Analysis and Design of Cryptographic Hash Functions

Pieter Retief Kasselman

Voorgelé ter vervulling van ‘n deel van die vereistes vir die graad Magister in Ingenieurswese

in die Fakulteit Ingenieurswese, Universiteit van Pretoria.

18 November 1999

© University of Pretoria

IT VAN PRETORIA
OF PRETORIA
Y RIA

Summary
Analysis and Design of Cryptographic Hash Functions
by
P. R. Kasselman and W. T. Penzhorn
Department of Electrical, Electronic and Computer Engineering
University of Pretoria

MEng Electronic Engineering

Indexing Terms: Hash Functions, Cryptanalysis, Cryptography, Message Integrity Code,
Message Authentication Code, Differential Cryptanalysis, Boolean Functions, MD4, MD5,
HAVAL.

Cryptographic hash functions are one of the primitive building blocks commonly used in
information security. They form an important building block for authentication protocols,
encryption algorithms, digital signatures and integrity checking algorithms. Two important
properties of hash functions used in cryptographic applications are collision resistance and

one-wayness. In this dissertation the focus is on collision resistance.

The dissertation provides a detailed overview of existing cryptographic hash functions, in-
cluding definitions of fundamental properties, generic threats, and popular designs for cryp-
tographic hash functions. Special attention is given to dedicated cryptographic hash func-
tions related to the MD4 hash function.

Between 1990 and 1994 a number of practical cryptographic hash functions were designed
and implemented, following the design principles of MD4. These cryptographic hash func-
tions include MD4, MD5, SHA, SHA-1, HAVAL, RIPEMD-128 and RIPEMD-160. These

functions were designed to exhibit the properties of collision resistance and one-wayness.

In this dissertation the attacks by Dobbertin on MD4 and MD5 are reconstructed. A novel
approach is introduced that allows the execution of the attack on MD4 to be optimised. This

new approach allows a reduction in computation time for a collision by a factor 64.

Based on these attacks a generalised attack is formulated. The generalised attack provides a
new framework for the analysis of the collision resistant property of any cryptographic hash

function.

IT VAN PRETORIA
OF PRETORIA
Y RIA

This newly derived framework for the analysis of cryptographic hash functions is then ap-
plied to reduced versions of SHA and HAVAL. The results obtained in this investigation are
the first cryptanalytical result to be published on the HAVAL hash function. The investigation
shows that a collision can be found for a reduced version of HAVAL in less than a minute
on a 200 MHz Pentium Pro personal computer. This result suggests that three and even
four round HAVAL should not be used for security applications where message integrity and

non-repudiation is required.

Based on the findings of these cryptanalytic attacks, a new set of design criteria for dedicated
cryptographic hash functions is formulated. The design criteria aim to alleviate the common
weaknesses identified in dedicated hash functions such as MD4, MDS5, SHA, SHA-1 and
HAVAL. Thereby the generalised attack developed in this dissertation can be thwarted.

IT VAN PRETO
Y OF PRETO
HI YA PRETO

IVERSIT
I

—3m

Samevatting
Analise en Ontwerp van Kriptografiese Hutsfunksies
deur
P. R. Kasselman and W. T. Penzhorn
Department Elektriese, Elektroniese en Rekenaar Ingenieurswese
Universiteit van Pretoria

M Ing Electroniese Ingenieurswese

Indekseringterme: Hutsfunksies, Kripto-analisie, Kriptografie, Boodskap Integriteit Kode,
Boodskap Stawing Kode, Differensiéle Kriptoanalise, Boolese Funksies, MD4, MDS5, HAVAL.

Kriptografiese hutsfunksies is een van die primitiewe boublokke wat algemeen gebruik word
in informasiesekerheid. Dit vorm ‘n belangrike boublok vir stawingsprotokolle, enkripsieal-
goritmes, digitale handtekeninge en integriteitmeganismes. Twee belangrike eienskappe van
hutsfunksies is weerstand teen botsings en die eenrigtingeienskap. In hierdie verhandeling

val die fokus op die botsingweerstandseienskap.

Die verhandeling bevat ‘n volledige oorsig van bestaande kriptografiese hutsfunksies, in-
sluitend definisies van fundamentele eienskappe, generies bedreigings en populére ontwerpe
vir kriptografiese hutsfunksies. Spesiale aandag word gegee aan toegewyde kriptografiese

hutsfunksies wat verwant is aan die MD4 hutsfunksie.

Tussen 1990 en 1994 is ‘n aantal kriptografies hutsfunksies ontwerp en geimplimenteer. Hi-
erdie ontwerpe is gegrond op die ontwerpsbeginsels van MD4. Die kriptografiese hutsfunksies
sluitin MD4, MD5, SHA, SHA-1, HAVAL, RIPEMD-128 en RIPEMD-160. Hierdie funksies

is almal ontwerp om die eenrigting en botsingsweerstand eienskappe te vertoon.

In hierdie verhandeling word die aanvalle van Dobbertin op MD4 en MDS5 gerekonstrueer. 'n
Unieke benadering word voorgestel wat die aanval op MD4 optimeer. Die nuwe benadering

verminder die berekeningkompleksiteit om 'n botsing te verkry met ‘n faktor 64.

‘n Veralgemeende aanval word geformuleer op grond van hierdie aanvalle. Die veralge-
meende aanval voorsien ‘n nuwe raamwerk vir die analise van die botsingsweerstand eien-

skap van enige toegewydte kriptografiese hutsfunksie.

Hierdie nuwe raamwerk vir die analiese van kriptografiese hutsfunksies word dan toegepas

ITEIT VAN PRETOR
TY OF PRETOR
THI YA PRETOR

-
m
=
@
= -

A
1A
1A

op afgeskaalde weergawes van SHA en HAVAL. Die resultate van hierdie studie is die eerste
kripto-analitiese resultate wat vir HAVAL gepubliseer is. Die studie toon dat ‘n botsing vir
die laaste twee rondtes van drierondte HAVAL verkry kan word in minder as ‘n minuut op ‘n
200 MHz Pentium Pro persoonlike rekenaar. Hierdie resultaat dui aan dat drie en selfs vier
rondte HAVAL nie gebruik moet word vir sekuriteitstoepassings waar boodskapintegriteit

vereis word nie.

Op grond van die kriptoanalitiese resultate word ‘n nuwe stel ontwerpskriteria vir toegewyde
kriptografiese hutsfunksies geformuleer. Die ontwerpskriteria is daarop gemik om die gedeelde
swakhede geidentifiseer in toegewyde hutsfunksies soos MD4, MDS5, SHA, SHA-1 en HAVAL
te vermy. Hierdeur kan die veralgemeende aanval wat in die verhandeling ontwikkel is

gefnuik word.

IT VAN PRETOR
¥ OF PRETOR
HI YA PRETOR

Jm

1A
1A
1A

Acknowledgements

I would like to make use of this opportunity to thank the following individuals and organisa-

tions.

My study leader, Prof. W.T. Penzhomn for his contributions, suggestions and encouragement

throughout this project.
Prof. G.J. Kiihn for the many stimulating conversations on the topic of cryptology.

Dr Bart Preneel and Antoon Bosselaers from the COSIC research group at the Katholieke
Universiteit Leuven, Belgium for their comments on my work and suggesting the analysis of
the HAVAL hash function.

My wife, Marelize, for her continued support and companionship throughout this project.

Ciphertec cc for the opportunity to perform research on the topic of cryptographic hash

functions.

The management of Nedcor Bank Ltd for the time afforded to me in order to complete this

dissertation.

IT VAN

=cc
c==
zz=
=m0
mm
@ o=
=Sm

CONTENTS

1 Introduction

2

1.1

1.2

1.3

1.4

1.6

1.7

Information Security

Hash Functions and Security

1.2.1 Applications of Hash Functions

1.2.2 Properties of Hash Functions . .

1.2.3 Hash Functions Today

Problem Statement

Dissertation Objectives and Methodology

Results . 7% « siwim ¢ 2 ¢ 5 & svmimog & 3

Taxonomy of Cryptographic Hash Functions

2.1

Introduction

PRETOR

1A
Y OF PRETORIA
HI YA PRETORIA

11

12

2.2

DU, BIIDE i s % 5 5 stmmos & 8 % & & woaws % v % s s moarm o a v

Approaches to the Design and Analysis of Cryptographic Hash Functions

Threats Against Hash Functions

5.1

5.2

3.3

3.4

s

TALEOAUCHION + v o o momim = § 3 5 4 B @E & 3 § § 8 wa @i & 5 v % % 5% o
Taxonomy of Attackers oo v vt
32,0 Capabilities o o0 o sw s i35 35 smF s s 85 45 e o
327 POSIHDN: v o v x ¢ 2 20 mminm § 3 E S B HE S 3 e 5 A F FEE g5 €
Terminology . « « v ¢ v v v v v e e e e e e e e e e e e e e e e e
331 MDCTerminologY . . v o« o o o o 6 v s s s s 0 s 5o s s & a
332 MACTerminology oo i i v vt i e o
Attackson MDCS i e e e e e e e e e e
3.4.1 Attacks Independent of the Algorithm
3.4.2 Attacks Dependant on the Chaining
AttacksOD MAGS « & v vov « v v 6 v v wimie v n e e e v e & b
35:] KeyCollisions « < » ¢ » 5 4 www o« x v« muwmw e 2 x 00 mon s
352 ExhaustiveKeySearch . «vovv v v o v emmiw v v v v n somm oo
353 Chosen Text Aaeks = s v o ww ks s 55 wwmm v 4 s 0 3 wam o v s
3.5.4 Knownand Chosen TextAttack

13

13

15

17

17

-
& s

3.6 Attacks on Underlying Block Cipherso v 32
3.6.1 Complementation Property« o oo 33

362 WeakKeys . . o .« v v v v vmm e s o s o mmee o e onneos 33

217 HighLevel Attacks © o o /b o wvmm i 5 23 8 B mw e v 2w wmime s o e 34
3.7.1 Differential Fault Analysis« oo v v oo v v oo 34

3.7.2 Differential Power Analysis« .« o oo 34

373 Attack on the Interaction with the Signature Scheme 35

37.4 Attacksonthe Protocolo e e e 35

3.7.5 Attacks Dependant on the Algorithm 35

3.8 Attackersand Attacks o oo oo e e e e e 36

30 PEasSibility s vnw s a5 s dmma vl o ne mimm o § 8 8 B BEE E Y S 8w 37
.10 CORRIBION. & v s sl s s o = v 4 5 scmmm o 5 8 3 GFE &8 LF » =@ 37

4 Requirements for Cryptographic Hash Functions 39
A1 TREOAUCHON . . v 66 6 6 5 8 % § s & & o s 8 smw o v s § HOEE§ 88 39
472 Functional Requirements oo oot oo m e 39
42.1 MessageReductiono o vt 39

422 Repeatability o ¢ v vt e e 40

4.2.3 DataType Independence« oo v v 40

42.4 FastCalculation v v v v v v v b e e e e e e e e e e 41

4.3

8 s
4225 OnePassper Message . . « ¢ v v wo o v s n v snimm o s 00 ms 41
42.6 Minimum of Secret Information 41
10 ModalarDesion o5 v 6w s 5 wmw o v 5 x5 wam 6w 2w wime - 41
478 Bascoflmplementation : . « o s s « 5 2« wow v o s o mwn oo 42
429 MachineIndependenceo e 42
4.2.10 Distribution and Obtainability 42
SEROrity REQUIIEMBNALE & & & % 5 6. 5% ¢ & 6 # Fa B & 5o 5 @@ & v v 42
43.1 ConfusionandDiffusion . « + ¢ ¢ s « 555 5 05 5 4 0@ s & o0 ws 43
432 Message and Hash Value Independence 43
4.3.3 Computational Feasibility 44
4.3.4 Interaction with other Algorithms 4=
435 MDCHashSpace.y 45
43.6 MACKeyandHashSpace 45
437 MessageDependenceo 46
43.8 One-WayNeSs ¢« v v v vt v e e e e e e e 46
439 Error EXtension o o it e e e e e 46
4.3.10 Distribution of Preimageso 46
43.11 Decomposable Algorithms 47
43,12 Conditions onChaining o : « s v wwv w o o 0 4w o 0w mowi 47

»
8 s
BN FRedundaney .« . . v v w v e e i o s e s B EF 47
4.4 Functional vs. Security Requirements 48
4.4.1 Repeatability and Security 49
442 Chainingand Security v .0 et e s e 49
A43 SpeedandSEcumty & o s 5w wrs s s s www e 6 v v e w mw 49
4.4.4 Speed and Machine Independence 50
4.4.5 Decomposability and Ease of Implementation 50
446 SecurityandBandwidth 51
S COnCluBIon. . . oo a8 6 5 53 3 G5 E'S § 4§ ¥ #E o e @ v ot Gwm s s o 51
General Dedicated Hash Function Constructions 52
B0 TAMOdUEHON & v oo v o v 2 s me E £ F 86 L. FEH 5 635 HAMEBY s 2 e 52
5.2 Ideal Cryptographic Hash Function 52
5.3 Tterated Hash Functions v v o v v v v v i it i oo o e e e 54
5.3.1 The Segmentation and PaddingRule 54
5.3.2 TheCompress Function 56
533 TheChamingRule . .. » s o cmw v o v 0w m o v 2 b 5306 & 4 39
5.3 Bonsmrelon 15 it - s 5 4 momom bk s e mimi s 2 e s w mme B3 39
5.4 Round Panction Constuctions! . « o/ e %o s wldiew’e 4w s o siwim v v 61

5.4.1 MDA4-Family Construction« « v vt v v v oo v v oo 61

2
8 s
5.5 Round Function Building Blocks 62
5.5.1 BitPermutations v v i e e e e e e e e e 63
5.5.2 Bitwise Boolean Operations« ..o 64
553 Substitition BOXeS o & - = < = wwwm & ¢ o = mimie v v 0 2w o w s 64
5.5.4 Modular Arithmetic Operationso 65
B COHCIUSION & ¢ ¢ 5 s 50 & 5 8 5 6 @ @ imos & @ 8 & Swm o & & 3 s wmimm s &8 66
Analysis of the MD4 Hash Algorithm 67
Bl DBrodOCHOM . « o vomor v v 5 5 28000 5 8 5 & 5 $ 5 % 6.5 4 G ww & 6% 4 67
62 TntroductiontoMD4 ¢ o v o v v s i o mo s s o3 vwms s 55w 67
63 NOBHOH . » « o vioww o 5 0 s 5 ®.3 5 5 5 85 SBE § 6§ § e « & & 5 nwon 68
6.4 The MD4 Algorithmo v v v v i 68
6.4.1 MessagePadding oo 69
642 TmHGAIVAIURS . . v v v v 0 o o mm e 855 5 6 9iE & K88 pwaa o 69
6.43 Iterative Rounds it 70
6.5 Cryptanalysisof MD4. oo 76
6.6 NOLHHOM « o v s« o v v o v v 4 o wo o o o s m e sea s o s & oaas as 76
6.7 Dobbertin’sattack: ATeVIEW o o o v o e e e e e e e e e 77
6.8 Alternative algorithm for establishing inner almost-collisions 80
6.9 BeEsnlts o s amisy ¢ ivs ok 158 5 5 maiee ¥ 5 v 3 moma wowonoa omm 82

8 s
ol Number:ofCollisions « = « + s 5 6 « @5, @5 & 3 48 4 Fww 5 6 6 5 3
6.9.2 Speedup Facfor
Oid3 BHaniple vosiw 66855 99166 £ 5 FH MEE ¥ 8 Ea s
BMONCONCIUSION .+ v v & o v 0 mmmm o5 5 = i § 6 5 8 8 Risiw é &85 4%
Analysis of the MD5 Hash Algorithm
7.1 Introduction L. e e
7.2 IntroductiontoMDS e
Tl NOEHOM v o o « o « 5 o wrwiew & m & 8 wmmom o 6 2 % & m o w o 5 % 6 e
7.4 The MDS5S Algorithm
7.4.1 MessagePadding oo
J4.2 Initial Values: . v v v v v 5 0 woww v v v 5 e n me w5 v s s e
143 TterativeRounds .« o v « v v v w5 6 v 6 s wmmm v ox v w6 e
75 AnadlysisofMDE . v o5 v v v 6 o v smm v a6 58 3 s 8 68 a8 E R s
T5.]1 Nolaion o oww oo s 53 4 wmew a2 88 saews & o6 s mmw
152 Ouilmeofthe Attack « . v sawm s s 45 8 8 wamwe v s 8 g www ¢
7.5.3 Phase I: Inner Collisons for First TwoRounds
7.5.4 Phase 1I: Inner Collisions for Last TwoRounds
7.5.5 Phase III: Establishing a Connection

7.5.6 Determining if Solutions Exist

97

& s
VBN Coriclusion = o s 4 5 5 5 Qme s ¥ 58 3 M B E ¢ ¥ F 4 Ve 8 s e 124
PR CEnOWIEdomEntS « s 5 s s e e B s s 8 R RE S E s s FERE & 5 W 125
Generalised Analysis of the MD4 Family of Dedicated Hash Functions 126
8.1 Introduction e e 126
8.2 Generalised Attacks Lo e 127
8.2.1 Difference Equationso 128
8.2.2 Solution of Difference Equations 130
8.3 Application of Generalised Attacks L. 131
8.4 Conclusion e e 131
Analysis of the SHA and SHA-1 Hash Algorithms 132
9.1 InbrodRction o o e s s 5 ¢ www s 5 & 5 o Wirw 8 8 8 6 6 R s e F B A me 132
92 TIntroductiontoSHA : v amiw o5 6 8 ¢ mww 5 ¢ 5 5 @ s o 5 8 & 5w s 132
93 NOHON : i « s s 6 F@wEs 8 8 6 8 b 570 § 8 § 3 4 0w E s & 5 & waw s 132
Dk SHA ; 2 o 500w 25 5 5 mmis 45 65 8 $9WE B3 8 S AW E & 88 E 6 BEw 133
941 MessagePaddifg .« ¢ ¢ s 5 s wom s v s s o 9wm s g3 s vam s 133
042 Initalise Chamitig Vatiables « w0 ¢ s 2 s mamw s 954 G588 s 134
043 Message EXpanSion « v v & s 4 5 G e wie &5 5 8 5 59w & 3 134
9.44 Compress Function 134

9.45 Update Chaining Variables 136

8 s

DINIIESTTAL T ' s 'l s o 5 % 6 % e ¥ R e e M w e e mie s s m 136
951« Message BXpansion : v oou v v « v 5 5 weie « v 2 wmaa wow v w s 136

g Analysisof SHAand SHA-L . ¢ i v v o0 wwm e v o v v vnw w00 o 136
ONEESEEA |, e A R R e R A E E B B EIME 5 F S b MW & w3 R s 137
9.7.1 Message Expansion Algorithm 137

972 DiffercliceBquationg = ¢ 1 s 3 s siowww 2555 Sme 63 8 % w waw 142

973 EBxterided ALtatl. - .o o v 2 5 5 .55 & s 8 2 # i b § ¥ 5 3 w0 is 147

974 Proposed Aftack s s s s wm s o v s @ nm e e 5 FE s e 148

98 SHAL . v vovovo commm nonz s § MBS N EE G SN LR ST S 148
9.8.1 Message Expansion Algorithm 149

09 COHCLISIBN. . .+ vovmiw v o2 0 mmwmon v 68 58 MM § 565 wawE s 5 150
10 Analysis of the HAVAL Hash Algorithm 151
10.1 Introduction« « v« v vt e e e e e e e e e e e e e e s e e 151
10.2 Introductionto HAVAL oo it i i i 151
10.3 INOEBION & o 7Sl m v s v i & 6 % 5 u 4 wwe w o = 0 Wi w e Lt W W e 151
104 THAVAL: diiih w6 s 6 mioma o 5 6 6 = 6 S o o n % @ moa & X = = w0 152
10.4.1 MegsapePadding : vc v ¢ ¢ 5 s s sm v o v s 0 v 0 v 00 3w 153
10.4.2 Initialise Chaining Variables 0000 154

10:4.5 Word ProcessiupOrder : ; s s siaow e & 8 3 3 wse & 5 ¢ & wwow s 154

e
& s

10.4.4 Compress Function L 155

Lo Tailotifig theoMtput o v ¢ ¢ s 5 5 5 oo e 6 5 « 5 SR T 5 35 5 S a5 159
IOBEATAlYSISOT HAVAL « & 6 covc s v s 555 @ 865 66 4 mmeds 35 ame 159
1051 Difersnce EqUAHONS ... - . - - « #2208 = & 88 2 b 5 5 5 § 3 Gidis 160

10.5.2 Solution to Differential Equations 165

10.5.3 Collision Example 175

10.6 Conclusion e e 176

11 Design Criteria for Dedicated Hash Functions 178
i1 THEESAEEEONE o o« » ¢ « 5 s mwm ¢ 5 @ 3 wwm e x x5 3 Bowm e ¥ T A 8 e 178
FL.2Z Basie SIS . - « o wow 2 5 4 8 3 scsemm o 6 5 5 marm v 5 3 a4 mwoe o 178
113 Building Blocks . . .« « = cv v 0 ¢ v u www o v = 0 w simrm 6 5 5 3 8 e 179
11.3.1 Boolean Mappings . . . ¢ & cwnim s 6 5 5 5 srm s & 8 4 « % v & 179

1132 Rotation . . « < wiww « ¢ 5 ¢ wmem o ¢ » 6 % Swid & « & o % @@ & s 182

11.3.3 Megsage Word Retise . . & ¢ vuwiciw o v« ¢ commuw s v @ 8 s o & 182

1134 Kddiionmod P . ;s s mmew s s a0 Pmms ¥ v g 3B s s 185

1135 AdditiveConstants: . : « s s w55 9 5 55 s 526 + 5 5 5 5 89 & & 185

11:.3:6 Composition s« s 55 3 s smms a3 89 mue 66554 55483 186

1148 COneliuSion . . . c nown s v 5 0 wmdd 5 8 8 88 Bma b 8 88 2 ma #6¢ 186

12 Conclusion - 188

&
ﬁ UNIVERSITEIT
UNIVERSITY
Qe YUNIBESITH
JENINDISCUSSION &0 % o 5 6 5 % s o
158 e 1 e R
12.3 Summary and Future Work

Bibliography

A Additional Hash Function Constructions

Al

A2

A3

A4

A5

Introduction

Tree Constructions

A.2.1 Construction

A2.2 Practieality . . <« o o o o s

Cascading of Hash Functions

Round Function Constructions . . .

A4l BloelcCiphers: w . s 55 o s

A.4.2 Stream Ciphers

MAC Constructions Based on MDCs

A.5.1 Affix Construction
A.5.2 TPSec recommendations . .
A.5.3 NMAC Construction
A.5.4 HMAC Construction
A.5.5 M Dax-MAC Construction .

197

A.5.6 XOR-MAC Constructions . . .« v v v v v v v e e e e e e e e e 219
A.6 International Standards o e e e e e e e e e e e e e 220
BRI ONCINSION 12 s s mam e & 5§05 @ S aism s o % & @ = dow 6 Nowe i s s 221
Source Code: Implementation of MD4 223
Source Code: Attack on all three rounds of MD4 232
Implementation: MDS 244
Source Code: Analysis of MDS5 253
E.1 Source Code: First Phase of the AttackonMD5 253
E.2 Source Code: Second Phase of the Attackon MD5 266
E.3 Third Phase of the Attackon MD5 o oL 297
Source Code: Collisions for First Round of SHA 289

Source Code: Implementation of HAVAL Attack 296

-

W UNIVERSITEIT VAN PRETO
0 UNIVERSITY OF PRETO
Q@ VU 0

NIBESITHI YA PRET

RIA
RIA
RI1A

CHAPTER 1: INTRODUCTION

1.1 INFORMATION SECURITY

The exchange of information is an important social, economic and political activity. The
importance of the exchange of information regarding all aspects of life has increased dra-
matically over the last 50 years. This period has seen the emergence of massive communi-
cation systems which have the sole purpose of facilitating the exchange of information. The
proliferation of telephone and computer networks (both local and wide area networks) are
manifestations of this phenomenon. As both the amount of information being exchanged and
the significance attached to that information have increased, the need for ensuring the privacy
and authenticity of the information have increased. This is especially true when considering
communication systems where no human interaction is required. A computer network is a
typical example of such a communication system. The need for privacy and authenticity is
especially acute if a breech in either secrecy or authenticity may result in losses (financial or

otherwise) for the participating parties in a communication system.

Organisations and people that use communication systems often express their needs for in-
formation security and trust in terms of three distinct requirements, frequently referred to as
the CIA-Model of security:

e Confidentiality — ensuring the non-disclosure of sensitive information

e Integrity — ensuring that data and information is only changed and modified in a spec-

ified and authorised manner

e Availability — ensuring that systems work promptly and correctly, and that service is

not denied to authorised users.

Over the past three decades numerous techniques have been invented and developed to ensure
both privacy, authenticity and availability of information in communication systems. These
techniques are often constructed from a number of basic cryptographic primitives. One of

the primitives most widely used is the cryptographic hash function.

&y

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q¥ VU

NIBESITHI YA PRETORIA

Chapter 1 Introduction

1.2 HASH FUNCTIONS AND SECURITY

Informally, a hash function is defined as a function that compresses an input string of arbi-

trary length to an output string of fixed length (see Figure 1.1).

Message M

Hash Function h()

Hash Result h(M)

Figure 1.1: Hash Function

More formally the following definition applies to a hash function [1]:

Definition 1.1 (Hash Function) A hash function is defined as an easily computable func-
tion, h(), that maps every binary sequence of length p or greater to a binary sequence of

length m, where p and m are specified parameters.

A wide range of terminology exists for hash functions used in security applications [2],[3].
These terms include message integrity codes, message authentication codes, manipulation
detection codes, cryptographic hash functions or simply hash functions. In this document
hash functions used for security applications are referred to as cryptographic hash functions

or hash functions for conciseness.

1.2.1 Applications of Hash Functions

Hash functions have their origin in the field of computer science and were originally used
for data storage and retrieval [4]. For data storage applications a hash function is used to
compute an abbreviated representation of a filename. This abbreviation is then used to index
and store the file. When the file is retrieved, the hash value for the given filename is used to
retrieve the data. Using a hash function reduces the storage requirements for a data retrieval

system, since only the hash value has to be stored, instead of the entire filename.

Electrical and Electronic Engineering 2

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot
g;a UNIVERSITEIT VAN PRETORIA
Qe

Chapter 1 Introduction

A number of other uses have been found for hash functions. Amongst others, hash functions
are used in compiler symbol tables, graph theory problems, transposition tables in computer
games, spell checkers, tests for set equality and security applications [2], [3]. It is the appli-
cation of hash functions in security solutions that constitutes the topic for this dissertation.
A short list of security applications that rely on the use of cryptographic hash functions is

shown below:

Authentication protocols [5].

Digital signatures [6].

Electronic commerce [S].

Encryption schemes [7] [8] [9].

Because of the wide ranging applications of hash functions in security solutions they are
considered important cryptographic primitives. The above list of applications can roughly

be split into two categories:

e Authentication services.

e Encryption services.

Authentication Applications

The list of security applications primarily represents authentication and non-repudiation ser-
vices. When using a cryptographic hash function in an authentication scheme the authenticity
of the message is transferred to the hash value. It is then necessary to provide protection and
authentication for the hash value only, instead of the entire message. The hash value serves
as an authentication tag for the message, and can be appended to a message. A number
of cryptographic protocols and electronic commerce implementations rely on cryptograph-
ic hash functions to provide these services. These protocols include S/MIME, SSL, TLS,
WTLS, SET as well as the EMV specifications.

Electrical and Electronic Engineering 3

P
i

W UNIVERSITEIT VAN PRETORIA

0 UNIVERSITY OF PRETORIA

A~ 4

YUNIBESITHI YA PRETORIA

Chapter 1 Introduction

Encryption Applications

The non-linear and one-way property of cryptographic hash functions are exploited when
used in encryption schemes. Cryptographic hash functions can be used as non-linear ele-
ments in block ciphers based on the Feistel structure. Four block ciphers, LION, BEAR,
LIONESS and AARDVARK that are based on the existence of secure cryptographic hash
functions were recently proposed in [7], [8] and [9]. It is also possible to exploit the non-
linear and one-way properties of a cryptographic hash functions in the construction of stream

ciphers.

1.2.2 Properties of Hash Functions

Earlier in this section a hash function is defined as a function that compresses an input string
of arbitrary length to an output string of fixed length. The inherent weakness of all hash func-
tions is contained within this definition. An intuitive explanation of the inherent weakness

of hash functions is presented in this section.

Consider the projection of an M dimensional space onto an N dimensional space with M >

N, f is the mapping (hash) function (see Figure 1.2).

>\

Figure 1.2: Hashing: A Spatial View f : M — N

From Figure 1.2 it is clear that the projection of all possible representations in M onto N
is not unique if M > N. The lack of uniqueness of the mapping function f() implies that
more than one vector in M is mapped to the same vector in V. This is known as a collision.
A graphical representation of the above statement is given for M = 3 and N = 2 in Figure
1.3.

Electrical and Electronic Engineering 4

4

93 UNIVERSITEIT VAN PRETORIA
A 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 1 Introduction

Figure 1.3: Graphical example of a collision

A more formal representation of the above is given below:

f():m1|—>n1

f() 1Mo = 1y
with:

n; < N
mi, My € M

m; # mao.

From the above it follows intuitively that the number of collisions increases as the ratio %

increases.

This argument leads to the conclusion that collisions exist for all hash functions as previously
defined. The existence of collisions for all possible hash functions is an inherent weakness.
This weakness is, by definition, also present in cryptographic hash functions. Consequently
it is required that cryptographic hash functions exhibit the properties of one-wayness and

collision resistance. These properties make it computationally intractable to find collisions.

The properties of one-wayness and collision resistance allow hash functions to be used in

order to provide the services of integrity, digital signatures and non-repudiation.

Electrical and Electronic Engineering 5

-
% UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
\ 4

YUNIBESITHI YA PRETORIA

Chapter 1 Introduction

One-way Property

From a cryptographic point of view one-way hash functions are of particular interest. The

one-way property is defined in [1] as:

Definition 1.2 (One-Way Hash Functions) A one-way hash function is defined as a hash
Sfunction such that, for virtually every binary string y of length m it is infeasible to find a
binary string x of length 1 or greater such that y = h(x).

Collision Resistant Property

A further desirable property of cryptographic hash functions is that of collision resistance.
The concept of a collision was introduced earlier in this section. It is appropriate to introduce

a more formal definition of a collision before defining the concept of collision resistance [59].

Definition 1.3 (Collisions) A collision is obtained for a given hash function h() if two dis-
tinct messages, M and M, are found, such that for a specific initial value (denoted by IV):

h(IV, M) = h(IV, M).

Consequently a collision resistant hash function is defined as [59]:

Definition 1.4 (Collision Resistant Hash Function) A collision resistant hash function is

defined as a hash function for which it is computationally intractable to find collisions.

Generally when referring to cryptographic hash functions it is expected that they exhibit the
properties of one-wayness and collision resistance.
The One-way Property, Collisions and Information Theory

It can be shown that the presence of collisions is a pre-requisite for one-wayness by applying

the principles of information theory and source coding to the hashing problem.In this model

Electrical and Electronic Engineering 6

A&
w UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Chapter 1 Introduction

the message to be hashed represents the source, the hash result corresponds to the encoded
symbols or messages, and the hash algorithm represents the source encoding algorithm. Let
H(X) be the entropy of the message source (X is a random variable). Let each symbol
x; represent a message for ¢ = 1,2,3,..., M. It is then known that H(X) < log, M. It
is also known that for each symbol to be encoded uniquely with N bits, N is chosen such
that N = log, M. This implies that M should not exceed 2" if no collisions are required.

However, remember that for cryptographic hash functions:

1. The requirement of one-wayness has to be fullfilled.

2. The input alphabet should have an arbitrary size.

Hash functions used in cryptographic applications have to be one-way. If the hash result

corresponds to one, and only one input, the property of one-wayness is violated.

The requirement that the input alphabet should have an arbitrary size implies that M > 2V
or M < 2N If M < 2" the source encoding algorithm may become inefficient. From
a cryptographic point of view this is a minor problem. If M > 2V the probability of an
encoding error, F,, becomes non-zero. If P, # 0, collisions exist. If P, approach 1, the
function becomes one-way. In order for P, to approach 1, N < H(X) — ¢, for any ¢ > 0.
By setting NV to a fixed size and choosing M >> 2V, the above condition is satisfied. Thus
the source coding algorithm becomes one-way but produces collisions. Thus collisions exist,
not only as a result of the requirement of encoding messages of arbitrary length but also as a
result of the requirement for one-wayness. As long as it remains difficult to obtain messages

that have the same hash result, the function is called collision resistant.

In order to demonstrate the need for cryptographically secure hash functions consider the

following example:

Example

Consider a typical electronic transaction. Two parties agree to the sale of a specified item for
R10000,00. An (electronic) contract is drafted. The seller computes the hash value of the
contract and applies his digital signature to the hash value. The buyer does the same and the

sale is agreed upon. However the parties involved did not utilise a collision resistant hash

Electrical and Electronic Engineering 7

-
W UNIVERSITEIT VAN PRETORIA
A~ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 1 Introduction

function. Consequently the seller was able to draft an alternative contract which has the same
hash result as the original, except that the agreed upon price is changed from R10000,00 to
R20000,00. The buyer now finds that he is committed to purchase the item in question at

twice the agreed upon price.

In the above example the participating parties relied upon the hash function to provide as-
surance of the data integrity. In effect the message integrity was transferred to the integrity
of the hash function. It is shown that the use of a weak hash function compromises the
security objective of data integrity. Similar examples pertaining to authentication protocols
and encryption schemes may be listed where the failure of the hash function undermines
the security objective. For this reason efficient and strong cryptographic hash functions are

required.

1.2.3 Hash Functions Today

Hash functions are widely used in cryptographic applications. As demonstrated in the pre-
vious section the properties of one-wayness and collision resistance are of particular im-
portance in security applications. During the last decade numerous proposals were made to
construct dedicated hash functions that are both one-way and collision resistant. These pro-
posals include MD4, MDS5, SHA, SHA-1, HAVAL, RIPEMD-128 and RIPEMD-160. MD4
was published in 1990 by Rivest [10]. By the end of 1991 it was demonstrated that neither the
first two rounds (Merkle) nor the last two rounds of MD4 (Bosselaers and den Boer [11]) are
collision resistant. The lessons learned from these attacks led to the design of MD5 [12] and
SHA [13]. In 1996 Dobbertin showed that MD4 is not a collision resistant hash function by
demonstrating a technique which allowed the construction of collisions for all three rounds
of MD4 [14]. Within six months Dobbertin demonstrated that collisions may be found for
the compress function of MDS [12]. Although details of this attack have not been published,
it is believed to be based on similar techniques as described in [14]. Dobbertin has also
shown that these attacks are applicable to RIPEMD-128. The speed with which these attacks
could be adapted to different hash functions derived from the same basic construction is a
cause for concern since it may be indicative of a fundamental flaw in the design of the basic
construction. This concern has led to the design of RIPEMD-160 to replace RIPEMD-128
[15]. In 1998 Dobbertin showed that the first two rounds of MD4 are not one-way. The at-
tacks formulated by Dobbertin utilises techniques borrowed from a wide range of disciplines

ranging from genetic algorithms to Boolean algebra. These hash functions are all based on

Electrical and Electronic Engineering 8

-
53 UNIVERSITEIT VAN PRETORIA
A~ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 1 Introduction

the same design principles and criteria. The weaknesses found in these hash functions may

be indicative of a common design weakness.

As shown above a number of the popular dedicated hash function constructions were found
to be cryptographically inadequate. In particular it was found that the requirement for colli-
sion resistance is hard to satisfy. One of the reasons for this is the threat model used when
considering the property of collision resistance. In this threat model the cryptanalyst not only
has full knowledge of the algorithm used (Kerckhoff’s principle [59]) but also has control
over all aspects of the input to the hash function. The attacker is often a legitimate participant
in the system and is trusted to a certain extent. Given the above threat model it should remain

computationally difficult to construct collisions or find a specified hash results.

1.3 PROBLEM STATEMENT

Cryptographic hash functions are important cryptographic primitives and are widely used in
security applications where message integrity is required. The design of cryptographic hash
functions have proved to be a difficult task. A recent spate of attacks showed that a number
of commonly used hash functions exhibit cryptographic weaknesses. The absence of secure
cryptographic hash functions will make dependable message integrity, non-repudiation and
message authenticity impractical. It is therefore important to understand the basis of the
attacks, determine if they share common elements and establish design criteria to foil these

attacks.

14 HYPOTHESIS

It is the hypothesis that the recent spate of attacks formulated by Dobbertin has a common
underlying structure and that these attacks exploit certain architectural properties of the MD4
family of hash functions.

1.5 SCOPE

In this dissertation only dedicated, iterated cryptographic hash functions are studied. In

particular the MD4 family of hash functions are considered. Although a general review of

Electrical and Electronic Engineering 9

-
W UNIVERSITEIT VAN PRETORIA
A~ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 1 Introduction

generic attacks are included in this dissertation only the attacks formulated by Dobbertin are

considered in depth.

1.6 DISSERTATION OBJECTIVES AND METHODOLOGY

This dissertation has the following objectives:

1. Lay a foundation for the analysis and design of cryptographic hash functions.
2. Reconstruct the attacks on MD4 and MD5 as formulated by Dobbertin.

3. Generalise the analysis of MD4 and MDS5 to create a framework for the analysis of

iterated dedicated hash functions.
4. Apply the generalised analysis framework to practical cryptographic hash functions.

5. Formulate design criteria to prevent the successful application of the generalised anal-

ysis framework.

In order to lay a foundation for the analysis and design of cryptographic hash functions we
present an in-depth study of the current state of cryptographic hash functions. Included in
this study are the definitions (Chapter 1), taxonomy (Chapter 2), generic threats (Chapter
3), common requirements (Chapter 4) and general designs of cryptographic hash functions
(Chapter 5). Once a general foundation is laid for the understanding of cryptographic hash

functions the focus is shifted to practical dedicated cryptographic hash functions.

As part of the focus on dedicated cryptographic hash functions the attacks on MD4 and MD5
are reconstructed (Chapters 6 and 7). The C-programs used to reconstruct these attacks are
attached as Appendix B, C, D and E. This is one of the main objectives of the dissertation. A
novel approach is derived that allows the attack on MD4 to be optimised to obtain a reduction

in computation time for a collision by a factor 64.

Based on the reconstruction of these attacks a generalised attack is formulated (Chapter
8). The generalised attack provides a framework for the analysis of the collision resistant

property of any cryptographic hash function.

Electrical and Electronic Engineering 10

-
% UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
\ 4

YUNIBESITHI YA PRETORIA

Chapter 1 Introduction

The newly derived framework for analysing a cryptographic hash functions is applied to
reduced versions of SHA and HAVAL (Chapters 9 and 10). Extensive simulations were
performed using the C programming language. A sample of the resulting source code is
included as Appendices F and G. To the best of our knowledge this is the first cryptanalytical
result that has been published on the HAVAL hash function. The result shows that a collision
can be established for a reduced version of HAVAL in less than a minute on a 200 MHz
Pentium Pro. This result suggests that three and even four round HAVAL should not be used

for security applications where message integrity and non-repudiation is required.

The dissertation is concluded by presenting design criteria for dedicated cryptographic hash
functions (Chapter 11). The design criteria is based on the common weaknesses identified
in the analysis of MD4, MD5, SHA, SHA-1 and HAVAL. It is the intention that the applica-
tion of these design criteria will defeat the generalised attack on iterated cryptographic hash

functions presented earlier in the dissertation.

1.7 RESULTS

The following are the main results of this dissertation:

[am—y

. Successful reconstruction of the attacks on MD4 and MDS5 as formulated by Dobbertin.
2. Speedup the attack on MD4.

3. Create a generalised framework for the analysis of iterated dedicated hash functions
based on the MD4 family.

4. Apply the generalised analysis framework to reduced versions of HAVAL and SHA.

5. Formulate design criteria to prevent the successful application of the generalised anal-

ysis framework.

Electrical and Electronic Engineering 11

P
w UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

CHAPTER 2: TAXONOMY OF CRYPTOGRAPHIC HASH
FUNCTIONS

2.1 INTRODUCTION

In Chapter 1 the relevant definitions and properties related to hash functions were defined.
In this chapter a taxonomy of practical cryptographic hash functions is presented, along with

the common approaches to the design and analysis of cryptographic hash functions.

The taxonomy is based on the terminology that exists in the banking community and is taken

from [3]. Cryptographic hash functions are divided into the following categories:

1. Message Authentication Codes (MAC).
2. Manipulation Detection Codes (MDC).

(a) One Way Hash Function (OWHF).
(b) Collision Resistant Hash Function (CRHF).

A graphical summary of the above taxonomy is shown in Figure 2.1.

Cryptographic Hash Functions

Key No Key

MAC MDC

n Bits 2n Bits

OWHF CRHF

Figure 2.1: A Taxonomy of Cryptographic Hash Functions

Informal definitions for the categories of hash functions are suggested in [16] and refined
in [3]. The distinction made between the different cryptographic hash functions is based

quantitatively on the following definitions.

P
i

W UNIVERSITEIT VAN PRETORIA

0 UNIVERSITY OF PRETORIA

A~ 4

YUNIBESITHI YA PRETORIA

Chapter 2 Taxonomy of Cryptographic Hash Functions

2.1.1 MAC

A MAC is a hash function for which a secret key is required. This adds to the security of the
hash scheme, since the attacker’s abilities decrease as his knowledge decreases. However the
requirement for a secret key does not protect the users against an attack by an insider. The
addition of a secret key leads to the additional problem of key management. It does however
have the advantage that a secure channel' is no longer required for the hash value, since the
secret key protects the hash value. It is however necessary to provide a secure channel for
the key used in the MAC. More formally:

Definition 2.1 A MAC is a function h() satisfying the following conditions:

1. The description of h() must be publicly known and the only secret information lies in

the key, K, (extension of Kerkhoff’s principle).

2. The argument X can be of arbitrary length and the result h(K,X) has a fixed length of
nbits(n<32... 64).

3. Given h(), K and X, the computation of h(K,X) must be easy.

4. Given h() and X, it is hard to determine h(K,X) with a probability of success signif-
icantly higher than 2=". Even where a large set of pairs {X;, h(X;, K)} is known,
where X; have been selected by the opponent, it is “hard” to determine the key K or
to compute (K. X’) for any X; # X'.

2.1.2 MDC

A MDC is a hash function that is computed without knowledge of a secret key. These
functions are known publicly. For these hash functions, no key management is required, but

an authentic channel needs to be provided for the hash value.

Two variants of MDCs are identified in [16] and [3]. The following definitions are used to
distinguish between one way hash functions (OWHF) and collision resistant hash functions
(CRHF).

! An authentic or secure channel could be provided through encryption of the hash value, a separate channel

Or a courier.

Electrical and Electronic Engineering 13

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

-
W UNIVERSITEIT VAN PRETORIA
A~ 4

Chapter 2 Taxonomy of Cryptographic Hash Functions

One Way Hash Function (OWHF)

Definition 2.2 A One Way Hash Function is a function h() satisfying the following condi-

tions:

1. The description of h() must be publicly known and should not require any secret infor-

mation for its operation (extension of Kerkhoff’s principle).

2. The argument X can be of arbitrary length and the result h(X) has a fixed length of n
bits (n < 64).

3. Given h() and X, the computation of h(X) must be easy.
4. The hash function must be one way in the sense that:

(a) givenaY inthe image of h(), it is “hard” to find a message X such that h(X) =Y.

(b) given X and H(X) it is “hard” to find a message X' # X such that h(X) =
h(X").

Collision Resistant Hash Function (CRHF)

Definition 2.3 A Collision Resistant Hash Function is a function h() satisfying the follow-

ing conditions:

1. The description of h() must be publicly known and should not require any secret infor-

mation for its operation (extension of Kerkhoff’s principle).

2. The argument X can be of arbitrary length and the result h(X) has a fixed length of n
bits (n < 128).

3. Given h{) and X, the computation of h(X) must be easy.
4. The hash function must be one way in the sense that:

(a) given a in the image of h(), it is “hard” to find a message X such that h(X) =Y.

(b) given X and H(X) it is “hard” to find a message X' # X such that h(X) =
h(X").

Electrical and Electronic Engineering 14

-
W UNIVERSITEIT VAN PRETORIA
A~ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 2 Taxonomy of Cryptographic Hash Functions

5. The hash function must be collision resistant: This means that it is hard to find two

distinct messages that hash to the same result.

The nature of the differences between OWHF and CRHF is discussed in [17]. The underlying
difference between OWHF and CRHEF is related to the the type of attack the respective hash
functions are required to withstand. For cryptographic purposes a CRHF is of greater value
than an OWHE

Implicit to the above definitions are the requirements for one-wayness, computational in-
tractability, collision resistance and simplicity. These requirements are related to both the

functional and security properties of cryptographic hash functions.

A new hash function should therefore be designed to adhere to the above definitions and im-
plied requirements. The definitions and requirements can be made more formal by specifying

quantitative criteria for the terms hard and easy.

2.2 APPROACHES TO THE DESIGN AND ANALYSIS OF CRYPTOGRAPHIC
HASH FUNCTIONS

Two approaches could be considered for the analysis, design and classification of crypto-
graphic hash functions. Since hash functions are used extensively in authentication applica-
tions and protocols [17], hash functions could be classified along the same lines as authenti-

cation codes. In [18] the following classification is given for authentication schemes:

1. Computationally secure.
2. Provably secure.

3. Unconditionally secure.

The above classification is not satisfactory when dealing with hash functions. As explained
in Chapter 1 collisions exist for all hash functions. This property of hash functions leaves
only the computationally secure classification as a viable option. The above classifications

does not contribute a great deal to design criteria for cryptographic hash functions.

Electrical and Electronic Engineering 15

P
i

W UNIVERSITEIT VAN PRETORIA

0 UNIVERSITY OF PRETORIA

A~ 4

YUNIBESITHI YA PRETORIA

Chapter 2 Taxonomy of Cryptographic Hash Functions

In [3] Preneel suggests that the same classification scheme be used as that proposed by

Rueppel for stream ciphers. Accordingly one of three approaches are available:

1. Information theoretic approach.
2. Complexity theoretic approach.

3. System based or practical approach.

The information theoretic approach and complexity theoretic approach yields interesting
constructions of variable security. In general the constructions based on these two approach-
es are impractical. This leaves the system based or practical approach. In the system based

approach, practical schemes with fixed parameters and dimensions are studied.

There has been numerous proposals for the design of cryptographic hash functions based on
the system based approach to hash functions. Many of these designs are based on existing
cryptographic primitives such as block and stream ciphers. Other proposals utilise modular
arithmetic and the hardness of number theoretical problems as a basis for design. However
the hash functions which have found the widest acceptance in industry are dedicated hash

functions. The following definition of a dedicated cryptographic hash function is presented:

Definition 2.4 (Dedicated Cryptographic Hash Functions) A dedicated cryptographic hash
Jfunction is a hash function which has been designed to meet the requirements set for crypto-

graphic applications and is to be used explicitly for hashing purposes.

One family of dedicated hash functions, known as the MD4-family of hash functions, has
found widespread acceptance in industry. Members of this family of dedicated hash func-
tions are used by the Secure Electronic Transaction (SET) protocol specified by Mastercard
and Visa, Secure Socket Layer (SSL) protocol commonly used for securing Internet com-
merce as well as the Secure MIME (S/MIME) protocol used to secure electronic mail to

name a few of the more popular protocols.

In this dissertation the practical approach is used to analyse dedicated cryptographic hash

functions and establish suitable design criteria for dedicated cryptographic hash functions.

Electrical and Electronic Engineering 16

A&
w UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

CHAPTER 3: THREATS AGAINST HASH FUNCTIONS

3.1 INTRODUCTION

Before proceeding to establish requirements for hash functions, it is appropriate to consider
the threats against hash functions. In this chapter both the attackers as well as the attacks

they are capable of are considered.

Attackers are classified with regard to their capabilities and their position regarding the sys-
tem under attack. As the wealth and resources of an opponent increases, the difficulty of
designing a secure hash function increases. For this reason it is important to be aware of
the capabilities of various classes of attackers. When designing a hash function it should be

decided which class of attacker is to be denied a successful attack.

In addition to the attackers and their capabilities, the attacks they are capable of are consid-
ered. A taxonomy of these attacks are presented in this chapter. For the attacks described in
this chapter, the computational power and storage capabilities required for the execution of
these attacks are emphasised. These requirements are stated as a function of the number of
bits, 1, contained in the hash length. In this report the attacks specific to MDCs, MACs and

hash algorithms based on block ciphers are considered.

3.2 TAXONOMY OF ATTACKERS

A distinction is made between the capabilities of attackers and their position with regard to

the hash function ‘they seek to attack.

3.2.1 Capabilities

The capability of an attacker is measured in terms of the resources available to him. In
[19] a taxonomy of attackers on tamper resistant devices is presented. This classification is
based on the resources available to the attackers. This taxonomy can be extended to security

mechanisms in general, including hash algorithms. Attackers are categorised as follows:

Class I (clever outsiders): They are often very intelligent but may have insufficient knowl-

edge of the system. They may have access to only moderately sophisticated equipment.

-
% UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
\ 4

YUNIBESITHI YA PRETORIA

Chapter 3 ~ Threats Against Hash Functions

They often try to take advantage of an existing weakness in the system, rather than try

to create one.

Class II (knowledgeable insiders): They have substantial specialised technical education
and experience. They have varying degrees of understanding of parts of the system,
but potential access to most of it. They often have access to highly sophisticated tools

and instruments for analysis.

Class III (funded organisation): They are able to assemble teams of specialists with relat-
ed and complementary skills backed by great funding resources. The are capable of
in-depth analysis of the system, designing sophisticated attacks, and using the most

advanced analysis tools. They may use Class II adversaries as part of the attack.

The threat from Class I and Class II attackers can be dealt with by placing a hash algorithm
in the public domain and allowing experts in the field to analyse and review the algorithm
before widespread implementation. This approach will also ensure that the threat from Class
III attackers are minimised. When designing a hash function it is advised that the hash
function should be able to withstand attacks from a Class III opponent. This is difficult since

it is not always known what a Class III opponent’s capabilities are.

3.2.2 Position

In addition to the taxonomy of attackers based on their capabilities, a taxonomy of attackers
is presented with regard to their position concerning the system they seek to attack. Regard-

ing cryptographic hash functions the following attackers are identified:

Legitimate Participants: These are participants who rightfully share in a communication
process. They are allowed to generate, sign and transmit messages. In the case of
MAC:s they have access to the shared secret key. These attackers can generate two
messages that yield the same hash value and substitute the one message for another

when convenient.

Active Eavesdroppers: These attackers are not allowed to generate, sign and transmit mes-
sages. They are hostile eavesdroppers who seek to intercept and modify messages

without detection. This imply that they would attempt to construct a false message

Electrical and Electronic Engineering 18

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(og gt

Chapter 3 Threats Against Hash Functions

that has a specific hash value and replace a valid message when intercepted. They are

not expected to have access to shared secret keys for MACs.

These attackers can belong to Class I, Class II or Class III attackers, depending on their

capabilities. The taxonomy of attackers is summarised in Figure 3.1.

Attackers

Capabilities

Position

Figure 3.1: Taxonomy of Attackers

3.3 TERMINOLOGY

In this chapter the following attacks are considered:

1. Attacks on MDCs.
2. Attacks on MACs.
3. Attacks on underlying block ciphers.
4. High level attacks.

5. Attacks dependent on the algorithm.

Before proceeding with a description of the generic attacks on hash Functions, it is useful
to consider the terminology used in describing the generic attacks. The terminology intro-
duced in this section serves as an indication of what an attacker could hope to achieve when

attacking a hash function.

Electrical and Electronic Engineering 19

-
W UNIVERSITEIT VAN PRETORIA
4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 3 Threats Against Hash Functions

3.3.1 MDC Terminology

When attacking a MDC, an attacker could hope to construct a:

Pre-image: Establishing a pre-image is equivalent to finding a message that results in a

specified hash value.

Second pre-image: A second pre-image requires the attacker to find two messages that re-

sults in a specific hash value.

Pseudo-pre-image: A pseudo-pre-image requires that two messages, X and X', with t-
wo different initial values, IV and IV’ should be found such that the h(/V, X) and
h(IV', X') result in the same specified hash value.

Collision: A collision is established if an attacker can find two messages X and X' such
that h(IV, X) and h(IV, X') result in the same unspecified hash value.

Collision for different /1’s: A collision for different IV ’s is established if two messages
and two I'V’s can be found such that A(IV, X') and h(IV’, X') hash to the same hash

value.

Pseudo-collision: A pseudo collision is established if an attacker can find two messages X
and X' such that A(I'V, X) and h(IV’, X') yield the same hash value for two specified
IV’s.

Constructing collisions, collisions for different IV and pseudo-collisions are easier than con-
structing a second pre-image or pseudo pre-image. Attacks specific to MDCs are considered

in Section 3.4.

3.3.2 MAC Terminology

A MAC makes use of a secret key to compute a hash value. Thus for a MAC the collision
is dependent on both public knowledge (the message) and secret knowledge (the key). The
attacker is therefore faced with two problems. The first deals with the key, the second deals
with the construction of collisions. When dealing with a MAC, an attacker could hope to

achieve one of the following objectives [3]:

Electrical and Electronic Engineering 20

A&
w UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Chapter 3 Threats Against Hash Functions

Key recovery: The attacker can determine the secret key K.

Universal forgery: The attacker constructs an alternative algorithm that mimics the MAC

algorithm.

Selective forgery: For a message chosen by the attacker the correct MAC can be deter-

mined.

Existential forgery: An attacker can determine a correct MAC for at least one plaintext.

The resulting plaintext may be random or non-sensical.

Once the secret key is known to an attacker, he can determine the MAC for any message.
With the MAC algorithm and the secret key known, an attacker can proceed to construct a
collision. Techniques describing key retrieval and the construction of forgeries are consid-
ered in Section 3.5. The objectives for generating a collision for a MAC when the secret key

is known are similar to those for a MDC.

3.4 ATTACKS ON MDCS

In this section a number of generic attacks on MDCs are considered. These attacks can be

classified as belonging to one of two categories. They are:

1. Attacks independent of the algorithm.

2. Attacks dependent on the chaining.

These attacks are generic and could be used against any hash function. In this section,
these attacks are summarised and evaluated according to the computational power required

to execute them successfully.

3.4.1 Attacks Independent of the Algorithm

For MDCs two attacks are considered to be independent of the algorithm. This implies that
these attacks can be carried out against the ideal cryptographic hash function described in

Chapter 1. These attacks are known as the random attack and the birthday attack.

Electrical and Electronic Engineering 2]
tileseaseex

bria &Eesq2

-
W UNIVERSITEIT VAN PRETORIA
A~ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 3 Threats Against Hash Functions

Random Attack

In this attack it is assumed that the attacker is given a message X and requires a message
X' such that X’ # X and h(IV, X") = h(IV, X) (i.e. the attacker has to find a second pre-
image). This can be accomplished by randomly selecting X' from all possible admissible
messages. The probability of success is 27" with n the length in bits of the hash value. If
an attacker performs T trials, the probability of finding a valid value for X' so that X’ # X
and h(X') = h(X) becomes T - 27 ™. Thus, the larger n the larger number of trials 7" are
required. According to [1] approximately 0.7 -2~ trials are required to find a collision using
this technique. Thus for a n-bit hash value the expected workload to find a second pre-image
is in the order of O(2").

Birthday Attack

This attack is based on the the birthday paradox from probability theory. According to this
paradox, it can be shown that the probability that two individuals in a group of 23 people
share a birthday, is approximately 52%. The number of people in the group is much smaller
than expected. A related problem states that for two groups of 17 people, the probability that
two people have a common birthday, is larger than 50%. This property can be exploited to

attack hash functions as explained below.

For two sets of messages 7, and r it is shown in [3] that:

7‘] '1‘2

Pr(h(X) =h(X')) =1—e"""

for:

the probability

P(B(X) = (X)) = 1—e!
~ 63%.

An example of an algorithm that makes use of this result is presented as algorithm 3.1.

Electrical and Electronic Engineering 22

-
W UNIVERSITEIT VAN PRETORIA
A~ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 3 Threats Against Hash Functions

Algorithm 3.1 Birthday attack for hash functions

1. For an bit hash value let, = r5 =~ O(27)
2. Generate 1, variations on the valid message X .
3. Generate o variations on the forged message X'.

4. Compare the hash values for the r variations of X with the o variations of X'. When
a message X and X' is found for which h(IV, X) = h(IV, X'), a collision is estab-
lished.

The attacker can now generate a message that contains X and then later replace X with X’
and claim that he originally generated X', since the hash values for both messages are the

same.

In [20] and [21] alternative algorithms for efficient collision search is proposed. These tech-
niques are based on Pollard’s p method for finding cycles in periodic functions in a finite

domain. These techniques were used in the analysis of DES.

The significance of this attack is that the number of operations required to find a collision
is O(2%) instead of O(2") for the random attack. A similar order of magnitude is required
in storage capabilities. Thus a birthday attack requires less operations than a random attack.
The only way to defend against birthday attacks is by increasing the number of bits n in

order to make it computationally infeasible to launch a birthday attack.

3.4.2 Attacks Dependant on the Chaining

If a message is longer than the maximum block length of the hash algorithm, the message
is segmented. The segments are then processed iteratively (Chapter 5 Section 5.3). This is
known as the Damgard-Merkle scheme [22], [23]. A number of attacks have been derived

which are only applicable if an iterated structure is used. The attacks are summarised below.

Electrical and Electronic Engineering 23

g

w UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Chapter 3 Threats Against Hash Functions

Meet in The Middle Attack

This is a variation of the birthday attack. This attack allows the attacker to construct two
messages, X and X', for which A(X) = h(X"). The messages X and X' should be at least
twice as long as the elementary block length of the hash function. The following algorithm

describes the meet in the middle attack.

Algorithm 3.2 Meet in the middle attack for hash functions
Consider Figure 3.2.

nf3

1. For an bit hash value let ry = ry = O(22)
2. Generate 1y variations on X|.

3. Generate ry variations on XJ}.

4. Work forward from the IV and compute T variations of the intermediate values IM1
with IM1 = h(IV, X!) and save this in a buffer of intermediate values I M.

5. Work backward from h(X) and compute r4 variations on h(X) = h(IM2, X}) and

save the intermediate values in a buffer of intermediate values I M.

6. Use a search algorithm and search for two intermediate values that are equal in 1M1

and I M?2 respectively. If two equal values are found, a collision is established.

IM 1 IM 2
x 2 m
IV Imermedlate

ﬂxlﬁ ﬂxzﬁ

Figure 3.2: Meet in the middle attack

As in the case of the birthday attack the number of operations required to establish a collision

are in the order of O(27). The advantage of this attack is that it allows an attacker to hit a

Electrical and Electronic Engineering 24

-
W UNIVERSITEIT VAN PRETORIA
4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 3 Threats Against Hash Functions

specific hash value. This attack is only possible if the message is longer than an elementary

message block.

It is possible to defend against these attacks by increasing the number of bits in a hash value
to such an extent that the meet in the middle attack is computationally infeasible. Another
defence against this attack is to constrain the message lengths to less than the elementary
block length.

When imposing constraints on the solutions obtained with the meet in the middle attack, the

attack is called the constrained meet in the middle attack.

Generalised Meet in The Middle Attack

To avoid the meet in the middle attack, two-fold iterated schemes were suggested in [6].
These schemes include computing two hash values for a given meésage using two differen-
t IV’s (h(IV, X) and h(IV’, X)) or computing the hash value on the concatenation of the
message to itself (h(I'V, X||X)). These schemes can be extended to so-called p-fold schemes
where p hash values are computed for the same message using p initial values, or by concate-
nating the message p times to itself and then computing a hash value (h(IV, X||X]| ... X)).

A graphical representation of these p-fold schemes are shown in Figure 3.3.

LN =

N NN N o .
v (W] vz j@
IV1 =h(IV,X)
ML Jxl
B N N N
vo | hO) vt | hO) | IVg h()
g Y ¥
h(IV0,X) h(IV1,X) h(IVp,X)

Figure 3.3: Two P-Fold Hashing Schemes

Electrical and Electronic Engineering 25

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

-
W UNIVERSITEIT VAN PRETORIA
A~ 4

Chapter 3 Threats Against Hash Functions

It has been shown in [24] and [25] that the meet in the middle attack can be extended to break
these schemes. The extension of the meet in the middle attack to attack p-fold schemes is
called the generalised meet in the middle attack. For this attack only O(10” - 2%) operations
are required instead of 0(2923) [24], [25].

This attack can be foiled by choosing the number of bits, n, large enough in order to make

the attack computationally infeasible.

Correcting Block Attack

Several variants of the correcting block attack exists. The first variant assumes that an attack-
er has a message X for which a forgery, X', has to be constructed. All the blocks in X' are
then changed so that they differ from X . One message block in X', X/ is then constructed so
that h(X) = h(X'). The block X/ is then designated as the correcting block. The correcting
block is usually inserted as the last block in the message, but may be inserted at the beginning
of a message or in the middle of a message. For this variant of the correcting block attack,
the construction of the correcting block X may be accomplished with the random attack.
Since a specific hash value has to be generated, the birthday attack cannot be used. If two
correcting blocks are allowed, it is possible to use the meet in the middle attack to generate
two blocks, X; and X/ |, that together cancel the effect that message blocks X to X|_, have
on the chaining variable. Another alternative in constructing the correcting block requires
the attacker to have knowledge of the algorithm. By manipulating the algorithm a correcting
block X can be constructed. Note that the construction of a message block by manipulat-
ing the algorithm depends on the algorithm. If the construction of X/ is independent of the

algorithm, the amount of work required is O(2%).

Another variant of the correcting block attack is described next. An attacker generates two
messages X and X' and then generates two correcting blocks Y and Y’. The correcting
blocks are then concatenated to X and X'. The correcting blocks Y and Y’ should be chosen
such that h(IV, X||Y) = h(IV, X'||Y"). If the final hash value is specified, the correcting
blocks Y and Y” can be constructed using the random attack. If the final hash value is not
specified, the birthday attack can be used to generate a collision. If more than one block is
allowed as a correcting block, the meet in the middle attack can be used. Note that with the
meet in the middle attack the attacker can generate a specific hash value. It is also possible

to construct the correcting blocks Y and Y’ by manipulating the algorithm. The attack then

Electrical and Electronic Engineering 26

-
W UNIVERSITEIT VAN PRETORIA
A~ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 3 Threats Against Hash Functions

depends on an analytical weakness in the algorithm.

It is possible to defend against block correcting attacks by adding redundancy to the message
before hashing. Redundancy includes padding rules and attaching the number of blocks or
bits in a message as the last block. If the attacker is the originator of the message these
measures are not sufficient, since the attacker can control the number of blocks or the length
of the message under consideration. Choosing the value of n large enough, makes the block
correcting attack computationally infeasible. If the hash function itself can be manipulated
to produce a correcting block, the attack becomes dependent on the algorithm used. The

algorithm should be replaced if that is the case.

Fixed Point Attack

A fixed point may be defined as a hash value for which h(X;, H; 1) = H;_;. This property
allows an attacker to insert an arbitrary number of blocks corresponding to X; after the first

occurrence of X; (see Figure 3.4).

bl

X NN
(a) H_| H_j h() [hdE XD
2 2

bl bl

I NN I NN N R
(b) Hjq H_ | h() [w h(Hj_j .Xj41)
YZd Y 22577

Figure 3.4: The fixed point attack

A collision can be established if the chaining variables can be set equal to H;_;. This can
be accomplished by using the random attack to find a suitable value for X;_; or the meet in
the middle attack which would allow the attacker to specify X;_; and X;_, so that H;_; can
be established. It might also be possible to manipulate the hash algorithm to find a suitable

Electrical and Electronic Engineering 27

-
W UNIVERSITEIT VAN PRETORIA
A~ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 3 Threats Against Hash Functions

value for X,_; that will produce H; ;. It is possible to foil this attack by adding redundancy
to the message. The redundancy should contain the number blocks in the message. The fixed
point can be found by the random attack, or by the meet in the middle attack. This implies
that the work factor is approximately O(2%). By choosing n sufficiently large, it becomes
computationally infeasible to perform the random attack or the meet in the middle attack.
The value of an attack in which one block is repeated a number of times and still yields the

same hash code is debatable.

Differential Attacks

Differential cryptanalysis is based on the study of the relationship between input and output
differences in iterated cryptographic algorithms. Since hash functions are usually based on
iterated algorithms, differential cryptanalysis is applicable to cryptographic hash functions.
The differential attack against hash functions is a probabilistic attack. An attacker searches
for input differences that will result in specific output differences. If an attacker intends to

create a collision the output difference should be zero.

The differences can be found with a probabilistic search (random attack). For a random
attack, IV, h(I'V, X)) and IV are specified. The attacker has to find X’ so that A(IV, X) =
h(IV', X"). Another technique that an attacker could use is the birthday attack. For the
birthday attack it is assumed that IV and IV’ are specified. It now remains to find values
for X and X' such that h(IV, X) = h(IV’, X') with the birthday attack as described in
Section 3.4.1. It is also possible to use the meet in the middle attack to establish a collision.
This requires that the attacker should be able to choose two message blocks in both the
original and the forged message. This places the magnitude of the work factor at O(27). It
is also possible to execute the differential attack by manipulating the hash algorithm. The
differential attack then becomes dependent on the algorithm. When block ciphers are used,

the differences should be chosen in such a way as to exploit the chaining.

Differential attacks can be launched against the chaining of an iterated hash Function, or
against the hash algorithm itself. In Chapters 6, 7, 9 and 10 it is shown how differential
analysis is employed against the compress function of dedicated hash functions such as MD4,
MDS5, SHA and HAVAL.

Electrical and Electronic Engineering 28

A=
% UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Chapter 3 , Threats Against Hash Functions

3.5 ATTACKS ON MACS

All of the attacks against MDCs are applicable to MACs if the key for the MAC is known
to the attacker. In addition to the attacks on MDCs, the following attacks are applicable to
MAC:s.

3.5.1 Key Collisions

A key collision occurs when, for two distinct keys, K; and Ko, X, K,) = h(X, K3).
Due to the presence of a key, this attack is applicable to MACs. MACs based on block
ciphers are especially vulnerable to this attack, since this phenomenon has been observed in
block ciphers [20], [21]. It was shown in [20] that this attack can be implemented against
the Data Encryption Standard (DES) using the meet in the middle attack. In [21] a refined
technique based on the theory of distinguished points are proposed. Both attacks resulted in
the discovery of key collisions for DES. This attack allows an attacker to construct a message
that yields the same hash value for different keys used. For DES, 21 collisions were found in
[21] and 48 collisions are described in [20]. When the meet in the middle or birthday attacks
are used, approximately O(23) operations are required (n is the number of bits in the hash
value). For these attacks a large storage space and an efficient sorting algorithm is required.
In [21] a technique is suggested that reduces the storage requirements and eliminates the

necessity of an efficient sorting algorithm.

Another block cipher with a large number of known key collisions is LOKL. It is known that
15 key collisions exist for every key in LOKI [26]. For this reason it is advised that LOKI is
not used as a round function for the construction of a MDC or MAC [27]. For a MDC the
birthday attack or the meet in the middle attack can be used. For a MAC a key collision can
be established.

3.5.2 [Exhaustive Key Search

Exhaustive key search is intended to recover the key for a MAC. For a given MAC both the
hash value, h(K, X), and the message, X, are known. The key is recovered by exhaustively
trying all possible keys, K, until a key, K, is found that results in h(K, X). If key collisions

exist for the hash function, h(), several messages X; and their corresponding hash values,

Electrical and Electronic Engineering 29

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot
W UNIVERSITEIT VAN PRETORIA
Qe

Chapter 3 Threats Against Hash Functions

h(K, X;), are required to confirm that K is a valid key. Therefore this attack is effectively a
known plaintext-MAC attack. The effort required to find a k-bit binary key is on the order of
O(2*%). In [3] it is stated that for a k-bit key and a n-bit hash value the number of plaintext-
MAC pairs, M, required to determine the key uniquely is slightly larger than %, provided

that no key collisions occur.

