hash function. MD4 and

MD5 contain a single rotation in each step. HAVAL, SHA and SHA-I contain two rotations

applied to different chaining variables in each step. The use of rotations may complicate the

solution of the sets of difference equations obtained. In particular in SHA and SHA-I the use

of two rotations and the permanent effect of the second rotation impose certain limits on an

attacker, since an attacker has to choose values for chaining variables, which are invariant to

the rotations (see Chapter 9). It is shown in [14] and [58] that it is possible to counter these

rotations and find solutions to the sets of difference equations containing these rotations. A

similar result is shown in Chapter 10 for HAVAL. However, the absence of rotations would

have reduced the workload for finding inner collisions considerably.

Thus, rotations complicate the task of an attacker (depending on the use of the rotation) and

therefore contribute to the security of the hash function. The rotation amounts should be

chosen to obtain optimal diffusion in the compress function of the hash function.

None of the dedicated hash functions based on MD4 utilises data dependent rotations. It

is unknown if data dependent rotations add or subtract to the security of dedicated hash

functions. It may be possible for an attacker to exploit the data dependence. From a security

point of view, it is recommended that caution be exercised if data dependent rotations are

used.

The iterative hash scheme employed in the MD4 family of hash functions requires that a

message, M, is segmented into a number of message blocks, Mi. Each message block is

Design Criteria for Dedicated Hash Functions

processed by the compress function f O. The compress functions of the MD4 family of hash

functions divide the message block, Mi, into a number of message words. Each bit of each

of these message words is re-used at least twice by each of the compress functions used by

the MD4 family of hash functions. Two techniques of message re-use are employed by the

MD4 family of hash functions. The first technique applies a permutation which changes the

order in which the message words are accessed in consecutive rounds. The second technique

applies a message expansion algorithm which derives new message words from the original

message words. Both techniques are considered in this section.

Each of the hash functions derived from MD4 takes a message block of fixed length as input.

The message block is then divided into message words of 32 bits each. The message block

is used in every round of the hash function. The order in which the message words are pro-

cessed in each of these rounds are determined by the message permutation. MD4, MD5 and

HAVAL employs message permutations. By exploiting the order in which message words

are accessed in consecutive rounds, an attacker may obtain a set of difference equations. If

this set of difference equations are solvable it may be possible to find collisions for the hash

function. If message permutations are to be used care should be taken to choose the permu-

tations in such a manner as to prevent solvable difference equations to be derived. This may

prove difficult, if it is remembered that it is possible to obtain a solvable difference equa-

tion set representing 12 consecutive steps in MD5. Consequently it is advised that message

permutations are avoided in the construction of dedicated hash functions.

SHA and SHA-l uses a message expansion algorithm instead of a fixed message permu-

tation. The properties of the message expansion algorithm used by SHA is described in

Chapter 9. From the analysis of SHA and SHA-l it appears that the use of a message expan-

sion algorithm adds to the effort required to derive a set of difference equations. The danger

exist that an attacker may manipulate the message expansion algorithm to find one or more

possible sets of solvable difference equations. An example of how the message expansion

algorithm used by SHA may be manipulated is presented in Chapter 9.

Design Criteria for Dedicated Hash Functions

It is noted that the dedicated hash functions based on the MD4 construction may be used as

block ciphers. Specifically the initial value may be taken as the plaintext and the message

block taken as the key. The hash result then represents the ciphertext. Thus, if we use

SHA in this manner, we obtain a block cipher with a 160 bit block length (the initial value)

and a 512 bit key (the message word). I The analogy may be extended to the message

expansion algorithm. In block cipher terminology the message expansion algorithm is the

equivalent of the key schedule. It is known that weak key schedules weaken the associated

block cipher [64], [65]. In particular weak key scheduling algorithms allow related key

attacks [65]. These attacks exploit a chosen difference between two unknown keys and allow

the recovery of the keys given a number of known or chosen plaintexts. A weak message

expansion algorithm may weaken the associated hash function by allowing the construction

of two or more messages, which upon expansion, exhibit a specified difference pattern. This

may allow the derivation of a set (or sets) of solvable difference Equations, which result

in collisions. Thus both strong key scheduling algorithms and strong message expansion

algorithms attempt to limit the extent to which an attacker may exploit specified differences

between two distinct keys or messages. It is therefore suggested that the message expansion

algorithm should meet the same requirements as those set for key scheduling algorithms.

In [66] a number of design criteria for key scheduling algorithms are proposed. In particular

it is advised that the key schedule provides some guarantee of key/ciphertext Strict Avalanche

Criterion and Bit Independence Criterion. In addition each bit should be used by round ~ of

a R-round cipher. In [67] it is stated that the key schedule should have a high diffusion, and

should behave irregularly with regard to the components of the round function of the block

cipher.

In [67] a distinction is made between two kinds of key schedules namely pseudo-random key

generation and key evolution. In the pseudo random approach the cipher key is used to seed

a pseudo-random noise generator. The output of the pseudo-random noise generator serves

as the round key. The relationship between the cipher key and the round keys generated

in this way are complex. However, these schemes are slow and keys cannot be generated

online (during encryption). Thus, pseudo-random round key generation schemes incurs a

performance penalty. The key evolution strategy uses the cipher key as key to the first round

and derives each round key from the previous round key by means of a transformation 'ljJ.

IIt should be noted that it is not recommended to use hash functions in this mode. Dedicated hash functions

are not designed to be used as secret key encryption algorithms, and are likely to exhibit characteristics which

make them susceptible to linear and differential cryptanalysis.

Design Criteria for Dedicated Hash Functions

The transform 1/J may be described by bit permutations, rotations or elements from coding

theory and abstract algebra. The advantage of this scheme is that it is fast and the round keys

may be derived online. A disadvantage is that the underlying structure of the transform 1/J

may be exploited by an attacker.

From the preliminary study of SHA and SHA-l it is observed that the key evolution strategy

is used by the message expansion algorithms. As noted above it was shown that the underly-

ing structure of the message expansion algorithm may be exploited to enable the construction

of collisions for a limited number of rounds (see Chapter 9). In both [66] and [67] the impor-

tance of diffusion of key bits in the key scheduling algorithm is stressed. It is noted that the

diffusion in the message expansion algorithm used by SHA is poor. Although the diffusion

properties are improved by the addition of a rotation operator in SHA -1, it is unknown if it

provides sufficient protection.

Addition mod 232 is used by all the dedicated hash functions based on MD4. The addition

mod 232 contributes to the avalanche effect in the dedicated hash function. The contribution

to the avalanche effect is ascribed to the propagation of the carry bit in addition operations.

Additive constants are used by all members of the MD4 family of hash functions. MD4,

SHA, SHA-l and HAVAL use different constants in each round, while MD5 uses a differ-

ent additive constant for each step. The use of an additive constant contributes little to the

collision resistant property of the hash function. The attacks by Dobbertin, which results in

collisions for hash functions require the derivation and solution of sets of difference equa-

tions. The constants are easily cancelled from these difference equations, and therefore does

not contribute to the difficulty of solving the set of difference equations. The use of different

Design Criteria for Dedicated Hash Functions

additive constants in each round does add to the pre-image resistance of a hash function.

However the use of a different additive constant for each step requires additional storage

capabilities and is considered unjustified if compared to the increase in security obtained

(especially in terms of collision resistance).

A single step in each of the dedicated hash functions belonging to the MD4 family is com-

posed by combining addition mod 232, rotation operations and Boolean mappings or S-

boxes. These steps are repeated a number of times (at least 48 times). A number of these

steps represent a single round of the hash function. Each step compresses n 32-bit variables

to a single 32 bit variable. In [57] the use of genetic algorithms to find solutions to expres-

sions of the form encountered in dedicated hash functions is investigated. From the results in

[57] it is observed that a single step in a dedicated hash function is neither collision resistant

nor pre-image resistant. It is more difficult to find collisions for a number of these steps used

iteratively. However it was shown that for MD4 [14] and MD5 [12] it is possible to find

collisions for these iterated structures.

The Damgard-Merkle constructions [22] [23] shows that a collision resistant hash function

may be constructed from a collision resistant function. The general design of the MD4 family

resembles the iterative structure of the Damgard-Merkle construction. The security offered

by the Damgard-Merkle construction would be attainable if the compress function of the

dedicated hash functions are collision resistant. It is observed that the compress functions of

these dedicated hash functions are themselves constructed by iteratively applying a number

of similar steps. However, the ability to construct collisions for single steps and even a num-

ber of consecutive steps, (cryptanalysis of MD4 and MD5) implies that the level of security

offered by the Damgard-Merkle construction can not be attained. It should however be noted

that this does not imply that collisions are easily constructed for these hash functions.

In this chapter the basic building blocks encountered in dedicated hash functions are con-

sidered. Observations regarding the contribution of these building blocks to the security of

dedicated hash functions derived from MD4 are made. The security offered by Boolean

Design Criteria for Dedicated Hash Functions

mappings are considered. It is believed that randomly generated Boolean mappings offer

more security than the bitwise Boolean mappings currently employed by the majority of the

members of the MD4 family. The functional advantages of using bitwise Boolean mappings

rather than randomly generated Boolean mappings outweighed the additional security ob-

tained from randomly generated Boolean mappings in the design of the MD4 family (with

the exception of Tiger). Rotations complicate the task of the cryptanalyst considerably and

is considered a valuable building block. Specific attention is given to the message expansion

algorithm. It is observed that the message expansion algorithm is similar to key schedule

algorithms. Based on this observation and the results obtained from the analysis of the mes-

sage expansion algorithms used by SHA and SHA-I, it is proposed that message expansion

algorithms should exhibit properties similar to that required for key scheduling algorithms.

Specific attention needs to be given to the diffusion properties of message expansion algo-

rithms. Additive constants contribute little to the collision resistance property of the hash

functions considered. Addition mod 232 adds to the diffusion process in the hash function

due to the properties of the carry bit. The building blocks used in the MD4 family are com-

bined into a single step, which is used iteratively. It is known that the individual steps are

not collision resistant and consequently it is not known if the compress function constructed

from these individual steps is collision resistant. If the step functions could be replaced by

collision resistant one way functions, the resulting compress function would also be colli-

sion resistant and one-way according to the Damgard-Merkle construction. It is not known

if collision resistant one way functions exist.

Cryptographic hash functions are important primitive building blocks in information securi-

ty. These functions form the comer stone of numerous authentication protocols, encryption

algorithms and digital signatures. These cryptographic primitives are vital for creating a

secure electronic commerce environment. Electronic commerce protocols such as SET and

EMV rely on the existence of cryptographic hash functions. The two properties that make

hash functions indispensable in cryptographic applications, are collision resistance and one-

wayness. Throughout this dissertation we paid specific attention to the property of collision

resistance. The property of collision resistance is vital for the non-repudiation service ob-

tained through digital signatures.

However, designing hash functions that exhibit this property has proven to be extremely

difficult. In the period from 1990 to 1994 a number of practical cryptographic hash functions

were designed and implemented. These cryptographic hash functions include MD4, MD5,

SHA, SHA -1, HAVAL, RIPEMD-128 and RIPEMD 160. It was thought that these algorithms

exhibited the properties of collision resistance and one-wayness. However in 1996 Dobbertin

demonstrated that MD4 is not a collision resistant hash function. Within months the result

was extended to RIPEMD-128 and MD5. One of the objectives of this dissertation was to

generalise these attacks, apply it to other hash functions, and then derive design criteria that

will defeat the generalised attack.

In pursuit of this objective a general introduction to cryptographic hash functions is presented

in Chapters 1,2,3,4. Chapter 1 introduced the relevant definitions and concepts surrounding

cryptographic hash functions. Once the relevant concepts and definitions were in place, a

number of generic attacks against cryptographic hash functions were considered in Chapter

3. Based on the definitions in Chapter 1 and the generic attacks presented in Chapter 3, a

number of high level functional and security requirements were formulated. Given these

requirements, a number cryptographic hash function designs were reviewed, including the

MD4-family of functions.

Chapter 12

After introducing the relevant concepts and definitions regarding cryptographic hash func-

tions, a detailed description and re-construction of the attack on MD4 as formulated by

Dobbertin is presented in Chapter 6. Using a novel approach, an alternative solution is p-

resented which illustrates that a speed-up factor of 64 of the attack on MD4 as formulated

by Dobbertin, can be achieved. In Chapter 7 the attack on MD5 as formulated by Dob-

bertin is considered. The attack is reconstructed from the source code used by Dobbertin to

construct the collisions for MD5. Of particular interest are the techniques used to solve the

non-linear Boolean equations. In Chapter 8 the attacks on MD4 and MD5 are generalised.

The generalised attack presents a framework for the analyses of all iterated hash functions. In

Chapters 9 and 10 the generalised attack is applied to SHA and HAVAL. It is shown that the

generalised attack can be applied to reduced versions of SHA and HAVAL. The new results

obtained for the HAVAL hash function indicates that three round HAVAL should not be used

for cryptographic applications. To the best of our knowledge this is the first cryptanalytical

result that has been published regarding the HAVAL cryptographic hash function.

In Chapter 11 we conclude this dissertation by presenting design criteria for dedicated cryp-

tographic hash functions. The design criteria are based on the lessons learned from the

analysis of MD4, MD5, SHA, SHA-l and HAVAL. It is the intention that the application of

these design criteria will defeat the generalised attack presented in Chapter 8.

In this dissertation the attacks on MD4 and MD5 were generalised and applied to the SHA

and HAVAL hash functions. Design criteria were proposed to defeat this generalised attack.

It remains to determine the full extent to which the generalised attack presented in Chapter

8 can be applied to a number of dedicated cryptographic hash functions. It may prove in-

teresting to apply this technique to a number of the Advanced Encryption Standard (AES)

candidates to determine the difficulty of obtaining collisions for these cryptographic primi-

tives. Another topic of interest lies in the design of message/key expansion algorithms. The

use of strong diffusion structures such as those proposed by Massey in such a design may

prove to be a challenging and interesting topic.

BIBLIOGRAPHY

[1] J. L. Massey, "Cryptography: Fundamentals and ap1ications," 1995. Copies of Trans-

parencies, Advanced Technology Seminars.

[2] W. T. Penzhom, "Hash functions and authentication," Tech. Rep. WP2, Ciphertec cc,

24 January 1995.

[3] B. Prenee1, Analysis and Design of Cryptographic Hash Functions. PhD thesis,

Katholieke Universiteit Leuven, 1993.

[4] J. L. Carter and M. N. Wegman, "Universal classes of hash functions," Journal of Com-

puter and Systems Sciences, vol. 18, pp. 143-154, 1979.

[5] Secure Electronic Transaction (SET) Specification Book 3: Formal Protocol Definition,

24 June, Revised August 1 1996.

[6] D. W. Davies and W. L. Price, "The application of digital signatures based on pub1ic-

key cryptosystems," in Proc. Fifth Inti. Computer Communications Conference, p-

p. 525-530, October 1980.

[7] R. Anderson and E. Biham, 'Two practical and provably secure block ciphers: BEAR

and LION," in Fast Software Encryption, Third International Workshop (D. Gollman,

ed.), Lecture Notes in Computer Science No. 1039, Springer-Verlag, pp. 113-120,

1996.

[8] P. Morin, "Provably secure and efficient block ciphers," Third Annual Workshop on

Selected Areas in Cryptography, pp. 30-37, 1996.

[9] C. H. Lim, "Message encryption and authentication using one-way hash functions,"

Third Annual Workshop on Selected Areas in Cryptography, pp. 38-48, 1996.

[10] R. L. Rivest, "The MD4 message digest algorithm," in Advances in Cryptology - CRYP-

TO ' 90, Lecture Notes in Computer Science vol 537, Springer-Verlag, pp. 303 - 311,

1991.

[11] B. den Boer and A. Bosselaers, "An attack on the last two rounds of MD4," in Advances

in Cryptology - CRYPTO ' 91, Lecture Notes in Computer Science No. 576, Springer-

Verlag, pp. 194-203, 1992.

[12] H. Dobbertin, "Cryptanalysis of MD5 compress," Rump Session EUROCRYPT ' 96,

1996.

[13] National Institute of Standards and Technology (NIST), FIPS Publication 180-1: Se-

cure Hash Standard (SHS), April 17, 1995.

[14] H. Dobbertin, "Cryptanalysis of MD4," in Fast Software Encryption, Third Interna-

tional Workshop (D. Gollman, ed.), Lecture Notes in Computer Science No. 1039,

Springer-Verlag, pp. 53-69,1996.

[15] H. Dobbertin, A. Bosselaers, and B. Preneel, "RIPEMD-160: a strengthened version

of ripemd," in Fast Software Encryption, Third International Workshop (D. Gollman,

ed.), Lecture Notes in Computer Science No. 1039, Springer-Verlag, pp. 71-82, 1996.

[17] P. R. Kasselman, "Analysis of dedicated hash functions," Tech. Rep. Ciph-96-1O, Ci-

phertec cc, November 1996.

[18] G. J. Simmons, "A survey of information authentication," in Contemporary Cryptology,

The Science of Information Integrity (G. J. Simmons, ed.), pp. 379-419, New York:

IEEE Press, 1991.

[19] D. G. Abraham, G. M. Dolan, G. P. Double and J. V. Stevens, "Transaction security

system," IBM Systems Journal, vol. 30, no. 2, pp. 206-209, 1991.

[20] J.-J. Quisquater and J.-P. Delescaille, "How easy is collision search? New results and

applications to DES," in Advances in Cryptology - CRYPTO ' 89 (G. Brassard, ed.),

Lecture Notes in Computer Science No. 435, Springer-Verlag, pp. 408-415, 1990.

[21] J.-J. Quisquater and J.-P. Delescaille, "How easy is collision search? Applications to

DES," in Advances in Cryptology - EUROCRYPT' 89 (J. Quisquater and J. Vandewalle,

eds.), Lecture Notes in Computer Science No. 434, Springer-Verlag, pp. 428-433,

1990.

[22] I. Damgard, "A design principle for hash functions," in Advances in Cryptology

- CRYPTO ' 89 (G. Brassard, ed.), Lecture Notes in Computer Science No. 435,

Springer-Verlag, pp. 416-427,1990.

[23] R. C. Merkle, "One way hash functions and DES," in Advances in Cryptology - CRYP-

TO ' 89 (G. Brassard, ed.), Lecture Notes in Computer Science No. 435, Springer-

Verlag, pp. 428-446, 1990.

[24] D. Coppersmith, "Another birthday attack," in Advances in Cryptology - CRYPTO ' 85

(H. C. Williams, ed.), Lecture Notes in Computer Science No. 218, Springer-Verlag,
pp. 14-17, 1986.

[25] M. Girau1t, R. Cohen, and M. Campana, "A generalised birthday attack," in Advances

in Cryptology - EUROCRYPT ' 88 (c. G. Gunther, ed.), Lecture Notes in Computer

Science No. 330, Springer-Verlag, pp. 129-156, 1988.

[26] L. Knudsen, "Cryptanalysis of LOKI," in Cryptography and Coding III, vol. 45, p-

p. 223-236, The Institute of Mathematics and its Applications Conference Series,

Clarendon Press, Oxford, 1993.

[27] M. J. B. Robshaw, "Block ciphers," Tech. Rep. TR 601, RSA Laborities, 2 August

1995.

[28] B. Kaliski and M. Robshaw, "Message authentication with MD5," CryptoBytes, vol. 1,

pp. 5-8, Spring 1995.

[29] B. Preneel and P. C. van Oorschot, "MDx-MAC and building fast MACs from hash

functions," in Advances in Cryptology - CRYPTO ' 94 (D. Coppersmith, ed.), Lecture

Notes in Computer Science No. 963, Springer-Verlag, pp. 1-14, 1995.

[30] D. W. Davies, "A message authenticator algorithm," in Advances in Cryptology - CRYP-

TO ' 84 (G. R. Blakley and D. C. Chaum, eds.), Lecture Notes in Computer Science

No. 196, Springer-Verlag, pp. 393-400, 1985.

[31] B. Preneel and P. C. van Oorschot, "On the security of two MAC algorithms," in Ad-

vances in Cryptology - EUROCRYPT' 96 (U. Maurer, ed.), Lecture Notes in Computer

Science No. 1070, Springer-Verlag, pp. 19-32, 1996.

[32] R. S. Winternitz, "Producing a one-way hash function from DES," in Advances in Cryp-

tology - CRYPTO ' 83 (D. Chaum, ed.), (New York), pp. 203-207, Plenum Press, 1984.

[33] M. E. Hellman, R. Merkle, R. Schroeppel, L. Washington, W. Diffie, S. Pohlig, and

P. Schweitzer, "Results of an initial attempt to cryptanalyze the NBS Data Encryption

Standard," Tech. Rep. SEL 76-042, Stanford University, 1976.

[34] M. Kwan and J. Pieprzyk, "A general purpose technique for locating key scheduling

weakness in DES-like cryptosystems," in Advances in Cryptology-ASIACRYPT '91

(H. Imai, R. Rivest, and T. Matsumoto, eds.), Lecture Notes in Computer Science No.

739, Springer-Verlag, pp. 237-246,1993.

[35] L. Brown, M. Kwan, J. Pieprzyk, and J. Seberry, "Improving resistance to differential

cryptanalysis and the redesign of LOKI," in Advances in Cryptology-ASIACRYPT '91

(H. Imai, R. Rivest, and T. Matsumoto, eds.), Lecture Notes in Computer Science No.

739, Springer-Verlag, pp. 36-50,1993.

[36] J. Daemen, R. Govaerts, and J. Vandewalle, "Weak keys for IDEA," in Advances in
Cryptology - CRYPTO ' 93 (D. R. Stinson, ed.), Lecture Notes in Computer Science

No. 773, Springer-Verlag, pp. 224-231,1994.

[37] D. Boneh, R. A. DeMillo, and R. J. Lipton, "On the importance of checking computa-

tions (Extended abstract)." Internet, 1996.

[38] A. Shamir and E. Biham, "Research anouncement: A new cryptanalytic attack on

DES." Internet: http://jya.com/dfa.htm, 1996.

[39] J.-J. Quisquater, "Short cut for exhaustive key search using fault analysis: Applications

to DES, MAC, Keyed hash function, Identification protocols, " Internet, 1996.

[40] D. Coppersmith, "Analysis oflSO/CCITT Document X.509 Annex D." Internal Memo,

IBM TJ. Watson Center, June 11, 1989.

[41] T. Beth, F. BausspieB, and F. Damm, "Workshop on cryptographic hash functions,"

Tech. Rep. 92/11, E.I.S.S., 1992.

[42] G. Brassard, "The impending demise of RSA?," CryptoBytes, vol. 1, pp. 1-4, Spring

1995.

[43] F. BausspieB and F. Damm, "Requirements for cryptographic hash functions," Tech.

Rep. 92/2, E.I.S.S., 1992.

http://jya.com/dfa.htm,

[44] R. L. Rivest, "The MD4 message digest algorithm." Internet Request for Comments

(RFC), 1990. RFC 1320.

[45] R. L. Rivest, "The MD5 message-digest algorithm." Internet Request for Comments

(RFC), April 1992. RFC 1321.

[46] C. E. Shannon, "Communication theory of secrecy systems," in Claude Elwood Shan-

non - Collected Papers (N. J. A. Sloane and A. D. Wyner, eds.), pp. 84-143, IEEE

Press, 1983.

[48] J. Daemen, Cipher and Hash Function Design. PhD thesis, Katholieke Universiteit

Leuven, 1993.

[49] X. Lai and J. L. Massey, "Hash functions based on block ciphers," in Advances in

Cryptology - EUROCRYPT' 92, Lecture Notes in Computer Science No. 658, Springer-

Verlag,pp.55-70,1992.

[50] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C.

New York: John Wiley & Sons, 1993.

[51] G. J. Kuhn, "S-box design and analysis," Tech. Rep. Ciph-96-13, Ciphertec cc, Desem-

ber 1996.

