
BIBLIOGRAPHY

[1] J. L. Massey, "Cryptography: Fundamentals and ap1ications," 1995. Copies of Trans-

parencies, Advanced Technology Seminars.

[2] W. T. Penzhom, "Hash functions and authentication," Tech. Rep. WP2, Ciphertec cc,

24 January 1995.

[3] B. Prenee1, Analysis and Design of Cryptographic Hash Functions. PhD thesis,

Katholieke Universiteit Leuven, 1993.

[4] J. L. Carter and M. N. Wegman, "Universal classes of hash functions," Journal of Com-

puter and Systems Sciences, vol. 18, pp. 143-154, 1979.

[5] Secure Electronic Transaction (SET) Specification Book 3: Formal Protocol Definition,

24 June, Revised August 1 1996.

[6] D. W. Davies and W. L. Price, "The application of digital signatures based on pub1ic-

key cryptosystems," in Proc. Fifth Inti. Computer Communications Conference, p-

p. 525-530, October 1980.

[7] R. Anderson and E. Biham, 'Two practical and provably secure block ciphers: BEAR

and LION," in Fast Software Encryption, Third International Workshop (D. Gollman,

ed.), Lecture Notes in Computer Science No. 1039, Springer-Verlag, pp. 113-120,

1996.

[8] P. Morin, "Provably secure and efficient block ciphers," Third Annual Workshop on

Selected Areas in Cryptography, pp. 30-37, 1996.

[9] C. H. Lim, "Message encryption and authentication using one-way hash functions,"

Third Annual Workshop on Selected Areas in Cryptography, pp. 38-48, 1996.

[10] R. L. Rivest, "The MD4 message digest algorithm," in Advances in Cryptology - CRYP-

TO ' 90, Lecture Notes in Computer Science vol 537, Springer-Verlag, pp. 303 - 311,

1991.

[11] B. den Boer and A. Bosselaers, "An attack on the last two rounds of MD4," in Advances

in Cryptology - CRYPTO ' 91, Lecture Notes in Computer Science No. 576, Springer-

Verlag, pp. 194-203, 1992.

[12] H. Dobbertin, "Cryptanalysis of MD5 compress," Rump Session EUROCRYPT ' 96,

1996.

[13] National Institute of Standards and Technology (NIST), FIPS Publication 180-1: Se-

cure Hash Standard (SHS), April 17, 1995.

[14] H. Dobbertin, "Cryptanalysis of MD4," in Fast Software Encryption, Third Interna-

tional Workshop (D. Gollman, ed.), Lecture Notes in Computer Science No. 1039,

Springer-Verlag, pp. 53-69,1996.

[15] H. Dobbertin, A. Bosselaers, and B. Preneel, "RIPEMD-160: a strengthened version

of ripemd," in Fast Software Encryption, Third International Workshop (D. Gollman,

ed.), Lecture Notes in Computer Science No. 1039, Springer-Verlag, pp. 71-82, 1996.

[17] P. R. Kasselman, "Analysis of dedicated hash functions," Tech. Rep. Ciph-96-1O, Ci-

phertec cc, November 1996.

[18] G. J. Simmons, "A survey of information authentication," in Contemporary Cryptology,

The Science of Information Integrity (G. J. Simmons, ed.), pp. 379-419, New York:

IEEE Press, 1991.

[19] D. G. Abraham, G. M. Dolan, G. P. Double and J. V. Stevens, "Transaction security

system," IBM Systems Journal, vol. 30, no. 2, pp. 206-209, 1991.

[20] J.-J. Quisquater and J.-P. Delescaille, "How easy is collision search? New results and

applications to DES," in Advances in Cryptology - CRYPTO ' 89 (G. Brassard, ed.),

Lecture Notes in Computer Science No. 435, Springer-Verlag, pp. 408-415, 1990.

[21] J.-J. Quisquater and J.-P. Delescaille, "How easy is collision search? Applications to

DES," in Advances in Cryptology - EUROCRYPT' 89 (J. Quisquater and J. Vandewalle,

eds.), Lecture Notes in Computer Science No. 434, Springer-Verlag, pp. 428-433,

1990.

[22] I. Damgard, "A design principle for hash functions," in Advances in Cryptology

- CRYPTO ' 89 (G. Brassard, ed.), Lecture Notes in Computer Science No. 435,

Springer-Verlag, pp. 416-427,1990.