3.5.3 Chosen Text Attacks

This attack allows the generation of a forgery and, in general, does not allow key recovery.
The attack is described [28] and [29]. The attack requires that the MAC is based on an
iterative structure (see Chapter 5 Section 5.3). The basic idea is that for two messages, X;
and X5, with:

X1 = Cll”b.
Xg = (lg”b.
a, # as.

The MAC results, h(K, X1) = h(K, X»), are likely to occur given O(22) chosen messages,
with n the hash length. This is reminiscent of the birthday attack. Given h(K,X;) =
h(K, X,) it is expected that h(K, a;) = h(K, ay). This implies that for an arbitrary string c,
the MAC values h(K, a,||c) and h(K, ag||c) are equal. Thus, a forgery can be obtained by
requesting h(K, a1 ||c), and in effect obtaining the MAC for h(K, ay||c).

This attack imposes requirements on the storage space available to an attacker and also as-
sumes that the secret key, K, is not changed before O(2?2) chosen messages can be requested.

Note that a forgery is obtained without retrieving the secret key K.

3.54 Known and Chosen Text Attack

This attack is presented by Preneel and van Oorschot in [29]. It is viewed as an extension of
the chosen text attack described above. The attack is outlined as a proof in [29]. Note that
this attack, as is the case for the chosen text attack, generally enables forgery attacks, not key

retrieval.

The attack states that » known plaintexts are required with » = /2 - 23. For the previous

Electrical and Electronic Engineering 30

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot
W UNIVERSITEIT VAN PRETORIA
Qe

Chapter 3 Threats Against Hash Functions

attack it was assumed that the MAC was given by a permutation g() of the hash result, A()
(e.g. the unity mapping). For this attack it is assumed that a random mapping is used with the
resulting MAC having m bits instead of n bits with m < n. When considering this attack,
it is necessary to differentiate between a collision before the random mapping is applied,
(internal collision) and a collision after the random mapping is applied (external collision).
With g() being a random mapping function, 2"~™ external collision are expected. Additional
computations are now required to generate a verifiable forgery. An internal collision can be
identified by attaching a known string y to each collision pair and checking whether the
corresponding MACs are equal. This requires 2 - (1 + 2"~™) chosen text-MAC requests.
For internal collisions the resulting MACs are always equal. Retain only the text-MAC
pairs resulting in internal collisions. At this stage 2" 2™ external collisions and a single
internal collision should be available. If more than one external collision remains, these
external collisions have to be eliminated by choosing a different value for y and proceed as
before, until a single external collision remains. It is believed to be highly probable that
the remaining external collision is the result of an internal collision. It is expected that the

number of chosen and known texts required to find an internal collision are:

2.97m . gm
22T [

n
— | & 2.92"™ 2[—-’.
2m — 1 m-‘ + m

Finding a single internal collision that allows the generation of a MAC forgery requires:

Known text-MAC pairs = +/2-2%

Chosen text-MAC pairs = 227" 4 2 [ﬁ] .
m

This attack is extended to cover the case where all the known texts have a common sequence
of s trailing blocks. It is stated that if that is the case, fewer known and chosen texts are

required. In particular it is shown that if:

r?.s = 0(2")

the probability that the set of known messages, r, contains two messages that collide under

the hash function, A(), is approximately:

_r2(s41)
1—e TontlT

Electrical and Electronic Engineering 31

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

4
53 UNIVERSITEIT VAN PRETORIA
A 4

Chapter 3 Threats Against Hash Functions

Given this probability, an internal collision for () can be found if the known text-MAC pairs

have s identical trailing blocks. If g() is a random mapping, this attack requires:

2 n
Known text-MAC pairs = <22
s+1
an—m —1 1
Chosen text-MAC pairs = 2- +2 |'n 0, (s +)-l .
s+1 m

In [29] both these attacks are applied to MAA [30] and CBC-MAC (see Chapter 5 Section
5.4). The refined version of this attack with s-blocks is shown to be effective against MAA.
The refined attack cannot be applied to CBC-MAC with maximal feedback, since the round
function is bijective. The unrefined attack described initially can however be employed a-
gainst CBC-MAC.

In [31] these attacks are extended to and tailored for forgery and key recovery for MAA and
the envelope MAC constructions (see Chapter 5 Section A.5).

It is noted that a large number of chosen texts and known texts along with their MAC values
are required. If it is assumed that key collisions does not occur for the chosen MAC, the
secret key, K, may not change while collecting the known and chosen texts. It is therefore
suggested that the chosen text attacks, and known and chosen text attacks, described in this
and the previous section can both be foiled by effective key management. By changing the
secret key at a regular interval, it becomes impossible to collect enough chosen and known

texts to execute these forgery attacks.

3.6 ATTACKS ON UNDERLYING BLOCK CIPHERS

It has been suggested that block ciphers could be adapted for use as building blocks for cryp-
tographic hash functions [23], [32], [3]. The motivations for these suggestions are presented
in Chapter 5. It should be noted that when using block ciphers in a hash function config-
uration, additional attacks based on the underlying block cipher are possible. The attacks
discussed in Sections 3.4 and 3.5 are applicable to hash functions derived from block cipher-
s. Specifically the construction of fixed points is considered easy if the underlying block
cipher is either DES or LOKI [3].

Electrical and Electronic Engineering 32

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

4
W UNIVERSITEIT VAN PRETORIA
A 4

Chapter 3 Threats Against Hash Functions

3.6.1 Complementation Property

Symmetry under complementation was one of the first properties discovered for DES [33].
Let £ (K, X) denote the encryption of X with the key K. Then for a message, X, and a key,

K, the complementation property is stated as follows:

VK,X :C = E(K,X) < C = EX,X)

with C' the ciphertext and C' the complement of C. This property is known to exist for DES
and LOKI91 [34]. When used in a hash function construction as a MAC, this reduces the
effort required for exhaustive search by a factor of two. In addition, this property allows the
construction of trivial collisions. It is known that LOKI89 has a large set of keys for which

this property holds [34].

3.6.2 Weak Keys

A weak key is a key for which the following property holds:

E(K,X) = C
E(K,C) = X, VX.

Thus the encryption, E, and decryption, D, operations are equivalent for a given key K.
Thus for certain keys, some block ciphers are involutions. This property holds for certain
keys of DES, LOKI89, LOKI91 [34] [35] and IDEA [36].

For a semi-weak key the following property holds:
E(Kl, X) - C

E(K,C) = X, VX.
K, # K.

These properties of block ciphers can be exploited in certain hash functions based on blocks

ciphers to yield fixed points (see Section 3.4.2).

Electrical and Electronic Engineering 33

-
W UNIVERSITEIT VAN PRETORIA
A~ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 3 Threats Against Hash Functions

3.7 HIGH LEVEL ATTACKS

In addition to the above attacks, the following attacks are considered feasible. These attacks
are not so much an attack on the hash algorithm, than an attack on the interaction of the hash

algorithm with the environment in which it is used.

3.7.1 Differential Fault Analysis

In [37] an attack on public key systems implemented in hardware is described by Boneh,
DeMillo and Lipton from the Math and Cryptography Research Group, Bellcore. Based
on the attack presented in [37], Biham and Shamir describes an attack that retrieves the
key for a hardware implementation of DES [38]. This attack is termed differential fault
analysis (DFA). Both of these attacks are specifically applicable to algorithms implemented

in hardware, and for this reason are considered as high level attacks.

The attacks described in [38] exploit the effect of a transient error in a hardware device. The
resulting erroneous output is then analysed to determine the secret key. In [38] it is claimed
that less than 200 ciphertexts are required to find the last sub-key in a DES implementation.

The remaining eight key bits can be found by exhaustive search.

In [39] Quisquater claims that this technique is applicable to MACs implemented in hard-
ware. According to [37] attacks based on differential fault analysis can be countered by
verifying results before output and protecting the registers used to store values using error
correcting codes. Thus differential fault analysis imposes conditions on the implementation

of a hash algorithm, rather than on the design of a hash algorithm.

3.7.2 Differential Power Analysis

Differential power analysis was first proposed by Kocher []. This attack allows an attacker
to derive the secret key used by an algorithm. This is accomplished by observing the fluctu-
ations in power consumption of the device, while performing cryptographic operations. It is
a non-destructive attack. This type of attack is especially efficient against smart card imple-
mentations. It has been demonstrated that a secret key can be obtained using this approach.

This attack can be used against MACs implemented in hardware.

Electrical and Electronic Engineering 34

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

4
W UNIVERSITEIT VAN PRETORIA
A 4

Chapter 3 Threats Against Hash Functions

3.7.3 Attack on the Interaction with the Signature Scheme

As remarked in Chapter 1 hash functions are often used in digital signature schemes. It
has been shown in [40], that even if the hash function is a collision resistant hash function,
the signature scheme can be attacked successfully. The success of this attack is due to the

underlying multiplicative structure of both the hash function and the signature scheme [3].

3.7.4 Attacks on the Protocol

These attacks are concerned with attacks such as replay of messages and the construction
of valid messages from previously intercepted messages. It is thus in effect an attack on
the protocol. These attacks can be thwarted by the use of a nonce or a timestamp. It is
thus necessary to protect a system in which messages and hash values are vulnerable to

interception with a suitable protocol.

Equivalent Systems

The calculation of the equivalent shift register length for a given stream Cipher, allows an
attacker to construct a linear feedback shift register that mimics the operation of the stream
cipher. This calculation is based on the Massey-Berlekamp algorithm. Similarly an attacker
could attempt to construct an equivalent system for a cryptographic hash function. This
attack is applicable to MACsS in particular [3]. The attacker attempts to find a system that
produces the same MAC for a given message, without knowledge of the secret key [3]. No

standard technique is known to exist for mimicking hash functions.

3.7.5 Attacks Dependant on the Algorithm

These attacks exploit a weakness in the algorithm. These attacks are usually discovered only
after the publication of a hash algorithm. These attacks are only a threat if the work factor
for finding a collision is substantially less than O(22). This dissertation investigates attacks

of this nature.

Electrical and Electronic Engineering 35

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

-
W UNIVERSITEIT VAN PRETORIA
A~ 4

Chapter 3 Threats Against Hash Functions

3.8 ATTACKERS AND ATTACKS
This section relates the attacks the various classes of attackers are capable of.

The distinction between classes of attackers are based on their capabilities, the informa-
tion at their disposal and their position with regard to the system under consideration. The
difference with regard to Class I and Class II attackers lie, to a large degree, within the in-
formation at their disposal. The advantage that Class II attackers have over Class I attackers

can be eradicated by publishing the hash algorithm and its design criteria.

All three classes of attackers are capable of executing any of the attacks presented in this
chapter. The probability of success however, increases as the attacker’s capabilities increases.
The feasibility of the attacks presented in this chapter are measured in terms of effort required
to establish a collision for a hash function. In general Class III attackers have the largest

resources in terms of computing power, followed by Class II and then Class I attackers.

A further point of interest is the position of the class of attacker with respect to the system
under consideration. A legitimate participant can construct two messages that result in the
same hash value. One message can be signed and transmitted and at a later stage the mes-
sages can be swapped. An active eavesdropper is not allowed to construct and sign messages.
Active eavesdroppers are expected to intercept and modify messages. The eavesdropper is
restricted to finding messages that hash to specific values. As seen in Section 3.3 the com-
putational effort required to construct two messages that result in the same hash value is
considerably less than that required to hit a specific hash value. For example, even though a
Class II attacker might not be capable to construct a message that results in a specific hash
value, it may be possible for the Class II attacker to construct two messages that yield the

same hash value.

Thus although all three classes of attackers are capable of all possible attacks, the probability
of success differs substantially as the attackers’ knowledge and capabilities differs. In addi-
tion it appears that legitimate participants require less effort to construct messages that result

in collisions, than active eavesdroppers.

Electrical and Electronic Engineering 36

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Chapter 3 Threats Against Hash Functions

3.9 FEASIBILITY

All of the above attacks pose requirements in terms of processing power and storage space.
When designing a hash function the parameters that contribute the security of the function,
such as the hash length, should be chosen in such a manner as to render any of the above
attacks infeasible. In order to make a sufficiently informed choice for these parameters the
capabilities of an opponent has to be known or estimated. Estimating the computational
power of an opponent is a complicated process. The following aspects should be considered

when estimating computational capabilities.

1. Processor speed.

2. Volatile memory access time.

3. Amount of volatile memory available.
4. Storage space access time.

5. Storage space available.

6. System bandwidth.

In addition to these aspects, additional factors, such as the opponent’s ability to construct
dedicated hardware or hardware subsystems and the interconnection of these systems to
realise the above attacks, should be taken into account. The feasibility of an attack also

depends on the class of attacker dealt with (see Section 3.2).

The generic attacks described in this chapter are not considered feasible for hash lengths of
128-bits or more. It is already considered that 128 bits will not provide sufficient protection
within the next few years, due to the increase in available computational power [41]. The
development of new fields in computing such as quantum computing may also change the

estimate of computationally secure hash lengths [42].

3.10 CONCLUSION

A taxonomy of possible attackers were presented. The taxonomy is based on the attackers’

capabilities and their position with regard to the system they seek to attack.

Electrical and Electronic Engineering 37

A&
w UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Chapter 3 Threats Against Hash Functions

A review of the general attacks against MDCs were presented in Section 3.4. These attacks
are discussed in [17]. It was shown that these attacks require a maximum of O(2") operations
and a minimum of O(22). Due to the definition of hash functions, these attacks cannot
be avoided. When designing a hash function, the relevant parameters should be chosen to
minimise the effect of these attacks. The feasibility of a specific attack is measured by the
workload associated with each of these attacks. The workload is expressed in terms of the
number of bits, n, contained in the hash values. This implies that an attack can be made

infeasible by choosing n sufficiently large.

In addition to the general attacks on MDCs, the general attacks on MACs were presented in
Section 3.5. These attacks are aimed at either retrieving the secret key, or obtaining a forgery
for the MAC. The probability of success for these techniques are proportional to the size of

the secret key and the number of bits, n, in the resulting hash function.

When constructing cryptographic hash functions based on block ciphers, additional attacks
are possible. These additional attacks were presented in Section 3.6. These attacks exploit
certain properties of block ciphers and allows the establishment of collisions. As before, a

legitimate participant has a larger probability of success than an active eavesdropper.

Several high level attacks were presented. These attacks concentrate on the environment in
which a hash function is used. Hash functions and the systems within which they are used,

should be implemented in a secure manner to avoid these attacks.

The relationship between attackers and the type of attacks they are capable of were investi-
gated in Section 3.8. It is shown that an attacker operating as a legitimate participant has a
larger probability of success than an attacker operating as an active eavesdropper. Therefore
legitimate participants poses a more significant threat than active eavesdroppers. Likewise,
it is more likely that a Class III attacker will execute an attack successfully than a Class II or

Class I attacker.

When designing a cryptographic hash function, both the attackers and the attacks they are
capable of should be considered. Cryptographic hash functions should be designed to with-

stand the attacks described in this chapter.

Electrical and Electronic Engineering 38

P
i

W UNIVERSITEIT VAN PRETORIA

0 UNIVERSITY OF PRETORIA

A~ 4

YUNIBESITHI YA PRETORIA

CHAPTER 4: REQUIREMENTS FOR CRYPTOGRAPHIC HASH
FUNCTIONS

4.1 INTRODUCTION

This chapter contains a description of the requirements for cryptographic hash functions.

These requirements are based on:

1. The definition of a cryptographic hash function.

2. Known attacks on cryptographic hash functions.

The requirements are divided into two classes, namely functional requirements and security
requirements [43]. These requirements are often contradictory. The contradictions are not
restricted to the security requirements and the functional requirements, but are sometimes
found in the functional or security requirements themselves. The conflict between security

and functional requirements are treated in a separate section in this chapter.

4.2 FUNCTIONAL REQUIREMENTS

The functional requirements deals with the practical implementation of a hash function. The
requirements presented in this section are intended as goals to be met by practical hash

algorithms.

4.2.1 Message Reduction

According to the definition of a hash function a message of arbitrary length is compressed to
a string of fixed length. Thus a fundamental functional requirement for a cryptographic hash

function is the reduction of a message of arbitrary length to a string of fixed length.

Concerning the input length of the message, several solutions are possible. The designer
could specify different hash algorithms for different message lengths. This is an impractical

solution. Alternatively a scalable hash algorithm can be used. The third possibility is the use

-
W UNIVERSITEIT VAN PRETORIA
A~ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 4 Requirements for Cryptographic Hash Functions

of padding to extend the message to a specific length, or a multiple of a specific length. This

is the most often used technique.

If the message is longer than the elementary block length of the hash algorithm, the message
is padded to be a multiple of the elementary block length. The padded message is then seg-
mented and processed iteratively by the hash algorithm. This process is known as chaining

and is commonly used in hash functions (see Chapter 5 Section 5.3).

4.2.2 Repeatability

Repeatability is important since it should be possible to produce the same hash value for the

same€ message.

In Chapter 5 an ideal construction is presented for a cryptographic hash function. In this
construction the hash value is generated independent from the message. The construction
requires the use of a database to produce the same hash value for the same message. The
construction is impractical due to the storage requirements, accessibility of such a database
and the difficulty of constructing binary symmetric sources. Attaining repeatability through

the use of a database is therefore infeasible.

Repeatability can be achieved in a practical hash function by making the hash value depen-

dent on the message. Thus possession of the message implies possession of the hash value.

4.2.3 Data Type Independence

The hash function should not be dependent on the type of data to be processed. In other
words, a specific file type should be processed in the same manner by the given hash function
as any other file (e.g. a binary executable should be processed in the same manner as an
ASCII file). A hash function should therefore not be designed to process a specific data type,

especially if the hash function is intended for widespread use.

Electrical and Electronic Engineering 40

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

-
W UNIVERSITEIT VAN PRETORIA
A~ 4

Chapter 4 Requirements for Cryptographic Hash Functions

4.2.4 Fast Calculation

The fast calculation of hash Values. for messages is an important requirement. When using
a digital signature scheme the hash value instead of the message is signed. For this rea-
son it should be faster to compute and sign the hash value than to sign the entire message.
The reduction in time and bandwidth requirements are important motivations for using hash

functions.

The speed of a hash function can be increased by efficient implementation or efficient design.
A fast hash function can be designed by either optimising the algorithm for a specific com-
puter architecture or by simplifying the design to reduce the number of operations required

by the hash algorithm.

4.2.5 One Pass per Message

This requirement specifies that the message should be processed only once. This effectively
rules out all of the so-called p-fold schemes. Thus a message is loaded into memory only
once. When computing online this has the advantage that no permanent storage is required.
When computing the hash value for a file on a computer disk drive, the time required to
access the file and load it into memory more than once is eliminated. This requirement

augments the requirement for fast calculation.

4.2.6 Minimum of Secret Information

This requirement is the main reason why MDCs are preferred over MACs. A MAC requires
that a secret key is shared between two or more users. This introduces the problem of key
management. It also serves as an argument against the use of MACs in an environment where

the issue of key management poses a problem.

4.2.7 Modular Design

The hash function should be designed to be modular. This allows the hash algorithm to
be replaced within a system if a weakness or deficiency in the algorithm is detected after

implementation in a system. Implicit in this requirement is the need for a well defined

Electrical and Electronic Engineering 41

-
W UNIVERSITEIT VAN PRETORIA
‘ UNIVERSITY OF PRETORIA
h 4

YUNIBESITHI YA PRETORIA

Chapter 4 Requirements for Cryptographic Hash Functions

interface between the hash function and the system it is used in. The interface components

of importance are:

1. Input block size.
2. Output hash value.

3. Key size (MACs only).

4.2.8 Ease of Implementation

If the hash algorithm is intended for widespread use, ease of implementation is important.
This requirement ensures the proliferation of the algorithm, since many unskilled users can
implement and use the algorithm independently. It is also important to supply sufficient test

data for an independent user to verify the operation of the algorithm.

4.2.9 Machine Independence

An algorithm optimised for a specific architecture is advantageous in terms of speed and ease
of implementation for the architecture concerned [10], [44], [45]. It is, however, possible that
a penalty is paid when transferring the algorithm to another architecture. The penalty may

be paid in both a loss of speed and increased complexity of implementation.

4.2.10 Distribution and Obtainability

It is important that a hash function’s algorithm, test data, documentation and implementation

should be easily obtainable if intended for use in the public domain.

4.3 SECURITY REQUIREMENTS

The security requirements for cryptographic hash functions deals with those properties of a

hash function that influences the security of the hash function.

Electrical and Electronic Engineering 42

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot
W UNIVERSITEIT VAN PRETORIA
Qe

Chapter 4 Requirements for Cryptographic Hash Functions

4.3.1 Confusion and Diffusion

The concepts of confusion and diffusion in cryptography were first introduced by Shannon
[46].

Confusion is described as: “The method of confusion is to make the relation between the
simple statistics of the ciphertext and the simple description of the key a very complex and

involved one” .

Diffusion is described as: “In the method of diffusion the statistical structure of the plaintext
which leads to its redundancy is dissipated into long range statistics.” These concepts are

interpreted in [1] as follows:

Confusion: The ciphertext statistics should depend on the plaintext statistics in a manner

too complicated to be exploited by the cryptanalyst.

Diffusion: Each digit of the plaintext and each digit of the secret key should influence many

digits of the ciphertext.

The concepts of confusion and diffusion can be applied to hash functions. For MDCs a secret
key is not required. Thus the security of the MDC depends solely on the concept of diffusion.
In other words, there should be no apparent relationship between the input to the MDC and
the resulting output. For MACs a secret key is required, thus in addition to the requirement
of diffusion the concept of confusion is considered relevant. Thus, for a MAC, a person in
possession of the MAC algorithm, the message, X, and the MAC result, it should be difficult
to determine the key K, used to determine the MAC result.

4.3.2 Message and Hash Value Independence

For the ideal hash function construction presented in Chapter 5 a binary symmetric source
is used to generate the hash function. Thus there is no dependence between the hash value
and the message. In terms of hash functions this is the most secure a hash function could
be, since it is impossible to manipulate a message to yield a specific hash value. The ideal
hash function construction presented in Chapter 5 is impractical due to the requirement for

repeatability. In practical hash functions the hash value depends on the message. For a secure

Electrical and Electronic Engineering 43

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

<=
g.a UNIVERSITEIT VAN PRETORIA
S

Chapter 4 Requirements for Cryptographic Hash Functions

hash function it is required that there is no apparent or predictable relationship between the

hash value and the message. This requirement is related to the concept of diffusion.

4.3.3 Computational Feasibility

When designing a cryptographic hash function the computational feasibility of the known
generic attacks should be considered. It should be computationally infeasible to employ
any of the generic attacks described in Chapter 3 to construct a collision. It should not be
possible to construct a collision in less than O(2%) operations (n being the hash length).

Several degrees of computational infeasibility is defined.

Collision Resistance: This requirement states that it should be computationally infeasible to
construct two arbitrary messages, X and X', such that h(X) = h(X"'). Hash functions

that meet this criterion are called collision resistant hash functions (CRHF).

Finding a Specific Hash Value: This requirement states that, given a message, X, and the
corresponding hash value ~(X) it is computationally infeasible to find a second mes-
sage, X', such that h(X) = h(X'). A hash function that satisfies this criterion is said
to be a one way hash function (OWHF). The condition for a OWHF is weaker than the
condition for a CRHE.

Sensical Collisions: A sensical collision is a collision for which X and X’ can be construct-
ed such that A(X') = h(X’), and X and X’ are meaningful in the context used. This is

the weakest condition imposed on cryptographic hash functions.

It is recommended that a cryptographic hash function is designed to meet the requirements

set for a collision resistant hash function.

4.3.4 Interaction with other Algorithms

Supplementary to the requirements of computational infeasibility of finding collisions for a
hash function is the requirement for the computational infeasibility of finding a combination

of the hash function and the signature scheme that results in a forged signature.

Electrical and Electronic Engineering 44

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

-
W UNIVERSITEIT VAN PRETORIA
4

Chapter 4 Requirements for Cryptographic Hash Functions

4.3.5 MDC Hash Space

Central to the computational feasibility of finding a collision for a hash function lies the hash
space. The generic attacks described in Chapter 3 are evaluated in terms of the order of
the number of operations required to establish a collision. None of the generic techniques
requires less than O(27) operations. The hash length n should be chosen large enough to
render the generic attacks harmless, given limited time and resources. Current estimates
recommend that n > 128 bits, and preferably n = 160 bits. The length of the hash value
should be updated every 3-5 years to accommodate the increase in computational power and

advances in computing technology.

4.3.6 MAC Key and Hash Space

The matter of key space is applicable to MACs. A MAC key should be chosen long enough
in order to prohibit exhaustive key search. For a k-bit key approximately O(2¥) operations
are required to recover a key through exhaustive search. It is proposed that the length of the
key should be at least 64 bits.

When considering the hash length of a MAC two factors should be kept in mind. First is
the use of a secret key. The secret key adds to the security of the MAC, and consequently
the requirements imposed on the hash length is reduced to half of that specified for a MDC
with a similar level of security (see Chapter 2). The reduction in the hash space reduces the
effort required by an opponent who is in possession of the secret key, K, to find a collision or
establish a forgery. Thus for a MAC the security is derived from the difficulty of retrieving
the key rather than the difficulty of finding a collision. Thus a MDC with hash length n
would afford the same level of security as a MAC with a key of length 5. The second fact
which should influence the choice of a MAC length is the results obtained from the attack
in [29]. In [29] it is shown that the workload for generating a collision doubles if the length
of the MAC value, m is less than the length of the chaining variable, n. The mapping from
n to m should appear random. It is proposed that the chaining variables should be at least
128-bits with the final MAC value chosen as 64 bits.

The importance of key management should be kept in mind when designing a system that
makes use of a MAC.

Electrical and Electronic Engineering 45

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

4
W UNIVERSITEIT VAN PRETORIA
A 4

Chapter 4 Requirements for Cryptographic Hash Functions

4.3.7 Message Dependence

Due to the functional requirement for repeatability, the hash value depends on the message.
If the hash value depends on the message, it is important that the hash value depends on
every bit in the message. If this is not the case an attacker could easily manipulate the bits
not used in the computation of the hash value to produce another message that yields the

same hash value.

4.3.8 One-Wayness

It should be computationally infeasible to reconstruct a message from its hash value. This
is both a functional and a security requirement. From the point of view of security require-
ments, the construction of a message from its hash value allows an attacker to construct the
message even if the message is encrypted. The requirement for one-wayness can be wavered
if both the hash value and the message is encrypted. This solution incurs a time penalty, due

to the additional encryption required.

4.3.9 Error Extension

A cryptographic hash algorithm should exhibit maximum error extension. This implies that
if one bit is changed in the message, approximately half the bits in the hash value should
change. This ensures that an attacker can not expect a collision close to a specific message
with a high probability. This implies that the attacker has to search the entire hash space.

This is similar to the requirements set for a block cipher.

4.3.10 Distribution of Preimages

The output values and preimages of a hash function should be distributed smoothly. This
condition is required to prevent an attacker from searching for those preimages which are
known to occur more frequently, thus reducing the effort required for finding a collision.
When a hash function based on the Damgérd-Merkle scheme is used, the preimages and
output values of every block should be distributed smoothly to minimise the possibility of a

successful attack on the chaining (see Chapter 3 Section 3.4.2).

Electrical and Electronic Engineering 46

-
W UNIVERSITEIT VAN PRETORIA
‘ UNIVERSITY OF PRETORIA
h 4

YUNIBESITHI YA PRETORIA

Chapter 4 Requirements for Cryptographic Hash Functions

4.3.11 Decomposable Algorithms

In [43] it is proposed that a hash algorithm should not be a decomposable algorithm. This
would prevent an attacker from analysing individual building blocks to construct a collision.

This requirement is intended to prevent attacks dependent on the algorithm.

4.3.12 Conditions on Chaining

If the Damgard-Merkle scheme is used every bit in the chaining variables should be used in
the next iteration of the hash algorithm. This ensures that the applicability of the meet in the
middle attack is minimised. An additional condition on the chaining variables is imposed
by the meet in the middle attack. The number of operations required for the meet in the
middle attack are O(2%), with n the number of bits in the chaining variable. Consequently
the chaining variable should have at least the same length as the hash value. For ease of
implementation the chaining variable is often chosen the same as the hash value. The number
of bits, n, should be at least 128 bits.

4.3.13 Redundancy

Redundancy could be added to the message to prevent certain variants of block correcting
and fixed point attacks. Redundancy is especially useful for detecting the addition of message

blocks. Redundancy appended to messages include:

1. Time-stamps.
2. Message length.

3. Intermediate value or chaining variable.

Time-Stamps

The use of a time-stamp has the advantage that it prevents replay attacks. The addition of
time-stamps introduces several problems and potential weaknesses which could result in a
successful high level attack. The use of time-stamps require a synchronised clock. Synchro-

nised clocks are expensive to implement over distributed networks. The use of time-stamps

Electrical and Electronic Engineering 47

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

4
W UNIVERSITEIT VAN PRETORIA
A 4

Chapter 4 Requirements for Cryptographic Hash Functions

require a timing window to allow for transition times, especially when used in distributed
systems. As the timing window increases, the possibility of a successful replay attack in-
creases. If the timing window becomes too small, synchronisation becomes a problem. An
additional risk is introduced when utilising a small timing window. A small timing window
implies that the grain of the time-stamp becomes small. A time-stamp with a fine grain in-
creases the probability that an attacker could find two messages with a given time stamp that
results in a collision. Once such a pair is generated, the attacker waits for the time specified

by the time-stamp before sending the messages.

Message Length

The addition of the message length to the message has the advantage that the message length
can not be increased or decreased. When using the Damgérd-Merkle construction, padding is
required to extend the length of the message to a multiple of the elementary block length. The
padding scheme should be designed to contain sufficient redundancy to prevent the addition
of blocks.

Intermediate Value

The addition of the message length to the message before hashing makes it easy to detect
if a segment of the message was added or deleted. It does not allow the user to detect if
a segment of a message was replaced with a different segment. Substitution of message
segments can be detected by adding an intermediate result to the message. When using the
Damgérd-Merkle construction, a chaining variable could be appended to the message before

hashing.
44 FUNCTIONAL VS. SECURITY REQUIREMENTS
Several of the above requirements for cryptographical hash functions are contradictory. In

this section a short review is given of the contradictions. Where applicable resolution strate-

gies for these conflicting requirements are suggested.

Electrical and Electronic Engineering 48

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

-
W UNIVERSITEIT VAN PRETORIA
4

Chapter 4 Requirements for Cryptographic Hash Functions

4.4.1 Repeatability and Security

This contradiction stems from the definition of an ideal cryptographic hash function. For
practical purposes the repeatability in a hash function can not be achieved through the use
of a database as is the case with the ideal cryptographic hash function. Instead, repeatability
is obtained by deriving the hash value from the message. This implies that the hash value
depends on the message and not on a binary symmetric source. It is therefore possible to
manipulate the message to yield a specific hash value. This is not possible when using a
binary symmetric source to generate the random numbers. Thus by making the hash value
dependent on the message, repeatability is obtained at the cost of reduced security. This
problem can be overcome by using the message as a seed to a good pseudo random number
generator. Therefore it is sufficient to state that there should be no apparent relationship

between the message and the hash function.

4.4.2 Chaining and Security

In Section 4.2.1 the need for chaining is introduced as a functional requirement. Unfor-
tunately the use of chaining structures make the hash function vulnerable to a variety of
attacks, designed specifically to exploit the chaining mechanism (Chapter 3 Section 3.4.2).
The attacks on the chaining require at least O(27) operations. The alternatives to chain-
ing are considered impractical. If possible the message length should be limited to a single
block to avoid chaining and the consequent attacks. If chaining can not be avoided it is ad-
vised that the number of bits, n, be chosen such that the most powerful attack on chaining is

computationally infeasible. Suitable values for n exceeds 128 bits.

4.4.3 Speed and Security

The requirement for speed is rooted in limited computing resources and CPU power. Hash
operations are specifically intended to speed-up digital signature schemes. When designing
a hash algorithm for fast execution the designer is often faced with a trade-off between speed
of execution and security [3]. The designer should be careful not to increase the security
and thereby sacrificing an unacceptable amount of processing time. Likewise the designer
should not increase the speed of an algorithm at an excessive cost to the security of the hash

function. The designer should decide what level of security and what hashing times are

Electrical and Electronic Engineering 49

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

-
W UNIVERSITEIT VAN PRETORIA
4

Chapter 4 Requirements for Cryptographic Hash Functions

tolerable. Note that a slow algorithm is not necessarily more secure than a fast algorithm (a

badly designed algorithm can be both slow and insecure).

4.4.4 Speed and Machine Independence

A contradiction between the two functional requirements specified in Section 4.2.4 and Sec-
tion 4.2.9 exist. In order to design a fast hash function without paying severe penalties in
terms of security, hash algorithms are optimised with a specific computer architecture in
mind [10], [44] [45] and [47]. This is acceptable as long as the majority of the intended
users share this architecture. When the specified architecture is not common to the majority
of users, penalties are paid in terms of speed and a lack of ease of implementation. If a hash
function is designed with a specific architecture in mind, the design should be optimised
to make use of the general architecture of the processors or systems concerned (e.g. 32-bit
Intel architecture). The design should not require specific instructions available only to cer-
tain processors if diverse processors architectures are used (e.g. multiply and accumulate

instruction in a DSP is not available in the 80x86 family).

Note that when implementing an algorithm the implementation should be optimised for the
architecture used. However, when defining an algorithm it should not be overly optimised

for a specific architecture.

4.4.5 Decomposability and Ease of Implementation

In Section 4.3.11 it is stated that a hash function should not be decomposable. This implies
that the hash function does not have individual building blocks. This presents a problem in
terms of the functional requirement for ease of implementation. If a hash algorithm is not
composed from individual building blocks, it becomes difficult to implement the algorith-
m step-wise and test the functionality of each block. It is proposed that a hash function is
constructed from individual building blocks, but that analysis of individual blocks and the
interaction of these blocks does not allow the hash function to be manipulated in a determin-
istic way. This approach allows a user to implement and test each block and its interaction

with other building blocks before constructing the entire hash algorithm.

Electrical and Electronic Engineering 50

4

W UNIVERSITEIT VAN PRETORIA
A 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 4 Requirements for Cryptographic Hash Functions

4.4.6 Security and Bandwidth

In Sections 4.3.5, 4.3.6 and 4.3.3 security requirements are set which influences the length of
a message and the consequent hash value. These security requirements are formulated to foil
the known generic attacks presented in Chapter 3. Most of these attacks can be made com-
putationally infeasible by increasing the number of bits n. The disadvantage of this defence
mechanism is that as the computational power of computers increase the number of bits n
has to be increased. When the hash values are transmitted over a channel, an increase in n
results in an increase in bandwidth required. Thus, unless bandwidth availability grows at the
rate of computational power, poorer throughput and reduced performance of communication

systems that make use of cryptographically secure hash functions will be the result.

Another defence technique is to add redundancy to the message and then compute the hash

value. The addition of redundancy once again implies reduced performance.

If bandwidth is constrained, a designer could decrease the security to improve the throughput
of a system. If security is deemed to be of greater concern than bandwidth requirements, the

number of bits, 7, should be chosen to be secure in terms of computational feasibility.

4.5 CONCLUSION

This chapter contains a description of both functional and security requirements for crypto-
graphic hash functions. The functional requirements deals with the successful implementa-
tion and proliferation of cryptographic hash functions. The security requirements stated in

this chapter are intended to render the known generic attacks on hash functions harmless.

Many of the requirements mentioned in this chapter are conflicting. Some of these contra-
dictions are discussed in Section 4.4. It is the intention of this discussion to make a designer
aware of these contradictions and to suggest strategies to find optimal trade-offs for these

contradictions.

Due to the conflicting nature of the requirements for cryptographic hash functions, a design-
er should consider these requirements as a guideline. The designer should be influenced
by the application for which the cryptographic hash function is to be designed and should

accordingly make appropriate trade-offs between these requirements.

Electrical and Electronic Engineering 51

o

w UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q¥ VU

NIBESITHI YA PRETORIA

CHAPTER 5: GENERAL DEDICATED HASH FUNCTION
CONSTRUCTIONS

5.1 INTRODUCTION

This chapter introduces the notion of an ideal cryptographic hash function construction. This
is an impractical construction and consequently the notion of the iterated cryptographic hash
function is introduced. This construction was independently introduced by Damgard and
Merkle and is commonly used in the construction of dedicated cryptographic hash functions.
Dedicated hash function constructions based on this construction include the MD4 family of

hash functions.

5.2 IDEAL CRYPTOGRAPHIC HASH FUNCTION

In [48] a construction is proposed for a super or ideal cryptographic hash function. The pro-
posed construction is not dependent on a secret key, but can easily be extended by adding a
key dependent element to the construction. In accordance to the definition of a hash function

in Chapter 1, an input of variable length results in a hash value of a fixed length of n bits.

The construction consists of a database and a binary symmetric source. The message, X,
is submitted to the hash function. The database is searched for the submitted message. If
the message is found, the hash value associated with the message, h(.X), is presented as an
output. If the message is not found in the database, the binary symmetric source generates a
binary string of n bits. This binary string is presented as the hash value £(X'). The message,
X, and the newly generated hash function, h(X), is stored in the database for future use.
Thus, the ideal cryptographic hash function is secure in the sense of cryptographic hash

functions. A representation of this construction is shown in Figure 5.1.

UNIVERSITEIT VAN PRETORI

o

Y T
0 UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Chapter 5 General Dedicated Hash Function Constructions

Hash Function h()

BSS
\{(not in DB
X MX)
: .

\
X /XinDB

DB

DB: Database
BSS: Binary Simmetric Source

Figure 5.1: Ideal Cryptographic Hash Function

The proposed construction is impractical for the following reasons.

1. An infinite number of messages exists, and consequently infinite storage space is re-

quired for the database.

2. Due to the use of binary symmetric source all users should have access to the same
database or hash function. This is impractical over large, distributed networks (such

as the Internet).

3. A binary symmetric source is difficult to construct.

The construction for an ideal cryptographic hash function is reminiscent of the one time pad
or Vernam cipher. Both the one time pad and the ideal cryptographic hash function are con-
sidered impractical. The goal of stream cipher design is to simulate certain properties of a
one time pad while avoiding those properties which make it impractical. Likewise, when de-
signing cryptographic hash functions, the goal should be to simulate certain properties of the
ideal cryptographic hash function while circumventing the properties which are considered

impractical.

The important design requirement of apparent independence between the message and the
hash value was deduced from this construction (Chapter 4). Various building blocks that
facilitate the construction of a hash function that satisfies this requirement, is presented in

Section 5.5.

Electrical and Electronic Engineering 53

P
i
W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A~ 4

YUNIBESITHI YA PRETORIA

Chapter 5 General Dedicated Hash Function Constructions

5.3 ITERATED HASH FUNCTIONS

The Damgérd-Merkle scheme forms the basis of the majority of known hash functions. This
scheme was independently proposed in [22] and [23]. It is an iterated scheme and hash
functions constructed according to this scheme are referred to as iterated hash functions

[49]. The following three components are identified in the Damgard-Merkle scheme:

1. The segmentation and padding rule.
2. The compress function.

3. The chaining rule.

5.3.1 The Segmentation and Padding Rule

By definition the hash function should hash a message of arbitrary length to a fixed length.
The segmentation and padding feature of the Damgérd-Merkle scheme allows the hashing of

messages of arbitrary length, which is one of the functional requirements.

The segmentation rule is used to divide a message of an arbitrary length into blocks of fixed
lengths. No special segmentation rules are known to exist. When segmentation is required
the message is simply processed in a serial manner, dividing the message into blocks of a
given length. The fixed block length is referred to as the elementary block length. If the
message is not a multiple of the elementary block length, padding is required (see Figure
5.2).

Message X

T T T T
\

I I) | 1 N

)) i 1 | N

i i I | | \

I | | I I N
Segmentation >

I I I 1 | g N

X] X, X3 Xy X5

Segmentation Segmentation Segmentation Segmentation

Figure 5.2: Segmentation and Padding

Electrical and Electronic Engineering 54

-
W UNIVERSITEIT VAN PRETORIA
A~ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 5 General Dedicated Hash Function Constructions

If the message is a multiple of the elementary hash length, padding is not required, but

dependent on the applications, it is sometimes applied.

The padding rule is used to expand a message so that the message length is an exact multiple
of the elementary block length on which the hash function operates. The padding rule can be
used to add additional information to a message (redundancy). The redundancy provides ad-
ditional security for the hash function against attacks (see Chapter 4). A number of padding

rules have been proposed. A summary of these rules follows:

1. Pad the message with 0’s until the padded message is a multiple of the block length.
This padding rule is ambiguous, since it is not known how many of the trailing zeros
are part of the message. This rule requires that either the length of the message be

known, or that the message length is included in the message.

2. Pad the message with a single 1 followed, if necessary, by 0’s until the padded mes-
sage i1s a multiple of the required block length. If the message is a multiple of the
required block length before padding commences, a block is added to the message.

The additional block contains a single 1 followed by 0’s.

3. Let z be a number of zeros and let r be the number of bits required for the binary
representation of 2. Pad the message with z zeros, except for the last r bits. Let the
last 7 bits contain the binary representation of 2. If less than r-bits remains in the last

block, additional blocks are added until r can be appended to the zero padded message.

4. Letr be the number of bits required for the binary representation of the message length.
Let b be the remaining number of bits in the last message block. Let z be the difference
in the number of bits between b and r. Pad the message with z zeros, except for the
last 7 bits. Let the last r bits contain the binary representation of the message length.
If less than r-bits remains in the last block, additional blocks are added until r can be

appended to the zero padded message.

The choice of padding rule depends on the application. However, padding rule number 4
offers the most security. This rule prevents an attacker from deleting or adding message
blocks. If the attacker is an active eavesdropper, the threat posed by attacks such as the block
correcting attack and fixed point attacks are minimised. It does however not necessarily
prevent a legitimate participant from constructing messages of equal length using the fixed

point and block correcting attacks.

Electrical and Electronic Engineering 55

-
W UNIVERSITEIT VAN PRETORIA
A~ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 5 General Dedicated Hash Function Constructions

In [23] Damgérd presents a proof that if the round function, f(), is a collision resistant
function (CRF), the construction described results in a collision resistant hash function. This
proof holds only if the message length is appended to the message before hashing [3]. A
variant of padding rule 4 is used for dedicated hash functions such as MD4, MD5, SHA and
SHA-1.

For these reasons, padding rule number 4 or a variant thereof, is suggested for use in crypto-

graphic hash functions.

5.3.2 The Compress Function

The second building block is the compress function or round function. The compress func-
tion, f(), reduces an input block X; of m bits to a block of n bits. The compression function
is the heart of the hash function since this is where the reduction of the message length

ocCcurs.

Damgérd proved that generating a collision for a hash function based on the iterated scheme
requires that either a collision has to be generated for the round function, f(), or a problem
has to be solved of comparable difficulty. The proof is given in the framework of compu-
tational complexity theory. This effectively implies that the conditions and requirements
imposed on cryptographic hash functions are transferred to the round function f(). In [3]
it is stated that f() should be a bijective function. This statement is based on the results
obtained in [30].

The definitions for MACs, OWHFs and CRHFs can be modified and applied to the round
functions used for these functions as follows:
Round Function for MAC

Definition 5.1 The round function for a MAC is a function f{) satisfying the following con-

ditions:

1. The description of f{) must be publicly known and the only secret information lies in

the key, K, (extension of Kerkhoff’s principle).

Electrical and Electronic Engineering 56

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot
W UNIVERSITEIT VAN PRETORIA
Qe

Chapter 5 General Dedicated Hash Function Constructions

2. The key K should be used in every application of f{) to every block of X;.

3. The argument X; is a segment of the message X. X; has a fixed length of m bits and
the result f(K, X;) has a fixed length of n bits.

4. Givenf(), K and X;, the computation of f{K,X) must be easy.

3. Given f{() and X;, it is hard to determine f(K, X;) with a probability of success sig-
nificantly higher than 27". Even where a large set of pairs {X;, f(X;, K)} is known,
where X; have been selected by the opponent, it is “hard” to determine the key, K, or
to compute f(K, X]) for any X; # X|.

Note the explicit requirement that the secret key should be used in each application of f().
This requirement is stated to discourage the use of the initial value, IV, as a secret key, K,
in a MAC. If the IV is used as the key K, the key is used only in the first iteration of f().
This allows an attacker to add message blocks and update the hash value without knowledge
of K. In certain hash functions, such as MD4, knowledge of the hash value and the message
allows an attacker to determine K if K is used as the V. For this reason it is advised that

f() is dependent on K.

Round Function for OWHF

Definition 5.2 The round function for a OWHF is a function f{) satisfying the following

conditions:

1. The description of f{) must be publicly known and should not require any secret infor-

mation for its operation (extension of Kerkhoff’s principle).

2. The argument X, is a segment of the message X. X; has a fixed length of m bits and
the result f(X;) has a fixed length of n bits.

3. Given f() and X;, the computation of f(X;) must be easy.
4. The hash function must be one way in the sense that:

(a) givena inthe image of f{), it is “hard” to find a message X; such that f(X;) =
Y.

Electrical and Electronic Engineering 57

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot
W UNIVERSITEIT VAN PRETORIA
Qe

Chapter 5 General Dedicated Hash Function Constructions

(b) given X; and f(X;) it is “hard” to find a message block X! # X; such that
f(Xi) = F(X)).

Round Function for CRHF

Definition 5.3 The round function for a OWHF is a function f{) satisfying the following

conditions:

1. The description of f{) must be publicly known and should not require any secret infor-

mation for its operation (extension of Kerkhoff’s principle).

2. The argument X; is a segment of the message X. X; has a fixed length of m bits and
the result f(X;) has a fixed length of n bits.

3. Given f{) and X;, the computation of f(X;) must be easy.
4. The hash function must be one way in the sense that:

(a) given aY in the image of f{), it is “hard” 1o find a message X; such that f(X;) =
Y.

(b) given X; and f(X;) itis “hard” to find a message X! # X; such that f(X;) =
F(XD).

3. The round function f{) must be collision resistant: This means that it is hard to Sfind two

distinct messages that result in the same image for the round function f{).

Thus, the conditions imposed on a round function used in a MAC, OWHF or CRHF, are sim-
ilar to those imposed on the respective cryptographic hash functions. It is also interesting to
note that the conditions imposed on the round functions are similar to those defined in [3] for
one way functions (OWF) and collision resistant functions (CRF). A number of frequently
used building blocks used in the construction of round functions for secure hash functions

are identified in Sections 5.4 and 5.5.

A large number of attacks on hash functions based on the Damgérd-Merkle Scheme, focuses
on the compress function [17]. Although attacks on the compress function are usually spe-
cific to the hash algorithm, the general attacks described in Chapter 3 are also applicable.

The parameters of the compress function should be chosen to render these attacks harmless.

Electrical and Electronic Engineering 58

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

4
W UNIVERSITEIT VAN PRETORIA
A 4

Chapter 5 General Dedicated Hash Function Constructions

5.3.3 The Chaining Rule

The third building block is the chaining rule. Chaining is used when the message length

exceeds the maximum allowable input length to the compress function.

When processing the message in blocks, the previous result of the compress function has to
be taken into account. This is accomplished by feeding the result from the previous compress

operation back and combine it in some way with the new block that has to be processed.

The chaining rule determines which part of the chaining variable should be fed back. This
approach is often used when a block cipher is used as a round function, since many block
ciphers has a key length that is shorter than the block length. It is advised that the full result

is fed back and used in the next iteration of the compress function.

Note that the introduction of chaining, allows attacks dependent on the chaining. These at-
tacks include meet in the middle attacks, correcting block attacks, fixed point attacks and
differential attacks (see Chapter 3 Section 3.4). The length of the chaining variables, mea-

sured in bits, should therefore be chosen to render these attacks computationally infeasible.

5.3.4 Construction

The interaction of the building blocks identified in the Damgérd-Merkle scheme are de-
scribed as follows. For a hash function h() with a compress function f() an initial value IV
and a suitably padded message X, the interaction of the various building blocks are described
by:

HO == IV
H;, = f(X;,Hi_;) ie€{1,2,3...5}
MX) = H;.

A graphical representation of the interaction of the three building blocks are shown in Figure
5.3.

Electrical and Electronic Engineering 59

oy
ot

W UNIVERSITEIT VAN PRETORIA
A 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 5 General Dedicated Hash Function Constructions

X ' — X H;
—aLSegmentatlon and Padding l—) f(X .H;)
-

i=12,..]
h(X)=H
IV=H

0

U= Chaining Rule Hi
Z = Unit Delay

Figure 5.3: General Hash Function Construction (MDCs)

The construction shown in Figure 5.3 is specific to MDCs. For a MAC the interaction of
the compress function, f(), the initial value, IV, the secret key, K, and a suitably padded

message, X, is described as follows:

H() = IV
Hi == f(K,Xi,Hi—l) ’iE {1,2,3]}

A graphical representation of the interaction of the various components of an iterated hash

lK
X X;
i H;
——>LSegmentati0u and Padding]—> X H;) !
-

i=12,..]
h(X)=H |
IV=H

0

function used as a MAC, is shown in Figure 5.4.

U= Chaining Rule Hiy
Z = Unit Delay
K = Secret Key

Figure 5.4: General Hash Function Construction (MACs)

A number of the better known dedicated hash functions based on the Damgérd-Merkle
scheme include BCA, MD4, MD5, SHA, SHA-1, Haval, RIPEMD, N-Hash, Snefru and
Tiger.

Electrical and Electronic Engineering 60

o
w UNIVERSITEIT VAN PRETOR
0 UNIVERSITY OF PRETOR
«P VU OR

A
A
NIBESITHI YA PRET A

Chapter 5 General Dedicated Hash Function Constructions

5.4 ROUND FUNCTION CONSTRUCTIONS

The majority of hash functions designed in recent years make use of an iterative structure
(Section 5.3). Hash functions based on iterative structures require secure round functions. A
number of conditions are imposed on the round functions (Section 5.3). Currently there are

three round function constructions in popular use. They are:

1. MD4-Family Construction.
2. Block Ciphers.

3. Stream Ciphers.

In this chapter the MD4-family construction is considered in detail. The use of block and

stream ciphers in round function constructions are considered in Appendix A.

5.4.1 MD4-Family Construction

The round function construction used for MD4 is described in [10]. This construction has
been widely adopted in the design of other hash functions such as MD5 [45], SHA-1 [13],
Tiger [47] and RIPEMD-160 [15]. The round functions of these dedicated hash functions

are similar in design and construction.

Consider the iterated hash function as represented in Figures 5.3 and 5.4. Note that at most
three inputs are supplied to the round function. These inputs consist of the current message
block, X;, the previous hash result, H;_;, and a secret key, K. Note that the secret key
is only applicable when the construction is used as a MAC. The generalised MD4-family
construction does not allow for the inclusion of a secret key. Adaptations of this construction

that does make allowance for a secret key is presented in Appendix A.

The round function used in the MD4-family of constructions is itself an iterated construction.
The round function take as input the previous hash result H;_, and the current message block,
X (see Figure 5.5).

Electrical and Electronic Engineering 61

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Chapter 5 General Dedicated Hash Function Constructions

H;

Jj’th Message Subblock Permutation
X.
j’th Tteration of Round Function

Figure 5.5: Generalised MD4 Round Function Construction

The message block X; is segmented into k£ sub-blocks. The previous hash result is set equal
to the initial chaining variable, C, for the round function. The set of message sub-blocks are
permutated and applied to the j’th iteration of the round functions. The chaining variable,
C, is then updated and applied to the next iteration of the round function. This process is
repeated three or four times. The permutation of the sub-block and the method used for
updating the chaining variable for each round is different for each iteration in the round
function. Each iteration of the round function is constructed from the elementary building

blocks described in Section 5.5.

3.5 ROUND FUNCTION BUILDING BLOCKS

This section contains descriptions of the building blocks frequently used in the construction

of round functions for cryptographic hash functions. These building blocks facilitate the

Electrical and Electronic Engineering 62

A&
w UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Chapter 5 General Dedicated Hash Function Constructions

fulfillment of the requirements of diffusion and confusion as defined by Shannon [46] (see
Chapter 4 Section 4.3.1). For this reason the building blocks identified in this section are

also commonly used in the construction of other cryptographic functions.

5.5.1 Bit Permutations

The use of bit permutations as building blocks in cryptographic primitives are considered
in [48]. A bit permutation of a vector modifies the order of the components of the vector,
without changing the values of the individual bits. In [48] it is recommended that the new bit
positions should be calculated from the old bit positions using a simple expression. As an
example, consider the simple cyclic rotation over a vector of length /. The bit in position ¢ is
rotated over d-positions and the new bit position is given by ¢+ d mod I. These permutations
are popular and are used in a number of dedicated hash functions, including MD4, MDS5,
SHA and SHA-1.

If the bit permutation is implemented in dedicated hardware, the bit permutations can be
achieved through “hardwiring” the permutation into silicon. The price paid for this approach

is the large amount silicon required to accomplish such a task [48].

If the bit permutation is to be implemented in software on general purpose processors, a
permutation where individual bits are to be moved around should be avoided due to the re-
duction in performance. Lookup tables can be used to speed-up the bit permutation process,
but as remarked in [48] the size of the lookup tables grows exponentially, rendering this
technique infeasible. Instead it is advised that bit permutations be implemented in a block-
wise manner. Bit permutations which satisfy this requirement include vector rotations, as
described earlier. Note that the choice of a specific vector length, say 32 bits, is likely to
favour certain architectures, while putting others at a disadvantage. Thus, portability of the

algorithm is decreased.

As mentioned previously, vector rotations form popular building blocks for a number of well
known dedicated hash functions. The degree of security obtained from the use of these vector
rotations is considered inadequate in certain dedicated hash functions. The use of vector
rotations in MD4 in particular is shown to add little in terms of additional security [14], [17].
One of the reasons the vector rotations in MD4 are ineffective is that the rotation factor, d,

is a constant for each step. With the rotation constants known, the effect of the rotations

Electrical and Electronic Engineering 63

-
W UNIVERSITEIT VAN PRETORIA
A~ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 5 General Dedicated Hash Function Constructions

can be calculated and countered. In the RC5 and RC6 encryption algorithm data dependent
vector rotations are introduced [27], [SO]. It is therefore conceivable that security obtained
from vector rotations can be increased by making the rotation factor, d, data dependent when

designing dedicated hash functions.

Thus, when choosing a bit permutation the method of implementation, the portability of
the algorithm, the reduction in speed for a complicated bit permutation technique and the

required cryptographic strength should be kept in mind.

5.5.2 Bitwise Boolean Operations

Bitwise Boolean operations are widely used in the MD-family of hash functions (MD4, MD5
and SHA-1). A bitwise Boolean operation treats all individual components of the binary
vector in the same manner. Commonly used bitwise operators are complementation, bitwise
AND, OR and XOR.

Bitwise binary operators are easily described in both hardware and software. For a processor
architecture with word length &, the bitwise Boolean operation on a vector of length n can
be split into [}] operations, if n > k. For these reasons bitwise Boolean operations are
portable, not only between different processor architectures, but also between hardware and

software platforms.

A number of desirable properties of Boolean functions are proposed in chapter 3 of [51].
These properties should be used as design criteria when constructing bitwise Boolean oper-

ations for cryptographic hash functions.

5.5.3 Substitution Boxes

A substitution box, or S-box, is defined as an n x m mapping of a n bit vector to an m bit

vector, m and n need not be equal [51].

S-boxes are traditionally used as building blocks in block ciphers and stream ciphers. S-
boxes have not been used extensively in the design of cryptographic hash functions. An

example of a dedicated hash function that makes use of S-boxes is Tiger [47].

Electrical and Electronic Engineering 64

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot
W UNIVERSITEIT VAN PRETORIA
Qe

Chapter 5 General Dedicated Hash Function Constructions

For ease of implementation and description it is proposed to keep S-boxes small, specify a
way to generate the S-boxes at run time, or limit the number of S-boxes used [48]. When
using hardware implementations the S-boxes should be kept small due to the silicon area
required. In software S-boxes are usually contained in arrays. This limits portability due to

specific data word lengths used by specific processors.

In chapter 4 of [51] it is remarked that if m = 1 the mapping is a Boolean function. Thus a
Boolean function is a special instance of a S-box. The MD family of hash functions makes
use of bitwise Boolean functions rather than S-boxes. This choice is due to the memory and
performance penalties associated with the use of large S-boxes. It is believed that the use of
cryptographically strong S-boxes instead of bitwise Boolean operators will result in stronger
cryptographic hash functions [47]. An extensive treatment of the issue of S-box design and

analysis is given in [51].

5.5.4 Modular Arithmetic Operations

Modular arithmetic has been identified as a building block from which hash functions can be
constructed [48]. A number of hash functions have been based on modular arithmetic [2]. In

[2] three arguments are presented in favour of using modular arithmetic:

1. Hardness of number theoretic problems.
2. Availability of modular arithmetic implementations.

3. Scalability.

The schemes based on modular arithmetic are classified according to the size of the modulus
used. Schemes with a small modulus (32 bits) have been proposed in [52]. These schemes
are believed vulnerable to divide and conquer attacks [3]. Schemes with a large modulus
(512 bit or more) are evaluated in [3]. It has been shown in [40] that these schemes are
insecure when used with the RSA signature scheme. The use of modular arithmetic for the

construction of cryptographically strong hash functions is considered limited [2].

Electrical and Electronic Engineering 65

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot

&b

W UNIVERSITEIT VAN PRETORIA
et

Chapter 5 General Dedicated Hash Function Constructions

5.6 CONCLUSION

In this chapter, a generic construction for building MACs and MDCs that satisfies the re-
quirements presented in Chapter 4, was introduced. In particular the construction of the
iterated hash scheme used by the MD4 family of functions were considered. The design of
appropriate round functions is considered in Section 5.4 and 5.5. Commonly used building

blocks for cryptographic primitives are discussed in Section 5.5.

Electrical and Electronic Engineering . 66

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot
W UNIVERSITEIT VAN PRETORIA
Qe

CHAPTER 6: ANALYSIS OF THE MD4 HASH ALGORITHM

6.1 INTRODUCTION

In this chapter the MD4 algorithm is considered. The MD4 algorithm is described followed
by the reconstruction of the analysis of MD4 as presented by Dobbertin [14]. In addition
the attack presented by Dobbertin is extended in a novel way that allows the computational

requirements to be reduced by a factor 64.

6.2 INTRODUCTION TO MD4

MD4 is a dedicated hash function proposed by R. Rivest [10], [44]. MD4 is an acronym
for “Message Digest 4”. MD4 is an unkeyed dedicated cryptographic hash function (MDC).
MD4 is based on the iterative construction proposed discussed in Chapter 5. The MD4

algorithm was designed to meet the following criteria.

1. Security.
2. Speed.
3. Simplicity and compactness.

4. Favors little endian architectures.

The most prominent design criterion is security. This implies that it should be computa-
tionally infeasible to find two messages, M, and M,, that hashes to the same value. In other
words, MD4 is intended to be a collision resistant hash function. The remaining three criteria

are concerned with high speed implementation in software.

A complete definition of MD4, including the padding rule is given in [10] and [44]. Since
this chapter is specifically concerned with the cryptanalysis of MD4 it is useful to consider

the operation of MD4 before concentrating on the analysis.

oy
ot

W UNIVERSITEIT VAN PRETORIA
A 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 6 Analysis of the MD4 Hash Algorithm

6.3 NOTATION

Before proceeding to describe the operation of MD4 it is appropriate to define the notation

used in this chapter.

X[j] = 32-bitword, j € {0,1,2...15}
]

X[j] = Alternative 32-bit word, j € {0,1,2,...15}
(AA,BB,CC,DD) = Hash variables
(A;, B;,C;, D;) = Chaining variables after step i, ¢¢€ {0,1,2,...47}

6.4 THE MD4 ALGORITHM

MD4 is an iterated hash function. Each iteration requires the application of the compress
function. For MD4 the compress function is defined by the sequential application of three
distinct rounds. The elementary size of a message block is 512 bits. If the message is not
a multiple of 512 bits, a padding rule is used. Before the message block is processed it is
divided into 16 blocks of 32 bits each. Four 32-bit chaining variables are used to produce a

128-bit hash value. The following steps are identified in the MD4 algorithm.

Electrical and Electronic Engineering 68

(og.;:e.-

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Chapter 6 Analysis of the MD4 Hash Algorithm

Algorithm 6.1 MD4 hash algorithm

Pad
Message

1. Pad message.

2. Append the length of the message. l

Append
Message
Length

3. Hash and chaining variable initial-

isation. Jnitialise
Variables

4. Round 1.
Round |

5. Round 2.
6. Round 3. Round 2
7. Update hash variables. Round 3

8. Has the entire message been pro- —
pdate

cessed ? Variables
(a) No: Repeat from step 4. s
Yes Blocks
Remaining 2

(b) Yes: Continue.
No

9. Output hash value.

MD4 Hash Value Computed

Figure 6.1: MD4 Block Diagram

A block diagram of the steps in the MD4 algorithm is shown in Figure 6.1. A description of
each of the steps identified in the MD4 algorithm is presented next.

6.4.1 Message Padding

The first two steps ensure that the message length is a multiple of 512 bits. This allows the
message to be processed in blocks of 512 bits at a time. The padding rule is described in [10]
and [44].

6.4.2 Initial Values

Step 3 initiates the four chaining variables as follows:

Electrical and Electronic Engineering 69

&

m UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
\ 4

YUNIBESITHI YA PRETORIA

Chapter 6 Analysis of the MD4 Hash Algorithm
Ay = 0x67452301
B, = O0xEFCDABS89
Cy = O0x98BADCFE

Dy = 0x10325476.

The hash variables contains the hash value for each iteration and is initialised as shown

below:
AA - A()
BB == BO
cC = C,
DD = D,.

6.4.3 Iterative Rounds

Steps 4-8 performs the iterative computation of the hash value. The hash value is computed
by applying three distinct rounds to each 512 bit block of the message. The hash function
derives its strength from these three rounds. The hash variables are updated once all three
rounds have been completed. If all of the 512 bit blocks have been processed the updated

hash variables contains the final hash value.

The elementary operation within each round is described by:

R(S,T,UV,X,K,W,r,j) = (S+ f(T,U,V)+ X[j] + K;) <"
S = R(S,T,U,V,X,K,W,r,j)

Electrical and Electronic Engineering 70

b

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q¥ VU

NIBESITHI YA PRETORIA

Chapter 6 Analysis of the MD4 Hash Algorithm

with:

S, T,U,V = 32 bit words

X[j] = 7’th 32 bit word of the message, j € {0,1,2...15}
r = Roundr 7€ {l,2,3}
K, = The constant for the r’th round
fr = The boolean function in the r’th round
Wi = Circular rotate z left by, bits

T+y = Modulo 232 addition of z and y.

Each round differs from the other with regard to K, and f,. The index j in X[j] is used
to permutate the 512 bit input in 32-bit blocks for each round of the hash function. In each

round W takes on one of four values.

Three boolean functions are defined for MD4.
F(X,Y,Z) = (XAY)V(=XAZ)
GX,Y,Z) = (XAY)VXANZ)V(YAZ)
HX)Y, Z) = XoYaoZ

with:

= Bitwise AND - = Bitwise NOT
= Bitwise OR @ = Bitwise XOR.

The function G (X, Y, Z) is a majority function. Thus for each bit position in X, Y, and Z the
binary value that occurs more than once is selected. The function F/(X,Y, Z) is essentially a
selection function. A graphical representation of the selection function F'(X,Y, Z) is shown

in Figure 6.2.

The constants for K, are defined in [10] as:

K, = 0x00000000
Ky, = 0x5A827999
K; = OX6ED9EBA1

Electrical and Electronic Engineering 71

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

.
m UNIVERSITEIT VAN PRETORIA
A 4

Chapter 6 Analysis of the MD4 Hash Algorithm

X=1
Y R
\ F(X,Y,Z)

X=0

Figure 6.2: Selection Function F'(X,Y, Z)

Three distinct rounds are identified for MD4. These rounds constitutes the compress function
for MDA4. It is therefore considered appropriate to give a detailed description of the rounds of
MD4, since all the known attacks on MD4 focuses on the compress function. The equations

describing the round functions are presented with this fact in mind.

Round 1

For the first round K; = 0x00000000 and is omitted from the equations. The boolean
function f;, = F(X,Y, Z) for the first round. The four possible rotation constants for the
first round of MD4 are defined as:

Electrical and Electronic Engineering 72

Chapter 6

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Analysis of the MD4 Hash Algorithm

The complete set of equations for the first round are shown below:

Round 2

For the second round K,

As
Ds
Cs

= (Ao + F(By, Cy, Dy) + X[0])<Ss!
= (Do + F(As, By, Cp) + X[1])<&S+2
= (Cy+ F(D3, A3, By) + X[2])</*3
= (Bg + F(C3, D3, A3) + X [3]) </
= (A3 + F(Bs,Cs, D3) + X [4]) /!
= (D3 + F(Ay, B3, C3) + X[5])</*2
= (Cs + F(D7, A7, Bs) + X[6])</#8
= (B3 + F(Cy, Dy, A7) + X [7]) S
= (A7 + F(By;,Cr, D;) + X[8]) /51
= (D7 + F(Ay1, By, C7) 4 X[9])</#2

Q2
_+.
gl

(

(Dyy, Au, By) + X[10]) <753
(B7 + F(C11, D1y, Apy) + X[11])</s4
= (A + F(By, Ciy, Dyy) + X[12])<Ss!
(D + F(Ay5, Biy, Chp) + X[13])<</52
(Cyy + F(Dis, Ass, Buy))& Fs3

(+ X[14]
By + F(Cy5, Dys5, Ajs) +

[15] K fs4

6.1)
6.2)
(6.3)
(6.4)
(6.5)
(6.6)
6.7)
(6.8)
(6.9)
(6.10)
(6.11)
(6.12)
(6.13)
(6.14)
(6.15)
(6.16)

takes on the value as defined previously. The boolean function

f2 = G(X,Y, Z) for the second round. The four possible rotation constants for the first

round of MD4 are defined as;:
gsl = 3 gs3
gs2 = 5 gs4

13

Electrical and Electronic Engineering

73

4]
&

Chapter 6

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Analysis of the MD4 Hash Algorithm

The complete set of equations describing the second round are shown below:

A = (

Dy = (

Cio = (

By = (B

Az = (A

Dyy = (Do + g(
Coz = (Cig+ g(Das,
By = (Big+g(
Ay = (A (
Dy = (Ds+y
Cx = (

Byr = (Bas + g(
Az = (A +g(
Dy = ((
Csi = (Cx+g(
By = (B +4(

Round 3

Ais + g(Bis, Cis, Dis
Dys + g(Ay, Bis, Chs
Ci5 + g(Dg, Arg, Bis
15 + 9(Chg, D19, Arg
19 + g(Big, Cig, Dy

C237 D237 A23
23 + g(Bas, Ca3, D3

Dgy7 + g(As1, Bar, Cor
D31a A317 BZ7
Cs1, D31, A

Nt e N e e N e N e e e e N S S S

+ X[0] + Kq) <! (6.17)
+ X[4] + Ko) <92 (6.18)
+ X[8] + Ky)<os3 (6.19)
+ X[12] + Kp) <o (6.20)
+ X[1] + Kq) <9t (6.21)
+ X[5] 4 K,)<9s? (6.22)
+ X[9] + Kp)<9%3 (6.23)
+ X[13] + Ky) <ot (6.24)
+ X[2] + Ko) <ot (6.25)
+ X[6] + Kj) <92 (6.26)
+ X[10] 4 Kp) <9 (6.27)
+ X[14] + K)ot (6.28)
+ X [3] + Ko)<o*! (6.29)
+ X [7] + K)o (6.30)
+ X[11] + K)o (6.31)
+ X[15] + Ky) <ot (6.32)

For the third round K3 takes on the value as previously defined. The boolean function f3 =

H(X,Y, Z) for the third round. The four possible rotation constants for the first round of

MD4 are defined as:
hsl = 3
hs2 = 9

hs3 = 11
hsd = 15

Electrical and Electronic Engineering

74

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Chapter 6 Analysis of the MD4 Hash Algorithm

The complete set of equations describing the third round are shown below:

Ass = (Asi + h(Bar, Ca1, D3;) + X[0] + K3) <! (6.33)
D35 = (Ds1 + h(Ass, By, C31) + X[8] + K3) <2 (6.34)
Css = (Cs1+ h(Dss, Ass, Bar) + X [4] + K3) <" (6.35)
B3s = (Bs; + h(Css, Dy, Ags) + X[12] + K;)<hs! (6.36)
Asg = (Ass + h(Bss, Cs5, D35) + X [2] + K3)<hs! (6.37)
D3y = (D35 + h(Asg, Bas, Cs5) + X[10] + K3)<hs? (6.38)
Csg = (Css + h(Dsg, Asg, Bss) + X[6] + K;3) <" (6.39)
Bsg = (Bss + h(Csg, Dsg, Asg) + X [14] + K3) <"1 (6.40)
Az = (Asg + h(Bsg, Cag, D3g) + X[1] + K3)<hs! (6.41)
Dy3 = (Dsg + h(Ass, Bag, C39) + X[9] + K3) <2 (6.42)
Cus3 = (Cs9 + h(Dus, Asz, Bsg) + X [5] + K3) <3 (6.43)
Byz = (Bsg+ h(Cu3, Da3, Ass) + X[13] + K3) <"t (6.44)
Agr = (Asz 4 h(Bus, Cuz, Du3) + X[3] + K5)<hs! (6.45)
Dy = (Daz+ h(Asz, B, Caz) + X[11] + K3) <2 (6.46)
Cyr = (Cus + h(Dar, Asz, Byz) + X[7] + K5)<hs3 (6.47)
By = (Bus+ h(Cyz, Daz, Asz) + X[15] + K3)<hst (6.48)

A graphical representation of the three rounds that constitutes the compress function of MD4

is shown in Figure 6.3 (derived from [11]).