[52] R. R. Jueneman, "A high speed manipulation detection code," in Advances in Cryptol-

ogy - CRYPTO ' 86 (A. Odlyzko, ed.), Lecture Notes in Computer Science No. 263,

Springer-Verlag, pp. 327-346, 1987.

[53] S. Vaudenay, "On the need of multipermuations: Cryptanalysis of MD4 and SAFER,"

in Proceedings of the 1994 Leuven Workshop on Cryptographic Algorithms, Lecture

Notes in Computer Science vol 1008, Springer-Verlag, pp. 286-297,1995.

[54] H. Dobbertin, "RIPEMD with two round compress is not collision-free," Journal of

Cryptology, vol. 10, no. 1, pp. 51-70,1997.

[55] H. Dobbertin, "The status of MD5 after a recent attack," CryptoBytes, vol. 2, pp. 1-6,

Summer 1996.

[56] P. R. Kasselman, "A fast attack on the MD4 hash function," in Comsig 97 (M. Ings,

ed.), no. 97TH8312 in IEEE Catalog, pp. 147-150, South African Section IEEE, 1997.

[57] P. R. Kasselman, "Analysis and design of hash functions: Part II," Tech. Rep.

Ciph/97 11211(II), Ciphertec cc, December 1997.

[58] P. R. Kasselman, "Analysis and design of hash functions: Part I," Tech. Rep.

Ciph/971l21l(I), Ciphertec cc, December 1997.

[59] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptog-

raphy. New York: CRC Press, 1997.

[61] W. W. Peterson and E. J. Weldon, Error Correcting Codes. Massachsetts: MIT Press,

2 ed., 1972.

[62] Y. Zheng, J. Pieprzyk, and J. Seberry, "HAVAL - a one-way hashing algorithm with

variable length of output," in Advances in Cryptology-Auscrypt '92 (J. Seberry and

Y. Zheng, eds.), (Berlin), pp. 83-104, 1993.

[63] J. F. Wakerly, Digital Design Principles and Practices. London: Prentice-Hall Interna-

tional Editions, 1990.

[64] E. K. Grossman and B. Tuckerman, "Analysis of a feistel-like cipher weakened by

having no rotating key," Tech. Rep. RC 6375, IBM TJ. Watson Research, Jan 1977.

[65] E. Biham, "New types of cryptanalytic attacks using related keys," in Advances in Cryp-

tology-EUROCRYPT '93 (T. Helleseth, ed.), Lecture Notes in Computer Science Vol

735, (Berlin), Springer-Verlag, pp. 398-409, 1994.

[66] C. M. Adams, "Simple and effective key scheduling for symmetric ciphers (extended

abstract)," Workshop on Selected Areas in Cryptography, pp. 129-133, 1994.

[67] V. Rijmen, Cryptanalysis and Design of Iterated Block Ciphers. PhD thesis, Katholieke

Universiteit Leuven, 1997.

[68] M. N. Wegman and J. L. Carter, "New hash functions and their use in authentication

and set equality," Journal of Computer and Systems Sciences, vol. 22, pp. 265-279,

1981.

[69] A. R. Meijer, "Universal hash functions in authentication," Tech. Rep. KT437122, Ci-

phertec cc, 28 February 1996.

[70] S. M. Matyas, C. H. Meyer, and J. Oseas, "Generating strong one-way functions with

cryptographic algorithms," IBM Tech. Disclosure Bull., vol. 27, no. lOA, pp. 5658-

5659, 1985.

[71] B. Preneel, R. Govaerts, and J. Vandewalle, "Hash functions based on block ciphers:

a synthetic approach," in Advances in Cryptology - CRYPTO ' 93 (D. R. Stinson, ed.),

Lecture Notes in Computer Science No. 773, Springer-Verlag, pp. 368-378,1994.

[72] X. Lai, R. Rueppel, and J. Woollven, "A fast cryptographic checksum algorithm based

on stream ciphers," in Advances in Cryptology - AUSCRYPT '92 (J. Seberry and

Y. Zheng, eds.), Lecture Notes in Computer Science No. 718, (Berlin), Springer-

Verlag, pp. 339-348, 1993.

[73] M. Bellare, R. Canetti, and H. Krawczyk, "Keying hash functions for message authen-

tication," in Advances in Cryptology - CRYPTO ' 96 (N. Koblitz, ed.), Lecture Notes in

Computer Science No. 1109, Springer-Verlag, pp. 1-15, 1995.

[74] M. Bellare, R. Canetti, and H. Krawczyk, "The HMAC construction," CryptoBytes,

vol. 2, pp. 12-15, Spring 1996.

[75] G. Tsudik, "Message authentication with one-way hash functions," ACM SIGCOMM,
Computer Communication Review, vol. 22, pp. 29-38, Oct. 1992.

[76] J. M. Galvin, K. McCloghrie, and J. R. Davin, "Secure management of snmp networks,"

Integrated Network Management II, pp. 703-714,1991.

[78] M. Bellare, R. Canetti, and H. Krawczyk, "Keying hash functions for mes-

sage authentication." Internet: http://www.research.ibm.com.security/ or http://www-

cse.ucsd.edu/users/mihir/papers/papers.html, 1996.

[79] M. Bellare, R. Guerin, and P. Rogaway, "XOR MACs: New methods for message au-

thentication using finite pseudorandom functions," in Advances in Cryptology - CRYP-

TO ' 95 (D. Coppersmith, ed.), Lecture Notes in Computer Science No. 963, Springer-

Verlag, pp. 15-28,1995.

[80] M. Bellare, R. Guerin, and P. Rogaway, "XOR MACs: New methods for mes-

sage authentication using finite pseudorandom functions." Internet: http://www-

cse.ucsd.edu/users/mihir/papers/papers.html, 1995.

http://www.research.ibm.com.security/

[81] W. T. Penzhorn, "Study into international standards," Tech. Rep. Ciph-96-12, Ciphertec

cc, 6 December 1996.

[82] M. Bellare, J. Kilian, and P. Rogaway, "The security of cipher block chaining," in Ad-

vances in Cryptology - CRYPTO ' 94 (Y. G. Desmedt, ed.), Lecture Notes in Computer

Science No. 839, Springer-Verlag, pp. 341-358,1994.

APPENDIX A: ADDITIONAL HASH FUNCTION

CONSTRUCTIONS

This Appendix describes a number of additional hash function constructions. Specific atten-

tion is given to tree constructions, the cascading of hash functions and the use of block and

stream ciphers to construct round functions that can be used as part of the Damgard-Merkle

construction. A number of generic techniques that allows the construction of MACs based on

MACs are also considered. A short review of current international standards is also included.

This scheme is specifically intended for high speed hashing. The first construction along

these lines was presented by Carter and Wegman [68]. In [69] this scheme is referred to

as concatenation hashing. It was re-discovered independently by Preneel [3] and Damgard

[22]. This hash scheme can be generalised and requires the following:

The difference between the construction by Preneel and the construction by Carter and Weg-

man is found in the round function used. Carter and Wegman propose the use of a universal

hash function (a complexity theoretic construction). Preneel specifies that any secure round

function, f (),could be used. It is advised that the round function chosen for this scheme

should adhere to the conditions imposed on round functions used in the Damgard-Merkle

scheme (see Section 5.3).

For the tree hashing scheme to work it is required that the message length, r should be a

multiple of the block length m. In addition it is required that the number of blocks in the

original message should be a multiple of two. These requirements imply a form of padding.

The same padding rules as described in Section 5.3 can be applied to this construction.

Appendix A

j(X2i-1, X2i)

j(Hj-:-1 Hj-:-1)
22-1' 22

i E {1,2,3 2q
-
1}

i E {I, 2, 3 2q
-
1 }

j E {2,3 ... r - I}

\

" Concatenate Results
\
\

Note that the scheme can be adapted for use as a MAC by making the round function key

dependent.

Appendix A

This scheme is faster than the Damgard-Merkle scheme. It is stated in [3] that the hash

function, hO can be performed for an r bit input with 2: processors with:

o (r : n . log2 (~))

evaluations of 10. A further advantage of this scheme is the avoidance of chaining and

consequently all attacks dependent on the chaining.

The tree hashing scheme has the disadvantage that no known analysis has been performed

on this structure. Consequently little is known of its security. Another disadvantage of this

scheme is the cost involved. This hash function depends on the use of several processors

which can operate in parallel. Since it is required that a hash function should be able to

hash messages of arbitrary length, an arbitrary number of processors are required. As the

message length r ---+ 00 the number of processors, c ---+ 00. It can be assumed that the cost of

implementing such a hash function would escalate accordingly. An implementation of this

scheme is therefore impractical due to the costs involved.

This scheme can be made practical by introducing chaining. This solution should be seen

as a hybrid between the Damgard-Merkle scheme and the tree construction scheme. The

round function 10 in the Damgard-Merkle scheme is effectively replaced by the tree hashing

scheme. The hybrid scheme has the disadvantages of reducing the performance and re-

introducing attacks dependent on the chaining.

Thus a trade-off between speed, cost and security has to be made when using the tree con-

struction. According to [3] a speedup factor of c is achieved if c processors are used. It

is possible to use the tree construction not only in the construction of a hash function, hO,
but also in the construction of a round function 10. It is not known if any practical hash

functions are based on this scheme.

The following observations are made in [3] regarding the cascading of hash functions. Let

AilE denote concatenation of message B to A. If hlO and h20 are hash functions that

Appendix A

produces hash values of nl and n2 bits respectively, and gO is a one way function that yields
a n3-bit result, then:

1. h(XI, X2) = g(hl(Xd Ilhl (X2)) is a CRHF if hI 0 is a CRHF and gO is aCRE

2. h(Xd = g(hl(Xdllh2(XI)) is a CRHF if either hlO or h20 is a CRHF and gO is a
CRE

The first construction is equivalent to the tree construction discussed in Section A.2 and

results in a hash length of n3. The second construction describes a CRHF that is at least as

strong as the strongest of hI 0 or h20, provided gO is a CRE The resultant hash length for

the second construction is n3. The third construction omits the use of a CRF, consequently

the hash length equals nl + n2 > n3.

In terms of hash speed, the first construction is more efficient since two message blocks are

hashed at a time. In terms of security the last two constructions are more secure since two

hash functions are used. If one of the hash functions is insecure, the entire construction does

not become insecure. These constructions can be extended to more than two hash functions.

Block ciphers are often used in an iterated construction as a round function. The popularity

of block ciphers used as round functions are due to the correlation between the requirements

set for hash functions and block ciphers. The use of block ciphers has the advantage that

the cost and effort of designing and analysing a new round function is drastically reduced,

provided that a trusted block cipher is used. An additional advantage when using a block

cipher as a round function is that block ciphers are designed to accommodate a secret key.

This is an advantage when constructing a MAC. Three disadvantages should be noted when

using a block cipher as a round function. The first disadvantage deals with the functional

requirement of speed. Hash functions that contain block ciphers as building blocks are slower

than dedicated hash functions. The second disadvantage is the introduction of additional

Appendix A

attacks, based on certain properties of blocks ciphers (see Chapter 3 Section 3.6). A third

disadvantage is that a number of hash functions have a block size of 64 bits. It is generally

believed that the hash length should equal 128 bits or more, in order to provide protection

against birthday attacks (see Chapter 3 Section 3.4).

A distinction is made between round functions for which the length of the chaining variable

is equal to the block length, and round functions for which the length of the chaining variable

is equal to twice the block length of the block cipher.

Before proceeding consider the following notation. Let E(K, Xi) denote the encryption of

message block Xi with key K.

Figure A.2 depicts a generic configuration for a block cipher used as a round function in a

hash function.

Note that three inputs, A, B, and C are available. Each input can take one of four possible

inputs, Xi, Hi-I, Xi EB Hi-lor a constant. Thus there are 43 = 64 possible configurations of

the construction presented in Figure A.2. A general expression for the above construction is

given by:

Ho IV

Hi E(A, B) EB C.

These structures were analysed in [3]. The result of this analysis is that only four of these

constructions are considered secure against all attacks. They are defined by the following

Appendix A

Hi E(u(Hi-r), Xd EB Xi

Hi E(u(Hi-r), (Xi EB Hi-r)) EB Xi EB Hi-I

Hi E(u(Hi-r), Xi) EB Hi~1 EB Xi

Hi E(u(Hi-r), (Xi EB Hi-I)) EB Xi

The function uO is a mapping from the ciphertext space to the key space. A visual represen-

tation of these constructions are presented in Figure A.3.

Figure A.3(a) is known as the Matyas hash scheme [70]. Figure A.3(c) is known as the

Preneel-Miyaguchi hash scheme. The dual of the scheme in Figure A.3(a) is known as the

Davies- Meyer scheme and is depicted in Figure A.4.

Appendix A

Two constructions based on a n bit cipher resulting in a 2 . n bit hash result are proposed in

[49]. These constructions are based upon the availability of a block cipher with a n-bit block

size and a 2 . n bit key. One such block cipher is IDEA. These constructions are considered

variants of the Davies-Meyer scheme mentioned earlier. The first is denoted the tandem

Davies-Meyer, and is shown in Figure A.5(a).

Go IV1

Ho IV2

Wi E(Gi-11IXi, Hi-d

Gi Gi-l EB E(XiIIWi-l, Gi-d

The Davies-Meyer abreast scheme is also defined in [49] and shown in Figure A.5(b). Ana-

lytically the construction is expressed as:

Go IV1

Ho IV;

Gi Gi-l EB E(XiIIHi-l, (Pi-d)

Hi Hi-l EB E(Gi-11IXi, (Hi-d)

Two additional schemes, which employ block ciphers to construct round functions with a

hash length equal to twice the block length, are MDC2 and MDC4. MDC2 is defined as

Appendix A

Ho 1VI

HI 11:2

Tli E(Hi-l, Xd
LTliliRTli

T2i E(Gi-l, Xd
LT2illRT2i

Hi LTlillRT2i

Gi LT2i IIRTli

LTxi Lefthand ~ bits of n bit block.

RTxi Righthand ~ bits of n bit block.

x lor 2.

MDC4 is defined as the application of two consecutive rounds of MDC2. Thus, the result is

that MDC2 is approximately twice as fast as MDC4. It is believed that MDC4 is more secure

than MDC2.

Block diagrammatic forms of MDC2 and MDC4 are presented in Figure A.6(a) and Figure

A.6(b) respectively.

Appendix A

As shown in Section 5.3 MACs can be based on iterative schemes, providing that the re-

sulting hash value is key dependent. Block ciphers are suitable for constructing MAC round

functions since block ciphers are designed to accommodate secret keys. Two constructions

based on blocks ciphers are available.

Appendix A

The block cipher used in CBC mode for a MAC round function construction is described as

follows:

A graphical representation of this construction for a MAC round function is shown in Figure

A.7(a). The block cipher construction used in CFB mode is described as follows:

Refer to Figure A.7(b) for a graphical representation of this construction. Note that in the

case of CFB, the final result has to be encrypted once again in order to remove the linear

dependence of the MAC on the last plaintext block. A third construction was proposed in

[71]. It is represented in Figure A.7(c) and is described below:

It is believed that this construction is harder to invert [2] than the previously mentioned

constructions. In [3] it is advised that, should encryption of the MAC be required, a different

key should be used for encryption purposes.

K E

Xi

Hi

(bl

A number of block ciphers have been proposed. However, not all block ciphers are suitable

for use as round functions in cryptographic hash functions. It should first be noted that the

security of the hash function constructed from a block cipher is based on the assumption

that the underlying block cipher is secure. Thus block ciphers which are considered insecure

should be avoided. In addition certain properties of block ciphers allow the resulting hash

function to be susceptible to specific attacks. These properties include:

The manner in which these properties are exploited is considered in Chapter 3, Section 3.5
and 3.6.

It is conceivable that the round function of a hash function can be based on a stream cipher.

This type of construction is hinted at in [69]. It may be possible to adapt the construction

presented in [72] to construct a round function for an iterated hash function. Little is known

of the security of hash function based on stream ciphers.

Traditionally MACs are based on block ciphers (see Section AA.1). Recently various tech-

niques for constructing hash functions from MDCs were proposed [29], [73], [74]. The

preference for the use of MDC based MACs over block cipher based MACs is based on the
following factors:

Appendix A

Speed of execution is an important functional requirement (see Chapter 4 Section 4.2.4).

The matter of export restrictions is a political one. Several countries, most notably the USA,

restrict the export of certain cryptographic functions. A large number of block ciphers are

covered by these restrictions. Thus, MACs based on block ciphers may not be exported to

other countries. It has been proposed that MACs are used in electronic transactions on the

Internet [5]. The Internet spans across the globe, and participants from different countries

may wish to engage in electronic banking transactions. Thus, MACs based on block ciphers

cannot be used for secure Internet Transactions, due to export restrictions. For this reason

MACs based on MDCs are preferred over MACs based on block ciphers, since MDCs are

not restricted by export controls. Because of these reasons MDC based MACs were adopted

in Kerberos, IPSec and SET [5] [29].

It should be remembered that MDCs were not designed to accommodate a key. Thus, when

constructing MACs from MDCs, care should be taken in the manner in which the key for

the MAC is introduced. The key should be introduced in such a manner that the resulting

hash value does not reveal any information of the secret key. This requirement is based on

the principles of confusion and diffusion as introduced by Shannon [46].

1. Affix construction.

2. IPSec recommendations

3. NMAC construction.

4. HMAC construction.

5. M Dx-MAC construction.

6. XOR-MAC construction.

Appendix A

The secret prefix construction was proposed independently in [75] and [76]. This construc-

tion requires that the secret key, K1, be prepended to the message X. Thus the prefix method

can be described as

h() Iterated MDC

II Concatenate.

A graphical representation of this construction is shown in Figure A.8(a). This construction

is considered insecure due to the message extension or padding attacks [75] [29]. A variant

of the prefix construction with MD5 is used in Kerberos V. This construction is denoted as

MD2.5 [77]. Concern is expressed over the security of this construction in [29].

This construction is described in [75]. The secret suffix construction appends the secret key

K2 to the message X before hashing. The construction is described as follows:

h()

II
Iterated MDC

Concatenate.

Appendix A

A graphical representation of this construction is shown in Figure A.8(b). A number of

attacks on this construction are described in [29]. If off-line attacks are allowed, an inter-

nal collision can be found in approximately O(2!}) off-line operations. A second attack is

possible if a second pre-image attack on the underlying MDC is possible. A third attack is

considered possible if t text-MAC pairs are known. The number of known text-MAC pairs

reduces the computational effort to construct a second pre-image from 0 (2n) to 0 (2 If).

The envelope construction is described in [75]. This construction prepends the secret key,

K1, and appends the secret key, K2, to the message, X, before hashing (see Figure A.8(b».

The construction is described as follows:

h0 Iterated MDC

II Concatenate.

In [75] it is claimed that the effective key length for the envelope construction is equal to the

length of K1 (k1 bits) added to the length of K2 (k2 bits). Thus according to [75] O(2k1 +k2)

operations are required to establish a collision. This is shown to be incorrect in [29]. In [29]

it is demonstrated that the effective key length is less than or equal ki + 1, for whichever

is the larger of k1 or k2• This implies that the number of operations required to establish a

collision are less than or equal to O(2ki+1) for whichever is the larger, k1 or k2• Thus the

security gained by selecting K1 =1= K2 is less than expected. A divide and conquer attack

on the envelope method is described that establishes an internal collision and then searches

exhaustively for the two respective keys.

Secret Prefix
K1

Secret Suffix
K2

Secret Prefix
K1

Secret Suffix
K2

The attacks on the affix constructions are easier than attacks on an ideal MAC. However,

provided that the hash function, hO, is collision resistant, the attacks on the affix construc-

tions remain computationally infeasible. Key recovery attacks on these constructions are
presented in [31].

In [28] three MAC constructions based on MD5 are presented. These proposals were sub-

mitted to the IPSec working group. The constructions could be viewed as variations of the

affix methods described in Section A.5.!. The three proposals are summarised below:

Appendix A

MD50 MD5 hash function

"
Concatenate

K1 128 bit key

K2 128 bit key

X Message.

MD50 MD5 hash function

II Concatenate

K1 128 bit key

p 384 padding bits

X Message.

MD50

II

The second proposal is effectively the envelope method with K1 padded to form a 512 bit

block. In addition it differs from the envelope method since K1 =1= K2• Thus, K1 specifies

an initial value for the MD5 hash algorithm applied to the message block. Reservation has

been expressed on the use of the initial value as a secret key [3]. The key is however also

appended to the message for hashing. This should increase the security of the resultant

Appendix A

MAC. This technique is considered susceptible to a divide and conquer attack as described

in Section A.5.1.

In [28] it is stated that the chosen message attack requires 264 chosen texts. In [29] it shows

that this can be reduced to 256.5 known text-MAC pairs if it is assumed that the number of

trailing blocks, s, are 216.

NMAC is an acronym for nested message authentication code. It is defined in [73] and [78].

It is a generic construction of the following form:

hKi 0 Keyed hash function or a MAC

K1 Key 1

K2 Key 2

X Message.

The NMAC construction does not propose a technique for constructing a keyed hash func-

tion. The security of this construction is based on the conditions imposed on the compress

function of the keyed hash function and the iterated hash function itself.

The HMAC construction is a variant of the NMAC construction for which the IV is fixed.

This construction requires no changes to the MDC used for constructing a MAC. The con-

struction involves a single key, K, of length k bits. The use of a single key is advantageous

with regard to key management and its associated problems. The HMAC construction is

defined in [73], [74], [78] as:

HMAC(X) = h(K EBopadllh(K EBipadIIX))

Appendix A

h()
K

opad

ipad

The key, K, padded with 0's to form an elementary block

The byte OX3 6 repeated to form a elementary block

The byte OX5C repeated to form a elementary block

Bitwise XOR

k ffi ipad ~ k ffi opad ~
'" '"'" '"s:o s:o

(JQ ~(l)

to to
~ ~~ ~ HMAC

Perform Result
Hash

n-bit

Operation
hash value

Padded
Message

Padding bits

The security of the HMAC construction is based on the security of NMAC. The relation

between these two constructions are found in the construction of the two derived keys K 1

=opad ffiK and K2 =ipad ffiK. Thus HMAC is a specific instance of NMAC. It is stated

in [73] that attacks against HMAC may exist, but that these attacks are not necessarily ap-

plicable to NMAC. Note that effectively using the same key, K, in both applications of h()

does not weaken the construction significantly due to the existence of the divide and conquer

attack mentioned in Section A.5.1.

Appendix A

The HMAC construction has become the mandatory construction for use in authentication

transforms for Internet security protocols. The HMAC construction is also specified in the

SET specification [5]. At present all of the known generic attacks against HMAC are con-

sidered infeasible [73], [74], [78].

This construction is suggested in [29]. The following design goals were set for this construc-

tion:

1. The secret key should be involved at the beginning, at the end, and in every iteration

of the hash function.

5. The approach should be generic, i.e. should apply to any hash function based on the

same principles as MD4.

This construction can be used with MD5, RIPEMD or SHA. MD4 is omitted due to the attack

described in [17]. In this section M Dx refers to one of the three hash functions mentioned

above. Let M Dx refer to an implementation of M Dx with both padding and appending

length omitted. The resulting construction utilises three 128 bit (16 byte) constants, To, T1

and T2• These constants are used to construct three additional 768 bit constants Uo, U1 and

U2• If the key is shorter than 128 bits, the key is expanded to be of a 128 bits length. Once

this is accomplished, three sub-keys, Ko, K1 and K2, are derived as follows:

The constants Ui are required to ensure that the hash is computed over two iterations of the

hash function, thus increasing the difficulty of retrieving K from any of the Ki, even if two

of the sub-keys are known (see Figure A. 10). The mapping from K to Ki is not bijective,

but the reduction in entropy is believed to negligible [29].

Appendix A

128 Bits [I K _

384 BHs [.-------,

U·

384 Bits ['---_I ----'

128 Bits [I=====K=====

Once this step is completed the leftmost 128 bits of the sub-key K1 is split into four 32-bit

blocks denoted as Kdi], with a ::; i ::;3 (see Figure A.ll).