[23] R. C. Merkle, "One way hash functions and DES," in Advances in Cryptology - CRYP-

TO ' 89 (G. Brassard, ed.), Lecture Notes in Computer Science No. 435, Springer-

Verlag, pp. 428-446, 1990.

[24] D. Coppersmith, "Another birthday attack," in Advances in Cryptology - CRYPTO ' 85

(H. C. Williams, ed.), Lecture Notes in Computer Science No. 218, Springer-Verlag,
pp. 14-17, 1986.

[25] M. Girau1t, R. Cohen, and M. Campana, "A generalised birthday attack," in Advances

in Cryptology - EUROCRYPT ' 88 (c. G. Gunther, ed.), Lecture Notes in Computer

Science No. 330, Springer-Verlag, pp. 129-156, 1988.

[26] L. Knudsen, "Cryptanalysis of LOKI," in Cryptography and Coding III, vol. 45, p-

p. 223-236, The Institute of Mathematics and its Applications Conference Series,

Clarendon Press, Oxford, 1993.

[27] M. J. B. Robshaw, "Block ciphers," Tech. Rep. TR 601, RSA Laborities, 2 August

1995.

[28] B. Kaliski and M. Robshaw, "Message authentication with MD5," CryptoBytes, vol. 1,

pp. 5-8, Spring 1995.

[29] B. Preneel and P. C. van Oorschot, "MDx-MAC and building fast MACs from hash

functions," in Advances in Cryptology - CRYPTO ' 94 (D. Coppersmith, ed.), Lecture

Notes in Computer Science No. 963, Springer-Verlag, pp. 1-14, 1995.

[30] D. W. Davies, "A message authenticator algorithm," in Advances in Cryptology - CRYP-

TO ' 84 (G. R. Blakley and D. C. Chaum, eds.), Lecture Notes in Computer Science

No. 196, Springer-Verlag, pp. 393-400, 1985.

[31] B. Preneel and P. C. van Oorschot, "On the security of two MAC algorithms," in Ad-

vances in Cryptology - EUROCRYPT' 96 (U. Maurer, ed.), Lecture Notes in Computer

Science No. 1070, Springer-Verlag, pp. 19-32, 1996.

[32] R. S. Winternitz, "Producing a one-way hash function from DES," in Advances in Cryp-

tology - CRYPTO ' 83 (D. Chaum, ed.), (New York), pp. 203-207, Plenum Press, 1984.

[33] M. E. Hellman, R. Merkle, R. Schroeppel, L. Washington, W. Diffie, S. Pohlig, and

P. Schweitzer, "Results of an initial attempt to cryptanalyze the NBS Data Encryption

Standard," Tech. Rep. SEL 76-042, Stanford University, 1976.

[34] M. Kwan and J. Pieprzyk, "A general purpose technique for locating key scheduling

weakness in DES-like cryptosystems," in Advances in Cryptology-ASIACRYPT '91

(H. Imai, R. Rivest, and T. Matsumoto, eds.), Lecture Notes in Computer Science No.

739, Springer-Verlag, pp. 237-246,1993.

[35] L. Brown, M. Kwan, J. Pieprzyk, and J. Seberry, "Improving resistance to differential

cryptanalysis and the redesign of LOKI," in Advances in Cryptology-ASIACRYPT '91

(H. Imai, R. Rivest, and T. Matsumoto, eds.), Lecture Notes in Computer Science No.

739, Springer-Verlag, pp. 36-50,1993.

[36] J. Daemen, R. Govaerts, and J. Vandewalle, "Weak keys for IDEA," in Advances in
Cryptology - CRYPTO ' 93 (D. R. Stinson, ed.), Lecture Notes in Computer Science

No. 773, Springer-Verlag, pp. 224-231,1994.

[37] D. Boneh, R. A. DeMillo, and R. J. Lipton, "On the importance of checking computa-

tions (Extended abstract)." Internet, 1996.

[38] A. Shamir and E. Biham, "Research anouncement: A new cryptanalytic attack on

DES." Internet: http://jya.com/dfa.htm, 1996.

[39] J.-J. Quisquater, "Short cut for exhaustive key search using fault analysis: Applications

to DES, MAC, Keyed hash function, Identification protocols, " Internet, 1996.

[40] D. Coppersmith, "Analysis oflSO/CCITT Document X.509 Annex D." Internal Memo,

IBM TJ. Watson Center, June 11, 1989.

[41] T. Beth, F. BausspieB, and F. Damm, "Workshop on cryptographic hash functions,"

Tech. Rep. 92/11, E.I.S.S., 1992.