Update Variables

After completion of all three rounds, the hash variables are updated as shown below:

AA=Ay = Ay + AA
BB=B, = By;+ BB
CC=Cy = Cyp+CC
DD =Dy = Dy+DD

If all of the 512 bit message blocks have been processed, the final hash value is given by AA,

Electrical and Electronic Engineering 75

A&
w UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Chapter 6 Analysis of the MD4 Hash Algorithm

BB, CC, and DD. If there are unprocessed message blocks remaining, Ag, By, Cy, and Dy

contains the new initial values for the next iteration of MD4.

6.5 CRYPTANALYSIS OF MD4

The MD4 hash function has been extensively analysed since its introduction in 1990 [10}],[44].
In 1991 an attack on the last two rounds of MD4 was presented by Bosselaers and den Boer
[11]. An unpublished attack on the first two rounds of MD4 is credited to Merkle. In 1994
Vaudenay published an attack on the first two rounds of MD4 [53]. In 1995 Dobbertin p-
resented a technique to cryptanalyse the MD4 hash function [14]. The result included in
this chapter builds on the results obtained by Dobbertin by presenting an algorithm which

requires O(2%) times less iterations for finding a collision.

This contains selected results obtained from the cryptanalysis of MD4. The remainder of
this chapter is organised as follows. First the notation used for the cryptanalysis of MD4 is
introduced. A review of the attack in [14] is then presented. This is followed by a description
of an alternative algorithm which can be used to speed up the attack proposed in [14]. The
results obtained from the use of the alternative algorithm are then considered. The source

code that implements this attack is included for reference purposes as Appendix C.

6.6 NOTATION

Before proceeding with a description of the cryptanalysis of MD4 the following notation is

introduced.

X[j] = 32-bitword
J € [1,16]
M, = Message |
M, = Message?2

Z; = Chaining variable for M, after step i
Z; = Chaining variable for M, after step ¢
Z e {A,B,C,D}
i € [0,47]

Electrical and Electronic Engineering 76

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(og gt

Chapter 6 Analysis of the MD4 Hash Algorithm

The relationship between M; and M, is given by:

X[12] = X[12] + 1 (6.49)

In [14] the following notation is introduced.

COMPRESSY? = Value of chaining variables after steps
y to z of the compress function is performed.

A; = (Ai— A, B, - Bi,Ci — Ci, Di - D;)

i €0,47]
Z<¥€X = Left circular rotation of Z by X bit positions.
_Z<<<X - _ (Z<<<X).

The following relationship exists between the notation used in [14] and the notation used in

this appendix.

V = Dy A, = Ap
B = By V = D B, = By
C = Cn W = Cis B, = B
U = A W = élg, C, = Cu
U = A; Z = Bis C. = Cy
Z = B D, = Dy

6.7 DOBBERTIN’S ATTACK: A REVIEW

The cryptanalysis of MD4 is described in [14]. The attack could be viewed as a divide and
conquer attack. The attack is divided into two parts. The first part is concerned with the
establishment of a so-called inner almost-collision. The second part of the attack is based
on a differential attack and the matching of initial values. The differential attack can only

succeed if the criteria set for the establishment of the inner almost-collisions has been met.

An inner almost-collision is obtained if a set of chaining variables are found for which the

Electrical and Electronic Engineering 77

oy

ot

W UNIVERSITEIT VAN PRETORIA
A 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 6 Analysis of the MD4 Hash Algorithm

difference between COMPRESS;2 performed on M, and M, is:

Alg — (0, 1<<<257 _1<<<5, O)

In order for the differential attack to be successful the above condition has to be met. Thus
obtaining an inner almost-collision is central to the success of the attack described in [14].
The above condition implies that the following relationship should hold between the chaining

variables obtained for message M; and M, after step 19.

;119 = Ay 6'19 = Cpg+1¥°
By = By — 128 Dy = Dy.

Using these relationships and conditions the following set of non-linear equations were de-
rived in [14].

1= A" - AF" (6.50)
F(Ay5,B11,C1) — F(A15,B11,C11) = D - DE® 6.51)
F(Dss, A1s,B11) — F(Dis, Ays, Byy) = CE2 _ oxn (6.52)
F(Cys,D15,A15) — F(Cis, D15, A1s) = BEB _ pgis 6.53)
G(Bis,Cis, D15) — G(Bis,Ci5,D15) = As — Ass (6.54)
G(Ayg, Bis,Cis) — G(Arg, B15,C15) = Dis— Dis (6.55)
G(Dyg, Arg, Bis) — G(Dyg, A1g, Bis) = Ci5— Cis+
O _ o (6.56)
G(Chg, Drg, A19) — G(Ch9, D1g, A19) = Bis— Bis — 1+
B - B§Y (6.57)

Once a solution to equations (6.50) to (6.57) have been obtained, the messages M; and M,

Electrical and Electronic Engineering 78

Chapter 6

oy
ot

W UNIVERSITEIT VAN PRETORIA
A 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Analysis of the MD4 Hash Algorithm

that leads to the inner almost-collision can be found by solving equations (6.58) to (6.66):

X[13]
X[14]
X[15]
X[0]
X[4]
X[8]
X[12]
Dy,
An

By setting:

A5 = OXFFFFFFFF

Equations (6.50) to (6.57) are reduced to:

BlS =

CNV15 =

Dy =

Dy =
Cn =

= Arbitrary (6.58)
= CF* - Oy — F(D1s, A1, B11) (6.59)
= B$Y - By — F(Ci5, D15, A1) (6.60)
= AF§Y - A5 - F(B15,C15, Dis) — Ky (6.61)
= Di$* — Di5 — F(Ag, Bis,Ci5) — Ki (6.62)
= O - Cis — F(D1g, Avg, Bis) — Ki (6.63)
= B - Bis — F(Cig, D19, A1y) — K (6.64)
= D% — F(A5, B, Ci) — X[13] (6.65)
= A - F(Bu1,Cu, Du) - X[12]. (6.66)
1‘115=0X00000000 BUZOXOOOOOOOO.
Bis — G(Che, D19, A1) + G(Clg, D19, Arg) +
BEY B 1 (6.67)
Ci5 — G(Dyy, Arg, Bis) + G(D1g, A1g, Bis) +
O - O™ (6.68)
GE _ g 669
D15 — G(A1g, Bis, Cis) + G(Ag, Bis, C1s) (6.70)
DS — D (6.71)

The solutions obtained for the above equations should also satisfy the following two condi-

tions.
G(Bis,Ci5, D15) — G(Bis,Ci5, D15) = 1 (6.72)
F(Cis, D15, As5) — F(Chs, D15, Ars) = BB - BEB, (6.73)
Electrical and Electronic Engineering 79

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

4
W UNIVERSITEIT VAN PRETORIA
A 4

Chapter 6 Analysis of the MD4 Hash Algorithm

In his paper Dobbertin suggests an algorithm to solve the set of non-linear equations de-
scribed by (6.67) to (6.73). This algorithm is replicated below.

Algorithm 6.2 Dobbertin’s Algorithm for Producing Almost-Inner Collisions

1. Choose Alg, Blg, Clg, Dlg, Bl5 and 015 randomly. Compute Blg, élg, 315, 6'15, D15
and Dls as described in (6.67) to (6.71). Test if (6.72) is satisfied. If the test is passed
goto 2.

2. Take Ay, Big, Cig, Dyg, Bis and C\5 found in 1 as “basic values”. Change one
random bit in each of these variables, compute Blg, C‘lg, 315, (715, D5 and D15 and
test if (6.72) is satisfied. Then test if the left 4 bits of (6.73) are equal to 0. If this
test is passed take the corresponding values A9, Big, Ci9, D19, Bis and C5 as the
new “basic values”. The next is doing the same as before, but now testing if the 8 left
bits of (6.73) instead of 4 bits are zero. Continue with the left 12,16 . .. left bits until
(6.73) is fulfilled.

3. Now (6.72) and (6.73) are satisfied and we obtain an inner almost-collision by setting
Bi1 = 0 and defining A1, Cy1, D1y and X [i] according to equations (6.58) to (6.66).

For the inner almost-collision to be admissible, it is required that the following equation
holds:

G(Big, Crg, D1g) = G(Biy, Ci9, Do) (6.74)

If equation (6.74) does not hold the differential attack is unlikely to succeed. Algorithm 6.2

has to be repeated until equation 6.74 is satisfied.

In the next section an alternative algorithm for solving the above set of non-linear Boolean
equations is presented.
6.8 ALTERNATIVE ALGORITHM FOR ESTABLISHING INNER ALMOST-COLLISIONS

In this section we proceed to describe an alternative algorithm that leads to the solution of

equations (6.50) to (6.57) and the establishment of inner almost-collisions.

Electrical and Electronic Engineering 80

-
53 UNIVERSITEIT VAN PRETORIA
A~ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 6 Analysis of the MD4 Hash Algorithm

For equations (6.50) to (6.57), make the following settings.

Bll = 0x00000000 A15 = OxXFFFFFFFF
C,, = 0x00000000 A = 0x00000000

The choice of /115 and A5 immediately satisfies equation (6.50). The choices for B;; and

C1, implies that Dy5 and l~)1 5 are equal. A collision can now be established by setting:

Dis = OXFFFDFFFE

D15 = D15

C15 = OXEDFFCFFF

C;s; = OXFDFFDFFF

Bis = Bis+B§"® - B5"? -1

The values for D15, Dss, C~'15 and C5 are chosen to satisfy equations (6.52) and (6.53) and
to facilitate the easy manipulation of the functions F'(X,Y, Z) and G(X,Y, Z). The choice
of the relationship between Bis and Bi; ensures that it is easy to find a solution to equation
(6.57). The following set of equations now needs to be solved.

F(Cis5,Di5,A15) — F(Cis5, D15, A15) = Bi§B - BEY (6.75)
G(Bis,Cis, D15) — G(Bys,Cy5,D15) = OXFFFFFFFF (6.76)
G(Ay, Bis, C15) — G(A19,B15,C15) = 0 (6.77)
G(D1g, Arg, Bis) — G(Dig, A1g, Bis) = Cis—Cis +

CB-OoF™» (6.78)
G(Che, D19, A1g) — G(Crg, D19, Arg) = 0 (6.79)

Thus equations (6.50) to (6.57) can be reduced to equations (6.75) to (6.79). Note that
equations (6.75) to (6.79) each contain a single unknown variable. It is now possible to
define an algorithm that has a high probability to yield an admissible inner almost-collision.

The suggested algorithm for finding an inner almost-collision is defined below:

Algorithm 6.3 Alternative Algorithm for Producing inner almost-Collisions

Electrical and Electronic Engineering 81

P
i

W UNIVERSITEIT VAN PRETORIA

0 UNIVERSITY OF PRETORIA

A~ 4

YUNIBESITHI YA PRETORIA

Chapter 6 Analysis of the MD4 Hash Algorithm

1. Choose a random value for By; and compute Bys. Repeat this step until equation
(6.75) and (6.76) are satisfied.

2. Choose a random value for Ay. Repeat this step until equation (6.77) is satisfied.

3. Choose a random value for D19, Byg, C1e and compute By and C\g. Repeat this step

until equation (6.78) and equation (6.79) are satisfied.
4. Verify if equation (6.74) holds.

(a) If equation (6.74) holds an admissible inner collision was found. Proceed to
construct M, and M, as described by equations (6.58) to (6.66).

(b) If equation (6.74) does not hold, repeat this algorithm from step 1.

Once an admissible inner almost-collision is found, the differential attack described in [14]

may be used to find a collision for all three rounds of MD4.

6.9 RESULTS

When comparing the performance of Algorithm 6.2 with that of Algorithm 6.3, two obser-

vations are made.

6.9.1 Number of Collisions

It is noted that when Algorithm 6.3 is used to find an admissible inner almost-collision, only
a subset of all possible admissible inner almost-collisions is produced. This is due to the
selection of A5, fiw, Bis, 315, Cs and (:’15. When constructing an admissible inner almost-
collision the attacker is free to choose 5 variables at random. This leaves the attacker with
2'%0 options. Each random choice does not however guarantee an admissible inner almost-
collision. On average the attacker has to make 2% random choices for the 5 variables before
an inner almost-collision is found. This reduces the number of inner almost-collisions to an
estimated 2'52. According to [14] approximately one in every nine inner almost-collisions
are admissible. Thus approximately 2'4° admissible inner almost-collisions can be found
2106

with Algorithm 6.3. It is pointed out in [14] that it is possible to construct approximately

message pairs that yield a collision for each admissible inner almost-collision under the MD4

Electrical and Electronic Engineering 82

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

-
W UNIVERSITEIT VAN PRETORIA
4

Chapter 6 Analysis of the MD4 Hash Algorithm

hash function. Thus with the use of Algorithm 6.3 it is possible, to generate approximately
2255 message pairs that hash to the same value using MD4. When using Algorithm 6.2 the

number of message pairs that result in a collision are estimated at 228!,

6.9.2 Speedup Factor

Algorithm 6.3 has an advantage over Algorithm 6.2 when the number of operations required
to find an admissible inner almost-collision is considered. A practical measurement of Al-
gorithm 6.2 shows that approximately O(2'*) trials are required to find an admissible in-
ner almost-collision. A similar measurement shows that Algorithm 6.3 requires on average
O(28) trials to find an admissible inner almost-collision. This represents a speedup factor of

approximately 64.

6.9.3 Example

An example of two messages that were constructed using Algorithm 6.3 for finding ad-
missible inner almost-collisions is shown below. The common hash value is included for

reference.

X[0] = OxD6E3C2EA X[8] = 0x25B0C32D
X[1] = 0x31759Ba4 X[9] = O0xD1E9E09B
X[2] = 0x09028a49 X[10] = OxEC08A64A
X[3] = O0x00DC9F7B X[11] = 0x32CC035A
X[4 = 0x9688334C X[12] = 0x669080A4
X[5] = O0x6A848F6B X[13] = 0x31C4794B
X[6] = 0xB5E292DD X[14] = OxFFFFBFFB
X[7] = 0x4DCC5516 X[15] = O0xA281EB3F

X[12] = 0x669080A5
Common Digest:

0x94a568a0 0x84678967 Oxea8da2b9 0x055dd5ab

Electrical and Electronic Engineering 83

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&
W UNIVERSITEIT VAN PRETORIA
A 4

Chapter 6 Analysis of the MD4 Hash Algorithm

6.10 CONCLUSION

This chapter contains a concise description of the operation of MD4. Attention has been paid
in particular to the three rounds that constitutes the compress function for MD4. This is due
to the importance of these rounds in the cryptanalysis of MD4 as presented in this Chapter.
An implementation of the MD4 algorithm is attached as Appendix B.

The description of MD4 is followed by a description of the attack by Dobbertin on MD4. It
is shown that a speedup of the attack on MD4 is possible. The speedup factor is estimated
to be a factor of 64. The improvement in speed is attained at the cost of a reduction in the
number of possible messages which result in a collision. These results were also presented

at the Comsig 97 conference [56].

Electrical and Electronic Engineering 84

4

UNIVERSITEIT VAN PRETORI

Eoi UNIVERSITY OF PRET
h 4

RIA
ORIA
YUNIBESITHI YA PRETORIA

Chapter 6 Analysis of the MD4 Hash Algorithm

Round 1 Round 2 Round 3
A0 BO CO DO AlS BIS CIS DIS A3l B3l C31 D3I
-) —9 —
X101 S1 X]o| St Xl10] S1
X0 ¢ 52 X141 &—| 52 Xi8l {57

[T] [T
X[2] S3 XI8] $3 X[4] oS3
b 4
X3 ¢ s:l X[12) ‘,:[Si'_' X121 0:[5

e -

A3l B3| C3| D3 Al$ B19 Cip DI A35| B35[C3§ D35
e T—e T—
X4l __[s1 XI St X12) Si
XI51 [=R XI5] [524 XIio1 L SEI

r]—4 1
X[6 S3 X191 S3 X156 s3

) e p
X7t ¢ sj X[13] 0‘—Esj Xli4] sj

A7l B7| 7| D7 A23(B29 c2q D23 A39} B39 C39 D39
T T T
X181 [S1 xi21 st Xi st
| =
X{91 L SE‘ X[6] — 57 X[9] — 52

b r r
X{tol o ST X110 [o= ST X15) L ST
Xt lt—ljs}]}_“ X[14] ':EE'I_" X[13] 1%5_“

Alf BI| Ci| DI A2] B27 C2f D2 A43{ B43| C43 D43

T T =*
X121 _|s1 X131 |81 X3 |st

X[13] @ 52 X|71 157 Xil11
[
Xi14] $3 X(11] s3 X{7]
Xiis] s X5 @—sa X[15)
AlS BIS C15 DIS A3l B31 C31 D3I Ad47 B47 C47 D47

Figure 6.3: Diagrammatic Representation of the Compress Function of MD4

Electrical and Electronic Engineering 85

P
i

W UNIVERSITEIT VAN PRETORIA

0 UNIVERSITY OF PRETORIA

A~ 4

YUNIBESITHI YA PRETORIA

CHAPTER 7: ANALYSIS OF THE MDS HASH ALGORITHM

7.1 INTRODUCTION

In this chapter we begin with a concise description of the MDS5 hash algorithm. We then pro-
ceed by reconstructing the attack on MDS5 as formulated by Dobbertin. The reconstruction
is based on the source code used by Dobbertin to implement the attack. This is the first time

a detailed description of the attack on MDS5 is published.

7.2 INTRODUCTION TO MDS5S

MDS5 is a dedicated hash function proposed by R. Rivest [45]. MDS5 is the successor to MD4.
MDS5 is an extension of MD4. In extending MD4 to become MDS5, a more conservative

approach was taken. MD5 has the following features not encountered in MD4:

1. A fourth round.

2. A unique additive constant for each round.

3. The result of each step is added in the following step.

4. The permutations on the message words for rounds 2 and 3 were changed.

5. The rotation factors for each round were optimised for maximum avalanche effect.
6. The rotation factors for each round is unique.

7. The elementary function used in the second round was changed from (X AY) V (X A
ZYN (Y ANZ)to (X ANZ)V (Y A (—Z)). The intention of this change is to reduce the

symmetry in g().

The most prominent design criterion is security. In [45] it is conjectured that it is computa-
tionally infeasible to find two messages, M; and M,, that hashes to the same value, or to find
a message that results in a specified hash value. In other words, MDS5 is intended to be both

collision resistant and pre-image resistant.

A complete definition of MDS, including the padding rule is given in [45]. In view of the

analysis of MD)3 it is useful to consider the operation of the algorithm.

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot

&

W UNIVERSITEIT VAN PRETORIA
Qe

Chapter 7 Analysis of the MDS5 Hash Algorithm

7.3

NOTATION

Before proceeding to describe the operation of MDS5 it is convenient to introduce the follow-

ing notation:

74

X; = 32-bitword, je{0,1,2...15}
X; = Alternative 32-bit word, j € {0,1,2,...15}
(AA,BB,CC,DD) = Hash variables
(Ai, B;,C;, D;) = Chaining variables after stepi, 4 € {0,1,2,...47}

THE MDS ALGORITHM

Algorithm 7.1 MD5 hash algorithm

1.

2.

10.

. Hash and chaining variable initial-

Pad
Message

l

Append the length of the message. Append

Message
Length

Pad message.

Initialise

isation. Variables
ROund]. Round 1
Round 2.
Round 2
Round 3. ¢
Round 3
Round 4. |
Round 4
Update hash variables.]
Update
. Variables
Has the entire message been pro-
cessed ?

(a) No: Repeat from step 4.

(b) Yes: Continue.

MDS5 Hash Value Computed

Output hash value. Figure 7.1: MD5 Block Diagram

Electrical and Electronic Engineering 87

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Chapter 7 Analysis of the MDS5 Hash Algorithm

MDS5 is an iterated hash function based on the Ddmgard-Merkle construction [22], [23]. Each
iteration requires the application of the compress function. The MD5 compress function
is defined by the sequential application of four distinct rounds. The elementary size of a
message block is 512 bits. If the message is not a multiple of 512 bits, a padding rule is used.
Before the message block is processed, it is divided into 16 blocks of 32 bits each. Four
32-bit chaining variables are used, producing a 128-bit hash value. Algorithm 7.1 presents
the main steps in MDS5 along with a block diagrammatic representation of the structure of
MDS5 (see Figure 7.1). A description of each of the steps identified in the MD4 algorithm is

presented next.

7.4.1 Message Padding

The first two steps ensure that the message length is a multiple of 512 bits. This allows the
message to be processed in blocks of 512 bits at a time. The padding rule is described in
[45].

7.4.2 Initial Values

The four chaining variables are initialised as:

Ay = 0x67452301
B, = OXEFCDAB89
Cy = O0x98BADCFE
Dy = 0x10325476.

The hash variables contains the hash value for each iteration and is initialised as shown

below:
AA = A
BB - B()
cC = (C,
DD = Do.

Note that this is identical to the initial values used for MD4 [10], [44].

Electrical and Electronic Engineering 88

-
W UNIVERSITEIT VAN PRETORIA
4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 7 Analysis of the MDS5 Hash Algorithm

7.4.3 Iterative Rounds

Steps 4-9 perform the iterative computation of the hash value. The hash value is obtained
from the application of four distinct rounds to each 512 bit block of the message. The hash
function derives its strength from these four rounds. The hash variables are updated once
all four rounds have been completed. If all of the 512 bit blocks have been processed the
updated hash variables contain the final hash value. The elementary operation within each

round is described by:

R(S, T, UV, X,K,W,r,j,i) = S+ (f(T,U,V)+X,+T,) < W,
S = R(ST,UV,X,K,W,r,j)

with:

S, T, U,V = 32bit words
X, = j’'th 32 bit word of the message, j € {0,1,2...15}
r = Roundr r€{1,2,3, 4}
t = Step(r—1)-16+
T; = Thei’th constant
fr = The boolean function in the r’th round
z <K W, = Circular rotate x left byW, . bits
r+y = Modulo 2% addition of z and y.

Each round differs from the other with regard f,. The index j in X is used to permutate the
512 bit input in 32-bit blocks for each round of the hash function. In each round W takes on

one of four values. For each step the additive constant 7} is unique.

Four Boolean functions are defined for MDA4.

(XY, Z) = (XAY)V((-X)AZ)
9 X, Y,Z) = (XANZ)V (Y AN (=Z))
MX,Y,Z) = XoYaZ
W(X,Y,Z) = Y& (XV(~2)).

with:

Electrical and Electronic Engineering 89

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Chapter 7 Analysis of the MD5 Hash Algorithm
A = Bitwise AND - = Bitwise NOT
= Bitwise OR @ = Bitwise XOR.

The constants for 7T; are defined in [45] and may be found in Appendix D which contains the

source code for an implementation of MD5.

A graphical representation of a single step in the MDS5 round function is shown in Figure 7.2

R S R B
(+ - Cn

~-+)

(-

SO

L |

)

Figure 7.2: A Single Step in the MD5 Round Function

Four distinct rounds constitute the compress function for MD5. The following equations

describe these rounds.

Round 1

The rotation constants for the first round are defined as:

fsl = 7 fs3 = 17
fs2 = 12 fs4 = 22

Electrical and Electronic Engineering 90

Chapter 7

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

oy
ot

W UNIVERSITEIT VAN PRETORIA
A 4

Analysis of the MD5 Hash Algorithm

The set of equations describing the first round are shown below:

As = Bo+ (Ao + f(Bo,Co, Do) + Xo + To)</*! (7.1)
Dy = As+ (Do + f(As, Bo,Co) + X1 + T1)</*? (7.2)
Cy = D3+ (Co+ f(Ds, A5, By) + Xz + Tp) </ (7.3)
By = Cs3+ (Bo+ f(Cs, D3, A3) + X3 + T3)</* (7.4)
A7 = By+ (As+ f(Bs,C3,D3) + Xy + Ty)</*! (7.5)
D; = A;+(Ds+ f(A7, Bs, C3) + X5 + T5)</#2 (7.6)
C; = D;+(Cs+ f(D7, A7, Bs) + Xg + Tg) </ (7.7)
By = Cy+ (Bs+ f(Cy, D7, A7) + X + Ty) 54 (7.8)
Ay = By + (A7 4+ f(Bq,Cr,Dy) + Xg + Ty) I3 (7.9)
Dy, = Ap+ (D74 f(Ay, By, C7) + Xg + Ty) <792 (7.10)
Cii = Dii+ (Cr+ f(Di1, Aw, Br) + Xig + Tyg) </ (7.11)
By = Cu+ (Br+ f(Cu, D, An) + X + T11)<<<f84 (7.12)
Az = Bu+(Au+ f(Bi,Cu, D) + Xio + Tl2)<<<fs1 (7.13)
Dys = Ay + (Di1+ f(Aws, Bii, Ciy) + Xi3 + Ti3)</*? (7.14)
Cis = Dis+ (Cu+ f(Dis, Ais, Bu) + Xua + T1q) </ (7.15)
Bis = Cis+ (Bu + f(Cis, Dis, Ais) + X1 + Ti5) </ (7.16)
Round 2
The rotation constants used in round two are defined as:
gsl = 5 gs3 14
gs2 = 9 gs4 20
The second round in the compress function is described by:
Electrical and Electronic Engineering 91

Chapter 7

UNIVERSITEIT VAN PRET |

o

T or
0 UNIVERSITY OF PRETORI
h 4 ORI

A
IA
YUNIBESITHI YA PRET | A

Analysis of the MDS5 Hash Algorithm

Ao

Round 3

Bis + (Ais + g(Bis, Cis, D1s) + X1 + Ti) <951
Ay + (D5 + g(Arg, Bis, Cis) + Xg + Ti7) K952

D1y + (Ci5 + g(Dig, Arg, Bis) + X1y + Tig) <93
Crg + (Bis + g(Cig, Drg, A1) + Xo + Tig) <9

Big + (A1g + g(Big, Chg, D1g) + X5 + Tog)<9%!

Agz + ()

Doz +)

Coz + (Big + g(Cas, Doz, Agz) + Xy + Toz) <954

Bas + (Ass + g(Bas, Caz, Daz) + X + Toy) 981

Agr + (Daz + g(Aaz, Bag, Ca3) + X1y + Ts) <952
Dy + (Cos + g(Daz, Agz, Bys) + X5 + Tig)€9%3
Cor + (Bas + g(Car, Doy, Agr) + Xg + Ty) €954
By7 + (Ag7 + g(Bar, Car, Dop) + X3 + Tog) 95!
Azt + (Do + g(Asy, Bar, Caz) + X + Tag) €052

D3y + (Co7 + g(Ds1, Aar, Byr) + X7 + Tyo) <953
Cs1 + (Byr + g(Ca1, D3y, Asy) + Xig + Ty) <€9%4

Dlg +g A23, Blg, 019 + XlO + T21)<<<932

(
(
+
+ (Cro + g(Das, Aaz, Big) + X5 + Ty) K953

The rotation constants used in the third round are defined as:

hsl
hs2

4 hs3 = 16
11 hsd = 23

(7.17)
(7.18)
(7.19)
(7.20)
(7.21)
(7.22)
(7.23)
(7.24)
(7.25)
(7.26)
(7.27)
(7.28)
(7.29)
(7.30)
(1.31)
(7.32)

Electrical and Electronic Engineering

92

Chapter 7

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&
W UNIVERSITEIT VAN PRETORIA
A 4

Analysis of the MDS5 Hash Algorithm

The third round of the MDS5 compress function is defined by:

A35
D35

Round 4

Bj1 + (A3 + h(Bsy1, Cay, Dsy) + X5 + Tap) P!
Ass + (D3; + h(Ass, Bsy, Cap) + Xg + Tyg)<he2
Dss + (C31 + h(Dss, Ass, By1) + X1y + Tyq) hs3
Css + (Bsy + h(Css, D35, Azs) + X1g + Ty) <Pt
Bss + (Ass + h(Bss, Cas, Ds) + X1 + Tag) <M1
Asg + (D35 + h(Asg, Bss, Css) + Xy + Tyr)&hs2
Dsg + (C35 + h(D39, Asg, Bs) + X7 4 Tag) <3
Cs9 + (Bss + h(Csg, Dsg, Agg) + X g + Tag) P4
Bsg + (Azg + h(Bsg, Cs9, Dsg) + X13 + Tag) <!
Az + (D39 + h(Asz, Bsg, Cag) + X + Tyy) <hs2
Dy + (Csg + h(Dys, Ay, Bsg) + X3 + Typ)<hs3
Cus + (Bsg + h(Cuz, Dys, Asz) + Xg + Ty3) <4
Bus + (Agz + h(Bus, Cys, Dg3) + Xg + Tyy)he!
Aazr + (Das + h(Aaz, Baz, Cus) + X1g + Tys)&hs2
Dy7 + (Caz + h(Dayz, Asz, Baz) + X5 + Tyg) <13
Cyr + (Baz + h(Cuz, Daz, Agz) + Xo + Tyr) o4

The fourth round employs the following rotation constants:

tsl

1hs2

- 6 283 = 15

10 4 = 21

(7.33)
(7.34)
(7.35)
(7.36)
(1.37)
(7.38)
(7.39)
(7.40)
(7.41)
(7.42)
(7.43)
(7.44)
(7.45)
(7.46)
(7.47)
(7.48)

Electrical and Electronic Engineering

93

£
4

Chapter 7

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Analysis of the MD5 Hash Algorithm

The final round in the MD5 compress function is obtained from:

Asi = Bur + (As7 + i(Bar, Caz, Dag) + Xo + Tyg) <1 (7.49)
D51 = Asi + (Dy7 + i(As1, Bar, Cag) + X7 + Tyg) €42 (7.50)
Cs1 = Dsi + (Cyz +i(Dsy, Asi, Baz) + Xyg + Tp) €53 (7.51)
Bsy = Cs1 + (Bar + i(Cs1, Ds1, Asy) + X5 + Ty) <54 (7.52)
Ass = Bsi + (As1 +4(Bs1, Cs1, Ds1) + Xia + Tip) <! (7.53)
Dss = Ass + (D51 + i(Ass, Bsi, Cs1) + X3 + Tsz) <42 (7.54)
Css = Dss+ (Cs1 + i(Dss, Ass, Bs1) + Xg + Tpy) €83 (7.55)
Bss = Css + (Bsy + i(Css, Dss, Ass) + X1 + Ts)<? (7.56)
Asy = Bss + (Ass + i(Bss, Css, Dss) + Xg + Te) <! (7.57)
Dsy = Asg + (Dss + i(Asg, Bss, Css) + X5 + Ti7) <2 (7.58)
Cs9 = Dsg + (Css + i(Dsg, Asg, Bss) + Xg + Tig) <2 (7.59)
Bsy = Cisy + (Bss + i(Csg, Dsg, Asg) + X13 + Tre) < (7.60)
Aes = Bsg + (Asg + i(Bsg, Csg, Dsg) + Xy + Teo) <! (7.61)
Dg3 = Ags + (Dsg + i(Aes, Bsg, Cso) + X11 + To1) <" (7.62)
Ces = Des + (Csg + 1(Degs, Ass, Bso) + Xo + T62)<<<i53 (7.63)
Bz = Ces + (Bsg + 1(Ces, De3, Aes) + Xg + T3) <t (7.64)
Update Variables

After completion of all three rounds, the hash variables are updated as shown below:

AA = A,
BB = B,
CC = C,
DD = D,

Ay + AA
By + BB
Cyy +CC
Dy + DD

Once the last 512 bit message block have been processed, the final hash value is given by

AA, BB, CC, and DD. If there are unprocessed message blocks remaining, Ay, By, C,

and Dy contains the new initial values for the next iteration of MD3.

Electrical and Electronic Engineering

94

-
W UNIVERSITEIT VAN PRETORIA
A~ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 7 Analysis of the MDS5 Hash Algorithm

7.5 ANALYSIS OF MD5

MDS5 is a dedicated hash function as described in Section 7.4. As noted in Section 7.4
MDS5 is an extension of MD4. MDS was designed to be a more secure hash function and
is therefore more conservative in design than MD4. In 1996 Dobbertin presented an attack
on MD4, showing that it is possible to find collisions for MD4 in less than a second on a
personal computer. The cryptanalysis of MD4 is presented in [14]. Additional work relating
to the cryptanalysis of MD4 is presented in [17]. Dobbertin applied similar cryptanalytical
techniques to RIPEMD and found that the first two rounds and last two rounds of RIPEMD
are not collision resistant [S4]. At the rump session of EUROCRYPT’ 96 it was announced
that it is possible to find collisions for the compress function of MD5 [54]. An outline of
this attack was published in [55]. In [12] it is stated that using these techniques, the attack
requires approximately 10 hours on a personal computer with a Pentium processor. From
these publications it appears as if the techniques employed in the cryptanalysis of MD5 are
similar to those used on MD4 and RIPEMD.

The attack on MDS5 as described in this chapter is based mostly on the notes of Antoon
Bosselaers and the C source code developed by Dobbertin.
7.5.1 Notation

Before proceeding it is useful to introduce the following notation. Let

Z = Message word, chaining variable or a collection of chaining variables.

Z = Alternative value for Z.

In addition, the following operator is defined:

Z>Y = Circular rotation of Z to the right by Y bits.

and

22" = —(Z7") vits.

Thus, rotation has precedence over negation.

Electrical and Electronic Engineering 95

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot
W UNIVERSITEIT VAN PRETORIA
Qe

Chapter 7 Analysis of the MD5 Hash Algorithm

7.5.2 OQOutline of the Attack

The attack on MDS5 is based on the assumption that all the message words are identical except

for one message word X;. The difference between X, and Xz- is given by:

X, =X, +A (7.65)

where A is a 32 bit word with a small Hamming weight. For the attack on MD5 as described
by Dobbertin in [12] and [55], the following choices are made:

A = 0x00000200 (7.66)
X, = Xu. (7.67)

It is stated in [55] that it may be possible to utilise other message words as well as other
values for A. The message word X1, is used in equations (7.15) (7.26), (7.36) and (7.51)
(once in each round). Using the notation defined in Section 7.5.1 the following definitions

are presented.

COMPRESS? = Value of chaining variables after equations
y to x of the compress function was applied to the message.
CO]\?FEESSi = Value of chaining variables after equations

y to x of the compress function was applied to the modified message.

The attack is now reduced to find two messages so that:

o~ 7.15
COMPRESS!)8 — COMPRESS, ., =0 (7.68)
and
—~—— 7.36
COMPRESS]¥ — COMPRESS,, =0 (7.69)

If these conditions are met, so-called inner collisions are established. The attacker then has
to find suitable message words which would link equation (7.26) to equation (7.36). From
the above it appears that the attack on MD5 is a divide and conquer attack. Three phases are

identified in this attack.

Electrical and Electronic Engineering 96

g

w UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Chapter 7 Analysis of the MD5 Hash Algorithm

1. Find a message such that an inner collision is established for steps (7.15) to (7.26).
2. Find a message such that an inner collision is established for steps (7.36) to (7.51).

3. Find suitable message words to link the results obtained for the first two phases.

The inner collisions may be found by deriving two sets of difference equations (one for each
step). These equations then has to be solved simultaneously due to the large overlap in words.

At the same time a link between these equations has to be sought.

Each of these steps are discussed in a separate section in this chapter. Reference implemen-
tations are attached as appendices. An efficient technique exists to determine if solutions to
certain Boolean expressions of a particular form exists. This technique is common to the first
two phases of the attack and is therefore discussed in a separate section. Use is also made of

the continuous approximation techniques used in the analysis of MD4 and RIPEMD.
7.5.3 Phase I: Inner Collisons for First Two Rounds
The first phase deals with the solution of a set of difference equations with the specific aim

of finding an inner collision, such that equation (7.68) is satisfied. The difference equations
are derived from equations (7.15) to (7.26) and are written as:

(Cis — D15)>7%3 — (G5 — Di5)>1*8 = X1y~ X1 (1.70)
(Bis = Ci5)@7" — (B15 — C15)> 7 = f(Cis, D15, A1s) — £(Chs, D15, Ars) (1.71)
(A1g = Bi5)® 9! — (Ayg — Bi5)®9*! = g(Bis,Ci5,D15) — g(Bis, Cis5, D15) (1.72)
(D19 — A1g)>9°% — (D19 — Apg)?9? = g(Ay, Bis, C15) — g(A19, B15,C15) (1.73)
(Cig — D19)>9% — (Cr9 — D19)®9%3 = C15 — Cis5 + g(Dry, Arg, Bis) —

9(D19, Arg, Brs) (7.74)
(Big — C19)>9%" — (Big — C19)>9" = Bis — Bis + g(Chg, D19, A1) —

9(C19, D19, A1g) (7.75)

Electrical and Electronic Engineering 97

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot

&

W UNIVERSITEIT VAN PRETORIA
Qe

Chapter 7 Analysis of the MD5 Hash Algorithm
(A23 — Big)™ 9! — (Ag3 — Big)@9"! = A1y — Aig + g(Big, Cho, Dig) ~
9(Big, Ci9, D) (7.76)
(Daz — Ag3)9%? — (Da3 — Ag3)>92 = Dyg — Dig + g(Aa3, Brg, Crg) —
9(As3, Big, Chg) (1.77)
(Caz — D23)™9% — (Cy3 — Dp3)>9%3 = Cig — Cug + g(Da3, Azs, Brg) —
g(Da3, Ags, Bio) (7.78)
0 = Big— Big+ g(Cas, Da3, Ays) —
9(Ca3, Do, Aps) (7.79)
0 = Ags — Ags + g(Bas, Ca3, Da3) —
9(B23, Ca3, Do3) (7.80)
0 = Doz — Doz + X14 — X1a. (7.81)

Equations (7.70) to (7.81) may be simplified by making appropriate choices for certain chain-

ing variables. From equation (7.81) the following condition is imposed on Dy3 and D23I

Dz — Dag = X14 — X4 (7.82)

from equation (7.66) equation (7.81) may be written as:

D23 - D23 = “‘1<<<9. (783)

By setting As5 = /123 and By = Blg the conditions imposed by equations (7.80) and (7.79)
are satisfied if:

9(Bas, Cag, D23) = g(Bas, Ca3, Da3) (7.84)

and:

9(Cas, Do, Ags) = g(Cas, Dag, Ass) (7.85)

Equations (7.84) and (7.85) are satisfied relatively easily due to the low complexity and
consequent ease with which the Boolean function g() can be manipulated. If equations
(7.84) and (7.85) holds, a high probability exists that:

9(Da3, Ag, Big) = g(Daz, Ass, Bio).

Electrical and Electronic Engineering 98

oy
ot

W UNIVERSITEIT VAN PRETORIA
A 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 7 Analysis of the MD5 Hash Algorithm

If this is the case, equation (7.78) may be simplified to:

(Caz — Da3)9%3 — (Cyg — Do3)>9%3 = Cyg — Co (7.86)

on the assumption that:

(Caz — D33)™9%% — (Cys — [723)»953 = (D23 — D)9

The following condition is imposed on the relationship between C19 and 6’19:

(Daz — Dy3)>9%3 = C19 — Cio. (7.87)

Thus:

Clg - élg = —1>>>5. (788)

Given the above assumptions, the set of difference equations from (7.70) to (7.81) may be
reduced to:

(Cis — D15)>7%% — (Ci5 — Dis)>I* = Xy4 - X4 (7.89)
(Bis — C15)>7%* — (Bys — Cu5)>/** = f(Cis, D15, A15) — f(Cis, D15, Ars) (7.90)
(A9 — B15)™9%" — (A1g — B15)@9! = g(Bis,Cs, D15) — g(Bis,Ci5,D15) (7.91)
(D19 — A19)>9°% — (Dyg — A19)>9% = g(Ayg, Bis, Ci5) — g(Ag, Bi5,C15) (7.92)
(Crg — D19)>9%3 — (Cr9 — D19)®9*3 = Ci5 — Ci5 + g(Drg, Arg, Bis) —

g(D1g, Arg, B1s) (7.93)

(Big — C19)™9** — (Big — C19)>9"* = Bis — Bis + g(Cr9, D19, A1) —
9(C1g, D19, Arg) (7.94)

0 = Ao — Aig + g(Big,Crg, D1o) —
g(Big, C19, D1g) (7.95)

(D3 — Ag3)™9%% — (Das — Ag3)>9? = Dig — Dig + g(Azs, Big, C19) —
g(Asz, Big, C19). (7.96)

Consider equation (7.89). By re-writing equation (7.89) as:

Cis = ((C15 — D) 73 + X4 — X14) I 4 Dy (7.97)

Electrical and Electronic Engineering 99

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot

&

W UNIVERSITEIT VAN PRETORIA
Qe

Chapter 7 Analysis of the MD5 Hash Algorithm

Valid solutions to C'5, 6’15 and D5 may be found by setting:

Cis =Dy5—1 (7.98)

substituting equations (7.98) and (7.66) in (7.97) the following expression for C}5 is ob-

tained.
= (=14 1)< L Dy, (7.101)

With equations (7.98) and (7.101) in hand the difference between C;5 and C}; is obtained

as:

Cis —Cis = (=14 1)IT 4 Dy5) — (D15 — 1) (7.102)
Cis—Cis = ((—1+1<9)<17 4 (7.103)
= O0xO03FEQ001. (7.104)
By setting D;; to:

Ci5 and C’1 5 are easily computed as:

Ci5 = OXFEQOFFFF (7.106)
Cis = 0x01FF0000. (7.107)

With equation (7.89) satisfied, further simplifications may be achieved by setting:

Dy = OXFFFFFFFF. (7.109)

These choices allow the simplification of equation (7.95) to:

Ajp — Ajg = Cig — Byy. (7.110)

Electrical and Electronic Engineering 100

-
W UNIVERSITEIT VAN PRETORIA
A~ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 7 Analysis of the MDS5 Hash Algorithm

This simplification is a direct result of the manipulation of the bitwise Boolean function g().

With these simplifications the condition imposed by expression (7.68) may be written as:

e~ 7.15
COMPRESS!,; — COMPRESS, ,, = {el,e,¢},¢}} (7.111)
with:
g] = 0x00000000 (7.112)
gy = 0x00000000 (7.113)
g3 = 0x08000000 (7.114)
g5 = O0xXF8000000. (7.115)

Given the above choices, equations (7.89) ~ (7.96) may be re-written as:

0 = Xu— Xia—(Cis — D15)>7%3 + (C15 — Dy5)>93. (7.116)
0 = Ci5—Cis+ f(Cis, D15, A15) I — f(Cis, Dis, A1s) <74 — Bys + Bus (7.117)
0 = Bis— Bis + g(Bis,Cis, D15) <93 — g(Bus, Cis, D15) 9% — Ajg + Ag (7.118)
0

= (Dig — A19)®9? — (D19 — Ayg)>9%2 —

9(Awg, B, Ci5) + g(A1s, Bis, C15) (7.119)
0 = (Cip— D19)>9% — (C1g — D19)>9*3 — Cy5 + C15 —

9(D1g, Avg, Bis) + g(Drg, A, B1s) (7.120)
0 = (A — A1) — (A — A1y — 1°5°)>981 _ By Bs —

9(Chg, D19, A1g) + g(Chg, D19, Arg) (7.121)
0 = A~ Al +g(Big, Crg, Dig) — g(Brg, Crg, Do) (7.122)
0 = Dig— Dig+ g(Aas, Big, C19) — g(Ass, Brg, C19) —

(Da3 — Az3)™9%2 4 (Dag — Agg)> 9%, (7.123)

A solution to equations (7.89) to (7.96) will probably result in an inner collision for the first
two rounds of MDS5, given the assumptions and choices described earlier in this section.
Algorithm 7.2 presents the procedure used by Dobbertin to find a solution to the set of
difference equations as defined by equations (7.89) to (7.96).

Algorithm 7.2 Construction of Inner Collision: Phase I

Electrical and Electronic Engineering 101

A=
% UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Chapter 7 Analysis of the MDS5 Hash Algorithm

10.

11.

12.

13.

14.

. Make initial choices for D5, Cy5, Cy5, Dyg and Dig as defined by equations (7.105) —

(7.109). Set a counter n = (.

. Choose a random value for A;s.

Determine By — Blg, from equation (7.117).

Choose a random value for B,s and calculate [315 Jrom the result obtained in step 3.

Proceed to step 6.

If n > 0 use the values for Atsgasicr Bisge.,.. and Cis,, .. as determined in step 14.
Choose values with a small Hamming distance from these basic values for Ais, Bisg

and C'5 and proceed to step 6.
Determine Ag — /Lg Jfrom equation (7.118).

Choose C1g at random and calculate Cq according to equation (7.88).

. From equation (7.121) determine all possible solutions for Aiq.

Calculate all possible values for Ayq from the result obtained in step 6.

Determine, for each valid value of A9 and Ayg, a possible solution to (7.119) by
determining all possible valid values for B, and Bys (note that in Sfuture computations,
these values for B;s and 315 should be used, instead of the values computed in step
4).

Conﬁrm whether equation (7.118) holds for the newly computed results obtained for
B, [315, Ay and 1‘119-

If equation (7.118) holds, confirm if equation (7.117) holds. If equation (7.118) does
not hold, proceed to step 2.

If equation (7.117) holds, determine to which extent equation (7.120) holds.
(a) If the left 4 - n bits of equation (7.120) are equal to zero, set n = n + 1. Preserve

the current values for A5, Bs and Cyg as Atsgasicr Bisgas. and Cig,, . .

(b) If 0 < n < 8 and the left 4 - n bits of equation (7.120) are not equal to zero,

return to step 5.

(c) If the left 4 - n bits of equation (7.120) are not equal to zero, and n = 0 return to
step 1.

Electrical and Electronic Engineering 102

-
W UNIVERSITEIT VAN PRETORIA
A~ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 7 Analysis of the MD5 Hash Algorithm

15. If n = 8, determine if the assumptions made when reducing the set of difference e-
quations from equations (7.70) — (7.81) to equations (7.116) — (7.123) holds. Confirm
the validity of equations (7.78) — (7.81). Specifically confirm whether equation (7.123)
holds. If all of these conditions are satisfied, there exists a high probability that an

inner collision was found. If any of these conditions are not satisfied , return to step 1.

Algorithm 7.2 may be modified to restart after a number of iterations to prevent dead ends,
while searching for a solution. An algorithm which allows the construction of all possible
solutions to an expression of a certain form is described in Section 7.5.6. Algorithm 7.2
produces an inner almost collision for the first two rounds of MDS3 in less than one hour on

a 120 MHz Pentium PC. An implementation of Algorithm 7.2 is attached as Appendix E.

7.5.4 Phase II: Inner Collisions for Last Two Rounds

The second phase is similar to the first phase insofar as it involves the solution of a set of
difference equations, with the specific aim of finding an inner collision such that equation
(7.69) is satisfied. The difference equations are derived from equations (7.36) to (7.51) and
are written as:

(Bss — C35)>" — (Bss — C35) Mt = X154 — X4 (7.129)
(Ao — B3s)>"*! — (39 — Bys)>"™*! = h(Bas, C3s, D3s) — h(Bss, Css, Dss) (7.125)
(D3g — A3g)™"? — (Dag — Agg)™"* = h(Asg, Bss, Css) — h(Ase, Bss, C5) (7.126)
(Cag — D3g) "% — (Csg — D3g)>"® = h(Dsy, Asg, Bss) — h(Dsg, Asg, B3s) (7.127)
)

(B39 - 039 P>hsd _ (339 - é39)>>>h84 = B35 - 335 —+
h(C39, D3g, Asg) — h(Csg, D39, A3g) (7.128)
(Agz — B39)>>>hs1 - (1‘143 - B?,g)>>>hs1 = Az — 1‘139 +

h(Bsg, C39, D39) — h(Bsg, Cs9, D39) (7.129)
(Daz = Ag3)™"? — (Dygz — Agg) P = D3y — D39 +

h(A4s, Bsg, Csg) — h(Ays, Bsg, C39) (7.130)
(Ci3 — Dygz)>"53 — (Cu3 — Dyz)>hs3 = Cs9 — Cio +

h(Dus3, Asz, Bsg) — h(Du3, Az, Bag) (7.131)

Electrical and Electronic Engineering 103

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot

&

W UNIVERSITEIT VAN PRETORIA
Qe

Chapter 7 Analysis of the MD5 Hash Algorithm
(Byz — Cu3)>het — (Byz — Cu3)®** = By — Bsg +
W(Cy3, Da3, Agz) — h(Ciz, Daz, Agz) (7.132)
(As7 — Bag)P"! — (Agr — Biz)®"! = Ag3 — Ags +
h(Bus, Ci3, Dag) — h(Bus, Cu3, Dys) (7.133)
(Daz — Agr)®"? — (Dyz — Agg) P2 = Dyz — Dyg +
h(As7, Bas, Ca3) — h{A47, Bz, Cy3) (7.134)
(Car — Dyz)®"3 — (Cy7 — Daz)>h%® = Cy3— Cyz +
h(Daz, Aaz, Byz) — h(Daz, Aaz, Bag) (7.135)
(Baz — C4Y)>>>h84 — (Ba7 — C~'47)>>>h54 = By — 343 +

h(Cyz, Daz, Agz) — W(Cyz, Daz, A7) (7.136)
0 = A4 — A+

i(By7, Cuz7, Da7) — i(Byz, Caz, Da7) (7.137)
0 = Dy — Dyr +

i(As1, Baz, Cy7) — i(As1, Ba7, Car) (7.138)
0 = Cir—Cuyr+ X14 — X14. (7.139)

Two stages are distinguished in this phase of the attack. The first deals with the differen-
tial properties of the set of equations and the second deals with the solution of the set of

difference equations.

Differential Analysis

Before proceeding to find solutions to equations (7.124) to (7.139) the following observations

are made. Dobbertin defines the differences for the chaining variables Bsg, Ay3, Cy3 and Dy3

as:
Ay = Ay —¢? (7.140)
Bsg = Bsg—¢2 (7.141)
Cip = Cg3—e? (7.142)
Dy = Diz—c¢} (7.143)
(7.144)

Electrical and Electronic Engineering 104

Chapter 7

&

m UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
\ 4

YUNIBESITHI YA PRETORIA

Analysis of the MD5 Hash Algorithm

where:

g2 = 0x40004000
€5 = 0x80004000
€5 = O0xFFFBFE0O

g2 = 0x40000200.

(7.145)
(7.146)
(7.147)
(7.148)

The values chosen for £2, €3, 2, and €2 may be obtained from a differential attack. The
differential attack is applied to equations (7.132) to (7.139). By starting at equation (7.139)
and working back to equation (7.132), the following differential relationships are observed:

Cyr — Cyz
Dy7 — Dyy
Ag7 — Agy
Bis — By
Caz — Cu3
Dy3 — D3
Agz — Ay3
Bsg — By

= Xuu-Xu

= (451, Baz, Cu7) — i(As1, Buz, Car)

= i(Baz,Cur, Da7) — i(Baz, Car, Daz)

= (Bar — Cag) P — (Byy — Cyz)>"* —
h(Caz, Daz, Asz) + h(Caz, Daz, Aa7)

= (Cy1r — Dyg)>3 — (Cyy — Dy7)>hs3 —
h(Dyz, Agz, Bys) + h(Daz, Aaz, Baz)

— (D7 — Ag)Ph5? (Dyy — Agr)>hs? _
h(As7, Bys, Caz) + h(Auz, Bag, Cu3)

= (Ag — Byz)®"! — (Ag7 — By3)>"! —

h(Bus, Ca3, Da3) + h(Bus, Cy3, Dy3)

— (B43 _ 043)>>>hs4 _ (343 _ éf43)>>>hs4 _

h(Cu3, Da3, Asz) + h(Cua, Daz, Ay3)

From equation (7.149) it is observed that:

Cyr—Cy = A

= 0x00000200

(7.149)

(7.150)

(7.151)

(7.152)

(7.153)

(7.154)

(7.155)

(7.156)

(7.157)

By setting As;, Bs; and 047 to zero and observing the difference obtained from equation
(7.149), equation (7.150) yields:

Dy7 — Dy7 = 0x00000200.

(7.158)

Electrical and Electronic Engineering

105

-
W UNIVERSITEIT VAN PRETORIA
A~ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 7 Analysis of the MD5 Hash Algorithm

For randomly chosen values for As;, B47 and Cy7 the relationship defined in equation (7.158)
holds with a probability of 19%. Consider equation (7.151). By setting By7, 6’47 and [)47
to zero and by observing the differential values defined by equations (7.157) and (7.158) the

following difference is obtained from equation (7.151).

Ay — Agr = 0x00000000. (7.159)

For randomly chosen values of By, Cy7 and D47 the relationship defined by equation (7.159)
holds with a 19% probability. By setting .[147 to one and Byz, Cy7 and D7 to zero, we obtain
the following differential from equation (7.152).!

Bys — By = 0XFFFC0000. (7.160)

For randomly chosen values of Ay, Bz, Cyz and Dy; the relationship in equation (7.160)
holds with a probability of 33%. By setting Cy7 and Dy7 to zero and by setting A47 and By

to -1, the following relationship is observed from equation (7.153).

Cy3 — Cy3 = OXFFFBFEOO. (7.161)

The relationship in equation (7.161) holds with a probability of 11% if the values for Cur,
l~)47, 2147 and 343 are chosen at random and the previously determined differential values
are observed. From equation (7.154) the following differential relationship is observed by

setting D47 equal to zero, 12147 and 347 to -1 and 6'43 to -0xXFFFBFEQ0O.

D3 — Dy3 = 0x40000200. (7.162)

This relationship holds with a probability of 8% for randomly chosen values for Dyz, Auz,

B47 and 6’43. If the following settings are made:

Ay = 0x00000000

By = 0x00000000

Cis = —O0XFFFBFE0O

Dys = —(0x40000200 + 0x40000200))
'This relationship only holds when (—Clyy)>>hst = —(Cyy)>>hs4

Electrical and Electronic Engineering 106

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

<

Chapter 7 Analysis of the MD5 Hash Algorithm

Equation (7.155) yields the following differential.

Ay — Ay3 = 0x40004000. (7.163)

Equation (7.163) holds with a probability of 5% if /147, 343, 6743 and D43 are chosen at

random and the previously computed differentials are used. Consider equation (7.156). By

setting:
By = 0x00000000
C;3 = —O0XFFFBFE0O
D = —(0x40000200 + 0x40000200))
Ay = 0x40000200 — 0x40004000

equation (7.156) yields the following differential:

Bsg — B3y = 0x80084000. (7.164)

This equation holds with a probability of 1.8% for randomly chosen values for Bys, Cis, Diys
and A43 .

Let Pr(A; ;) denote the probability that a differential associated with a specific step holds.

The differential attack is summarised in Table 7.1.

{i,5,k,1} A — A B, — B, Cy, — Cy Di— Dy | Pr(A;jk)
{51,47,51,51} 0 0 0 0 —
{51,47,47,51} 0 0 0x00000200 0 1.0
{51,47,47,47} 0 0 0x00000200 | 0x00000200 0.19
{47,47,47,47} | 0x00000000 0 0x00000200 | 0x00000200 0.19
{47,43,47,47} | 0x00000000 | OXFFFC0000 | 0x00000200 | 0x00000200 0.33
{47,43,43,47} | 0x00000000 | OXFFFC0000 | 0OXFFFBFE0O | 0x00000200 0.11
{47,43,43,43} | 0x00000000 | OXFFFC0000 | OXFFFBFEOO | 0x40000200 0.08
{43,43,43,43} | 0x40004000 | OXFFFC0000 | 0XFFFBFE0O | 0x40000200 0.05
{43,39,43,43} | 040004000 | 0x80084000 | OXFFFBFE0O | 0x40000200 0.018

Table 7.1: Differential Attack: MDS5
Electrical and Electronic Engineering 107

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

4
W UNIVERSITEIT VAN PRETORIA
A 4

Chapter 7 Analysis of the MD5 Hash Algorithm

Let Pr(A) denote the probability that the differential pattern in Table 7.1 holds. Assuming
statistical independence between successive steps the probability that the differential attack

holds is approximately:

Pr(A) =177,

However, a practical implementation has shown that the assumption of statistical indepen-
dence is not valid. There exists a high probability that, given that one differential is satisfied,
that the following differential will also be satisfied. A practical implementation of the differ-
ential attack has shown that the probability that the differential attack described in Table 7.1
holds is approximately:

1

Pr(A) = 56000

It appears that there exists a number of differentials which may be used instead of those

shown in Table 7.1.

If the following constraints are imposed on Bsg, A43, Cy3 and Dy the probability that the
differential attack holds is increased. Choose A43 at random except for bits 10, 15 and 31
which should be set to one and bit 19 which should be set to zero. Cy3 may be chosen at
random except for bits 15 and 31 which should be set to one and bits 10 and 19 which should
be set to zero?. Let D3 be specified by:

Dy = (A + (e —)<Yoy (7.165)

where 7, is a 32 bit binary vector with a low Hamming weight. In a similar fashion let Bsg
be defined as:

Biyg = (65 — 1)< @ (7.166)

where <y, denotes a 32 bit binary vector of low Hamming weight (y; # 7,.

The condition imposed by expression (7.69) for determining an internal collision may be

re-written as:

e~ 7.44
0=COMPRESS!} — COMPRESS., ;, (7.167)

*The bits in the 32 bit words are numbered from the LSB to the MSB

Electrical and Electronic Engineering 108

P
w UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Chapter 7 Analysis of the MD5 Hash Algorithm

If the constraints described above are imposed on Bsg, A43, Cy3 and D3 the probability that

expression 7.167 holds is approximately:

Establishing an Inner Collision

Thus, the differential attack described here allows the problem of finding a solution to ex-

pression (7.69) to be reduced to finding a solution to the following expression:

7.36 DD 0 9 9 2 2
COMPRESS; 3, — COMPRESS, 4, = {¢],¢3,€3,€5}- (7.168)

Thus the set of difference equations which has to be solved, may be simplified to:

(Bss — C33) " — (Bas — C35) M4 = Xy — X4 (7.169)
(Azg — B3s)™"! — (Azg — Bss)®"! = h(Bss, Css, Das) — h(Bss, Css, D3s) (1.170)
(D39 — Azg)™"*? — (Dgy — A3g)>"*? = h(Asg, Bss,C3s) — h(Asg, Bss, C35) (7.171)
(Csg — D39) "3 — (C39 — D39) "3 = h(D3g, Asg, B3s) — h(Dse, Asg, Bss) (7.172)
(Bsg — C39) "5 — (Bgg — C39)>M* = Bss — Bas +

h(C39, D39, Azg) — h(C3g, D39, Azg) (7.173)

(Asg — B3g) "t — (g3 — B3g) Mt = Agg — Azg +
h(Bsg, C39, D39) — h(Bag, Csg, D3g) (7.174)
(D43 - A43)>>>h52 - (D43 - A43)>>>h32 = D3g - [)39 +

h(Aa3, Bag, Cs9) — h(As3, Bag, Cag) (7.175)
(Caz — Dg3) >3 — (Cuz — Dgg)®"3 = Cy9 — Ca9 +

h(D4z, Aaz, Bao) — h(Das, As3, Bag).(1.176)

Additional simplifications to equations (7.124) — (7.139) can be achieved by making the
following observations:

(Bss — Cs35)>"*! — (Bas — Cas) ™" = Xug — Xu (7.177)
(Bss — C35) ™% — (B3 — C35)>? = -1 (7.178)
Bss = ((Bss — C35)>% — 159) <2 4 055.(7.179)

Electrical and Electronic Engineering 109

&
W UNIVERSITEIT VAN PRETORIA
A~ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 7 Analysis of the MD5 Hash Algorithm

Equation (7.179) may, with high probability, be written as:

Bss = ((Bss — Cy5) < — 159)<3 | ¢y, (7.180)
Bys = Bis— Css — 1+ Cs. (7.181)
Bsy = Bss— 1. (7.182)
By setting
Bs3s = —1. (7.183)
and
Bys = 0. (7.184)

equation (7.179) is satisfied. These choices inherently simplify equation (7.125) as follows.

(Asg — B3s)P"! — (A3 — Bys)™®M! = h(—1,Css, D3s) — h(0,Css, D35) (7.185)
(Asg — B3s) "l — (A3g — B3s)®M! = 5 ® D35 — Css5 ® Ds (7.186)

with the use of the following identity:

XY+ XopY =1 (7.187)
XpY=1-XY (7.188)

equation (7.186) reduces to:
1 — (Asg — Bss)@"! + (Azg — Bas)>h*! (C35 ® D3s) (7.189)

2
C35@ Dys = (1— (Asg — Bys)>™! —
(Asg — Bys)>™H)>!1 (7.190)

thus D35 may be obtained from:?

Dys = (1 — (Azg — Bas)>"! — (Agg — Bas))1 @ Css. (7.191)

*Note that equation 7.191 only holds if the right hand side of equation (7.189) is even.

Electrical and Electronic Engineering 110

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(og gt

Chapter 7 Analysis of the MDS5 Hash Algorithm

Now consider equation (7.172). Remember that:

h(A,B,C)=A®B@®C.

Thus equation (7.172) may be written as:

(Cs9 — D39)>>>h83 - (039 - D39)>>>h53 = D39 ® Asg ® B35 — D39 @ 1‘139 ¥ [335 (7.192)

Let:

X - Dgg @ A39 @ B35 (7193)
= D3y ® Azy ® Bss (7.194)

St

From equations (7.183) and (7.184) equations (7.193) and (7.194) may be simplified to:

X — Dgg@Agg (7.195)
X = D3® Ay (7.196)

Equation 7.192 may now be written as:

X — X = (Csg — D3g) "> — (C3o — Do) ™", (7.197)

Equation 7.197 may be written, with a probability of approximately 25% as:

X — X = ((C39 — Csg) — (D39 — Dsq))>"3. (7.198)

Equation (7.173) may now be written as:

(B39 - 039)>>>h84 - (BBQ - C~139)>>>hS4 = B35 — Bg5 +
h(C39, X, 0) — h(Cs9, X,0) (7.199)

Equation (7.174) may now be written as:

(Ags — Byg) > — (‘443 — By)?M! = (X@®Dsy— X Dsg) + h(Bsg, Csg, D3g)
—h(By, Cig, Dyy) (7.200)

Electrical and Electronic Engineering 111

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

4
W UNIVERSITEIT VAN PRETORIA
A 4

Chapter 7 Analysis of the MDS5 Hash Algorithm
Thus:
Agg = Y D D3g (7201)
1439 = X D Dgg (7202)

Dobbertin proposes that Algorithm 7.3 is used to determine a solution to expression (7.168).

Algorithm 7.3 Construction of Inner Collision: Phase II

1. Choose Bss and 5’35 as specified by equations (7.183) and (7.184)

2. Findvalues for Ay, Bsg, Cy3, Dy3 which will satisfy the differential attack summarised
inTable 7.1.

3. Determine Csg — C~’39 Jfrom equation (7.176).

4. Choose a random value for Csq and determine Csq from the result obtained in step 3.

Now determine D3q — [739 Jfrom equation (7.176).

5. With Dyg — Dgg in hand determine all possible solutions to Csg and 039 using an

iterative search procedure.
6. Calculate X — X given that the assumptions in (7.198) holds.
7. From equation (7.199) determine all valid solutions to X and X.

8. Determine solutions for D3y and Dsg Jrom equation (7.200) using an iterative ap-

proach.
9. Asq and /~139 may be calculated from equations (7.201) and (7.202).
10. Determine if the assumption in equation (7.198) holds.

(a) If the assumption in expression (7.198) does not hold return to step 1.

(b) If the assumption in (7.198) holds, determine all possible solutions to Css using
equation (7.171).

11. If solutions for Css exist determine Dss from (7.191).

12. If a valid solution Dsy is found an inner collision for the second round was found.

Dobbertin’s implementation of this attack is attached as Appendix E.2.

Electrical and Electronic Engineering 112

P
i

W UNIVERSITEIT VAN PRETORIA

0 UNIVERSITY OF PRETORIA

A~ 4

YUNIBESITHI YA PRETORIA

Chapter 7 Analysis of the MD5 Hash Algorithm

7.5.5 Phase III: Establishing a Connection

The third phase requires that the solutions to the sets of equations obtained from the previous
two phases are connected. When commencing with the third phase of the attack, the chaining
variables C'5, Bis, A9, D19, C19 B1g and A3 are known from phase one of the attack. The
chaining variables C35, D35, Asg, Bsg, C39, D3g, As3 and Dy3 are known from phase two
of the attack. A number of message words and chaining variables may now be computed.
Message words X1, Xg, X1, Xy and X5 may be computed from equations (7.17), (7.18),
(7.19), (7.20) and (7.21). Likewise message words X,, X7, Xo and X;3 may be obtained
from equations (7.38), (7.39), (7.40) and (7.41). In addition chaining variables D3 and Dys
are be obtained from equations (7.22) and (7.41) respectively.

A connection is obtained if solutions to X5, X3, Xz and X, is found such that equations
(7.203)—(7.203) holds.

Cyr = Doz + (Coz + g(Day, Agr, Bag) + Xz + Tog) <€9% (7.203)
By; = Cyr + (Bog + g(Car, Doz, Agy) + Xg + Top) <9 (7.204)
As1i = By + (Agr + g(Bor, Car, Day) + X1z + Tog) <! (7.205)
D3y = As + (D7 + g(As1, Bar, Car) + Xo + Tig) <9%2 (7.206)
Csi = D+ (Cor + g(Dsy1, A3y, Bar) + X7 + Tp) <€9%3 (7.207)
By = Cs1 + (Bar + g(Cs1, D31, Azy) + Xag + Ty) <9 (7.208)
Aszs = B3 + (A1 + h(Bs1,Cs1,D31) + X5 + T32)<<<hs1 (7.209)
Dys = Ags + (Dsy + h(Ass, By, Ca1) + Xg + Tig) <™ (7.210)
Css = D35+ (Cs1 + h(Dss, Ass, Bst) + X1 + T34)<<<h33 (7.211)

Equations (7.203)—(7.203) are bounded by the chaining variables Ay;, Bz, Cas and Dys as
obtained from phase one of the attack, as well as by chaining variables Ass, Bsi, C3s and
D35, obtained from phase two of the attack. Thus the only chaining variables which may be
manipulated without affecting the previous phases of the attack, are Asz;, By7, Co7 and Ds;.
An additional constraint is imposed by the fact that X5, X7, X{; and X3 are determined by
phase one and two of the attack. This leaves only four message words namely X,, X3, X3
and X, which may be used to establish a connection. The fact that expression (7.68) is
simplified to expression (7.111) gives an attacker additional degrees of freedom and allows,
to a limited extent, the manipulation of chaining variables Bas Ca3 and Dy7. Note that Do3,

which is associated with the first stage of the attack, depends on Xy which is obtained from

Electrical and Electronic Engineering 113

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

4
W UNIVERSITEIT VAN PRETORIA
A 4

Chapter 7 Analysis of the MDS5 Hash Algorithm

the second phase of the attack. Thus the chaining variables in the two previous phases are
interdependent on each other. This requires that the results obtained from the previous phases
has to be manipulated simultaneously when attempting to establish a connection between the

two phases.