32 Bits
r-----l

K1=

2. K1 [i mod 4] is added modulo 232 to the constants used in round i of each iteration of

MDx.

3. Following the last block after normal processing of M Dx (i.e. including the padding

and addition of message length), append an additional 512 bit block. The additional

block is derived from the constants To, T1, T2 and the sub-key K2 as shown below:

Appendix A

IV = KOn
Padded

Message

no512bits 3
8-

..:!::;

Appended
K2

512 bits

Let s represent the number of common trailing blocks in two messages. In [29] it is stated

that if the MAC length m = ~,a forgery attack requires O(8
2;1) chosen text-MAC pairs and

O()8:1) known texts. Thus M Dx-MAC is more secure than the envelope method described

in Section A.5.l. It is also stated in [29] that the divide and conquer attack described in

Section A.5.1 is not applicable to M Dx-MAC.

This construction is described in [79] and [80] and resembles the multiple message hash

scheme described in [68] and [69]. This scheme does not show how to construct a MAC

from a MDC, but does make use of keyed MDCs in the construction of the MAC. A generic

description of this scheme is presented below:

Appendix A

Fk 0 Keyed pseudorandom function

EEl Bitwise XOR

)(~essage

m Number of elementary blocks in message)(

)([i] Elementary message block i i E {I, 2, 3, ... m}.

Thus the message is divided into elementary block lengths and then processed by a pseudo-

random function. The pseudorandom function, PRF, should be keyed. It is suggested in [79]

and [80] that the PRF could be either a block cipher, or a keyed hash function. The result

of the PRF for each message block is then XOR'ed with the previous result. Once the last

XOR is performed, the ~AC is calculated. Figure A.13 presents a visual interpretation of

this scheme.

Concrete proposals for schemes making use of this construction are presented in [79] and

[80], followed by analysis of the security of these proposals. This scheme is highly paral-

leliseable and has the additional advantages of out of order verification. If only a single block

in a message is changed, the output can be updated without recomputing the entire ~AC.

A number of hash function constructions are under consideration for standardisation. A

summary of these can be found in chapter 3 and chapter 5 of [81]. The multipart standard,

ISO/lEe 10118, contains the following proposals.

Appendix A

ISOIIEC 10118-1: This part of the standard provides general definitions and background to

the remainder of the standard. The iterative hash function construction as defined in

Section 5.3 is contained in this part of the proposed standard.

ISOIIEC 10118-2: This part of the standard specifies hash functions constructed from block

ciphers. Two methods are specified. The first method is the general construction

specified in Section A.4.1 with the block length equal to the hash length (see Figure

A.2). The second is equal to MDC2 (see Figure A.6(a».

ISOIIEC 10118-3: This part of the standard describes the following three dedicated hash

functions, SHS (secure hash standard), RIPEMD-128 and RIPEMD-160.

ISOIIEC 10118-4: This part of the standard specifies two hash algorithms based on modular

arithmetic, namely MASH-I and MASH-2.

In addition to the above standard, ISO/IEC 9797 specifies a method for using a key and a

n-bit block cipher to construct a MAC. The process is summarised as follows:

The construction specified in ISO/IEC 9797 corresponds to the construction shown in Figure
A.7(a).

When selecting a hash function construction the construction should be evaluated according

to the requirements set in Chapter 4. A trade-off between cost, security and speed has to be

made. The generic attacks described in Chapter 3 should be infeasible.

A final matter of interest is the matter of injectivity, surjectivity and bijectivity of the round

function used in an iterated scheme. In [30] it is stated that an injective function should never

be used in an iterated hash function. In [82] the question is raised whether a bijective round

Appendix A

function allows stronger security claims. This question is answered in part in [29], where

it is shown that the known and chosen text attack is not applicable to MACs with bijective

round functions. The influence of the bijectivity of the round functions of MDCs and MACs

on the security of the entire construction remains unresolved.

This appendix contains an implementation of the MD4 hash algorithm as described in [10]

and [44].

/* This header file includes the functions used to implement the MD4 algorithm
* as described in Crypto 91 by R.Rivest
*
* Author: P.R. Kasselman
* Date: August 20, 1996
* Filename: md4.h
* Copyright: Ciphertec cc */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define AO Ox67452301
#define BO Oxefcdab89
#define co Ox98badcfe
#define DO Oxl0325476
#define ROOT2 Ox5a827999
#define ROOT3 Ox6edgebal

#define FSI 3
#define FS2 7
#define FS3 11
#define FS4 19

#define GSI 3
#define GS2 5
#define GS3 9
#define GS4 13

#define HSI 3
#define HS2 9
#define HS3 11
#define HS4 15

int PadBit(int argc, char filename[], unsigned int *PadLen);
void Init(unsigned int *A, unsigned int *B, unsigned int *C, unsigned int *D);
void SaveParms(unsigned int A, unsigned int B, unsigned int C,

unsigned int D, unsigned int *AA, unsigned int *BB,
unsigned int *CC, unsigned int *DD);

void ReadArray(int argc, char filename[], unsigned int M[], int n);
unsigned int Rotate(unsigned int x, unsigned int s);
unsigned int FunctionF(Unsigned int X, unsigned int Y, unsigned int z);
unsigned int FunctionG(unsigned int X, unsigned int Y, unsigned int z);
unsigned int FunctionH(unsigned int X, unsigned int Y, unsigned int z);
void ROundl(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int Xl]);
void Round2(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int Xl]);

Appendix B Source Code: Implementation of MD4

void ROund3(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *0,

unsigned int Xl]);
void Update(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *0,

unsigned int AA, unsigned int BB, unsigned int CC,
unsigned int 00);

void PrintSignature(unsigned int A, unsigned int B, unsigned int C,
unsigned int D);

void PrintReverSe(unsigned int X);
void RestoreFile(char filename[], unsigned int FileLen);

/* This routine performs the bit padding as requied for the M04 algorithm */
int PadBit(int argc, char filename[], unsigned int *PadLen)

unsigned int i,j;
unsigned int FileLen, FileBits, PadBits, PadBytes, TempInt;
unsigned char temp;
FILE *fp;

if(argc != 2)
{

printf("No file specified\n");
exi t (1) ;

}

if (!fp)
{

printf("Error opening file\n");
fclose(fp) ;
exit (1) ;

}

while (! feof (fp))
{

fread(&temp, sizeof(unsigned char), 1, fp);
if(!feof(fp»

{
FileLen++;

}

Source Code: Implementation of MD4

PadBits = abs((448 - FileBits) % 512);
PadBytes = PadBits/8;

/* Pad bit "1" */
temp = Ox80;
fwrite(&temp, sizeof(unsigned char), I, fp);

/* Pad zero bits */
temp = 0;
for(i=O; i<PadBytes-l; i++)

{

fwrite(&temp, sizeof(unsigned char), I, fp);
}

/* Append the size of the file
* (For this implimentation no file larger than 2~32 is expected)*/

Templnt = FileBits;
fwrite(&Templnt, sizeof(unsigned int), I, fp);
Templnt = OxOO;
fwrite(&Templnt, sizeof(unsigned int), I, fp);

void Init(unsigned int *A, unsigned int *B, unsigned int *C, unsigned int *D)
{

*A AO;
*B BO;
*c CO;
*D DO;

void SaveParms(unsigned int A, unsigned int B, unsigned int C,
unsigned int D, unsigned int *AA, unsigned int *BB,
unsigned int *CC, unsigned int *DD)

*AA A;
*BB B;
*CC C;
*DD D;

Source Code: Implementation of MD4

void ReadArray(int argc, char filename[], unsigned int M[], int n)
{

unsigned int i;
unsigned int TempInt;
FILE *fp;

if(argc != 2)
{

printf("No file specified\n");
exit(l) ;

}

if(!fp)
{

printf("Error opening file\n");
fclose (fp) ;
exit(l) ;

}

for(i=O; i<n; i++)
{

fread(&TempInt, sizeof(unsigned int), 1, fp);
M[i] TempInt;

void ROundl(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int Xl])

*A Rotate((*A + FunctionF(*B,*C,*D) + X [0]), 3) ;
*D Rotate ((*D + FunctionF(*A,*B,*C) + X [1]), 7) ;
*c Rotate((*C + FunctionF(*D,*A,*B) + X [2]), 11) ;
*B Rotate ((*B + FunctionF(*C,*D,*A) + X [3]), 19) ;

*A Rotate ((*A + FunctionF(*B,*C,*D) + X[4]), 3) ;
*D Rotate ((*D + FunctionF(*A,*B,*C) + X [5]), 7) ;
*C Rotate ((*C + FunctionF(*D,*A,*B) + X[6]), 11) ;
*B Rotate ((*B + FunctionF(*C,*D,*A) + X[7]), 19) ;

*A Rotate ((*A + FunctionF(*B,*C,*D) + X [8]), 3) ;
*D Rotate ((*D + FunctionF(*A,*B,*C) + X [9]), 7) ;
*c Rotate((*C + FunctionF(*D,*A,*B) + X [10]), 11) ;
*B Rotate ((*B + FunctionF(*C,*D,*A) + X[I1]), 19);

*A Rotate ((*A + FunctionF(*B,*C,*D) + X [12]), 3) ;
*D Rotate((*D + FunctionF(*A,*B,*C) + X[13]), 7) ;
*c Rotate((*C + FunctionF(*D,*A,*B) + X[14]) , 11) ;
*B Rotate ((*B + FunctionF(*C,*D,*A) + X[IS]) , 19);

Source Code: Implementation of MD4

void Round2(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int Xl])

*A Rotate «*A + FunctionG(*B,*C,*D) + X[O] + ROOT2) , 3) ;
*D Rotate((*D + FunctionG(*A,*B,*C) + X[4] + ROOT2) , 5) ;
*C Rotate ((*C + FunctionG(*D,*A,*B) + X [8] + ROOT2) , 9) ;
*B Rotate ((*B + FunctionG(*C,*D,*A) + X[12] + ROOT2) , 13);

*A Rotate ((*A + FunctionG(*B,*C,*D) + X[I] + ROOT2) , 3) ;
*D Rotate ((*D + FunctionG(*A,*B,*C) + X[5] + ROOT2) , 5) ;
*c Rotate ((*C + FunctionG(*D,*A,*B) + X [9] + ROOT2) , 9) ;
*B Rotate«*B + FunctionG(*C,*D,*A) + X[13] + ROOT2) , 13);

*A Rotate ((*A + FunctionG(*B,*C,*D) + X[2] + ROOT2) , 3) ;
*D Rotate ((*D + FunctionG(*A,*B,*C) + X[6] + ROOT2) , 5) ;
*C Rotate ((*C + FunctionG(*D,*A,*B) + X[10] + ROOT2) , 9) ;
*B Rotate ((*B + FunctionG(*C,*D,*A) + X[14] + ROOT2) , 13);

*A Rotate ((*A + FunctionG(*B,*C,*D) + X [3] + ROOT2) , 3) ;
*D Rotate ((*D + FunctionG(*A,*B,*C) + X[7] + ROOT2) , 5) ;
*C Rotate ((*C + FunctionG(*D,*A,*B) + X[11] + ROOT2) , 9) ;
*B Rotate ((*B + FunctionG(*C,*D,*A) + X[15] + ROOT2) , 13) ;

void ROund3(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int Xl])

*A Rotate ((*A + FunctionH(*B,*C,*D) + X[O] + ROOT3) , 3) ;
*D Rotate ((*D + FunctionH(*A,*B,*C) + X[8] + ROOT3) , 9) ;
*C Rotate ((*C + FunctionH(*D,*A,*B) + X[4] + ROOT3) , 11) ;
*B Rotate ((*B + FunctionH(*C,*D,*A) + X[12] + ROOT3) , 15) ;

*A Rotate ((*A + FunctionH(*B,*C,*D) + X[2] + ROOT3) , 3) ;
*D Rotate ((*D + FunctionH(*A,*B,*C) + X[10] + ROOT3) , 9) ;
*C Rotate ((*C + FunctionH(*D,*A,*B) + X[6] + ROOT3) , 11) ;
*B Rotate ((*B + FunctionH(*C,*D,*A) + X [14] + ROOT3) , 15);

*A Rotate ((*A + FunctionH(*B,*C,*D) + X[I] + ROOT3) , 3) ;
*D Rotate ((*D + FunctionH(*A,*B,*C) + X[9] + ROOT3) , 9) ;
*C Rotate ((*C + FunctionH(*D,*A,*B) + X [5] + ROOT3), 11) ;
*B Rotate((*B + FunctionH(*C,*D,*A) + X[13] + ROOT3) , 15);

*A Rotate ((*A + FunctionH(*B,*C,*D) + X[3] + ROOT3) , 3) ;
*D Rotate((*D + FunctionH(*A,*B,*C) + X[11] + ROOT3) , 9) ;
*C Rotate ((*C + FunctionH(*D,*A,*B) + X[7] + ROOT3) , 11) ;
*B Rotate ((*B + FunctionH(*C,*D,*A) + X[15] + ROOT3) , 15) ;

Source Code: Implementation of MD4

unsigned int FunctionF(unsigned int X, unsigned int Y, unsigned int Z)
{

unsigned int FunctionG(unsigned int X, unsigned int Y, unsigned int Z)
{

unsigned int FunctionH(unsigned int X, unsigned int Y, unsigned int Z)
{

unsigned int Rotate(unsigned int X, unsigned int s)
{

temp = X;
X = (X « s) I (temp» (32-s));
return(X) ;

void Update(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int AA, unsigned int BB, unsigned int cc,
unsigned int DD)

*A *A + AA;
*B *B + BB;
*c *c + CC;
*D *D + DD;

void PrintSignature(unsigned int A, unsigned int B, unsigned int C,
unsigned int D)

printf("Signature: ");
PrintReverse(A);
PrintReverse(B);

Source Code: Implementation of MD4

PrintReverse(C);
PrintReverse(D);
printf ("\n ") ;

for(i=O; i<4; i++)
{

printf("%.2x", x & OxOOOOOOff);
x = x » 8;

unsigned char TempChar;
unsigned char *array;
unsigned int i;
FILE *fp;

if (! fp)
{

printf("Error opening file\n");
fclose(fp);
exit(l);

}

for(i=O; i<FileLen; i++)
{

fread(&TempChar, sizeof(unsigned char), I, fp);
array[i] ~ TempChar;

}

if (! fp)
{

printf("Error opening file\n");
fclose (fp) ;
exit(l) ;

}

Source Code: Implementation of MD4

for(i=O; i<FileLen; i++)
{

TernpChar = array[i];
fwrite(&TernpChar, sizeof(unsigned char), 1, fp);

}

int rnd4(int argc, char filenarne[])
{

unsigned int i,j;
unsigned int FileLen, PadLen;
unsigned int A, B, C, D, AA, BB, CC, DD;
unsigned int *M, *X;

M (unsigned int *)cal1oc(PadLen/4, sizeof(unsigned int»;
X (unsigned int *)calloc(16, sizeof(unsigned int»;

for(i=O; i<PadLen/64; i++)
{

for(j=O; j<16; j++)
{

Roundl(&A, &B, &C, &D, X);
Round2(&A, &B, &C, &D, X);
Round3(&A, &B, &C, &D, X);

Appendix B Source Code: Implementation of MD4

Update(&A, &B, &C, &D, AA, BB, CC, DD);
}

free (M) ;
free(X) ;

unsigned int RotateRight(unsigned int X, unsigned int s)
{

temp = X;
X = (X » s) I (temp« (32-s));
return(X);

APPENDIX C: SOURCE CODE: ATTACK ON ALL THREE
ROUNDS OF MD4

This is an implementation of the attack on MD4 as described by Dobbertin in [14]. Algo-

rithm 6.3 is used for finding admissible inner almost-collisions in this implementation. This

attack yields two messages that hash to the same value in less than one minute.

/* This a working version of the full attack on MD4. The alternative algorithm
* for establishing inner almost-collisions is used in this program.
*
* Author: P.R. Kasselman
* Filename: md4gaS.c
* Date: 11 October 1996
* Copyright: Ciphertec (1996) */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "md4.h"

#define A 0
#define B 1
#define C 2
#define D 3

int main()
{

unsigned int i,j,k,l, Iteration;
unsigned int Bi, Ci, U, Ut, V, Vt, W, Wt, Z, zt;
unsigned int As, Ds, Bs, Bst, Cs, Cst;
unsigned int Condition, NewZ, NewW, Final, NextPhase;
unsigned int DeltaW, DeltaV;
unsigned int TempInt;
unsigned int ABCDO[47] [4], ABCD1[47] [4], Delta19[4];
unsigned int X1[16], X2[16];
unsigned int Flag23, Flag27, DispFlag23, DispFlag27;
unsigned int LastCondition, Collision, CollisionFlag;
FILE *fp;

TheTime = time(NULL);
srand(TheTime) ;

U = -1;

Ut = 0;

V = Oxfffdfffe;
vt V;

wt Oxfdffdfff;
W = Wt + OxeffffOOO;

Bi 0;
Ci 0;

while(NextPhase != 0)
{

Bst = rand();
Bs Bst + Rotate(l,2S);

Cs rand();
Cst = Cs + Rotate(l,S);

NewW = FunctionF(Vt,Ut,Bi) - FunctionF(V,U,Bi);
DeltaW = Rotate(Wt,2l) - Rotate(W,21);

NewZ = 1;
Condition = 1;

while(Condition != -1)
{

while(NewZ !=O)
{

Zt = rand () I OxOOOOOOOO;
Z = zt + Ox00001001;

NewZ = FunctionF(Wt,Vt,ut) - FunctionF(W,V,U) -
Rotate(Zt,13) + Rotate(Z,13);

}

while(Deltav != 0)
{

As = rand();
DeltaV = FunctionG(AS,zt,Wt) - FunctionG(As,Z,W);

Ternplnt = 1;
Final = 1;

while(Final != 0)
{

while(Ternplnt != 0)
{

Cs = rand();
Cst Cs + Rotate(l,S);

Bst rand();
Bs = Bst + Rotate(l,2S);

Ds = rand();
TempInt = FunctionG(Ds,As,Zt) - FunctionG(Ds,As,Z) - W + wt

- Rotate(Cst,23) + Rotate(Cs,23);

Final = FunctionG(Cst,Ds,AS) - FunctionG(CS,Ds,As) - Z + zt
- Rotate(Bst,19) + Rotate(Bs,19) + 1;

if(NextPhase == 0)
{

printf("An admissable inner collision was found\n");
}

ABCDO [11] [C] Ci;
ABCD1 [11] [C] Ci;

ABCDO [11] [B] Bi;
ABCD1 [11] [B] Bi;

ABCDO[IS] [A] U;
ABCD1[IS] [A] Ut;

ABCDO[IS] [D] V;
ABCD1[IS] [D] Vt;

ABCDO[IS] [C] W;
ABCD1[IS] [C] Wt;

ABCDO[IS] [B] z;
ABCD1[IS] [B] Zt;

ABCDO[19] [A] As;
ABCD1[19] [A] As;

ABCDO[19] [D] Ds;
ABCD1[19] [D] Ds;

ABCDO[19] [C] Cs;
ABCD1[19] [C] Cst;

ABCDO[19] [B] Bs;
ABCD1[19] [B] Bst;

Appendix C

Xl[13]
X2[13]

rand() ;
Xl [13] ;

Xl[14] RotateRight(ABCDO[15] [C],ll) - ABCDO[ll] [C] -
FunctionF(ABCDO[15] [D],ABCDO[15] [A],ABCDO[ll] [B]);

Xl[15] RotateRight(ABCDO[15] [B],19) - ABCDO[ll] [B] -
FunctionF(ABCDO[15] [C],ABCDO[15] [D],ABCDO[15] [A]);

Xl[O] = RotateRight(ABCDO[19] [A],3) - ABCDO[15] [A] -
FunctionG(ABCDO[15] [B],ABCDO[15] [C],ABCDO[15] [D]) - ROOT2;

Xl[4] RotateRight(ABCDO[19] [D],5) - ABCDO[15] [D] -
FunctionG(ABCDO[19] [A],ABCDO[15] [B],ABCDO[15] [C]) - ROOT2;

X2[4] = RotateRight(ABCDl[19] [D],5) - ABCDl[15] [D] -
FunctionG(ABCDl[19] [A],ABCDl[15] [B],ABCDl[15] [C]) - ROOT2;

Xl[8] = RotateRight(ABCDO[19] [C],9) - ABCDO[15] [C] -
FunctionG(ABCDO[19] [D],ABCDO[19] [A],ABCDO[15] [B]) - ROOT2;

X2[8] = RotateRight(ABCDl[19] [C],9) - ABCDl[15] [C] -
FunctionG(ABCDl[19] [D],ABCDl[19] [A],ABCDl[15] [B]) - ROOT2;

Xl[12] = RotateRight(ABCDO[19] [B],13) - ABCDO[15] [B] -
FunctionG(ABCDO[19] [C],ABCDO[19] [D],ABCDO[19] [A]) - ROOT2;

X2[12] = RotateRight(ABCDl[19] [B],13) - ABCDl[15] [B] -
FunctionG(ABCDl[19] [C],ABCDl[19] [D],ABCDl[19] [A]) - ROOT2;

ABCDO[ll] [D] = RotateRight(ABCDO[15] [D],7) -
FunctionF(ABCDO[15] [A],ABCDO[ll] [B],ABCDO[ll] [C]) - Xl[13];

ABCDO[ll] [A] RotateRight(ABCDO[15] [A] ,3) -
FunctionF(ABCDO [11] [B],ABCDO [11] [C] ,ABCDO [11] [D]) - Xl [12];

CollisionFlag = 1;
Flag23 = 0;
DispFlag23 = 0;

Appendix C

Flag27 = 0;
DispFlag27 = 0;

while(CollisionFlag != 0)
{

Iteration++;

if(Flag23 == 0)
{

Xl[l]
X2[1]

rand ();
Xl [1] ;

Xl [5] rand ();
X2 [5] Xl [5] ;

else if (DispFlag23
printf("Xl and X5
DispFlag23 = 1;

0) {

are fixed\n");

if(Flag27 == 0)
{

Xl [2] = rand ();
X2 [2] = Xl [2] ;

else if (DispFlag27 == 0)
printf("X2 is fixed\n");
DispFlag27 = 1;

Xl[3]
X2[3]

rand() ;
Xl [3] ;

ABCDO[O] [A] AO;
ABCDO[O] [B] BO;
ABCDO[O] [C] CO;
ABCDO[O] [D] DO;

ABCDO[3] [A] Rotate«ABCDO[O] [A] +
FunctionF(ABCDO[O] [B],ABCDO[O] [C],ABCDO[O] [D]) +
Xl [0]), 3);

ABCDO[3] [D] = Rotate«ABCDO[O] [D] +
FunctionF(ABCDO[3] [A],ABCDO[O] [B],ABCDO[O] [C]) +
Xl [1]), 7);

ABCDO[3] [C] = Rotate«ABCDO[O] [C] +
FunctionF(ABCDO[3] [D],ABCDO[3] [A],ABCDO[O] [B])
+ Xl [2]), 11);

ABCDO[3] [B] = Rotate«ABCDO[O] [B] +
FunctionF(ABCDO[3] [C],ABCDO[3] [D],ABCDO[3] [A])
+ Xl [3]), 19);

ABCDO[7] [A] = Rotate«ABCDO[3] [A] +
FunctionF(ABCDO[3] [B],ABCDO[3] [C],ABCDO[3] [D]) +

ABCDO[7] [D] = Rotate«ABCDO[3] [D] +
FunctionF(ABCDO[7] [A],ABCDO[3] [B],ABCDO[3] [C]) +
Xl [5]), 7);

X1[6] = (RotateRight(ABCDO[7] [C], 11) - ABCDO[3] [C] -
FunctionF(ABCDO[7] [D],ABCDO[7] [A],ABCDO[3] [B]»;

X1[7] (RotateRight(ABCDO[7] [B], 19) - ABCDO[3] [B] -
FunctionF(ABCDO[7] [C],ABCDO[7] [D],ABCDO[7] [A]));