[42] G. Brassard, "The impending demise of RSA?," CryptoBytes, vol. 1, pp. 1-4, Spring

1995.

[43] F. BausspieB and F. Damm, "Requirements for cryptographic hash functions," Tech.

Rep. 92/2, E.I.S.S., 1992.

http://jya.com/dfa.htm,

[44] R. L. Rivest, "The MD4 message digest algorithm." Internet Request for Comments

(RFC), 1990. RFC 1320.

[45] R. L. Rivest, "The MD5 message-digest algorithm." Internet Request for Comments

(RFC), April 1992. RFC 1321.

[46] C. E. Shannon, "Communication theory of secrecy systems," in Claude Elwood Shan-

non - Collected Papers (N. J. A. Sloane and A. D. Wyner, eds.), pp. 84-143, IEEE

Press, 1983.

[48] J. Daemen, Cipher and Hash Function Design. PhD thesis, Katholieke Universiteit

Leuven, 1993.

[49] X. Lai and J. L. Massey, "Hash functions based on block ciphers," in Advances in

Cryptology - EUROCRYPT' 92, Lecture Notes in Computer Science No. 658, Springer-

Verlag,pp.55-70,1992.

[50] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C.

New York: John Wiley & Sons, 1993.

[51] G. J. Kuhn, "S-box design and analysis," Tech. Rep. Ciph-96-13, Ciphertec cc, Desem-

ber 1996.

[52] R. R. Jueneman, "A high speed manipulation detection code," in Advances in Cryptol-

ogy - CRYPTO ' 86 (A. Odlyzko, ed.), Lecture Notes in Computer Science No. 263,

Springer-Verlag, pp. 327-346, 1987.

[53] S. Vaudenay, "On the need of multipermuations: Cryptanalysis of MD4 and SAFER,"

in Proceedings of the 1994 Leuven Workshop on Cryptographic Algorithms, Lecture

Notes in Computer Science vol 1008, Springer-Verlag, pp. 286-297,1995.

[54] H. Dobbertin, "RIPEMD with two round compress is not collision-free," Journal of

Cryptology, vol. 10, no. 1, pp. 51-70,1997.

[55] H. Dobbertin, "The status of MD5 after a recent attack," CryptoBytes, vol. 2, pp. 1-6,

Summer 1996.

[56] P. R. Kasselman, "A fast attack on the MD4 hash function," in Comsig 97 (M. Ings,

ed.), no. 97TH8312 in IEEE Catalog, pp. 147-150, South African Section IEEE, 1997.

[57] P. R. Kasselman, "Analysis and design of hash functions: Part II," Tech. Rep.

Ciph/97 11211(II), Ciphertec cc, December 1997.

[58] P. R. Kasselman, "Analysis and design of hash functions: Part I," Tech. Rep.

Ciph/971l21l(I), Ciphertec cc, December 1997.

[59] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptog-

raphy. New York: CRC Press, 1997.

[61] W. W. Peterson and E. J. Weldon, Error Correcting Codes. Massachsetts: MIT Press,

2 ed., 1972.

[62] Y. Zheng, J. Pieprzyk, and J. Seberry, "HAVAL - a one-way hashing algorithm with

variable length of output," in Advances in Cryptology-Auscrypt '92 (J. Seberry and

Y. Zheng, eds.), (Berlin), pp. 83-104, 1993.

[63] J. F. Wakerly, Digital Design Principles and Practices. London: Prentice-Hall Interna-

tional Editions, 1990.

[64] E. K. Grossman and B. Tuckerman, "Analysis of a feistel-like cipher weakened by

having no rotating key," Tech. Rep. RC 6375, IBM TJ. Watson Research, Jan 1977.

[65] E. Biham, "New types of cryptanalytic attacks using related keys," in Advances in Cryp-

tology-EUROCRYPT '93 (T. Helleseth, ed.), Lecture Notes in Computer Science Vol

735, (Berlin), Springer-Verlag, pp. 398-409, 1994.

[66] C. M. Adams, "Simple and effective key scheduling for symmetric ciphers (extended

abstract)," Workshop on Selected Areas in Cryptography, pp. 129-133, 1994.

[67] V. Rijmen, Cryptanalysis and Design of Iterated Block Ciphers. PhD thesis, Katholieke

Universiteit Leuven, 1997.

[68] M. N. Wegman and J. L. Carter, "New hash functions and their use in authentication

and set equality," Journal of Computer and Systems Sciences, vol. 22, pp. 265-279,

1981.