Three stages are identified in the third phase of the attack. The first stage is concerned with
finding suitable values for the chaining variables Cys, Bos, Ay7 and Dy;. The second stage
requires that a connection be made between phase one and two. During the third stage it is

required that the existence of an inner collision obtained for the second phase is verified.

Stage 1

Remember that the attack on the first phase is simplified in Section 7.5.3 by requiring that
condition (7.111) instead of condition (7.68) has to be met. From Section 7.5.3 it is known
that if condition (7.111) is met, condition (7.68) holds with a high probability. The following
procedure is proposed by Dobbertin to find suitable values for Cys, Bas, As7 and Dys.

Algorithm 7.4 Stage I: Determine if inner collision for Phase |

1. Determine Doz from equation (7.22).

2. Choose X5 at random.

3. Determine Cy3 and Bsg from equations (7.23) and (7.24).
4. Set Ass equal to Bas.

5. Calculate Xy from equation (7.25)

6. Set Dy; = OXFFFFFFFF.

7. Calculate X4 from (7.26).

8. Determine if expression (7.68) holds.

(a) If condition (7.68) does not hold, restart from step 1.

(b) If condition (7.68) does hold, proceed to stage two of phase three.

Electrical and Electronic Engineering . 114

oy
ot

W UNIVERSITEIT VAN PRETORIA
A 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 7 Analysis of the MD5 Hash Algorithm

The choice for D7 ensures that the following relationship holds:

By; = g(Bar,Ca7, Do7). (7.212)

Stage 2

The second stage is directly concerned with establishing a connection between the two phas-

es. The following simplification to equation (7.209) is of particular importance:

(Ass — B31)®"! — A3 — X5 — Tay = h(Bs,Csy, D) (7.213)

(Ags — Bgy) > — Ay, — X5 — Ty = By & Cy @ Dy (7.214)
Dy = ((A35 - B:ﬂ)>>>hSl — Az — X5 — T32)

®Bs; @ Csy. (7.215)

Dobbertin proposes the following algorithm to establish a connection between the two phas-

€s.

Algorithm 7.5 Second Stage: Establish Connection

1. Set Bgl = B35 - X14.
2. Determine Cs5, from equation (7.211).

3. Choose a random value for By, . . Choose By; with a Hamming distance of 1 from

Byt pasie:
4. Calculate A3, from equation (7.205).
5. Calculate D3, from equation (7.215).
6. Determine Cy; from equation (7.207).
7. Calculate X from equation (7.204) and X2 from equation (7.210).

(a) If equations (7.204) and (7.210) yields the same result for Xg a connection was
Jound.

Electrical and Electronic Engineering 115

A=
W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
h 4

YUNIBESITHI YA PRETORIA

Chapter 7 Analysis of the MDS5 Hash Algorithm

(b) If equations (7.204) and (7.210) yields different results for Xy continue from step
8

8. Determine the Hamming distance between the two values calculated for Xs.
(a) If the current Hamming distance is less than the previous Hamming distance,
save the current Hamming distance and set By, .. = Boy. Return to step 4.
(b) If the current Hamming distance is not less than the previous Hamming distance,

proceed from step 9.

9. Set: Cyz = Cys — (Xgl — Xg), Byz = Bys — (X81 — Xg) and recompute Dy;. Conﬁrm
if equation (7.212) holds.
(a) If equation (7.212) does not hold, restart from step 1.
(b) If equation (7.212) does hold, proceed to step 10.

10. Determine if the changes made in step 9 still allows an inner collision for the first

phase.

(a) If not, restart from Algorithm 7.4.

(b) If an internal collision is found, restart from step 4.

Step 8 in Algorithm 7.5 is reminiscent of the continuous approximation used in phase one of
the attack on MDS5.

Upon successful completion of Algorithm 7.5 X,, X5, X and X, may be computed from
equations (7.206), (7.203), (7.204) and (7.208) respectively. Once the first two stages have
been completed, only the third stage of the third phase remains.

Stage 3

The third stage requires that the existence of an inner collision for the first two stages be
confirmed. If an inner collision is not found, the attacker should restart from stage 1 of
the third phase. If the inner collision for the second phase exists, a collision for the round
function of MD5 was found. The message words and initial value for which the collision

holds may now be calculated.

Electrical and Electronic Engineering 116

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(0%.%:«*.

Chapter 7 Analysis of the MD5 Hash Algorithm

Example

The following collision was constructed for the round function of MD5 The initial value for

which a collision was found is given by:

A0 = 0xF7987AA4
B0 = 0x6EF00D2B
C0 = 0XCAFBCOA2
D0 = 0x7678589B

The message is defined by:
Xo = OxAA1DDASE Xg = 0x4C1E82F6
X1, = 0XD97ABFF5 X9 = 0xAF5B46C9
Xy = 0XA5CA745B X190 = 0x236BB992
X3 = 0xC9DDCECB X11 = 0x6B7A669B
X4 = 0x1006363E X2 = 0x40CC7121
X5 =0%x7218209D X3 = 0xD93E0972
Xg = 0xE01C135D X114 = 0x95FACCCD
X7 = 0x9DA64DOE Xi5 = 0x72409780

with

Xy = Xy + 150

The common hash value obtained for these two messages is:

Common Digest = 0x88963A3F 0x4B40C08A 0xF529663D 0x0B410DAD.

Note that due to the overlap in message words (specifically X1,) and the consequent interde-
pendence of the chaining variables in phases one and two of the attack, considerable effort is

required to find solutions to both phase one and two which will allow a successful connection

Electrical and Electronic Engineering 117

&
% UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
«=P U

NIBESITHI YA PRETORIA

Chapter 7 Analysis of the MD5 Hash Algorithm

to be made. Given a solution to the second phase the probability that the solution to the first

phase will still result in an inner collision for the first phase is estimated at 25%.

The techniques used to construct a connection described in this section, manipulates the
results obtained from phases one and two of the attack simultaneously. However the potential
effort required to solve the sets of equations simultaneously is avoided by finding a solution
to expression (7.111) instead of (7.68). This allows the limited manipulation of the chaining
variables B3, Cy3 and Ay;. Thus, the chaining variables which are most influenced by the
interdependence between phase one and two, may be manipulated to a limited extent. An
implementation of the third phase of the attack is attached as Appendix E.3.

7.5.6 Determining if Solutions Exist

In Sections 7.5.3 and 7.5.4 it is assumed that an algorithm exists for determining if solutions
to certain Boolean expressions exist. This section gives a description of such an algorithm
as used by Dobbertin in the analysis of MD35. Dobbertin’s attack requires the solution of sets
of difference equations. From the previous sections it is observed that these equations are of

the form:

T = f(a1, b1, 21) — f(az, by, z3) (7.216)

or:

0= f(ay,by,z1) — f(az, bo,z9) — T (7.217)

with f() a bitwise Boolean function which operates on binary words of length /. The vari-

ables z; and z, are related by:

Ty = + 0z

thus equation (7.217) may be written as:

0= f(CLl, bl,xl) - f(ag,bg,.'ﬂl + 6,’1)) -T (7218)

where a1, by, as, by, T and 0z are constants, z; is the unknown variable.

Electrical and Electronic Engineering 118

NIVERSITEIT VAN PRETORIA
NIVERSITY OF PRETORIA
UNIBESITHI YA PRETORIA

Chapter 7 Analysis of the MDS5 Hash Algorithm

It is important to note that due to the nature of bitwise calculations, the ¢’th bit of the solution
corresponds to the 7’th bit of z;. To be more specific, if a bit in position 7 is changed in z,
this can at most cause bit changes ranging from bit position 7 up to the MSB (allowing for

carry) when equation (7.218) is evaluated.

In [55] it is stated that all solutions of x, has the structure of a binary tree and can be com-

puted using a bitwise recursive process. This process is presented as Algorithm 7.6.

Algorithm 7.6 Recursive Search Procedure

1. Initialise a,, by, ay, by, T and .. Set 6z to represent the desired difference between z,

and x,.
2. Set the current depth of the binary tree, i, to 0.
3. Determine the current depth of the binary tree.

4. If the current depth of the tree, i, equals | (the length of a binary word), record x; as a
valid solution. Decrement the depth counter i by one. Return to the instruction (step)
following the most recent entry or re-entry into Algorithm 7.6. If control is returned
to the instruction following the original entry into Algorithm 7.6, Algorithm 7.6 is

terminated.

5. Calculate the right hand side of equation (7.218). Determine if the i’th bit of the result

equals zero.

6. If the i’th bit of the right hand side of equation (7.21 8) equals zero, increment the
tree-depth counter i and re-enter Algorithm 7.6 at step 3.

7. Toggle the i’th bit in z,. Re-compute the right hand side of equation (7.218). Deter-

mine if the i’th bit of the result equals zero.

8. If the i’th bit of the right hand side of equation (7.218) equals zero, increase the tree-
depth counter i by one. Re-enter Algorithm 7.6 at step 3.

9. Toggle the i’th bit in x| and return the number of valid solutions found for x,. Decre-
ment the tree-depth counter i by one. Return to the instruction (step) following the
most recent entry, or re-entry into Algorithm 7.6. If control is returned to the instruc-

tion following the original entry into Algorithm 7.6, Algorithm 7.6 is terminated.

Electrical and Electronic Engineering 119

&
% UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
«=P U

NIBESITHI YA PRETORIA

Chapter 7 Analysis of the MD5 Hash Algorithm

Algorithm 7.6 may be modified to search only for a limited number of solutions. In order to
illustrate the relationship between Algorithm 7.6 and a binary tree, the following example is

presented.

Example

Let [equal 4. Thus all the variables in equation (7.218) are 4 bit words. For these 4 bit
words, let the LSB be numbered 0 and the MSB 3. Let f() be a bitwise Boolean function
defined by:

fla,b,x) = (aAzx)V (—z Ab)

Let the subscript 2 denote the base 2. The following is an example of the application of

Algorithm 7.6 to the four bit problem. Set:

T = 00002 ay =
a; = 01102 bg = b1

Choose a random value for z;, say 1001,. A numerical example of the use of Algorithm 7.6

to find solutions to the given expressions is presented in Table 7.2.

Eight distinct headings are included in Table 7.2. The Operation nr. indicates the number
of the operation. The Step nr. indicates which step in Algorithm 7.6 is associated with the
given operation number. The column denoted i contains the tree-depth counter. The column
marked ¢ = 47 indicates a test condition. The fifth column is marked x; and contains the
present value of ;. The column marked Equation (7.218) contains the value to which equa-
tion (7.218) evaluates. The Resume From column contains an operation number. Associated
with the operation number is a step number. If the Resume From column contains an oper-
ation number, the next step which should be executed is the step following the step number
associated with operation number in the Resume From column. The Node column contains
the current node in the binary tree depicted in Figure 7.3. The variables which are updated

in each operation are marked in cray.

Electrical and Electronic Engineering 120

&
% UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
«=P U

NIBESITHI YA PRETORIA

Chapter 7 Analysis of the MD5 Hash Algorithm
Operation | Step | 7 | i = 4? T Equation | Resume From | Node
nr. nr. (7.218) | Operation nr.
1 2 |0 No |1001, — — r
2 3 10| No [1001, — — r
3 5 0| No 1001, RS — r
4 6 | No | 1001, | 1110, — g
5 3 1 ~Noo 110015 | 1110, — B
6 5 1 No | 1001, BREY — B
7 7 (1] No 0L LY — B
8 9 No G — 4 i
9 7 |0] No GO, DOUL — r
10 8 j No | 1000, | 0000, — 5
11 3 1 No o 110005 | 0000, — A
12 5 1 No | 1000, | 00, — A
13 6 | 2] No |1000,| 0000, — {
14 3 |2 No 1000, | 0000, — C
15 5 2 No 1000, OO — C
16 6 No | 1000, | 0000, — G
17 3 No o 10002 | 00004 — G
18 5 No 1000, 000 — G
19 6 t1 No | 10005 [0000, — O
20 3 |41 ¥Yes | 10005 | 0000, — 0)
21 4 No | 1000, { 0000, 19 ®
22 7 3 No GUGHY, O — G
23 8 No | 0000, | 0000, — i
24 3 4] Yo 00004 | 0000, — P
25 4 21 No | 0000, | 0000, ¢ G
26 9 |2 No 1000, — 16 {
27 7 2 No REEY O, — C
28 8 | No | 1100, | 1000, — H
29 3 13 N 1100, | 10004 — H
30 5 |3 No |1100y 000 — H
31 7 3] No |oiou. | 100 — H

Electrical and Electronic Engineering 121

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot
W UNIVERSITEIT VAN PRETORIA
Qe

Chapter 7 Analysis of the MD5 Hash Algorithm
Operation | Step | 7 |1 =4? | =z, Equation | Resume From | Node

nr. nr. (7.218) | Operation nr.

32 9 No EE — < ¢
33 9 |i| No 000, — 13 \
34 7 |1 No 1O, z — A
35 8 21 No | 1010, [0000, — 0
36 3 12| No |10102 | 0000, — D
37 5 [2] No |1010, | #6500, — D
38 6 i1 No | 1010, [0000, — !
39 3 3] > 1010, | 0000, — I
40 5 3 No 10104 oo, — I
4] 6 i1 No | 10105 | 0000, — |
42 3 [4]| Yes | 10102 | 0000, — T
43 4 [3] No |1010,| 0000, 41 i
44 7 |3 No GO16, D — I
45 8 |4 No |00105| 0000, — S
46 3 |4] Yes | 00105 | 0000, — S
47 4 |3 No |0010, | 0000, 45 i
48 9 | 2| No | luin, — 38 D
49 7 2 No [RREES REEE — D
50 8 |31 No |1110, | 1000, e J
51 3 |3 No [11105] 1000 — J
52 5 [3] No |1110, 130 —_ J
53 7 3 No D116, O — J
54 9 |2| No |1i1i0, — 50 D
55 9 | 1| No ne — 35 A
56 9 |6} No OO0 — 10 r
57 9 || No . — Fxi r

Table 7.2: Numerical Example: Recursive Search Procedure

An implementation of Algorithm 7.6 with reference to the example given above, is listed in

Appendix E.

Electrical and Electronic Engineering 122

&
UNIVERSITEIT VAN PRETORIA

&
ioi UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Chapter 7 Analysis of the MD5 Hash Algorithm

All possible values for #; may be represented as a binary tree (see Figure 7.3).

r

A B
0 1 0 |
c D E F
0 | 0 | 0 | 0 1
G H 1] K L M N
0 to 10 10 | 0 10 | 0 1 0 |
o P 0 R s T U v w X Y Z AA AB AC AD

Figure 7.3: Binary Tree Representation of Four Bit Variable

Since all possible values of x; are included in this tree, all possible solutions to equation
(7.218) are also included in this tree. The relationship between the binary tree in Figure 7.3
and Algorithm 7.6 may be observed from the above example by tracing the node positions at
each step of the example. It is noted that if the children of a node (for instance node B) does
not yield solutions, the entire branch may be pruned from the search space. Thus Algorithm
7.6 in effect searches through a binary tree. The pruned binary tree which contains only the

solutions to the above example is shown in Figure 7.4.

--------- Pruned Branches
Solution Branches

Figure 7.4: Pruned Binary Tree with Solutions

Electrical and Electronic Engineering 123

&
% UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
«=P U

NIBESITHI YA PRETORIA

Chapter 7 Analysis of the MD5 Hash Algorithm

It should be remembered that Algorithm 7.6 only yields results if the Boolean functions oper-
ate bitwise on a multiple bit word. Any rotations or other sources of diffusion in the Boolean
function, renders the above approach ineffective. The power of this search algorithm lies in
the ability to reject entire branches at a time (e.g. in operation nr. 3, all the children nodes
which are attached to node A are immediately rejected as possible solutions). The ability
to reject entire subsets of possible solutions has the result that the existence of solutions, as

well as the solutions themselves, can be determined quickly and efficiently.

7.5.7 Conclusion

This chapter contains a description of the cryptanalysis of MD3 as developed by Dobbertin.
The attack on MDS5 is similar to the attack on MD4 in a number of aspects. Both attacks
require that sets of difference equations should be solved. Furthermore both attacks rely, to
some extent, upon the fact that certain differential patterns are more likely to propagate than
others. Furthermore both attacks depend on the fact that the Boolean expressions used in the
compress functions may be manipulated. In both attacks, the fact that the rotation operations
may be separated from the Boolean equations by the use of counter rotations allows the

attacker to establish and solve equations of a certain form.

The attack on MD5 is however considerably more complex than the attack on MD4. The
additional complexity of this attack is reflected in the amount of time required to find a
collision for the compress function of MD5 when it is compared to the time required to
find a collision for the compress function of MD4. The additional complexity appears to
be due mainly to the use of an additional round. A further contribution to the complexity
is the use of the XOR function in the third round. In the attack on MD4, Dobbertin avoids
dealing with the XOR function (except briefly during the differential attack on MD4 [14]).
In the attack on MDS5 this is not the case. The contribution of the constants to the security
of MDS5 is considered to be low. The constants are only brought into play during the third
phase of the attack, when a connection between the results obtained for phase one and two
are established. Certain choices and conditions are imposed which appears to speed up the
process of finding an inner collision for the second phase of the attack. It is unclear why

these choices are made.

Of particular interest is the algorithm used by Dobbertin to determine if solutions to Boolean

equations of a specific form exist. This algorithm is presented in Section 7.5.6. It appears

Electrical and Electronic Engineering 124

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Qe VU

NIBESITHI YA PRETORIA

Chapter 7 Analysis of the MD5 Hash Algorithm

that this algorithm is particularly suited to evaluate Boolean equations which has no diffusion
properties over a certain number of bits. It is therefore particularly useful when dealing
with bitwise operations as used in MD4 and MDS5. If other cryptographic primitives, which
utilises bitwise operations are analysed, this algorithm may be a useful tool. It is not known

if this algorithm is described in the literature.

7.6 ACKNOWLEDGMENTS

I would like to make use of this opportunity to thank Antoon Bosselaers and the personnel
at the COSIC group at the Katholieke Universiteit Leuven for their assistance and support
during this investigation into the cryptanalysis of MD4 and MD35. The algorithms and tech-
niques presented in this chapter were derived from the programs written by Dobbertin and

the notes of Bosselaers.

Electrical and Electronic Engineering 125

e

W UNIVERSITEIT VAN PRETORIA
@, UNIVERSITY OF PRETORIA
Qe U ORIA

NIBESITHI YA PRET

CHAPTER 8: GENERALISED ANALYSIS OF THE MD4 FAMILY
OF DEDICATED HASH FUNCTIONS

8.1 INTRODUCTION

The vast majority of hash functions (MDCs and MACs) are based on the iterated model
known as the Ddmgard-Merkle scheme [22], [23]. This generalised construction is discussed
in Chapter 5 Section 5.3. It was proved by Damgard that the security of the overall construc-
tion relies on the security of the compress function. Dedicated hash functions, including
the MDx family of hash functions, are primarily based on the iterative model presented by
Damgard and Merkle.

In 1996 Dobbertin presented an attack against RIPEMD-128 and MD4 [54], [14]. These
attacks showed that it is possible to construct collisions for MD4 and RIPEMD-128. In
addition to the above attacks Dobbertin presented an attack on the compress function of
MDS5. This attack demonstrated that it is computationally feasible to establish collisions for
the compress function of MD5 [12], [55].

The similarity in the structure of the hash functions (MD4, MD5 and RIPEMD-1 28) suggests
a common factor in the attacks. If a common factor could be found in all of the attacks, it
may be indicative of a weakness in the design of an entire hash function family. Once
this weakness is identified it may be possible to derive design criteria for dedicated hash
functions. Hash functions designed according to these design criteria would be immune to

these attacks.

For these reasons the attacks against MD4 and MD5 were reconstructed and studied (Chapter
6 and 7). Many interesting techniques and properties were discovered in the course of this
analysis. Specifically a technique was discovered to speed-up the construction of collisions

against MD4. This work resulted in a publication [56].

In this chapter the attacks on MD4 and MDS5 are generalised to provide a framework for the

analysis of any iterated cryptographic hash function.

A&
w UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA

Qe VYUNIBESITHI YA PRETORIA

Chapter 8 Generalised Analysis of the MD4 Family of Dedicated Hash Functions

8.2 GENERALISED ATTACKS

The attacks described by Dobbertin applies directly to the compress function of the hash
functions. It is the aim of these attacks to find two messages M and M with length equal to

a single block such that:

fUV, M) = f(IV, M)

with f() the compress function and IV the initial value used. The compress functions of
the dedicated hash function under consideration are constructed by applying a number of
steps iteratively. Each step may be expressed as an equation containing Boolean mappings,

rotation operators, additive constants and addition mod 23? operators.

Let fij () represents the application of the compress function from step ¢ to step j. Before

proceeding it is appropriate to state the following definitions.

Definition 1 (Inner-Collision) An inner-collision is defined if, between steps i and j of the
compress function, f f (C,M) = fij (C, M). C; is the internal chaining variable and is given
by Ci = f§(IV, M) = f§(IV, M).

Definition 2 (Almost Inner-Collision) An almost inner-collision is defined if, between step-
st and j, of the compress function f](C, M) = f1(C, M)+ A; with AA; a specified difference.

As before C; is the internal chaining variable.

The attacks by Dobbertin exploit the fact that

fUV, M) = fIV, M)

holds if

fIV, M) = giavi)
fij+1(ciaM) = i]+1(Ci>]\¥)
f]k+1(cjaM) = ff—{—l(ijM)

f,éH(Ck,M) = flé-H(Ck?M)

Electrical and Electronic Engineering 127

4
m UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

Chapter 8 Generalised Analysis of the MD4 Family of Dedicated Hash Functions

for a compression function defined by [steps. Thus a number of consecutive inner-collisions
may be used to construct a collision. It is noted that an inner-collision may be constructed

from an almost inner-collision if differences and chaining variables are found such that:

£, M) = f(Ci, M)+ A
fHC+ 05, M) = fHC;, M)

J

The attacks defined by Dobbertin are focused on finding inner-collisions and almost inner-
collisions for sections of the compress function which would result in the construction of
collisions for the entire compress function. These attacks share two elements. The first ele-
ment deals with the derivation of sets of difference equations. The second element requires

a solution to these sets of difference equations.

8.2.1 Difference Equations

The chaining variables in MD4 and MDS5 are 32 bit words. For these hash functions a
difference equation is defined as the difference mod 232 between two expressions. This

may be written as:

AE = [El(Mi) - EQ(MZ-)] mod 2%2. 8.1)

The first expression, E;(M;), describes a given step. The variables in this expression are
associated with the first message. The second expression, F,(M;), describes the same step
as the first. The variables used in the second expression are associated with the second
message. Expression 8.1 is referred to as a difference equation. A set of difference equations
is obtained if difference equations can be derived for a number of consecutive steps in the

hash function.

Obtaining a set of difference equations for all the steps of a hash function is possible but not
recommended since the dedicated hash functions described in the literature has upwards of
48 steps (MD4), and writing difference equations for all the steps results in a large number

of interrelated non-linear equations which are difficult to solve.

For this reason the difference between two messages is restricted to a single message word.

In MD4, MDS5 message words are re-used in consecutive rounds. The order in which the

Electrical and Electronic Engineering 128

<4
W UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

Chapter 8 Generalised Analysis of the MD4 Family of Dedicated Hash Functions

message words are processed is changed for each round. In the analysis of MD4 and MD35
the message words in which the differences occur are selected according to the number of

steps separating the occurrence of the given word in consecutive rounds.

There exist no exact rule for selecting the message word which will be altered. Instead a
general guideline is that the number of steps between the occurrence of a given word should
not be too small (less than four steps for MD4 and MD5) since this makes it difficult to derive
a set of solvable difference equations. At the same time the number of steps between the
occurrence of two steps should not be too large since this increases the number of variables

which has to be solved.

In hash functions with an even number of rounds, a trade-off between the number of steps
separating the message word in each pair of rounds has to be found. The difference equations

should be setup to yield inner-collisions for each pair of rounds.

If the number of rounds are uneven, difference equations should be established for any com-
bination of even rounds. One of the sets of difference equations should be setup to result in
an almost inner-collision. This almost inner-collision should be specified in such a manner
that a difference pattern propagates and interacts with the message word in the unmatched
round. This interaction should result in a collision or inner-collision. As an example consider

MD4 where it was shown that

UV, M) = f(IV, M)

holds if:

1129(012,M) = 1129(012,M)+A19
§§(Cw+A19,M) = 2305(C19,M)

Thus by limiting the difference between two messages to a single word, the number of equa-
tions in the set of difference equations are reduced to a manageable size. However it should

be noted that there does not necessarily exist solutions to such a set of difference equations.

Electrical and Electronic Engineering 129

A&
w UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA

Qe VYUNIBESITHI YA PRETORIA

Chapter 8 Generalised Analysis of the MD4 Family of Dedicated Hash Functions

8.2.2 Solution of Difference Equations

Once a set of difference equations is obtained, the problem remains to solve these equations.
Dobbertin proposed one technique which resembles the operation of a genetic algorithm
[14]. An investigation into the use of genetic algorithms to solve expressions similar to those
encountered in the MD4 family are presented in [57]. The techniques used by Dobbertin
to solve these sets of difference equations are summarised in [17] and [58]. The techniques
required to solve these sets of equations are fairly specific to each set of equations. However,

some common elements may be obtained from these techniques.

In both the analysis of MD4 and MDS5 the difference between the messages are restricted
to a single word. The Hamming distance between the two message words are kept small,
since it is generally easier to manipulate the effect of a small number of bits on the chaining
variables. The position at which the difference in the message word is introduced depends on
the diffusion mechanisms of the hash function. One of the diffusion mechanisms in MD4 and
MD)5 is rotation. The bit positions in which differences are introduced are chosen specifically

to counter the effect of rotation.

Another technique employed in both the attacks on MD4 and MDS5 is the choice of specific
values to simplify the sets of difference equations. These choices effectively allows the ma-
nipulation of the Boolean mappings. In the attack on MDS5 this approach is used to establish

certain differential patterns which simplifies the sets of difference equations.

The utilisation of a technique called iterative approximation is encountered in the attacks on
MD4 and MD5. This technique evaluates the result obtained from a random initial setting.
These initial settings are referred to as the basic values for the set of equations. The basic
values are then changed by small increments and the corresponding result is observed. If the
result is a closer approximation to the desired result, the changed basic values becomes the

new basic values. This process is repeated until the desired result is obtained.

Another approach used to find solutions to sets of difference equations is used in the analysis
of MD35. This technique requires that a large number of possible solutions are collected and
then tried one after the other. This process is combined with the iterative approximation
technique. A large number of basic values and possible solutions are generated. These
possible solutions are then tried one after the other. The best solution is retained and serves

as the basis for the next iteration. The techniques used to produce a large number of possible

Electrical and Electronic Engineering 130

%
b
53 UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA
Quu® YUNIBESITHI YA PRETORIA

Chapter 8 Generalised Analysis of the MD4 Family of Dedicated Hash Functions

solutions are described in [57].

8.3 APPLICATION OF GENERALISED ATTACKS

The generalisation of the attack as described in this chapter was applied to a limited number
of rounds of the HAVAL and SHA hash functions. Both are part of the MDx-family of hash
functions. Using the generalised technique it can be shown that collisions can be establihed
for limited rounds of HAVAL and single rounds of SHA. The details of these attacks are
included in Chapters 9 and 10. To the best of my knowledge this is the first publicly published
cryptanalytical results for SHA and HAVAL.

8.4 CONCLUSION

This chapter generalises the approach used by Dobbertin in the cryptanalysis of MD4 and
MDS5 as discussed in Chapters 6 and 7. The attacks on MD4 and MD5 focus on reducing
the problem of finding a collision to solving a limited number of interrelated equations. This
may be viewed as a divide and conquer approach. The complexity of finding collisions are
reduced through two mechanisms. The first mechanism reduces the number of equations
to be solved and the second simplifies these equations to facilitate the establishment of a
solution. Detailed descriptions of these mechanisms may be found in [14], [17] and [57].
The application of this generalised technique to two other hash functions in the MD4 family,

SHA-1 and HAVAL, is presented in the next two chapters.

Electrical and Electronic Engineering 131

IVERSITEIT VAN PRETORIA
NIVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

==

u
<

[

CHAPTER 9: ANALYSIS OF THE SHA AND SHA-1 HASH
ALGORITHMS

9.1 INTRODUCTION

In this chapter the SHA and SHA-1 hash functions are analysed. First the SHA and SHA-1
hash functions are described along with the relevant notation used in this chapter. This is
followed by describing the algebraic structure of the message expansion algorithm used by
SHA. We then proceed to exploit this algebraic structure of the message expansion algorithm
by applying the generalised analysis framework presented in Chapter 8. We show that it is
possible to construct collisions for each of the individual rounds of the SHA hash function.
The source code that implements the attack is attached in Appendix F. The same techniques

are then applied to SHA-1.

9.2 INTRODUCTION TO SHA

SHA is an acronym for Secure Hash Algorithm. SHA and SHA-1 are dedicated hash func-
tions based on the iterative Damgérd-Merkle construction [22] [23]. Both of the round func-
tions utilised by these algorithms take a 512 bit input (or a multiple of 512) and produce a
160 bit hash value. SHA was first published as Federal Information Processing Standard 180
(FIPS 180). The secure hash algorithm is based on principles similar to those used in the
design of MD4 [10]. SHA-1 is a technical revision of SHA and was published as FIPS 180-1
[13]. It is believed that this revision makes SHA-1 more secure than SHA [13] [50] [59].
SHA and SHA-1 differ from MD4 with regard to the number of rounds used, the size of the
hash result and the definition of a single step. A further difference between SHA/SHA-1 and
MD4 is the use of a message expansion algorithm instead of re-using the message blocks
in different orders in each round. SHA-1 was designed to be both pre-image resistant and

collision resistant [13].

9.3 NOTATION

The following notation is used in this chapter.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(og;:«:

Chapter 9 Analysis of the SHA and SHA-1 Hash Algorithms
= Bitwise AND - = Bitwise NOT
= Bitwise OR @® = Bitwise XOR.

Let X <7 denote the left rotation of X by Z bit positions.

94 SHA

Five steps may be identified in the definition of SHA.

1. Message padding.

2. Initialise chaining variables.
3. Perform message expansion.
4. Apply compress function.

5. Update variables.

Step I ensures that the message is padded to a multiple of 512 bits. Steps 3 to 5 are repeated

for each 512 bit block until the entire padded message has been processed.

9.4.1 Message Padding

The purpose of padding is to produce a n - 512 bit message. The message is padded by
appending a 1 to the message, followed by m 0’s followed by a 64 bit integer. The 64 bit
integer is the binary representation of the length of the original message [. If [is less than
232 the first 32 bits of the final 64 bits are zero.

Electrical and Electronic Engineering 133

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&
W UNIVERSITEIT VAN PRETORIA
Qe

Chapter 9 Analysis of the SHA and SHA-1 Hash Algorithms

9.4.2 Initialise Chaining Variables

The five chaining variables are initialised to the following hexadecimal values.

Hy = 0x67452301
H, = O0xEFCDABS89
H, = 0x98BADCFE
Hy = 0x10325476
Hy = 0xC3D2E1FO0.

9.4.3 Message Expansion

The message is processed in 512 bit blocks. The padded message M is the concatenation of

n blocks of 512 bits. Let | denote concatenation, then:

Each message block M; is divided into 16 words Wy, Wy, Ws, ... ,Wi1s. Each word has a

length of 32 bits. The execution of the compress function involves 80 steps. The first 16 steps

are performed on Wy, Wi, Ws, ... -W;s. The remaining 64 steps are performed on message
words Wyg, W17, Wi, ... ,Ws9 which are obtained from the following message expansion
algorithm:

Wi=W, 30W, g ®W,_140 W;_is 9.1)

with ¢t = 16, 17,18, ...79.

9.4.4 Compress Function

The compress function of SHA is defined by the following procedure:

1. SetA=Hy, B=H,,C = Hy,D=H;and F = H,.

2. Fort=0t0 79 do

Electrical and Electronic Engineering 134

&
W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q¥ YU

NIBESITHI YA PRETORIA

Chapter 9 Analysis of the SHA and SHA-1 Hash Algorithms

(a) TEMP = A3 +ft(Ba C, D) +E+Wt+Kt
) E=D,D=C,C=B<% B=A A=TEMP

with the constant K, defined in hexadecimal as:

K; = 0x5a827999 (0<t<19)

K; = O0x6ED9EBALl (20 <t < 39)

K; = O0x8F1BBCDC (40 <t < 59)

K; = 0xCA62C1D6 (60 <t < 79)

and the round function f, defined as:

fe = (BAC)V (=B AD) (0<t<19)
fi = BeCoD (20 < ¢t < 39)
ft = (BAC)V(BAD)V(CAD) (40 <t<59)
fi = B&CaoD (60 < t < 79)

Figure 9.1 shows a graphical representation of a single step of the SHA and SHA-1 round
function.

L a [B [¢ T o [&]

S)

[A T B 1T ¢ T o [E]

Figure 9.1: Single Step in Round Function: SHA and SHA-1

Electrical and Electronic Engineering 135

P

W UNIVERSITEIT VAN PRETORIA
0 UMNIVERSITY OF PRETORIA
4

YUNIBESITHI YA PRETORIA

Chapter 9 Analysis of the SHA and SHA-1 Hash Algorithms

9.4.5 Update Chaining Variables

Upon completion of the compress function the chaining variables are updated as shown be-

low:
Hy = Hy+ A
H, = H +B
Hy, = Hy+C
Hy = H;+ D
Hy = H,+E

Once the n’th 512 bit block has been processed the resulting values of the chaining variables
serve as the hash result of the message.
9.5 SHA-1

SHA-1 is identical to SHA in all respects except for the message expansion algorithm.

9.5.1 Message Expansion

The message expansion algorithm used in SHA-1 is defined as the message expansion algo-
rithm defined by expression 9.1 with the addition of a left rotation by one bit position. The

message expansion algorithm as used in SHA-1 is defined by expression 9.2.

Wi=Wis W, s W14 @ W_16) <L (9.2)

This modification “corrects a technical flaw that made the standard less secure than had been
thought” [50].
9.6 ANALYSIS OF SHA AND SHA-1

In this chapter the basic elements encountered in the attacks on MD4 and MDS5 as formulated
by Dobbertin are applied to SHA and SHA-1. A direct application of the attacks formulated

Electrical and Electronic Engineering 136

-
W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A~ 4

YUNIBESITHI YA PRETORIA

Chapter 9 Analysis of the SHA and SHA-1 Hash Algorithms

by Dobbertin requires the establishment of a set of difference equations, followed by a solu-
tion of these equations (see Chapter 8). The use of message expansion algorithms in SHA
and SHA-1 instead of the permutation of message words in consecutive rounds prevents an
attacker from deriving sets of difference equations according to the principles laid down in
Chapter 8. Thus when dealing with message expansion algorithms the approach described in
Chapter 8 should be modified. This chapter describes these modifications. Specific attention
is given to the properties of the message expansion algorithms. It is shown that the modified
approach may be used to construct a collision for the first round (first twenty steps) of SHA.
Based on this attack, an attack on the first two rounds of SHA is proposed. Certain elements
(but not all) of the proposed attack are confirmed. The extent to which these attacks are

applicable to SHA-1 is considered.

9.7 SHA

The secure hash algorithm (SHA) is described in Section 9.4. In this section certain proper-
ties of the message expansion algorithm is considered. It is shown that these properties may
be exploited to construct sets of difference equations which are readily solved. A solution to
these difference equations results in the construction of collisions for the first round of SHA.
An attack which exploits the properties of the message expansion algorithm is then proposed
for the first two rounds of SHA.

9.7.1 Message Expansion Algorithm

The message expansion algorithm used in SHA is presented in Chapter 9. The algorithm
expands a 16 word input to 64 words. The expanded message is concatenated to the orig-
inal message to form an 80 word message block. Remember that the message expansion

algorithm is given by:
Wi=W, 30W, s@W,_ 1, © Wi_i6
where all message words, W), are 32 bit variables. It is observed that this expansion algo-

rithm is in effect 32 identical linear feedback shift registers which operate in parallel. This

observation may be represented graphically as shown in Figure 9.2.

Electrical and Electronic Engineering 137

-

Fud

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
4

YUNIBESITHI YA PRETORIA

Chapter 9 Analysis of the SHA and SHA-1 Hash Algorithms
'Lllllllllllllll}r“?
e S]
ZLlFlllfllllllllEH;
]
3Llllf|lllfl||lll:
<2 O— G-

2 [(TT T LTI I T I T TII Tk
o]

Figure 9.2: Message Expansion Algorithm: SHA

The connection polynomial, f(z), is given by:

flo) =" + 2B 4 2% 4 2% 4 1. (9.3)

It may be shown that f(x) is primitive. It is known that there exists

d(p™ - 1)

m

monic primitive polynomials of degree m in Zp|z] (¢(n) is the Euler function) [59]. For the
case in hand this corresponds to 2048 possible monic primitive polynomials in Z, [x]. The
reason for the specific choice of f(z) has not been disclosed, but at least two arguments in
favour of using f(z) have been found. The first argument deals with performance. The poly-
nomial f(z) has a low weight (5), and consequently requires fewer instructions to expand
the message. The second argument deals with the positioning of the non-zero coefficients
in the polynomial. The non-zero coefficients should be spread as evenly as possible over
the polynomial. This requirement ensures that each word is used in the expansion within a
small number of steps. This makes it more difficult for an attacker to hide or minimise the
effect of a specific word. There are 52 primitive polynomials of degree 16 with a weight of
5. It is found that the maximum number of consecutive coefficients which are equal to zero

varies between 5 and 10. There are only 16 primitive polynomials with a maximum number

Electrical and Electronic Engineering 138

&
dad

% UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q¥ YU

NIBESITHI YA PRETORIA

Chapter 9 Analysis of the SHA and SHA-1 Hash Algorithms

of consecutive zero coefficients equal to zero. They are:

filz) = 204+ 4 25 4+ 23 11 9.4

foz) = 2% 420427+ 241 (9.5)

i) = 2%+ 20427+ 2% +1 (9.6)

fa) = 2+ 20427424 +1 9.7)

fi(r) = 28 +2"0+2" 425 +1 (9.8)

fo() = 2+ 20+ +2%+1 (9.9)

fi(x) = 2 +22 + 2% 241 (9.10)

fa(z) = 2" +22 42"+ +1 (9.11)

fol) = 2 +2"2 +2°+25+1 9.12)

fio(@) = 2 + 2 428 22 1 (9.13)
fu(z) = 2 +2B 42942541 (9.14)
Jio(z) = 20428 42" 4284 (9.15)
fis(z) = 2%+ 2" 428 + 2% 4+ 1 (9.16)
fu@) = 2% +2% 4+ 2% 421 41 (9.17)
fis(x) = "+ 4 2%+ 2541 (9.18)
fis(x) = 20 4218 42104 44 1 (9.19)
(9.20)

Eight of these polynomials has two consecutive non-zero coefficients (fo(z), fs5(x), fe(z),
f(2), fs(x), fiu(x), fis(z) and fig(z)). The primitive polynomial used in the message
expansion algorithm of SHA (and SHA-1) is found among the remaining eight polynomials

(f10(33))-

It is observed that the message block of 512 bits is divided into 16 32-bit words and that each
round requires 20 steps. This differs from hash functions such as MD4 and MD5 where the
number of message words in a message block are equal to the number of steps in each round.

Before presenting a motivation for this design choice consider Proposition 1.

Proposition 1 If the message expansion algorithm defined for SHA is used, it is possible
10 construct two distinct messages which, after expansion, are identical in 15 consecutive

expanded words.

Electrical and Electronic Engineerin g 139

P

&

W UNIVERSITEIT VAN PRETORIA
0 UMNIVERSITY OF PRETORIA
4

YUNIBESITHI YA PRETORIA

Chapter 9 Analysis of the SHA and SHA-1 Hash Algorithms

Proof. Consider a single linear feedback shift register with a connection polynomial f(x)
of degree n which is monic and primitive in Z, [z]. It is known that all non-zero sequences
generated by such a linear feedback shift register have n — 1 consecutive zeros. In addition it
is known that any possible output sequence of such a linear feedback shift register is a cyclic
shift of every other possible output sequence of the same linear feedback shift register [60].
Thus there exists a non-zero sequence, a, generated by the linear feedback shift register with
feedback polynomial f(x) such that @ has n — 1 consecutive zeros starting at a specified

position in the sequence a.

Let f(z) = co + 1z + 222 . . . + ¢,z with coefficients from G'F(2). Then the companion
matrix of the polynomial f(x) is the n x n matrix, C, which has 1’s in the diagonal above the
main diagonal and n’th row entries Co, €1, Cy ... Cp—1 [61]. Then the ¢’th state of the linear

feedback shift register is given by:

a(t) = Cta(0)

with a(?) a 1 x n vector representing the state of the linear feedback shift register. The
elements of the vector a(0) represents the initial state of the shift register. Let the sequence
a be the concatenation (denoted by |) of the n’th element of the vector a(t) for all values of
t > 0. Thus:

a = ap(1)|an(2)|an(3)]... |an(t).

Consider two sequences a! and a2 defined as:

¢ = d(1)

a® = 41

The states, a'(t) and a?(t), of the linear feedback shift registers which generates the se-

quences a'! and a? are given by:

a'(t) = C''(0)
a*(t) = C'a?(0).

The summation over GF(2) of the states of the linear feedback shift registers (and implicitly

Electrical and Electronic Engineering 140

&
dad

% UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q¥ YU

NIBESITHI YA PRETORIA

Chapter 9 Analysis of the SHA and SHA-1 Hash Algorithms

the summation of the sequences a! and a?) is given by:
a'(t) @ ad®(t) = Cla'(0)® C'a?(0)
= C'(a'(0) ® a*(0)).

If
a'(0) ® a*(0) = a(0) (9.21)
then

d(t)@d’(t) = C4a(0))

which implies that:

a=a'®d.

The message expansion algorithm used by SHA consists of 32 identical linear feedback
shift registers applied in parallel. Let the initial conditions a'(0) and a?(0) for all 32 linear
feedback shift registers represent two distinct messages. All elements in a' and a2 are taken
as the result of the message expansion algorithm. Find values for a'(0) and a?(0) such that
expression (9.21) is satisfied for all 32 registers. Then, upon expansion, the message words
will be identical in n — 1 consecutive bit positions. The primitive polynomial used by the
linear feedback shift register in the message expansion algorithm in SHA has degree 16. It
is therefore possible to construct two messages which upon expansion will be identical in 15

consecutive words. Thus the proposition is shown to be true. W

With Proposition 1 in hand the use of 20 steps in a round rather than 16 becomes obvious.
If the number of steps in each round is set to 16 instead of 20 and the number of rounds are
retained it would be possible to construct two distinct messages which, in one of the four
rounds, would differ in only one position, thus effectively stripping a round from the hash
function. By defining 20 steps in each round this attack is prevented. However if the number
of steps are limited to 16, and the number of rounds is extended from four to five, the total

number of steps required by the hash function remain at 80.

Thus it appears that the message expansion algorithm was chosen with specific aims, and

that the number of steps in each round was chosen to complement the message expansion

Electrical and Electronic Engineering 141

A

% UMIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
=P VU A

NIBESITHI YA PRETORI

Chapter 9 Analysis of the SHA and SHA-1 Hash Algorithms

algorithm. One property, and a potential weakness, of the message expansion algorithm is
the fact that if two messages differ only in a single message word, and if that difference is
limited to a single bit position, the words obtained from the message expansion algorithm
will, at most, differ in the same bit position. Even if the differences occur in more than
one message word, as long as these differences occur in the same bit position, the expanded
words would at most differ in the same bit positions. This property is considered a possible

salient point and the extent to which this may be exploited is considered in the next section.

9.7.2 Difference Equations

In this section specific attention is given to the exploitation of the message expansion algo-

rithm in order to obtain sets of differential equations.

It is possible to obtain a set of difference equations over all 80 steps of the compress function
of SHA. As remarked in Chapter 8 this is impractical due to the large number of interrelated
equations which have to be solved. An attempt should therefore be made to reduce the
number of difference equations. It is observed that by direct application of Proposition 1 the
number of difference equations may be reduced from 80 to 65. This reduction is obtainable
by requiring that the last 15 words resulting from the message expansion algorithm should
be identical. Although this reduces the effort required to find a collision, the effort required

to solve this set of equations is unknown.

Before proceeding with the analysis of SHA and the construction of difference equations it

is convenient to state the following definition.

Definition 3 A difference pattern is the sequence generated by M; — M, for all i. M; and M;
represents the first message and second message words at a specific step i of the dedicated

hash function.

The difference operator may be either the difference mod 2 or the difference mod 2%, In
order to illustrate the derivation of a set of difference equations consider only the first round.

It is readily observed that for six consecutive steps, the following difference pattern (mod

Electrical and Electronic Engineering 142

TEIT YAN PRETORIA
E ITY OF PRETORIA
BESITHI YA PRETORIA

Chapter 9 Analysis of the SHA and SHA-] Hash Algorithms

2%%) allows the derivation of a set of difference equations which are easily solved:

M, - M =
My — My, = —1
My, — My, = —1
Miys — Mys = 0
Miys — My, = 0
Miys - Mys = —1

The difference mod 232 is chosen to be either 1,0 or -1 since these differences may be writ-
ten in terms of the rotation invariant integers 0 and -1. By limiting all differences to the LSB
a difference pattern mod 2 may be obtained. The difference pattern mod 2 is given by:

M; ®© M, = 1
Mivy @ My, = 1
Miys & My, = 1
Mz & My = 0
Miyy ® M, = 0
Mis & My, = 1

The set of difference equations corresponding to this difference pattern is given by:

A1 = Ay = M, - M, (9.22)
0 = AT - AP+ My, - M, (9.23)
0 = Mis— M_,+ f(Biya, Ciya, Diys) — f(Biya, Ciya, Diy2) (9.24)
0 = [f(Biys,Ciys, Dijy) — f(Bivs, Ciys, D ;3) (9.25)
0 = f(Biy4,Cipy, Dii4) ~ f(Biya, Cipa, Diy4) (9.26)
0 = Mys— M5+ Eiis— Eiys (9.27)

The Boolean mapping f() is the mapping defined for the first round of SHA. The variables
are updated as described in Section 9.4. This set of expressions may be solved by setting the
chaining variables ,, D3, B3 and B, to appropriate values.

There exists many difference patterns for the first round which yields sets of solvable differ-
ence equations. It now remains to determine if the difference pattern leading to this set of

equations can be found in the first round. It is now appropriate to state Corollary 2.

Electrical and Electronic Engineering 143

&
% UNIVERSITEIT VAN PRET
0 UNIVERSITY OF PRET
o« U

NIBESITHI YA PRET

cog
-]

Chapter 9 Analysis of the SHA and SHA-1 Hash Algorithms

Corollary 2 Each sequence, a, generated by a linear feedback shift register with feedback
polynomial f(x) represents a difference pattern which may be generated by two distinct

sequences, a' and a?.

Proof. It is shown in the proof of Proposition 1 that:

if

a'(0) ® a*(0) = a(0). (9.28)

This implies that if the k’th element of the sequence a;, = 0, a} = a2. Conversely it implies
that if g = 1, aj # ai. Thus the sequence a represents the difference between the two

sequences a' and a2 if condition (9.28) holds. W

As before, all differences are limited to the LSB of the message words. This causes all dif-
ferences in the expanded message to be generated by a single linear feedback shift register.
An attacker may now search for the desired difference pattern mod 2. Once the difference
pattern mod 2 is found it is expanded to the difference pattern mod 2°2 through the appli-
cation of Corollary 2. The attacker is free to choose values for a!(0) and a2(0) as long as
expression (9.28) holds. A difference pattern mod 2% may be established by remarking
that for a;, & af = 1, either aj = 1 and a? = 0 or a, = 0 and a2 = 1. This implies that if
a; @ai = 1, either aj —a? = —1 ora} — a2 = 1. According to Corollary 2 the attacker may

choose whether a, — a; = loral — a), = —1fork < n.

Thus, the attacker searches for an initial value which, in combination with the expanded
message word, would allow the establishment of the set of difference equations defined by
equations (9.22) to (9.27) as the only set of difference equations for the first round. If such
a pattern is found, it is expanded to the desired difference pattern mod 232 by applying
Corollary 2. It is found that there exists only one difference pattern which allows equations

(9.22) to (9.27) to be the only set of difference equations in the first round. The difference

Electrical and Electronic Engineering 144

UNIVERSITY OF PRET
YUNIBESITHI YA PRET

P
W UNIVERSITEIT VAN PRET
h 4

ocog
e

Chapter 9 Analysis of the SHA and SHA-1 Hash Algorithms

pattern mod?2 is given by:

MueM, = 1 (9.29)
My@® M, = 1 (9.30)
My @& M = 1 (9.31)
Myu®My = 0 (9.32)
Mis@® My = 0 (9.33)
Mg ® My = 1. (9.34)

It is observed that M;; to M5 forms part of the initial value and according to Corollary 2 any
combination of the LSB’s of M;; to M5 may be chosen in an attempt to obtain the desired
difference pattern mod 232 for message words M, to Ms. There exists a combination

which allows the attacker to find the required difference mod 232,

The difference pattern defined by equation (9.29) to (9.33) results in the set of difference

equations shown below:

Ay — Ay = My — My (9.35)
0 = AF® - A0 + My, — My, (9.36)
0 = My3— Mys+ f(Bys,Cis, D1s) — f(Bis, Ci3, D13) (9.37)
0 = f(Bus, Cia, Dia) — f(Bus, Cua, Dia) (9.38)
0 = f(Bis,Cs, Dis) — f(Bis, Cis, Dis) (9.39)
0 = My— M+ Eig— Eie. (9.40)

Updating of chaining variables are performed as specified in Section 9.4. This set of equa-

tions implies that:

Ay —Ap = 1.

Due to the effect of rotation, the values for A, and A, are chosen to be rotation invariant.

Electrical and Electronic Engineering 145

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q¥ YU

NIBESITHI YA PRETORIA

Chapter 9 Analysis of the SHA and SHA-1 Hash Algorithms

Thus in hexadecimal notation:

Ay = 0x00000000 (9.41)
Ay, = OXFFFFFFFF (9.42)
(9.43)

These choices for A5 and flm ensures that equation (9.36) is satisfied. Equation (9.37) is
satisfied if:

f(Bw, Cis, D13) - f(Bl37 Cis, D13) =—1

Due to the choices for A5 and 12112 this condition is satisfied if:

D13 - Cl3 = -1

In order to solve equation (9.38),

f(Bus, Ci4, D14) — f(Bua, C14, D14) = 0.

By setting By, = 0, equation (9.38) is satisfied. Likewise equation (9.39) is satisfied if
Bis = —1. Equation (9.40) is automatically satisfied due to the choices initially made for
A12 and Alg.

It is noted that this is not the only technique which results in a solution for the set of difference
equations given by (9.35) to (9.40). Other more elaborate techniques exist, but are slower

and do not guarantee that a solution is obtained.

Given appropriate choices for the chaining variables in question, it is possible to reconstruct
the message. For the initial values specified for SHA, the following messages result in a

collision for the first round of the compress function of SHA.

Electrical and Electronic Engineering 146

UNIVERSITY OF PRETORIA

P
W UNIVERSITEIT VAN PRETORIA
& YUNIBESITHI YA PRETORIA

Chapter 9 Analysis of the SHA and SHA-1 Hash Algorithms
My = 0x20760CF1 Mg = 0XFA4AD6572
M, = 0x0C1F1475 My = 0x5F059EA3
Ms; = 0x56139C91 My = 0x050A6650
M; = 0xA904D458 M;, = 0x5279A115
M, = 0x07F3FF32 M, = 0xBB4E5B88
My = 0x69B971AD M3 = 0x724D80BA
Mg = 0x13E8DD88 M4 = 0x438ECCBO
M; = 0x40CA61AC M5 = OXA1EDDF3D

The alternative message is identical to the above message except for:

M,;, = 0x5279A114
M, = O0xBB4E5B89
M;; = 0x724D80BB.

The common message digest for the first round of SHA is given by:

Common Digest = 0x5C2E4C26 0x494479D5 0x828CE366 0xC45C9D77 0xE437389D.

An implementation of this attack on the first round of SHA is attached as Appendix F. At-
tacks similar to that described above may be readily applied to rounds two, three and four if

these rounds are considered individually.

9.7.3 Extended Attack

The attack presented above may be extended to other difference patterns. This allows the

formulation of the following attack on the first round of SHA.

First a number of relatively short difference patterns which result in inner collisions are
obtained. It should then be determined if any of these short difference patterns occur in the

first round of SHA. If none of these patterns are found in the first round, a search should

Electrical and Electronic Engineering 147

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot
W UNIVERSITEIT VAN PRETORIA
Qe

Chapter 9 Analysis of the SHA and SHA-1 Hash Algorithms

be conducted for concatenations of these difference patterns. If a concatenation of these
difference patterns are found, it is known that the resulting set of difference equations may
be solved and a high probability exist that a message may be reconstructed which would
result in a collision for the first round. Note that the construction of a message which results
in a collision is not assured. This is due to the fact that even though the difference pattern
results in a set of solvable difference equations, the specific choices made to solve these

equations may contradict the bounds incurred by the message expansion algorithm.

9.7.4 Proposed Attack

It may be possible to extend the attack described in the previous section to the second and
possibly third and fourth rounds. As before, short difference patterns which results in in-
ner collisions should be obtained for all the rounds in question. The output of the message
expansion algorithm should then be searched for the concatenation of a number of these
patterns. If a difference pattern is found which is composed from the concatenation of the
shorter difference pattern, it may be possible to find a solution to the set of difference equa-
tions. If a solution is obtained, it should be verified if a message may be reconstructed which
would result in a collision. As before the specific choices made to solve these equations may

contradict the bounds incurred by the message expansion algorithm.

An application of this proposed attack showed that it is possible to find difference patterns
which are solvable. Unfortunately it was found that the choices made for a number of the
chaining variables which allow solutions to be found for the short difference equations leaves
a limited number of degrees of freedom. This limits the attackers ability to reconstruct a mes-
sage which results in a collision for more than one round. If more sophisticated techniques
are found to solve the sets of difference equations, fewer explicit choices would have to be
made and it may become possible to find solutions to the sets of difference equations which

allows the construction of messages which result in collisions for two or more rounds.

9.8 SHA-1

As remarked in Chapter 9, the only difference between SHA and SHA-1 lies in the message
expansion algorithm. In this section the message expansion algorithm used in SHA-1 is

considered and a number of its characteristics are discussed.

Electrical and Electronic Engineering 148

A=
% UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Chapter 9 Analysis of the SHA and SHA-1 Hash Algorithms

9.8.1 Message Expansion Algorithm

The message expansion algorithm used in SHA-1 is defined by:

Wi=W, s0W, s ®@W,_14® Wt—16)<<<1~ (9.44)

It is noted that the only difference between the message expansion algorithms used in SHA
and SHA-1 is the addition of a rotation by one bit position. A graphic representation of the
message expansion algorithm used in SHA-1 is shown in Figure 9.3

r '

[

(TITIIT T I T
| i
N

LILTTTTT
N

[LT TT T
0 L/ W“

Figure 9.3: Message Expansion Algorithm: SHA-1

The rotation operator introduces diffusion in the message expansion algorithm. A difference
introduced in a single bit position is no longer limited to the same bit position in the expanded
message (as is the case for SHA), but is spread over a number of bit positions. As the original
message is expanded a larger number of bit positions are affected by changing a single bit
in the message word. Thus the addition of diffusion to the message expansion algorithm is

believed to increase the security offered by SHA-1.

The use of the rotation operator makes it difficult to specify a difference pattern which is
casily related to an initial message. Thus the analysis of SHA presented in Section 9.7 is
not directly applicable to SHA-1. It is believed that the addition of the rotation operator to
the message expansion algorithm makes it considerably more difficult to obtain and exploit
difference equations. At present no analysis of the message expansion algorithm used by

SHA-1 has been published in the open literature.

Electrical and Electronic Engineering 149

e

W UNIVERSITEIT VAN PRETORIA
@, UNIVERSITY OF PRETORIA
Qe U ORIA

NIBESITHI YA PRET

Chapter 9 Analysis of the SHA and SHA-1 Hash Algorithms

9.9 CONCLUSION

The analysis presented in this chapter leads to the conclusion that SHA-1 is more secure
than the original SHA. The additional security of SHA-1 is derived solely from the modified
message expansion algorithm. It was shown that it is possible to exploit the characteristics
of the message algorithm defined for SHA by constructing a collision for the first round of
SHA. In addition an attack on more than one round of SHA is proposed. It may be argued
that the ease with which the message expansion algorithm used in SHA is manipulated may
have served as one of the reasons for the modification to the message expansion algorithm
used in SHA-1.

Additional factors which complicates the analysis of SHA and SHA-1 have been found.
Specifically the method used for updating the chaining variables and the use of a rotation
over 30 bits for chaining variables C;, D; and E; contributes to the difficulty of solving sets
of difference equations. The method used for updating the chaining variables ensures that a
difference introduced in a message propagates to each of the chaining variables. This is not
the case for MD4 and MD5 where a difference may be manipulated to appear only in certain
selected chaining variables. An additional difficulty is the use of rotation over chaining
variables C;, D; and E;. A single rotation is introduced when C; is updated. This rotated
value is re-used in chaining variables D; and E;. If a set of difference equations is obtained,
the use of the rotation limits the number of choices which could be made for the chaining
variables involved. This in turn reduces the number of solutions which are easily obtained
for the difference equations. It is these factors which, at present, prevent the proposed attack
on the first two rounds of SHA to be successful. If improved solution techniques becomes
available, it may become possible to execute the proposed attack and be able to construct

messages which result in collisions for the first two rounds of SHA.

Electrical and Electronic Engineering 150

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot
W UNIVERSITEIT VAN PRETORIA
Qe

CHAPTER 10: ANALYSIS OF THE HAVAL HASH ALGORITHM

10.1 INTRODUCTION

In this chapter the HAVAL hash function is analysed within the generalised framework pre-
sented in Chapter 8. First we describe the HAVAL hash function and the relevant notation
needed in this chapter. We then show how the generalised attack formulated in Chapter 8
can be applied to the last two rounds of three round HAVAL to establish a collision. This is
the first published cryptanalytical result for the HAVAL hash function. The source code that
implements the attack is attached in Appendix G.

10.2 INTRODUCTION TO HAVAL

HAVAL is an iterated hash function based on the Dadmgard-Merkle scheme. The HAVAL
construction is closely related to the MD4 family of hash functions. HAVAL was designed by
Zheng, Pieprzyk and Seberry in 1994 [62]. The HAVAL hash function specification includes
15 variations [62]. These variations are based on the number of iterations (or rounds) used
by the round function (3, 4 or 5) as well as the number bits used as output (128, 160, 192,
224 or 256). The round function of HAVAL takes message blocks in multiples of 1024 bits
and produces an output of 256 bits which can then be reduced to 128, 160, 192, 224 or 256
bits, depending on the security requirements. In this dissertation we focus on three round
HAVAL for all possible output lengths. This is the first time any cryptographic analysis of
HAVAL has been made public. The analysis presented in this chapter may also be applied to
4 and 5 round HAVAL.

10.3 NOTATION

Before proceeding with a description of HAVAL and the cryptanalysis of HAVAL it is ap-

propriate to introduce the notation to be used in this chapter. The following operators are

A=
W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Chapter 10 Analysis of the HAVAL Hash Algorithm

used in this chapter:

V = Bitwise OR.
@ = Bitwise Exclusive OR (XOR).

X = Bitwise Complement of X
X>Y = Bitwise rotation to the right of X by Y positions.
N = Bitwise AND

In this chapter the bitwise AND between two variables are often indicated by zz rather than
x1 A z, for brevity. The notation of ordi() fori = 1,2, 3, 4, 5 indicates the word processing
order for round i of the round function. The constants used by the HAVAL hash function are
indicated by K;; with j = 2,3,4,5 and 5 € {32,33,34, ... , 160}. There are a total of 128
additive constants used in the round functions and a further 8 constants that define the default
initial values for HAVAL. The constants can be found in [62]. The constants are defined as
the first 4352 bits of 7. The 136 constants are not explicitly defined in this Chapter since

they play no role in the analyses presented in this Chapter.

104 HAVAL

In this section a short description of the HAVAL hash function is presented. For a more

complete description refer to [62].

Eight steps may be identified in the definition of HAVAL.

Electrical and Electronic Engineering 152

A=
W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Chapter 10 Analysis of the HAVAL Hash Algorithm

Algorithm 10.1 HAVAL hash algorithm

1. Message padding. Pad

Message

2. Initialise chaining variables. l

Initialise
Variables

3. Order words for each round in the

round function. l
Order
Words

4. Apply compress function. I

. Apply
5. Update variables. Round
Function
6. Has the entire message been processed l
Update
? Variables

(a) No: Repeat from step 3.

(b) Yes: Continue.

7. Select appropriate output bits.

Trim

8. Output hash value. Output

HAVAL Hash Value Computed

Figure 10.1: HAVAL Block Diagram

Step 1 ensures that the message is padded to a multiple of 1024 bits. Steps 3 to 5 are repeated
for each 1024-bit block until the entire padded message has been processed. Step seven is
used to construct the appropriate hash length (128, 160, 192, 224 or 256). Step seven is

performed once the final message block is processed.

10.4.1 Message Padding

The round function of HAVAL requires a 1024-bit message block as input. Consequently
the message to be hashed has to be a multiple of 1024-bits. This is accomplished by using a
padding algorithm. Message padding is applied even if the unpadded message is a multiple
of 1024 bits in length.

Electrical and Electronic Engineering 153

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Chapter 10 Analysis of the HAVAL Hash Algorithm

The message is padded by appending a 1 to the message, followed by m 0’s (m < 0) until
the length of padded message equals 944 mod 1024. Once the message is padded to this
length a three bit VERSION field, followed by a 3-bit PASS field and a 10-bit FPTFIELD is
appended to the padded message. Once these fields are appended a 64-bit MSGLEN field is
appended to form a message with a length that is a multiple of 1024. The fields mentioned

above has the following meaning:

VERSION: This is a 3-bit field representing the version of HAVAL in use. The current

version is 1.

PASS: This is a 3-bit field defining the number of rounds or iterations used by the round
function of HAVAL. Valid values are 3, 4 or 5.

FPTFIELD: This is 10-bit field that specifies the length of the hash result. Valid values are
128, 160, 192, 224 or 256.

MSGLEN: This is a 64-bit field representing the length of the original message. The 64-bit
integer is the binary representation of the length of the original message /. If / is less
than 232 the first 32 bits of the final 64 bits are zero.

10.4.2 Initialise Chaining Variables

The eight chaining variables are initialised to the following hexadecimal values.

Ay = OxEC4E6C89 Es = 0x03707344
By = 0x082EFA98 Fy, = 0x13198A2E
Cy = 0x299F31D0 Gy = 0x85A308D3
Dy = 0xA4093822 Hy = 0x243F6A88.

10.4.3 Word Processing Order

The 1024-bit message block is divided into 32 words of 32 bits each. These words are
processed in a different order for each round or iteration of the round function. The word

Electrical and Electronic Engineering 154

UNIVERSITY OF PRETORIA

b ot
W UNIVERSITEIT VAN PRETORIA
Qe

YUNIBESITHI YA PRETORIA

Chapter 10

Analysis of the HAVAL Hash Algorithm

processing order for HAVAL is shown in Table 10.1.

oldl) | O 1 2 3 4 5
16 17 18 19 20 21

6 7 8 9 10 11 12 13 14 15
22 .23 24 25 26 27 28 29 30 3l

ord2) | 5 14 26 18 11 28
30 3 21 9 17 24

7 16 0 23 20 22 1 10 4 8
29 6 19 12 15 13 2 25 31 27

ord3) |19 9 4 20 28 17
31 15 7 3 1

8§ 22 29 14 25 12 24 30 16 26
18 27 13 6 21 10 23 11 5 2

ord4() |24 4 0 14
22 11 31 21 8 27

28 23 26 6 30 20 18 25 19
12 9 1 29 5 15 17 10 16 13

ord50) |27 3 21 26 17 11
5 9 14 30 18 6

20 29 19 0 12 7 13 8 31 10
28024 2 23 16 22 4 1 25 15

Table 10.1: HAVAL Word Processing Order

10.4.4 Compress Function

The compress or round function is discussed in this section. Each round in the compress

function utilise a different boolean function and a different word order. Each boolean func-

tion takes seven bits as input and produces a single bit as output. The boolean functions

are expanded to form boolean mappings by operating bitwise on 32-bit words. The boolean
mappings used in HAVAL are defined by equations (10.1) to (10.5).

F1(B;,C;, D;, E;, F;,G;, H;) =
F2(B;,Ci, Dy, E;, F;, Gy, Hy) =

F3(B;,Ci, Dy, B, F;, G, Hy) =
FA(B;,C;, D, E;, F,,G;, H;) =

G;D; @ F,C;® E;B; ® HG, ® H,;. (10.1)
G FE;® C;D;F, @ G,F,® G;D; ® F;B; ®
CE;® C;D; ® H,F;, ® H,. (10.2)

G E, & G,D; @ F,C; ® E;B; ® E;H; ® H;(10.3)
G:FE; ® F;D;C; ® E;D;B, ® G;:D; ® F;B; ®
E,D;® EC;® E;B;, ® D,C;® D;B; ®

H,D; @ H;. (10.4)

F5(B;, Cy, Dy, Ei, Fy, Gy, Hy) = GiD; @ F,C; ® E;B; ® H,G,F;E; ® HC; ®
H;. (10.5)
155

Electrical and Electronic Engineering

A=
W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Chapter 10 Analysis of the HAVAL Hash Algorithm

Round 1

The first round of the HAVAL hash function is repeating the following steps for 0 < 7 < 31.

Flo¢3.(B;,Cy, Dy, E;, F;, G, H;) if PASS=3
P = Flo¢4,(B;,C;, D;, E;, F;, Gy, H;) if PASS=4
Flo¢s5.1(B;,Cs, Dy, E;, F, G, H;) if PASS=5
2)R = PP+ AP + W
3)Aitn = Bi, Biy,1=C;, Ciyy=D;, Dy =FE,;.
Eiww = F, Fin=G; Gy =H;, H, =R

Note that the permutation defined by ¢, ,, j € {3, 4, 5} is performed before the function F'1

is executed. The permutations are defined in Table 10.2.

Permutations

P31
$3,2
$3,3
®a,1
P2
Pa,3
Pa4
¢5,1
P52
P53
P54
¢5,5

Table 10.2: Permutations (Note “|” indicates “replace by”)

QO w OO0 U Qwilaa o T+« o
m T QQIZm ™ Q™M Q mij« U
@ MU T IO ® I Um T A« o
T Oom AT T QAT 0 W+« o
T OO wWOOOo IO ®w O« =

w)
MmO QU | -mwmiam|j« Q

T AQTwOowon e Y Qll-w
Q

0
an

Electrical and Electronic Engineering 156

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&
W UNIVERSITEIT VAN PRETORIA
A 4

Chapter 10 Analysis of the HAVAL Hash Algorithm

Round 2

The second round of the HAVAL hash function is repeating the following steps for 32 < i <
63.

F2o0 ¢35(B;,C;, D;, E;, F;, G;, H;) if PASS=3
HP = F2o0 ¢45(B;,Ci, Dy, E; F;, Gy, H;) if PASS=4
F2o0 ¢54(B;,Ci, Dy, E;, F;, Gy, H;) if PASS=5
2)R = PPT+ AP + Wordas) + Koy
3)Agq1 = B, Biy1=C;, Ciyy=D;, Diy=E,.
Eipw = F, Fian=G), Ggyi=H, Hi =R

Note that the permutation defined by ¢; ., j € {3, 4, 5} is performed before the function F'2

is executed. The permutations are defined in Table 10.2.