Templnt = Rotate«ABCDO[7] [A] +
FunctionF(ABCDO[7] [B],ABCDO[7] [C],ABCDO[7] [D]) +
Xl [8]), 3);

Xl[9] = (RotateRight(ABCDO[11] [D], 7) - ABCDO[7] [D] -
FunctionF(ABCDO[11] [A],ABCDO[7] [B],ABCDO[7] [C]»;

X1[10] = (RotateRight(ABCDO[11] [C], 11) - ABCDO[7] [C] -
FunctionF(ABCDO [11] [D],ABCDO [11] [A],ABCDO [7] [B]»;

X1[ll] (RotateRight(ABCDO[11] [B], 11) - ABCDO[7] [B] -
FunctionF(ABCDO[11] [C],ABCDO[11] [D],ABCDO[11] [A]»;

ABCDO[23] [A] = Rotate«ABCDO[19] [A] +
FunctionG(ABCDO[19] [B],ABCDO[19] [C],ABCDO[19] [D])

+ Xl[l] + ROOT2), G81);

ABCD1[23] [A] = Rotate«ABCDl[19] [A] +
FunctionG(ABCD1[19] [B],ABCDl[19] [C],ABCD1[19] [D])

+ X2[1] + ROOT2), G81);

if(Co11ision == 0)
{

ABCDO[23] [D] = Rotate«ABCDO[19] [D] +
FunctionG(ABCDO[23] [A],ABCDO[19] [B],ABCDO[19] [C])

Appendix C

ABCDl[23] [D] = Rotate((ABCDl[19] [D] +
FunctionG(ABCDl[23] [A],ABCDl[19] [B],ABCDl[19] [C])

+ X2[5] + ROOT2), GS2);

if(Collision == 0)
{

ABCDO[23] [C] = Rotate((ABCDO[19] [C] +
FunctionG(ABCDO[23] [D],ABCDO[23] [A],ABCDO[19] [B])
+ Xl[9] + ROOT2), GS3);

ABCDl[23] [C] = Rotate((ABCDl[19] [C] +
FunctionG(ABCDl[23] [D],ABCDl[23] [A],ABCDl[19] [B])
+ X2[9] + ROOT2), GS3);

if(Collision == -1*Rotate(1,14»
{

ABCDO[23] [B] = Rotate((ABCDO[19] [B] +
FunctionG(ABCDO[23] [C],ABCDO[23] [D],ABCDO[23] [A])

+ Xl[13] + ROOT2), GS4);

ABCDl[23] [B] = Rotate((ABCDl[19] [B] +
FunctionG(ABCDl[23] [C],ABCDl[23] [D],ABCDl[23] [A])
+ X2[13] + ROOT2), GS4);

if(Collision == Rotate(1,6»
{

ABCDO[27] [A] = Rotate((ABCDO[23] [A] +
FunctionG(ABCDO[23] [B],ABCDO[23] [C],ABCDO[23] [D])

+ Xl[2] + ROOT2), GSl);

ABCDl[27] [A] = Rotate((ABCDl[23] [A] +
FunctionG(ABCDl[23] [B],ABCDl[23] [C],ABCDl[23] [D])

+ X2[2] + ROOT2), GSl);

Appendix C

if(Collision
{

ABCDO[27] [D] = Rotate«ABCDO[23] [D] +
FunctionG(ABCDO[27] [A],ABCDO[23] [B],ABCDO[23] [C])

+ Xl[6] + ROOT2), GS2);

ABCD1[27] [D] = Rotate«ABCD1[23] [D] +
FunctionG(ABCD1[27] [A],ABCD1[23] [B],ABCD1[23] [C])

+ X2[6] + ROOT2), GS2);

if(Collision == 0)
{

ABCDO[27] [C] = Rotate«ABCDO[23] [C] +
FunctionG(ABCDO[27] [D],ABCDO[27] [A],ABCDO[23] [B])
+ Xl[lO] + ROOT2), GS3);

ABCDl[27] [C] = Rotate«ABCDl[23] [C] +
FunctionG(ABCDl[27] [D],ABCDl[27] [A],ABCDl[23] [B])
+ X2[10] + ROOT2), GS3);

if(Collision == -1*Rotate(l,23))
{

ABCDO[27] [B] = Rotate«ABCDO[23] [B] +
FunctionG(ABCDO[27] [C],ABCDO[27] [D],ABCDO[27] [A])

+ Xl[14] + ROOT2), GS4);

ABCDl[27] [B] = Rotate«ABCDl[23] [B] +
FunctionG(ABCDl[27] [C],ABCDl[27] [D],ABCDl[27] [A])
+ X2[14] + ROOT2), GS4);

if(Collision == Rotate(l,19))
{

ABCDO[31] [A] = Rotate«ABCDO[27] [A] +
FunctionG(ABCDO[27] [B] ,ABCDO[27] [C],ABCDO[27] [D])

+ Xl[3] + ROOT2), GSl);

Appendix C

FunctionG(ABCD1[27] [B],ABCD1[27] [C],ABCD1[27] [D])
+ X2[3] + ROOT2), G81);

if(Co1lision 0)
{

ABCDO[31] [D] = Rotate«ABCDO[27] [D] +
FunctionG(ABCDO[31] [A],ABCDO[27] [B],ABCDO[27] [C])

+ X1[7] + ROOT2), G82);

ABCD1[31] [D] = Rotate«ABCD1[27] [D] +
FunctionG(ABCD1[31] [A],ABCD1[27] [B],ABCD1[27] [C])

+ X2[7] + ROOT2), G82);

if(Collision == 0)
{

ABCDO[31] [C] = Rotate«ABCDO[27] [C] +
FunctionG(ABCDO[31] [D],ABCDO[31] [A],ABCDO[27] [B])
+ X1[11] + ROOT2), G83);

ABCD1[31] [C] = Rotate«ABCD1[27] [C] +
FunctionG(ABCD1[31] [D],ABCD1[31] [A],ABCD1[27] [B])
+ X2[11] + ROOT2), G83);

if(Collision == -1)
{

ABCDO[31] [B] = Rotate«ABCDO[27] [B] +
FunctionG(ABCDO[31] [C],ABCDO[31] [D],ABCDO[31] [A])

+ X1[15] + ROOT2), G84);

ABCD1[31] [B] = Rotate«ABCD1[27] [B] +
FunctionG(ABCD1[31] [C],ABCD1[31] [D],ABCD1[31] [A])
+ X2[15] + ROOT2), G84);

if(Collision == 1)
{

FunctionH(ABCDO[31] [B],ABCDO[31] [C],ABCDO[31] [D])
+ Xl[O] + ROOT3), HSl);

ABCDl[35] [A] = Rotate«ABCDl[31] [A] +
FunctionH(ABCDl[31] [B],ABCDl[31] [C],ABCDl[31] [D])

+ X2[0] + ROOT3), HSl);

if(Collision 0)
{

ABCDO[35] [D] = Rotate«ABCDO[31] [D] +
FunctionH(ABCDO[35] [A],ABCDO[31] [B],ABCDO[31] [C])

+ Xl[8] + ROOT3), HS2);

ABCDl[35] [D] = Rotate«ABCDl[31] [D] +
FunctionH(ABCDl[35] [A],ABCDl[31] [B],ABCDl[31] [C])

+ X2[8] + ROOT3), HS2);

if(Collision == 0)
{

ABCDO[35] [C] = Rotate«ABCDO[31] [C] +
FunctionH(ABCDO[35] [D],ABCDO[35] [A],ABCDO[31] [B])
+ Xl[4] + ROOT3), HS3);

ABCDl[35] [C] = Rotate«ABCDl[31] [C] +
FunctionH(ABCDl[35] [D],ABCDl[35] [A],ABCDl[31] [B])
+ X2[4] + ROOT3), HS3);

if(Collision == 0)
{

ABCDO[35] [B] = Rotate«ABCDO[31] [B] +
FunctionH(ABCDO[35] [C],ABCDO[35] [D],ABCDO[35] [A])

+ Xl[12] + ROOT3), HS4);

ABCDl[35] [B] = Rotate«ABCDl[31] [B] +
FunctionH(ABCDl[35] [C],ABCDl[35] [D],ABCDl[35] [A])
+ X2[12] + ROOT3), HS4);

if(Collision 0)
{

CollisionFlag = 0;

Appendix C

printf("\tXl\t\t X2\n");
for(i=O; i<16; i++)

{
printf("(%u)\t%.8X\t %.8X\n", i, Xl[i], X2[i]);

}

if(lfp)
{

printf("Error opening file\n");
fclose (fp) ;
exi t (1) ;

}

for(i=O; i<16; i++)
{

TernpInt = Xl[i];
fwrite(&TernpInt, sizeof(unsigned int), I, fp);

}

if (! fp)
{

printf("Error opening file\n");
fclose(fp) ;
exit(l) ;

}

for(i=O; i<16; i++)
{

TernpInt = X2[i];
fwrite(&TernpInt, sizeof(unsigned int), I, fp);

}

Appendix C

rnd4(2,"Xl.dat");
rnd4(2, "X2 .da t");

#define AO Ox67452301
#define BO Oxefcdab89
#define co Ox98badcfe
#define DO Oxl0325476

#define FSI 7
#define FS2 12
#define FS3 17
#define FS4 22

#define GSI 5
#define GS2 9
#define GS3 14
#define GS4 20

#define HSI 4
#define HS2 11
#define HS3 16
#define HS4 23

#define ISI 6
#define IS2 10
#define IS3 15
#define IS4 21

int T[64] = {Oxd76aa478, Oxe8c7b756, Ox242070db, Oxclbdceee, Oxf57cOfaf,
Ox4787c62a, Oxa8304613, Oxfd469501, Ox698098d8, Ox8b44f7af, Oxffff5bbl,
Ox895cd7be, Ox6b901122, Oxfd987193, Oxa679438e, Ox49b40821, Oxf61e2562,
Oxc040b340, Ox265e5a51, Oxe9b6c7aa, Oxd62fl05d, Ox02441453, Oxd8ale681,
Oxe7d3fbc8, Ox21elcde6, Oxc33707d6, Oxf4d50d87, Ox455a14ed, Oxage3e905,
Oxfcefa3f8, Ox676f02d9, Ox8d2a4c8a, Oxfffa3942, Ox8771f681, Ox6d9d6122,
Oxfde5380c, Oxa4beea44, Ox4bdecfa9, Oxf6bb4b60, Oxbebfbc70, Ox289b7ec6,
Oxeaa127fa, Oxd4ef3085, Ox04881d05, Oxd9d4d039, Oxe6db9ge5, Oxlfa27cf8,
Oxc4ac5665, Oxf4292244, Ox432aff97, Oxab9423a7, Oxfc93a039, Ox655b59c3,
Ox8fOccc92, Oxffeff47d, Ox85845ddl, Ox6fa87e4f, Oxfe2ce6eO, Oxa3014314,
Ox4e0811al, Oxf7537e82, Oxbd3af235, Ox2ad7d2bb, Oxeb86d391};

char *PadBit(char *Message, unsigned int *Length);
void char_2_int_array(char *Message, unsigned int *MessageInt, unsigned in-
t Length);
unsigned int *AppendLength(unsigned int *MessageInt,

unsigned int *AppendLength, unsigned int OrgLen);
unsigned int MD5_F(unsigned int X, unsigned int Y, unsigned int Z);
unsigned int MD5_G(unsigned int X, unsigned int Y, unsigned int Z);
unsigned int MD5_H(unsigned int X, unsigned int Y, unsigned int Z);
unsigned int MD5_I(unsigned int X, unsigned int Y, unsigned int Z);
void InitMD5Buf(unsigned int *A, unsigned int *B,
unsigned int *C, unsigned int *D);
void SaveMD5Parms(unsigned int A, unsigned int B, unsigned int C,

unsigned int D, unsigned int *AA, unsigned int *BB,
unsigned int *CC, unsigned int *DD);

void ROundl(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int XX);

Implementation: MD5

void ROund2(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int *X);
void Round3(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int *X);
void ROund4(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int *X);
void Update(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int AA, unsigned int BB, unsigned int CC,
unsigned int DD);

unsigned int RotateLeft(unsigned int X, unsigned int s);
void Printsignature(unsigned int *A);
void PrintReverse(unsigned int X);
unsigned int Reverse(unsigned int X);
void MDS(char *Message, unsigned int Length, unsigned int *Hash);

int i,j;
int PaddedSize, AppendSize;
unsigned int *Messagelnt, *X;
unsigned int A, B, C, D, AA, BB, CC, DD;

X =(unsigned int *)calloc(16, sizeof(unsigned int));
if(X == NULL)

{
printf("Error Allocating Memory\n");
exit(l) ;

}

/* Determine the number of Padding bytes required */
Message = PadBit(Message, &PaddedSize);

Messagelnt =(unsigned int *)calloc(PaddedSize/(sizeof(unsigned int)), size-
of (unsigned int));

char_2_int_array(Message, Messagelnt, PaddedSize);
AppendSize = PaddedSize;

for(i=O; i<PaddedSize/(sizeof(unsigned int)); i++)
{

Messagelnt[i] = Reverse(Messagelnt[i]);
}

for(i=O; i«AppendSize*8)/S12; i++)
{

Implementation: MD5

for(j=O; j<16; j++)
{

Roundl(&A, &B, &C, &D, X) ;
Round2(&A, &B, &C, &D, X) ;
Round3(&A, &B, &C, &D, X) ;
Round4(&A, &B, &C, &D, X) ;
Update(&A, &B, &C, &D, AA, BB, CC, DD) ;

}

Hash[O] A;
Hash[l] B;
Hash[2] C;
Hash[3] D;

free (X);
free(Messagernt);

/* This routine performs the bit padding as requied for the MD4 algorithm */
char *PadBit(char *Message, unsigned int *Length)
{

char *TempPtr;
unsigned int i,j;
unsigned int FileLen, FileBits, PadBits, PadBytes;
unsigned char temp;

/* Compute the number of bits needed for padding */
PadBits = abs((448 - FileBits) % 512);
if (PadBits == 0)

{

PadBits = 5l2*(FileBits/5l2) + 512;

TempPtr = (char *)realloc(Message, (*Length+PadByteS»;
if(TempPtr == NULL)

{

printf("Error Reallocating Memory\n");
exit(l) ;

}

TempPtr[*Length] = Ox80;
/* Pad zero bits */
for(i=l; i<PadBytes; i++)

{

Implementation: MD5

TempPtr[*Length+i]
]

Message = (char *)realloc(TempPtr, (*Length+PadByteS»i
if(Message == NULL)

{
printf("Error Reallocating Memory\n")i
exit(l)i

]

unsigned int *AppendLength(unsigned int *MessageInt,
unsigned int *AppendLength, unsigned int OrgLen)

int ii
unsigned int *TempPtri

TempPtr = (unsigned int *)rea1loc(MessageInt, *AppendLength)i
if(TempPtr == NULL)

{

printf("Error Reallocating Memory\n")i
exit(l) i

}

TempPtr[*AppendLength/sizeof(unsigned int)-2]
TempPtr[*AppendLength/sizeof(unsigned int)-l]

OrgLen*8i
o i

MessageInt = (unsigned int *)realloc(TempPtr, *AppendLength)i
if(MessageInt == NULL)

{

printf("Error Reallocating Memory\n")i
exit(1) i

}

void char_2_int_array(char *Message, unsigned int *MessageInt,
unsigned int Length)

for(i=Oi i«Length/sizeof(unsigned int»i i++)
{

fOr(j=Oi j<sizeof(unsigned int)i j++)
{

MessageInt[i] = (MessageInt[i] « 8*sizeof(char» I
(Message[i*sizeof(unsigned int) + j] & OxOOOOOOff)i

Implementation: MD5

unsigned int MD5_F(unsigned int X, unsigned int Y, unsigned int Z)
{

unsigned int MD5_G(unsigned int X, unsigned int Y, unsigned int Z)
{

unsigned int MD5_H(unsigned int X, unsigned int Y, unsigned int Z)
{

unsigned int MD5_I(unsigned int X, unsigned int Y, unsigned int Z)
{

void InitMD5Buf(unsigned int *A, unsigned int *B,
unsigned int *C, unsigned int *D)
{

*A AO;
*B BO;
*c CO;
*D DO;

void SaveMD5Parrns(unsigned int A, unsigned int B, unsigned int C,
unsigned int D, unsigned int *AA, unsigned int *BB,
unsigned int *CC, unsigned int *DD)

*AA A;
*BB B;
*CC C;
*DD D;

void ROundl(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int *X)

*A *B + RotateLeft((*A + MD5_F(*B,*C,*D) + X[O] + T [0]), FSI) ;
*D *A + RotateLeft ((*D + MD5_F (*A, *B, *C) + X[l] + T [I]), FS2) ;
*c *D + RotateLeft«*C + MD5_F(*D,*A,*B) + X[2] + T [2]), FS3) ;
*B *C + RotateLeft ((*B + MD5_F(*C,*D, *A) + X[3] + T[3]), FS4) ;

*A *B + RotateLeft ((*A + MD5_F(*B,*C,*D) + X[4] + T [4]), FSI) ;
*D *A + RotateLeft((*D + MD5_F(*A,*B,*C) + X [5] + T [5]), FS2) ;
*c *D + RotateLeft«*C + MD5_F(*D,*A, *B) + X[6] + T [6]), FS3) ;

Implementation: MD5

*B *c + RotateLeft«*B + M05_F (*c, *0, *A) + X[7] + T [7]), FS4) ;

*A *B + RotateLeft((*A + M05_F(*B, *c, *0) + X[8] + T [8]) , FS1) ;
*0 *A + RotateLeft ((*0 + M05_F(*A, *B, *C) + X[9] + T[9]), FS2) ;
*c *0 + RotateLeft«*C + M05_F (*0, *A, *B) + X[lO] + T[lO]), FS3) ;
*B *c + RotateLeft«*B + M05_F(*c, *0, *A) + X[ll] + T[ll]), FS4) ;

*A *B + RotateLeft ((*A + M05_F(*B, *c, *0) + X[12] + T [12]) , FS1) ;
*0 *A + RotateLeft ((*0 + M05_F(*A,*B,*C) + X[13] + T [13]), FS2) ;
*c *0 + RotateLeft((*c + M05_F (*0, *A, *B) + X[14] + T [14]) , FS3) ;
*B *c + RotateLeft«*B + M05_F(*C, *0, *A) + X[15] + T[15]), FS4) ;

void Round2(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-

t *0,
unsigned int *X)

*A *B + RotateLeft«*A + M05_G(*B, *C, *0) + X[l] + T[16]), GS1) ;
*0 *A + RotateLeft ((*0 + M05_G(*A,*B,*C) + X[6] + T[17]), GS2) ;
*c *0 + RotateLeft«*C + M05_G(*O, *A, *B) + X[ll] + T[18]), GS3) ;
*B *c + RotateLeft«*B + M05_G(*C,*O,*A) + X[O] + T[19]), GS4) ;

*A *B + RotateLeft«*A + M05_G(*B,*C,*0) + X[5] + T[20]), GS1) ;
*0 *A + RotateLeft ((*0 + M05_G(*A,*B,*C) + X[lO] + T[21]), GS2) ;
*c *0 + RotateLeft«*C + M05_G(*O,*A,*B) + X[15] + T[22]), GS3) ;
*B *c + RotateLeft«*B + M05_G(*C,*O,*A) + X[4] + T[23]), GS4) ;

*A *B + RotateLeft«*A + M05_G(*B, *C, *0) + X[9] + T[24]), GS1) ;
*0 *A + RotateLeft((*0 + M05_G(*A,*B,*C) + X[14] + T[25]), GS2) ;
*c *0 + RotateLeft((*C + M05_G(*O,*A,*B) + X[3] + T [26]), GS3);
*B *c + RotateLeft«*B + M05_G(*C,*O,*A) + X[8] + T [27]), GS4) ;

*A *B + RotateLeft ((*A + M05_G(*B, *C, *0) + X[13] + T[28]), GS1) ;
*0 *A + RotateLeft((*0 + M05_G(*A, *B, *C) + X[2] + T[29]), GS2) ;
*c *0 + RotateLeft((*C + M05_G(*O,*A,*B) + X[7] + T[30]), GS3) ;
*B *c + RotateLeft«*B + M05_G(*C,*O,*A) + X[12] + T[31]), GS4) ;

void Round3(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *0,

unsigned int *X)

*A *B + RotateLeft«*A + M05_H(*B, *C, *0) + X[5] + T[32]), HS1) ;
*0 *A + RotateLeft((*0 + M05_H(*A,*B,*C) + X[8] + T [33]), HS2) ;
*c *0 + RotateLeft«*C + M05_H(*O, *A, *B) + X[ll] + T[34]), HS3) ;
*B *c + RotateLeft«*B + M05_H (*C, *0, *A) + X[14] + T[35]), HS4) ;

*A *B + RotateLeft ((*A + M05_H(*B, *C, *0) + X[l] + T[36]), HS1) ;
*0 *A + RotateLeft ((*0 + MO5_H (*A, *B, *C) + X[4] + T [37]) , HS2) ;
*c *0 + RotateLeft ((*C + M05_H(*O, *A, *B) + X[7] + T[38]), HS3) ;
*B *c + RotateLeft«*B + M05_H (*C, *0, *A) + X[lO] + T[39]), HS4) ;

*A *B + RotateLeft«*A + M05_H(*B,*C,*O) + X[13] + T[40]), HS1) ;
*0 *A + RotateLeft ((*0 + M05_H(*A, *B, *C) + X[O] + T[41]), HS2) ;
*c *0 + RotateLeft«*C + M05_H(*O, *A, *B) + X[3] + T[42]), HS3);

Electrical and Electronic Engineering 249

*B *C + RotateLeft((*B + MD5_H(*C, *D,*A) + X[6] + T[43]), H84) ;

*A *B + RotateLeft((*A + MD5_H(*B,*C,*D) + X[9] + T[44]), H81) ;
*D *A + RotateLeft((*D + MD5_H(*A, *B, *C) + X[12] + T[45]), H82) ;
*C *D + RotateLeft((*C + MD5_H(*D,*A,*B) + X[15] + T[46]), H83);
*B *C + RotateLeft((*B + MD5_H(*C, *D, *A) + X[2] + T[47]), H84) ;

void Round4(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int *X)

*A *B + RotateLeft((*A + MD5_I(*B,*C,*D) + X[O] + T [48]), 181) ;
*D *A + RotateLeft((*D + MD5_I(*A,*B,*C) + X[7] + T[49]), 182) ;
*C *D + RotateLeft((*C + MD5_I(*D,*A,*B) + X[14] + T [50]), 183);
*B *C + RotateLeft((*B + MD5_I(*C,*D,*A) + X[5] + T[51]), 184);

*A *B + RotateLeft((*A + MD5_I(*B,*C,*D) + X[12] + T[52]), 181) ;
*D *A + RotateLeft((*D + MD5_I(*A,*B,*C) + X[3] + T[53]), 182);
*C *D + RotateLeft((*C + MD5_I(*D, *A,*B) + X[10] + T [54]), 183);
*B *C + RotateLeft((*B + MD5_I(*C,*D,*A) + X[I] + T[55]), 184);

*A *B + RotateLeft((*A + MD5_I(*B,*C,*D) + X[8] + T[56]), 181) ;
*D *A + Rota teLeft ((*D + MD5_I(*A,*B,*C) + X[15] + T[57]), 182) ;
*C *D + Rota teLeft ((*C + MD5 _I(*D,*A,*B) + X[6] + T[58l), 183);
*B *C + RotateLeft ((*B + MD5 _I(*C,*D,*A) + X[13] + T[59]), 184);

*A *B + RotateLeft((*A + MD5_I(*B,*C,*D) + X[4] + T[60]), 181) ;
*D *A + RotateLeft ((*D + MD5_I(*A,*B,*C) + X[ll] + T[61]), 182);
*C *D + RotateLeft((*C + MD5_I (*D, *A, *B) + X[2] + T[62]), 183);
*B *C + RotateLeft((*B + MD5_I(*C,*D,*A) + X[9] + T[63]), 184);

void Update(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int AA, unsigned int BB, unsigned int CC,
unsigned int DD)

*A *A + AA;
*B *B + BB;
*c *c + CC;
*D *D + DD;

unsigned int RotateLeft(unsigned int X, unsigned int s)
{

temp = X;
X = (X < < s) I (temp > > (32-s));
return(X) ;

Implementation: MD5

void printSignature(unsigned int *A)
{

for(i=O; i<4; i++)
{

PrintReverse(A[i]);
}

for(i=O; i<4; i++)
{

printf("%.2x", X & OXOOOOOOff);
X = X » 8;

unsigned int Reverse(unsigned int X)
{

int i;
unsigned int Y;

Y=O;

for(i=O; i<4; i++)
{

Y (Y«8) I X & OxOOOOOOff;
X X» 8;

}

return (Y) ;

#undef AO
#undef BO
#undef CO
#undef DO

#undef FSI
#undef FS2
#undef FS3
#undef FS4

#undef GSI
#undef GS2
#undef GS3
#undef GS4

#undef HSI
#undef HS2
#undef HS3
#undef HS4

Implementation: MD5

#undef 181
#undef 182
#undef 183
#undef 184

This section of the appendix contains the C source code used in the first phase of the attack

onMD5.