[69] A. R. Meijer, "Universal hash functions in authentication," Tech. Rep. KT437122, Ci-

phertec cc, 28 February 1996.

[70] S. M. Matyas, C. H. Meyer, and J. Oseas, "Generating strong one-way functions with

cryptographic algorithms," IBM Tech. Disclosure Bull., vol. 27, no. lOA, pp. 5658-

5659, 1985.

[71] B. Preneel, R. Govaerts, and J. Vandewalle, "Hash functions based on block ciphers:

a synthetic approach," in Advances in Cryptology - CRYPTO ' 93 (D. R. Stinson, ed.),

Lecture Notes in Computer Science No. 773, Springer-Verlag, pp. 368-378,1994.

[72] X. Lai, R. Rueppel, and J. Woollven, "A fast cryptographic checksum algorithm based

on stream ciphers," in Advances in Cryptology - AUSCRYPT '92 (J. Seberry and

Y. Zheng, eds.), Lecture Notes in Computer Science No. 718, (Berlin), Springer-

Verlag, pp. 339-348, 1993.

[73] M. Bellare, R. Canetti, and H. Krawczyk, "Keying hash functions for message authen-

tication," in Advances in Cryptology - CRYPTO ' 96 (N. Koblitz, ed.), Lecture Notes in

Computer Science No. 1109, Springer-Verlag, pp. 1-15, 1995.

[74] M. Bellare, R. Canetti, and H. Krawczyk, "The HMAC construction," CryptoBytes,

vol. 2, pp. 12-15, Spring 1996.

[75] G. Tsudik, "Message authentication with one-way hash functions," ACM SIGCOMM,
Computer Communication Review, vol. 22, pp. 29-38, Oct. 1992.

[76] J. M. Galvin, K. McCloghrie, and J. R. Davin, "Secure management of snmp networks,"

Integrated Network Management II, pp. 703-714,1991.

[78] M. Bellare, R. Canetti, and H. Krawczyk, "Keying hash functions for mes-

sage authentication." Internet: http://www.research.ibm.com.security/ or http://www-

cse.ucsd.edu/users/mihir/papers/papers.html, 1996.

[79] M. Bellare, R. Guerin, and P. Rogaway, "XOR MACs: New methods for message au-

thentication using finite pseudorandom functions," in Advances in Cryptology - CRYP-

TO ' 95 (D. Coppersmith, ed.), Lecture Notes in Computer Science No. 963, Springer-

Verlag, pp. 15-28,1995.

[80] M. Bellare, R. Guerin, and P. Rogaway, "XOR MACs: New methods for mes-

sage authentication using finite pseudorandom functions." Internet: http://www-

cse.ucsd.edu/users/mihir/papers/papers.html, 1995.

http://www.research.ibm.com.security/

[81] W. T. Penzhorn, "Study into international standards," Tech. Rep. Ciph-96-12, Ciphertec

cc, 6 December 1996.

[82] M. Bellare, J. Kilian, and P. Rogaway, "The security of cipher block chaining," in Ad-

vances in Cryptology - CRYPTO ' 94 (Y. G. Desmedt, ed.), Lecture Notes in Computer

Science No. 839, Springer-Verlag, pp. 341-358,1994.

APPENDIX A: ADDITIONAL HASH FUNCTION

CONSTRUCTIONS

This Appendix describes a number of additional hash function constructions. Specific atten-

tion is given to tree constructions, the cascading of hash functions and the use of block and

stream ciphers to construct round functions that can be used as part of the Damgard-Merkle

construction. A number of generic techniques that allows the construction of MACs based on

MACs are also considered. A short review of current international standards is also included.

This scheme is specifically intended for high speed hashing. The first construction along

these lines was presented by Carter and Wegman [68]. In [69] this scheme is referred to

as concatenation hashing. It was re-discovered independently by Preneel [3] and Damgard

[22]. This hash scheme can be generalised and requires the following:

The difference between the construction by Preneel and the construction by Carter and Weg-

man is found in the round function used. Carter and Wegman propose the use of a universal

hash function (a complexity theoretic construction). Preneel specifies that any secure round

function, f (),could be used. It is advised that the round function chosen for this scheme

should adhere to the conditions imposed on round functions used in the Damgard-Merkle

scheme (see Section 5.3).

For the tree hashing scheme to work it is required that the message length, r should be a

multiple of the block length m. In addition it is required that the number of blocks in the

original message should be a multiple of two. These requirements imply a form of padding.

The same padding rules as described in Section 5.3 can be applied to this construction.