Round 3

The third round of the HAVAL hash function is repeating the following steps for 64 < 7 < 95.

F3o0¢33(B;,Ci, Dy, E;, F;, Gy, H;) if PASS=3

)P = { F30¢y3(B;,Cs, D;, Ei, Fy, Gy, Hy) if PASS=4

F3o ¢s3(B;,Ci, D;, E;, F;, G, H;) if PASS=5
2)R = PP" 4+ A% 4 Woas) + Ky
3)A = B, B=C, C=D, D=E.
E = F, F=G, G=H, H=R

Note that the permutation defined by ¢, 3, j € {3,4, 5} is performed before the function F'3

is executed. The permutations are defined in Table 10.2.

Electrical and Electronic Engineering 157

A=
W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Chapter 10 Analysis of the HAVAL Hash Algorithm

Round 4

The fourth round of the HAVAL hash function is repeating the following steps for 96 < i <
127.
Fdo ¢,4(B;,C;, D;, E;, F;, G;, H;) if PASS=4
- { F40 ¢54(B;, Ci, Di, Ei, Fy, Gy, Hy) if PASS=5
2)R = P>»T4 4>y Wordaiy + Kai.
3)A = B, B=C, C=D, D=E.
EF = F, F=G, G=H, H=R.

Note that the permutation defined by ¢; 4, j € {4,5} is performed before the function F'4 is

executed. The permutations are defined in Table 10.2.

Round §

The 01 round of the HAVAL hash function is repeating the following steps for 128 < i <
159.

np = { F50¢55(B;,Ci, Dy, E;, F;, Gi, H;) if PASS=5
DR = P74 pg>U + Worasisy + Ko
3)A = B, B=C, C=D, D=E.

E = F, F=G, G=H, H=R.

Note that the permutation defined by ¢s 5 is performed before the function F'5 is executed.

The permutations are defined in Table 10.2.

A single step in a round of the round function is graphically represented as shown in Figure
10.2.

Electrical and Electronic Engineering 158

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot

&

W UNIVERSITEIT VAN PRETORIA
Qe

Chapter 10 Analysis of the HAVAL Hash Algorithm

//

A BCDEFGH

Figure 10.2: Single Step in HAVAL Hash Function

10.4.5 Tailoring the output

HAVAL can be used to produce a hash length of 128, 160, 192, 224 or 256 bits, depending
on the security requirement. In this dissertation only the case where the output is 256-bits
(maximum security) is considered. For a detailed description of the procedure used to select
an output of less than 256 bits refer to [62]. Note that a collision for the 256-bit output

implies a collision for all subsets of the output.

10.5 ANALYSIS OF HAVAL

In this section the principles derived in Chapter 8 are applied to HAVAL. In order to demon-
strate the applicability of the attack it is shown that the last two rounds of three round HAVAL
is not collision resistant. The last two rounds of three round HAVAL are described by steps
32 to 95. The equations describing the second round of three round HAVAL is described by

Electrical and Electronic Engineering 159

W UNIVERSITEIT VAN PRETORIA
0 UNIVEI_!?IT\' OF PRETORIA
Qo YUNIBESITHI YA PRETORIA
Chapter 10 Analysis of the HAVAL Hash Algorithm

equation (10.6) for i € {32,33,34,...63}.

Hiyn = (F2o0¢32(B;, C;, Dy, E;, Fy, Gy, Hy)) T + AP + Worangiy + Koy
Aiviv = Bi, By =C;, Cipy=D;, Dy = E;
Eipw = F, Fiyw=G;, Gy = H,. (10.6)

The equations describing the last round of three round HAVAL is described by equation
(10.7) for ¢ € {64,65,66,...95}.

Hiyy = (F3o0¢33(B;,Ci, D, E;, F;, G, Hi))>>>7 + Ai>>>n + Worasy + Ks;.
Ai+1 = Bz’7 Bi+1 = Ci, Ci+1 = Dia Di+1 = F;
Eiwvn = F, Fu =Gy, Gy = H,. (10.7)

10.5.1 Difference Equations

In order to establish a collision for the last two rounds of three round HAVAL an inner
collision has to be established as described in Chapter 8. It is possible to derive a set of
difference equations that allows a collision for the full 256-bit output of the last two round of
three round HAVAL. One approach which results in an inner collision for the last two rounds
of HAVAL is described below.

Electrical and Electronic Engineering 160

Chapter 10

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot
W UNIVERSITEIT VAN PRETORIA
Qe

Analysis of the HAVAL Hash Algorithm

Consider steps 56 to 64 of the HAVAL as represented by equations (10.8) to (10.16).

(£'2 0 ¢3,2(Bss, Cse, Dse, Ese, Fsg, Gs6, Hs)) ™" + A2 + Worazss) + Ko,56.
Bss, Bsr =Css, Csy = Dsg, Ds; = Ese

Fss, Fsr = Gss, Gsr = Hsg. (10.8)
(F2 0 ¢32(Bs1, Cs7, Dst, Esr, For, Gsz, Hs7))™ + AZM + Woransry + Kot
Bs7, Bsg = Csy, Csg = Dy, Dsg = Esy

Fs7, Fss = Gs7, Gsg = Hyy. (10.9)
(£72 0 ¢32(Bss, Css, Dss, Ess, Fss, Gss, Hss))” ™ + AZg " + Worangss) + Ko s
Bsg, Bsg = Css, Cs9 = Dsg, Dsg = Fig

Frg, Fs9 = Gsg, Gsg = Hsg. (10.10)
(£72 0 ¢39(Bsg, Cse, Dsg, Esg, Fsg, Gsg, Hs9))> " + A + Woranise) + Ko 0.
Bsy, Beo = Csg, Ceo = Dsg, Dgo = Exg

Fsg, Fgo = Gs9, Geo = Hsy. (10.11)
(F2 0 ¢32(Beo, Cs0, Deo, Eso, Feo, Geo, Hﬁo))»7 + Ag>0>11 + Wordoeoy + Kz,60-
Beo, Bs1 = Ceo, Ce1 = Dy, De1 = Egp

Feo, Fe1 = Geo, Ge1 = Hgo. (10.12)
(F2 0 ¢32(Bg1, Ce1, Der, Fer, Fe1, Ger, H61))>>>7 =+ AE?“ + Wordaoe1) + Kag1-
Bsi, Bez = Cs1, Cez = De1, Degz = Eg1

Fe1, Fg» =Ge1, Gea = Hg,. (10.13)
(F2 0 ¢35(Bez, Co2, Doz, Ea, Foa, Gz, Hep)) > + Agyt + Woraae2)y + Ka 62
Bez, Bes = Cp2, Cez = D2, Degs = Egy

Feo, Foz = Goa, Gez = Hg. (10.14)
(F2 0 ¢39(Bgs, Ces, De3, Eea, Fes, Gea, Hgz)) > + A + Woraa(e3) + Ko,63-
Bs3, By = Ce3, Ces = De3, Des = Fg3

Fe3, Foa = Ges, Ges = Hgs. (10.15)
(F3 0 ¢33(Bgs, Coa, Dea, Ega, Foa, Goa, Hoa)) ™7 + A + Worazea) + K361
Bss, Bz = Csa, Ces = Des, Des = Figy

Feu, Fos = Goa, Ges = Hgs. (10.16)

Note that ord2(56) and ord3(64) both select message word 19 (W;4). Consider two mes-
sages, M and M that differ only in message word 19. It is then possible to derive a set of

Electrical and Electronic Engineering 161

Chapter 10

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot

&

W UNIVERSITEIT VAN PRETORIA
Qe

Analysis of the HAVAL Hash Algorithm

difference equations using the principles stated in Chapter 8. In the notation of Chapter 8 we

show that a message can be constructed such that:

3 (T, M) = fgg (T, M).

where T’ represents the chaining variables Asg, Bsg, Csg, Dsg, Fs6, Fyg, G and Hsg. Once

the inner collision is established it is shown that:

fos(IV, M) = f3s(IV, M).

for an arbitrarily chosen I'V'.

The required inner collision can be established by solving the following set of difference

equations

Hy; — Hy
Hyg — Hsg
Hyo — Hisy
Hgo — Heo

(F2 0 ¢3,2(Bsg, Cse, Dss, Ese, Fis, Gse, Hsg))7 + A + Wordagse) + Ka56 —
((F2 o0 ¢32(Bss, Css, Dss, Ess, Fig, Gse, Hse))>" + AZM +
Woras(se) + Ka,s6) (10.17)
(F2 0 ¢3,2(Bs7, Cs7, Dsy, Es, Fyr, Gz, Hsz)) 7 + A" + Woraz(sry + Kogr —
(F2o ¢3,2(Bs7, Cs7, Dsy, Esy, Fsz, Gy, Hy)>T™ + ;1??“ +
Word2(57) + Ko 57) (10.18)
(F2 0 ¢3,2(Bss, Css, Dss, Ess, Frs, Gss, Hsg))™ " + A3 " + Woraz(ss) + Koss —
((F2 0 ¢3(Bss, Css, Dss, Esg, Fys, Gss, Hy))>" + AZM +
Word2(58) + K 58) (10.19)
(F2 0 ¢39(Bsg, Csg, Dsg, Esg, Fsg, Gsg, Hso)) > + A + Wordazes9) + Koo —
((F2 o ¢3,2(Bsg, Cs, Dsg, Esg, Frg, G, Hyo))>" + A" +

Werdasey + Ko 59) (10.20)

Electrical and Electronic Engineering 162

Chapter 10

dxd

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Analysis of the HAVAL Hash Algorithm

H61 - ﬁGl

Hgy — Hgy

Hgz — Heg

H64 - ﬁ64

H65 - ﬁGS

(F2 0 ¢3,5(Bso, Cso, Deo, Eso, Foo, Goo, Heo)) ™" + Age ™ + Waranieoy + Kae0 —
((F20 ¢3 2(360, Coo, Do, Eso, Feo, G'so, Hso))>>7 + A>>>H

Word? 60) + Ka60) (10.21)
(F2 0 ¢35(Bs1, Ce1, De1, Ee1, Fe1, G, He))>" + AZ + Wordage1) + Kop1 —
((F2 0 ¢32(Bs1, Cot, De1, Es1, Fer, Gy, He))>" + AZM +

Word2(61) + Ko61) (10.22)
(F'2 0 ¢32(Bs2, Cea, Dea, Esa, Fez, Gsa, Hegp))>7 + A§§>” + Worda(e2) + Ka62 —
((F2 0 ¢33(Bez, Coa, D2, Bez, Fea, Gea, Hg))>" + A" +

Word2(62) + Ky 62) (10.23)
(F2 0 ¢3,2(Bs3, Ce3, Des, Ees, Foz, Goz, Hez)) 7 + A" + Woraz(es) + Koz —
((F2 0 ¢32(Bs3, Cos, Des, Ees, Fus, Ges, Hg))>7™ + AZM +

Word2(63) + K363) (10.24)
(F'3 0 ¢3,3(Bsa, Cos, Dea, Egs, Fsq, Goa, Hgq))>7" + A + Worasea) + K34 —
((F3 0 ¢3,3(Bea, Coa, Des, Ees, Fea, Geu, He)™ + A +

Wow‘d3(64) + K364) (10.25)

In order to establish an inner collision the following constraints are imposed:

Hy; # Hs; Bsg=Bss Cso = Css Dss = Dsg

FEsq Fss Fys = Fss Gss = Gsg Hys = Hig
Worassey # Worasss) Ass = Asg

Hes Hg; Bos = By Cou = Co4 Doy = D

Eg4 Egi For = Fyy Ges = Gey Hes = Hgg

Word3(64) # Word3(64) .

I

The reader is reminded that W, ord3(64) = Word3 56) ng and Word3 64) — Word3(56) = ng.

Electrical and Electronic Engineering 163

Chapter 10

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(02 Et

Analysis of the HAVAL Hash Algorithm

Given these constraints the difference equations defined by (10.17) to (10.25) reduces to:

Hs; — Hy
0

Wig — Wig

(F20 $3,2(Bs7, Cs7, Ds7, Esq, Fs7, G, H57))>>>7
(£2 0 ¢39(Bs7, Cs7, D57, Esy, Fy7, Gy, Hz7))>7
(F'2 0 ¢39(Bsg, Css, Dsg, Esg, Fsg, Gss, Hss))™ —
(F2 0 ¢3(Bss, Css, Dss, Ess, Fss, Giss, Hss))>"
(F2 0 ¢3,2(Bsg, Csg, Dsg, Esg, Fsg, Gsg, Hsg))>"
(F'2 0 ¢35(Bsg, Csg, Dsy, Esg, Fsg, Gsg, Hs))>"
)

F2o ¢3,2(B€307 CV60; D60> E60> F60a G607 HGO)>>>7 -

(

(F2 0 $3.2(Bso, Coo, Deo, Ego, Fso, Goo, Heo)) ™7
(£72 0 ¢3,2(Be1, Ce1, De1, Fe1, Fo1, Gor, He1))>" —
(F2 0 ¢35(Bgs1, Cs1, Der, Ee1, Fer, Gy, Hey)>>>7
(F'2 0 ¢3,2(Bs2, Ce2, Dg2, Fes, Fea, Gea, Hgz))™
(F'2 0 ¢32(Bs2, Cez, De2, Eez, Fez, Gea, Hea))™
(F2 0 ¢3,5(Bs3, Ces, Des, Fes, Fes, Gea, Hes))™
(F2 0 ¢3.5(Bss, Ces, Des, Ees, Fes, Gos, Hes)).
AT 4+ Wiy — (AZH + W)

)
)
)
)
)
)

(10.26)

(10.27)

(10.28)

(10.29)

(10.30)

(10.31)

(10.32)

(10.33)
(10.34)

From equations (10.26) to (10.34) it is observed that the chaining variables listed in Table

10.3 are affected when trying to solve the set of difference equations.

A56

BSG C56 D56 E56 F56 G56 H56

A57

B57 C57 D57 E57 F57 G57 H57 H57

A58

BSS C’58 D58 E58 F58 G58 G58 H58

BSQ C'59 D59 E59 F59 F59 G59 H59

BGO CGO D60 E60 EGO FGO GGO HGO

Be1 | Co1 | D1 | Dgy | Egy | Fs1 | Ge1 | Hey

BGQ 062 CG? D62 E62 F62 GG? H62

Bsy | Bes | Css | D3 | Egy | Fis Ges | Hes

Bgs | By | Coa Dy | Egy | Foa | Goy | Hey

Table 10.3: Affected Chaining Variables

Electrical and Electronic Engineering

164

-
W UNIVERSITEIT VAN PRETORIA
A~ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Chapter 10 Analysis of the HAVAL Hash Algorithm

Table 10.3 will be used to indicate which of the chaining variables are affected in each step
of the solution of the set of difference equations. Once a chaining variable is chosen to have

certain value it is marked in ¢rv.

10.5.2 Solution to Differential Equations

In this section one technique that allows a solution to the set of differential equations de-
scribed by equations (10.26) to (10.34) is described. In order to solve the set of differential

equations the following properties of Boolean algebra are used [63].

For two boolean variables, denoted by z; and x5, where x; # x4, the following expressions
hold:

T1®x = 0. (10.35)
TIN(zy V) = 1. (10.36)
TA(T Vi) = T ATIAT

= 0. (10.37)

These expressions aid in the solution of the set of differential equations defined by the next

8 steps.

Step 1

An inner collision can be established by finding a solution to equations (10.26) to (10.34).
In order to find a solution to this set of difference equations it is useful to remember that
Ags = Bgs = Cz = Dg; = Egg = Fy9 = Gsg = Hsy and Agq = Bz = Cgy = Dgy =
E60 = 13‘59 = é5g = ﬁ57. By taking the above relationships into account the following

condition has to be satisfied in order to solve the set of equations.

Hs; — Hy; = Wiy — Wig (10.38)
H5>?>H - /15%11 = Wi — Wig (10.39)

This relationship can be simplified and is re-stated as:

AZM — HZ2'W = Hyy — Hy;. (10.40)

Electrical and Electronic Engineering 165

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

4
W UNIVERSITEIT VAN PRETORIA
A 4

Chapter 10 Analysis of the HAVAL Hash Algorithm

Let the difference between Hy; — ﬁ57 and W — ng be denoted by:

AHgy; = Hy; — Hsy. (10.41)
Ang = ng — ng. (1042)
Ang = AH57. (1043)

In order for equation (10.40) to be satisfied, A H5; can be chosen as OxAAAAAAAAA,
OxAAAAAAAAB, 0x55555555 or 0x55555556. The probability that equations (10.38)
and (10.39) holds for each of the possible values of A Hj; are given in Table 10.4.

AH57 Pr
0xAAAAAAAARA | 0.112

0xAAAAADAAB | 0.448
0x555555555 | 0.448
0x555555556 | 0.110

Table 10.4: Probability that a given AH satisfies (10.38) and (10.39) for random values of
H57

Here Hs; can be selected at random. Note that any choice for Hy; implies a selection for
Hy, through the chosen relationship of A Hs,. If equation (10.38) and (10.39) holds for the
chosen Hj;, continue with Step 2. The affected chaining variables for Step 1 are shown in
Table 10.5.

Ase | Bse | Cse | Dsg | Esg | Fre | Gse | Hse
As7 | Bsy | Cs7 | Dsy | Esy | Fsr | Gy | Moo | H s
Ass | Bss | Css | Dsg | Esg | Fsg | (oo | (o | Hsg
Asg | Bsg | Csg | Dsg | Esg | 5 | I | Gsg | Hs
Ago | Beo | Coo | Deo | Foo | Fooe | Foo | Geo | Heo
Agi | Ber | Cor | i | Do) | Egy | Foi | Geyr | He
Agy | Ber | (oo | (s | Doy | Bea | Fea | Gea | Heo
Ags | By | oo | Cos | Dea | Egs | Fes | Ges | Hes
S U A i | Besa | Coa | Doa | Egq | Fou | Gea | Hes

Table 10.5: Affected Chaining Variables: Step 1

Electrical and Electronic Engineering 166

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(og;;«r

Chapter 10 Analysis of the HAVAL Hash Algorithm

Step 2

Once suitable values for H;; and Hs; have been found, a solution has to be found to equation
(10.33). Equation (10.33) can be solved by applying the permutation ¢3» and considering
the resulting function F'2. Equation (10.33) can then be written as:
0 = (Ee3CesHss ® Fi3Ge3Ces @ Eg3Co3 @ Eg3Ge3 @ CosDgs ® FozHes @ Fy3Gos @
Be3Cos © Bgs) — (Eg3Cs3Hes @ F3Go3Co3 @ Eg3Ce3 ® Ee3Gs ® Coz Dgs @
FigHey @ FoaGoy ® BesCosy @ Bes). (10.44)

If only the terms that differ from each other are considered equation (10.44) reduces to:

0 = (Bg3Cs3 ® Bss) — (Be3Css @ Bys) (10.45)
(Bs3Cs3 ® Bgz) = (Bg3Ces @ Bes) (10.46)

By setting Cg; to:
063 = Bﬁg vV BGS. (1047)

Consequently equation (10.46) reduces to:

(Be3 @ Bgs) = (13’6369363) (10.48)
0 = 0. (10.49)

Thus our choice for Cg; satisfies equation (10.46). The chaining variable table after the

completion of step 2 is shown below.

Ase | Bss | Cse | Dse | Ese | Fss | Gsg | Hss
As7 | Bsr | Cs7 | Ds7 | Esy | Fsg | Gsy | Hee | Hoe
Asg | Bsg | Csg | Dsg | Esg | Fyg | (70 | Goe | Hox
Asg | Bso | Csg | Dsg | Esg | #50 | ' | (/g | Hsg
Aso | Beo | Ceo | Deo | 7o | 7o | Fin | Geo | Heo
Agi | Bor | Co1 | 10 | Doy | B | Fs1 | Ger | Hex
Asz | Bea | s | O | s | Egy | Fao | Geo | H, 62
Ass | D | Do | Coy | Doy | Ees | Fes | Goy | H, 63
| G, | Ps | Coa | Doy | Eoa | Fss | Goa | Hea

Table 10.6: Affected Chaining Variables: Step 2

Electrical and Electronic Engineering 167

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot

&

W UNIVERSITEIT VAN PRETORIA
Qe

Chapter 10 Analysis of the HAVAL Hash Algorithm

Step 3

The next step is to solve equation (10.32). As before equation (10.32) can be solved by
applying the permutation ¢z, and considering the resulting function F'2. Equation (10.32)

can then be written as:
0 = (Es:Cs2Hez ® F52G62Cs2 ® EsaCer ® Eg2Gor ® Coa Dz ® Fsz Hey ® FaGop @
Be2Ce2 ® Bez) — (Es2Ce2Hsz ® FraGaClp ® EsaClr ® EgaGy ® Coa Dea ®
FeyHgy @ FaGer ® By Coa © Bgy). (10.50)

If only the terms that differ from each other are considered equation (10.50) reduces to:

0 = (Ee2CeoHer ® F52G62C62 D Eg2Co2 ® C2Dgy ® BgzCl) —
(Ee2Co2Hgy ® Fs3G3Cs2 @ EgyCoa @ CoaDgs @ 362062)- (10.51)

Equation (10.51) holds if the following expressions hold true:

Es:CsyHgy = FEg»CooHeo. (10.52)

EeyCss = FEgCoso. (10.53)
F2G62Co2 @ CsaDgy = @F5yGe3Cs2 ® Coo D (10.54)
Bs:Css = BgpClo. (10.55)

Chaining variable Bg, and Ejs is chosen such that:
Bs; = Cg V Cea. (10.56)
E62 == 062 Vv 062- (1057)

This choice of Bg, reduces equation (10.55) to:

BgCs = BgxCoy (10.58)
C62C52Css = Ci2Ce2Cs0 (10.59)
0 = 0. (10.60)

Likewise equation (10.53) reduces to:

Eg:Cs = FgoCey (10.61)
C62053Cs2 = Ci2C62Ce0 (10.62)
0 = 0. (10.63)

Electrical and Electronic Engineering 168

e

w UNIVERSITEIT VAN PRETORIA
@, UNIVERSITY OF PRETORIA
Qe U ORIA

NIBESITHI YA PRET

Chapter 10 Analysis of the HAVAL Hash Algorithm

Similarly equation (10.53) reduces to:

E2CoaHsz = EgyCoyHe. (10.64)
Ce:Ce:Co2Hgy = 562062062[—]62- (10.65)
0-Hgy = 0- Hsy. (10.66)

0 = 0. (10.67)

Note that no explicit choice is made for Hg,. Chaining variable Dgs is already determined

through the choice for C3. By setting:

Ge2 = Cgy V Co. (10.68)
Fsg == 062\/062- (1069)

It is assured that equation (10.54) holds.

The chaining variable table after the completion of step 3 is shown in Table 10.7.

A56 B56 C’56 D56 E56 F56 G56 j(;
Ast | Bsy | Cst | Ds7 | Esp | Fisp | (x| Hyw | 15
Ass | Bsg | Csg | Dsg | Fg | Fou | (s | e | g
Asg | Bsg | Cso | Dsg | £ | Fio | Fon | e | 21,
Aso | Beo | Ceo | Doy | Fovw | Lo | Lo | G | Ll
Agr | Ber | ¢y | Dy .z’%}s;g Lo | Fon | Ga | T

Ao | Do | Gy | Cuo | Doy | Lo | Fio | G | Hea
i \:iii.'i 555;?5 55:’3.3 { .fi»}z:'s ’ ; i ;/.; G63 H63
oo | s | Do | Cua | Dy | 200 | Foa | Gea | Hey

Table 10.7: Affected Chaining Variables: Step 3

Step 4

In this step equation (10.31) is solved. Equation (10.31) can be solved by applying the

permutation ¢;» and considering the resulting function F'2. Equation (10.31) then reduces

Electrical and Electronic Engineering 169

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&
W UNIVERSITEIT VAN PRETORIA
A 4

Chapter 10 Analysis of the HAVAL Hash Algorithm

to:

0 = (EaCe1Het @ F51G61Cs1 @ Eg1Ce1 @ E61Ge1 ® C1Dgy @ Fg1 Hey @
F61Ge1 @ B1Cg1 @ Be1) — (E61Cs1 Hgy @ F1G61Co1 @ E1Co1 @
E61Gg1 @ Cs1 D) @ Fgy Hgy @ Fg1Gg1 @ BgiCor ® Bg1). (10.70)

Consider only the terms that differ from each other. Then equation (10.70) reduces to:

0 = (Cs1Dg)) — (Co1Dgy). (10.71)

The choice for Bg, in Step 3 also ensures that equation (10.70) holds. Consequently the

chaining variable table remains unchanged (see Table 10.7) after the completion of Step 4.

Step 5

In this step equation (10.30) is solved. Equation (10.30) can be solved by applying the
permutation ¢3 - and considering the resulting function expression. Equation (10.30) can

then be written as:

0 = (EeoCsoHeo ® Fs0GsoCo0 D EeoCoo ® EsoGeo © CsoDeo ® FeoHgo @
FgoGeo @ BgoCeo @ Bgo) — (EsocsoHso ® Fs0GeoCoo @ FeoCoo @
EeoGso ® CsoDeo @ FsoHeo D FoGeo B BsoCoo D Beo)- (10.72)

If only the terms that differ from each other are considered equation (10.72) reduces to:

0 = (EeoCeoHoo ® EeoCo0 ® FeoGo) — (FeoCosoHeo ® EgoCoo ® FeoGleo)(10.73)

Equation (10.73) holds if the following expressions hold true:

EeCeoHeo = Eg0CsoHeo. (10.74)
ECeo = FEgCoo. (10.75)
EsGeo = EsGeo. (10.76)

(10.77)

Electrical and Electronic Engineering 170

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot
W UNIVERSITEIT VAN PRETORIA
Qe

Chapter 10 Analysis of the HAVAL Hash Algorithm

The value for Gy is already determined by the choice made for Eg, in Step 3. The value
chosen in Step 3 for Eg, satisfies equation (10.76). Similarly the previous choice for Fg,
implies that the value for Hg, is fixed. Likewise it is found that this particular choice for Fg,

assures that equation (10.74) holds if Cy; is chosen such that:

Cﬁo - E60 Vv ENG(). (1078)

This choice for Cgy also assures that equation (10.75) holds. The chaining variable table can

now be updated to reflect the additional choices made. Table 10.8 is shown below.

Ase | Bse | Cse | Dse | Esg | Fsg | (7o | He
Ast | Bsy | Cs7 | Dsy | Esg | Fro | Gion | 1ie | Hss
Ass | Bsg | Csg | Dsg | 7o | 2o | 0 | G | 17
Asg | Bsg | Csg | D5 | Foo | Froo | Foo | oo | Tl
Ago | Beo | Cao | D0 | Fo ff:};g; Fos | Sae | Hea

A1 | Doy | Cor | Do | Do | By | Py | Gy | Hs
Voo | Do | Cow | oo | Dos | Lo | Foo | Glow | Heg
E gi{;,‘i. 1‘9}};;;; ;}i};;'; { I‘;_; f‘ }{’L'g Z}E; s‘?e} G63 H63

E 23} : i : ;:r { (;; 4 .x{.}g, .z’f.f.'(; i F64 G64 H64

Table 10.8: Affected Chaining Variables: Step 5

Step 6

In this step equation (10.29) is solved. Equation (10.29) can be solved by applying the
permutation ¢3 o and considering the resulting function expression. Equation (10.29) can

then be written as:

0 = (E5Cs9Hsg @ Fr9G59Cs9 @ E59Cs9 ® E59Gsg @ Cs9Dsg @ FrgHsg @
Fs9Gsg @ BsgCsg @ Big) — (Es9CsoHsg @ FygG59Cs9 ® EsgClsg
E59Gs9 ® Cs9 D59 @ F59H59) F59059 ® BsgCsg @ Bsg). (10.79)

If only the terms that differ from each other are considered equation (10.79) reduces to:

0 = (Fs0G59Cs0 @ FroHzo B FyoGisg) — (FroGsoCso ® FigHzg @ FroGsg)(10.80)

Electrical and Electronic Engineering 171

o
w UNIVERSITEIT VAN PRETOR
0 UNIVERSITY OF PRETOR
«P VU OR

A
A
NIBESITHI YA PRET A

Chapter 10 Analysis of the HAVAL Hash Algorithm

Equation (10.80) holds if the following expressions hold true:

Fi9Gs9Csg @ FrgGsg = FigGseCso @ FgGig. (10.81)
FsgHsy = FioHs. (10.82)
(10.83)

The values for G5 and Hyg are already determined by the choices made for Dgs and g,
in Step 3. The values chosen in Step 3 for Dg, and Fj, also satisfies equations (10.81) and
(10.82) C'sg is chosen such that:

059 = F59 vV F59. (1084)

The updated chaining variable table is presented as Table 10.9.

Ase | Bsg | Csg | Dsg | Esg | o | (ro | 1150
D I S IS Y S

Asg | Bsg | Csg | D | Eon | Fion | e | Goe | Fhs
: : o | Lo | Fra | s | Hog

Ago | Dao | Coo | D | oo | B | Foe | Glan | Hes

'é{a'./: !;z/f’ (-’;:;f {"le;'.i. -j-}’f:,;:’ 54'@\3 / { f H62
"éixs 5;1 51 fff;:f; {H'r;li f}}z;‘; 51«:»: i ;,;.i G63 H63
Ao | e | Bao | Cun | Dec | By | Feg | Geg | Hea

Table 10.9: Affected Chaining Variables: Step 6

Step 7

In this step equation (10.28) is solved. As before consider the expression obtained by apply-
ing the permutation ¢ » to equation (10.28) and considering the resulting function expres-

sion. Equation (10.28) can then be written as:

0 = (Es53Cs8Hss ® FiG55Cs5 ® EsgCss @ EsgGrg @ CsgDsg @ Fyg Hysg @ —
F53Gisg @ BsgCsg @ Byg)(EssCss Hsg @ F5sé58058 @ EsgCss @
EssGig ® CsgDsg @ FygHsg ® FigGrg @ BsgCg © Bsg). (10.85)

Electrical and Electronic Engineering 172

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(02 Et

Chapter 10 Analysis of the HAVAL Hash Algorithm

consider only the terms that differ from each other. Then equation (10.85) reduces to:

0 = (F58G358Cs8 ® EssGsg @ FisGsg) —
(F5sGssCss @ EssGss @ F5séss)~ (10.86)

Equation (10.86) holds if the following expressions hold true:

Fi3GssCss = FigGsCrs. (10.87)
Es3Gss = EssGss. (10.88)
F53Gss = FgGlss. (10.89)

(10.90)

The value for Fyg is determined by the choice for By, in Step 5. This choice for Fyg also
ensures that equations (10.87) and (10.89) holds. The value for Esg is determined by the
value chosen for Cg in step 5. This choice also assures that equation (10.88) holds. The

chaining variable table remains unchanged after the completion of step 7.

Step 8

In this step equation (10.27) is solved. As before consider the expression obtained by apply-
ing the permutation ¢; 5 to equation (10.27) and considering the resulting function expres-

sion. Equation (10.27) can then be written as:
0 = (Es7Cs:Hs7 @ F5;G5:Cs7 ® E57Cs7 @ EsyGsr ® Cs7Ds7 @ FsyHsy @
F51Gs71 © Bs:Cs7 @ Bsy) — (Es;CsyHsy @ Fy:Gs57Cs7 @ Es57Cs7 @
E57Gs1 @ Cs:Dsy © FyrHyy & Fs7Gsy @ By Csy © Bs7). (10.91)

consider only the terms that differ from each other. Then equation (10.91) reduces to:

0 = (E5vCs7Hsy @ FsrHsy) —
(Bs7Cs7 Hsz & Fip Hyy). (10.92)

Equation (10.92) holds if the following expressions hold.

Es;Cs1Hs; = E5;Cs7Hsy. (10.93)
F57H57 = F57f~]57. (1094)

Electrical and Electronic Engineering 173

A=
% UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Chapter 10 Analysis of the HAVAL Hash Algorithm

The value for Fy; is determined by the choice for Cgq in step 5. This choice also satisfies
equation (10.94). Similarly the value of Es; is determined by the choice for Csg in step 6.
Given this value for Fs; equation (10.93) holds if Cs; is chosen such that:

Csy = Hs7 V Hs;. (10.95)

The updated chaining variable table is shown in Table 10.10.

A56 B56 056 3“} E56 5; {*):1{; I

Asy | Bsy | 5 | Dsyp | Loy | 2o | G | He | 21
Asg | iin Csg | 0o | £ | F5 ; iy
. i BSQ { ;‘{ } 3 i '{s ; f £ f?z
Aso | Do | Con | Do | oo | Low | Foo | G | g
Ao Bo L L ow L oo L ea T Tan T
"é%z‘_ff 1’:;:}: ‘ {btz;s;z 5.}513 5'«?32 Fag | 46 H62
:‘ée;.‘; §§ *‘igt {.i’éjé ! Jia };'{}1,} g‘;gg G63 H63
Ao | Ao | Bo | Cor | D | Boy | Foa | Geaa | Hea

Table 10.10: Affected Chaining Variables: Step 8

After the completion of step 8 the set of difference equations defined by equations (10.26) to
(10.34) are solved. The chaining variables not marked in gray can take on randomly selected

values.

Message Construction

Once the set of difference equations is solved it remains to construct the two messages that
will result in a collision for the last two rounds of three round HAVAL. In general a message

word for the second round can be derived using the following equation:

Woraz(iy = Hir1 — (F2 0 ¢35(B;, C;, D;, By, F;, Gi, H))PT — AP — K, (10.96)

By applying equation (10.96) for 32 < i < 63 two messages, M and M can be derived.
In order to meet a specific initial value (; = 32) appropriate selections should be made for

Hsy, H33, H3q, H3s, Hss, Hyz, H3s and Hzg. An implementation of this attack is included in

Appendix G.

Electrical and Electronic Engineering 174

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Chapter 10 Analysis of the HAVAL Hash Algorithm

10.5.3 Collision Example

A collision for the last two rounds of HAVAL was constructed using the techniques described

in this chapter.

For the initial values of:

A3y = OXEC4E6C89
Bs; = 0x082EFA98
C32 = 0x299F31DO0
D3, = 0xA4093822
E3y = 0x03707344
F3 = 0x13198A2E
G3; = 0x85A308D3
H3;, = 0x243F6A88.

The derived message is defined by:

Electrical and Electronic Engineering 175

A=
W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Chapter 10 Analysis of the HAVAL Hash Algorithm
Wy = O0x3A379EDO Wi = O0x79F23F4E
W, = 0x1EB81543 Wi; = 0x9C1596E8
Wy, = 0x279C0073 Wis = 0xB62B4D8B
W3 = 0xC9295C45 Wiy = O0xDEC04668
W, = 0x6988BCBA Wy = 0x4BA12694
Ws = OXEE1ES55A2 Wy = 0x9D8DED5SC
Ws = OxDE458436 Wiy = 0x456CFCB4
W; = 0xB1C55B3C Was = 0x7253D2B9
Ws = OxBDA229EB Way = O0x61ED5DB4
Wy = O0xE27926BE Wiy = O0XE4C2E748
Wiy = Ox8BACAC22 Wy = O0xFD80A2AD
Wi1 = OxBDF710B4 Wy, = O0xCO33F56E
Wi, = 0x6516723B Was = 0x3010FDA9
Wi3 = 0x26991773 Wy = 0x344A7F71
Wis = O0X9EA6FD1F W3 = 0x0DB561C7
Wis = 0x0BB27961 W3 = 0xC7A1E175

The alternative message is identical to the first with the exception that ng is chosen such
that:

Wy = 0x34159BBD

The resulting collision (including the feed forward step) for the last two rounds of three
round HAVAL is:

5s(IV,W) = 0x4DF09D997588F9C7BE20863B2EED2AAC
D5B1E116D927279E250D19CB00850706.

10.6 CONCLUSION

In this chapter it was shown that the generalised technique described in Chapter 8 can be

applied to the HAVAL hash function. In particular it is shown that the last two rounds of three

Electrical and Electronic Engineering 176

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&
W UNIVERSITEIT VAN PRETORIA
A 4

Chapter 10 Analysis of the HAVAL Hash Algorithm

round HAVAL is not collision resistant. It is demonstrated that a collision can be established
for all 256 output bits produced. This attack is considerably more efficient than the birthday
attack which would require 2'?® evaluations of the last two rounds of HAVAL. This is the
first cryptanalytical results obtained for the HAVAL hash function. It is believed that it is
possible to extend the attack to all three rounds of HAVAL. The attack can be executed on
a 200 MHz Pentium Pro in less than a minute. Source code that implements this attack is

attached as Appendix G.

Electrical and Electronic Engineering 177

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot
W UNIVERSITEIT VAN PRETORIA
Qe

CHAPTER 11: DESIGN CRITERIA FOR DEDICATED HASH
FUNCTIONS

11.1 INTRODUCTION

In this chapter guidelines and design criteria for the design of dedicated hash functions based
on the MD4 family of hash functions are presented. The discussion of the design criteria in
this chapter is based on the experience gained from the analysis of dedicated hash functions
included in the MD4 family of hash functions. These hash functions include MD4, MD5,
HAVAL, SHA and SHA-1. These hash functions share a common ancestry (MD4), and
consequently they share a number of features. These hash functions also differ in a number

of respects, such as the Boolean mappings and the message word re-use mechanisms.

Each of the components encountered in the MD4 family of hash functions is discussed with
regard to their contribution to the security of the hash functions in which they occur. In this
chapter the emphasis is on the security requirements expected from the building blocks with

occasional reference to the functional requirements.

11.2 BASIC STRUCTURE

The compress function construction used for MD4 is described in [10]. This construction has
been widely adopted in the design of other hash functions such as MD5 [45], SHA, SHA-1
[13] and Tiger [47]

The MD4 family of hash functions takes two parameters as inputs namely the previous hash
result and the message block. If the first message block is processed, the previous hash result
is replaced by the initial value. The generalised MD4 family construction does not allow for
the inclusion of a secret key. A survey of a number of adaptations of this construction that

does make allowance for a secret key is presented in Chapter 5.

The compress function used in the MD4 family of constructions, is an iterated construction.
The compress function takes as input the previous hash result H;_, and the current message
block, M;.

The compress function consists of a number of rounds. These rounds are constructed from a

IVERSITEIT VAN PRET

e

& .

0 UNIVERSITY OF PRET
QP YU

00
™I

NIBESITHI YA PRET

Chapter 11 Design Criteria for Dedicated Hash Functions

number of steps. Each step is constructed from a number of elementary operations, including

Boolean mappings, rotations and additions mod 232,

The message block M; is segmented into & sub-blocks. The initial chaining variable, C,
is set equal to the previous hash result. The set of message sub-blocks is divided into a
number of [-bit message words. These message words are re-used in consecutive rounds of
the compress function according to a specified rule. The chaining variable, C, is updated in
each step of each round of the compress function. The output of the compress function is
obtained by adding the initial value of the chaining variable C (i.e. the previous output of the
compress function or the initial value) to the final value of the chaining variable. The final
hash value for the message is the output obtained from the final application of the compress

function.

11.3 BUILDING BLOCKS

A number of basic building blocks are used in the construction of the compress functions of
the MD4 family of hash functions. These include message expanston algorithms, message
block permutations, rotations, addition mod 232 and Boolean mappings or S-boxes. In this
section the contribution of each of these basic building blocks to the security of the dedicated

hash functions is considered.

11.3.1 Boolean Mappings

The Boolean mappings used in MD4, MD5, SHA, SHA-1 and HAVAL are constructed with
the same technique and exhibit similar properties. The Boolean mappings used by these

functions take a number of 32 bit input words and produce a single 32 bit output word.

The Boolean mappings utilised by these hash functions are constructed from Boolean func-
tions. A number of design criteria for Boolean functions are established in Chapter 3 of
[51]. These criteria deal with the zero-one balance, high non-linearity values and the prop-
agation properties of the Boolean functions. In the definition of MD4 [10] and MDS5 [45]
it is stated that if the inputs to the Boolean function are independent and unbiased, then the
output of the Boolean function will be independent and unbiased. The functions defined for
MD4 and MDS5 are used in both SHA and SHA-1. It should be noted that a number of the

Electrical and Electronic Engineering 179

IVERSITEIT VAN PRET
ERSITY OF PRET
BESITHI YA PRET

Chapter 11 Design Criteria for Dedicated Hash Functions

Boolean functions defined for use with MD4 and MD5 do not satisfy the criteria set forth
in [51]. HAVAL represents a family of hash functions derived from MD4 and is defined
in [62]. The Boolean functions used in HAVAL are derived from bent functions and were
designed to have zero-one balance, a high non-linearity and satisfy the strict avalanche crite-
rion (SAC). In addition these functions are linearly inequivalent in structure and are mutually

output-uncorrelated.

Having obtained a Boolean function which satisfies the desired properties, a Boolean map-
ping is constructed by applying the Boolean function to a number of bits in parallel. Boolean
mappings constructed in this manner inherits the properties of the Boolean function. The
number of bits are chosen to reflect a specific computer architecture. Currently 32 bit ma-
chines are in common use and consequently the Boolean mappings are defined over 32 bit
variables. Many general purpose processors contain logical bitwise operators in their instruc-
tion sets. Thus the use of bitwise logical functions as Boolean mappings are advantageous,

if the overall performance of the hash function is considered.

It is maintained that the design criteria applied to construct the Boolean mappings used by
the MD4 family are necessary, but not sufficient. The practice of extending the Boolean
function to a Boolean mapping by applying the Boolean function in parallel to a number
of bits, has proved to be a salient point in the cryptanalysis of MD4, MD5 and HAVAL
(Chapters 6 7 10). If a single input bit used by the Boolean mapping is changed, at most a
single output bit of the Boolean mapping is changed. In addition, the compliance to the SAC
by the Boolean function used to construct the Boolean mapping, implies that a single input
bit may be changed without any changes occurring in the output of the Boolean mapping.
For these reasons it is proposed that the Boolean mapping should be constructed to satisfy

the bit independence criterion (BIC) as described in [51].

The only dedicated hash function which uses randomly generated Boolean mappings is Tiger
[47]. This hash function was designed with 64-bit architectures in mind. For this reason it
utilises four 8 x 64 bit S-boxes. The following design criteria for the Boolean mappings are

quoted verbatim from [47].

1. All the entries of all the S boxes should be distinct. Moreover, no two entries should

have more than three equal bytes.

2. Each byte-column is a permutation of all the 256 possible byte values.

Electrical and Electronic Engineering 180

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Chapter 11 Design Criteria for Dedicated Hash Functions

3. The columns of all the S boxes should be as different as possible, and have some long

cycles.

4. No two differences of S box entries (S;(t1) @ S;i(2) and S;(t3) @ S;(t4)) should have

more than four equal bytes.

5. The speed of the generation should not be too slow, in order to enable applications to

generate the S boxes on the fly.

6. This algorithm, and the structure of the S boxes of Tiger, were chosen in a way which
reduces linear and differential properties, and similarities of these properties in the four
S boxes (between other things, by reducing the number of S boxes, and making them
independent, unlike some original idea we had, which was intended to reduce the total
memory size of the S boxes, and by choosing the large S boxes, which reduce linear

and differential properties).

7. The randomizing parameter is easy to remember.

Items 1-4 as well as item 6 address the security properties of the S-boxes while items 5 and
7 deal with the functional requirements of the S-boxes. It is claimed by the designers of
Tiger that the use of randomly generated Boolean mappings increase the security of the hash

function. No quantitative arguments are presented to support this statement.

The randomly generated Boolean mapping used in Tiger is more difficult to manipulate than
the Boolean mappings constructed from Boolean functions which are applied in parallel.
This is due to the design criteria which have to be met by the randomly generated Boolean
mappings. The design criteria applied in the generation of the Boolean mappings used by
Tiger has the effect that it is impossible to construct a collision for a given Boolean mapping.
Furthermore, a change in a single input bit is likely to cause a difference in more than one

output bit.

Thus, it appears that the use of well chosen, randomly generated Boolean Mappings, avoid
the problems and potential weaknesses observed in the bitwise Boolean mappings. Howev-
er, the use of randomly generated Boolean mappings may result in an increase of resource
requirements, such as storage capability and processor time. It is recommended that random

mappings are utilised for optimal security.

Electrical and Electronic Engineering 181

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot
W UNIVERSITEIT VAN PRETORIA
Qe

Chapter 11 Design Criteria for Dedicated Hash Functions

11.3.2 Rotation

The rotation operator is used by all members of the MD4 family of hash functions. Rotations
may be described in a number of ways. In [48] a rotation is described as a bit permutation.
The rotation of x by n bits may also be viewed as a linear feedback shift register of length d

with a feedback polynomial

flx)=z2%+1

which is clocked n times.

The rotation operation provides diffusion of bits throughout the hash function. MD4 and
MD?5 contain a single rotation in each step. HAVAL, SHA and SHA-1 contain two rotations
applied to different chaining variables in each step. The use of rotations may complicate the
solution of the sets of difference equations obtained. In particular in SHA and SHA-1 the use
of two rotations and the permanent effect of the second rotation impose certain limits on an
attacker, since an attacker has to choose values for chaining variables, which are invariant to
the rotations (see Chapter 9). It is shown in [14] and [58] that it is possible to counter these
rotations and find solutions to the sets of difference equations containing these rotations. A
similar result is shown in Chapter 10 for HAVAL. However, the absence of rotations would

have reduced the workload for finding inner collisions considerably.

Thus, rotations complicate the task of an attacker (depending on the use of the rotation) and
therefore contribute to the security of the hash function. The rotation amounts should be

chosen to obtain optimal diffusion in the compress function of the hash function.

None of the dedicated hash functions based on MD4 utilises data dependent rotations. It
is unknown if data dependent rotations add or subtract to the security of dedicated hash
functions. It may be possible for an attacker to exploit the data dependence. From a security
point of view, it is recommended that caution be exercised if data dependent rotations are

used.

11.3.3 Message Word Reuse

The iterative hash scheme employed in the MD4 family of hash functions requires that a

message, M, is segmented into a number of message blocks, M;. Each message block is

Electrical and Electronic Engineering 182

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

4
W UNIVERSITEIT VAN PRETORIA
A 4

Chapter 11 Design Criteria for Dedicated Hash Functions

processed by the compress function f(). The compress functions of the MD4 family of hash
functions divide the message block, M;, into a number of message words. Each bit of each
of these message words is re-used at least twice by each of the compress functions used by
the MD4 family of hash functions. Two techniques of message re-use are employed by the
MD4 family of hash functions. The first technique applies a permutation which changes the
order in which the message words are accessed in consecutive rounds. The second technique
applies a message expansion algorithm which derives new message words from the original

message words. Both techniques are considered in this section.

Message Permutation

Each of the hash functions derived from MD4 takes a message block of fixed length as input.
The message block is then divided into message words of 32 bits each. The message block
is used in every round of the hash function. The order in which the message words are pro-
cessed in each of these rounds are determined by the message permutation. MD4, MD5 and
HAVAL employs message permutations. By exploiting the order in which message words
are accessed in consecutive rounds, an attacker may obtain a set of difference equations. If
this set of difference equations are solvable it may be possible to find collisions for the hash
function. If message permutations are to be used care should be taken to choose the permu-
tations in such a manner as to prevent solvable difference equations to be derived. This may
prove difficult, if it is remembered that it is possible to obtain a solvable difference equa-
tion set representing 12 consecutive steps in MD5. Consequently it is advised that message

permutations are avoided in the construction of dedicated hash functions.

Message Expansion

SHA and SHA-1 uses a message expansion algorithm instead of a fixed message permu-
tation. The properties of the message expansion algorithm used by SHA is described in
Chapter 9. From the analysis of SHA and SHA-1 it appears that the use of a message expan-
sion algorithm adds to the effort required to derive a set of difference equations. The danger
exist that an attacker may manipulate the message expansion algorithm to find one or more
possible sets of solvable difference equations. An example of how the message expansion

algorithm used by SHA may be manipulated is presented in Chapter 9.

Electrical and Electronic Engineering 183

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(02 Et

Chapter 11 Design Criteria for Dedicated Hash Functions

It is noted that the dedicated hash functions based on the MD4 construction may be used as
block ciphers. Specifically the initial value may be taken as the plaintext and the message
block taken as the key. The hash result then represents the ciphertext. Thus, if we use
SHA in this manner, we obtain a block cipher with a 160 bit block length (the initial value)
and a 512 bit key (the message word). ! The analogy may be extended to the message
expansion algorithm. In block cipher terminology the message expansion algorithm is the
equivalent of the key schedule. It is known that weak key schedules weaken the associated
block cipher [64], [65]. In particular weak key scheduling algorithms allow related key
attacks [65]. These attacks exploit a chosen difference between two unknown keys and allow
the recovery of the keys given a number of known or chosen plaintexts. A weak message
expansion algorithm may weaken the associated hash function by allowing the construction
of two or more messages, which upon expansion, exhibit a specified difference pattern. This
may allow the derivation of a set (or sets) of solvable difference Equations, which result
in collisions. Thus both strong key scheduling algorithms and strong message expansion
algorithms attempt to limit the extent to which an attacker may exploit specified differences
between two distinct keys or messages. It is therefore suggested that the message expansion

algorithm should meet the same requirements as those set for key scheduling algorithms.

In [66] a number of design criteria for key scheduling algorithms are proposed. In particular
itis advised that the key schedule provides some guarantee of key/ciphertext Strict Avalanche
Criterion and Bit Independence Criterion. In addition each bit should be used by round g of
a R-round cipher. In [67] it is stated that the key schedule should have a high diffusion, and
should behave irregularly with regard to the components of the round function of the block

cipher.

In [67] a distinction is made between two kinds of key schedules namely pseudo-random key
generation and key evolution. In the pseudo random approach the cipher key is used to seed
a pseudo-random noise generator. The output of the pseudo-random noise generator serves
as the round key. The relationship between the cipher key and the round keys generated
in this way are complex. However, these schemes are slow and keys cannot be generated
online (during encryption). Thus, pseudo-random round key generation schemes incurs a
performance penalty. The key evolution strategy uses the cipher key as key to the first round

and derives each round key from the previous round key by means of a transformation 1.

'Tt should be noted that it is not recommended to use hash functions in this mode. Dedicated hash functions
are not designed to be used as secret key encryption algorithms, and are likely to exhibit characteristics which

make them susceptible to linear and differential cryptanalysis.

Electrical and Electronic Engineering 184

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

4
53 UNIVERSITEIT VAN PRETORIA
A 4

Chapter 11 Design Criteria for Dedicated Hash Functions

The process of key evolution is described by:

K = k
o= k).

The transform v/ may be described by bit permutations, rotations or elements from coding
theory and abstract algebra. The advantage of this scheme is that it is fast and the round keys
may be derived online. A disadvantage is that the underlying structure of the transform ¢

may be exploited by an attacker.

From the preliminary study of SHA and SHA-1 it is observed that the key evolution strategy
is used by the message expansion algorithms. As noted above it was shown that the underly-
ing structure of the message expansion algorithm may be exploited to enable the construction
of collisions for a limited number of rounds (see Chapter 9). In both [66] and [67] the impor-
tance of diffusion of key bits in the key scheduling algorithm is stressed. It is noted that the
diffusion in the message expansion algorithm used by SHA is poor. Although the diffusion
properties are improved by the addition of a rotation operator in SHA-1, it is unknown if it

provides sufficient protection.

11.3.4 Addition mod 23?

Addition mod 232 is used by all the dedicated hash functions based on MD4. The addition
mod 232 contributes to the avalanche effect in the dedicated hash function. The contribution

to the avalanche effect is ascribed to the propagation of the carry bit in addition operations.

11.3.5 Additive Constants

Additive constants are used by all members of the MD4 family of hash functions. MD4,
SHA, SHA-1 and HAVAL use different constants in each round, while MDS uses a differ-
ent additive constant for each step. The use of an additive constant contributes little to the
collision resistant property of the hash function. The attacks by Dobbertin, which results in
collisions for hash functions require the derivation and solution of sets of difference equa-
tions. The constants are easily cancelled from these difference equations, and therefore does

not contribute to the difficulty of solving the set of difference equations. The use of different

Electrical and Electronic Engineering 185

Chapter 11 P eria for Dedicated Hash Functions
W UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

«p VUNIBESITHI YA PRETORIA
additive constants in each round does add to the pre-image resistance of a hash function.
However the use of a different additive constant for each step requires additional storage
capabilities and is considered unjustified if compared to the increase in security obtained

(especially in terms of collision resistance).

11.3.6 Composition

A single step in each of the dedicated hash functions belonging to the MD4 family is com-
posed by combining addition mod 23, rotation operations and Boolean mappings or S-
boxes. These steps are repeated a number of times (at least 48 times). A number of these
steps represent a single round of the hash function. Each step compresses n 32-bit variables
to a single 32 bit variable. In [57] the use of genetic algorithms to find solutions to expres-
sions of the form encountered in dedicated hash functions is investigated. From the results in
[57] it is observed that a single step in a dedicated hash function is neither collision resistant
nor pre-image resistant. It is more difficult to find collisions for a number of these steps used
iteratively. However it was shown that for MD4 [14] and MDS5 [12] it is possible to find

collisions for these iterated structures.

The Damgird-Merkle constructions [22] [23] shows that a collision resistant hash function
may be constructed from a collision resistant function. The general design of the MD4 family
resembles the iterative structure of the Damgard-Merkle construction. The security offered
by the Damgérd-Merkle construction would be attainable if the compress function of the
dedicated hash functions are collision resistant. It is observed that the compress functions of
these dedicated hash functions are themselves constructed by iteratively applying a number
of similar steps. However, the ability to construct collisions for single steps and even a num-
ber of consecutive steps, (cryptanalysis of MD4 and MDS) implies that the level of security
offered by the Damgard-Merkle construction can not be attained. It should however be noted

that this does not imply that collisions are easily constructed for these hash functions.
114 CONCLUSION
In this chapter the basic building blocks encountered in dedicated hash functions are con-

sidered. Observations regarding the contribution of these building blocks to the security of

dedicated hash functions derived from MD4 are made. The security offered by Boolean

Electrical and Electronic Engineering 186

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

-
W UNIVERSITEIT VAN PRETORIA
4

Chapter 11 Design Criteria for Dedicated Hash Functions

mappings are considered. It is believed that randomly generated Boolean mappings offer
more security than the bitwise Boolean mappings currently employed by the majority of the
members of the MD4 family. The functional advantages of using bitwise Boolean mappings
rather than randomly generated Boolean mappings outweighed the additional security ob-
tained from randomly generated Boolean mappings in the design of the MD4 family (with
the exception of Tiger). Rotations complicate the task of the cryptanalyst considerably and
is considered a valuable building block. Specific attention is given to the message expansion
algorithm. It is observed that the message expansion algorithm is similar to key schedule
algorithms. Based on this observation and the results obtained from the analysis of the mes-
sage expansion algorithms used by SHA and SHA-1, it is proposed that message expansion
algorithms should exhibit properties similar to that required for key scheduling algorithms.
Specific attention needs to be given to the diffusion properties of message expansion algo-
rithms. Additive constants contribute little to the collision resistance property of the hash
functions considered. Addition mod 232 adds to the diffusion process in the hash function
due to the properties of the carry bit. The building blocks used in the MD4 family are com-
bined into a single step, which is used iteratively. It is known that the individual steps are
not collision resistant and consequently it is not known if the compress function constructed
from these individual steps is collision resistant. If the step functions could be replaced by
collision resistant one way functions, the resulting compress function would also be colli-
sion resistant and one-way according to the Damgérd-Merkle construction. It is not known

if collision resistant one way functions exist.

Electrical and Electronic Engineering 187

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot
W UNIVERSITEIT VAN PRETORIA
Qe

CHAPTER 12: CONCLUSION

12.1 DISCUSSION

Cryptographic hash functions are important primitive building blocks in information securi-
ty. These functions form the corner stone of numerous authentication protocols, encryption
algorithms and digital signatures. These cryptographic primitives are vital for creating a
secure electronic commerce environment. Electronic commerce protocols such as SET and
EMYV rely on the existence of cryptographic hash functions. The two properties that make
hash functions indispensable in cryptographic applications, are collision resistance and one-
wayness. Throughout this dissertation we paid specific attention to the property of collision
resistance. The property of collision resistance is vital for the non-repudiation service ob-

tained through digital signatures.

However, designing hash functions that exhibit this property has proven to be extremely
difficult. In the period from 1990 to 1994 a number of practical cryptographic hash functions
were designed and implemented. These cryptographic hash functions include MD4, MD5,
SHA, SHA-1, HAVAL, RIPEMD-128 and RIPEMD160. It was thought that these algorithms
exhibited the properties of collision resistance and one-wayness. However in 1996 Dobbertin
demonstrated that MD4 is not a collision resistant hash function. Within months the result
was extended to RIPEMD-128 and MDS5. One of the objectives of this dissertation was to
generalise these attacks, apply it to other hash functions, and then derive design criteria that

will defeat the generalised attack.

In pursuit of this objective a general introduction to cryptographic hash functions is presented
in Chapters 1, 2, 3, 4. Chapter 1 introduced the relevant definitions and concepts surrounding
cryptographic hash functions. Once the relevant concepts and definitions were in place, a
number of generic attacks against cryptographic hash functions were considered in Chapter
3. Based on the definitions in Chapter 1 and the generic attacks presented in Chapter 3, a
number of high level functional and security requirements were formulated. Given these
requirements, a number cryptographic hash function designs were reviewed, including the

MD4-family of functions.

A=
% UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Chapter 12 Conclusion

12.2 RESULTS

After introducing the relevant concepts and definitions regarding cryptographic hash func-
tions, a detailed description and re-construction of the attack on MD4 as formulated by
Dobbertin is presented in Chapter 6. Using a novel approach, an alternative solution is p-
resented which illustrates that a speed-up factor of 64 of the attack on MD4 as formulated
by Dobbertin, can be achieved. In Chapter 7 the attack on MD5 as formulated by Dob-
bertin is considered. The attack is reconstructed from the source code used by Dobbertin to
construct the collisions for MD5. Of particular interest are the techniques used to solve the
non-linear Boolean equations. In Chapter 8 the attacks on MD4 and MDS5 are generalised.
The generalised attack presents a framework for the analyses of all iterated hash functions. In
Chapters 9 and 10 the generalised attack is applied to SHA and HAVAL. It is shown that the
generalised attack can be applied to reduced versions of SHA and HAVAL. The new results
obtained for the HAVAL hash function indicates that three round HAVAL should not be used
for cryptographic applications. To the best of our knowledge this is the first cryptanalytical
result that has been published regarding the HAVAL cryptographic hash function.

In Chapter 11 we conclude this dissertation by presenting design criteria for dedicated cryp-
tographic hash functions. The design criteria are based on the lessons learned from the
analysis of MD4, MD5, SHA, SHA-1 and HAVAL. It is the intention that the application of

these design criteria will defeat the generalised attack presented in Chapter 8.

12.3 SUMMARY AND FUTURE WORK

In this dissertation the attacks on MD4 and MD5 were generalised and applied to the SHA
and HAVAL hash functions. Design criteria were proposed to defeat this generalised attack.
It remains to determine the full extent to which the generalised attack presented in Chapter
8 can be applied to a number of dedicated cryptographic hash functions. It may prove in-
teresting to apply this technique to a number of the Advanced Encryption Standard (AES)
candidates to determine the difficulty of obtaining collisions for these cryptographic primi-
tives. Another topic of interest lies in the design of message/key expansion algorithms. The
use of strong diffusion structures such as those proposed by Massey in such a design may

prove to be a challenging and interesting topic.

Electrical and Electronic Engineering 189

NIVERSITEIT VAN PRETORIA
NIVERSITY OF PRETORIA
UNIBESITHI YA PRETORIA

U
<

BIBLIOGRAPHY

[1] J. L. Massey, “Cryptography: Fundamentals and aplications,” 1995. Copies of Trans-

parencies, Advanced Technology Seminars.

[2] W. T. Penzhorn, “Hash functions and authentication,” Tech. Rep. WP2, Ciphertec cc,
24 January 1995.

[3] B. Preneel, Analysis and Design of Cryptographic Hash Functions. PhD thesis,
Katholieke Universiteit Leuven, 1993.

[4] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,” Journal of Com-

puter and Systems Sciences, vol. 18, pp. 143-154, 1979.

[5] Secure Electronic Transaction (SET) Specification Book 3: Formal Protocol Definition,
24 June, Revised August 1 1996.

[6] D. W. Davies and W. L. Price, “The application of digital signatures based on public-
key cryptosystems,” in Proc. Fifth Intl. Computer Communications Conference, p-
p. 525-530, October 1980.

[7]1 R. Anderson and E. Biham, “Two practical and provably secure block ciphers: BEAR
and LION,” in Fast Software Encryption, Third International Workshop (D. Gollman,
ed.), Lecture Notes in Computer Science No. 1039, Springer-Verlag, pp. 113-120,
1996.

[8] P. Morin, “Provably secure and efficient block ciphers,” Third Annual Workshop on
Selected Areas in Cryptography, pp. 30-37, 1996.

[9] C. H. Lim, “Message encryption and authentication using one-way hash functions,”

Third Annual Workshop on Selected Areas in Cryptography, pp. 38—48, 1996.

P
i

W UNIVERSITEIT VAN PRETORIA

0 UNIVERSITY OF PRETORIA

A~ 4

YUNIBESITHI YA PRETORIA

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

R. L. Rivest, “The MD4 message digest algorithm,” in Advances in Cryptology - CRYP-
TO ’ 90, Lecture Notes in Computer Science vol 537, Springer-Verlag, pp. 303 — 311,
1991.

B. den Boer and A. Bosselaers, “An attack on the last two rounds of MD4,” in Advances
in Cryptology - CRYPTO ’ 91, Lecture Notes in Computer Science No. 576, Springer-
Verlag, pp. 194-203, 1992.

H. Dobbertin, “Cryptanalysis of MD5 compress,” Rump Session EUROCRYPT ’ 96,
1996.

National Institute of Standards and Technology (NIST), FIPS Publication 180-1: Se-
cure Hash Standard (SHS), April 17, 1995.

H. Dobbertin, “Cryptanalysis of MD4,” in Fast Software Encryption, Third Interna-
tional Workshop (D. Gollman, ed.), Lecture Notes in Computer Science No. 1039,
Springer-Verlag, pp. 53-69, 1996.

H. Dobbertin, A. Bosselaers, and B. Preneel, “RIPEMD-160: a strengthened version
of ripemd,” in Fast Software Encryption, Third International Workshop (D. Gollman,
ed.), Lecture Notes in Computer Science No. 1039, Springer-Verlag, pp. 71-82, 1996.

R. C. Merkle, “One way hash functions and DES,” Crypto ’ 89, pp. 428-446, 1989.

P. R. Kasselman, “Analysis of dedicated hash functions,” Tech. Rep. Ciph-96-10, Ci-
phertec cc, November 1996.

G. J. Simmons, “A survey of information authentication,” in Contemporary Cryptology,
The Science of Information Integrity (G. J. Simmons, ed.), pp. 379-419, New York:
IEEE Press, 1991.

D. G. Abraham, G. M. Dolan, G. P. Double and J. V. Stevens, “Transaction security
system,” IBM Systems Journal, vol. 30, no. 2, pp. 206-209, 1991.

J.-J. Quisquater and J.-P. Delescaille, “How easy is collision search? New results and
applications to DES,” in Advances in Cryptology - CRYPTO ’ 89 (G. Brassard, ed.),
Lecture Notes in Computer Science No. 435, Springer-Verlag, pp. 408-415, 1990.

J.-J. Quisquater and J.-P. Delescaille, “How easy is collision search? Applications to
DES,” in Advances in Cryptology - EUROCRYPT’ 89 (J. Quisquater and J. Vandewalle,

Electrical and Electronic Engineering 191

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot
W UNIVERSITEIT VAN PRETORIA
Qe

BIBLIOGRAPHY

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

eds.), Lecture Notes in Computer Science No. 434, Springer-Verlag, pp. 428—433,
1990.

I. Damgérd, “A design principle for hash functions,” in Advances in Cryptology
- CRYPTO ° 89 (G. Brassard, ed.), Lecture Notes in Computer Science No. 435,
Springer-Verlag, pp. 416-427, 1990.

R. C. Merkle, “One way hash functions and DES,” in Advances in Cryptology - CRYP-
TO ' 89 (G. Brassard, ed.), Lecture Notes in Computer Science No. 435, Springer-
Verlag, pp. 428-446, 1990.

D. Coppersmith, “Another birthday attack,” in Advances in Cryptology - CRYPTO ’ 85
(H. C. Williams, ed.), Lecture Notes in Computer Science No. 218, Springer-Verlag,
pp. 14-17, 1986.

M. Girault, R. Cohen, and M. Campana, “A generalised birthday attack,” in Advances
in Cryptology - EUROCRYPT ’ 88 (C. G. Giinther, ed.), Lecture Notes in Computer
Science No. 330, Springer-Verlag, pp. 129-156, 1988.

L. Knudsen, “Cryptanalysis of LOKI,” in Cryptography and Coding III, vol. 45, p-
p- 223-236, The Institute of Mathematics and its Applications Conference Series,
Clarendon Press, Oxford, 1993.

M. J. B. Robshaw, “Block ciphers,” Tech. Rep. TR 601, RSA Laborities, 2 August
1995.

B. Kaliski and M. Robshaw, “Message authentication with MDS5,” CryptoBytes, vol. 1,
pp. 5-8, Spring 1995.

B. Preneel and P. C. van Oorschot, “MDx-MAC and building fast MACs from hash
functions,” in Advances in Cryptology - CRYPTO ’ 94 (D. Coppersmith, ed.), Lecture
Notes in Computer Science No. 963, Springer-Verlag, pp. 1-14, 1995.

D. W. Davies, “A message authenticator algorithm,” in Advances in Cryptology - CRYP-
TO * 84 (G. R. Blakley and D. C. Chaum, eds.), Lecture Notes in Computer Science
No. 196, Springer-Verlag, pp. 393-400, 1985.

B. Preneel and P. C. van Oorschot, “On the security of two MAC algorithms,” in Ad-
vances in Cryptology - EUROCRYPT’ 96 (U. Maurer, ed.), Lecture Notes in Computer
Science No. 1070, Springer-Verlag, pp. 19-32, 1996.

Electrical and Electronic Engineering 192

&y

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q¥ VU

NIBESITHI YA PRETORIA

BIBLIOGRAPHY

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

R. S. Winternitz, “Producing a one-way hash function from DES,” in Advances in Cryp-
tology - CRYPTO ’ 83 (D. Chaum, ed.), (New York), pp. 203—207, Plenum Press, 1984.

M. E. Hellman, R. Merkle, R. Schroeppel, L. Washington, W. Diffie, S. Pohlig, and
P. Schweitzer, “Results of an initial attempt to cryptanalyze the NBS Data Encryption
Standard,” Tech. Rep. SEL 76-042, Stanford University, 1976.

M. Kwan and J. Pieprzyk, “A general purpose technique for locating key scheduling
weakness in DES-like cryptosystems,” in Advances in Cryptology—ASIACRYPT "91
(H. Imai, R. Rivest, and T. Matsumoto, eds.), Lecture Notes in Computer Science No.
739, Springer-Verlag, pp. 237-246, 1993.

L. Brown, M. Kwan, J. Pieprzyk, and J. Seberry, “Improving resistance to differential
cryptanalysis and the redesign of LOKI,” in Advances in Cryptology—ASIACRYPT "91
(H. Imai, R. Rivest, and T. Matsumoto, eds.), Lecture Notes in Computer Science No.
739, Springer-Verlag, pp. 36-50, 1993.

J. Daemen, R. Govaerts, and J. Vandewalle, “Weak keys for IDEA,” in Advances in
Cryptology - CRYPTO ’ 93 (D. R. Stinson, ed.), Lecture Notes in Computer Science
No. 773, Springer-Verlag, pp. 224-231, 1994.

D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of checking computa-
tions (Extended abstract).” Internet, 1996.

A. Shamir and E. Biham, “Research anouncement: A new cryptanalytic attack on
DES.” Internet: http://jya.com/dfa.htm, 1996.