/* This program is a reconstruction of Dobbertin's attack on MD5.
*
* Author: P.R. Kasselman
* Date: 16/06/1997
* Filename: md5an04.c */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

unsigned int Rotate(unsigned int X, unsigned int s);
unsigned int RotateRight(unsigned int X, unsigned int s);
unsigned int F(Unsigned int X, unsigned int Y, unsigned int Z);
unsigned int G(unsigned int X, unsigned int Y, unsigned int Z);
unsigned int GG(unsigned int x, unsigned int cl, unsigned int dl,
unsigned int c2, unsigned int d2, unsigned int a);
unsigned int GGG(unsigned int x, unsigned int aI, unsigned int cl,
unsigned int a2, unsigned int c2, unsigned int b);
unsigned int NG(unsigned int x, unsigned int dl, unsigned int al,
unsigned int d2, unsigned int a2, unsigned int c);
unsigned int searchl(unsigned int x, unsigned int cl, unsigned int dl,

unsigned int c2, unsigned int d2, unsigned int a,
unsigned int Target, unsigned int *data);

unsigned int search2(unsigned int x, unsigned int aI, unsigned int cl,
unsigned int a2, unsigned int c2, unsigned int b,
unsigned int Target, unsigned int *data);

unsigned int search3(unsigned int x, unsigned int dl, unsigned int aI,
unsigned int d2, unsigned int a2, unsigned int c,
unsigned int Target, unsigned int *data);

#define FSI 7
#define FS2 12
#define FS3 17
#define FS4 22

#define GSl 5
#define GS2 9
#define GS3 14
#define GS4 20

#define EPSI Ox08000000
#define EPS2 OxfffffeOO

#define MAX OxOOlOOOOO

int main()
{

unsigned int i, j, k, 1;
unsigned int x,konsti

Source Code: Analysis ofMD5

unsigned int datal[MAX], data2[MAX], data3[MAX];
unsigned int b2,c2,a,bl,cl;
unsigned int AI5,BI5,CI5,DI5,AI9,BI9,CI9,DI9,A23,B23,C23,D23;
unsigned int BtI5,CtI5,AtI9,CtI9,DtI9,Dt23;
unsigned int DeltaXl4;
unsigned int DeltaAl9, DeltaCl9, DeltaDl9, DeltaCl5, DeltaBl5;
unsigned int BasicAl5, BasicBl5, BasicCl9;
unsigned int Stop, Phase, Test, Funny, MaxPhase, Y, alt;
unsigned int SearchCountl, SearchCount2, SearchCount3, SearchCount4;
unsigned int Diffl, Diff2, Diff3;
unsigned int Countl, Count2, Count3;
unsigned int Targetl, Target2, Target3;
unsigned int M[8];
time_t TheTime;

TheTime = time(NULL);
srandom(TheTime);

/* Specify the difference for Xl4 */
DeltaXl4 = Rotate(I,9);

M[O] OxOOOOOOOf;
M[l] OxOOOOOOff;
M[2] OxOOOOOfff;
M[3] OxOOOOffff;
M[4] OxOOOfffff;
M [5] OxOOffffff;
M [6] OxOfffffff;
M [7] Oxffffffff;

SearchCountl 0;
SearchCount2 0;
SearchCount3 0;
SearchCount4 0;

/* Make initial choices for D19, Dt19, D15, Cl5 and Ctl5 that is guaranteed
to satisfy the conditions imposed. */

Dl9 = OxOOOOOOOO;
Dtl9 = -1-Dl9;
DeltaDl9 = DtI9-DI9;

Cl9 = random() A Rotate(random(),l);
Ctl9 = CI9+EPSI;
DeltaCl9 = CtI9-CI9;

Dl5 = Rotate(I,16)-Rotate(I,25);
Cl5 = Dl5 - 1;
Ctl5 = Rotate(Rotate(CI5-DI5,15)+DeltaXI4,17)+DI5;
DeltaCl5 = CtI5-CI5;

Source Code: Analysis of MD5

Stop = 0;
Count3 = 0;
while(Stop 0)
{

if(Phase == 0)
{

MaxPhase = 0;
SearchCountl ~ 0;
SearchCount2 = 0;

SearchCount3 0;
SearchCount4 = 0;

/* Choose A15 randomly */
A15 = random() ~ Rotate(random(),l);

DeltaB15 = Rotate(F(ct15,D15,A15)-F(C15,D15,A15),22)
+ Rotate(Ct15-C15,0);

/* Choose B15 randomly */
B15 = random() ~ Rotate(random(),l);

/* Compute Bt15 based on the random choice of B15 */
Bt15 = DeltaB15 + B15;

/* Determine Delta A19 from (3) */
DeltaA19 = Rotate(G(Bt15,Ct15,D15)-G(B15,C15,D15),5)
+ Rotate(Bt15-B15,0);

/* Choose C19 randomly */
C19 = random() ~ Rotate(random(),l);;

Ct19 = C19+EPS1;
}

if(Phase > 0)
{

/* Choose A15 to be close to the previous "good" value */
Diffl = random()&random()&random()&random();
A15 = BasicA15 ~ Diffl;

/* Determine Delta B15 based from (2) */
DeltaB15 = Rotate(F(Ct15,D15,A15)-F(C15,D15,A15),22)
+ Rotate(Ct15-C15,0);

Source Code: Analysis of MD5

/* Choose B15 to be close to the previous "good" value */
Diff2 = random()&random()&random()&random();
B15 = BasicB15 ~ Diff2;

/* Compute Bt15 based on the random choice of B15 */
Bt15 = DeltaB15 + B15;

/* Determine Delta A19 from (3) */
DeltaA19 = Rotate(G(Bt15,Ct15,D15)-G(B15,C15,D15),5)
+ Rotate(Bt15-B15,O);

/* Choose C19 randomly */
Diff3 ~ random()&random()&random()&random();
C19 = BasicC19 ~ Diff3;

Ct19 = C19+EPSl;
}

/* Set a target */
Targetl = Rotate(-DeltaA19,12) - Rotate(-DeltaA19-EPSl,12) + DeltaB15;

/* For the given target determine if any solutions exists, and if so,
* how many solutions exists. */

/* Find valid values for A19 and implicitly At19 */
Countl 0;
Countl = searchl(x,C19,D19,Ct19,Dt19,DeltaA19,Targetl,datal);

/* The array datal
for(i=O; i<Countl;
{

A19
At19

now contains all valid values of A19 */
i++)

datal[i];
datal[i] + DeltaA19;

/* Find valid
Count2 = 0;
Count2 = search2(x,A19,C15,At19,Ct15,DeltaB15,Target2,data2);
for(j=O; j<Count2; j++)
{

B15
Bt15

data2[j];
data2[j] + DeltaB15;

/* Confirm if equation (3) holds */
Test = G(B15,C15,D15)-G(Bt15,Ct15,D15)
- Rotate(A19 - B15, 27)

+ Rotate(At19 - Bt1S, 27);
if (Test == 0)
{

/* Confirm if equation (2) holds */
Test = F(C1S,D1S,A1S) - F(Ct1S,D1S,A1S)
- Rotate(B1S-C1S,10)
+ Rotate(Bt1S-Ct1S,10);

if(Test == 0)
{

/* Now determine if equation (S) holds */
Test = G(D19,A19,B1S)-G(Dt19,At19,Bt1S)

- Rotate(C19 - D19, 18)
+ Rotate(Ct19 - Dt19, 18)
+ C1S - Ct1S;

if(((Test&M[0])==0)&&(Phase<2))
{

Phase = 1;
Funny = 1;
/*printf("Hit %d\n", Phase);*/

if(((Test&M[1])==0)&&(Phase<3))
{

Phase = 2;
Funny = 2;
/* printf("Hit %d\n", Phase);*/

}

if(((Test&M[2])==0)&&(Phase<4))
{

Phase = 3;
Funny = 3;
/*printf("Hit %d\n", Phase);*/

}

if(((Test&M[3])==0)&&(Phase<S))
{

Phase = 4;
Funny = 4;
/*printf("Hit %d\n", Phase);*/
SearchCount1++;

if(SearchCount1 > 10000)
{

SearchCount1 ~ 0;
Phase = 0;
printf("Resetting Process\n");

}

if(((Test&M[4])==0)&&(Phase<6))
{

Phase
Funny

Source Code: Analysis of MD5

Source Code: Analysis of MD5

SearchCount2++;
/*printf("Hit %d\n", Phase);*/

if(SearchCount2 > 10000)
{

SearchCount2 = 0;
Phase = 0;
printf("Resetting Process\n");

}

if«(Test&M[5])==0)&&(Phase<7»
{

Phase = 6;
Funny = 6;
SearchCount3++;

/*printf("Hit %d\n", Phase);*/
if(SearchCount3 > 10000)
{

SearchCount3 = 0;
Phase = 0;
printf("Resetting Process\n");

}

if«(Test&M[6])==0)&&(Phase<8»
{

Phase = 7;
Funny = 7;
SearchCount4++;

/*printf("Hit %d\n", Phase);*/
if(SearchCount4 > 16000)
{

SearchCount4 = 0;
Phase = 0;
printf("Resetting Process\n");

}

if(Test == 0)
{

printf("Checking Results\n");
Test = F(Ct15,D15,A15)
- F(C15,D15,A15)
- Rotate(Bt15-Ct15,10)
+ Rotate(B15-C15,10);

if(Test!=O)
{

printf("Error l\n");
exit(l) ;

}

Source Code: Analysis of MD5

Test = G(B1S,C1S,D1S)
- G(Bt1S,ct1S,D1S)
- Rotate(A19-B1S,27)
+ Rotate(At19-Bt1S,27);

if(Test!=O)
{

printf("Error 2\n");
exit (1) ;

}

Test = G(A19,B1S,C1S)
- G(At19,Bt1S,Ct1S)
- Rotate(D19-A19,23)
+ Rotate(Dt19-At19,23);

if(Test!=O)
{

printf("Error 3\n");
exit(1);

}

Test = G(D19,A19,B1S)
- G(Dt19,At19,Bt1S)
- Rotate(C19-D19,18)
+ Rotate(Ct19-Dt19,18)
+ C1S-Ct1S;

if(Test!=O)
{

printf("Error 4\n");
exi t (1) ;

}

/* Now that equations (1)-(7) are
* satisfied, determine if (8) is
* satisfied and if the error
* propagates as expected */

Target3 Rotate(-De1taA19,12)
- Rotate(-De1taA19-EPS1,12)
+ De1taB1S;

/* Find valid values for C19 and
* implicitly Ct19 */

Count3
Count3

0;
search3(x,D19,A19,Dt19,At19,DeltaC19,Target3,data3);

for(k=O; k<Count3; k++)
{

C19 = data3 [k];
Ct19 = data3[k] + EPS1;
B19 = C19 - DeltaA19;

Source Code: Analysis of MD5

/* Confirm if (6) holds */
Test = G(C19,D19,A19)

- G(Ct19,Dt19,At19)
+ B15 - Bt15
- Rotate(B19-C19,12)
+ Rotate(B19-Ct19,12);

if(Test != 0)
{

printf("Error 4\n");
exit(l) ;

}

/* Confirm if (7) holds */
Test = G(B19,C19,D19)

- G(B19,Ct19,Dt19)
+ A19 - At19;

if(Test != 0)
{

printf("Error 5\n");
exi t (1) ;

}

/* Determine if propagation of
* differences are as expected */

alt = 0;
if (alt==O)
{

for(l=O; 1<10; 1++)
{

A23 = random()
~ Rotate(random(),l);

D23 = random()
~ Rotate(random(),l);

Dt23 = D23 + EPS2;
Y = random()

~ Rotate(random(),l);

Test = Rotate(ct19
+ G(Dt23,A23,B19)

+ Y,14)
+ Dt23;

Test = Test - (Rotate(C19
+ G(D23,A23,B19)
+ Y,14)
+ D23);

if(Test != 0)
{

Phase = 0;

{
Test Rotate(Dt23-A23,23)

- Rotate(D23-A23,23);
Test = Test

- G(A23,BI9,CtI9)
+ G(A23,BI9,CI9);

Test = Test - (DtI9-DI9);

if(Test == 0)
{

Stop++;
printf("AIS
printf ("DIS
printf("CIS
/*printf("CtIS
printf("BIS
/*printf("BtIS
printf ("AI9
/*printf("AtI9
printf("DI9
/*printf("DtI9
printf("CI9
/*printf("CtI9
printf("BI9
printf("A23
/*printf("B23
printf("C23
printf("D23
printf("Dt23

exit(O) ;
}

Ox%8.8X;\n", AIS);
Ox%8.8X;\n", DIS);
Ox%8.8X;\n", CIS);
= Ox%8.8X;\n", CtIS);*/
Ox%8.8X;\n", BIS);
= Ox%8.8X;\n", BtIS);*/
Ox%8.8X;\n", AI9);
= Ox%8.8X;\n", AtI9);*/
Ox%8.8X;\n", DI9);
= Ox%8.8X;\n", DtI9);*/
Ox%8.8X;\n", CI9);
= Ox%8.8X;\n", CtI9);*/
Ox%8.8X;\n", BI9);
Ox%8.8X;\n", A23);
= Ox%8.8X;\n", B23);
Ox%8.8X;\n", C23);
Ox%8.8X;\n", D23);
Ox%8.8X;\n", Dt23);*/

}
if(Stop == 1)
{

printf("FOund a Solution\n");
}

/* Preserve the basic values */
if(Funny == Phase)
{
BasicAIS = A1S;

BasicBIS B1S;
BasicC19 = C19;

Source Code: Analysis of MD5

Source Code: Analysis of MD5

if(Phase > MaxPhase)
{

MaxPhase = Phase;
printf("Best Current Phase: %d\n" , MaxPhase);
printf("%d %d %d %d\n" , SearchCountl, SearchCount2,
SearchCount3,SearchCount4);
}

}

printf("Target: %8.8X\n", Targetl);
printf("Target: %8.8X\n", Target2);
printf("Number of solutions (7): %d\n", Countl);
printf ("Number of solutions (4a): %d\n", Count2);
printf ("Number of solutions (4b): %d\n", Count3);
printf("Number of Valid Solutions (3) %d\n", Stop);
return(O);

}

/* Hierdie deel kan so klein bietjie meer elegant gedoen word,
* maar a.g.v. tydbeperkings gaan ek nie nou daaraan karring nie */

unsigned int searchl(unsigned int x, unsigned int cl, unsigned int dl,
unsigned int c2, unsigned int d2, unsigned int a,
unsigned int Target, unsigned int *data)

int i;
static int index, count;

if (i~~0)
{

count = 0;

/* This is where you check the depth of the tree */
if(i~=32)
{

data [count] x;
count++;
return (count) ;

}

if(count >= MAX)
{

index- -;
return (count) ;

}

if(«(GG(x,cl,dl,c2,d2,a) - Target) » i) & OxOOOOOOOl)
{

Source Code: Analysis of MD5

searchl(x,cl,dl,c2,d2,a,Target,data);
}

if((((GG(x,cl,dl,c2,d2,a)-Target) » i) & OxOOOOOOOI) 0)
{

searchl(x,cl,dl,c2,d2,a,Target,data);
}

index- -;
return (count) ;

}

/* Soek oplossings vir vergelyking 4 */
unsigned int search2(unsigned int x, unsigned int aI, unsigned int cl,

unsigned int a2, unsigned int c2, unsigned int b,
unsigned int Target, unsigned int *data)

int i;
static int index, count;

if(i==O)
{

count = 0;

/* This is where you check the depth of the tree */
if(i==32)
{

data [count] x;
count++;
return (count) ;

}

if(count >= MAX)
{

index- -;
return (count) ;

}

if((((GGG(x,al,cl,a2,c2,b)-Target) » i) & OxOOOOOOOI) 0)
{

search2(x,al,cl,a2,c2,b,Target,data);
}

Source Code: Analysis of MD5

if(«(GGG(x,al,cl,a2,c2,b)-Target) » i) & OxOOOOOOOI) 0)
{

search2(x,al,cl,a2,c2,b,Target,data);
}

index--;
return (count) ;

}

/* Soek oplossings vir vergelyking (6) en (7) gekornbineer */
unsigned int search3(unsigned int x, unsigned int dl, unsigned int aI,

unsigned int d2, unsigned int a2, unsigned int c,
unsigned int Target, unsigned int *data)

int i;
static int index, count;

if(i==O)
{

count = 0;

/* This is where you check the depth of the tree */
if(i==32)
{

data [count] x;
count++;
return(count);

}

if(count >= MAX)
{

index--;
return (count) ;

}

if(«(NG(x,dl,al,d2,a2,c) - Target) » i) & OxOOOOOOOI) 0)
{

search3(x,dl,al,d2,a2,c,Target,data);
}

if(«(NG(x,dl,al,d2,a2,c)-Target) » i) & OxOOOOOOOI) 0)
{

search3(x,dl,al,d2,a2,c,Target,data);
}

Source Code: Analysis of MD5

index- -;
return(count);

}

unsigned int Rotate(unsigned int X, unsigned int s)
{

temp = X;
X = (X « s) I (temp» (32-s));
return(X);

unsigned int RotateRight(unsigned int X, unsigned int s)
{

temp = X;
X = (X » s) I (temp« (32-s));
return (X) ;

unsigned int F(unsigned int X, unsigned int Y, unsigned int Z)
{

unsigned int G(unsigned int X, unsigned int Y, unsigned int Z)
{

unsigned int GG(unsigned int x, unsigned int cl, unsigned int dl,
unsigned int c2, unsigned int d2, unsigned int a)
{

/* a is the difference DeltaA19. x is the basic value */
return(G(cl,dl,x)-G(c2,d2,x+a));

}

unsigned int GGG(unsigned int x, unsigned int aI, unsigned int cl,
unsigned int a2, unsigned int c2, unsigned int b)
{

/* b is the difference DeltaB15. x is the basic value */
return(G(al,x,cl)-G(a2,x+b,c2));

}

unsigned int NG(unsigned int x, unsigned int dl, unsigned int aI,
unsigned int d2, unsigned int a2, unsigned int c)
{

/* a is the difference DeltaAl9. x is the basic value */
return(G(x,dl,al)-G(x+c,d2,a2));

}

Source Code: Analysis of MD5

This section of the appendix contains the C source code used in the second phase of the

attack on MD5.

/* This is the program written by Hans Dobbertin to implement the attack on
* the last two rounds of MD5. */

#include <stdio.h>
#include <stdlib.h>

#define UL unsigned long
#define MAX 10000
#define shift(x,i) (UL)«(x)«(i»~«x»>(32-(i»»
#define f(x,y,z) «X)~(y)~(z»
#define F(x) (UL)(f(x+a,b2,c2)-f(x,bl,cl»
#define H(x) (UL)«(bl)~(x+a»+«b2)~(x+a»+«cl)~(x»+«c2)~(x»)

UL a,bl,cl,b2,c2,konsti
int *max,max_testi
UL **feldi
int suche(),suchh(),sucheb()i

main(int ac,char *av[])
{

int rr,kk,nn,jj,ii,inn,out,maxi2i
int countl,count2,count3,count4,count5,count6i
UL AO,Al,A2,BO,Bl,B2,CO,Cl,C2,DO,Dl,D2,K,KO,Ul,U2,Vl,V2,W1,W2,Zl,Z2,anfangi
UL A2_basic,B2_basic,C2_basic,D2_basic,C,Di
UL XO,Xl,X2,X3,X4,X5,X6,X7,X8,X9,XlO,Xll,X12,XX,dXi
UL Y7,Y8,Y9,YIO,Yll,Y12,X,dClO,Y,Z,U,UU,deltai
UL testO,testl,test2,test3,test4,test5,test6,test7,test8,test9i
UL epsl,eps2,eps3,eps4,tem,test,testlO,testlli
int phase,erfolg,shl,sh2,sh3,diffl,diff2,diff3,teml,tem2i
UL dAl,dBl,dDl,dCl,AA1,BB1,CC1,DD1,AA2,BB2,CC2,DD2,dXnulli

UL *feldO,*feldl,*feld2,*feld3,*feld4,*feld5,*feld6i
int Countl,Count2,Count3,versuch,flag,ind,maxi,ERFOLGi
int maxO=MAX,maxl=MAX,max2=MAX,max3=MAX,max4=MAX,max5=MAX,max6=MAXi
float quotienti

if(ac!=2)
{

fprintf(stderr,"Usage: %s seed\n",av[O])i
exit(l) i

}

if«feldO=(UL*)malloc(MAX*sizeof(UL»)=~NULL I I
(feldl=(UL*)malloc(MAX*sizeof(UL»)~=NULL I I
(feld2=(UL*)malloc(MAX*sizeof(UL)))==NULL I I

Source Code: Analysis of MD5

(feld3=(UL*)malloc(MAX*sizeof(UL)))==NULL I I
(feld4=(UL*)malloc(MAx*sizeof(UL)))==NULL I I
(feld5=(UL*)malloc(MAx*sizeof(UL)))==NULL I I
(feld6=(UL*)malloc(MAx*sizeof(UL)))==NULL)

{
fprintf(stderr,"Nicht genuegend speicher\n");
exit (1) ;

}

out=OxlOO;
inn=OxlOOO;
maxi=OxlO;
maxi2=lOOO;
ERFOLG=O;
versuch=O;

delta=shift(1,9);
BB1=O;
Bl=-l;
dBl=BBl-Bl;

testlO
testll
epsl
eps2
eps3
eps4

Ox80044000;
Ox40040000;

-Ox40004000;
-Ox80084000;
-OxFFFBFEOO;
-Ox40000200;

max_test=out;
erfolg=O;

LABEL_NEU:
A2~(rand()~shift(rand(),1));
C2=(rand()~shift(rand(),1));
C2=C2&Oxbffbbdff;
A2=A2&Oxbffbbdff;
D2=(A2+shift(epsl-eps4,31))~(rand()&rand()&rand()&rand());
C2=C2~Ox40004000;
D2=D2~Ox00000200;
A2=A2~Ox40004200;

test=f(C2+eps3,D2+eps4,O)-f(C2,D2,O)-testll;
if(test!=O)

{

goto LABEL_NEU;
}

test=f(C2+eps3,D2+eps4,A2+epsl)-f(C2,D2,A2)-testlO;
if(test!=O)

{

goto LABEL_NEU;