J.-J. Quisquater, “Short cut for exhaustive key search using fault analysis: Applications
to DES, MAC, Keyed hash function, Identification protocols,” Internet, 1996.

D. Coppersmith, “Analysis of ISO/CCITT Document X.509 Annex D.” Internal Memo,
IBM T.J. Watson Center, June 11, 1989.

T. Beth, F. Bausspie, and F. Damm, “Workshop on cryptographic hash functions,”
Tech. Rep. 92/11, E.I.S.S., 1992.

G. Brassard, “The impending demise of RSA?,” CryptoBytes, vol. 1, pp. 1-4, Spring
1995.

F. BausspieB and F. Damm, “Requirements for cryptographic hash functions,” Tech.
Rep. 92/2, E.LS.S., 1992.

Electrical and Electronic Engineering 193

http://jya.com/dfa.htm,

&~
W UNIVERSITEIT VAN PRETORIA
b 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

BIBLIOGRAPHY

[44] R. L. Rivest, “The MD4 message digest algorithm.” Internet Request for Comments
(RFC), 1990. RFC 1320.

[45] R. L. Rivest, “The MD5 message-digest algorithm.” Internet Request for Comments
(RFC), April 1992. RFC 1321.

[46] C. E. Shannon, “Communication theory of secrecy systems,” in Claude Elwood Shan-
non - Collected Papers (N. J. A. Sloane and A. D. Wyner, eds.), pp. 84-143, IEEE
Press, 1983.

[47] R. Anderson and E. Biham, “Tiger: A fast new hash function.” Internet, 1996.

[48] J. Daemen, Cipher and Hash Function Design. PhD thesis, Katholieke Universiteit
Leuven, 1993.

[49] X. Lai and J. L. Massey, “Hash functions based on block ciphers,” in Advances in
Cryptology - EUROCRYPT’ 92, Lecture Notes in Computer Science No. 658, Springer-
Verlag, pp. 55-70, 1992.

[50] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C.
New York: John Wiley & Sons, 1993.

[51] G.J. Kiihn, “S-box design and analysis,” Tech. Rep. Ciph-96-13, Ciphertec cc, Desem-
ber 1996.

[52] R. R. Jueneman, “A high speed manipulation detection code,” in Advances in Cryptol-
ogy - CRYPTO ’ 86 (A. Odlyzko, ed.), Lecture Notes in Computer Science No. 263,
Springer-Verlag, pp. 327-346, 1987.

[53] S. Vaudenay, “On the need of multipermuations: Cryptanalysis of MD4 and SAFER,”
in Proceedings of the 1994 Leuven Workshop on Cryptographic Algorithms, Lecture
Notes in Computer Science vol 1008, Springer-Verlag, pp. 286-297, 1995.

[54] H. Dobbertin, “RIPEMD with two round compress is not collision-free,” Journal of
Cryptology, vol. 10, no. 1, pp. 51-70, 1997.

[55] H. Dobbertin, “The status of MDS3 after a recent attack,” CryptoBytes, vol. 2, pp. 1-6,
Summer 1996.

[56] P. R. Kasselman, “A fast attack on the MD4 hash function,” in Comsig 97 (M. Ings,
ed.), no. 97TH8312 in IEEE Catalog, pp. 147-150, South African Section IEEE, 1997.

Electrical and Electronic Engineering 194

o
W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q) YU

NIBESITHI YA PRETORIA

BIBLIOGRAPHY

[57] P. R. Kasselman, “Analysis and design of hash functions: Part II,” Tech. Rep.
Ciph/97/12/1(11), Ciphertec cc, December 1997.

[58] P. R. Kasselman, “Analysis and design of hash functions: Part I,” Tech. Rep.
Ciph/97/12/1(1), Ciphertec cc, December 1997.

[59] A.J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptog-
raphy. New York: CRC Press, 1997.

[60] A.Meijer, “Galois field counters and linear feedback shift registers,” 1997. Class notes.

[61] W. W. Peterson and E. J. Weldon, Error Correcting Codes. Massachsetts: MIT Press,
2 ed., 1972.

[62] Y. Zheng, J. Pieprzyk, and J. Seberry, “HAVAL - a one-way hashing algorithm with
variable length of output,” in Advances in Cryptology — Auscrypt *92 (J. Seberry and
Y. Zheng, eds.), (Berlin), pp. 83-104, 1993.

[63] J. F. Wakerly, Digital Design Principles and Practices. London: Prentice-Hall Interna-
tional Editions, 1990.

[64] E. K. Grossman and B. Tuckerman, “Analysis of a feistel-like cipher weakened by
having no rotating key,” Tech. Rep. RC 6375, IBM T.J. Watson Research, Jan 1977.

[65] E.Biham, “New types of cryptanalytic attacks using related keys,” in Advances in Cryp-
tology— EUROCRYPT ’93 (T. Helleseth, ed.), Lecture Notes in Computer Science Vol
735, (Berlin), Springer-Verlag, pp. 398-409, 1994.

[66] C. M. Adams, “Simple and effective key scheduling for symmetric ciphers (extended
abstract),” Workshop on Selected Areas in Cryptography, pp. 129-133, 1994.

[67] V. Rijmen, Cryptanalysis and Design of Iterated Block Ciphers. PhD thesis, Katholieke

Universiteit Leuven, 1997.

[68] M. N. Wegman and J. L. Carter, “New hash functions and their use in authentication

and set equality,” Journal of Computer and Systems Sciences, vol. 22, pp. 265-279,
1981.

[69] A.R. Meijer, “Universal hash functions in authentication,” Tech. Rep. KT437122, Ci-
phertec cc, 28 February 1996.

Electrical and Electronic Engineering 195

A=
% UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

BIBLIOGRAPHY

[70]

[71]

[72]

[73]

[74]

(75]

[76]

[77]

[78]

[79]

[80]

S. M. Matyas, C. H. Meyer, and J. Oseas, “Generating strong one-way functions with
cryptographic algorithms,” IBM Tech. Disclosure Bull., vol. 27, no. 10A, pp. 5658-
5659, 1985.

B. Preneel, R. Govaerts, and J. Vandewalle, “Hash functions based on block ciphers:
a synthetic approach,” in Advances in Cryptology - CRYPTO ’ 93 (D. R. Stinson, ed.),
Lecture Notes in Computer Science No. 773, Springer-Verlag, pp. 368-378, 1994.

X. Lai, R. Rueppel, and J. Woollven, “A fast cryptographic checksum algorithm based
on stream ciphers,” in Advances in Cryptology — AUSCRYPT ’92 (J. Seberry and
Y. Zheng, eds.), Lecture Notes in Computer Science No. 718, (Berlin), Springer-
Verlag, pp. 339-348, 1993.

M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for message authen-
tication,” in Advances in Cryptology - CRYPTO ’ 96 (N. Koblitz, ed.), Lecture Notes in
Computer Science No. 1109, Springer-Verlag, pp. 1-15, 1995.

M. Bellare, R. Canetti, and H. Krawczyk, “The HMAC construction,” CryptoBytes,
vol. 2, pp. 12-15, Spring 1996.

G. Tsudik, “Message authentication with one-way hash functions,” ACM SIGCOMM,
Computer Communication Review, vol. 22, pp. 29-38, Oct. 1992.

J. M. Galvin, K. McCloghrie, and J. R. Davin, “Secure management of snmp networks,”

Integrated Network Management II, pp. 703-714, 1991.
J. Linn, “The Kerberos version 5 GSS-API mechanism.” RFC 1964, 1996.

M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for mes-
sage authentication.” Internet: http://www.research.ibm.com.security/ or http://www-

cse.ucsd.edu/users/mihir/papers/papers.html, 1996.

M. Bellare, R. Guérin, and P. Rogaway, “XOR MACs: New methods for message au-
thentication using finite pseudorandom functions,” in Advances in Cryptology - CRYP-
TO’ 95 (D. Coppersmith, ed.), Lecture Notes in Computer Science No. 963, Springer-
Verlag, pp. 15-28, 1995.

M. Bellare, R. Guérin, and P. Rogaway, “XOR MACs: New methods for mes-
sage authentication using finite pseudorandom functions.” Internet: http://www-

cse.ucsd.edu/users/mihir/papers/papers.html, 1995.

Electrical and Electronic Engineering 196

http://www.research.ibm.com.security/

&

=

W UNIVERSITEIT VAN PRETORIA
b 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

BIBLIOGRAPHY

[81] W.T. Penzhorn, “Study into international standards,” Tech. Rep. Ciph-96-12, Ciphertec
cc, 6 December 1996.

[82] M. Bellare, J. Kilian, and P. Rogaway, “The security of cipher block chaining,” in Ad-
vances in Cryptology - CRYPTO ’ 94 (Y. G. Desmedt, ed.), Lecture Notes in Computer
Science No. 839, Springer-Verlag, pp. 341-358, 1994.

Electrical and Electronic Engineering 197

&y

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q¥ VU

NIBESITHI YA PRETORIA

APPENDIX A: ADDITIONAL HASH FUNCTION
CONSTRUCTIONS

A.1 INTRODUCTION

This Appendix describes a number of additional hash function constructions. Specific atten-
tion is given to tree constructions, the cascading of hash functions and the use of block and
stream ciphers to construct round functions that can be used as part of the Ddmgard-Merkle
construction. A number of generic techniques that allows the construction of MACs based on

MAC:s are also considered. A short review of current international standards is also included.

A.2 TREE CONSTRUCTIONS

This scheme is specifically intended for high speed hashing. The first construction along
these lines was presented by Carter and Wegman [68]. In [69] this scheme is referred to
as concatenation hashing. It was re-discovered independently by Preneel [3] and Damgérd

[22]. This hash scheme can be generalised and requires the following:

1. A round function f() that takes a fixed input of m bits and reduces it to n bits.
2. Padding rule.

3. A scalable number of parallel processors.

The difference between the construction by Preneel and the construction by Carter and Weg-
man is found in the round function used. Carter and Wegman propose the use of a universal
hash function (a complexity theoretic construction). Preneel specifies that any secure round
function, f(), could be used. It is advised that the round function chosen for this scheme
should adhere to the conditions imposed on round functions used in the Damgard-Merkle

scheme (see Section 5.3).

For the tree hashing scheme to work it is required that the message length, r should be a
multiple of the block length m. In addition it is required that the number of blocks in the
original message should be a multiple of two. These requirements imply a form of padding.

The same padding rules as described in Section 5.3 can be applied to this construction.

-
&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q¥ YU

NIBESITHI YA PRETORIA

Appendix A Additional Hash Function Constructions

A.2.1 Construction
A description of the construction of a tree structured hash function is presented below.

For a message of length r = 29 withg € Z, q > 0:
H' = f(Xp_1, X) i€ {1,2,3...2971}
H = fHLHEY ie{1,2,3...277}
j€{2,3...r—1}
MX) = f(H]', H;).

A graphical representation of this scheme is presented in Figure A.1.

Message X (r bits in length)

AN EEEEEEEEEE

Split X into i blocks Split X into i blocks Split X into i blocks \\Split X into i blocks

LI HNEEEEEEEN

Concatenate Adjacent Blocks !

!
\

\ Concatenate Adjacent Blocks

\
o L LTI T TTT] HENEEEEEEEE
\\‘\\ Hash Block to nbits E E Hash Block to nbits ’,/’//
-~ Lo .-
-~ Voo .-
L L] L L]
“\ Concatenate Results “\ ,” Concatenate Results ,',

o TT T T T}

N Hash Block to nsbits s .

~

TTLIT117

<L

Result of Hash Function h()

Figure A.1: General Tree Construction for Hash Function

Note that the scheme can be adapted for use as a MAC by making the round function key
dependent.

Electrical and Electronic Engineering 199

-
% UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
\ 4

YUNIBESITHI YA PRETORIA

Appendix A ' Additional Hash Function Constructions

A.2.2 Practicality

This scheme is faster than the Damgard-Merkle scheme. It is stated in [3] that the hash

function, k() can be performed for an r bit input with % processors with:
k
(e (i)
r—n n

evaluations of f(). A further advantage of this scheme is the avoidance of chaining and

consequently all attacks dependent on the chaining.

The tree hashing scheme has the disadvantage that no known analysis has been performed
on this structure. Consequently little is known of its security. Another disadvantage of this
scheme is the cost involved. This hash function depends on the use of several processors
which can operate in parallel. Since it is required that a hash function should be able to
hash messages of arbitrary length, an arbitrary number of processors are required. As the
message length r — oo the number of processors, ¢ — oco. It can be assumed that the cost of
implementing such a hash function would escalate accordingly. An implementation of this

scheme is therefore impractical due to the costs involved.

This scheme can be made practical by introducing chaining. This solution should be seen
as a hybrid between the Damgard-Merkle scheme and the tree construction scheme. The
round function f() in the Damgérd-Merkle scheme is effectively replaced by the tree hashing
scheme. The hybrid scheme has the disadvantages of reducing the performance and re-

introducing attacks dependent on the chaining.

Thus a trade-off between speed, cost and security has to be made when using the tree con-
struction. According to [3] a speedup factor of ¢ is achieved if ¢ processors are used. It
is possible to use the tree construction not only in the construction of a hash function, A(),
but also in the construction of a round function f(). It is not known if any practical hash

functions are based on this scheme.

A.3 CASCADING OF HASH FUNCTIONS

The following observations are made in [3] regarding the cascading of hash functions. Let

A||B denote concatenation of message B to A. If hi() and hy() are hash functions that

Electrical and Electronic Engineering 200

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

-

&

53 UNIVERSITEIT VAN PRETORIA
Ct

Appendix A Additional Hash Function Constructions

produces hash values of n; and n, bits respectively, and ¢() is a one way function that yields

a n3-bit result, then:

1. h(X1, Xs) = g(h1(X1)||h1 (X)) is a CRHF if Ay () is a CRHF and g() is a CRE,

2. h(X;) = g(h1(X1)||h2(X1)) is a CRHF if either hi() or hy() is a CRHF and g() is a
CRE

3. h(Xy) = h1(X1)||h2(X) is a CRHF if either k() or hy() is a CRHF.

The first construction is equivalent to the tree construction discussed in Section A.2 and
results in a hash length of n3. The second construction describes a CRHF that is at least as
strong as the strongest of h;() or hy(), provided g() is a CRE The resultant hash length for
the second construction is ns. The third construction omits the use of a CRF, consequently

the hash length equals n; + 1y > ns.

In terms of hash speed, the first construction is more efficient since two message blocks are
hashed at a time. In terms of security the last two constructions are more secure since two
hash functions are used. If one of the hash functions is insecure, the entire construction does

not become insecure. These constructions can be extended to more than two hash functions.

A.4 ROUND FUNCTION CONSTRUCTIONS
A.4.1 Block Ciphers

Block ciphers are often used in an iterated construction as a round function. The popularity
of block ciphers used as round functions are due to the correlation between the requirements
set for hash functions and block ciphers. The use of block ciphers has the advantage that
the cost and effort of designing and analysing a new round function is drastically reduced,
provided that a trusted block cipher is used. An additional advantage when using a block
cipher as a round function is that block ciphers are designed to accommodate a secret key.
This is an advantage when constructing a MAC. Three disadvantages should be noted when
using a block cipher as a round function. The first disadvantage deals with the functional
requirement of speed. Hash functions that contain block ciphers as building blocks are slower

than dedicated hash functions. The second disadvantage is the introduction of additional

Electrical and Electronic Engineering 201

-
w UNIVERSITEIT VAN PRETORIA
@, VUNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

Appendix A Additional Hash Function Constructions

attacks, based on certain properties of blocks ciphers (see Chapter 3 Section 3.6). A third
disadvantage is that a number of hash functions have a block size of 64 bits. It is generally
believed that the hash length should equal 128 bits or more, in order to provide protection

against birthday attacks (see Chapter 3 Section 3.4).

A distinction is made between round functions for which the length of the chaining variable
is equal to the block length, and round functions for which the length of the chaining variable

is equal to twice the block length of the block cipher.

Before proceeding consider the following notation. Let E (K, X;) denote the encryption of
message block X; with key K.

Hash Length Equal to Block Length

Figure A.2 depicts a generic configuration for a block cipher used as a round function in a

hash function.

B C
A L]
4 . E

Figure A.2: Generic Round Function from a Block Cipher

Note that three inputs, A, B, and C' are available. Each input can take one of four possible
inputs, X;, H; 1, X; ® H;_, or a constant. Thus there are 43 = 64 possible configurations of
the construction presented in Figure A.2. A general expression for the above construction is

given by:

Ho - IV
H, = E(A,B)aC.

These structures were analysed in [3]. The result of this analysis is that only four of these

constructions are considered secure against all attacks. They are defined by the following

Electrical and Electronic Engineering 202

&
W UNIVERSITEIT VAN PRETORIA
A~ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Appendix A Additional Hash Function Constructions

expressions [3], [50]:

H; = E(u(Hi1),X:) ®

H;, = E(u(H;_,),(X;® H;_ 1))69Xi€9Hi—1
H, = E(u(Hi_,),X:)® Hi_, & X;

H, = E(u(H,_,),(X;® H;_1)) ® X;

The function u() is a mapping from the ciphertext space to the key space. A visual represen-

tation of these constructions are presented in Figure A.3.

Hi iy
X Key H. X. Key H,;
’ D' D 5P
Encrypt Encrypt
(a) b
Hiy Hi
Xi Koy Nan A Xi N Key WA
L/ 'H(L ’\K
Encrypt Encrypt

©)]
Figure A.3: The Four Secure Round Function Constructions Based on Block Ciphers
Figure A.3(a) is known as the Matyas hash scheme [70]. Figure A.3(c) is known as the

Preneel-Miyaguchi hash scheme. The dual of the scheme in Figure A.3(a) is known as the

Davies-Meyer scheme and is depicted in Figure A.4.

Electrical and Electronic Engineering 203

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot

&

W UNIVERSITEIT VAN PRETORIA
Qe

Appendix A Additional Hash Function Constructions

H; Key

&

Encrypt

Figure A.4: Davies-Meyer Hash Scheme

The analytical expression for the Davies-Meyer scheme is given by:

Hl‘ == E(h(Xl), Hiﬁl) D H’i—l-

These schemes have been analysed in [3] with regard to:

Direct attacks.

Permutation attacks.

e Backward attacks.

Fixed point attacks.

Hash Length Equal to Twice the Block Length

Two constructions based on a 7 bit cipher resulting in a 2 - n bit hash result are proposed in
[49]. These constructions are based upon the availability of a block cipher with a n-bit block
size and a 2 - n bit key. One such block cipher is IDEA. These constructions are considered
variants of the Davies-Meyer scheme mentioned earlier. The first is denoted the tandem

Davies-Meyer, and is shown in Figure A.5(a).

Electrical and Electronic Engineering 204

P
w UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Appendix A Additional Hash Function Constructions
Hi-l Encrypt Wm H,; H; Encrypt f\ H;
: L/ ! N
Key Key
& >#i
X.
X i
1
T T
G Key G, Key G,
i-1 h N i G i1 \ N i
L/ —=() N
Encrypt x Encrypt H

(@ (b)

Figure A.5: (a) Tandem Davies-Meyer Scheme (b) Abreast Davies-Meyer Scheme

It is described analytically as follows:

Gy = IV;

Hy = IV,

Wi = E(Gi-1||Xi, Hi-1)

Gi = Gi.1® E(Xi||Wi1,Gio1)
H, = W, H,_,.

The Davies-Meyer abreast scheme is also defined in [49] and shown in Figure A.5(b). Ana-

lytically the construction is expressed as:

Go = IV,
Hy = IV,
Gi = Gio1 ® E(Xi||Hi-y, (Gi-1))
H; = Hi, & E(Gi||Xi, (Hi-1))

Two additional schemes, which employ block ciphers to construct round functions with a
hash length equal to twice the block length, are MDC2 and MDC4. MDC?2 is defined as

Electrical and Electronic Engineering 205

&
W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q¥ VU

NIBESITHI YA PRETORIA

Appendix A Additional Hash Function Constructions
follows:
Hy, = IV,
H, = IV,
Tl; = E(Hi_1, X))
LT1;||RT1;
T2 = E(Gi1, X))
LT2;||RT2;

G; = LT2]||RT1,

with:

LTz; = Lefthand g bits of n bit block.

RTz; = Righthand g bits of 7 bit block.

r = lor2.

MDC4 is defined as the application of two consecutive rounds of MDC2. Thus, the result is
that MDC2 is approximately twice as fast as MDC4. It is believed that MDC4 is more secure
than MDC2.

Block diagrammatic forms of MDC2 and MDC4 are presented in Figure A.6(a) and Figure
A.6(b) respectively.

Electrical and Electronic Engineering 206

Appendix A

<

UNIV

UNIVERSITEIT VAN PRETORIA

ERSITY OF PRETORIA

YUNIBESITHI YA PRETORIA

Additional Hash Function Constructions

RTI

L Key

RT2;

Encrypt

Encrypt

LT2

RTI;

Key

LTI

RT2; i
Key Ti; ! _\ / G;
Encrypt
P LTZ,- LT2’-
RTI, RT2;
Encrypt T2; ! H;
Key LTI, LTI;
(a)
RTII» RTZ’- RTI,-
\ [key | | 1 \ [
Encrypt
i LT2, P LT2; LT2,
i i 1
RT2, RTI; RT2;
! Encrypt T2 !

LTI,

KU

Little research has been performed with regard to the security of MDC2 and MDC4.

(b)

Figure A.6: (a) MDC2 (b) MDC4

MAC:s Based on Block Ciphers

LTl

LT1;

As shown in Section 5.3 MACs can be based on iterative schemes, providing that the re-

sulting hash value is key dependent. Block ciphers are suitable for constructing MAC round

functions since block ciphers are designed to accommodate secret keys. Two constructions

based on blocks ciphers are available.

1. Cipher block chaining (CBC).

2. Cipher feedback chaining (CFB).

Electrical and Electronic Engineering

207

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot

&

W UNIVERSITEIT VAN PRETORIA
Qe

Appendix A Additional Hash Function Constructions

The block cipher used in CBC mode for a MAC round function construction is described as

follows:
Hy = IV
H;, = E(K,XZ@H,_l) 6{1,2,3,...,j}

A graphical representation of this construction for a MAC round function is shown in Figure

A.7(a). The block cipher construction used in CFB mode is described as follows:

HO - IV
H, = E(K,Hi_l) D X; € {1,2,3,... ,]}
H(X) = H,

Refer to Figure A.7(b) for a graphical representation of this construction. Note that in the
case of CFB, the final result has to be encrypted once again in order to remove the linear
dependence of the MAC on the last plaintext block. A third construction was proposed in

[71]. It is represented in Figure A.7(c) and is described below:

HO e IV
Hi = E(K7X1®Hz—l)®Xz 6{152737"-7j}
H(X) = H,

It is believed that this construction is harder to invert [2] than the previously mentioned
constructions. In [3] it is advised that, should encryption of the MAC be required, a different
key should be used for encryption purposes.

X; H;;

i
H. 9 Hi {

K]E KjE K:|E

<
N

QLI
&

(@) (b ©)

Figure A.7: Block Cipher Based MAC Round Functions

Electrical and Electronic Engineering 208

-
% UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
\ 4

YUNIBESITHI YA PRETORIA

Appendix A Additional Hash Function Constructions

Suitable Block Ciphers

A number of block ciphers have been proposed. However, not all block ciphers are suitable
for use as round functions in cryptographic hash functions. It should first be noted that the
security of the hash function constructed from a block cipher is based on the assumption
that the underlying block cipher is secure. Thus block ciphers which are considered insecure
should be avoided. In addition certain properties of block ciphers allow the resulting hash

function to be susceptible to specific attacks. These properties include:

1. Key collisions.
2. Complementation property.

3. Weak keys.

The manner in which these properties are exploited is considered in Chapter 3, Section 3.5
and 3.6.

A.4.2 Stream Ciphers

It is conceivable that the round function of a hash function can be based on a stream cipher.
This type of construction is hinted at in [69]. It may be possible to adapt the construction
presented in [72] to construct a round function for an iterated hash function. Little is known

of the security of hash function based on stream ciphers.

A.5 MAC CONSTRUCTIONS BASED ON MDCS

Traditionally MACs are based on block ciphers (see Section A.4.1). Recently various tech-
niques for constructing hash functions from MDCs were proposed [29], [73], [74]. The
preference for the use of MDC based MACs over block cipher based MACs is based on the

following factors:

1. Speed of execution.

2. Export restrictions.

Electrical and Electronic Engineering 209

&~
W UNIVERSITEIT VAN PRETORIA
b 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Appendix A Additional Hash Function Constructions

Speed of execution is an important functional requirement (see Chapter 4 Section 4.2.4).
The matter of export restrictions is a political one. Several countries, most notably the USA,
restrict the export of certain cryptographic functions. A large number of block ciphers are
covered by these restrictions. Thus, MACs based on block ciphers may not be exported to
other countries. It has been proposed that MACs are used in electronic transactions on the
Internet [5]. The Internet spans across the globe, and participants from different countries
may wish to engage in electronic banking transactions. Thus, MACs based on block ciphers
cannot be used for secure Internet Transactions, due to export restrictions. For this reason
MAC:s based on MDCs are preferred over MACs based on block ciphers, since MDCs are
not restricted by export controls. Because of these reasons MDC based MACs were adopted
in Kerberos, IPSec and SET [5] [29].

It should be remembered that MDCs were not designed to accommodate a key. Thus, when
constructing MACs from MDCs, care should be taken in the manner in which the key for
the MAC is introduced. The key should be introduced in such a manner that the resulting
hash value does not reveal any information of the secret key. This requirement is based on

the principles of confusion and diffusion as introduced by Shannon [46].

A number of MAC constructions based on MDCs were proposed. These include:

1. Affix construction.

2. IPSec recommendations
3. NMAC construction.

4. HMAC construction.

5. M Dx-MAC construction.

6. XOR-MAC construction.

A description of each of these constructions are presented in this section.

A.5.1 Affix Construction

Three affix constructions are identified. They are:

Electrical and Electronic Engineering 210

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&
W UNIVERSITEIT VAN PRETORIA
A 4

Appendix A Additional Hash Function Constructions

1. Secret prefix method.
2. Secret suffix method.

3. Envelope method.

These constructions and the security offered by these constructions are considered next.

Secret Prefix Method

The secret prefix construction was proposed independently in [75] and [76]. This construc-
tion requires that the secret key, K, be prepended to the message X . Thus the prefix method

can be described as

MAC(X) = h(K[|X)

with:

h() = TIterated MDC

|| = Concatenate.

A graphical representation of this construction is shown in Figure A.8(a). This construction
is considered insecure due to the message extension or padding attacks [75] [29]. A variant
of the prefix construction with MDS3 is used in Kerberos V. This construction is denoted as

MD2.5 [77]. Concern is expressed over the security of this construction in [29].

Secret Suffix Method

This construction is described in [75]. The secret suffix construction appends the secret key

K to the message X before hashing. The construction is described as follows:

MAC(X) = h(X||K2)

with:
h() = TIterated MDC

|| = Concatenate.

Electrical and Electronic Engineering 211

&~
W UNIVERSITEIT VAN PRETORIA
b 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Appendix A Additional Hash Function Constructions

A graphical representation of this construction is shown in Figure A.8(b). A number of
attacks on this construction are described in [29]. If off-line attacks are allowed, an inter-
nal collision can be found in approximately O(27) off-line operations. A second attack is
possible if a second pre-image attack on the underlying MDC is possible. A third attack is
considered possible if ¢ text-MAC pairs are known. The number of known text-MAC pairs

reduces the computational effort to construct a second pre-image from O(2") to O(27).

Envelope Method

The envelope construction is described in [75]. This construction prepends the secret key,
K, and appends the secret key, Ko, to the message, X, before hashing (see Figure A.8(b)).

The construction is described as follows:

MAC(X) = h(K1||X||K>)

with:

h() = TIterated MDC

|| = Concatenate.

In [75] it is claimed that the effective key length for the envelope construction is equal to the
length of K (k, bits) added to the length of K, (k, bits). Thus according to [75] O(2F1+F2)
operations are required to establish a collision. This is shown to be incorrect in [29]. In [29]
it is demonstrated that the effective key length is less than or equal &; + 1, for whichever
is the larger of k; or k.. This implies that the number of operations required to establish a
collision are less than or equal to O(2%+1!) for whichever is the larger, k; or ky. Thus the
security gained by selecting K; # K, is less than expected. A divide and conquer attack
on the envelope method is described that establishes an internal collision and then searches

exhaustively for the two respective keys.

Electrical and Electronic Engineering 212

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot

&

g;a UNIVERSITEIT VAN PRETORIA
Qe

Appendix A Additional Hash Function Constructions
Prefix Method Suffix Method Envelope Method
Secret Prefix Secret Prefix
Ky K,y

Message

X

Secret Suffix Secret Suffix
K; Kj

(a) (b) ©

Figure A.8: Affix Constructions

The attacks on the affix constructions are easier than attacks on an ideal MAC. However,
provided that the hash function, h(), is collision resistant, the attacks on the affix construc-
tions remain computationally infeasible. Key recovery attacks on these constructions are

presented in [31].

A.5.2 [IPSec recommendations

In [28] three MAC constructions based on MD5 are presented. These proposals were sub-
mitted to the IPSec working group. The constructions could be viewed as variations of the

affix methods described in Section A.5.1. The three proposals are summarised below:

MAC(X) = MD5(K,|[MD5(K,|| X))

Electrical and Electronic Engineering 213

&~
m UNIVERSITEIT VAN PRETORIA
b 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Appendix A Additional Hash Function Constructions

with:

MD5() = MDS5 hash function
|| = Concatenate
K, = 128bitkey
K, = 128bitkey

X = Message.
2.
MAC(X) = MD5(K,||p|| X[K1)
with:
MD5() = MDS hash function
|| = Concatenate
K, = 128 bitkey
p = 384 padding bits
X = Message.
3.
MAC(X) = MD5(K;|[MD5(K;|| X))
with:

MD5() = MDS5 hash function
|| = Concatenate
K, = 128 bit key
X = Message.

The second proposal is effectively the envelope method with K; padded to form a 512 bit
block. In addition it differs from the envelope method since K| # K. Thus, K| specifies
an initial value for the MDS5 hash algorithm applied to the message block. Reservation has
been expressed on the use of the initial value as a secret key [3]. The key is however also

appended to the message for hashing. This should increase the security of the resultant

Electrical and Electronic Engineering 214

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

4
W UNIVERSITEIT VAN PRETORIA
A 4

Appendix A Additional Hash Function Constructions

MAC. This technique is considered susceptible to a divide and conquer attack as described

in Section A.5.1.

In [28] it is stated that the chosen message attack requires 2% chosen texts. In [29] it shows
that this can be reduced to 2°% known text-MAC pairs if it is assumed that the number of

trailing blocks, s, are 216,

A.5.3 NMAC Construction

NMAC is an acronym for nested message authentication code. It is defined in [73] and [78].

It is a generic construction of the following form:

NMAC(X) = hg, (hx, (X))

with:

hk,() = Keyed hash function or a MAC
K = Keyl
Ky = Key?2
X = Message.

The NMAC construction does not propose a technique for constructing a keyed hash func-
tion. The security of this construction is based on the conditions imposed on the compress

function of the keyed hash function and the iterated hash function itself.

A.5.4 HMAC Construction

The HMAC construction is a variant of the NMAC construction for which the IV is fixed.
This construction requires no changes to the MDC used for constructing a MAC. The con-
struction involves a single key, K, of length & bits. The use of a single key is advantageous
with regard to key management and its associated problems. The HMAC construction is
defined in [73], [74], [78] as:

HMAC(X) = h(K @ opad||h(K @ ipad||X))

Electrical and Electronic Engineering 215

=
W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Qe

YUNIBESITHI YA PRETORIA

Appendix A Additional Hash Function Constructions

with:

h() = Hash function
K = Thekey, K, padded with 0's to form an elementary block
opad = The byte 0X36 repeated to form a elementary block
ipad = The byte 0X5C repeated to form a elementary block

@ = Bitwise XOR

|| = Concatenation

X = Message.

This procedure is summarised in Figure A.9

h(k D ipad Il X) h(kD opad Il h(k€D ipad Il X))

g 2
_ = 2
k @ ipad % k @ opad |2
=Y
5 5
w m
2 2

~ ~ HMAC

Perform bi Result
Hash 0 I;l_ ltl E
1) . ash value -
: Padded Operation §
I 1 w
! Message | g
! ! Padding bits | &
I—_' 7%

Figure A.9: HMAC Construction

The security of the HMAC construction is based on the security of NMAC. The relation
between these two constructions are found in the construction of the two derived keys K,
=opad @K and K, =ipad @K. Thus HMAC is a specific instance of NMAC. It is stated
in [73] that attacks against HMAC may exist, but that these attacks are not necessarily ap-
plicable to NMAC. Note that effectively using the same key, K, in both applications of A()

does not weaken the construction significantly due to the existence of the divide and conquer

attack mentioned in Section A.5.1.

Electrical and Electronic Engineering 216

P
i

W UNIVERSITEIT VAN PRETORIA

0 UNIVERSITY OF PRETORIA

A~ 4

YUNIBESITHI YA PRETORIA

Appendix A Additional Hash Function Constructions

The HMAC construction has become the mandatory construction for use in authentication
transforms for Internet security protocols. The HMAC construction is also specified in the
SET specification [5]. At present all of the known generic attacks against HMAC are con-
sidered infeasible [73], [74], [78].

AS5.S5 MDx-MAC Construction

This construction is suggested in [29]. The following design goals were set for this construc-

tion:

1. The secret key should be involved at the beginning, at the end, and in every iteration

of the hash function.
2. The deviation of the original hash function should be minimal.
3. The performance should be close to that of the hash function.
4. Additional memory requirements should be kept minimal.

5. The approach should be generic, i.e. should apply to any hash function based on the

same principles as MD4.

This construction can be used with MD5, RIPEMD or SHA. MD4 is omitted due to the attack
described in [17]. In this section M Dz refers to one of the three hash functions mentioned
above. Let M Dz refer to an implementation of M Dz with both padding and appending
length omitted. The resulting construction utilises three 128 bit (16 byte) constants, Tp, T}
and T,. These constants are used to construct three additional 768 bit constants Uy, U; and
U,. If the key is shorter than 128 bits, the key is expanded to be of a 128 bits length. Once

this is accomplished, three sub-keys, Ky, K; and K5, are derived as follows:

K, = MDz(K||UJIK) i€ {0,1,2}

The constants U; are required to ensure that the hash is computed over two iterations of the
hash function, thus increasing the difficulty of retrieving K from any of the K;, even if two
of the sub-keys are known (see Figure A.10). The mapping from K to K; is not bijective,
but the reduction in entropy is believed to negligible [29].

Electrical and Electronic Engineering 217

o

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q¥ VU

NIBESITHI YA PRETORIA

Appendix A Additional Hash Function Constructions
128 Bits [X
384 Bits X
~ U i -
384 Bits
X,
128 Bits | K j

Figure A.10: M Dz Key Expansion

Once this step is completed the leftmost 128 bits of the sub-key K is split into four 32-bit
blocks denoted as K [i], with 0 < ¢ < 3 (see Figure A.11).

32 Bits
| —

Ky Lol v]2]s]
L |

128 Bits

Figure A.11: M Dx K; Sub-key Partitioning

The resulting MAC is now calculated as follows:

1. The initial value, IV, of M Dz is replaced by K.

2. K,[i mod 4] is added modulo 232 to the constants used in round i of each iteration of
MDzx.

3. Following the last block after normal processing of M Dz (i.e. including the padding
and addition of message length), append an additional 512 bit block. The additional

block is derived from the constants Ty, T, 75 and the sub-key K, as shown below:

K||Ky @ Th|| Ko & Th || Ky @ T,

4. The MAC result is the leftmost m bits of the resulting hash value. It is advised that

m==z

3"

Electrical and Electronic Engineering 218

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(024}:

Appendix A Additional Hash Function Constructions

A summary of the above procedure is shown in Figure A.12.

IV:KO

]

Padded
Message

n- 512 bits

[y pow 1) 'y ppy

Appended
K,
512 bits

Figure A.12: M Dx MAC construction

Let s represent the number of common trailing blocks in two messages. In [29] it is stated
that if the MAC length m = %, a forgery attack requires 0(8—2%) chosen text-MAC pairs and
O(\/2871—1) known texts. Thus M Dz-MAC is more secure than the envelope method described
in Section A.5.1. It is also stated in [29] that the divide and conquer attack described in

Section A.5.1 is not applicable to M Dz-MAC.

A.5.6 XOR-MAC Constructions

This construction is described in [79] and [80] and resembles the multiple message hash
scheme described in [68] and [69]. This scheme does not show how to construct a MAC
from a MDC, but does make use of keyed MDCs in the construction of the MAC. A generic

description of this scheme is presented below:

XOR-MAC(X) = Fy(X[1]) ® Fi(X[2]) ® Fo(X[3]) @ ... @ Fo(X[m])

Electrical and Electronic Engineering 219

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b ot
W UNIVERSITEIT VAN PRETORIA
Qe

Appendix A Additional Hash Function Constructions
with:
Fx() = Keyed pseudorandom function
@® = Bitwise XOR
X = Message
m = Number of elementary blocks in message X
X[i] = Elementary message blocki i€ {1,2,3,...m}.

Thus the message is divided into elementary block lengths and then processed by a pseudo-
random function. The pseudorandom function, PRF, should be keyed. It is suggested in [79]
and [80] that the PRF could be either a block cipher, or a keyed hash function. The result
of the PRF for each message block is then XOR’ed with the previous result. Once the last
XOR is performed, the MAC is calculated. Figure A.13 presents a visual interpretation of

this scheme.

X[1] X[2] X[3] _E

PRF PRF PRF PRF
[PREX(1D) | ® [PREX[2)) | @ [PREX3D | @ .. @ [PRECKm)] = MAC

Figure A.13: XOR-MAC construction

Concrete proposals for schemes making use of this construction are presented in [79] and
[80], followed by analysis of the security of these proposals. This scheme is highly paral-
leliseable and has the additional advantages of out of order verification. If only a single block

in a message is changed, the output can be updated without recomputing the entire MAC.

A.6 INTERNATIONAL STANDARDS

A number of hash function constructions are under consideration for standardisation. A
summary of these can be found in chapter 3 and chapter 5 of [81]. The multipart standard,
ISO/IEC 10118, contains the following proposals.

Electrical and Electronic Engineering 220

P
i

W UNIVERSITEIT VAN PRETORIA

0 UNIVERSITY OF PRETORIA

A~ 4

YUNIBESITHI YA PRETORIA

Appendix A Additional Hash Function Constructions

ISO/IEC 10118-1: This part of the standard provides general definitions and background to
the remainder of the standard. The iterative hash function construction as defined in

Section 5.3 is contained in this part of the proposed standard.

ISO/IEC 10118-2: This part of the standard specifies hash functions constructed from block
ciphers. Two methods are specified. The first method is the general construction
specified in Section A.4.1 with the block length equal to the hash length (see Figure
A.2). The second is equal to MDC?2 (see Figure A.6(a)).

ISO/IEC 10118-3: This part of the standard describes the following three dedicated hash
functions, SHS (secure hash standard), RIPEMD-128 and RIPEMD-160.

ISO/IEC 10118-4: This part of the standard specifies two hash algorithms based on modular
arithmetic, namely MASH-1 and MASH-2.

In addition to the above standard, ISO/IEC 9797 specifies a method for using a key and a

n-bit block cipher to construct a MAC. The process is summarised as follows:

1. Pad data to form a n-bit block.
2. Encipher data in CBC mode.

3. The final ciphertext block is the resulting MAC.

The construction specified in ISO/IEC 9797 corresponds to the construction shown in Figure
A7(a).

A.7 CONCLUSION

When selecting a hash function construction the construction should be evaluated according
to the requirements set in Chapter 4. A trade-off between cost, security and speed has to be

made. The generic attacks described in Chapter 3 should be infeasible.

A final matter of interest is the matter of injectivity, surjectivity and bijectivity of the round
function used in an iterated scheme. In [30] it is stated that an injective function should never

be used in an iterated hash function. In [82] the question is raised whether a bijective round

Electrical and Electronic Engineering 221

e

ﬂ UNIVERSITEIT VAN PRET
@, UNIVERSITY OF PRET
et

YUNIBESITHI YA PRET

oQ o
00 m

Appendix A Additional Hash Function Constructions

function allows stronger security claims. This question is answered in part in [29], where
it is shown that the known and chosen text attack is not applicable to MACs with bijective
round functions. The influence of the bijectivity of the round functions of MDCs and MACs

on the security of the entire construction remains unresolved.

Electrical and Electronic Engineering 222

4

&
w UNIVERSITEIT VAN PRETORIA
et

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

APPENDIX B: SOURCE CODE: IMPLEMENTATION OF MD4

This appendix contains an implementation of the MD4 hash algorithm as described in [10]
and [44].

/* This header file includes the functions used to implement the MD4 algorithm
as described in Crypto 91 by R.Rivest

Author: P.R. Kasselman
Date: August 20, 1996
Filename: md4.h

Copyright: Ciphertec cc */

* % % % o

#include <stdio.h>
#include <stdlib. h>
#include <math.h>

#define A0 0x67452301
#define B0 Oxefcdab89
#define CO0 0x98badcfe
#define DO 0x10325476
#define ROOT2 0x5a827999
#define ROOT3 0Ox6ed9ebal

#define FS1 3
#define FS2 7
#tdefine FS3 11
#define FS4 19

#define GS1
#define GS2
#define GS3
#define Gs4

R o o w

#define HS1 3
#define HS2 9
#define HS3 11
#define HS4 15

int PadBit(int argc, char filename|], unsigned int *PadLen);
void Init(unsigned int *A, unsigned int *B, unsigned int *C, unsigned int *D);
void SaveParms(unsigned int A, unsigned int B, unsigned int C,
unsigned int D, unsigned int *AA, unsigned int *BB,
unsigned int *CC, unsigned int *DD);
void ReadArray(int argc, char filename[], unsigned int M[], int n);
unsigned int Rotate(unsigned int X, unsigned int s);
unsigned int FunctionF(unsigned int X, unsigned int Y, unsigned int Z);
unsigned int FunctionG(unsigned int X, unsigned int Y, unsigned int Z);
unsigned int FunctionH(unsigned int X, unsigned int Y, unsigned int 2);
void Roundl(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,
unsigned int X[]);
void Round2(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,
unsigned int X[]);

-

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Appendix B Source Code: Implementation of MD4

void Round3(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,
unsigned int X[]);
void Update(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,
unsigned int AA, unsigned int BB, unsigned int CC,
unsigned int DD);
void PrintSignature(unsigned int A, unsigned int B, unsigned int C,
unsigned int D);
void PrintReverse(unsigned int X);
void RestoreFile(char filenamel[], unsigned int FileLen);

int md4(int argc, char filename[]);
unsigned int RotateRight(unsigned int X, unsigned int s);

/* This routine performs the bit padding as requied for the MD4 algorithm */
int PadBit(int argc, char filename[], unsigned int *PadLen)

{

unsigned int i, j;

unsigned int FileLen, FileBits, PadBits, PadBytes, TempInt;
unsigned char temp;

FILE *fp;

FileLen 0;
if(argc t= 2)
{
printf("No file specified\n");
exit(l);
}

fp = fopen(filename, "r+b");

if(!fp)
{
printf("Error opening file\n");
fclose(fp);
exit(l);
}

/* Determine the size of the file */

while(! feof (fp))
{
fread(&temp, sizeof(unsigned char), 1, fp);
1f(!feof(fp))
{
FileLen++;

}

FileBits = FileLen*8*sizeof (unsigned char);

Electrical and Electronic Engineering 224

4

&
W UNIVERSITEIT VAN PRETORIA
A 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Appendix B Source Code: Implementation of MD4

/* Compute the number of bits needed for padding */

PadBits = abs((448 - FileBits) % 512);
PadBytes = PadBits/8;

/* Pad bit "1" =*/
temp = 0x80;
fwrite(&temp, sizeof(unsigned char), 1, fp);

/* Pad zero bits */
temp = 0;
for(i=0; i<PadBytes-1; i++)
{
fwrite(s&temp, sizeof(unsigned char), 1, fp);

}

/* Append the size of the file
* (For this implimentation no file larger than 2732 is expected)*/

TempInt = FileBits;

fwrite(&TempInt, sizeof(unsigned int), 1, fp);
TempInt = 0x00;

fwrite(&TempInt, sizeof(unsigned int), 1, fp);
*PadLen = (int)(ceil((double)(FileLen+1l) / 64)*64);
fclose(fp);

return(FileLen);

/* Initialise the Buffers to be processed */

void Init(unsigned int *A, unsigned int *B, unsigned int *C, unsigned int #*D)

{

*A = AQ;
*B = BO;
*C = CO;
*D = DO;

/* This function updates the holding variables AA, BB, CC, DD */

void SaveParms(unsigned int A, unsigned int B, unsigned int C,
unsigned int D, unsigned int *AA, unsigned int *BB,
unsigned int *CC, unsigned int *DD)

*AA = A;
*BB = B;
*CC = C;
*DD = D;

/* This function reads the modified data file and updates the M array */

Electrical and Electronic Engineering 225

4

IVERSITEIT VAN PRETORIA

&

g%

0 UNIVERSITY OF PRETORIA
P YU

NIBESITHI YA PRETORIA

Appendix B Source Code: Implementation of MD4
void ReadArray(int argc, char filename[], unsigned int M[], int n)
{

unsigned int i;

unsigned int TempInt;

FILE *fp;

if(argc

{

1= 2)

printf("No file specified\n");

exit(ly;
)

fp =

if(tfp)
{

fopen(filename,

"r+b")’.

printf("Error opening file\n");

fclose(fp);
exit(l)y;
}

/* Read the file */

for(i=0; i<n; i++)
{
fread(&TempInt, sizeof(unsigned int), 1,
M[i] = TempInt;
}
fclose(fp);

void Roundl(unsigned int *A,

t *D,

unsigned int X[])

*A = Rotate((*A
*D = Rotate((*D
*C = Rotate((*C
*B = Rotate((*B
*A = Rotate((*A
*D = Rotate((*D
*C = Rotate((*C
*B = Rotate((*B
*A = Rotate((*A
*D = Rotate((*D
*C = Rotate((*C
*B = Rotate((*B
*A = Rotate((*A
*D = Rotate((*D
*C = Rotate((*C
*B = Rotate((*B

+
+
+
+

+ o+ A+ o+ + 4o+

+ + 4+

FunctionF (*B, *C, *D)
FunctionF (*A, *B, *C)
FunctionF (*D, *A, *B)
FunctionF (*C, *D, *A)

FunctionF (*B, *C, *D)
FunctionF (*A, *B, *C)
FunctionF (*D, *A, *B)
FunctionF (*C, *D, *A)

FunctionF (*B, *C, *D)
FunctionF (*A, *B, *C)
FunctionF(*D, *A, *B)
FunctionF (*C, *D, *A)

FunctionF(*B, *C, *D)
FunctionF (*A, *B, *C)
FunctionF(*D, *A, *B)
FunctionF (*C, *D, *A)

fp);

unsigned int *B,

+ + + + + + + +

+ o+ o+ +

+ + + +

X[oly,
X[11),
Xf2]y,
X[31),

X[4]y,
X[51y,
X[6]),
X[71),

X[81]),
X[s1),
X[101),
X[11]y,

xX[1z2]),
X[13]),
X[14]1),
X[15]),

unsigned int *C,

3);
7)i
11);
19);

3):
7Y
11);
19);

3);

7)i
11);
19);

3);
7)i
11);
19);

unsigned in-

Electrical and Electronic Engineering

226

Appendix B

4

é%
<

UNIVERSITEIT VAN PRETO
UNIVERSITY OF PRETO
YUNIBESITHI YA PRETO

RIA
RIA
RIA

Source Code: Implementation of MD4

void Round2(unsigned int *Aa,

t *D,

unsigned int X[])

*A = Rotate((*Aa
*D = Rotate((*D
*C = Rotate((*C
*B = Rotate((*B
*A = Rotate((*A
*D = Rotate((*D
*C = Rotate((*C
*B = Rotate((*B
*A = Rotate((*A
*D = Rotate((*D
*C = Rotate((*C
*B = Rotate((*B
*A = Rotate((*A
*D = Rotate((*D
*C = Rotate((*C
*B = Rotate((*B

+ o+ + + + + + + + + + +

+ + 4+ +

FunctionG(*B, *C, *D)
FunctionG(*A, *B, *C)
FunctionG(*D, *A, *B)
FunctionG(*C, *D, *A)

FunctionG(*B, *C, *D)
FunctionG(*A, *B, *C)
FunctionG(*D, *A, *B)
FunctionG(*C, *D, *A)

FunctionG(*B, *C, *D)
FunctionG(*A, *B, *C)
FunctionG(*D, *A, *B)
FunctionG(*C, *D, *A)

FunctionG(*B, *C, *D)
FunctionG(*A, *B, *C)
FunctionG(*D, *A, *B)
FunctionG(*C, *D, *A)

unsigned int *B,

+ + 4+ + + + + + + 4+ + +

+ 4+ o+ o+

X[0] + ROOT2),
X[4] + ROOT2),
X[8] + ROOT2}),
X[12] + ROOT2),

X[1] + ROOT2),
X[5] + ROOT2),
X[9] + ROOT2),
X[13] + ROOT2),

X[2] + ROOT2),
X[6] + ROOT2),
X[10] + ROOT2),
X[14] + ROOT2),

X[3] + ROOT2),
X[7] + ROOT2),
X[11] + ROOT2),
X[15] + ROOT2),

unsigned int *C,

3);

5):

9);
13);

3

5);

9):
13);

3)i

5);
9);
13);

3);

5);
9y
13);

unsigned in-

void Round3(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-

t *D,

unsigned int X[])

*A = Rotate((*A
*D = Rotate((*D
*C = Rotate((*C
*B = Rotate((*B
*A = Rotate((*A
*D = Rotate((*D
*C = Rotate((*C
*B = Rotate((*B
*A = Rotate((*A
*D = Rotate((*D
*C = Rotate((*C
*B = Rotate((*B
*A = Rotate((*A
*D = Rotate((*D
*C = Rotate((*C
*B = Rotate((*B

+ + + +

FunctionH(*B, *C, *D)
FunctionH(*A, *B, *C)
FunctionH(*D, *A, *B)
FunctionH(*C, *D, *A)

FunctionH(*B, *C, *D)
FunctionH(*A, *B, *C)
FunctionH(*D, *A, *B)
FunctionH(*C, *D, *A)

FunctionH(*B, *C, *D)
FunctionH(*A, *B, *C)
FunctionH(*D, *A, *B)
FunctionH(*C, *D, *A)

FunctionH(*B, *C, *D)
FunctionH(*A, *B, *C)
FunctionH(*D, *A, *B)
FunctionH(*C, *D, *A)

+ 4+ o+ o+

+ o+ + o+

+ 4+ + +

+ 4+ + +

X[0] + ROOT3),
X[8] + ROOT3),
X[4] + ROOT3),
X[12] + ROOT3),

X[2] + ROOT3),
X[10] + ROOT3),
X[6] + ROOT3),
X[14] + ROOT3),

X[1] + ROOT3),
X[9] + ROOT3),
X[5] + ROOT3),
X[13] + ROOT3),

X[{3] + ROOT3),
X[11] + ROOT3),
X[7] + ROOT3),
X[15] + ROOT3),

3);

9);

11);
15);

3)s
9):

1i);
15);

3);

9);

11);
15);

3);
9)i

11y ;
15);

Electrical and Electronic Engineering

227

4

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Qe IBE

IVE
YUNIBESITHI YA PRETORIA

Appendix B Source Code: Implementation of MD4

unsigned int FunctionF(unsigned int X, unsigned int Y, unsigned int Z)

{

unsigned int W;
W = ((X&Y) | ((7X)&2));

return(w);

unsigned int FunctionG(unsigned int X, unsigned int Y, unsigned int 2)

{

unsigned int W;
W = ((X&Y) | (X&Z) | (Y&Z));

return(w);

unsigned int FunctionH(unsigned int X, unsigned int Y, unsigned int 2)
{

unsigned int W;
W = (XY 2Z);

return(w);

unsigned int Rotate(unsigned int X, unsigned int s)
{
unsigned int temp;

temp = X;
X = (X << 8) | (temp >> (32-3));
return(X);

void Update(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int AA, unsigned int BB, unsigned int CC,

unsigned int DD)

*A = *A + AA;
*B = *B + BB;
*C = *C + CC;
*D = *D + DD;

void PrintSignature(unsigned int A, unsigned int B, unsigned int C,
unsigned int D)
{
printf("Signature: ");
PrintReverse(A);
PrintReverse(B);

Electrical and Electronic Engineering 228

4

P
W UNIVERSITEIT VAN PRETORIA
A 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Appendix B Source Code: Implementation of MD4

PrintReverse(C);
PrintReverse(D);
printf("\n");

void PrintReverse(unsigned int X)
{

int i;

for(i=0; i<4; i++)
{
printf("%.2x", X & 0x000000ff);
X =X >> 8;

}

void RestoreFile(char filename[], unsigned int FileLen)
{

unsigned char TempChar;

unsigned char *array;

unsigned int i;

FILE *fp;

fp = fopen(filename, "r+b");
if(!fp)
{
printf("Error opening file\n");
fclose(fp);
exit(l)y;
}
/* Allocate dynamic memmory */
array = (unsigned char *)calloc(FileLen, sizeof(unsigned char));

/* Read the file */

for(i=0; i<FileLen; i++)

{
fread(sTempChar, sizeof(unsigned char), 1, fp);
array[i] = TempChar;
}
fclose(fp);

fp = fopen(filename, "wb");

if¢!fp)
{
printf("Error opening file\n");
fclose(fp);
exit(l);
}

Electrical and Electronic Engineering 229

+

=

W UNIVERSITEIT VAN PRETOR
0 UNIVE ITY OF PRETOR
G OR

IA
RS A
YUNIBESITHI YA PRET

| A
1A

Appendix B Source Code: Implementation of MD4

/* Write the file x/

for(i=0; i<Filelen; i++)
{
TempChar = array[i];
fwrite(s&TempChar, sizeof(unsigned char), 1, fp);
1

fclose(fp);
/* Liberate some memory */

free(array);

/* This function uses the above routines to construct a MD4 signature */
/* NB set argc = 2 */

int md4(int argc, char filename[])
{
unsigned int i, j;
unsigned int FileLen, PadLen;
unsigned int A, B, C, D, AA, BB, CC, DD;
unsigned int *M, =*X;

FileLen 0;

FileLen PadBit(argc, filename, &PadLen) ;

M = (unsigned int *)calloc(PadLen/4, sizeof (unsigned int));
X = (unsigned int *)calloc(16, sizeof (unsigned int));

ReadArray(argc, filename, M, PadLen/4);
RestoreFile(filename, FileLen);
Init(&A, s&B, &C, &aD);

for(i=0; i<PadLen/64; i++)
{

SaveParms(A, B, C, D, &AA, &BB, &CC, &DD);

for(j=0; j<l6; j++)
{
X[J] = M[i*16+]];

Roundl(s&A, &B, &C, &D, X);
Round2(&A, &B, &C, &D, X))
Round3(&A, &B, &C, a&D, X);

Electrical and Electronic Engineering 230

&
e
UNIVERSITEIT VAN PRETORIA

E.i UNIVERSITY OF PRETORIA
b~ 4

YUNIBESITHI YA PRETORIA

Appendix B Source Code: Implementation of MD4

Update(s&A, &B, &C, &D, AA, BB, CC, DD);
}

PrintSignature(A,B,C,D);
/* Liberate some memory */

free(M);
free(X);

return(0);

unsigned int RotateRight(unsigned int X, unsigned int s)
{

unsigned int temp;

temp = X;
X = (X > s8) | (temp << (32-s));
return(X);

Electrical and Electronic Engineering 231

4

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q)

YUNIBESITHI YA PRETORIA

APPENDIX C: SOURCE CODE: ATTACK ON ALL THREE
ROUNDS OF MD4

This is an implementation of the attack on MD4 as described by Dobbertin in [14]. Algo-
rithm 6.3 is used for finding admissible inner almost-collisions in this implementation. This
attack yields two messages that hash to the same value in less than one minute.

/* This a working version of the full attack on MD4. The alternative algorithm
for establishing inner almost-collisions is used in this program.

Author: P.R. Kasselman
Filename: md4ga5.c

Date: 11 October 1996
Copyright: Ciphertec (1996) */

* ¥ ok F ¥

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "md4.h"

tdefine
#tdefine
#define
#define

o 0w
w N R o

int main()

{
unsigned int i,j,k,1, Iteration:
unsigned int Bi, Ci, U, Ut, V, Vt, W, Wt, Z, Zt;
unsigned int As, Ds, Bs, Bst, Cs, Cst;
unsigned int Condition, NewZ, NewW, Final, NextPhase;
unsigned int DeltaW, DeltaV;
unsigned int TempInt;
unsigned int ABCDO[47]([4], ABCD1[47][41], Deltal9[4];
unsigned int X1[16], X2[16];
unsigned int Flag23, Flag27, DispFlag23, DispFlag27;
unsigned int LastCondition, Collision, CollisionFlag;
FILE *fp;

time_t TheTime;

TheTime = time(NULL);
srand(TheTime) ;

Iteration = 0;

V = Oxfffdfffe;
vt = V;

Wt = Oxfdffdfff;
W = Wt + Oxeffff000;

4

W UNIVERSITEIT VAN PRETORIA
@, UNIVERSITY OF PRETORIA
Qu® YUNIBESITHI YA PRETORIA

Appendix C Source Code: Attack on all three rounds of MD4
Bi = 0;
Ci = 0;

NextPhase = 1;

while(NextPhase != 0)
{
Bst = rand();
Bs = Bst + Rotate(1,25);

Cs = rand();
Cst = Cs + Rotate(1,5);

NewW = FunctionF(Vt,Ut,Bi) - FunctionF(V,U,Bi);
DeltaW = Rotate(Wt,21) - Rotate (W, 21);

NewZz = 1;

Condition = 1;

while(Condition != -1)
{

while(New? !=0)
{
Zt = rand() | 0x00000000;
Z =2t + 0x00001001;
NewZz = FunctionF(Wt,Vt,Ut) - FunctionF(W,V,U) -
Rotate(Zt,13) + Rotate(z,13);
}
NewZ = 1;

Condition = FunctionG(zt,Wt,vt) - FunctionG(z,W,V);

Deltav = 1;

while(DeltaVv != 0)

{
As = rand();
DeltaV = FunctionG(As,Zt,Wt) - FunctionG(As, Z,W);
1
TempInt = 1;
Final = 1;
while(Final != 0)
{
while(TempInt != 0)

{
Cs = rand();
Cst = Cs + Rotate(l,5);

Bst = rand();
Bs = Bst + Rotate(1, 25);

Electrical and Electronic Engineering 233

-

&
W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Appendix C Source Code: Attack on all three rounds of MD4

Ds = rand();
TempInt = FunctionG(Ds,As,Zt) - FunctionG(Ds,As,Z) - W + Wt
- Rotate(Cst,23) + Rotate(Cs,23);

}
TempInt = 1;

Final = FunctionG(Cst,Ds,As) - FunctionG(Cs,Ds,As) - 2 + Zt
- Rotate(Bst,19) + Rotate(Bs,19) + 1;

NextPhase = FunctionG(Bst,Cst,Ds) - FunctionG(Bs,Cs,Ds);
}

if (NextPhase == 0)
{

printf("An admissable inner collision was found\n");

}

ABCDO[11][C] = Ci;
ABCD1[11][C] = Ci;

ABCDO[11]1[B] = Bi;
ABCD1[11]1(B] = Bi;

ABCDO[15]([A] = U;
ABCD1[15][A] = Ut;

ABCDO[15][D] = V;
ABCD1[15][D] = Vt;

ABCDO[15][C] = W;
ABCD1[15][C] = Wt;

ABCDO[15][B] = %;
ABCD1[15][B] = Zt;

ABCDO[19][A] = As;
ABCD1[19][A] = As;

ABCDO[19]1([D] = Ds;
ABCD1[191([D] = Ds;

ABCDO[19]1[C] = Cs;
ABCDI1[19][C] = Cst;

ABCDO[19][B] = Bs;
ABCD1[19][B] = Bst;

Electrical and Electronic Engineering 234

4
UNIVERSITEIT VAN PRETORIA

&
0 UNIVERSITY OF PRETORIA
Q)

YUNIBESITHI YA PRETORIA

Appendix C Source Code: Attack on all three rounds of MD4

/* Find the message values that corrosponds to the computed values */

X1([13}]
X2[13]

Il

rand();
X1[1371;

X1[14] = RotateRight (ABCDO[15][C],11) - ABCDO{1l1][C] -
FunctionF(ABCDO[lS][D],ABCDO[15][A],ABCDO[ll][B]);

i

X2[14] X1[14];

]

X1[15] = RotateRight(ABCDO[15][B],19) - ABCDO{11][B] -
FunctionF (ABCDO[15] [C],ABCDO[15] [D],ABCDO[15] [A]);

X2[15] = X1[15];

X1[0] = RotateRight(ABCDO[19] [A],3) - ABCDO[15}[A] -
FunctionG(ABCDO[l5][B],ABCDO[lS][C],ABCDO[lS][D]) - ROOT2;

X2[0] = X1[0];

X1[4] = RotateRight(ABCDO[19]([D],5) - ABCDO[15][D] -
FunctionG(ABCDO[lQ][A],ABCDO[15][B],ABCDO[lS][C]) - ROOT2Z;

X2(4] = RotateRight(ABCD1[19][D],5) - ABCD1[15][D] -
FunctionG(ABCDl[l9][A],ABCDl[lS][B],ABCDl[lS][C]) - ROOT2;
X1[8] = RotateRight(ABCDO[19][C],9) - ABCDO[15][C] -

FunctionG(ABCDO[l9][D],ABCDO[19][A],ABCDO[lS][B]) - ROOTZ2;

X2[8] = RotateRight(ABCD1[19][C],9) - ABCD1[15][C] -
FunctionG(ABCDl[l9][D],ABCD1[19][A],ABCDl[lS][B]) - ROOTZ;

X1[12] = RotateRight(ABCDO[19][B],13) - ABCDO[15][B] -
FunctionG(ABCDO[19][C],ABCDO[19][D],ABCDO[19][A]) - ROOT2;

X2[12] = RotateRight (ABCD1(19][B],13) - ABCD1[15][B] -
FunctionG(ABCDl[l9][C],ABCD1[19][D],ABCD1[19][A]) - ROOT2;

ABCDO[11]1[D] = RotateRight (ABCDO[15] [D],7) -
FunctionF(ABCDO[lS][A],ABCDO[ll][B],ABCDO[ll][C]) - X1[13];

ABCD1[11] D] = ABCDO[1l1][D};

ABCDO[11] [A] = RotateRight(ABCDO[15][A],3) -
FunctionF(ABCDO([11] [B],ABCDO[11][C],ABCDO([11][D]) - X1[12];

ABCD1[11][A] = ABCDO[11][A];
/* Find the message values that will satisfy the initial values */
CollisionFlag = 1;

Flag23 = 0;
DispFlag23 = 0;

Electrical and Electronic Engineering 235

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(0233.-

Appendix C Source Code: Attack on all three rounds of MD4

Flag27 = 0;
DispFlag27 = 0;

while(CollisionFlag != 0)
{

Iteration++;

if(Flag23 == 0)
{

X1[1] = rand();
X2[1] = X1[1];
X1[5] = rand();
X2[5] = X1[51];
} else if (DispFlag23 == 0) {

printf("X1 and X5 are fixed\n");
DispFlag23 = 1;

if(Flag27 == 0)

{

X1[2] = rand();
X2[2] = X1[2];

} else if (DispFlag27 == 0) {
printf("X2 is fixed\n");
DispFlag27 = 1;

}

X1[3] = rand();
X2[3} X1[3];

ABCDO[O][A] = A0;
ABCDO[O][B] = BO;
ABCDO[O][C] = CO;
ABCDO[Q0][D] = DO;

ABCDO[3][A] = Rotate((ABCDO[0][A] +
FunctionF(ABCDO[0][B],ABCDO[0][C], ABCDO[0][D]) +
X101y, 3y:

ABCDO[3][D] = Rotate((ABCDO[0][D] +
FunctionF(ABCDO[3]{A],ABCDO[0][B],ABCDO[0][C]) +
X1[11), 7);

ABCDO[3][C} = Rotate((ABCDO[0O][C] +
FunctionF(ABCDO[B][D],ABCDO[3][A],ABCDO[O][B])
+ X1[2]), 11)y;

ABCDO[3][B] = Rotate((ABCDO[0][B] +
FunctionF(ABCDO[B][C],ABCDO[B][D],ABCDO[3][A])
+ X1[3]), 19);

ABCDO[7][A] = Rotate((ABCDO[3][A] +
FunctionF(ABCDO[3] [B],ABCDO[3][C],ABCDO[3][D]) +

Electrical and Electronic Engineering 236

IVERSITEIT VAN PRETORIA
VERSITY OF PRETORIA
IBESITHI YA PRETORIA

Appendix C Source Code: Attack on all three rounds of MD4

ABCDO[7][D] = Rotate((ABCDO[3][D] +
FunCtiOHF(ABCDO[7][A],ABCDO[3][B],ABCDO[3][C]) +

ABCDO[7][B] -1;

ABCDO[7]][C]

RotateRight (ABCDO[11][A],3) - ABCDO[7][A] - X1[8];

X1[6] = (RotateRight(ABCDO[7]][C], 11) - ABCDO[3]([C] -
FunctionF(ABCDO[?][D],ABCDO[7][A],ABCDO[3][B]));

X2[6] = X1[6];

X1[7] = (RotateRight(ABCDO[7][B], 19) - ABCDO[3][B] -
FunctionF (ABCDO[7][C],ABCDO[7][D],ABCDO[7][A]));

X2[71 = x1[71];

TempInt = Rotate((ABCDO[7]([A] +
FunctionF(ABCDO[?][B],ABCDO[7][C],ABCDO[?][D]) +
X1(81), 3);

X1[9] = (RotateRight(ABCDO[11][D], 7) - ABCDO{7][D] -
FunctionF(ABCDO[ll][A],ABCDO[7][B],ABCDO[7][C]));

X2[9] = X1[9];
X1[10] = (RotateRight (ABCDO[11]([C], 11) - ABCDO[7]][C] -
FunctionF(ABCDO[ll][D],ABCDO[ll][A],ABCDO[7][B]));

X2[10]

I

X1[10];

I

X1[11] (RotateRight (ABCDO[11][B], 11) - ABCDO[7][B] -
FunctionF(ABCDO[ll][C],ABCDO[ll][D],ABCDO[ll][A]));

X2[11] = X1[111;

ABCDO[23][A] = Rotate((ABCDO[19][A] +
FunctionG(ABCDO[19][B],ABCD0O[19][C],ABCDO[19][D])
+ X1[1] + ROOT2), GS1);

ABCD1[23][A] = Rotate((ABCD1[19] [A] +
FunctionG(ABCD1[19][B],ABCD1[19][C],ABCD1[19]([D])
+ X2[1] + ROOT2), GS1);

Collision = ABCDO[23][A] - ABCD1[23][A];

if(Collision == Q)

{

ABCDO[23][D] = Rotate((ABCDO[19]([D] +
FunctionG(ABCDO[23][A],ABCDO[19] [B],ABCDO[19][C])

Electrical and Electronic Engineering 237

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(og;;«:

Appendix C Source Code: Attack on all three rounds of MD4

+ X1[5] + ROOT2), GS2);

ABCD1[23][D] = Rotate((ABCD1[19]([D] +
FunctionG(ABCDl[23][A],ABCD1[19][B],ABCDl[lQ][C])
+ X2[5] + ROOT2), GS2);

Collision = ABCDO[23][D] - ABCD1[23][D];
}

if(Collision == 0)
{
ABCDO[23][C] = Rotate((ABCDO[19][C] +

FunctionG(ABCDO[23][D],ABCDO[23][A],ABCDO[19][B])
+ X1[9] + ROOT2), GS3);

ABCD1[23][C] = Rotate((ABCD1[19][C] +
FunctionG(ABCDl[23][D],ABCD1[23][A],ABCD1[19][B])
+ X2[9] + ROOT2), GS83);

Collision = ABCDO[23]([C] - ABCD1{23][C];
}

if(Collision == -1*Rotate(1,14))
{
ABCDO[23] [B] = Rotate((ABCDO[19][B] +
FunctionG(ABCDO[23][C],ABCDO[23][D],ABCDO[23][A])
+ X1[13] + ROOT2), GS4);

ABCD1[23] [B] = Rotate((ABCD1[19][B] +
FunctionG(ABCD1[23][C],ABCD1[23] [D],ABCD1[23][A])
+ X2[13] + ROOT2), GS4);

Collision = ABCDO[23]([B] - ABCD1[23][B];
}
/* Is next iteration satisfied */
if(Collision == Rotate(1,6))
{
Flag23 = 1;
ABCDO[27] [A] = Rotate((ABCDO[23][A] +
FunctionG(ABCDO[23][B],ABCDO[23][C],ABCDO[23][D])
+ X1[2] + ROOT2), GS1);
ABCD1[27][A] = Rotate((ABCD1[23][Aa] +
FunctionG(ABCDl[23][B],ABCD1[23][C],ABCD1[23][D])

+ X2[2] + ROOT2), GS1);

Collision = ABCDO[27][A] - ABCD1[27]1[A];

Electrical and Electronic Engineering

238

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q¥ VU

NIBESITHI YA PRETORIA

Appendix C Source Code: Attack on all three rounds of MD4

if(Collision == 0)
{

ABCDO[27][D) = Rotate((ABCDO[23][D] +
FunctionG(ABCDO0 [27] [A],ABCDO[23][B],ABCDO[23] [C])
+ X1[6] + ROOT2), GS2);

ABCD1[27][D] = Rotate((ABCD1[23][D] +
FunctionG(ABCDl[27][A],ABCD1[23][B],ABCD1[23][C])
+ X2[6] + ROOT2), GS2);

Collision = ABCDO[27][D] - ABCD1[27][D];
]

if(Collision == Q)
{
ABCDO[27][C] = Rotate((ABCDO[23][C] +
FunctionG(ABCDO[27][D],ABCDO[27][A],ABCDO[23][B])
+ X1[10] + ROOT2), GS3);

ABCD1[27][C] = Rotate((ABCD1l[23][C] +

FunctionG(ABCDl[27][D],ABCD1[27][A],ABCD1[23]EB])
+ X2[10] + ROOT2), GS3);

Collision = ABCDO[27][C] - ABCD1[27]][C];
}

if(Collision == -1*Rotate(1,23))
{
ABCDO[27] [B] = Rotate((ABCDO[23][B] +
FunctionG(ABCDO[27]}([C],ABCDO[27][D},ABCDO[27][A])
+ X1[14] + ROOT2), GS4);

ABCD1[27][B] = Rotate((ABCD1[23][B] +
FunctionG(ABCD1[27] [C],ABCD1[27][D],ABCD1[27][A])
+ X2[14] + ROOT2), GS4);
Collision = ABCDO[27][B] - ABCD1[27][B];
}

/* Calculate steps 28-31 */

if(Collision == Rotate(1l,19))
{

Flag23 = 1;
ABCDO[31] [A] = Rotate((ABCDO[271[Aa] +
FunctionG(ABCDO[27][B],ABCDO[27][C],ABCDO[27][D])

+ X1[3] + ROOT2), GSl);

ABCD1[31][A] = Rotate((ABCD1[27][A] +

Electrical and Electronic Engineering 239

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(og;;«:

Appendix C Source Code: Attack on all three rounds of MD4

FunctionG(ABCD1[27] [B],ABCD1[27] [C],ABCD1[27] [D])
+ X2[3] + ROOT2), GS1);

Collision = ABCDO([31][A] - ABCD1{[31][A];
}

if(Collision == 0)
{

ABCDO[31][D] = Rotate((ABCDO[27]([D] +

FunctionG(ABCDO[31][A],ABCDO[27][B],ABCDO[27][C])
+ X1([7] + ROOT2), GS2);

ABCD1[31][D] = Rotate((ABCD1[27][D] +
FunctionG(ABCD1[31] [A],ABCD1[27][B],ABCD1[27][C])
+ X2[7] + ROOT2), GS2);

Collision = ABCDO[31][D] - ABCD1[31][D];
3

if(Collision == 0)
{
ABCDO[31][C] = Rotate((ABCDO[27][C] +
FunctionG(ABCDO[3l][D],ABCDO[31][A],ABCDO[27][B])
+ X1[11] + ROOT2), GS3);

ABCD1[31]([C] = Rotate((ABCD1[27][C] +
FunctionG(ABCD1[31][D],ABCD1[31] [A],ABCD1[27][B])
+ X2[11] + ROOT2), GS3);

Collision = ABCDO[31][C] - ABCD1[31][C];
}

if(Collision == -1)
{
ABCDO[31] [B] = Rotate((ABCDO[27]([B] +
FunctionG(ABCDO[31][C],ABCDO[31][D],ABCDO[31][A])
+ X1[15] + ROOT2), GS4);

ABCD1[31] [B] = Rotate((ABCD1[27][B] +
FunctionG(ABCD1[3l][C],ABCD1[31][D],ABCD1[31][A])
+ X2[15] + ROOT2), GS4);
Collision = ABCDO[31][B] - ABCD1[31][B];
}

/* Calculate steps 32-35 */

if(Collision == 1)
{

ABCDO[35] [A] = Rotate((ABCDO[31][A] +

Electrical and Electronic Engineering 240

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

i
&
W UNIVERSITEIT VAN PRETORIA
A 4

Appendix C Source Code: Attack on all three rounds of MD4

FunctionH(ABCDO[31] [B],ABCDO[31][C],ABCD0O[31][D])
+ X1[0] + ROOT3), HS1);

ABCD1[35][A] = Rotate((ABCD1[31][A] +
FunctionH(ABCD1[31][B],ABCD1[31][C],ABCD1[31][D})
+ X2[0] + ROOT3), HS1);

Collision = ABCDO[35][A] - ABCD1[35][A];
}

if(Collision == 0)
{

ABCDO([35] [D] = Rotate((ABCD0[31][D] +
FunctionH(ABCDO[35] [A],ABCDO[31][B],ABCDO[31][C])
+ X1[8] + ROOT3), HS2);

ABCD1[35][D] = Rotate((ABCD1[31][D] +
FunctionH(ABCD1[35][A],ABCD1[31][B],ABCD1[31][C])
+ X2[8] + ROOT3), HS2);

Collision = ABCDO[35][D] - ABCD1[35][D];
}

if(Collision == 0)
{
ABCDO[35][C] = Rotate((ABCDO[31][C] +
FunctionH(ABCDO[35][D],ABCDO[35] [A],ABCDO[31][B])
+ X1[4] + ROOT3), HS3);

ABCD1[35][C] = Rotate((ABCD1[31][C] +
FunctionH(ABCD1[35] [D],ABCD1[35] [A],ABCD1[31][B])
+ X2[4] + ROOT3), HS3);

Collision = ABCDO[35][C] - ABCD1([35][C];
}

if(Collision == 0)
{
ABCDO[35][B] = Rotate((ABCDO[31][B] +
FunctionH (ABCDO[35][C],ABCDO[35][D],ABCDO[35][A])
+ X1[12] + ROOT3), HS4);

ABCD1[35][B] = Rotate((ABCD1[31][B] +
FunctionH(ABCD1[35] [C],ABCD1{35] [D],ABCD1[35] [A])
+ X2[12] + ROOT3), HS4);

Collision = ABCDO[35][B] - ABCD1[35][B];
if(Collision == 0)

{
CollisionFlag = 0;

Electrical and Electronic Engineering 241

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

<

Appendix C Source Code: Attack on all three rounds of MD4

printf("Iterations: %u\n", Iteration);

printf ("\tX1\t\t X2\n");
for(i=0; i<1l6; i++)
{
printf (" (%u)\t%.8X\t %.8X\n", i, X1[i], X2{[i]);
1

/* Write results to file */
fp = fopen("X1l.dat", "wb");

if(!fp)
{
printf("Error opening file\n");
fclose(fp);
exit(l);
}

/* Write the first message to file */

for(i=0; i<16; i++)
{
TempInt = X1[i];
fwrite(&TempInt, sizeof(unsigned int), 1, fp);

}
fclose(fp);
fp = fopen("X2.dat", "wb");

if(tfp)
{
printf("Error opening file\n");
fclose(fp);
exit(l);
}

/* Write the second message to file */

for(i=0; i<16; i++)
{
TempInt = X2([i];
fwrite(&TempInt, sizeof(unsigned int), 1, fp);

}

fclose(fp);

Electrical and Electronic Engineering 242

&
&

W UNIVERSITEIT VAN PRETORIA
. UNIVERSITY OF PRETORIA
h 4

YUNIBESITHI YA PRETORIA

Appendix C Source Code: Attack on all three rounds of MD4

/* Test to see if a collision has occured */

md4 (2, "X1.dat");
md4 (2, "X2.dat");

return(0);

Electrical and Electronic Engineering 243

()= Ig

A 4

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

APPENDIX D: IMPLEMENTATION: MD5

This Appendix contains the C source code of an implementation of MD5.

#define A0 0x67452301

#define B0 Oxefcdab89

#define C0 0x98badcfe

#define DO 0x10325476

#define FS1 7

#define FS2 12

#define FS3 17

#define FS4 22

#define GS1 5

#define GS2 9

#define GS3 14

#define GS4 20

#define HS1 4

#define HS2 11

#define HS3 16

#define HS4 23

#tdefine IS1 6

#define IS2 10

#define IS3 15

#define IS4 21

int T[64] = {0xd76aa478, 0xe8c7b756, 0x242070db, Oxclbdceee, 0xf57c0faf,
0x4787c62a, 0xa8304613, 0xfd469501, 0x698098d8, 0x8b44f7af, Oxffff5bbl,
0x895cd7be, 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821, 0xf6le2562,
0xc040b340, 0x265e5a51, 0Oxe9b6c7aa, 0xd62f105d, 0x02441453, 0xdB8ale68l,
Oxe7d3fbc8, 0x2lelcde6, 0xc33707d6, 0xf4d50d87, 0x455alded, 0xa9e3e905,
Oxfcefa3f8, 0x676f02d9, 0x8d2a4c8a, O0xfffa3942, 0x8771f681, 0x6d9d6122,
0xfde5380c, Oxadbeead4, Oxdbdecfa9, 0xf6bbib60, Oxbebfbc70, 0x289b7ect,
Oxeaal27fa, 0xd4ef3085, 0x04881d05, 0xd9d4d039, 0xe6db99%e5, 0xlfa27cf8,
Oxcdac5665, 0xf4292244, 0x432aff97, Oxab9423a7, 0xfc93a039, 0x655b59c3,
0x8f0ccc92, Oxffeffd47d, 0x85845dd1l, Ox6faB87ed4f, Oxfelceb6el, 0xa3014314,
0x4e081lal, 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391};

char *PadBit(char *Message, unsigned int *Length);

void char_2_int_array(char *Message, unsigned int *MessageInt, unsigned in-

t Length);

unsigned int *AppendLength(unsigned int *Messagelnt,

unsigned int *AppendLength, unsigned int
unsigned int MD5_F(unsigned int X,
unsigned int MD5_G{(unsigned int X,
unsigned int MD5_H(unsigned int X,
unsigned int MD5_I(unsigned int X,
void InitMD5Buf (unsigned int *A,
unsigned int *C,
void SaveMD5Parms(unsigned int A,

unsigned int D,

unsigned int *CC,

unsigned int *D);

unsigned int *AA,
unsigned int *DD);

void Roundl(unsigned int *A,

t *D,

unsigned int *X);

unsigned int *B,

unsigned
unsigned
unsigned
unsigned
unsigned int *B,

unsigned int B,
unsigned int *BB,

OrgLen) ;
int Y,
int Y,
int Y,
int Y,

unsigned
unsigned
unsigned
unsigned

unsigned int *C,

unsigned int C,

unsigned

Z);
ZYy;
Z);
7);

in-

4

m UNIVERSITEIT VAN PRETORIA
b 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Appendix D Implementation: MD5

void Round2(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int *X);
void Round3(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int *X);
void Round4 (unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int *X);
void Update(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int AA, unsigned int BB, unsigned int CC,

unsigned int DD);
unsigned int RotateLeft(unsigned int X, unsigned int s);
void PrintSignature(unsigned int *A);
void PrintReverse(unsigned int X);
unsigned int Reverse(unsigned int X);
void MD5(char *Message, unsigned int Length, unsigned int *Hash);

void MD5(char *Message, unsigned int Length, unsigned int *Hash)
{

int i,73j;

int PaddedSize, AppendSize;

unsigned int *MessageInt, *X;

unsigned int A, B, C, D, AA, BB, CC, DD;

PaddedSize = Length;

X =(unsigned int *)calloc(l6, sizeof(unsigned int));
if (X == NULL)
{
printf ("Error Allocating Memory\n");
exit(1l);
}

/* Determine the number of Padding bytes required */
Message = PadBit(Message, &PaddedSize);

MessageInt =(unsigned int *)calloc(PaddedSize/(sizeof(unsigned int)), size-
of (unsigned int));

char_2_int_array(Message, MessageInt, PaddedSize);
AppendSize = PaddedSize;

for(i=0; i<PaddedSize/(sizeof(unsigned int)); i++)
{

MessageInt[i]

}

Reverse(MessageInt[i]);

MessageInt = AppendLength(MessageInt, &AppendSize, Length);
InitMD5Buf (&A, &B, &C, &D);

for(i=0; i<(AppendSize*8)/512; i++)
{

Electrical and Electronic Engineering 245

&

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q¥ YU

NIBESITHI YA PRETORIA

Appendix D Implementation: MD5

SaveMD5Parms(A, B, C, D, &AA, &BB, &CC, &DD);

for(j=0; j<16; j++)
{
X[j] = MessageInt[i*16+3];

Roundl(&A, &B, &C, &D, X);

Round2(&A, &B, &C, &D, X);

Round3 (&A, &B, &C, &D, X);

Round4 (&A, &B, &C, &D, X);

Update(sA, &B, &C, &D, AA, BB, CC, DD);
}

Hash([0] = A;
Hash[1l] = B;
Hash[2] = C;
Hash([3] = D;
free(X);

free(MessagelInt);

}

/* This routine performs the bit padding as requied for the MD4 algorithm */
char *PadBit(char *Message, unsigned int *Length)
{

char *TempPtr;

unsigned int i, 3j;

unsigned int FileLen, FileBits, PadBits, PadBytes;

unsigned char temp;

FileBits = *Length*8*sizeof(unsigned char);

/* Compute the number of bits needed for padding */
PadBits = abs((448 - FileBits) % 512);
if(PadBits == 0)
{
PadBits = 512*(FileBits/512) + 512;
}

PadBytes = PadBits/8;

TempPtr = (char *)realloc(Message, (*Length+PadBytes));
if (TempPtr == NULL)
{
printf ("Error Reallocating Memory\n");
exit(l);
}

/* Pad bit "1" */

TempPtr[*Length] = 0x80;
/* Pad zero bits */
for(i=1; i<PadBytes; i++)

{

Electrical and Electronic Engineering 246

4

w UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
<

YUNIBESITHI YA PRETORIA

Appendix D Implementation:

MD5

TempPtr{*Length+i] = 0x00;
}

Message = (char *)realloc(TempPtr, (*Length+PadBytes));
if (Message == NULL)
{
printf("Error Reallocating Memory\n");
exit(l);
}

*Length = (PadBytes+(*Length));

return(Message);

unsigned int *AppendLength(unsigned int *Messagelnt,
unsigned int *AppendLength, unsigned int OrgLen)
{
int i;
unsigned int *TempPtr;

*AppendLength = *AppendLength+2*sizeof (unsigned int);

TempPtr = (unsigned int *)realloc(MessagelInt, *AppendLength);
if (TempPtr == NULL)
{
printf ("Error Reallocating Memory\n");
exit(1l);
}

TempPtr[*AppendLength/sizeof (unsigned int)-2] = OrgLen*8;
TempPtr[*AppendLength/sizeof (unsigned int)-1] = 0;
MessageInt = (unsigned int *)realloc(TempPtr, *AppendLength);

if (MessageInt == NULL)
{
printf("Error Reallocating Memory\n");
exit(1l);
}

return(MessagelInt);

void char_2_int_array(char *Message, unsigned int *Messagelnt,
unsigned int Length)
{

int i, 3J;

for(i=0; i<(Length/sizeof(unsigned int)); i++)
{
for(j=0; j<sizeof(unsigned int); j++)
{
MessageInt[i] = (MessageInt[i] << 8*sgizeof(char)) |
(Message[i*sizeof(unsigned int) + j] & 0x000000ff);

Electrical and Electronic Engineering

247

4

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Appendix D Implementation: MD5

unsigned int MD5_F(unsigned int X, unsigned int Y, unsigned int 2)

{
return((X&Y) | (7X&Z));

unsigned int MD5_G(unsigned int X, unsigned int Y, unsigned int Z)

{
return((X & Z) | (Y & (7Z)));

unsigned int MD5_H(unsigned int X, unsigned int Y, unsigned int 2z)

{

~

return(X ° Y Zy;

unsigned int MD5_I(unsigned int X, unsigned int Y, unsigned int 2)
{

~

return(Y (X | (T2Z2)));

void InitMD5Buf (unsigned int *A, unsigned int *B,
unsigned int *C, unsigned int *D)

{
*A = AQ;
*B = BO;
*C = CO;
*D = DO;
1

void SaveMD5Parms(unsigned int A, unsigned int B, unsigned int C,
unsigned int D, unsigned int *AA, unsigned int *BB,
unsigned int *CC, unsigned int *DD)

*AA =
*BB =
*CC =
*DD =

oaw>»

void Roundl(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,
unsigned int *X)

*A = *B + RotateLeft((*A + MD5_F(*B,*C,*D) + X[0] + T[0]), FS1);
*D = *A + RotateLeft((*D + MDS_F(*A,*B,*C) + X[1] + T[1]), FS2);
*C = *D + RotateLeft((*C + MD5_F(*D,*A,*B) + X[2] + T[2]), FS3);
*B = *C + RotateLeft((*B + MD5_F(*C,*D,*A) + X[3] + T[3]), FS4);
*A = *B + RotateLeft((*A + MDS5_F(*B,*C,*D) + X[4] + T[4]), FS1l);
*D = *A + RotateLeft((*D + MD5_F(*A,*B,*C) + X[5] + T[5]), FS2);

*C = *D + RotateLeft((*C + MD5_F(*D,*A,*B) + X[6] + T[6]), FS3);

Electrical and Electronic Engineering 248

4

<

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Appendix D Implementation: MD5

*B = *C + RotateLeft((*B + MD5_F(*C,*D,*A) + X[7} + T[7]), FS4);

*A = *B + RotateLeft((*A + MD5_F(*B,*C,*D) + X[8] + T[8]), FS1l);

*D = *A + RotateLeft((*D + MD5_F(*A,*B,*C) + X[9] + T[9]), FS2);

*C = *D + RotateLeft((*C + MD5_F(*D,*A,*B) + X[10] + T[10]), FS3);
*B = *C + RotateLeft((*B + MD5_F(*C,*D,*A) + X[11] + T[11l]), FS4);
*A = *B + RotateLeft((*A + MD5_F(*B,*C,*D) + X[12] + T[12]), FS1);
*D = *A + RotateLeft((*D + MDS5_F(*A,*B,*C) + X[13] + T[13]), FS2);
*C = *D + RotateLeft((*C + MD5_F(*D,*A,*B) + X[14] + T[14]), FS3);
*B = *C + RotateLeft((*B + MD5_F(*C,*D,*A) + X[15] + T[15]), FS4);

void Round2(unsigned int *A,

t *D,
unsigned

{
*A = *B +
*D = *A +
*C = *D +
*B = *C +
*A = *B +
*D = *A +
*C = *D +
*B = *C +
*A = *B +
*D = *A +
*C = *D +
*B = *C +
*A = *B +
*D = *A +
*C = *D +
*B = *C +

void Round3(unsigned int *A,

t *D,

int *X)

RotateLeft ((*A
RotateLeft ((*D
RotateLeft((*C
RotateLeft((*B

RotateLeft((*A
RotateLeft((*D
RotateLeft ((*C
RotateLeft((*B

RotateLeft((*A
RotateLeft ((*D
RotateLeft((*C
RotateLeft((*B

RotateLeft ((*A
RotateLeft ((*D
RotateLeft ((*C
RotateLeft((*B

unsigned int *X)

*A
*D
*C
*B

*A
*D
*C
*B

*A
*D
*C

*B
*A
*D
*C

*B
*A
*D
*C

*B
*A
*D

+ 4+ + + o+ o+ o+ o+

+ +

RotateLeft ((*A
RotateLeft ((*D
RotateLeft((*C
RotateLeft ((*B

RotateLeft((*A
RotateLeft((*D
RotateLeft((*C
RotateLeft((*B

RotateLeft ((*A
RotateLeft ((*D
RotateLeft((*C

+ o+ ++ o+ 4+

+ + + +

+ 4+ + +

oo+

unsigned int *B,

MD5_G(*B, *C, *D)
MD5_G(*A, *B, *C)
MD5_G(*D, *A, *B)
MD5_G(*C, *D, *A)

MD5_G(*B, *C, *D)
MDS_G(*A, *B, *C)
MD5_G(*D, *A, *B)
MD5_G(*C, *D, *A)

MD5_G(*B, *C, *D)
MD5_G(*A, *B, *C)
MD5_G(*D, *A, *B)
MD5_G(*C, *D, *A)

MDS5_G(*B, *C, *D)
MD5_G(*A, *B, *C)
MD5_G(*D, *A, *B)
MD5_G(*C, *D, *A)

unsigned int *B,

MD5_H(*B, *C, *D)
MD5_H(*A, *B, *C)
MD5_H(*D, *A, *B)
MD5S_H(*C, *D, *A)

MDS5_H(*B, *C, *D)
MD5_H(*A, *B, *C)
MD5_H(*D, *A, *B)
MD5_H(*C, *D, *A)

MD5_H(*B, *C, *D)
MD5_H(*A, *B, *C)
MD5_H(*D, *A, *B)

unsigned int *C,

+ + 4+ + + + + + + o+ o+ o+

+ + + o+

X[1] + T[16]),
X[6] + T[17]),
X[11] + T[181),
X[0] + T[19]),

X[5] + T[20]),
X[10] + T[211),
X[15] + T[221),
X[4] + T[231),

X[9] + T[24]),
X[14} + T[251),
X[31 + T[26]),
X[8] + T[27]),

X[13] + T[28]),
X[2] + T[29]),
X[7]1 + T[30]),
X[12] + TI[31]1),

unsigned int *C,

+ o+ o+ o+ + o+ o+ o+

+

X[5] + T[32]),
X[8] + T[33]),
X[11] + T([341),
X[14] + T[35]),

X[1] + T[36]),
X[4] + T[37]),
X[7] + T[38]),
X[10] + T[39]),

X[13] + T[40]),
X[0] + T[41]),
X[3] + T[42]),

unsigned in-

GS1);

GS2);
GS3);

GS4);

GSl);
GS2);
GS3);

GS4);

Gsl);
GS2);

GS3);

GS4);

GSl);
GS2);
GS3);

GS4);

unsigned in-

HS1);
HS2) ;
HS3) ;
HS4) ;

HS1);
HS2);
HS3);
HS4) ;

HS1);
HS2);
HS3);

Electrical and Electronic Engineering

249

4

é%
<

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Implementation: MD5

Appendix D
*B = *C
*A = *B
*D = *A
*C = *D
*B = *C

void Round4 (unsigned int *A,

t *D,

+

+ 4+ + +

RotateLeft ((*B

RotateLeft ((*A
RotateLeft((*D
RotateLeft ((*C
RotateLeft ((*B

unsigned int *X)

*A =
*D =
*C =
*B =

*A =
*D =
*C =
*B =

*A =
*D =
*C =
*B =

*A =
*D =
*C =
*B =

*B
*A
*D
*C

*B
*A
*D
*C

*B
*A
*D
*C

*B
*A
*D
*C

+ + + + + o+ + o+ o+

+ o+ + 4

RotateLeft ((*A
RotateLeft ((*D
RotateLeft ((*C
RotateLeft ((*B

RotateLeft((*A
RotateLeft ((*D
RotateLeft((*C
RotatelLeft ((*B

RotateLeft((*A
RotateLeft ((*D
RotateLeft ((*C
RotateLeft ((*B

RotateLeft((*A
RotateLeft ((*D
RotateLeft ((*C
RotateLeft ((*B

+ o+ o+ o+

+ o+ o+

MD5_H(*C, *D, *A)

MD5_H(*B, *C, *D)
MD5_H(*A, *B, *C)
MDS5_H(*D, *A, *B)
MD5_H(*C, *D, *A)

unsigned int *B,

MD5_I(*B, *C, *D)
MD5_I(*A,*B, *C)
MD5_I(*D, *A, *B)
MD5_I(*C,*D, *A)

MD5_I(*B,*C, *D)
MD5_TI(*A, *B, *C)
MD5_I(*D, *A, *B)
MD5_TI(*C, *D, *A)

MD5_I(*B, *C, *D)
MD5_I(*A,*B, *C)
MD5_I(*D, *A, *B)
MD5_I(*C,*D, *A)

MD5_I(*B, *C, *D)
MD5_I(*A,*B, *C)
MD5_I(*D, *A, *B)
MD5_I(*C, *D, *A)

+ + 4+ +

X[6] + T[43]),

X[9] + T[44]),
X[12] + T[45]),
X[15] + T[46]1),
X[2] + T[471),

unsigned int *C,

+ 4+ + + + + + + + + + +

+ + + +

X[0] + T[48]),
X[71 + T[49]),
X[14] + T[50]),
X[5] + T[511),

X[12] + T[521),
X[3] + T[531),
X[10] + T[54]),
X[1] + TI551),

X[8] + TI[561),
X[15] + T[571),
X[6] + T[58]),
X[13] + T[59]),

X[4] + T[60]),
X[11] + T[61]),
X[2] + T[62]),
X[9] + T[631),

HS4);

HS1);
HS2);
HS3);

HS4);

unsigned in-

I81);

IS82);
I183);

1S4);

IS81);
IS2);

IS3);
I1S54);

1S1);
152);

153);
154);

I81);
I182);

I83);

I1S4);

/*printf("%8.8X %8.8X %8.8X %8.8X\n", *A, *B, *C, *D);*/

void Update(unsigned int *A, unsigned int *C, unsigned in-
t *D,
unsigned int AA,

unsigned int DD)

unsigned int *B,

unsigned int BB, unsigned int CC,

*A = *A + AA;
*B = *B + BB;
*C = *C + CC;
*D = *D + DD;

unsigned int RotateLeft(unsigned int X,

{

unsigned int s)
unsigned int temp;
temp = X;

X = (X << 8) |
return(X);

(temp >> (32-s8));

Electrical and Electronic Engineering 250

&

&

ﬂ UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Appendix D

Implementation: MD5

void PrintSignature(unsigned int *A)

{

int i;

for(i=0; i<4; i++)
{
PrintReverse(A[i]);
]
}

void PrintReverse(unsigned int X)

{

int 1i;

for(i=0; i<4; i++)
{
printf("%.2x", X & 0x000000ff);
X =X > 8;
}

1

unsigned int Reverse(unsigned int X)
{

int i;

unsigned int Y;

Y=0;
for(i=0; i<4; i++)
{
Y = (Y<<8) | X & 0Ox000000ff;
X =X > 8;
1
return(Y);

}

#undef A0
#undef BO
#undef CO
#undef DO

#undef FS1
#undef FS2
#fundef FS3
#undef FS4

#undef GS1
#undef GS2
#undef GS3
#fundef GS4

#undef HS1
fundef HS2
#undef HS3
#undef HS4

Electrical and Electronic Engineering

251

Appendix D

&=

é—%
<

n

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Implementation: MD5

#undef
#undef
#undef
#undef

IS
IS2
IS3
IS4

Electrical and Electronic Engineering

252

4

W UNIVERSITEIT VAN PRETO
0 UNIVERSITY OF PRETO
Q@ VU T0

NIBESITHI YA PRE

APPENDIX E: SOURCE CODE: ANALYSIS OF MD3
E.1 SOURCE CODE: FIRST PHASE OF THE ATTACK ON MD5

This section of the appendix contains the C source code used in the first phase of the attack
on MDS5.

/* This program is a reconstruction of Dobbertin’s attack on MD5.

Author: P.R. Kasselman
Date: 16/06/1997
Filename: md5an04.c */

L I

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

unsigned int Rotate(unsigned int X, unsigned int s);
unsigned int RotateRight(unsigned int X, unsigned int s);
unsigned int F(unsigned int X, unsigned int Y, unsigned int Z);
unsigned int G(unsigned int X, unsigned int Y, unsigned int Z2);
unsigned int GG(unsigned int x, unsigned int cl, unsigned int dl,
unsigned int c¢2, unsigned int d2, unsigned int a);
unsigned int GGG(unsigned int x, unsigned int al, unsigned int c1,
unsigned int a2, unsigned int c¢2, unsigned int b);
unsigned int NG(unsigned int x, unsigned int dl, unsigned int al,
unsigned int d2, unsigned int a2, unsigned int c);
unsigned int searchl(unsigned int x, unsigned int cl, unsigned int dl,
unsigned int c2, unsigned int d2, unsigned int a,
unsigned int Target, unsigned int *data);
unsigned int search2(unsigned int x, unsigned int al, unsigned int cl,
unsigned int a2, unsigned int c¢2, unsigned int b,
unsigned int Target, unsigned int *data);
unsigned int search3(unsigned int x, unsigned int dl, unsigned int al,
unsigned int d2, unsigned int a2, unsigned int c,
unsigned int Target, unsigned int *data);

#define FS1 7

#define FS2 12
#define FS3 17
#define FS4 22

#define GS1 5
#define GS2 9
#define GS3 14
#define GS4 20

#define EPS1 0x08000000
#define EPS2 Oxfffffel0

#define MAX 0x00100000

int main()

{

unsigned int i, j,k,1;
unsigned int x,konst;

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q¥ YU

NIBESITHI YA PRETORIA

Appendix E Source Code: Analysis of MDS5

unsigned int datal[MAX], data2[MAX], data3[MAX];

unsigned int b2,c2,a,bl,cl;

unsigned int Al15,B15,C15,D15,A19,B19,C19,D19,A23,B23,C23,D23;
unsigned int Bt15,Ctl15,At19,Ct19,Dt19,Dt23;

unsigned int DeltaX14;

unsigned int DeltaAl9, DeltaCl9, DeltaD1l9, DeltaCl5, DeltaBl5;
unsigned int BasicAl5, BasicBl5, BasicCl9;

unsigned int Stop, Phase, Test, Funny, MaxPhase, Y, alt;
unsigned int SearchCountl, SearchCount2, SearchCount3, SearchCount4;
unsigned int Diffl, Diff2, Diff3;

unsigned int Countl, Count2, Count3;

unsigned int Targetl, Target2, Target3;

unsigned int M{[8];

time_t TheTime;

TheTime = time(NULL) ;
srandom(TheTime) ;

/* Specify the difference for X14 */
DeltaX14 = Rotate(1l,9);

M[0] = 0x0000000f;
M[1] = 0x000000ff;
M[2] = 0x00000fff;
M[3] = Ox0000ffff;
M[4] = OxO000fffff;
M[5] = OxOOffffff;
M[6] = OxOfffffff;
M[7] = Oxffffffff;

SearchCountl
SearchCount?2
SearchCount3
SearchCount4

i
O O OO

/* Make initial choices for D19, Dtl1l9, D15, C15 and Ctl5 that is guaranteed
to satisfy the conditions imposed. */

D19 = 0x00000000;
Dtl1l9 = -1-D19;
DeltaDl19 = Dt19-D19;

printf("Delta D19: %8.8X\n", DeltaD19);
C19 = random() ~
Ctl9 = C19+EPS1;

DeltaCl9 = Ct19-C19;

Rotate(random(),1);

printf("Delta C19: %8.8X\n", DeltaCl9);

D15 = Rotate(l,16)-Rotate(l,25);

Cl5 = D15 - 1;

Ctl5 = Rotate(Rotate(C15-D15,15)+DeltaX14,17)+D15;
DeltaCl5 = Ctl5-C15;

Electrical and Electronic Engineering 254

+

&b

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q@ VU

NIBESITHI YA PRETORIA

Appendix E Source Code: Analysis of MDS5

Phase = 0;
printf("Delta C15: %8.8X\n", DeltaCl5);

Stop = 0;
Count3 = 0;
while(Stop == 0)
{
if(Phase == 0)
{
MaxPhase = 0;
SearchCountl = 0;
0

SearchCount2 = 0;
SearchCount3 = 0;
SearchCount4 = 0;

/* Choose Al5 randomly */
Al5 = random() ~ Rotate(random(),1l);

/* Determine Delta B1l5 based from (2) */

DeltaBl15 = Rotate(F(Ctl15,D15,A15)-F(C15,D15,A15),22)
+ Rotate(Ctl1l5-C15,0);

/*printf("Delta B15: %8.8X\n", DeltaBl5);*/

/* Choose B15 randomly */
B15 = random() ~ Rotate(random(),1l);

/* Compute Btl5 based on the random choice of B15 */
Btl5 = DeltaBl5 + Bl15;

/* Determine Delta Al9 from (3) */
DeltaAl9 = Rotate(G(Btl5,Ct15,D15)-G(B15,C15,D15),5)
+ Rotate(Bt15-B15,0);

/*printf("Delta A19: %8.8X\n", DeltaAl9);*/

/* Choose C19 randomly */

Cl19 = random() ~ Rotate(random(),1);;
Ctl9 = Cl9+EPS1;

}

if(Phase > 0)
{
/* Choose Al5 to be close to the previous "good" value */
Diffl = random()&random()&random()&random();
Al5 = BasicAl5 ~ Diff1l;

/* Determine Delta B15 based from (2) */
DeltaBl5 = Rotate(F(Ctl5,D15,A15)-F(Cl15,D15,A15),22)
+ Rotate(Ctl5-C15,0);

/*printf("Delta B15: %8.8X\n", DeltaBl5);*/

Electrical and Electronic Engineering 255

IVERSITEIT VAN PRETORIA
VERSITY OF PRETORIA
IBESITHI YA PRETORIA

(02 ‘®

N
NI
UN

Appendix E Source Code: Analysis of MD5

/* Choose B15 to be close to the previous "good" value */
Diff2 = random()&random()&random()&random() ;
B15 = BasicBl15 ~ Diff2;

/* Compute Btl5 based on the random choice of B1l5 */
Bt15 = DeltaBl5 + B1l5;

/* Determine Delta Al19 from (3) */
DeltaAl9 = Rotate(G(Btl5,Ctl5,D15)-G(B15,C15,D15),5)
+ Rotate(Btl1l5-B15,0);

/*printf("Delta A19: %8.8X\n", DeltaAl9);*/

/* Choose C19 randomly */
Diff3 = random()&random()&random()&random();
Cl19 = BasicCl9 = Diff3;
Ctl9 = C19+EPS1;
}

Funny = 0;

/* Set a target */
Targetl = Rotate(-DeltaAl9,12) - Rotate(-DeltaAl9-EPS1,12) + DeltaBl5;

/* For the given target determine if any solutions exists, and if so,
* how many solutions exists. */

X = random();

/* Find valid values for Al9 and implicitly Atl9 */
Countl = 0;
Countl = searchl(x,C19,D19,Ct19,Dt19,Delta”Al9, Targetl,datal);

/* The array datal now contains all valid values of A19 */
for(i=0; i<Countl; i++)
{
Al9 = datallil]:
Atl9 = datal[i] + DeltahAl9;

Target2 = Rotate(D19-A19, 23) - Rotate(Dt19-Atl9, 23);
X = random();

/* Find valid values for B15 and implicitly Btl5 */
Count2 = 0;
Count2 search2(x,A19,C15,At19,Ct15,DeltaBl5, Target2,data2);
for(j=0; j<Count2; j++)

{
B15
Bt15

I

It

data2[j];
data2[j] + DeltaBl5;

/* Confirm if equation (3) holds */
Test = G(B15,C15,D15)-G(Btl5,Ct15,D15)
- Rotate(Al9 - B1l5, 27)

Electrical and Electronic Engineering 256

IVERSITEIT VAN PRETORIA
VERSITY OF PRETORIA
IBESITHI YA PRETORIA

(0§L

N
NI
UN

Appendix E Source Code: Analysis of MD5

+ Rotate(Atl9 - Btl5, 27);
if(Test == 0)

{
/* Confirm if equation (2) holds */
Test = F(C15,D15,A15) - F(Ctl5,D15,Al15)
- Rotate(B15-C15,10)
+ Rotate(Bt15-Ctl15,10);

if(Test == 0)
{
/* Now determine if equation (5) holds */
Test = G(D19,A19,B15)-G(Dt19,At19,Btl5)
- Rotate(C19 - D19, 18)
+ Rotate(Ctl9 - Dtl19, 18)
+ Cl15 - Ctl15;

if(((TestaM[0])==0)&&(Phase<2))
{
Phase = 1;
Funny = 1;
/*printf ("Hit %d\n", Phase);*/
]

if(((Test&M[1])==0)&&(Phase<3))
{

Phase = 2;
Funny = 2;
/* printf("Hit %d\n", Phase);*/
}
if(((TestaM[2])==0)&&(Phase<4))
{
Phase = 3;
Funny = 3;

/*printf ("Hit %d\n", Phase);*/
}
if(((TeSt&M[3])==0)&&(Phase<5))
{
Phase 4;
Funny 4;
/*printf ("Hit $d\n", Phase);*/
SearchCountl++;

if (SearchCountl > 10000)
{
SearchCountl = 0;
Phase = 0;
printf ("Resetting Process\n");

}

if(((Test&M[4])==0)&&(Phase<6))
{

Phase

Funny

5;
5;

Electrical and Electronic Engineering 257

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q¥ YU

NIBESITHI YA PRETORIA

Appendix E

Source Code: Analysis of MD5

SearchCount2++;
/*printf ("Hit %d\n", Phase);*/

if (SearchCount2 > 10000)

{
SearchCount2 = 0;

Phase = 0;
printf("Resetting Process\n");
}

}

if(((Test&M[5])==0)&&(Phase<7))
{

Phase = 6;
Funny = 6;
SearchCount3++;

/*printf("Hit %d\n", Phase);*/

if(SearchCount3 > 10000)
{
SearchCount3 = 0;
Phase = 0;
printf ("Resetting Process\n");
}
}

if(((Test&M[6])==0)&&(Phase<8))
{

Phase = 7;
Funny = 7;
SearchCount4++;

/*printf ("Hit %d\n", Phase);*/
if (SearchCount4 > 16000)
{
SearchCount4 = 0;
Phase = 0;
printf ("Resetting Process\n");
}
}

if(Test == 0)
{
printf ("Checking Results\n");
Test = F(Ctl5,D15,A15)
- F(C15,D15,A15)
- Rotate(Btl5-Ct15,10)
+ Rotate(B15-C15,10);

if(Test!=0)
{
printf("Error 1\n");
exit(l);
}

Electrical and Electronic Engineering

258

4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Appendix E

P
W UNIVERSITEIT VAN PRETORIA
A 4

Source Code: Analysis of MD5

Test = G(B15,C15,D15)
- G(Btl5,Ctl5,D15)

- Rotate(Al9-B15,27)

+ Rotate(Atl19-Btl5,27);

if(Test!=0)

{

printf("Error 2\n");

exit(l);

}

Test = G(A19,B15,C15)

- G(Atl9,Btl5,Ctl5)
- Rotate(D19-A19,23)
+ Rotate(Dt19-Atl19,23);

if(Test!=0)
{
printf("Error 3\n");
exit(l);
}

Test = G(D19,A19,B15)

- G(Dtl1l9,Atl19,Btl5)

- Rotate(C19-D19,18)
Rotate(Ct19-Dt19,18)
Cl5-Cti15;

+ +

if(Test!=0)

{

printf("Error 4\n");

exit(1l);

}

/* Now that equations (1)-(7) are
* satisfied, determine if (8) is
* gatisfied and if the error
* propagates as expected */

Target3 = Rotate(-DeltaAl9%,12)
- Rotate(-DeltaAl9-EPS1,12)
+ DeltaBl5;

X = random();

/* Find valid wvalues for C19 and
* implicitly Ctl1l9 */

Count3 = 0;
Count3

for(k=0; k<Count3; k++)
{
C19 = data3[k];
Ctl9 = data3[k] + EPS1;
B19 = C19 - DeltaAl9;

search3(x,D19,A19,Dt19,At19,DeltaCl9,Target3,data3l);

Electrical and Electronic Engineering

259

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q¥ YU

NIBESITHI YA PRETORIA

Appendix E

Source Code: Analysis of MD5

/* Confirm if (6) holds */
Test = G(C19,D19,a19)
- G(Ctl19,Dt19,At19)
+ B15 - Btl5
- Rotate(B19-C19,12)
+ Rotate(B19-Ct19,12);
if(Test != 0)
{
printf("Error 4\n");
exit(l);
}

/* Confirm if (7) holds */
Test = G(B19,C19,D19)
- G(B19,Ct19,Dt19)
+ Al19 - Atl19;
if(Test = 0)
{
printf("Error 5\n");
exit(l):;
}

/* Determine if propagation of
* differences are as expected */

alt = 0;
if(alt==0)
{
for(1=0; 1<10; 1++)
{
A23 = random()
Rotate(random(),1);
D23 = random()
Rotate(random(),1);
Dt23 = D23 + EPS2;
Y = random()
~ Rotate(random(),1);

Test = Rotate(Ctl9
+ G(Dt23,A23,B19)
+ Y,14)
+ Dt23;

Test = Test - (Rotate(C19
+ G(D23,A23,B19)

+ Y,14)

+ D23);

if(Test != 0)
{
Phase = 0;
}

if(Test == 0)

Electrical and Electronic Engineering

260

&
W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
H YUNIBESITHI YA PRETORIA
Appendix E Source Code: Analysis of MD5
{
Test = Rotate(Dt23-A23,23)
- Rotate(D23-A23,23);
Test = Test
- G(A23,B19,Ctl19)
+ G(A23,B19,C19);
Test = Test - (Dt19-D19);
if(Test == 0)
{
Stop+t++;
printf("Al5 = 0x%8.8X;\n", Al5);
printf("Dl5 = 0x%8.8X;\n", D15);
printf("C15 = 0x%8.8X;\n", C15);
/*printf("Ctl5 = 0x%8.8X;\n", Ctl5);*/
printf("B15 = 0x%8.8X;\n", B15);
/*printf("Btl5 = 0x%8.8X%X;\n", Btl5);*/
printf("Al19 = 0x%8.8X;\n", A19);
/*printf ("At19 = 0x%8.8X;\n", Atl9);*/
printf("D19 = 0x%8.8X;\n", D19);
/*printf("Dt19 = 0x%8.8X;\n", Dtl9);*/
printf("C19 = 0x%8.8X;\n", C19);
/*printf("Ct1l9 = 0x%8.8X;\n", Ctl9);*/
printf("B19 = 0x%8.8X;\n", B1l9);
printf ("A23 = 0x%8.8X;\n", A23);
/*printf("B23 = 0x%8.8X;\n", B23);
printf("C23 = 0x%8.8X;\n", C23);
printf("D23 = 0x%8.8X;\n", D23);
printf("Dt23 = 0x%8.8X;\n", Dt23);*/
exit(0);
}
1
}
if(Stop == 1)
{
printf("Found a Solution\n");
}
)
1
}
/* Preserve the basic values */
if(Funny == Phase)
{
BasicAlS5 = Al5;
BasicBl5 = B1l5;
BasicCl1l9 = C19;
}
1
1
}
}

Electrical and Electronic Engineering

261

4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&
93 UNIVERSITEIT VAN PRETORIA
A 4

Appendix E Source Code: Analysis of MD5

if (Phase > MaxPhase)

{

MaxPhase = Phase;
printf("Best Current Phase: %d\n", MaxPhase);
printf("%d %d %4 %d\n", SearchCountl, SearchCount2,
SearchCount3, SearchCount4) ;

}

}

printf("Target: %8.8X\n", Targetl); .
printf("Target: %8.8X\n", Target2);

printf ("Number of solutions (7): %d\n", Countl);
printf ("Number of solutions (4a): %d\n", Count2);
printf ("Number of solutions (4b): %d\n", Count3);
printf ("Number of Valid Solutions (3) %d\n", Stop):
return(0);

]

/* Hierdie deel kan so klein bietjie meer elegant gedoen word,
* maar a.g.v. tydbeperkings gaan ek nie nou daaraan karring nie */

unsigned int searchl(unsigned int x, unsigned int cl, unsigned int dl,
unsigned int c2, unsigned int d2, unsigned int a,
unsigned int Target, unsigned int *data)
{
int i;
static int index, count;

i = index;

if(i==0)
{
count = 0;

}

/* This is where you check the depth of the tree */
if(i==32)
{
data[count] = x;
count++;
return(count) ;

}
index++;

if(count >= MAX)
{
index--;
return(count);

}

if((((GG(x,cl,dl,c2,d2,a) - Target) >> i) & 0x00000001) == 0)
{

Electrical and Electronic Engineering 262

4

&
&

W UNIVERSITEIT VAN PRETORIA

\ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Appendix E Source Code: Analysis of MD5

searchl(x,cl,dl,c2,d2,a,Target,datay;
}

x = X7 (1l<<iy;

if((((GG(x,cl,dl,c2,d2,a)-Target) >> 1) & 0x00000001) == 0)
{

searchl(x,cl,dl,c2,d2,a,Target,data);
}

X = X" (1l<<iy;

index--;
return(count);

}

/* Soek oplossings vir vergelyking 4 */
unsigned int search2(unsigned int x, unsigned int al, unsigned int cl,
unsigned int a2, unsigned int ¢2, unsigned int b,
unsigned int Target, unsigned int *data)
{
int i;
static int index, count;

i = index;

if(i==0)
{
count = 0;

}

/* This is where you check the depth of the tree */
if(i==32)
{
dataf{count] = x;
count++;
return(count);

}
index++;

if (count >= MAX)
{
index--;
return(count) ;

}

if((((GGG(x,al,cl,a2,c2,b)y-Target) >> 1) & 0x00000001) == 0)

{
search2(x,al,cl,a2,c2,b,Target,data);

}

x = X7 (1<<iy;

Electrical and Electronic Engineering 263

4

&
&

W UNIVERSITEIT VAN PRETORIA

\ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Appendix E Source Code: Analysis of MD5
if((((GGG(x,al,cl,a2,c2,b)-Target) >> i) & 0x00000001) == 0)
{

search2(x,al,cl,a2,c2,b,Target,data);
}

x = x7(1<<iy;

index--;
return(count);

}

/* Soek oplossings vir vergelyking (6) en (7) gekombineer */
unsigned int search3(unsigned int x, unsigned int d1, unsigned int al,
unsigned int d2, unsigned int a2, unsigned int c,
unsigned int Target, unsigned int *data)
{
int i;
static int index, count;

i = index;
if(i==0)
{
count = 0;
1

/* This is where you check the depth of the tree */
if(i==32)
{
data[count] = x;
count++;
return(count);

}
index++;

if (count >= MAX)
{
index--;
return(count);

}

1f((((NG(x,dl,al,d2,a2,c) - Target) >> i) & 0x00000001) == 0)

{
search3(x,dl,al,d2,a2,c,Target,data);
}

X = x"(1l<<iy;

if((((NG(x,dl,al,d2,a2,c)-Target) >> i) & 0x00000001) == 0)
{

search3(x,dl,al,d2,a2,c,Target,data);
}

Electrical and Electronic Engineering 264

4

é%
<

Appendix E

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Source Code: Analysis of MD5

X = x"(1<<i);
index--;
return(count);

}

unsigned int Rotate(unsigned int X, unsigned int s)

{

unsigned int temp;

temp = X;
X = (X << 8) |
return(X);

(temp >> (32-s8));

unsigned int RotateRight(unsigned int X,
{

unsigned int temp;

temp = X;
X = (X >> s) |
return(X);

(temp << (32-s8));

unsigned int F(unsigned int X,
{

return((X&Y) | (("X)&Z));

unsigned int G(unsigned int X,
{

return((X&zZ) | (Y&(~Z)));

unsigned int GG(unsigned int x,
unsigned int c2, unsigned int d2,
{

/* a is the difference DeltaAl9.
return(G(cl,dl,x)-G(c2,d2,x+a));
}

unsigned int GGG(unsigned int x,
unsigned int a2, unsigned int c2,
{

/* b is the difference DeltaBl5.
return(G(al,x,cl)-G(a2,x+b,c2));
}

unsigned int NG(unsigned int x,
unsigned int d2, unsigned int a2,
{

/* a is the difference DeltaAl?9.
return(G(x,dl,al)-G(x+c,d2,az2));
}

unsigned int Y,

unsigned int Y,

unsigned int c1l,
unsigned int a)

unsigned int al,
unsigned int b)

unsigned int di,
unsigned int c)

unsigned int s)

unsigned int 2)

unsigned int Z2)

unsigned int dl,

X is the basic value */

unsigned int cl,

x is the basic value */

unsigned int al,

x is the basic value */

Electrical and Electronic Engineering

265

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

ra
g
&

Appendix E Source Code: Analysis of MD5

E.2 SOURCE CODE: SECOND PHASE OF THE ATTACK ON MD5
This section of the appendix contains the C source code used in the second phase of the
attack on MD5.

/* This is the program written by Hans Dobbertin to implement the attack on
* the last two rounds of MD5. */

#include <stdio.h>
#include <stdlib.h>

#define UL unsigned long

#define MAX 10000

#define shift(x,i) (UL) (((X)<<(1))7((x)>>(32-(1))))

#tdefine f(x,y,2z) ((X)7(y)"(2))

#define F(x) (UL)(f(xt+a,b2,c2)-f(x,bl,cly))

#define H(x) (UL)(((b1)"(x+a))+((b2)" (x+a))+((cl)”(x))+((c2)"(x)))

UL a,bl,cl,b2,c2,konst;

int *max,max_test;

UL **feld;

int suche(),suchh(),sucheb();

main(int ac,char *av[])
{
int rr,kk,nn,jj,ii,inn,out,maxi2;
int countl, count2,count3, count4,count5, counté6;
UL AO,Al,A2,BO,Bl,B2,CO,Cl,C2,DO,Dl,D2,K,KO,Ul,UZ,Vl,VZ,Wl,W2,Zl,Z2,anfang;
UL A2 _basic,B2_basic,C2_basic,D2_basic,C,D;
UL X0,X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,XX,dX;
UL Y7,Y8,Y9,Y10,Y11,Y12,X,dC10,Y,7Z,U,UU0,delta;
UL test0,testl,test2,test3,test4, test5,test6,test7,test8, test9;
UL epsl,eps2,eps3,epsd,tem, test, testl0, testll;
int phase,erfolg,shl,sh2,sh3,diffl,diff2,diff3,teml, tem2;
UL dAl,dB1,dD1,dcl,aAl,BB1,CC1,DD1,AA2,BB2,CC2,DD2,dXnull;
UL *feldO,*feldl, *feld2,*feld3,*feld4, *feld5, *feld6;
int Countl,Count2,Count3, versuch, flag,ind,maxi, ERFOLG;
int max0=MAX,maxl1=MAX,max2=MAX,max3=MAX,max4=MAX,max5=MAX, max6=MAX;
float quotient;

if(ac!=2)
{
fprintf(stderr, "Usage: %s seed\n",avi{0]);
exit(l);
}

srand(atoi(avil]));
if((feld0=(UL*)malloc(MAX*sizeof (UL)))==NULL |

(feldl=(UL*)malloc(MAX*sizeof (UL)))==NULL |
(feld2=(UL*)malloc(MAX*sizeof (UL)))==NULL ||

Electrical and Electronic Engineering 266

4

P
W UNIVERSITEIT VAN PRETORIA
A 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Appendix E Source Code: Analysis of MD5

(feld3=(UL*)malloc(MAX*sizeof (UL)))==NULL | |
(feld4=(UL*)malloc(MAX*sizeof (UL)))==NULL ||
(feld5=(UL*)malloc(MAX*sizeof (UL)))==NULL ||
(feld6=(UL*)malloc(MAX*sizeof (UL)))==NULL)
{
fprintf (stderr, "Nicht genuegend speicher\n");
exit(l);
1

out=0x100;
inn=0x1000;
maxi=0x10;
maxi2=1000;
ERFOLG=0;
versuch=0;

delta=shift(1,9);
BB1=0;

Bl=-1;
dB1=BB1-B1l;

test1l0 = 0x80044000;

testll = 0x40040000;

epsl = -0x40004000;

eps?2 = -0x80084000;

eps3 = -0xXFFFBFE(O;

epsd = -0x40000200;
LABEL_A:

max_test=out;
erfolg=0;

LABEL_NEU:

A2=(rand() " shift(rand(),1));

C2=(rand() " shift(rand(),1));

C2=C2&0xbf fbbdff;

A2=A2&0xbffbbdff;

D2=(A2+shift(epsl-eps4,31))” (rand()s&rand()&rand()&rand());
C2=C270x40004000;

D2=D2"0x00000200;

A2=A2"0x40004200;

test=f(C2+eps3,D2+eps4,0)-f(C2,D2,0)-testll;
if(test!=0)
{
goto LABEL_NEU;
}

test=f (C2+eps3,D2+epsd,A2+epsl)-f(C2,D2,A2)-testlO;
if (test!=0)
{
goto LABEL_NEU;

Electrical and Electronic Engineering 267

4

&
&

W UNIVERSITEIT VAN PRETORIA

\ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Appendix E Source Code: Analysis of MD5

}
B2=shift(-eps2-1,31)" (rand()&arand()&rand());

UU=(A2+epsl)” (B2+eps2);

U =A2"B2;

dCl=shift(C2-D2+eps3-epsd,16)-shift(C2-D2,16);

dC1l=dCl- ((D2+eps4)"UU)+(D27U);

Cl=(rand() " shift(rand(),1));

ccl C1l+dcil;

dpil -(CC17UU)Y+(C1l U)Y+shift(D2-A2+epsd-epsl,21)-shift(D2-A2,21);

dXnull=(shift(A2-B2+epsl-eps2,28)-shift(A2-B2,28)+1+eps2)&l;
test=dXnull” ((shift(B2+eps2-CC1,9)-shift(B2-C1,9))&1)"(dCl&l);

if (test==0)

{
konst=shift (D2-A2+epsd-epsl,21)-shift(D2-A2,21)-dD1;
b2=UU;
c2=0;
bl=U;
cl=0;
a=dcCcl;
feld=&feldl;
max=&maxl;

if (countl=suche())
{
for(nn=0; nn<maxi; nn++)
{
ind=(unsigned)rand()%countl;
Cl=feldl[ind];
CC1l=C1+dC1;
if(dXnull==((shift(dC1-dD1,16))&l))
{
dX = shift(dCl-dD1,16);
/*dX = shift(dC1-dD1,16)-shift(1,16);*/
}
if(dXnullt=((shift(dC1-dDb1l,16))s&l))
{
dX = shift(dCl1-d4D1,16)+1;
)

konst=shift (B2+eps2-CC1l,9)~-shift(B2-C1,9)-dB1;
b2=CC1"BB1;
c2=0;
bl1=C17°B1;
cl=0;
a = dX;
feld=sfeld2;
max=&max2;
max_test=inn;
if (count2=suche())
{
if(erfolg==0)

Electrical and Electronic Engineering 268

4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Appendix E

&
&

W UNIVERSITEIT VAN PRETORIA

\ 4

Source Code: Analysis of MD5

fprintf (stderr,"** %8d %8d %8d",countl,nn,count2});

fprintf(stderr,"** %8.8X %8.8X %8d\n",dCl,dDl,ERFOLG):;

erfolg=1;
for(kk=0; kk<count2; kk++)
ind=(unsigned)rand()%count2;

X=feld2[ind];
XX=X+dX;

konst=shift (A2-B2+epsl-eps2,28)-shift(A2-B2,28)-2;

bl=(B2+eps2)~CC1;
b2=XX"BB1;
cl=(-B2-1)"C1;
c2=(-X-1)"B1;
a=dDl;
feld=&feld3;
max=&max3;
max_test=inn;
if (count3=sucheh())
{
ERFOLG=ERFOLG+1;
fprintf(stderr, "LABEL_B %d\n", ERFOLG);
goto LABEL_B;
}
1

max_test=out;

goto LABEL_A;
LABEL_B:

fprintf(stdout, "$d\n", ERFOLG) ;
fprintf(stdout, "A2 = 0x%8.8X;\n",A2);
fprintf(stdout,"B2 = 0x%8.8X;\n",B2);
fprintf(stdout,"C2 = 0x%8.8X;\n",C2);
fprintf(stdout, "D2 = 0x%8.8X;\n",D2);
fprintf(stdout,"Cl = 0%%8.8X;\n",Cl);
fprintf (stdout, "dCl= 0x%8.8X;\n",dCl);
fprintf(stdout, "dD1= 0x%8.8X;\n\n",dD1);

erfolg=0;
flag=0;
max_test=0x200000;

konst=shift(D2-A2+epsd-epsl,21)-shift(D2-A2,21)-dD1;

b2=U0U;

c2=0;

bl=U;

cl=0;

a =dC1;
feld=&feldl;

Electrical and Electronic Engineering

269

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q¥ YU

NIBESITHI YA PRETORIA

Appendix E Source Code: Analysis of MD5

max=&maxl;
if(countl=suche())
{
for(nn=0; nn<maxi2; nn++)
{
ind=(unsigned)rand()%countl;
Cl=feldl[ind];
CCl=C1l+dCl;
if(dXnull==((shift(dCl1l-dD1l,16))&1))
{
dX = shift(dC1l-dD1,16);
/*dX = shift(dCl-dDp1,16)-shift(1l,16);*/
}

if(dXnull!=((shift(dcl-dD1,16))s&l))
{
dX = shift(dcl-dDl,16)+1;
}

konst=shift (B2+eps2-CC1,9)-shift(B2-C1l,9)-dB1;
b2=CC1”BB1;
c2=0;
bl=C1”B1;
cl=0;
a=dX;
feld=&feld2;
max=&max2;
if (count2=suche())
{
/*fprintf(stderr, "IT. ** %8d %8d %8d %8.8X\n",countl,nn,count2,dDl);*/
for(kk=0; kk<count2; kk++)
{
ind=(unsigned)rand()%count2;
X=feld2[ind];
XX=X+dX;
konst=shift(A2-B2+epsl-eps2,28)-shift(A2-B2,28)-2;
bl=(B2+eps2)~CCL;
b2=XX"BB1;
cl=(-B2-1)"C1;
c2=(-X-1)"B1;
a=dD1l;
feld=&feld3;
max=&max3;
if(count3=sucheh())

for(rr=0; rr<count3; rr++)
{
ind=(unsigned)rand()%count3;
Dl1=feld3[ind};
DD1=D1+dD1;
test=dX-(shift(CC1-DD1,16)-shift(Cl-D1,16));
if(test==0)
{
Al1=D1"X"B1;
AA1=DD1"XX"BB1;

Electrical and Electronic Engineering 270

4

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A~ 4

YUNIBESITHI YA PRETORIA

Appendix E

Source Code: Analysis of MD5

fprintf(stderr,"def = %8.8x %d\n", test, ERFOLG) ;

tes
tes
if(

{

tes
tes
if¢(

{

dAl=AAl1-Al;

test=(shift (AA1-BB1,28)-shift(Al-B1l,28)-1)&l;

if(test==0)

flag=1;

konst=shift(DD1-AAl,21)-shift(D1-A1,21);

b2=AA1;

c2=BB1;

bl=A1;

cl=B1;

a=0;

feld=&feld4;

max=&max4;

C=rand();

test = f(AAl,BBL1,C)-f(Al,B1,C);

test = test-shift(DD1-AAl,21)+shift(D1-A1,21);

if((testalOxffff)==0)
{

}

if (countd=sucheb())
{

t = f(D2+eps4,A2+epsl,B2+eps2)-f(D2,A2,B2);
t = test-shift(C2-D2+eps3-eps4,16)+shift(C2-D2,16)+dCl;
test!=0)

fprintf (stderr, "ERRORI\n");

exit(1l);
t = f(A2+epsl,B2+eps2,CCl)-f(A2,B2,Cl);
t = test-shift(D2-A2+epsd-epsl,21)+shift(D2-A2,21)+dD1;
test!=0)

fprintf (stderr, "ERROR2\n") ;

exit(1l);

test = f(B2+eps2,CC1l,DD1)-f(B2,Cl1,D1);

test

1f(
{

test!=0)

fprintf (stderr, "ERROR3\n");
exit(l);

test = f(CCl,DD1,AAl)-f(C1l,D1,Al);

test-shift(A2-B2+epsl-eps2,28)+shift(A2-B2,28)+dAl;

test = test-shift(B2-CCl+eps2,9)+shift(B2-C1,9)+dB1;
if(test!=0)
{

fprintf(stderr, "ERROR4\n") ;
exit(l);

Electrical and Electronic Engineering

271

-

.

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q@ VU

NIBESITHI YA PRETORIA

Appendix E Source Code: Analysis of MD5

test f(DD1,AAl,BBl)-f(D1,Al1,Bl);
test test-shift(CC1-DD1,16)+shift(C1-D1,16);
if(test!=0)

{

fprintf(stderr, "ERROR5\n") ;
exit(l);

C=feld4[0];
test = f(AAl,BB1,C)-f(Al,Bl,C);
test = test-shift(DD1-AAl,21)+shift(D1-Al,21);
if(test!=0)
{
fprintf (stderr, "ERROR6\n") ;
exit(l);

D=shift(shift(AA1-BB1,28)-shift(Al-B1,28)-1,31)"C;
test = f(BB1,C,D)-f(B1,C,D);

test = test-shift(AA1-BB1,28)+shift(Al1-B1,28);
if(test!=0)
{
fprintf(stderr, "ERROR7\n");
1

fprintf(stderr, "A2 0x%8.8X;\n",A2);
fprintf(stderr, "B2 0x%8.8%;\n",B2);
fprintf(stderr,"C2 = 0x%8.8X;\n",C2);
fprintf(stderr, "D2 = 0x%8.8X;\n\n",D2);
fprintf(stderr, "epsl= 0x%8.8X;\n",epsl);
fprintf (stderr, "eps2= 0x%8.8X;\n",eps2);
fprintf(stderr, "eps3= 0x%8.8X;\n",eps3);
fprintf (stderr, "epsd= 0x%8.8x;\n",epsd);
fprintf (stderr,"dCl = 0x%8.BX;\n",dCl);
fprintf(stderr, "ddl 0x%8.BX;\n",dDl);
fprintf(stderr," **** gef. ***x\n");
fprintf(stderr, "AAl = 0x%8.8x;\n",AAl);

fprintf(stderr,"Al = 0x%8.8x;\n",Al);
fprintf(stderr, "BB1 = 0x%8.8X;\n",BBl);
fprintf(stderr, "Bl = 0x%8.8x;\n",Bl);
fprintf(stderr,"CCl = 0x%8.8X;\n",CCl);
fprintf(stderr,"Cl = 0x%8.8X;\n",Cl);
fprintf(stderr, "DD1 = 0x%8.8X;\n",DD1);
fprintf(stderr,"D1 = 0x%8.8x;\n",Dl);
fprintf (stderr,"C = 0x%8.8%X;\n",C);
fprintf (stderr, "D = 0x%8.8X;\n",D);
fprintf (stdout, "A2 = 0x%8.8X;\n",A2);
fprintf(stdout, "B2 = 0x%8.8%X;\n",B2);
fprintf(stdout,"C2 = 0x%8.8X;\n",C2);
fprintf(stdout,"D2 = 0x%8.8X;\n",D2);

fprintf (stdout, "epsl= 0x%8.8x;\n",epsl);
fprintf (stdout, "eps2= 0x%8.8X;\n",eps2);
fprintf (stdout, "eps3= 0x%8.8X;\n",eps3);

Electrical and Electronic Engineering 272

+

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
h 4

YUNIBESITHI YA PRETORIA

Appendix E Source Code: Analysis of MD5

fprintf(stdout, "eps4= 0x%8.8X;\n", eps4);
fprintf (stdout, "dC1 0x%8.8X;\n",dCl);
fprintf (stdout, "dD1 0x%8.8X;\n",dD1);
fprintf(stdout, "**** gef., ***x*\n");
fprintf(stdout, "AAl = 0x%8.8X%;\n",AAl);
fprintf(stdout, "aAl = 0x%8.8%;\n",Al);
fprintf(stdout, "BB1l = 0x%8.8X;\n",BB1l);
fprintf(stdout, "Bl = 0x%8.8X;\n",Bl);
fprintf(stdout, "CC1 = 0x%8.8%;\n",CCl);
fprintf(stdout,"Cl = 0x%8.8X;\n",Cl);
fprintf(stdout, "DD1 = 0Ox%8.8X;\n",DD1);
tprintf(stdout, "D1 = 0x%8.8%;\n",Dl);

It

fprintf (stdout, "C = 0x%8.8x;\n",C);
fprintf(stderr, "D = 0x%8.8X;\n",D);
exit(1ly;
}
}
}
}
}
}
}
1
1

if(flag==0)
{
fprintf(stderr, "nichts gefunden\n");
]
if(flag==1)
{
fprintf(stderr, "nichts gefunden +\n");

}

goto LABEL_A;
} /* End Main */

int suche()

{
int i;
static int index,count;
static UL x;

i=index;

if(i==0)
{
count=0;

}

1f(i==32)
{

if (count>=*max)

Electrical and Electronic Engineering 273

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&
W UNIVERSITEIT VAN PRETORIA
A~ 4

Appendix E Source Code: Analysis of MD5

(*max)*=2;
if((*feld=(UL*)realloc(*feld, (*max)*sizeof(UL)))==NULL)
{
printf("Nicht genuegend Speicher 1\n");
exit(l);
1

(*feld) [count]=x;
count++;
return count;

}
index++;

/* if (count >= MAX)
{

index--;

return(count);

y*/

if((((F(x)-konst)>>i)&l)==0)
{
suche();

]

if(count >= max_test)
{
index--;
return count;

}

x"=lul<<i;
1f((((F(x)-konst)>>i)&l)==0)
{
suche();

]

X" =1lul<<i;
index--;
return count;

int sucheh()

{
int 1i;
static int index, count;
static UL x;

i=index;

Electrical and Electronic Engineering 274

i

St

g;ﬁ UNIVERSITEIT VAN PRET
et

ORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Appendix E Source Code: Analysis of MD5
if (i==0)
{
count=0;
}
1f(i==32)

{
if (count>=*max)
{
(*max)*=2;
if((*feld=(UL*)realloc(*feld, (*max)*sizeof(UL)))==NULL)
{
printf ("Nicht genuegend Speicher 2\n");
exit(ly;
}
}
(*feld) {count]=x;
count++;
return count;

}
index++;

/*1if (count >= MAX)
{
index--;
return(count);

bx/

if((((H(x)-konst)>>1)&l)==0)
{
sucheh();

}

if (count >= max_test)
{
index--;
return count;

}

x=1ul<<i;

if((((H(x)-konst)>>i)&l) == 0)
{
sucheh () ;
}

x"=1lul<<i;
index--;
return count;

}

int sucheb ()

{

Electrical and Electronic Engineering 275

<

Appendix E

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Source Code: Analysis of MD5

int 1i;
static int index, count;
static UL x;

i=index;
if(i==0)
{
count=0;
}
if(i==32)

{
if (count>=*max)
{

(*max)*=2;

if((*feld=(UL*)realloc(*feld, (*max)*sizeof (UL)))==NULL)

{

printf("Nicht genuegend Speicher 3\n"):;

exit(l);
1

}

(*feld) [count]=x;
count++;
return count;

}
index++;

/*1f (count >= MAX)
{
index--;
return(count);

bx/

if((((F(x)-konst)>>i)&l)==

{
sucheb();

}

if(count >= max_test)
{
index--;
return count;

}

x"=1ul<<i;

0)

if((((F(x)-konst)>>i)&l)==0)

{
sucheb();

}

Electrical and Electronic Engineering

276

IVERSITEIT VAN PRETORIA
VERSITY OF PRETORIA
IBESITHI YA PRETORIA

(02 ‘®

N
NI
UN

Appendix E Source Code: Analysis of MD5

x"=lul<<i;
index--;
return count;

E.3 THIRD PHASE OF THE ATTACK ON MDS5
This section of the appendix contains the C source code used in the third phase of the attack
on MD5.