Source Code: Analysis of MD5

UU=(A2+eps1)~(B2+eps2);
U =A2~B2i
dC1=shift(C2-D2+eps3-eps4,16)-shift(C2-D2,16);
dC1=dC1-«D2+eps4)~UU)+(D2~U);
C1=(rand()~shift(rand(),1));
CC1 C1+dC1;
dD1 = -(CC1~UU)+(C1~U)+shift(D2-A2+eps4-eps1,21)-shift(D2-A2,21);

dxnull=(shift(A2-B2+eps1-eps2,28)-shift(A2-B2,28)+1+eps2)&1;
test=dXnull~«shift(B2+eps2-CC1,9)-shift(B2-C1,9))&1)~(dC1&1);

if(test==O)
{

konst=shift(D2-A2+eps4-epsl,21)-shift(D2-A2,21)-dD1;
b2=UU;
c2=O;
b1=Ui
c1=O;
a=dC1;
feld=&feldl;
max=&max1;

if(countl=suche())
{

for(nn=O; nn<maxi; nn++)
{

ind=(unsigned)rand()%count1;
C1=feldl [ind] ;
CC1=C1+dCl;
if(dXnull==«shift(dC1-dD1,16))&1))

{

dX = shift(dC1-dDl,16);
/*dX = shift(dC1-dD1,16)-shift(1,16);*/

}

if(dXnull!=«shift(dCl-dD1,16))&1))
{

konst=shift(B2+eps2-CC1,9)-shift(B2-C1,9)-dB1;
b2=CC1~BB1;
c2=O;
b1=C1~B1;
cl=Oi
a = dX;
feld=&feld2;
max=&max2;
max_test=inn;
if(count2=suche())

{

Source Code: Analysis of MD5

fprintf(stderr,"** %8d
fprintf(stderr,"** %8.8X
erfolg=l;

%8d %8d",countl,nn,count2);
%8.8X %8d\n",dCl,dDl,ERFOLG);

ind=(unsigned)rand()%count2;
X=feld2 rind] ;
XX=X+dX;
konst=shift(A2-B2+epsl-eps2,28)-shift(A2-B2,28)-2;
bl=(B2+eps2)~CCl;
b2=XX~BBl;
cl=(-B2-1)~Cl;
c2=(-X-l)~Bl;
a=dDl;
feld=&feld3;
max=&max3 ;
max_test=inn;
if(count3=sucheh(»

{

ERFOLG=ERFOLG+l;
fprintf(stderr,"LABEL_B %d\n",ERFOLG);
goto LABEL_B;

}

fprintf(stdout,"%d\n",ERFOLG);
fprintf(stdout,"A2 Ox%8.8X;\n",A2);
fprintf(stdout,"B2 Ox%8.8X;\n",B2);
fprintf(stdout,"C2 Ox%8.8X;\n",C2);
fprintf(stdout,"D2 Ox%8.8X;\n",D2);
fprintf(stdout,"Cl Ox%8.8X;\n",Cl);
fprintf(stdout,"dCl= Ox%8.8X;\n",dCl);
fprintf(stdout,"dDl= Ox%8.8X;\n\n",dDl);

erfolg=O;
flag=O;
max_test=Ox200000;
konst=shift(D2-A2+eps4-epsl,21)-shift(D2-A2,21)-dDl;
b2=UU;
c2=O;
bl=U;
cl=O;
a =dCl;
feld=&feldl;

Source Code: Analysis of MD5

max=&maxl;
if(countl=suche(»

{

for(nn=O; nn<maxi2; nn++)
{

ind=(unsigned)rand()%countl;
Cl=feldl[ind] ;
CC1=Cl+dCl;
if(dXnull==«shift(dCl-dDl,16»&1»

{

shift(dCl-dDl,16);
shift(dCl-dDl,16)-shift(1,16);*/

dX
/*dX

if(dXnull!=«shift(dCl-dDl,16»&1»
{

dX shift(dCl-dDl,16)+1;
}

konst=shift(B2+eps2-CC1,9)-shift(B2-Cl,9)-dBl;
b2=CC1~BB1;
c2=O;
bl=Cl~Bl;
cl=O;
a=dX;
feld=&feld2;
max=&max2;
if(count2=suche(»

{
/*fprintf(stderr,"II. ** %8d %8d %8d %8.8X\n",countl,nn,count2,dDl);*/
for(kk=O; kk<count2; kk++)

{

ind=(unsigned)rand()%count2;
X=feld2 [ind] ;
XX=X+dX;
konst=shift(A2-B2+epsl-eps2,28)-shift(A2-B2,28)-2;
bl=(B2+eps2)~CC1;
b2=XX~BB1;
cl=(-B2-1)~Cl;
c2=(-X-l)~Bl;
a=dDl;
feld=&feld3;
max=&max3;
if(count3=sucheh(»

for(rr=O; rr<count3; rr++)
{

ind=(unsigned)rand()%count3;
Dl=feld3 [ind] ;
DD1=Dl+dDl;
test=dX-(shift(CC1-DD1,16)-shift(Cl-Dl,16»;
if(test==O)

{
Al=Dl~X~Bl;
AA1=DD1~XX~BB1;

Source Code: Analysis of MD5

dAl=AAl-Al;
test=(shift(AAI-BBl,28)-shift(Al-Bl,28)-1)&1;
if(test==O)

flag=l;
konst=shift(DDl-AAl,21)-shift(Dl-Al,21);
b2=AAl;
c2=BBl;
bl=Al;
cl=Bl;
a=O;
feld=&feld4;
max=&max4;
C=rand();
test = f(AAl,BBl,C)-f(Al,Bl,C);
test = test-shift(DDI-AAl,21)+shift(Dl-Al,21);
if((test&Oxffff)==O)

{
fprintf(stderr,"def = i8.8x id\n",test,ERFOLG);

}

if(count4=sucheb(»
{

test = f(D2+eps4,A2+epsl,B2+eps2)-f(D2,A2,B2);
test = test-shift(C2-D2+eps3-eps4,16)+shift(C2-D2,16)+dCl;
if(test!=O)

{

fprintf(stderr,"ERRORl\n");
exi t (1) ;

test = f(A2+epsl,B2+eps2,CCl)-f(A2,B2,Cl);
test = test-shift(D2-A2+eps4-epsl,21)+shift(D2-A2,21)+dDl;
if(test!=O)

{

fprintf(stderr,"ERROR2\n");
exit(l) ;

test = f(B2+eps2,CCl,DDl)-f(B2,Cl,Dl);
test = test-shift(A2-B2+epsl-eps2,28)+shift(A2-B2,28)+dAl;
if(test!=O)

{

fprintf(stderr,"ERROR3\n");
exit(l) ;

test = f(CCl,DDl,AAl)-f(Cl,Dl,Al);
test = test-shift(B2-CCl+eps2,9)+shift(B2-Cl,9)+dBl;
if(test!=O)

{
fprintf(stderr,"ERROR4\n");
exit(l) ;

Source Code: Analysis of MD5

test = f(DDl,AAl,BBl)-f(Dl,Al,Bl);
test = test-shift(CCl-DDl,16)+shift(Cl-Dl,16);
if(test!=O)

{
fprintf(stderr,"ERROR5\n");
exit(l) ;

C=feld4[O];
test = f(AAl,BBl,C)-f(Al,Bl,C);
test = test-shift(DDI-AAl,21)+shift(Dl-Al,21);
if(test!=O)

{

fprintf(stderr,"ERROR6\n");
exit(l) ;

D=shift(shift(AAI-BBl,28)-shift(Al-Bl,28)-1,31)AC;
test = f(BBl,C,D)-f(Bl,C,D);
test = test-shift(AAI-BBl,28)+shift(Al-Bl,28);
if(test!=O)

{

fprintf(stderr,"A2 Ox%8.8X;\n",A2);
fprintf(stderr,"B2 Ox%8.8X;\n",B2);
fprintf(stderr,"C2 Ox%8.8X;\n",C2);
fprintf(stderr,"D2 Ox%8.8X;\n\n",D2);
fprintf(stderr,"epsl= Ox%8.8X;\n",epsl);
fprintf(stderr,"eps2- Ox%8.8X;\n",eps2);
fprintf(stderr,"eps3= Ox%8.8X;\n",eps3);
fprintf(stderr,"eps4- Ox%8.8x;\n",eps4);
fprintf(stderr,"dCl = Ox%8.BX;\n",dCl);
fprintf(stderr,"ddl = Ox%8.BX;\n",dDl);
fprintf(stderr," **** gef. ****\n");
fprintf(stderr,"AAl Ox%8.8x;\n",AAl);
fprintf(stderr,"Al Ox%8.8x;\n",Al);
fprintf(stderr,"BBl Ox%8.8X;\n",BBl);
fprintf(stderr,"Bl Ox%8.8x;\n",Bl);
fprintf(stderr,"CCl Ox%8.8X;\n",CCl);
fprintf(stderr,"Cl Ox%8.8X;\n",Cl);
fprintf(stderr,"DDl Ox%8.8X;\n",DDl);
fprintf(stderr,"Dl Ox%8.8x;\n",Dl);
fprintf(stderr,"C Ox%8.8X;\n",C);
fprintf(stderr,"D Ox%8.8X;\n",D);

fprintf(stdout,"A2
fprintf(stdout,"B2
fprintf(stdout,"C2
fprintf(stdout,"D2
fprintf(stdout,"epsl=
fprintf(stdout,"eps2=
fprintf(stdout,"eps3=

Ox% 8.8X;\n" ,A2);
Ox%8.8X;\n",B2);
Ox%8.8X;\n",C2);
Ox%8.8X;\n",D2);

Ox%8.8x;\n",epsl);
Ox%8.8X;\n",eps2);
Ox%8.8X;\n",eps3);

Source Code: Analysis of MD5

fprintf(stdout,"eps4= Ox%8.8X;\n",eps4);
fprintf(stdout,"dCl = Ox%8.8X;\n",dCl);
fprintf(stdout,"dDl = Ox%8.8X;\n",dDl);
fprintf(stdout,"**** gef. ****\n");
fprintf(stdout,"AAl Ox%8.8X;\n",AAl);
fprintf(stdout,"Al Ox%8.8X;\n",Al);
fprintf(stdout,"BBl Ox%8.8X;\n",BBl);
fprintf(stdout,"Bl Ox%8.8X;\n",Bl);
fprintf(stdout,"CCl Ox%8.8X;\n",CCl);
fprintf(stdout,"Cl Ox%8.8X;\n",Cl);
fprintf(stdout,"DDl Ox%8.8X;\n",DDl);
fprintf(stdout,"Dl Ox%8.8x;\n",Dl);
fprintf(stdout,"C Ox%8.8x;\n",C);
fprintf(stderr,"D Ox%8.8X;\n",D);
exit(1);

}

if (flag==O)
{

fprintf(stderr,"nichts gefunden\n");
}

if (flag==l)
{

fprintf(stderr,"nichts gefunden +\n");
}

goto LABEL_A;
/* End Main */

int suche ()
{

int i;
static int index,count;
static UL x;

if(i==O)
{

count=O;

if(i==32)
{

if(count>=*max)

Source Code: Analysis of MD5

(*max)*=2;
if«*feld=(UL*)realloc(*feld, (*max)*sizeof(UL)))==NULL)

{

printf("Nicht genuegend Speicher l\n");
exit(l);

}

(*feld) [count]~x;
count++;
return count;

/* if(count >= MAX)
{

index--;
return (count) ;

}*/

if««F(x)-konst»>i)&l)==O)
{

suche() ;
}

if(count >= max_test)
{

index--;
return count;

xA=lul«i;
if««F(x)-konst»>i)&l)==O)

{
suche() ;

}

xA~lul«i;
index- -;
return count;

int i;
static int index, count;
static UL x;

Source Code: Analysis of MD5

if(i==O)
{

count=O;

if(i==32)
{

if(count>=*max)
{

(*max)*=2;
if«*feld=(UL*)realloc(*feld,(*max)*sizeof(UL)))==NULL)

{

printf("Nicht genuegend Speicher 2\n");
exit(l) ;

}

}

(*feld) [count}=x;
count++;
return count;

/*if(count >= MAX)
{

index--;
return (count) ;

}*/

if««H(X)-konst»>i)&l)==O)
{

sucheh();
}

if(count >= max_test)
{

index- -;
return count;

if««H(x)-konst»>i)&l) 0)
{

sucheh() ;
}

x~=lul«i;
index--;
return count;

Source Code: Analysis of MD5

int i;
static int index/count;
static UL x;

if(i==O)
{

count=O;

if(i==32)
{

if(count>=*max)
{

(*max)*=2;
if«*feld=(UL*)realloc(*feld, (*max)*sizeof(UL»)~=NULL)

{

printf("Nicht genuegend Speicher 3\n");
exit(l) ;

}

(*feld) [count]=x;
count++;
return count;

/*if(count >= MAX)
{

index--;
return (count) ;

}*/

if««F(x)-konst»>i)&l)==O)
{

sucheb ();
}

if(count >= max_test)
{

index--;
return count;

x~=lul«i;
if««F(x)-konst»>i)&l)==O)

{

sucheb ();
}

Source Code: Analysis of MD5

x~=lu1«i;
index- -;
return count;

E.3 THIRD PHASE OF THE ATTACK ON MD5

This section of the appendix contains the C source code used in the third phase of the attack

on MD5.

/* This program is a modification of the original program for connecting the
* first two stages of the MD5 attack. The modification ensures that the
* connection established is a valid connection.
*
* Original Author: Hans Dobbertin?
* Modifications : P.R. Kasselman
* Date of Modifications: 30 September 1996
* Filename: md5an13.c */

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#inc1ude "libtiming.h"

#define ulong unsigned long
#define shift(x,i) (ulong)««ulong)x)«(i»~«(ulong)x»>(32-(i»»
#define f(x,y,z) «x)&(y) I (-(X»&(Z»
#define g(x,y,z) «x)&(z) I (-(Z»&(y»
#define h(x,y,z) «X)~(Y)~(Z»
#define i(x,y,z) «y)~«x)I(-(z»»

/* random number generator from Numerical Recipes in C p. 282 */
#define 1M1 2147483563
#define 1M2 2147483399
#define 1A1 40014
#define 1A2 40692
#define 101 53668
#define 102 52774
#define 1R1 12211
#define 1R2 3791
#define NTAB 32
#define ND1V (1+(1M1-1)/NTAB)

int j;
long k;
static long idum2 = 123456789;
static long iy = 0;
static long iv[NTAB];
double temp;

Source Code: Analysis of MD5

/* Initialization */

if (*idum <= 0)
{

/* make sure *idum != 0 */
if (*idum -- 0)

{
*idum = 1;

printf("Random generator initialized with %ld\n", *idum);
fprintf(f, "Random generator initialized with %ld\n", *idum);
idum2 = *idum;
for (j=NTAB+7; j>=O; j--)

/* idum = (IAllidum) % IMl*/
k = *idum/IQl;
idum = IAl(*idum-k*IQl)-k*IRl;
if (*idum < 0)

{

*idum += IMl;
}

if (j < NTAB)
{

iv[j] = *idum;
}

iy = iv[O];
}

if (*idum < 0)
{

*idum += IMl;

/* idum2 = (IA2*idum) % IM2 */
k = idum2/IQ2;
idum2 = IA2*(idum2-k*IQ2)-k*IR2;

if (idum2 < 0)
{

idum2 +~ IM2;

j iy/NDIV;
iy = iv[j] - idum2;
iv[j] = *idum;

Source Code: Analysis of MD5

if (iy < 1)
{

iy += IMl-l;
}

static long randstate;
void srand32(long seed)
{

if (seed>O)
{

randstate = -seed;
} else

randstate seed;

unsigned long rand32(void)
{

main(int ac,char *av[])
{

ulong
ulong
ulong
ulong
ulong
ulong
ulong
ulong
ulong
ulong
ulong
ulong
ulong
ulong
ulong
ulong
ulong
ulong
int
unsigned
unsigned
double

A,B,B_basic,C,D;
AO,BO,CO,DO;
C3l,B3l;
A39,B35,C39,D39;
A43,B39,D43;
A35,C35,D35;
A19,B15,C15,D19;
A23,B19,C19,D23;
C27,B27,A3l,D3l;

BB_12,CC_12,C2_34,BB_34;
A15,D15;
A27,B23,C23,D27;
Al,Bl,Cl,Dl;
AtO,BtO,CtO,DtO,Atl,Btl,Ctl,Dtl,At2,Bt2,Ct2,Dt2;
testO,testl;
XO,Xl,X2,X3,X4,X5,X6,X7,X8,X9,XlO,Xll,X12,X13,X14,X15,XO_12;
X8A,X8B;
konstl,konst2,konst3,konst4,konst5;

gew=32,gewO,k,Versuch,vvv;
int iterations34, countl, sum34_vvv;
int ConnectionFlag;

tl, t2, time_tot;

ulong KO=Oxd76aa478, Kl=Oxe8c7b756, K2=Ox242070db, K3~Oxclbdceee;
ulong K4=Oxf57cOfaf, K5=Ox4787c62a, K6=Oxa83046l3, K7=Oxfd46950l;
ulong K8=Ox698098d8, K9=Ox8b44f7af, KlO~Oxffff5bbl, Kll=Ox895cd7be;
ulong K12=Ox6b90ll22, K13=Oxfd987l93, K14=Oxa679438e, K15~Ox49b4082l;
ulong K16=Oxf6le2562, K17=Oxc040b340, K18=Ox265e5a5l, K19=Oxe9b6c7aa;

Source Code: Analysis of MD5

u10ng K20=Oxd62f105d, K21=Ox02441453, K22~Oxd8a1e681, K23=Oxe7d3fbc8;
u10ng K24=Ox21e1cde6, K25=Oxc33707d6, K26=Oxf4d50d87, K27=Ox455aI4ed;
u10ng K28=Oxage3e905, K29=Oxfcefa3f8, K30=Ox676f02d9, K31=Ox8d2a4c8a;
u10ng K32=Oxfffa3942, K33=Ox8771f681, K34~Ox6d9d6122, K35=Oxfde5380c;
u10ng K36=Oxa4beea44, K37=Ox4bdecfa9, K38=Oxf6bb4b60, K39=Oxbebfbc70;
u10ng K40=Ox289b7ec6, K41=OxeaaI27fa, K42~Oxd4ef3085, K43=Ox04881d05;
u10ng K44=Oxd9d4d039, K45=Oxe6db9ge5, K46=Ox1fa27cf8, K47=Oxc4ac5665;
u10ng K48=Oxf4292244, K49=Ox432aff97, K50=Oxab9423a7, K51=Oxfc93a039;
u10ng K52=Ox655b59c3, K53=Ox8fOccc92, K54=Oxffeff47d, K55=Ox85845dd1;

int 80
int 84
int 88
int 812=
int 816=
int 820=
int 824=
int 828~
int 832=
int 836=
int 840=
int 844=
int 848=
int 852=

7,81 =12,82 =17,83 =22;
7,85 =12,86 =17,87 =22;
7,89 =1~,810=17,811=22;
7,813=12,814=17,815=22;
5,817= 9,818=14,819=20;
5,821= 9,822=14,823=20;
5,825= 9,826=14,827=20;
5,829= 9,830=14,831=20;
4,833=11,834=16,835=23;
4,837=11,838=16,839=23;
4,841=11,842=16,843=23;
4,845=11,846=16,847=23;
6,849=10,850=15,851=21;
6,853=10,854=15,855=21;

if(ac!=2)
{

fprintf(8tderr,"U8age: %8 8eed\n",av[0]);
exit(l) ;

}

8rand32(ato1(av[I]));
f = fopen ("md5_dob. dat", "w");

/* Daten Runde 12 */
A15 OXFA08AI91;
D15 OxFE010000;
A19 Ox3079FC64;
B15 Ox7C091F7C;
C15 OxFEOOFFFF;
D19 OxOOOOOOOO;
B19 Ox007DE57C;
C19 OxA83AE412;
A23 Ox001003EO;
A23 Ox20200380;
A23 Ox20001380;

A15 Ox45A9B039;
D15 OxFE010000;
C15 OxFEOOFFFF;
B15 Ox681702E8;
A19 OxA27FOOAO;
D19 OxOOOOOOOO;
C19 Ox5E4D2843;

Source Code: Analysis of MD5

B19
A23

OxCC7EllF4 ;
Ox8A14C72D;

/* Daten Runnde 34 */
A43 Ox7DC2498C;
B39 ~ Ox40040E86;

/* These chaining variables are not used in this program and may therefore
* be ommitted */

/* C2_34 = Ox12F37l66;
D43 OXBDC18273; */
A39 OxS79DA69S;
B3S OxFFFFFFFF;
C39 OXC783FA3D;
D39 Ox8DE340S8;
C3S Ox00028800;
D3S Ox3420f162;

/* Determine message words from the first part of the attack */
Xl ~ shift(A19-BlS,32-sl6)-K16-AlS-g(BlS,ClS,DlS);
X6 ~ shift(D19-A19,32-sl7)-K17-DlS-g(A19,BlS,ClS);
XII = shift(C19-D19,32-sl8)-K18-ClS-g(D19,A19,BlS);
XO shift(B19-C19,32-sl9)-K19-BlS-g(C19,D19,A19);
XS = shift(A23-B19,32-s20)-K20-A19-g(B19,C19,D19);

/* Determine message words from the second part of the attack */
X4 shift(D39-A39,32-s37)-K37-D3S-h(A39,B3S,C3S);
X7 shift(C39-D39,32-s38)-K38-C3S-h(D39,A39,B3S);
XlO= shift(B39-C39,32-s39)-K39-B3S-h(C39,D39,A39);
X13~ shift(A43-B39,32-s40)-K40-A39-h(B39,C39,D39);

/* This is a constant to be used later on (when confirming a collision) */
BB 12 = shift(BlS-ClS,32-slS)-KlS-f(ClS,DlS,AlS);
/* This is a constant to be used later on for confirmation of collision-

s */
CC_12 = shift(ClS-DlS,32-sl4)-K14;

/* Calculate chaining variables to be used when establishing a connection */
D23 shift(D19+g(A23,B19,C19)+XlO+K2l,s2l)+A23;
A3S = shift(A39-B3S,32-s36)-K36-Xl-h(B3S,C3S,D3S);

/* This constant is used at a later stage (X14 is not included in
this expression) */

BB 34 shift(B3S-C3S,32-s3S)-K3S-h(C3S,D3S,A3S);

/* Data of inner collisions 1-2 and 3-4 should be chosen such that XO
is the same in both inner collisions. This was not the case in the first
version of the attack, and the reason why K19 had to be adapted. */

sum34_vvv ~ 0;
iterations34 = SO;
time tot ~ 0;

Source Code: Analysis of MD5

/* The purpose of this loop is to find the average time required
* to find a collision */

/* for (countl=O; countl<iterations34; countl++) */
{

/* Number of inner collisions l-2/connections to find a collision */
vvv = 0;

printf("\nSearch %u started\n", countl+l);
fflush (stdout) ;
fprintf(f, "State random generator = %ld\n", randstate);

while(1)
{

/* Look for a collision */
do

{
/* Look for inner collision in round 1-2 */
X15 = rand32();

/* Determine the last four chaining variables that will
* result in a internal collision for the first two rounds */

C23 shift(CI9+g(D23,A23,BI9)+XI5+K22,s22)+D23;
B23 shift(BI9+g(C23,D23,A23)+X4 + K23,s23)+C23;

/*A27 = Oxffffffff;*/
A27 = B23;
X9 = shift(A27-B23,32-s24)-g(B23,C23,D23)-A23-K24;
D27 Oxffffffff;
X14 = shift(D27-A27,32-s25)-g(A27,B23,C23)-D23-K25;

/* Check whether inner collision 1-2 */
A A15;
B BB_12-XI5;
C CC_12-XI4-f(DI5,AI5,B);
D D15;
C shift(C+f(D,A,B)+XI4+«ulong)I«9)+KI4,sI4)+D;
B shift(B+f(C,D,A)+XI5+KI5,sI5)+C;
A shift(A+g(B,C,D)+X1 +KI6,sI6)+B;
D shift(D+g(A,B,C)+X6 +KI7,sI7)+A;
C shift(C+g(D,A,B)+X11+KI8,sI8)+D;
B shift(B+g(C,D,A)+XO +KI9,sI9)+C;
A shift(A+g(B,C,D)+X5 +K20,s20)+B;
D shift(D+g(A,B,C)+X10+K21,s21)+A;
C shift(C+g(D,A,B)+XI5+K22,s22)+D;
B shift(B+g(C,D,A)+X4 +K23,s23)+C;
A shift(A+g(B,C,D)+X9 +K24,s24)+B;
D shift(D+g(A,B,C)+XI4+«ulong)I«9)+K25,s25)+A;

/*if(A==A27 && B=~B23 && C==C23 && D==D27)
{

printf("%8.8X %8.8X %8.8X %8.8X\n", A-A27, B-B23, C-C23, D-D27);
}*/

Source Code: Analysis of MD5

/* Proceed if an internal collision for 1-2 was found */
} while (A!=A27 II B!=B23 II C!=C23 II D!=D27);

D35 D35;
A35 A35;
B3l BB_34 -X14;
C3l shift(C35-D35,32-s34)-h(D35,A35,B35)-Xll-K34;

/* These are constants for the while loop that follows.
* Pre-computation saves some time */

B_basic = rand32();
konstl A27+X13+K28;
konst2 shift(A35-B3l,32-s32)-X5-K32;
konst3 B31AC3l;
konst4 -X7-K30;

ConnectionFlag = 0;
while(ConnectionFlag == 0)

{

/* Looking for a connection */

B27 B_basicA((ulong)l« (rand32()&Oxlf));
A3l shift(B27+konstl,s28)+B27;
D3l (konst2-A3l)Akonst3;
C27 shift(C3l-D3l,32-s30)-g(D3l,A3l,B27)+konst4;

X8A shift(B27-C27,32-s27)-B23-g(C,D27,A27)-K27;
X8B shift(D35-A35,32-s33)-D3l-h(A35,B3l,C3l)-K33;
testO = X8B-X8A;

if (testO==O)
{

/* you are really lucky */
X12 = shift(B3l-C3l,32-s3l)-B27-g(C3l,D3l,A3l)-K3l;
X2 shift(D3l-A3l,32-s29)-D27-g(A3l,B27,C27)-K29;
X3 shift(C27-D27,32-s26)-C23-g(D27,A27,B23)-K26;
X8 shift(B27-C27,32-s27)-B23-g(C27,D27,A27)-K27;

/*printf("Lucky You\n")*/
/* Immediatle exit from the while loop */
break;

/* Compute the Hamming Distance */
/* Perform an iterative aproach */
for (gewO=O, testl=testO; testl; testl»=l)

gewO += testl&l;
Versuch++;
if (Versuch>30) /*originally 150*/

{

Source Code: Analysis of MD5

/* Effectively restart the process */
Versuch = 0;
gew = 32;
B_basic = rand32();

/* Restart from the beginning of the loop */
continue;

/* Continuous approximation techniques */
if (gewO-2<gew) /* originally gewO-l */

{

gew = gewO;
if (gew>ll) /* originally 7 */

/* If X8A and X8B are closer to each other than
* before retain the value of B as the new
* basic value */

/* Restart from the beginning of the loop */
continue;

/* Verbesserung */
/* Check whether B23 is changed by same amount as CO */

/*if((C23 & A23) != ((C23-testO) & A23))

break;
}*/

/* Change C23 and consequently recalculate B23 */
C23 C23-testO;
B23 = shift(B19+g(C23,D23,A23)+X4 + K23,s23)+C23;

/* Recompute D27 */
D27 = shift(D23+g(A27,B23,C23)+X14+K25,s25)+A27;

/* A, B, C, D not changed */
/* Check whether A still only depends on Band A27 */

if(g(B27,C27,D27) != B27)
{

/* Sanity Check */
X8A shift(B27-C27,32-s27)-B23-g(C27,D27,A27)-K27;
X8B = shift(D35-A35,32-s33)-D31-h(A35,B31,C31)-K33;

/* Reset the condition and determine if a collision
* for both round 1 1-2 and 3-4 holds */

Source Code: Analysis of MD5

XIS = shift(C23-023,32-s22)-g(023,A23,BI9)-CI9-K22;
X9 = shift(A27-B23,32-s24)-g(B23,C23,023)-A23-K24;

/* Good Fiddling */
X12 = shift(B31-C31,32-s31)-B27-g(C31,031,A31)-K3l;
X2 shift(031-A31,32-s29)-027-g(A31,B27,C27)-K29;
X3 shift(C27-027,32-s26)-C23-g(027,A27,B23)-K26;
X8 shift(B27-C27,32-s27)-B23-g(C27,027,A27)-K27;

/* check whether inner collision 1-2 holds */
A A15;
B BB_12-XI5;
C CC_12-XI4-f(015,AI5,B);
o 015;
C shift(C+f(O,A,B)+XI4+((ulong)I«9)+KI4,sI4)+0;
B shift(B+f(C,O,A)+XI5+KI5,sI5)+C;
A shift(A+g(B,C,O)+Xl +KI6,sI6)+B;
o shift(0+g(A,B,C)+X6 +KI7,sI7)+A;
C shift(C+g(0,A,B)+Xll+KI8,sI8)+0;
B shift(B+g(C,O,A)+XO +KI9,sI9)+C;
A shift(A+g(B,C,0)+X5 +K20,s20)+B;
o shift(0+g(A,B,C)+XI0+K21,s21)+A;
C shift(C+g(O,A,B)+XI5+K22,s22)+0;
B shift(B+g(C,O,A)+X4 +K23,s23)+C;
A shift(A+g(B,C,0)+X9 +K24,s24)+B;
o shift(0+g(A,B,C)+X14+((ulong)1«9)+K25,s25)+A;

if(A!=A27 II B!=B23 II C!=C23 II 0!=027
{

/* If an inner collision does not hold
* restart by finding a new inner collision
* for roundsl-2 */

break;

/* Check Propagation */
C shift(C+g(0,A,B)+X3+K26,s26)+0;
B shift(B+g(C,O,A)+X8 +K27,s27)+C;
A shift(A+g(B,C,O)+XI3 +K28,s28)+B;
o shift(0+g(A,B,C)+X2+K29,s29)+A;
C shift(C+g(0,A,B)+X7+K30,s30)+0;
B shift(B+g(C,0,A)+XI2 +K31,s31)+C;
A shift(A+h(B,C,0)+X5 +K32,s32)+B;
o shift(0+h(A,B,C)+X8+K33,s33)+A;

/* Verify the existence of a connection */
if(A!=A35 II B!=B31 II C!=C31 II 0!=035)

{

break;

Source Code: Analysis of MD5

testO = 0;
break;

if(testO!=O)
{

/* The Verbesserung failed, so start with a new inner
* collision*/

continue;

/* connection found */
vvv++;
/* end connect */

if (!(vvv%20))
{

printf("Connection and inner collision 1-2 %d found\r", vvv);
fflush(stdout) ;

}

/* Daten Runde 34 */
C C39;
B B39;
A A43;
D D43;
C shift(C+h(D,A,B)+X3 +K42,s42)+D;
B shift(B+h(C,D,A)+X6 +K43,s43)+C;
A shift(A+h(B,C,D)+X9 +K44,s44)+B;
D shift(D+h(A,B,C)+X12+K45,s45)+A;
C shift(C+h(D,A,B)+X15+K46,s46)+D;
B shift(B+h(C,D,A)+X2 +K47,s47)+C;
A shift(A+i(B,C,D)+XO +K48,s48)+B;
D shift(D+i(A,B,C)+X7 +K49,s49)+A;
C shift(C+i(D,A,B)+X14+K50,s50)+D;
AO A;
BO B;
CO C;
DO D;

B B31;
A A35;
D D35;
C C35;
B shift(B+h(C,D,A)+X14+((ulong)1«9)+K35,s35)+C;
A shift(A+h(B,C,D)+X1 +K36,s36)+B;
D shift(D+h(A,B,C)+X4 +K37,s37)+A;
C shift(C+h(D,A,B)+X7 +K38,s38)+D;
B shift(B+h(C,D,A)+X10+K39,s39)+C;
A shift(A+h(B,C,D)+X13+K40,s40)+B;

Source Code: Analysis of MD5

o shift(O+h(A,B,C)+XO +K41,s41)+A;
C shift(C+h(0,A,B)+X3 +K42,s42)+0;
B shift(B+h(C,0,A)+X6 +K43,s43)+C;
A shift(A+h(B,C,0)+X9 +K44,s44)+B;
o shift(0+h(A,B,C)+X12+K4S,S4S)+A;
C shift(C+h(0,A,B)+XlS+K46,S46)+0;
B shift(B+h(C,0,A)+X2 +K47,S47)+C;
A shift(A+i(B,C,O)+XO +K4S,S4S)+B;
o shift(0+i(A,B,C)+X7 +K49,S49)+A;
C shift(C+i(0,A,B)+X14+«ulong)1«9)+KSO,sSO)+0;
A AO;
B BO;
C co;
o DO;

if (B==O)
{

fprintf(f,"%S.SX %S.SX %S.SX %S.SX %Sd\n",A,B,C,O,vVV);
ffluSh(f) ;
printf("%Sd: %S.SX %S.SX %S.SX %S.SX\n", vvv, A, B, C, D);
fflUSh(stdout);

}

if(A==O && B==O && C==O && 0==0)
{

/* Step backwards through round 1 to find IV */
A AlS;
B BlS;

C CIS;
o 015;
B shift(B-C,32-s1S)-KlS-XlS-f(C,0,A);
C shift(C-0,32-s14)-K14-X14-f(0,A,B);
o shift(0-A,32-s13)-K13-X13-f(A,B,C);
A shift(A-B,32-s12)-K12-X12-f(B,C,0);
B shift(B-C,32-s11)-KII-Xll-f(C,0,A);
C shift(C-0,32-s10)-KIO-XIO-f(0,A,B);
o shift(0-A,32-s9)-K9-X9-f(A,B,C);
A shift(A-B,32-sS)-KS-XS-f(B,C,0);
B shift(B-C,32-s7)-K7-X7-f(C,0,A);
C shift(C-0,32-s6)-K6-X6-f(0,A,B);
D shift(0-A,32-sS)-KS-XS-f(A,B,C);
A shift(A-B,32-s4)-K4-X4-f(B,C,O);
B shift(B-C,32-s3)-K3-X3-f(C,0,A);
C shift(C-0,32-s2)-K2-X2-f(D,A,B);
o shift(0-A,32-s1)-KI-Xl-f(A,B,C);
A shift(A-B,32-s0)-KO-XO-f(B,C,D);

fprintf(f,"****
fprintf(f,"****
fprintf(f,"****
fprintf(f,"***l

%d Versuche ****\n", VVV);
Collision %u for MOS compress ****\n", countl+l);
IV = (%S.SX,%S.SX,%S.SX,%S.SX) ****\n",A,B,C,O);
X14' = X14+2-9 ****\n");

fprintf(f,"XO
fprintf(f,"Xl

Ox%S.Sx;\n",XO);
Ox%S.SX;\n",Xl);

fprintf(f,"X2
fprintf(f,"X3
fprintf(f, "X4
fprintf(f,"XS
fprintf(f,"X6
fprintf(f,"X7
fprintf(f,"X8
fprintf(f,"X9
fprintf(f,"XlO=
fprintf(f, "Xll=
fprintf(f,"X12~
fprintf(f, "X13=
fprintf(f,"X14=
fprintf(f, "XlS=
fflush(f) ;

Source Code: Analysis of MD5

Ox%8.8X;\n",X2);
Ox%8.8X;\n",X3);
Ox%8.8X;\n",X4);
Ox%8.8X;\n",XS);
Ox%8.8X;\n",X6);
Ox%8.8x;\n",X7);
Ox%8.8X;\n",X8);
Ox%8.8X;\n",X9);
Ox%8.8X;\n",XlO);
Ox%8.8X;\n",Xll);
Ox%8.8X;\n",X12);
Ox%8.8X;\n",X13);
Ox%8.8X;\n",X14);

Ox%8.8X;\n",XlS);

/* Break from the while(l) loop if a collision for 3-4 was
* found */

break;

fprintf(f, "\ncollision %u found after %d trials\n", countl+l, vvv);
fflush(f);
printf("\nCollision %u found after %d trials\n", countl+l, vvv);
fflush(stdout) ;

}

fprintf(f, "Mean number ic-12 for a ic-34: %u\n", sum34_vvv/iterations34);
fprintf(f, "Mean time for a collision: %f seconds\n", time_tot/iterations34);
fclose(f) ;

APPENDIX F: SOURCE CODE: COLLISIONS FOR FIRST ROUND
OFSHA

This Appendix contains an implementation of the attack on the first round of SHA. The

implementation is written in ANSI-C.

/* This program is used to investigate the effect of the message expansion
* algorithm used in SHA (not SHA-l). The results obtained from the analysis
* in shaOl and sha02 is verified. In particular it is verified if a
* collision can be obtained for the first round of SHA.

* The difference pattern has a defining length of 6.
* The pattern is: 11 12 13 14 15 16
* 1 1 1 0 0 1

* This program extends the results in sha06.c. Specifically a message is
* constructed which results in a collision after one round of SHA.

* Date: 14/11/97
* Author: P.R. Kasselman
* Filename: sha07.c */

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>

unsigned int Rotate(unsigned int X, unsigned int s);
unsigned int RotateRight(unsigned int X, unsigned int s);
void PrintBin(unsigned int j);
unsigned int OefLen(unsigned int j);
unsigned int SHA_F1(unsigned int B, unsigned int C, unsigned int D);
void UpdateChain(unsigned int Temp, unsigned int *A,

unsigned int *B, unsigned int *C,
unsigned int *0, unsigned int *E, int i);

void ReverseUpdateChain(unsigned int Temp, unsigned int *A,
unsigned int *B, unsigned int *C,
unsigned int *0, unsigned int *E, int i);

int main ()
{

unsigned int i,j;
unsigned int Templ, Temp2, TempInt, stop, Iteration;
unsigned int Ml[80], M2[80];
unsigned int A[80], B[80], C[80], 0[80], E[80];
unsigned int At[80], Bt[80], Ct[80], Ot[80], Et[80];
time_t TheTime;

/* Seed Random number generator */
TheTime = time(NULL);
srandom(TheTime);

/* Initialise Chaining varaibles */
Templ 0;
Temp2 == 0;

Appendix F

A[O]

B[O]
C[O]
D[O]
E[O]

At[O]
Bt[O]
Ct[O]
Dt[O]
Et[O]

Ox67452301;
OxEFCDAB89;
Ox98BADCFE;
Ox10325476;
OxC3D2EIFO;

Ox67452301;
OxEFCDAB89;
Ox98BADCFE;
Ox10325476;
OXC3D2EIFO;

for(i=O; i<4; i++)
{

UpdateChain(Templ, A, B, C, D, E, i);
UpdateChain(Temp2, At, Bt, ct, Dt, Et, i);

}

stop = 1;
Iteration = 0;

whiIe(Stop != 0)
{

/* Specify required differences in messages */

for(i=ll; i<14; i++)
{

MI[ll]
M2[12]
M2 [13]

MI[i]
M2[i]

MI[i]
M2 [i]

(random()~Rotate(random(),I)) & Oxfffffffe;
MI[i] ;

MI[ll]
M2[12]
M2[13]

OxOOOOOOOI;
OxOOOOOOOI;
OxOOOOOOOI;

(random()~Rotate(random(),I)) & Oxfffffffe;
MI [i];

printf("%8.8X %8.8X\n", MI[II], M2[11]);
printf("%8.8X %8.8X\n", MI[12], M2[12]);
printf("%8.8X %8.8X\n", MI[13], M2[13]);

TempI
Temp2

OxOOOOOOOO;
Oxffffffff;

B[11] =
C[11] =

M1 [13] ;
D[11]
E[11] =

A[ll] + RotateRight(1,30);
-1-Rotate(O,S)-SHA_F1(Temp1,Rotate(A[11],30),Rotate(B[11],30))-K1-

O-Rotate(Temp1,S)-SHA_F1(A[11],Rotate(B[11],30),C[11])-K1- M1[12];
Temp1-Rotate(A[11],S)-SHA_F1(B[11],C[11],D[11])-K1-M1[11];

At[11] A[11];
Bt [11] B [11] ;
Ct[ll] -1-Rotate(O,S)-SHA_F1(Temp2,Rotate(At[11],30),Rotate(Bt[11],30))-
K1-M2[13];
Dt[ll] = 0 - Rotate(Temp2,S) - SHA_F1(At[11],Rotate(Bt[11],30),Ct[11]) - K1 -
M2[12];
Et[ll] = Temp2-Rotate(At[11],S)-SHA_F1(Bt[11],Ct[11],Dt[11])-K1-M2[11];

printf("Temp1 - Temp2 - (M1[11] - M2[11]) = %8.8X\n",
Temp1-Temp2 - (M1[11] - M2[11]));

updatechain(Temp1, A, B, C, D, E, 11);
UpdateChain(Temp2, At, Bt, ct, Dt, Et, 11);

printf("A[12] - At[12] + (M1[12] - M2[12])
A[12]-At[12]+(M1[12]-M2[12]));

TempI
Temp2

OxOOOOOOOO;
OxOOOOOOOO;

updatechain(Temp1, A, B, C, D, E, 12);
updatechain(Temp2, At, Bt, Ct, Dt, Et, 12);

printf ("F1 (B [13] ,C [13] ,D [13])-F1 (Bt [13] ,Ct [13] ,Dt [13])+ (M1 [13] -M2 [13])
Templnt + M1[13] - M2[13]);

TempI
Temp2

Oxffffffff ;
Oxffffffff;

UpdateChain(Temp1, A, B, C, D, E, 13);
UpdateChain(Temp2, At, Bt, Ct, Dt, Et, 13);

printf("F1(B[14] ,C[14] ,D[14]) -F1(Bt[14] ,Ct[14] ,Dt[14])+(M1 [14]-M2 [14])
Templnt + M1[14] - M2[14]);

TempI
Temp2

random() ~ Rotate(random(),l);
TempI;

Appendix F

printf (II F1 (B [15] ,C [15] ,D [15])-F1 (Bt [15] ,ct [15] ,Dt [15])+ (Ml [15]-M2 [15])
TempInt + Ml[15] - M2[15]);

TempI
Temp2

random() A Rotate(random(),l);
Templ;

UpdateChain(Templ, A, B, C, D, E, 15);
UpdateChain(Temp2, At, Bt, Ct, Dt, Et, 15);

printf("E[16]-Et[16]+(Ml[16]-M2[16])
TempInt + Ml[16] - M2[16]);

for(i=16; i<20; i++)
{

TempI
Temp2

random() A Rotate(random(),l);
TempI;

UpdateChain(Templ, A, B, C, D, E, i);
UpdateChain(Temp2, At, Bt, ct, Dt, Et, i);

for(i=10; i>=5; i--)
{

TempI
Temp2

random()ARotate(random(),l);
TempI;

ReverseUpdateChain(Templ, A, B, C, D, E, i+l);
ReverseUpdateChain(Temp2, At, Bt, Ct, Dt, Et, i+l);

for(i=4; i>=l; i--)
{

ReverseUpdateChain(E[i], A, B, C, D, E, i+l);
ReverseUpdateChain(Et[i], At, Bt, Ct, Dt, Et, i+l);

/* Reconstruct message */
for(i=O; i<16; i++)

{

Ml[i]
M2[i]

A[i+l]-Rotate(A[iJ,5)-SHA_Fl(B[iJ,C[iJ,D[i])-E[i]-Kl;
At[i+l]-Rotate(At[i] ,5)-SHA_Fl(Bt[i],Ct[i],Dt[i])-Et[iJ-Kl;

Appendix F

/* Expand Message */
for(i=16; i<2l; i++)

{

Ml[i]
M2[i]

(Ml[i-3] ~ Ml[i-S] ~ Ml[i-14] ~ Ml[i-16]);
(M2 [i-3] ~ M2 [i-S] ~ M2 [i-14] ~ M2 [i-16]);

/* Determine the common hash value */
for(i=O; i<20; i++)

{

TempI = Rotate(A[i],S)+SHA_Fl(B[i],C[i],D[i])+E[i]+Ml[i]+Kl;
UpdateChain(Templ, A, B, C, D, E, i);

Temp2 = Rotate(At[i],S)+SHA_Fl(Bt[i],Ct[i],Dt[i])+Et[i]+M2[i]+Kl;
UpdateChain(Temp2, At, Bt, ct, Dt, Et, i);

Stop = (A[i]~At[i])+(B[i]~Bt[i])+(C[i]~Ct[i])+(D[i]~Dt[i])+(E[i]~Et[i]);
Iteration++;

printf("\nChaining Varaibles\n");
printf("\tA\tB\tC\tD\tE\n");
for(i=O; i<20; i++)

{

printf("%d) %S.SX %S.SX %S.SX %S.SX %S.SX\n",i,A[i],B[i],C[i],D[i],E[i]);
}

printf("\tAt\tBt\tCt\tDt\tEt\n");
for(i=O; i<20; i++)

{

printf("%d) %S.SX %S.SX %S.SX %S.SX %S.SX\n",i,At[i],Bt[i],Ct[i],Dt[i],Et[i]);
}

printf("\nDifference Between Messages\n");
for(i=O; i<20; i++)

{

printf("Ml[%d] - M2[%d] %S.SX\n", i, i, Ml[i] - M2[i]);
}

printf("\nCollision Message\n");
for(i=O; i<20; i++)

{

printf("Ml[%d] = %S.SX \t M2[%d] %S.Sx\n", i, Ml[i], i, M2[i]);
}

i 19;
printf("\nCommon Hash Value for First Round\n");
printf("%d) %S.SX %S.SX %S.SX %S.SX %S.SX\n",i,A[iJ,B[iJ,C[iJ,D[iJ,E[i]);
printf("%d) %S.SX %S.SX %S.SX %S.SX %S.SX\n",i,At[i],Bt[i],Ct[i],Dt[i],Et[i]);

Appendix F

printf("%d) %8.8X %8.8X %8.8X %8.8X %8.8X\n",
i,A [i]~At [i] ,B [i]~Bt [i] ,C [i]~ct [i] ,0 [i]~ot [i] ,E [i]~Et [i]);

printf("Number of Iterations: %d\n", Iteration);
return(O);

unsigned int SHA_Fl(unsigned int B, unsigned int C, unsigned int 0)
{

return«B&C) I (-B&O));

unsigned int Rotate(unsigned int X, unsigned int s)
{

temp = X;
X = (X « s) I (temp» (32-s));
return(x);

unsigned int OefLen(unsigned int j)
{

for(i=O; i<32; i++)
{

if«(j » (31-i)) & OxOOOOOOOl) 1)
{

TempInt = i;
break;

for(i=31; i>=O; i--)
{

if«(j » (31-i)) & OxOOOOOOOl) 1)
{

TempInt = i-TempInt;
break;

for(i=O; i<32; i++)
{

printf("%d", (j» (31-i)) & OxOOOOOOOl);
]

void UpdateChain(unsigned int Temp, unsigned int *A,
unsigned int *B, unsigned int *C,
unsigned int *D, unsigned int *E, int i)

{

E[i+l]
D[i+l]
C[i+l]
B[i+l]
A[i+l]

D[i] ;
C[i] ;
Rotate(B[i],30);
A[i] ;
Temp;

void ReverseUpdateChain(unsigned int Temp, unsigned int *A,
unsigned int *B, unsigned int *C,
unsigned int *D, unsigned int *E, int i)
{

A[i-l]
B[i-l]
C[i-l]
D[i-l]
E[i-l]

B [i];
RotateRight(C[i] ,30);
D[i] ;
E[i] ;
Temp;

unsigned int RotateRight(unsigned int x, unsigned int s)
{

temp = X;
X = (X > > s) I (temp << (32-s));
return(X) ;

APPENDIX G: SOURCE CODE: IMPLEMENTATION OF HAVAL
ATTACK

This appendix contains an implementation of the attack on HAVAL as described in Chapter

10.

/*
* The analysis for the last two rounds of HAVAL is concidered.
*
* This program verifies the existence of collisions for the last two
* rounds of three round HAVAL.