/* This program is a modification of the original program for connecting the
first two stages of the MD5 attack. The modification ensures that the
connection established is a valid connection.

Original Author: Hans Dobbertin?
Modifications : P.R. Kasselman

Date of Modifications: 30 September 1996
Filename: md5anl3.c */

L . S

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "libtiming.h"

#define ulong unsigned long

#define shift(x,1i) (ulong)((((ulong)x)<<(i)) " (((ulong)x)>>(32-(1i))))
#define f(x,y,z) ((X)&(y) | (T(x))&(2))

#define g(x,y,z) ((x)&(z) | (7(z))&(y))

#define h(x,v,z) ((X)7(y) (2))

#define i(x,y,z) ((¥) ((xX)1(7(2))))

static FILE *f;

/* random number generator from Numerical Recipes in C p. 282 */
#define IM1 2147483563
fdefine IM2 2147483399
fdefine IA1l 40014

#define IA2 40692

#define IQ1 53668

#define IQ2 52774

#define IR1 12211

#define IR2 3791

#define NTAB 32

#define NDIV (1+(IM1-1)/NTAB)

double ran2(long *idum)
{
int j;
long k;
static long idum2 = 123456789;
static long iy = 0;
static long iv[NTAB];
double temp;

Electrical and Electronic Engineering 277

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

&
o o
<&

Appendix E

Source Code: Analysis of MD5

/* Initialization */

if (*idum

{
/* make sure
if (*idum ==

{

<= 0)

*idum
0)

1= 0 */

*idum = 1;

printf ("Random generator initialized with %1d\n"

fprintf(f, "Random generator initialized with %1d\n",
idum2 = *idum;
for (j=NTAB+7; j>=0; j--)
{
/* idum = (IAllidum) % IM1*/
k = *idum/IQ1;

jdum = TAl(*idum-k*IQl)-k*IR1;
if (*idum < 0)
{
*idum += IM1;
}
if (j < NTAB)
{
iv(j] =
}

*idum;

i

iv[0];
}

iy =

/* idum = (TAl*idum) % IM1 */

k = *idum/IQ1;

idum = IAl(*idum-k*IQ1)-k*IR1;
if (*idum < 0)
{
*idum += IM1;

]

/* idum2 = (IA2*idum) % IM2 */
k = idum2/1Q2;
idum2 = IA2* (idum2-k*IQ2)-k*IR2;

if (idum2 < 0)
{
idum2 += IM2;
}

j = iy/NDIV;
iy = iv{j] - idum2;
iv[j] = *idum;

, *idum) ;

*idum) ;

Electrical and Electronic Engineering

278

-

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Appendix E Source Code: Analysis of MD5

if (iy < 1)

{

iy += IM1-1;

}

return (double)iy/IM1;

static long randstate;
void srand32(long seed)

{

if (seed>0)

{

randstate

= -seed;

} else {

randstate

}

unsigned

{

= seed;

long rand32(void)

return (unsigned long) (4294967296.0*ran2(&randstate));

main(int

{
ulong
ulong
ulong
ulong
ulong
ulong
ulong
ulong
ulong
ulong
ulong
ulong
ulong
ulong
ulong
ulong
ulong
ulong
int

ac,char *avi])

A,B,B_basic,C,D;
AOQ,BO,CO0,DO;
C31,B31;
A39,B35,C39,D39;
A43,B39,D43;
A35,C35,D35;
Al9,B15,C15,D19;
A23,B19,C19,D23;
Cc27,B27,A31,D31;
BB_12,CC_12,C2_34,BB_34;
Al5,D15;
A27,B23,C23,D27;
Al,B1,C1,D1;
At0,Bt0,Ct0,Dt0,Atl,Btl,Ctl,Dtl,At2,Bt2,Ct2,Dt2;
testO, testl;
X0,X1,X2,X3,X4,X5,X6,X7,X8,%X9,X10,X11,X12,X13,X14,X15,X0_12;
X8A,X8B;
konstl, konst2, konst3, konst4, konst5;
gew=32,gew0,k,Versuch, vvv;

unsigned int iterations34, countl, sum34_vvv;
unsigned int ConnectionFlag;

double

ulong
ulong
ulong
ulong
ulong

tl, t2, time_tot;

K0=0xd76aa478, Kl=0xeB8c7b756, K2=0x242070db, K3=0xclbdceee;
K4=0xf57c0faf, K5=0x4787c62a, K6=0xa8304613, K7=0x£fd469501;
K8=0x%x698098d8, K9=0x8b44f7af, K10=0xffff5bbl, K1l1=0x895cd7be;
K12=0x6b901122, K13=0xfd987193, K14=0xa679438e, K15=0x49b40821;
K16=0xf61e2562, K17=0xc040b340, K18=0x265e5a51, K19=0xe9bbc7aa;

Electrical and Electronic Engineering 279

4

IVERSITEIT VAN PRETORIA

g .
0 UNIVERSITY OF PRETORIA
o« U

NIBESITHI YA PRETORIA

Appendix E Source Code: Analysis of MDS5
ulong K20=0xd62f105d, K21=0x02441453, K22=0xd8ale681, K23=0xe7d3fbc8;
ulong K24=0x2lelcde6, K25=0%c33707d6, K26=0xf4d50d87, K27=0x455al4ded;
ulong K28=0xa9e3e905, K29=0xfcefa3f8, K30=0x676f02d9, K31=0x8d2adc8a;
ulong K32=0xfffa3942, K33=0x8771f681, K34=0x6d9d6122, K35=0xfde5380c;
ulong K36=0xadbeeadd4, K37=0x4bdecfa9, K38=0xf6bb4b60, K39=0xbebfbc70;
ulong K40=0x289b7ec6, K4l=0xeaal27fa, K42=0xd4ef3085, K43=0x04881d05;
ulong K44=0xd9d4d039, K45=0xe6db99e5, K46=0x1fa27cf8, K47=0xcdac5665;
ulong K48=0xf4292244, K49=0x432aff97, K50=0xab9423a7, K51=0xfc93a039;
ulong K52=0x655b59c3, K53=0x8f0ccc92, K54=0xffeffd47d, K55=0x85845dd1l;
int s0 = 7,81 =12,s82 =17,s83 =22;
int s4 = 7,85 =12,s86 =17,s87 =22;
int 88 = 7,89 =12,s810=17,s11=22;
int sl12= 7,813=12,s514=17,s815=22;
int sl16= 5,s17= 9,818=14,519=20;
int s20= 5,s21= 9,s822=14,s823=20;
int s24= 5,825= 9,s826=14,527=20;
int s28= 5,829= 9,s530=14,531=20;
int s32= 4,533=11,s34=16,535=23;
int s36= 4,s37=11,s38=16,539=23;
int s40= 4,s841=11,s542=16,s543=23;
int s44= 4,545=11,s46=16,s547=23;
int s48= 6,s549=10,s50=15,s51=21;
int s52= 6,s553=10,554=15,s855=21;
if(ac!=2)

{
fprintf(stderr, "Usage:
exit(l);

}

srand32(atol(av[1]));

f = fopen("md5_dob.dat", "w");
/* Daten Runde 12 */
Al5 = 0XFA08A191;

D15 = 0xFE010000;

Al9 = 0x3079FC64;

B15 = 0x7C091F7C;

Cl5 = OxFEOOFFFF;

D19 = 0x00000000;

B19 = 0x007DE57C;

Cl19 = OxA83AE412;

A23 = 0x001003E0;

A23 = 0x20200380;

A23 = 0x20001380;

Al5 = 0x45A9B039;

D15 = 0OxXFEQ010000;

Cl5 = OXFEOOFFFF;

B15 = 0x681702E8;

A1l9 = 0xA27F00A0;

D19 = 0x00000000;

Cl9 = 0x5E4D2843;

%s seed\n",av[0]);

Electrical and Electronic Engineering

280

IVERSITEIT VAN PRETORIA
VERSITY OF PRETORIA
IBESITHI YA PRETORIA

(02 ‘®

N
NI
UN

Appendix E Source Code: Analysis of MD5
B19 = 0xCC7E11F4;
A23 = 0x8A14C72D;

/* Daten Runnde 34 */
A43 = 0x7DC2498C;
B39 = 0x40040E86;

/* These chaining variables are not used in this program and may therefore
* be ommitted */

/* C2_34 = 0x12F37166;

D43 = 0xBDC18273; */

A39 = 0x579DA695;

B35 OxFFFFFFFF;

C39 = 0xC783FA3D;

D39 = 0x8DE34058;

C35 = 0x00028800;

D35 = 0x3420fl62;

/* Determine message words from the first part of the attack */
X1 = shift(A19-B15,32-s16)-K16-A15-g(B15,C15,D15);

X6 shift(D19-A19,32-517)-K17-D15-g(Al19,B15,C15);

X11 = shift(C19-D19,32-s18)-K18-C15-g(D19,A19,B15);

X0 = shift(B19-C19,32-s19)-K19-B15-9(C19,D19,A19);

X5 = shift(A23-B19,32-520)-K20-A19-g(B19,C19,D19);

i

/* Determine message words from the second part of the attack */
X4 = shift(D39-A39,32-537)-K37-D35-h(A39,B35,C35);
X7 = shift(C39-D39,32-s38)-K38-C35-h(D39,A39,B35);
X10= shift(B39-C39,32-s539)-K39-B35-h(C39,D39,A39);
X13= shift(A43-B39,32-540)-K40-A39-h(B39,C39,D39);

/* This is a constant to be used later on (when confirming a collision) */
BB_12 = shift(B15-C15,32-s815)-K15-f(C15,D15,A15);
/* This is a constant to be used later on for confirmation of collision-
s */
CC_12 = shift(C15-D15,32-s14)-K14;

/* Calculate chaining variables to be used when establishing a connection */
D23 = shift(D19+g(A23,B19,C19)+X10+K21,s821)+A23;
A35 shift(A39-B35,32-536)-K36-X1-h(B35,C35,D35);

/* This constant is used at a later stage (X14 is not included in
this expression) */
BB_34 = shift(B35-C35,32-s35)-K35-h(C35,D35,435);

D43 = shift(P39+h(A43,B39,C39)+X0 +K41,s41)+A43;

/* Data of inner collisions 1-2 and 3-4 should be chosen such that X0
is the same in both inner collisions. This was not the case in the first
version of the attack, and the reason why K19 had to be adapted. */

sum34_vvv = 0;
iterations34 = 50;
time_tot = 0;

Electrical and Electronic Engineering 281

4

&
W UNIVERSITEIT VAN PRETORIA
A 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Appendix E Source Code: Analysis of MD5

/* The purpose of this loop is to find the average time required
* to find a collision */

/* for (countl=0; countl<iterations34; countl++) */

{
/* Number of inner collisions 1-2/connections to find a collision */
vvv = 0;

printf("\nSearch %u started\n", countl+1l);
fflush(stdout);
fprintf(f, "State random generator = %1d\n", randstate);

while(1)
{
/* Look for a collision */
do
{
/* Look for inner collision in round 1-2 */
X15 = rand32();

/* Determine the last four chaining variables that will
* result in a internal collision for the first two rounds */

C23 = shift(C19+g(D23,A23,B19)+X15+K22,522)+D23;
B23 = shift(B19+g(C23,D23,A23)+X4 + K23,523)+C23;

/*B27 = OXEfffffff;*/
a27 = B23;

X9 = shift(A27-B23,32-s24)-g(B23,C23,D23)-A23-K24;

D27 = OXfEEfffff;

X14 = shift(D27-a27,32-s25)-g(A27,B23,C23)-D23-K25;

/* Check whether inner collision 1-2 */

= Al5;

= BB_12-X15;

= CC_12-X14-f(D15,A15,B);

= D15;

= shift(C+f(D,A,B)+X14+((ulong)1<<9)+K1i4,bsld)+D;
= shift(B+f(C,D,A)+X15+K15,815)+C;

= shift(A+g(B,C,D)+X1 +K16,s16)+B;

= shift(D+g(A,B,C)+X6 +K17,s17)+A;
shift(C+g(D,A,B)+X11+K18,s18)+D;

= shift(B+g(C,D,A)+X0 +K19,s19)+C;

= shift(A+g(B,C,D)+X5 +K20,s820)+B;

= shift(D+g(A,B,C)+X10+K21,s821)+A;

= shift(C+g(D,A,B)+X15+K22,s22)+D;

= shift(B+g(C,D,A)+X4 +K23,823)+C;

= shift(A+g(B,C,D)+X9 +K24,s824)+B;

= shift(D+g(A,B,C)+X14+((ulong)l<<9)+K25,825)+A;

P wQUoUPOmQUoOrP»OmO00w>
Il

/*if(A==A27 &s& B==B23 && C==C23 && D==D27)
{
printf("$8.8X %8.8X %8.8X $8.8X\n", A-A27, B-B23, C-C23, D-D27);
Y*/

Electrical and Electronic Engineering 282

4

m UNIVERSITEIT VAN PRETORIA
b 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Appendix E Source Code: Analysis of MD5

/* Proceed if an internal collision for 1-2 was found */
} while(At=A27 || B!=B23 || C!=C23 || D!=D27);

/* begin connection */

D35 = D35;

A35 = A35;

B31 = BB_34-X14;

C31 = shift(C35-D35,32-834)-h(D35,A35,B35)-X11-K34;

Versuch=0;

/* These are constants for the while loop that follows.
* Pre-computation saves some time */

B_basic = rand32();
konstl = A27+X13+K28;

konst2 = shift(A35-B31,32-532)-X5-K32;
konst3 = B31°C31;
konst4d = -X7-K30;

ConnectionFlag = 0;
while(ConnectionFlag == 0)
{

/* Looking for a connection */

B27 = B_basic” ((ulong)l << (rand32()s&0x1f));

A31 = shift(B27+konstl,s28)+B27;

D31 = (konst2-A31)"konst3;

C27 = shift(C31-D31,32-s30)-g(D31,A31,B27)+konst4;

X8A = shift(B27-C27,32-s827)-B23-g(C,D27,A27)-K27;
X8B = shift(D35-A35,32-833)-D31-h(A35,B31,C31)-K33;
test(= X8B-X8A;

if (test0==0)
{
/* you are really lucky */
X12 = shift(B31-C31,32-s31)-B27-g(C31,D31,A31)-K31;
X2 = shift(D31-A31,32-529)-D27-g(A31,B27,C27)-K29;
X3 = shift(C27-D27,32-s26)-C23-g(D27,A27,B23)-K26;
X8 = shift(B27-C27,32-827)-B23~g(C27,D27,827)-K27;

/*printf("Lucky You\n")*/
/* Immediatle exit from the while loop */
break;

/* Compute the Hamming Distance */

/* Perform an iterative aproach */

for (gew0=0, testl=test(0; testl; testl>>=1)
gewl += testlsl;

Versuch++;

if (Versuch>30) /*originally 150*/
{

Electrical and Electronic Engineering 283

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(024}:

Appendix E Source Code: Analysis of MD5

/* Effectively restart the process */
Versuch = 0;

gew = 32;

B_basic = rand32();

/* Restart from the beginning of the loop */
continue;

/* Continuous approximation techniques */
if (gew0-2<gew) /* originally gew0O-1 */
{
gew = gewl;
if (gew>1l) /* originally 7 */

/* If X8A and X8B are closer to each other than
* before retain the value of B as the new
* basic value */

B_basic =B27;

/* Restart from the beginning of the loop */
continue;

/* Verbesserung */
/* Check whether B23 is changed by same amount as CO */
/*if((C23 & A23) != ((C23-testld) & A23))
{
break;

y*/

/* Change C23 and consequently recalculate B23 */
C23 = C23-test0;
B23 = shift(B19+g(C23,D23,A23)+X4 + K23,523)+C23;

/* Recompute D27 */
D27 = shift(D23+g(A27,B23,C23)+X14+K25,825)+A27;

/* A, B, C, D not changed */
/* Check whether A still only depends on B and A27 */
if(g(B27,C27,D27) != B27)
{

break;

/* Sanity Check */

X8A = shift(B27-C27,32-527)-B23-g(C27,D27,A27)-K27;
X8B = shift(D35-A35,32-533)-D31-h(A35,B31,C31)-K33;
if (test0d == 0)

/* Reset the condition and determine if a collision
* for both roundl 1-2 and 3-4 holds */

Electrical and Electronic Engineering 284

IVERSITEIT VAN PRETORIA
VERSITY OF PRETORIA
IBESITHI YA PRETORIA

GQE&EE

N
NI
UN

Appendix E Source Code: Analysis of MD5

test0 = 1;

X15 = shift(C23-D23,32-s22)-g(D23,A23,B19)-C19-K22;
X9 = shift(A27-B23,32-s24)-g(B23,C23,D23)-A23-K24;

/* Good Fiddling */

X12 = shift(B31-C31,32-s31)-B27-g(C31,D31,A31)-K31;
X2 = shift(D31-A31,32-s29)-D27-g(A31,B27,C27)-K29;
X3 = shift(C27-D27,32-526)-C23-g(D27,A27,B23)-K26;
X8 = shift(B27-C27,32-s27)-B23-g(C27,D27,A27)-K27;

I

/*printf ("Good Fiddle\n");*/

/* check whether inner collision 1-2 holds */

= Al5;

= BB_12-X15;

= CC_12-X14-f(D15,A15,B);

= D15;

= shift(C+f(D,a,B)+X14+((ulong)1<<9)+K14,s14)+D;
= shift(B+f(C,D,A)+X15+K15,815)+C;

= shift(A+g(B,C,D)+X1 +K16,s516)+B;

= shift(D+g(A,B,C)+X6 +K17,s17)+A;
shift(C+g(D,A,B)+X11+K18,s18)+D;

= shift(B+g(C,D,A)+X0 +K19,s19)+C;

= shift(A+g(B,C,D)+X5 +K20,s20)+B;

= shift(D+g(A,B,C)+X10+K21,s821)+A;

= shift(C+g(D,A,B)+X15+K22,522)+D;

= shift(B+g(C,D,A)+X4 +K23,s523)+C;

= shift(A+g(B,C,D)+X9 +K24,s24)+B;

= shift(D+g(A,B,C)+X14+((ulong)l<<9)+K25,s825)+A;

gr@wQUrPrm QOO0 m>
I

if(A!=A27 || B!=B23 || C!=C23 || D!=D27)
{
/* If an inner collision does not hold
* restart by finding a new inner collision
* for roundsl-2 */
break;

}

/* Check Propagation */

= shift(C+g(D,A,B)+X3+K26,5826)+D;

= shift(B+g(C,D,A)+X8 +K27,827)+C;
= shift(A+g(B,C,D)+X13 +K28,s28)+B;
= shift(D+g(A,B,C)+X2+K29,829)+A;
shift(C+g(D,A,B)+X7+K30,s530)+D;

= shift(B+g(C,D,A)+X12 +K31,s31)+C;
= shift(A+h(B,C,D)+X5 +K32,s832)+B;
= shift(D+h(A,B,C)+X8+K33,533)+A;

o>rw 0o ron
Il

/* Verify the existence of a connection */
if(A!=A35 || B!=B31 || C!=C31 || D!=D35)
{
break;

}

Electrical and Electronic Engineering 285

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q¥ YU

NIBESITHI YA PRETORIA

Appendix E Source Code: Analysis of MD5

test0 = 0;
break;

if(test0!=0)
{
/* The Verbesserung failed, so start with a new inner
* collision*/
continue;

}

/* connection found */
vVvVt+;
/* end connect */

if (1 (vvv%20))
{
printf("Connection and inner collision 1-2 %d found\r", vvv);
fflush(stdout);
}

/* Check whether inner collision 3-4 */

/* Daten Runde 34 */

C = C39;

= B39;

= A43;

= D43;

shift(C+h(D,A,B)+X3 +K42,s542)+D;
shift(B+h(C,D,A)+X6 +K43,s543)+C;
= shift(A+h(B,C,D)+X9 +K44,s544)+B;
shift(D+h(A,B,C)+X12+K45,845)+A;
= shift(C+h(D,A,B)+X15+K46,546)+D;
shift(B+h(C,D,A)+X2 +K47,s847)+C;
= shift(A+i(B,C,D)+X0 +K48,s548)+B;
shift(D+i(A,B,C)+X7 +K49,s849)+A;
shift(C+i(D,A,B)+X14+K50,s50)+D;
AQ = A;

[| S N

QAoOPomQorwaou>»w
|

B/
cO = C;
D

7

= B31;

= A35;

D35;

= C35;
shift(B+h(C,D,A)+X14+((ulong)1l<<9)+K35,s835)+C;
shift(A+h(B,C,D)+X1 +K36,s36)+B;
shift(D+h(A,B,C)+X4 +K37,s37)+4;
shift(C+h(D,A,B)+X7 +K38,s38)+D;
shift(B+h(C,D,A)+X10+K39,539)+C;
shift(A+h(B,C,D)+X13+K40,s40)+B;

i

P WO rPmoorw
i

Electrical and Electronic Engineering 286

4

UNIVERSITY OF PRETORIA

&b
E;a UNIVERSITEIT VAN PRETORIA
W YUNIBESITHI YA PRETORIA

Appendix E Source Code: Analysis of MD5

= shift(D+h(A,B,C)+X0 +K41,s41l)+A;
= ghift(C+h(D,A,B)+X3 +K42,s42)+D;
= ghift(B+h(C,D,A)+X6 +K43,s43)+C;
= shift(A+h(B,C,D)+X9 +K44,s44)+B;
= shift(D+h(A,B,C)+X12+K45,845)+A;
= shift(C+h(D,A,B)+X15+K46,546)+D;
= ghift(B+h(C,D,A)+X2 +K47,847)+C;
= ghift(A+i(B,C,D)+X0 +K48,s548)+B;
= shift(D+i(A,B,C)+X7 +K49,s549)+A;
= shift(C+i(D,A,B)+x14+((ulong)l<<9)+K50,sSO)+D;
“= AO0;

~= BO;

“= CO;

“= DO;

gnNnwX» QU »PwOo T QU
|

if (B==0)
{
fprintf(f,"%8.8X %8.8X %8.8X %8.8X $5d\n",A,B,C,D,vvVv);
fflush(f);
printf("%5d: %8.8X %8.8X %8.8X $8.8X\n", vvv, A, B, C, D);
fflush(stdout);
1

if(A==0 && B==0 && C==0 && D==0)
{
/* Step backwards through round 1 to find IV */
A = Al5;
B = B1lS5;

= C15;

= D15;

= shift(B-C,32-s815)-K15-X15-£(C,D,A);
= shift(C-D,32-s14)-K14-X14-f(D,A,B);
= shift(D-A,32-s13)-K13-X13-f(A,B,C);
= shift(A-B,32-s12)-K12-X12-f(B,C,D);
= ghift(B-C,32-811)-K11-X11-f(C,D,A);
= shift(C-D,32-s10)-K10-X10-f(D,A,B);
= shift(D-A,32-s9)-K9-X9-f(A,B,C);

= shift(A-B,32-s8)-K8-X8-f(B,C,D);

= shift(B-C,32-s87)-K7-X7-f(C,D,A);

= shift(C-D,32-s6)-K6-X6-f(D,A,B);

= shift(D-A,32-s85)-K5-X5-f(A,B,C);

= shift(A-B,32-s4)-K4-X4-1(B,C,D);

- shift(B-C,32-s3)-K3-X3-f(C,D,A);

= shift(C-D,32-s2)-K2-X2-f(D,A,B);

= shift(D-A,32-s1)-K1-X1-f(A,B,C);

= shift(A-B,32-s0)-K0-X0-f(B,C,D);

T AEPOQAEPOAEPTOAOTOO
f

forintf(f,"**** %d Versuche ****\n", vvv);

fprintf(f,"**** Collision %u for MDS compress *x%*\n", countl+l);
fprintf(f, "**** IV = (%8.8X,%8.8X,%8.8X,%8.8X) ****\n",A,B,C,D);
fprintf (f,"***1 X14’ = X14+279 ****\n");

fprintf(f,"X0 0x%8.8x;\n",X0);
fprintf(f,"X1 = 0x%8.8X;\n",X1);

Electrical and Electronic Engineering 287

Appendix E

UNIVERSITY OF PRETORIA

4
W UNIVERSITEIT VAN PRETORIA
Q)

YUNIBESITHI YA PRETORIA

Source Code: Analysis of MD5

fprintf(f,"X2 =
fprintf(f,"X3 =
fprintf(f, "X4 =
fprintf(f,"X5 =
fprintf(f, "X6 =
fprintf(f, "X7 =
fprintf(f,"X8 =
fprintf(f,"X9 =
fprintf(f, "X10=
fprintf(f, "X11=
fprintf(f, "X12=
fprintf(f, "X13=
fprintf(f, "X14=
fprintf(f, "X15=
fflush(f);

0x%8

0x%8.
0x%8.
0x%8.
0x%8.
0x%8.
0x%8.
0x%8.
0x%8.
.8X;\n",X11)y;
0x%8.
0x%8.
0x%8.

0x%8

.8X;\n",X2);
8X;\n",X3);
8X;\n",X4);
8X;\n",X5);
8X;\n",X6);
8x;\n",X7);
8X;\n",X8);
8X;\n",X9);

8X;\n",X10);

8X;\n",X12);

8X;\n",X13);

8X;\n",X14);
0x%8.8X;\n",X15);

/* Break from the while(l) loop if a collision for 3-4 was

* found */
break;

}

/* solution found

sum34_vvv += vVVV;

fprintf(f, "\ncollision %u found after %d trials\n",

fflush(f);

printf("\nCollision %u found after %4 trials\n",

fflush(stdouty;
1

*/

countl+l, vvv);

countl+1l, vvv);

fprintf(f, "Mean number ic-12 for a ic-34: %u\n", sum34_vvv/iterations34);

fprintf(f, "Mean time for a collision:

fclose(f);

PrintUserTime();

return 0;

$f seconds\n",

time_tot/iterations34);

Electrical and Electronic Engineering

288

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q¥ YU

NIBESITHI YA PRETORIA

APPENDIX F: SOURCE CODE: COLLISIONS FOR FIRST ROUND
OF SHA

This Appendix contains an implementation of the attack on the first round of SHA. The

implementation is written in ANSI-C.

This program is used to investigate the effect of the message expansion
algorithm used in SHA (not SHA-1). The results obtained from the analysis
in sha0l and sha02 is verified. In particular it is verified if a
collision can be obtained for the first round of SHA.

~N
*

The difference pattern has a defining length of 6.
The pattern is: 11 12 13 14 15 16
11 1 0 0 1

This program extends the results in shal6.c. Specifically a message 1is
constructed which results in a collision after one round of SHA.

Date: 14/11/97
Author: P.R. Kasselman
Filename: sha07.c */

* % F ¥ o F F o * ¥ * F * *

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>

unsigned int Rotate(unsigned int X, unsigned int s);
unsigned int RotateRight(unsigned int X, unsigned int s);
void PrintBin(unsigned int Jj);
unsigned int DefLen(unsigned int j);
unsigned int SHA_F1l(unsigned int B, unsigned int C, unsigned int D);
void UpdateChain(unsigned int Temp, unsigned int *A,
unsigned int *B, unsigned int *C,
unsigned int *D, unsigned int *E, int 1i);
void ReverseUpdateChain(unsigned int Temp, unsigned int *A,
unsigned int *B, unsigned int *C,
unsigned int *D, unsigned int *E, int i);

#define K1 0x5A827999

int maing()

{
unsigned int i,7j;
unsigned int Templ, Temp2, TempInt, Stop, Iteration;
unsigned int M1[80], M2[80];
unsigned int A[80], B[80], C[80], D[80], E[80];
unsigned int At[80], Bt[80]1, Ct[80], Dt[80], Et[80];
time_t TheTime;

/* Seed Random number generator */
TheTime = time(NULL);
srandom(TheTime) ;

/* Initialise Chaining varaibles */
Templ = 0;
Temp2 = 0;

4

&
&

W UNIVERSITEIT VAN PRETORIA

\ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Appendix F Source Code: Collisions for First Round of SHA

A[0] = 0x67452301;
B[0] = OxEFCDAB89;
C[0] = Ox98BADCFE;
D[{0O] = 0x10325476;
E[f0] = OxC3D2E1F0;

At[0] = 0x67452301;
Bt[0] = OxEFCDAB89;
Ct[{0] = 0x98BADCFE;
Dt[0] = 0x10325476;
Et[0] = OxC3D2E1FOQ;

for(i=0; i<4; i++)
{
UpdateChain(Templ, A, B, C, D, E, 1i);
UpdateChain(Temp2, At, Bt, Ct, Dt, Et, i);
}

/* Determine if collision holds */

Stop = 1;
Iteration = 0;

while(Stop != 0)
{

/* Specify required differences in messages */

for(i=11; i<14; i++)
{
M1[i] = (random() Rotate(random(),1l)) & Oxfffffffe;
M2[1i] = M1[i];

M1[11] = M1[11] | 0x00000001;
M2[12] = M2[12] | 0x00000001;

|

M2[13] = M2[13] | 0x00000001;
M1[i] = (random()"Rotate(random(),1)) & Oxfffffffe;
M2[i] = M1[1i];

printf("%8.8X %8.8X\n", M1[11], M2[11]);
printf("%8.8X %8.8X\n", M1[12], M2[12]);
printf("%8.8X %8.8X\n", M1[13], M2[13]);
/* Initialise the chaining variables */

printf("\nConfirmation of Collision\n");

/* Step 1 *x/

Templ = 0x00000000;
Temp2 = Oxffffffff;
A[11l] = random() ~ Rotate(random(),1);

Electrical and Electronic Engineering 290

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q¥ YU

NIBESITHI YA PRETORIA

Appendix F Source Code: Collisions for First Round of SHA
B[11] = A[11l] + RotateRight(1l,30);

C[11] = -1-Rotate(0,5)-SHA_F1(Templ,Rotate(A{11],30),Rotate(B[11],30)) K1~
M1[13];

D[11] = O-Rotate(Templ,5)-SHA_F1(A[1l1l],Rotate(B[11],30),C[11])-K1- M1[12];
E[11] = Templ-Rotate(A[11],5)-SHA F1(B[11],C{11],D[11])-K1-M1[11];

At[11] = A[1l1l];
Bt[11l] = B[1l1};

Ct[11] = -1-Rotate(0,5)-SHA_F1(Temp2,Rotate(At[11],30),Rotate(Bt[11],30))-
K1-M2[13];
Dt[11] = 0 - Rotate(Temp2,5) - SHA_FI1(At[1l1l],Rotate(Bt[11},30),Ct[11]) - K1 -
M2[12];
Et{11] = Temp2-Rotate(At[11l],5)-SHA_F1(Bt[11l],Ct{11],Dt[11])-K1-M2{11];
printf("Templ - Temp2 - (M1[11] - M2[11l]) = %8.8X\n",
Templ-Temp2 - (M1[11] - M2[11])):
UpdateChain(Templ, A, B, C, D, E, 1l1);
UpdateChain(Temp2, At, Bt, Ct, Dt, Et, 11);
/* Step 2 */
printf("A[12] - At[12] + (M1[12] - M2[12]) = %8.8X\n",

A[12]-At[12]+(M1[12]-M2[12]));

Templ = 0x00000000;
Temp2 0x00000000;

il

UpdateChain(Templ, A, B, C, D, E, 12);
UpdateChain(Temp2, At, Bt, Ct, Dt, Et, 12);

/* Step 3 */
TempInt = SHA_F1(B[13],C[13],D[13]) - SHA_F1(Bt[13],Ct[13],Dt[13]);

printf("F1(B[13],C[13],D[13])-F1(Bt[13],Ct[13],Dt[13])+(M1[13]-M2[13]) = %8.8X\n",
TempInt + M1[13] - M2([13]);

Templ = Oxffffffff;
Temp?2 Oxffffffff;

UpdateChain(Templ, A, B, C, D, E, 13);
UpdateChain(Temp2, At, Bt, Ct, Dt, Et, 13);

/* Step 4 */
TempInt = SHA_F1(B[14],C[14],D[14]) - SHA_F1(Bt[14],Ct[14],Dt[14]);

printf("F1(Bf{14],C[14],D[14])-F1(Bt[14],Ct[14],Dt[14])+(M1[14]-M2[14]) = %8.8X\n",
TempInt + M1[14}] - M2[14]);

Templ = random() ~

Temp2 = Templ;

Rotate(random(),1);

UpdateChain(Templ, A, B, C, D, E, 14);

Electrical and Electronic Engineering 291

=

ERSITEIT VAN PRETO

o

W UN Rl
0 UNIVERSITY OF PRETOR
Qe VU TOR

A
I A
NIBESITHI YA PRE 1A

Appendix F Source Code: Collisions for First Round of SHA

UpdateChain(Temp2, At, Bt, Ct, Dt, Et, 14);
/* Step 5 */
TempInt = SHA_F1(B[15],C[15],D[15]) - SHA_F1(Bt[15],Ct[15],Dt[15]);

printf("F1(B[15],C[15],D[15])-F1(Bt[15],Ct[15],Dt[15])+(M1[15]-M2[15]) = %8.8X\n",
TempInt + M1[15] - M2[15]);

Templ = random() ~

Temp2 = Templ;

Rotate(random(),1);
UpdateChain(Templ, A, B, C, D, E, 15);
UpdateChain(Temp2, At, Bt, Ct, Dt, Et, 15);
/* Step 6 */

TempInt = E[16] - Et[1l6];

printf("E[16]-Et[16]+(M1[16]-M2[16]) = %8.8X\n",
TempInt + M1[16] - M2[16]);

/* Work forward */

for(i=16; i<20; i++)

{

~

Templ
Temp?2

random()
Templ;

Rotate(random(),1);

UpdateChain(Templ, A, B, C, D, E, i);
UpdateChain(Temp2, At, Bt, Ct, Dt, Et, i);
/* Work back to meet the initial values */

for(i=10; i>=5; i--)

{

Templ = random() Rotate(random(),1);
Temp2 = Templ;

ReverseUpdateChain(Templ, A, B, C, D, E, i+1);
ReverseUpdateChain(Temp2, At, Bt, Ct, Dt, Et, i+1);

for(i=4; i>=1; 1i--)
{
ReverseUpdateChain(E[i], A, B, C, D, E, i+1y;
ReverseUpdateChain(Et[i], At, Bt, Ct, Dt, Et, i+1l);

/* Reconstruct message */
for(i=0; i<16; i++)
{
M1[i] = A[i+1l]-Rotate(A[i],5)-SHA_F1(B[i],C[i],D[i])-E[i]-K1;
M2[1i} At[i+l]-Rotate(At[1i],5)-SHA_F1(Bt[i],Ct[i],Dt[i])-Et[i]-K1;

Electrical and Electronic Engineering 292

4

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Appendix F Source Code: Collisions for First Round of SHA

/* Expand Message */
for(i=16; i<21; i++)
{
M1{i] = (M1[i-3] ~ MI1[i-8] ~ M1[i-14] = MI1[i-16]);
M2[1i] (M2[i-3] ~ M2[i-8] ~ M2[i-14] ~ M2[i-161]);

}

/* Determine the common hash value */
for(i=0; i<20; i++)

{
Templ = Rotate(A[i],5)+SHA_F1(Bfi],C[1],D[i])+E[1]+M1[i]+K1;
UpdateChain(Templ, A, B, C, D, E, 1i);
Temp2 = Rotate(At[i],5)+SHA_F1(Bt{i],Ct([i],Dt{i])+Et[i]+M2[1]+KL1;
UpdateChain(Temp2, At, Bt, Ct, Dt, Et, i);

}

i--;
Stop = (A[i]7At{i])+(B[1i]1"Bt[i])+(C[i])"Ct[i]l)+(D[i]1"Dt{i])+(E[L1]1"Et[i]);
Iteration++;

]

printf("\nChaining vVaraibles\n");
printf ("\tA\tB\tC\tD\tE\n");
for(i=0; 1i<20; i++)
{
printf("%d) %$8.8X %8.8X %8.8X %8.8X %8.8x\n",i,A[i],B[i],C{i],D[i], E[i]);
}

printf ("\tAt\tBt\tCt\tDt\tEt\n");
for(i=0; 1i<20; i++)
{
printf("%d) %8.8X %8.8X %8.8X %8.8X %8.8xX\n",i,At[il],Bt[i],Ct(i],Dt[i],Et[i]);
}

printf("\nDifference Between Messages\n");
for(i=0; i<20; i++)
{
printf("M1[%d] - M2[%d] = %8.8X\n", i, i, MI1[i] - M2[i]);
}

printf("\nCollision Message\n");
for(i=0; i<20; i++)

{
printf("M1[%d]} = %8.8X \t M2[%d] = %8.8X\n", i, MI[i], i, M2[i]);
}
i = 19;

printf ("\nCommon Hash Value for First Round\n");
printf("%d) %8.8X %8.8X %8.8X %8.8X %8.8X\n",i,A[i],B[i],C[i],D[i], E[i]);
printf("%d) %8.8X %8.8X %8.8X %8.8X %8.8X\n",i,At[i],Bt[i],Ct[i],Dt[i], Et[i]);

printf("\nDifference in hash values\n");

Electrical and Electronic Engineering 293

IVERSITEIT VAN PRETORIA
VERSITY OF PRETORIA
IBESITHI YA PRETORIA

Gﬁﬁgiﬁ

N
NI
UN

Appendix F Source Code: Collisions for First Round of SHA

printf("sd) %8.8X %8.8X %8.8X %8.8X %8.8X\n",
i,A[117At[1],B[1]7Bt[i]),C[i]7Ct[i],D[i]1"Dt[i], E[1]7EL[1]);

printf("Number of Iterations : %d\n", Iteration);
return(0);

unsigned int SHA_Fl(unsigned int B, unsigned int C, unsigned int D)

{
return((B&C) | ("B&D));

}

unsigned int Rotate(unsigned int X, unsigned int s)

{
unsigned int temp;
temp = X;
X = (X << 8) | (temp >> (32-s8));
return(X);
1
unsigned int DefLen(unsigned int 7j)
{
unsigned int i, TempInt;
for(i=0; i<32; i++)
{
if(((3J >> (31-1)) & 0x00000001) == 1)
{
TempInt = i;
break;
}
}
for(i=31; i>=0; i--)
{
if(((j > (31-i)) & 0x00000001) == 1)
{
TempInt = i-TempInt;
break;
}
}
return(TempInt);
}
void PrintBin(unsigned int 7j)
{
unsigned int i;
for(i=0; 1<32; i++)
{
printf("%d", (j >> (31-1)) & 0x00000001);
}

Electrical and Electronic Engineering 294

IVERSITEIT VAN PRETORIA

&
g .
0 UNIVERSITY OF PRETORIA
Q¥ VU

NIBESITHI YA PRETORIA

Appendix F Source Code: Collisions for First Round of SHA

void UpdateChain(unsigned int Temp, unsigned int *A,

unsigned int *B, unsigned int *C,
unsigned int *D, unsigned int *E, int i)
{

E[i+1] = D[i];

D[i+1] = C[i];

C[i+1] = Rotate(B[il],30);

B[i+1] = A[i];

A[i+1l] = Temp;

void ReverseUpdateChain(unsigned int Temp,
unsigned int *B, unsigned int *C,
unsigned int *D, unsigned int *E, int i)
{
A[i-1] = BI[il;
B[i-1] = RotateRight(C[i],30);
C[i-1] = DI[i];
D[i-1] = E[i];
E[i-1] = Temp;

unsigned int *A,

unsigned int RotateRight(unsigned int X, unsigned int s)

{

unsigned int temp;

temp = X;
X = (X > s) | (temp << (32-8));
return(X);

Electrical and Electronic Engineering

295

4

w UNIVERSITEIT VAN PRETORIA
@, UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

APPENDIX G: SOURCE CODE: IMPLEMENTATION OF HAVAL
ATTACK

This appendix contains an implementation of the attack on HAVAL as described in Chapter
10.

~N
*

The analysis for the last two rounds of HAVAL is concidered.

This program verifies the existence of collisions for the last two
rounds of three round HAVAL.

Author: P.R. Kasselman
Date: 24/04/1999
Filename: haval29.c */

* 0% F ¥ F F ok *

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

unsigned int Rotate(unsigned int X, unsigned int s);
unsigned int RotateRight(unsigned int X, unsigned int s);

unsigned int FF2(unsigned int B, unsigned int C, unsigned int D,
unsigned int E, unsigned int F, unsigned int G,
unsigned int H);

unsigned int FF3(unsigned int B, unsigned int C, unsigned int D,
unsigned int E, unsigned int F, unsigned int G,
unsigned int H);

unsigned int InverseStep(unsigned int H2, unsigned int Al, unsigned int B1,
unsigned int C1, unsigned int D1, unsigned int E1,

unsigned int F1, unsigned int G1, unsigned int HI1,

unsigned int K);

/*#define MAX 0x00100000*/
#define MAX 100000
#define MAX_LIMIT 1000

#define RFACT 0
#define RFACT7 7
#define RFACT11 11

#define AA
#define BB
#define CC
#define DD
#define EE
#define FF
#define GG
#define HH

N oYLk W N O

int main()
{
char TempChar;

ra
g
&

VERSITY OF PRETO

|
NIBESITHI YA PRETORIA

IVERSITEIT VAN PRETORIA

RIA

Appendix G Source Code: Implementation of HAVAL Attack
unsigned int i, Jj;
unsigned int Test, Countl;
unsigned int Deltawl9, W19, Wtl9;
unsigned int DeltaH56;
unsigned int Ht56, H56;
unsigned int Bt62, B62, Ct6l, C61l, Dt60, D60;
unsigned int Et59, E59, Ft58, F58, Gt57, G57;
unsigned int C62, D62, E62, F62, G62, H62;
unsigned int B61, D61, E61, F6l1, G61, H61;
unsigned int B60, C60, E60, F60, G60, H60;
unsigned int B59, €59, D59, F59, G59, H59;
unsigned int B58, C58, D58, E58, G58, H58;
unsigned int B57, C57, D57, E57, F57, HS57;
unsigned int B56, C56, D56, E56, F56, G56;
unsigned int DataH56 [MAX];
unsigned int Chain[8][96];
unsigned int W[32], Wt[32];
unsigned int K1([{32] = {0x452821E6L, 0x38D01377L, O0xBE5466CFL, 0x34E90C6CL,
0xCOAC29B7L, 0xC97C50DDL, 0x3F84D5B5L, 0xB5470917L, 0x9216D5DIL,
0x8979FB1BL, 0xD1310BA6L, 0x98DFB5ACL, Ox2FFD72DBL, 0xDO1lADFB7L,
O0xBS8E1AFEDL, Ox6A267E96L, 0xBA7C9045L, OxF12C7F99L, 0x24A19947L,
0xB3916CF7L, 0x0801F2E2L, 0x858EFCl6L, 0x636920D8L, 0x71574E69L,
0xA458FEA3L, O0xF4933D7EL, 0x0D95748FL, 0x728EB658L, 0x718BCD58L,
0x82154AEEL, 0x7B54A41DI,, 0xC25A59B5L};
unsigned int K2[32] = {0x9C30D539L, 0x2AF26013L, 0xC5D1B023L, 0x286085F0L,
0xCA417918L, OxB8DB38EFL, 0x8E79DCBOL, 0x603A180EL, 0x6CY9EOES8BL,
0xBO1ESA3EL, 0xD71577C1lL, 0xBD314B27L, 0x78AF2FDAL, 0x55605C60L,
0xE65525F3L, OxAA55AB94L, 0x57489862L, 0x63E81440L, 0x55CA396AL,
0x2AAB10B6L, 0xB4CC5C34L, 0x1141E8CEL, 0xA15486AFL, 0x7C72E993L,
0xB3EE1411L, O0x636FBC2AL, 0x2BA9C55DL, 0x741831F6L, 0xCE5C3El6L,
0x9B87931EL, OxAFD6BA33I,, 0x6C24CF5CL};
unsigned int Ord2([32] = {5, 14, 26, 18, 11, 28, 7, 16, 0, 23, 20, 22, 1, 10,
4, 8, 30, 3, 21, 9, 17, 24, 29, 6, 19, 12, 15, 13, 2, 25, 31, 27};
unsigned int 0Ord3[32] = {19, 9, 4, 20, 28, 17, 8, 22, 29, 14, 25, 12, 24,
30, 16, 26, 31, 15, 7, 3, 1, 0, 18, 27, 13, 6, 21, 10, 23, 11, 5, 2};
unsigned int Al, Bl1, C1, D1, El1, Fl, G1, Hl1l, TempInt;
time_t TheTime;
FILE *fpl, *fp2;
TheTime = time(NULL) ;
srandom(TheTime);
DeltaWl9 = Oxaaaaaaab;
DeltaH56 = DeltaWl9;
W19 = random() " Rotate(random(),1);
Wtl9 = W19 - DeltaWl9;
Countl = 0;
for(i=0; i<MAX; i++)
{
Test = 1;
while(Test != 0)
{
Electrical and Electronic Engineering 297

+

&

W UNIVERSITEIT VAN PRETORIA
Q UNIVERSITY OF PRETORIA
h 4

YUNIBESITHI YA PRETORIA

Appendix G Source Code: Implementation of HAVAL Attack

Countl++;
H56 = random() Rotate(random(),1);
Ht56 = H56 - DeltaHb56;

Test = (RotateRight (H56,RFACT11) - RotateRight(Ht56,RFACTI11)) +
(DeltaWlo);

}
DataH56[i] = H56;

}

printf("Equation (9) = %8.8X\n", (RotateRight(H56,RFACT11) + W19) - (RoO-
tateRight (Ht56,RFACT11) + Wtl9));
printf ("\nAverage number of Iterations: $1f\n\n", ((double)(Countl))/MAX});

/* Determine if (8) holds */

B62 = H56;

Bt62 = H56 - DeltaH56;

C62 = H56|Ht56;

D62 = T(H56|Ht56);

E62 = H56|Ht56;

F62 = H56|Ht56;

G62 = T(H56|Ht56);

H62 = random() ~ Rotate(random(),1l);

Test = (RotateRight(FF2(B62,C62,D62,E62,F62,G62,H62),RFACT7) -
RotateRight (FF2(Bt62,C62,D62,E62,F62,G62,H62),RFACT7));

printf ("Equation (8) = %8.8X\n", Test);

/* Determine if (7) Holds */

B61 = T(H56|Ht56);
C6l = B62;

Ct6l = Bt62;

D61 = C62;

E61 = D62;

F61l = E62;

G6l = F62;

H61 = G62;

Test = (RotateRight(FF2(B61,C61,D61,E61,F61,G61,H61),RFACT7) -
RotateRight (FF2(B61,Ct61,D61,E61,F61,G61,H61),RFACT7));

printf("Equation (7) = %8.8X\n", Test);

/* Determine if (6) Holds */

B60 = T(H56|Ht56);
C60 = B61l;

D60 = C61;

Dt60 = Ct61;

E60 = D61;

F60 = Eo61l;

Electrical and Electronic Engineering 298

4

m UNIVERSITEIT VAN PRETORIA
b 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Appendix G Source Code: Implementation of HAVAL Attack
G60 = F61;
H60 = G61;

Test = (RotateRight (FF2(B60,C60,D60,E60,F60,G60,H60),RFACT7) -
RotateRight (FF2(B60,C60,Dt60,E60,F60,G60,H60),RFACT7));

printf("Equation (6) = %8.8X\n", Test);

/* Determine if (5) Holds */

B59 = (H56|Ht56);
C59 = B60;

D59 = C60;

E59 = D60;

Et59 = Dt60;

F59 = E60;

G59 = F60;

H59 = G60;

Test = (RotateRight(FF2(B59,C59,D59,E59,F59,G59,H59),RFACT7) -
RotateRight (FF2(B59,C59,D59,Et59,F59,G59,H59),RFACT7));

printf("Equation (5) = %8.8X\n", Test);

/* Determine if (4) Holds */

B58 = T(H56|Ht56);
C58 = B59;

D58 = C59;

E58 = D59;

F58 = E59;

Ft58 = Et59;

G58 = F59;

H58 = G59;

Test = (RotateRight(FF2(B58,C58,D58,E58,F58,G58,H58),RFACT7) -
RotateRight (FF2(B58,C58,D58,E58,Ft58,G58,H58),RFACT7));

printf("Equation (4) = %8.8X\n", Test);

/* Determine if (3) Holds */

B57 = T (H56|Ht56);
C57 = B58;

D57 = C58;

E57 = D58;

F57 = E58;

G57 = F58;

Gt57 = Ftb58;

H57 = G58;

Test = (RotateRight(FF2(B57,C57,D57,E57,F57,G57,H57),RFACT7) -
RotateRight (FF2(B57,C57,D57,E57,F57,Gt57,H57) , RFACT7)) ;

printf("Equation (3) = %8.8X\n", Test);

Electrical and Electronic Engineering 299

Appendix G

<

4

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Source Code: Implementation of HAVAL Attack

/* Determine if (2) Holds */

B56 = T(H56|Ht56);

C56 = B57;

D56 = C57;

E56 = D57;

F56 = E57;

G56 = F57;

H56 = G57;

Ht56 = Gt57;

Test = (RotateRight (FF2(B56,C56,D56,E56,F56,G56,H56),RFACT7) -

RotateRight (FF2(B56,C56,D56,E56,F56,G56,Ht56), RFACT7)) ;

printf ("Equation (2) = %8.8X\n", Test);
printf("B56: %8.8X\n", B56);
printf("C56: %8.8X\n", C56);
printf("D56: %8.8X\n", D56);
printf("E56: %8.8X\n", E56);
printf("F56: %8.8X\n", F56);
printf("G56: %8.8X\n", G56);
printf ("H56: %8.8X\n", H56);
printf("Ht56: %8.8X\n", Ht56);
printf("H57: %8.8X\n", H57);
printf("H58: %8.8X\n", H58);
printf("H59: %8.8X\n", H59);
printf("H60: %8.8X\n", H60);
printf("H61l: %$8.8X\n", H61);
printf("H62: %8.8X\n", H62);

/* Derive a message that results in a collision for the last two round-
s of
* three round HAVAL */

/* Start forward search */
Chain[AA][56] random() "Rotate(random(),1);

Chain[BB][56] = B56;
Chain[CC][56] = C56;
Chain[DD][56] = D56;
Chain[EE] [56]) = E56;
Chain[FF][56] = F56;
Chain[GG][56] = G56;
Chain[HH] [56] = H56;
Chain[HH][57] = HS57;

W[12] = InverseStep(Chain[HH][57], Chain[AA]([56], Chain{BB][56],
Chain[CC]1[56], Chain[DD][56], Chain[EE][56],
Chain[FF][56], Chain[GG][56], Chain[HH][56], K1[25]);

Chain[AA][57]
Chain[BB][57]
Chain[CC][57]

Chain[BB] [56];
Chain[CC] [56];
Chain[DD] [56];

Chain[DD][57]

Chain[EE] [56];

Electrical and Electronic Engineering 300

Appendix G

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

<

Source Code: Implementation of HAVAL Attack

Chain[EE] [57]
Chain[FF][57]
Chain[GG][57]

Chain[HH][58]

W[15] =

Chain[AA][58]
Chain[BB][58]
Chain[CC][58]
Chain[DD] [58]
Chain[EE] [58]
Chain[FF][58]
Chain[GG][58]

Chain[HH] [59]

wW{l3] =

i

Chain[FF] [56];
Chain[GG] [561;
Chain[HH] [561];

H58;

InverseStep(Chain[HH] [58], Chain[AA][57]}, Chain([BB][57}],
Chain[CC][57],
Chain{FF][57],

Chain[DD]}[57],
Chain[GG][571],

Chain[EE][571,
Chain[HH][57], K1[26]);
Chain[BB] [57];
Chain[CC][57];
Chain[DD] [57];
Chain[EE] [57];
Chain[FF1[571]1;

= Chain[GG] [57];

InverseStep(Chain{HH] [59],
Chain[CC] [58],

Chain[HH] [57];

H59;

Chain[AA][58], Chain[BB][58],

Chain[DD][58], Chain[EE][58],

Chain[FF][58], Chain[GG]([58], Chain[HH][58], K1[27]);

Chain[AA][59]
Chain[BB][59]
Chain[CC][59]
Chain[DD] [59]
Chain[EE] [59]
Chain[FF][59]
Chain[GG] [59]

Chain[HH][60]

wW[2] =

Chain[AA][60]
Chain[BB] [60]
Chain[CC][60]
Chain[DD] [60]
Chain[EE] [60]
Chain[FF][60]
Chain[GG] [60]

Chain[HH][61]

W[25] =

Chain[aa][61]
Chain[BB][61]
Chain[CC][61]

InverseStep(Chain[HH] [60],
Chain[CC][59], Chain[DD]} [59],
Chain[FF][59],

InverseStep(Chain[HH][61],
Chain[CC][60],
Chain[FF][60],

Chain[BB] [581];
Chain[CC] [58]:;
Chain[DD] [58];
Chain[EE] [58];
Chain[FF] [58];
Chain[GG] [58];
Chain[HH] [58];

H60;
Chain[AA][59],

Chain[EE] [59],
Chain[HH] [59],

Chain[BB][59],

Chain|[GG]([59], K1[281);
Chain[BB] [59];
Chain[CC][59];
Chain[DD] [59]:
Chain[EE][59];
Chain[FF] [59];
Chain[GG] [591];
Chain[HH] [59];

H61;

Chain[AA][60], Chain[BB][60],
Chain[EE][60],

Chain[HH] [60],

Chain[DD] [60],

Chain[GG] [60], K1[{29]);

= Chain[BB][60];

Chain[CC][60];
Chain[DD] [60];

Electrical and Electronic Engineering

301

Appendix G

o

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q¥ VU

NIBESITHI YA PRETORIA

Source Code: Implementation of HAVAL Attack

Chain([CC] [55],
Chain[FF][55],

Chain[DD] [61]
Chain[EE][61]
Chain[FF][61]
Chain[GG] [61]

Chain[HH] [62]

W[31l] =

Chain{AA][62]
Chain[BB][62]
Chain[CC][62]
Chain[DD] [62]
Chain[EE] [62]
Chain[FF][62]
Chain[GG][62]

Chain[HH] [63]

W[27] =

/* Find W[19]
Chain[AA] [55]
Chain[BB] [55]
Chain[CC] [55]
Chain[DD] [55]
Chain[EE] [55]
Chain[FF][55]
Chain[GG] [55]
Chain[HH] [55]

W[1l9] =

Wt[1l9] =

for(i=0;

}
}

printf("Wt([19]:

printf("Equation (9) =

InverseStep(Chain[HH] [56],
Chain[CC][55],
Chain[FF] {55],

InverseStep (Ht56,
Chain[DD] [55],
Chain{GG][55],

i<32;
if(it=19) {
wtl{i] = Wlil;

Chain[EE] [60];
Chain[FF][60];
Chain[GG][60];

= Chain[HH][60];

H62;

InverseStep(Chain[HH] [62], Chain{AA][61], Chain[BB][61],
Chain[CC][61],
Chain[FF1[61], Chain[GG][61],

Chain[DD][61], Chain[EE][61],

Chain[HH] [61], K1[301]);
Chain[BB] [61];
Chain[CC][61];

= Chain[DD] [61];

Chain[EE] [61];

= Chain[FF][61];

Chain[GG] [61];

= Chain[HH][61];

random() "Rotate(random(),1);

InverseStep(Chain[HH] [63], Chain[AA][62], Chain{BB][62],
Chain{[CC]{62],
Chain[FF][62],

Chain[DD] [62],
Chain[GG][62],

Chain[EE][62],
Chain[HH][62], K1[31]);

and Wt[19] =*/

= random() " Rotate(random(),1);

Chain[AA][56];

= Chain[BB][56];
= Chain[CC][56];
= Chain[DD][56];
= Chain[EE][56];
= Chain[FF][56];

Chain[GG][56];

Chain[AA][55], Chain[BB][55],
Chain[EE][55],
Chain[HH][55],

Chain[DD] [55],
Chain[GG] [55], K1[24]);
Chain[AA][55],
Chain[EE] [55],
Chain[HH]1[55], K1{241);

Chain[BB][55],

i++) {

%$8.8X\n", Wt[19]);

28.8X\n", (RotateRight(H56,RFACT11) + W[19]) - (Ro-

tateRight (Ht56,RFACT11) + Wt[19]));

/* Test if message words derived allows a collision to be established */

Electrical and Electronic Engineering 302

4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

P
W UNIVERSITEIT VAN PRETORIA
A 4

Appendix G Source Code: Implementation of HAVAL Attack
Al = Chain{AA][55];
Bl = Chain[BB][55];
C1 = chain[cC][55];
D1 = Chain[DD}[55];
E1l = Chain[EE][55];
F1 = Chain(FF][55];
Gl = Chain[GG][55];
H1 = Chain[HH][55];

for(i=0; i<8; i++) {

pPr

Te

intf("sd) %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X\n", 55+i, Al, B1,

mpInt = RotateRight(FF2(B1,C1,D1,E1l,F1l,G1,H1l), RFACT7) +

RotateRight (Al, RFACT11) + W[Ord2[i+24]] + K1[i+24];

}

Al
B1
cl
D1
El
Fl
Gl
H1

= B1l;
= Cl;
= D1;
= E1;
= F1;
= G1;
= HI1;
= TempInt;

for(i=0; i<1l; i++) {

pr

Te

intf("%d) %8.8X %8.8X %8.8X %8.8X %$8.8X %8.8X %8.8X %8.8X\n", 62+i, Al, Bl,

mpInt = RotateRight(FF3(B1,C1,D1,E1,F1,G1,H1), RFACT7) +

RotateRight (Al, RFACT11) + W[Ord3[i]] + K2[i];

}

Al

B1 =

Cl
D1
El

Fl =

Gl
H1

= B1;
Cl;
= D1;
= E1;
= F1;
Gl;
= H1;
= TempInt;

printf("sd) %$8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X\n\n", 62+i, Al, B1,

/* Try for Wtl9 */

Al
Bl
Cl
D1
El

Fl =

Gl
H1

Chain[AA][55];
Chain[BB] [55];
Chain[CC](55];
Chain[DD] [55];
Chain[EE] [55];
Chain[FF][55];
Chain[GG][55];
Chain[HH] [55];

for(i=0; 1i<8; i++) {

Electrical and Electronic Engineering 303

4

w UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
<

YUNIBESITHI YA PRETORIA

Appendix G Source Code: Implementation of HAVAL Attack

printf("%d) %$8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X\n", 55+i, Al, BI,

TempInt = RotateRight(FF2(B1,C1,D1,E1l,F1,G1,H1), RFACT7) +
RotateRight(Al, RFACT11) + Wt[Ord2[i+24]1] + K1[i+24];

Al = B1;
Bl = C1;
Cl = D1;
D1 = E1;
E1l = F1;
Fl = G1;
Gl = H1;

H1 = TempInt;
for(i=0; i<l; i++) {
printf("%d) %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X\n", 62+i, Al, BIl,

TempInt = RotateRight(FF3(B1,Cl1,D1,El1,F1,G1,H1l), RFACT7) +
RotateRight (Al, RFACT11) + Wt[Ord3[il] + K2[i];

Al = B1;
Bl = C1;
Cl = D1;
D1 = El1;
E1l = F1;
Fl = G1;
Gl = HI1;

Hl = TempInt;

printf("%d) %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X\n\n", 62+i, Al, B1,
/* Target IVs */

Chain[HH][31] = 0x243F6A88L;
Chain{GG][31] = 0x85A308D3L;
Chain{FF][31] = 0x13198A2EL;
Chain[EE][31] = 0x03707344L;
Chain[DD][31] = 0xA4093822L;
Chain[CC]({31] = 0x299F31D0L;
Chain[BB][31] = 0x082EFA98L;
Chain[AA][31] = OXEC4E6C89L;

for(i=0; i<8; i++) {
Chain[AA][32+i] = Chain[BB][31+i];
Chain[BB]{32+i] = Chain[CC][31+i];
Chain[CC][32+i] = Chain[DD][31+i];
Chain[DD][32+i] = Chain[EE][31+i];
Chain[EE] [32+i] = Chain[FF][31+i];
Chain[FF][32+i] = Chain[GG][31+i];
Chain[GG][32+i] = Chain[HH][31+i];

Electrical and Electronic Engineering 304

Appendix G

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

<

Source Code: Implementation of HAVAL Attack

/* Derive all words except last 8 */

for(i=0; i<16;
Chain[AA][54-1]
Chain[BB][54-1]
Chain[CC] [54-1]
Chain[DD] [54-1i]
Chain[EE] [54-1i]
Chain[FF][54-1]
Chain{GG] [54-1i]
Chain[HH] [54-1i]

W[Oord2[23-1i]}1]

InverseStep(Chain[HH] [55-1i],

i++) {

random() "Rotate(random(),1);
Chain[AA][55-11;
Chain[BB][55-11;
Chain[CC][55-11];
Chain[DD][55-11];
Chain[EE] [55-i];
Chain[FF][55-11;
Chain[GG] [55-11;

Chain[AA][54-1i],

Chain[BB] [54-1i],

Chain[DD] [54-1i],

Chain[FF][54-1i],

ChainfHH] [54-1i]1,
}

for(i=0; i<8;

i++)

Chain[cC] [54-11,
Chain[EE] [54-i],
Chain([GG] [54-1],
K1[23-11);

—_

Chain[BB][38-1]
Chain[CC][38-1]
Chain[DD] [38-1]
Chain[EE] [38-1i]
Chain[FF][38-1]
Chain[GG][38-1i]
Chain[HH] [38-1i]

W[Ord2[7-1i]]

Chain[AA][39-1i];
Chain[BB][39-1i];

= Chain[CC][39-1i];

Chain[DD][39-1i];

= Chain[EE] [39-1];

InverseStep(Chain[HH] [39-1i],

Chain[FF][39-1i];
Chain[GG]}[39-i];

Chain[AA][38-1]7,

Chain[BB] [38-1i],
Chain[DD] [38-1i],
Chain[FF][38-i],
Chain[HH] [38-1i1,

Chain[CC][38-i],
Chain[EE] [38-1i],
Chain[GG][38-i],
K1[7-11);

}

for(i=0; 1i<32;
if(ir=19) {
Wlil;

i++y |

Wtfi]
}
printf("%i) %8.8X %8.8X\n", wWli],

i, WL[i]);

/* With IV target reached and message word derived, proceed to verify
* collision for last two rounds of three round HAVAL */

Al = Chain[AA][31];
Bl = Chain[BB][31];
Cl = Chain[CC][31];
D1 = Chain[DD][31];
El = Chain[EE][31];
Fl1 = Chain[FF][31];
Gl = Chain[GG][31];
Hl = Chain[HH]} [31}];
for(i=0; i<32; i++) {

Electrical and Electronic Engineering 305

&

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q¥ YU

NIBESITHI YA PRETORIA

Appendix G Source Code: Implementation of HAVAL Attack

printf("%d) %8.8X %8.8X %8.8X %8.8X %8.8X %$8.8X %8.8X %8.8X\n", i+1l, Al, Bl,

TempInt = RotateRight(FF2(B1l,C1,D1,E1l,F1,G1l,H1), RFACT7) +
RotateRight (Al, RFACT11) + W[Ord2[i]] + K1{i];

Al = B1l;
Bl = C1;
Cl = D1;
D1 = E1;
El = F1;
Fl = G1;
Gl = HI;

H1 = TempInt;
for(i=0; i<32; i++) {
printf("%d) %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X\n", i+l, Al, BI1,

TempInt = RotateRight(FF3(B1,C1,D1,El,F1,G1l,H1l), RFACT7) +
RotateRight (Al, RFACT11) + W[Ord3[i]] + K2[i];

Al = Bl;
Bl = C1;
Cl = DI1;
D1 = E1;
El = F1;
FlL = G1;
Gl = H1;

H1l = TempInt;

printf("%d) %8.8X %8.8X %8.8X %8.8X %8.8X $8.8X %8.8X %8.8X\n\n", i+l, Al, BI,

/* With IV target reached and message word derived, proceed to verify
* collision for last two rounds of three round HAVAL */

Al = Chain[AA][31];
Bl = Chain[BB][31];
Cl = Chain[CC][31];
D1 = Chain[DD]{31];
El = Chain[EE][31];
Fl = Chain[FF][31];
Gl = Chain[GG][31];
H1 = Chain[HH][31];

for(i=0; 1i<32; i++) {
printf("%d) %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X\n", i+l, Al, B1,

TempInt = RotateRight(FF2(B1,C1,Dl1,El1,F1,G1,Hl), RFACT7) +
RotateRight(Al, RFACT11) + Wt[Oord2[i]] + K1[i];

Al = Bl;
Bl = C1;
Cl = D1;
D1 = EI1;

Electrical and Electronic Engineering 306

4

&
&

W UNIVERSITEIT VAN PRETORIA

\ 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Appendix G Source Code: Implementation of HAVAL Attack
El = F1;
Fl = G1;
Gl = HI1;

H1 = TempInt;
for(i=0; i<32; i++) {
printf("%d) %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X\n", i+l, Al, BI,

TempInt = RotateRight(FF3(B1l,C1,D1,El,F1,G1,H1), RFACT7) +
RotateRight (A1, RFACT11) + Wt[Oord3[i]] + K2{ii;

Al = B1;
Bl = C1;
Cl = D1;
D1 = E1;
BEl = F1;
Fl = G1;
Gl = HI1;

H1 = TempInt;

printf("%d) %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X\n", i+l, Aal, Bl, CI1,

/* Write message words to file */

fpl = fopen("datal.dat", "w");
fp2 = fopen("data2.dat", "w");
if(fpl == NULL || fp2 == NULL)
{
printf("Error Opening File\n");
exit(l);
}

for(i=0; i<32; i++) {

for(j=0; j<4; j++) {
TempChar = (char) (W[i] >> ((j)*8) & 0x000000ff);
fwrite(&TempChar, sizeof(char), 1, fpl);

TempChar = (char) (Wt[i] >> ((j)*8) & 0x000000ff);
fwrite(s&TempChar, sizeof(char), 1, fp2);
}
}

fclose(fpl);
fclose(fp2);

return(0);

unsigned int InverseStep(unsigned int H2, unsigned int Al, unsigned int B1,
unsigned int Cl, unsigned int D1, unsigned int E1,

Electrical and Electronic Engineering 307

4

e
W UNIVERSITEIT VAN PRETORIA
A 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Appendix G Source Code: Implementation of HAVAL Attack

unsigned int F1, unsigned int G1, unsigned int H1,
unsigned int K)

{

unsigned int W;

W = H2 - RotateRight(FF2(Bl, Cl1, D1, El, F1l, Gl, Hl), RFACT7) -
RotateRight (Al, RFACT11) - K;

return(w);

unsigned int Rotate(unsigned int X, unsigned int s)
{

unsigned int temp;

temp = X;
X = (X << 8) | (temp >> (32-38));
return(X);

unsigned int RotateRight(unsigned int X, unsigned int s)
{

unsigned int temp;

temp = X;
X = (X >> s8) | (temp << (32-s8));
return(X);

unsigned int FF2(unsigned int B, unsigned int C, unsigned int D,
unsigned int E, unsigned int F, unsigned int G,
unsigned int H)

unsigned int x0, x1, x2, x3, x4, x5, X6;

/* Permuteer die insette tot die funksies socos gespesifiseer */
x0 = B;

x1l =
X2 =
x3 =
x4 =
x5 =
X6 =

7
12
’
’

’

oM amD o

’

~ ~ ~ -~ -~

return((xl&ax2&x3) (x2&%x6) (x3&%x5)

(x4&x5) 7 (x06&x2)

(x2&x4&%5)
(x0));

(x1&x2) (x1ax4d)

~

unsigned int FF3(unsigned int B, unsigned int C, unsigned int D,
unsigned int E, unsigned int F, unsigned int G,
unsigned int H)

unsigned int x0, x1, x2, x3, x4, x5, x6;

/* Permuteer die insette tot die funksies soos gespesifiseer */

Electrical and Electronic Engineering 308