* Author: P.R. Kasselman
* Date: 24/04/1999
* Filename: hava129.c */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

unsigned int Rotate(unsigned int X, unsigned int s);
unsigned int RotateRight(unsigned int X, unsigned int s);

unsigned int FF2(unsigned int B, unsigned int C, unsigned int 0,
unsigned int E, unsigned int F, unsigned int G,
unsigned int H);

unsigned int FF3(unsigned int B, unsigned int C, unsigned int 0,
unsigned int E, unsigned int F, unsigned int G,
unsigned int H);

unsigned int InverseStep(unsigned int H2, unsigned int AI, unsigned int B1,
unsigned int C1, unsigned int 01, unsigned int E1,
unsigned int F1, unsigned int G1, unsigned int HI,
unsigned int K);

/*#define MAX Ox00100000*/
#define MAX 100000
#define MAX_LIMIT 1000

#define RFACT 0
#define RFACT7 7
#define RFACT11 11

#define AA 0
#define BB 1
#define CC 2
#define DO 3
#define EE 4
#define FF 5
#define GG 6
#define HH 7

int main ()
{

Source Code: Implementation of HAVAL Attack

unsigned int i, j;
unsigned int Test, Count1;
unsigned int De1taW19, W19, Wt19;
unsigned int De1taH56;
unsigned int Ht56, H56;
unsigned int Bt62, B62, Ct61, C61, Dt60, D60;
unsigned int Et59, E59, Ft58, F58, Gt57, G57;
unsigned int C62, D62, E62, F62, G62, H62;
unsigned int B61, D61, E61, F61, G61, H61;
unsigned int B60, C60, E60, F60, G60, H60;
unsigned int B59, C59, D59, F59, G59, H59;
unsigned int B58, C58, D58, E58, G58, H58;
unsigned int B57, C57, D57, E57, F57, H57;
unsigned int B56, C56, D56, E56, F56, G56;
unsigned int DataH56[MAX];
unsigned int Chain[8] [96];
unsigned int W[32], Wt[32];
unsigned int K1[32] = {Ox452821E6L, Ox38D01377L, OxBE5466CFL, Ox34E90C6CL,

OxCOAC29B7L, OxC97C50DDL, Ox3F84D5B5L, OxB5470917L, Ox9216D5D9L,
Ox8979FB1BL, OxD1310BA6L, Ox98DFB5ACL, Ox2FFD72DBL, OxD01ADFB7L,
OxB8E1AFEDL, Ox6A267E96L, OxBA7C9045L, OxF12C7F99L, Ox24A19947L,
OxB3916CF7L, Ox0801F2E2L, Ox858EFC16L, Ox636920D8L, Ox71574E69L,
OxA458FEA3L, OxF4933D7EL, OxOD95748FL, Ox728EB658L, Ox718BCD58L,
Ox82154AEEL, Ox7B54A41DL, OXC25A59B5L};

unsigned int K2[32] ~ {Ox9C30D539L, Ox2AF26013L, OxC5D1B023L, Ox286085FOL,
OxCA417918L, OxB8DB38EFL, Ox8E79DCBOL, Ox603A180EL, Ox6C9EOE8BL,
OxB01E8A3EL, OxD71577C1L, OxBD314B27L, Ox78AF2FDAL, Ox55605C60L,
OxE65525F3L, OxAA55AB94L, Ox57489862L, Ox63E81440L, Ox55CA396AL,
Ox2AAB10B6L, OxB4CC5C34L, Oxl141E8CEL, OxA15486AFL, Ox7C72E993L,
OxB3EE1411L, Ox636FBC2AL, Ox2BA9C55DL, Ox741831F6L, OxCE5C3E16L,
Ox9B87931EL, OxAFD6BA33L, Ox6C24CF5CL};

unsigned int Ord2[32] = {5, 14, 26, 18, 11, 28, 7, 16, 0, 23, 20, 22, 1, 10,
4, 8, 30, 3, 21, 9, 17, 24, 29, 6, 19, 12, 15, 13, 2, 25, 31, 27};

unsigned int Ord3[32] = {19, 9, 4, 20, 28, 17, 8, 22, 29, 14, 25, 12, 24,
30, 16, 26, 31, 15, 7, 3, 1, 0, 18, 27, 13, 6, 21, 10, 23, 11, 5, 2};

unsigned int AI, B1, C1, D1, E1, F1, G1, HI, TempInt;
time_t TheTime;
FILE *fp1, *fp2;

TheTime = time(NULL);
srandom(TheTime);

DeltaW19 = Oxaaaaaaab;
De1taH56 = De1taW19;

W19 = random()~Rotate(random(),l);
Wt19 = W19 - DeltaW19;

for(i=O; i<MAX; i++)
{

Test = 1;
while(Test != 0)

{

Source Code: Implementation of HAVAL Attack

Countl++;
H56 = random()~Rotate(random(),l);
Ht56 H56 - DeltaH56;

Test (RotateRight(H56,RFACTll) - RotateRight(Ht56,RFACTll» +
(DeltaW19);

}

DataH56[i] H56;
}

printf("Equation (9) = %8.8X\n", (RotateRight(H56,RFACTll) + W19) - (Ro-
tateRight(Ht56,RFACTll) + Wt19»;

printf("\nAverage number of Iterations: %If\n\n'', «double)(Countl»/MAX);

/* Determine if (8) holds */
B62 = H56;
Bt62 = H56 - DeltaH56;
C62 H561Ht56;
D62 -(H56IHt56);
E62 H561Ht56;
F62 H561Ht56;
G62 -(H56IHt56);
H62 random() ~ Rotate(random(),l);

Test = (RotateRight(FF2(B62,C62,D62,E62,F62,G62,H62),RFACT7) -
RotateRight(FF2(Bt62,C62,D62,E62,F62,G62,H62),RFACT7»;

B61 = -(H56IHt56);
C61 = B62;
Ct61 = Bt62;
D61 C62;
E61 D62;
F61 E62;
G61 F62;
H61 G62;

Test = (RotateRight(FF2(B61,C61,D61,E61,F61,G61,H61),RFACT7) -
RotateRight(FF2(B61,Ct61,D61,E61,F61,G61,H61),RFACT7»;

B60 -(H56IHt56);
C60 B61;
D60 C61;
Dt60 = Ct61;
E60 D61;
F60 = E61;

Source Code: Implementation of HAVAL Attack

G60 F61;
H60 G61;

Test = (RotateRight(FF2(B60,C60,060,E60,F60,G60,H60),RFACT7) -
RotateRight(FF2(B60,C60,Ot60,E60,F60,G60,H60),RFACT7»;

B59 (H56IHt56);
C59 B60;
059 C60;
E59 060;
Et59 = Ot60;
F59 E60;
G59 F60;
H59 G60;

Test ~ (RotateRight(FF2(B59,C59,059,E59,F59,G59,H59),RFACT7) -
RotateRight(FF2(B59,C59,059,Et59,F59,G59,H59),RFACT7»;

B58 -(H56IHt56);
C58 B59;
058 C59;
E58 059;
F58 E59;
Ft58 = Et59;
G58 F59;
H58 = G59;

Test = (RotateRight(FF2(B58,C58,058,E58,F58,G58,H58),RFACT7) -
RotateRight(FF2(B58,C58,058,E58,Ft58,G58,H58),RFACT7»;

B57 -(H56IHt56);
C57 B58;
057 C58;
E57 058;
F57 E58;
G57 F58;
Gt57 = Ft58;
H57 = G58;

Test = (RotateRight(FF2(B57,C57,057,E57,F57,G57,H57),RFACT7) -
RotateRight(FF2(B57,C57,057,E57,F57,Gt57,H57),RFACT7»;

Source Code: Implementation of HAVAL Attack

B56 -(H56IHt56);
C56 B57;
D56 C57;
E56 D57;
F56 E57;
G56 F57;
H56 G57;
Ht56 Gt57;

Test (RotateRight(FF2(B56,C56,D56,E56,F56,G56,H56),RFACT7)-
RotateRight(FF2(B56,C56,D56,E56,F56,G56,Ht56),RFACT7»;

printf("B56: %8.8X\n", B56);
printf("C56: %8.8X\n", C56);
printf("D56: %8.8X\n", D56);
printf("E56: %8.8X\n", E56);
printf("F56: %8.8X\n", F56);
printf("G56: %8.8X\n", G56);
printf("H56: %8.8X\n", H56);
printf("Ht56: %8.8X\n", Ht56);
printf("H57: %8.8X\n", H57);
printf("H58: %8.8X\n", H58);
printf("H59: %8.8X\n", H59);
printf("H60: %8.8X\n", H60);
printf("H6l: %8.8X\n", H6l);
printf("H62: %8.8X\n", H62);

/* Derive a message that results in a collision for the last two round-
s of

/* Start forward search */
Chain[AA] [56] random()~Rotate(random(),l);
Chain [BB] [56] B56;
Chain[CC] [56] C56;
Chain[DD] [56] D56;
Chain[EE] [56] E56;
Chain[FF] [56] F56;
Chain[GG] [56] G56;
Chain[HH] [56] H56;
Chain[HH] [57] H57;

W[12] = InverseStep(Chain[HH] [57], Chain [AA] [56], Chain[BB] [56],
Chain[CC] [56], Chain[DD] [56], Chain[EE] [56],
Chain[FF] [56], Chain[GG] [56], Chain[HH] [56], Kl[25]);

Chain[AA] [57]
Chain[BB] [57]
Chain[CC] [57]
Chain[DD] [57]

Chain [BB] [56] ;
Chain[CC] [56];
Chain[DD] [56];
Chain[EE] [56];

Chain [EE] [57]
Chain [FF] [57]
Chain[GG] [57]

Source Code: Implementation of HAVAL Attack

Chain[FF] [56];
Chain[GG] [56];
Chain[HH] [56];

W[15] = InverseStep(Chain[HH] [58], Chain [AA] [57], Chain[BB] [57],
Chain[CC] [57], Chain[DD] [57], Chain[EE] [57],
Chain[FF] [57], Chain[GG] [57], Chain[HH] [57], K1[26]);

Chain [AA] [58]
Chain[BB] [58]
Chain[CC] [58]
Chain[DD] [58]
Chain[EE] [58]
Chain[FF] [58]
Chain[GG] [58]

Chain[BB] [57];
Chain[CC] [57];
Chain[DD] [57];
Chain [EE] [57] ;
Chain[FF] [57];
Chain[GG] [57];
Chain[HH] [57];

W[13] = InverseStep(Chain[HH] [59], Chain [AA] [58], Chain[BB] [58],
Chain[CC] [58], Chain[DD] [58], Chain[EE] [58],
Chain[FF] [58], Chain[GG][58], Chain[HH] [58], K1[27]);

Chain [AA] [59]
Chain[BB] [59]
Chain[CC] [59]
Chain[DD] [59]
Chain[EE] [59]
Chain[FF] [59]
Chain[GG] [59]

Chain[BB] [58];
Chain[CC] [58];
Chain [DD] [58] ;
Chain[EE] [58];
Chain[FF] [58];
Chain [GG] [58] ;
Chain[HH] [58];

W[2] = InverseStep(Chain[HH] [60], Chain[AA] [59], Chain[BB] [59],
Chain[CC] [59], Chain[DD] [59], Chain[EE] [59],
Chain[FF] [59], Chain[GG] [59], Chain[HH] [59], K1[28]);

Chain[AA] [60]
Chain[BB] [60]
Chain[CC] [60]
Chain[DD] [60]
Chain[EE] [60]
Chain[FF] [60]
Chain[GG] [60]

Chain[BB] [59];
Chain[CC] [59];
Chain[DD] [59];
Chain[EE] [59];
Chain[FF] [59];
Chain[GG] [59];
Chain[HH] [59];

W[25] ~ InverseStep(Chain[HH] [61], Chain [AA] [60], Chain[BB] [60],
Chain[CC] [60], Chain[DD] [60], Chain[EE] [60],
Chain[FF] [60], Chain[GG] [60], Chain[HH][60], K1[29]);

Chain [AA] [61]
Chain[BB] [61]
Chain[CC] [61]

Chain[BB] [60];
Chain[CC] [60];
Chain[DD] [60];

Chain[DD] [61]
Chain[EE] [61]
Chain[FF] [61]
Chain[GG] [61]

Source Code: Implementation of HAVAL Attack

Chain [EE] [60] ;
Chain[FF] [60];
Chain [GG] [60] ;
Chain[HH] [60];

W[31] = InverseStep(Chain[HH] [62], Chain[AA] [61], Chain[BB] [61],
Chain[CC] [61], Chain[DD] [61], Chain[EE] [61],
Chain[FF] [61J, Chain[GG] [61J, Chain[HH] [61], K1[30]);

Chain [AA] [62]
Chain[BB] [62]
Chain[CC] [62]
Chain [DD] [62]
Chain[EE] [62]
Chain[FF] [62]
Chain[GG] [62]

Chain[BB] [61];
Chain[CC] [61];
Chain[DD] [61];
Chain[EE] [61];
Chain[FF] [61];
Chain[GG] [61];
Chain[HH] [61];

W[27] = InverseStep(Chain[HH] [63], Chain[AA] [62], Chain[BB] [62],
Chain[CC] [62], Chain[DD] [62], Chain[EE] [62],
Chain[FF] [62], Chain[GG] [62], Chain[HH] [62], K1[31]);

/* Find W[19]
Chain [AA] [55]
Chain[BB] [55]
Chain [CC] [55]
Chain[DD] [55]
Chain[EE] [55]
Chain[FF] [55]
Chain[GG] [55]
Chain [HH] [55]

and Wt[19] */
random()ARotate(random(),l);
Chain[AA] [56];
Chain[BB] [56];
Chain[CC] [56];
Chain[DD] [56];
Chain[EE] [56];
Chain[FF] [56];
Cha i n [GG] [56] ;

W[19] = InverseStep(Chain[HH] [56], Chain[AA] [55], Chain[BB] [55],
ChainICC] [55], Chain[DD] [55], Chain[EE] [55],
Chain[FF] [55], Chain[GG] [55], Chain[HH] [55], K1[24]);

Wt[19] = InverseStep(Ht56, Chain[AA] [55], Chain[BB] [55],
Chain[cc] [55], Chain[DD] [55], Chain[EE] [55],
Chain[FF] [55], Chain[GG] [55], Chain[HH] [55], K1[24]);

fOr(i=O; i<32; i++) {
if(i!=19) {

wt [i] = W [i] ;
}

printf("Equation (9) %8.8X\n", (RotateRight(H56,RFACT11) + W[19]) - (Ro-
tateRight(Ht56,RFACT11) + Wt[19]»;

Source Code: Implementation of HAVAL Attack

Al Chain[AA] [55];
Bl Chain[BB] [55];
Cl Chain[CC] [55];
01 Chain[OO] [55];
El Chain[EE] [55];
Fl Chain[FF] [55];
Gl Chain[GG] [55];
HI Chain[HH] [55];

for(i=O; i<8; i++) {
printf("%d) %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X\n", 55+i, AI, Bl,

TempInt ~ RotateRight(FF2(Bl,Cl,01,El,Fl,Gl,Hl), RFACT7) +
RotateRight(Al, RFACTll) + W[Ord2[i+24]] + Kl[i+24];

Al Bl;
Bl Cl;
Cl 01;
01 El;
El Fl;
Fl Gl;
Gl HI;
HI TempInt;

for(i=O; i<l; i++) {
printf("%d) %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X\n", 62+i, AI, Bl,

TempInt = RotateRight(FF3(Bl,Cl,01,El,Fl,Gl,Hl), RFACT7) +
RotateRight(Al, RFACTll) + W[Ord3[i]] + K2[i];

Al Bl;
Bl Cl;
Cl 01;
01 El;
El Fl;
Fl Gl;
Gl HI;
HI TempInt;

/* Try for Wt19 */
Al Chain[AA] [55];
Bl Chain[BB] [55];
Cl Chain[CC] [55];
01 Chain[OO] [55];
El Chain[EE] [55];
Fl Chain[FF] [55];
Gl Chain[GG] [55];
HI Chain[HH] [55];

Source Code: Implementation of HAVAL Attack

Ternplnt = RotateRight(FF2(B1,C1,D1,E1,F1,G1,H1), RFACT7) +
RotateRight(A1, RFACT11) + Wt[Ord2[i+24]] + K1[i+24];

A1 B1;
B1 C1;
C1 D1;
D1 E1;
E1 F1;
F1 G1;
G1 H1;
H1 Ternplnt;

for(i=O; i<1; i++) {
printf("%d) %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X\n", 62+i, A1, B1,

Ternplnt = RotateRight(FF3(B1,C1,D1,E1,F1,G1,H1), RFACT7) +
RotateRight(A1, RFACT11) + Wt[Ord3[i]] + K2[i];

A1 B1;
B1 C1;
C1 D1;
D1 E1;
E1 F1;
F1 G1;
G1 H1;
H1 Ternplnt;

Chain[HH] [31]
Chain[GG] [31]
Chain[FF] [31]
Chain[EE] [31]
Chain[DD] [31]
Chain[CC] [31]
Chain[BB] [31]
Chain[AA] [31]

Ox243F6A88L;
Ox85A308D3L;
Ox13198A2EL;
Ox03707344L;
OXA4093822L;
Ox299F31DOL;
Ox082EFA98L;
OxEC4E6C89L;

for(i=O; i<8; i++)
Chain[AA] [32+i]
Chain[BB] [32+i]
Chain[CC] [32+i]
Chain [DD] [32+i]
Chain[EE] [32+i]
Chain[FF] [32+i]
Chain[GG] [32+i]

Chain[BB] [31+i];
Chain[CC] [31+i];
Chain[DD] [31+i];
Chain[EE] [31+i];
Chain[FF] [31+i];
Cha in [GG] [31+i] ;
Cha in [HH] [31+i] ;

Source Code: Implementation of HAVAL Attack

for(i=O; i<16; i++)
Chain [AA] [54-i]
Chain[BB] [54-i]
Chain[CC] [54-i]
Chain[DD] [54-i]
Chain[EE] [54-i]
Chain[FF] [54-i]
Chain[GG] [54-i]
Chain[HH] [54-i]

{

random()~Rotate(random(),l);
Chain[AA] [55-i];
Chain[BB] [55-i];
Chain[CC] [55-i];
Chain[DD] [55-i];
Chain[EE] [55-i];
Chain[FF] [55-i];
Chain[GG] [55-i];

W[Ord2[23-i]] = Inversestep(Chain[HH] [55-i], Chain[AA] [54-i],
Chain[BB] [54-i], Chain[CC] [54-i],
Chain[DD] [54-i], Chain[EE] [54-i],
Chain[FF] [54-i], Chain[GG] [54-i],
Chain[HH] [54-i], K1 [23-i]);

}

for(i=O; i<8; i++)
Chain[BB] [38-i]
Chain[CC] [38-i]
Chain[DD] [38-i]
Chain[EE] [38-i]
Chain[FF] [38-i]
Chain[GG] [38-i]
Chain[HH] [38-i]

Chain[AA] [39-i];
Chain[BB] [39-i];
Chain[CC] [39-i];
Chain[DD] [39-i];
Chain[EE] [39-i];
Chain[FF] [39-i];
Chain[GG] [39-i];

W[Ord2[7-i]] = Inversestep(Chain[HH] [39-i], Chain[AA] [38-i],
Chain[BB] [38-i], Chain[CC] [38-i],
Chain[DD] [38-i], Chain[EE] [38-i],
Chain[FF] [38-i], Chain[GG] [38-i],
Chain[HH] [38-i], K1[7-i]);

}

for(i=O; i<32; i++) {
if(i!=19)

Wt [i] = W [i] ;
}

printf("%i) %8.8X %8.8X\n", i, W[i], Wt[i]);

/* With IV target reached and message word derived, proceed to verify
* collision for last two rounds of three round HAVAL */

Al Chain[AA] [31];
B1 Chain[BB] [31];
C1 Chain[CC] [31];
D1 Chain[DD] [31];
E1 Chain[EE] [31];
F1 Chain[FF] [31];
G1 Chain[GG] [31];
HI Chain[HH] [31];

Source Code: Implementation of HAVAL Attack

TempInt = RotateRight(FF2(Bl,Cl,Dl,El,Fl,Gl,Hl), RFACT7) +
RotateRight(Al, RFACTll) + W[Ord2[i]] + Kl[i];

Al Bl;
Bl Cl;
Cl Dl;
Dl El;
El Fl;
Fl Gl;
Gl HI;
HI TempInt;

for(i~O; i<32; i++) {
printf("%d) %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X\n", i+l, AI, Bl,

TempInt = RotateRight(FF3(Bl,Cl,Dl,El,Fl,Gl,Hl), RFACT7) +
RotateRight(Al, RFACTll) + W[Ord3[i]] + K2[i];

Al Bl;
Bl Cl;
Cl Dl;
Dl El;
El Fl;
Fl Gl;
Gl HI;
HI TempInt;

/* With IV target reached and message word derived, proceed to verify
* collision for last two rounds of three round HAVAL */

Al Chain[AA] [31];
Bl Chain[BB] [31];
Cl Chain[CC] [31];
Dl Chain[DD] [31];
El Chain[EE] [31];
Fl Chain[FF] [31];
Gl Chain[GG] [31];
HI Chain[HH] [31];

for(i~O; i<32; i++) {
printf("%d) %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X\n", i+l, AI, Bl,

TempInt = RotateRight(FF2(Bl,Cl,Dl,El,Fl,Gl,Hl), RFACT7) +
RotateRight(Al, RFACTll) + Wt[Ord2[i]] + Kl[i];

Al Bl;
Bl Cl;
Cl Dl;
Dl El;

Appendix G Source Code: Implementation of HAVAL Attack

El Fl;
Fl Gl;
Gl HI;
HI TernpInt;

for(i=O; i<32; i++) {
printf("%d) %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X\n", i+l, AI, Bl,

TernpInt = RotateRight(FF3(Bl,Cl,Dl,El,Fl,Gl,Hl), RFACT7) +
RotateRight(Al, RFACTll) + Wt[Ord3[i]] + K2[i];

Al Bl;
Bl Cl;
Cl Dl;
Dl El;
El Fli
Fl Gl;
Gl HI;
HI TernpInt;

fpl fopen("datal.dat", "w");
fp2 fopen("data2.dat", "w");

if(fpl == NULL I I fp2 == NULL)
{

printf("Error Opening FiIe\n");
exit(I) ;

}

for(j=O; j<4; j++)
TernpChar = (char) (W[i] » «j)*8) & OxOOOOOOff);
fwrite(&TernpChar, sizeof(char) , I, fpl);

TernpChar - (char) (Wt[i] » «j)*8) & OxOOOOOOff);
fwrite(&TernpChar, sizeof(char) , I, fp2);

}

fcIose(fpl);
fcIose(fp2);

unsigned int Inversestep(unsigned int H2, unsigned int AI, unsigned int Bl,
unsigned int Cl, unsigned int Dl, unsigned int El,

Source Code: Implementation of HAVAL Attack

unsigned int Fl, unsigned int Gl, unsigned int HI,
unsigned int K)

{

w ~ H2 - RotateRight(FF2(Bl, Cl, 01, El, Fl, Gl, HI), RFACT7) -
RotateRight(Al, RFACTll) - K;

unsigned int Rotate(unsigned int X, unsigned int s)
{

temp = X;
X = (X « s) I (temp» (32-s));
return(X) ;

unsigned int RotateRight(unsigned int X, unsigned int s)
{

temp = X;
X = (X » s) I (temp« (32-s));
return(X) ;

unsigned int FF2(unsigned int B, unsigned int C, unsigned int 0,
unsigned int E, unsigned int F, unsigned int G,
unsigned int H)

/* Permuteer die insette tot die funksies soos gespesifiseer */
xO
xl
x2
x3
x4
xS
x6

return«xl&x2&x3) ~ (x2&x4&xS) ~ (xl&x2) ~ (xl&x4) ~ (x2&x6) ~ (x3&xS) ~
(x4&xS) ~ (xO&x2) ~ (xO));

unsigned int FF3(unsigned int B, unsigned int C, unsigned int 0,
unsigned int E, unsigned int F, unsigned int G,
unsigned int H)