Appendix A

j(X2i-1, X2i)

j(Hj-:-1 Hj-:-1)
22-1' 22

i E {1,2,3 2q
-
1}

i E {I, 2, 3 2q
-
1 }

j E {2,3 ... r - I}

\

" Concatenate Results
\
\

Note that the scheme can be adapted for use as a MAC by making the round function key

dependent.

Appendix A

This scheme is faster than the Damgard-Merkle scheme. It is stated in [3] that the hash

function, hO can be performed for an r bit input with 2: processors with:

o (r : n . log2 (~))

evaluations of 10. A further advantage of this scheme is the avoidance of chaining and

consequently all attacks dependent on the chaining.

The tree hashing scheme has the disadvantage that no known analysis has been performed

on this structure. Consequently little is known of its security. Another disadvantage of this

scheme is the cost involved. This hash function depends on the use of several processors

which can operate in parallel. Since it is required that a hash function should be able to

hash messages of arbitrary length, an arbitrary number of processors are required. As the

message length r ---+ 00 the number of processors, c ---+ 00. It can be assumed that the cost of

implementing such a hash function would escalate accordingly. An implementation of this

scheme is therefore impractical due to the costs involved.

This scheme can be made practical by introducing chaining. This solution should be seen

as a hybrid between the Damgard-Merkle scheme and the tree construction scheme. The

round function 10 in the Damgard-Merkle scheme is effectively replaced by the tree hashing

scheme. The hybrid scheme has the disadvantages of reducing the performance and re-

introducing attacks dependent on the chaining.

Thus a trade-off between speed, cost and security has to be made when using the tree con-

struction. According to [3] a speedup factor of c is achieved if c processors are used. It

is possible to use the tree construction not only in the construction of a hash function, hO,
but also in the construction of a round function 10. It is not known if any practical hash

functions are based on this scheme.

The following observations are made in [3] regarding the cascading of hash functions. Let

AilE denote concatenation of message B to A. If hlO and h20 are hash functions that

Appendix A

produces hash values of nl and n2 bits respectively, and gO is a one way function that yields
a n3-bit result, then:

1. h(XI, X2) = g(hl(Xd Ilhl (X2)) is a CRHF if hI 0 is a CRHF and gO is aCRE

2. h(Xd = g(hl(Xdllh2(XI)) is a CRHF if either hlO or h20 is a CRHF and gO is a
CRE

The first construction is equivalent to the tree construction discussed in Section A.2 and

results in a hash length of n3. The second construction describes a CRHF that is at least as

strong as the strongest of hI 0 or h20, provided gO is a CRE The resultant hash length for

the second construction is n3. The third construction omits the use of a CRF, consequently

the hash length equals nl + n2 > n3.

In terms of hash speed, the first construction is more efficient since two message blocks are

hashed at a time. In terms of security the last two constructions are more secure since two

hash functions are used. If one of the hash functions is insecure, the entire construction does

not become insecure. These constructions can be extended to more than two hash functions.

Block ciphers are often used in an iterated construction as a round function. The popularity

of block ciphers used as round functions are due to the correlation between the requirements

set for hash functions and block ciphers. The use of block ciphers has the advantage that

the cost and effort of designing and analysing a new round function is drastically reduced,

provided that a trusted block cipher is used. An additional advantage when using a block

cipher as a round function is that block ciphers are designed to accommodate a secret key.

This is an advantage when constructing a MAC. Three disadvantages should be noted when

using a block cipher as a round function. The first disadvantage deals with the functional

requirement of speed. Hash functions that contain block ciphers as building blocks are slower

than dedicated hash functions. The second disadvantage is the introduction of additional

Appendix A

attacks, based on certain properties of blocks ciphers (see Chapter 3 Section 3.6). A third

disadvantage is that a number of hash functions have a block size of 64 bits. It is generally

believed that the hash length should equal 128 bits or more, in order to provide protection

against birthday attacks (see Chapter 3 Section 3.4).

A distinction is made between round functions for which the length of the chaining variable

is equal to the block length, and round functions for which the length of the chaining variable

is equal to twice the block length of the block cipher.

Before proceeding consider the following notation. Let E(K, Xi) denote the encryption of

message block Xi with key K.

Figure A.2 depicts a generic configuration for a block cipher used as a round function in a

hash function.

Note that three inputs, A, B, and C are available. Each input can take one of four possible

inputs, Xi, Hi-I, Xi EB Hi-lor a constant. Thus there are 43 = 64 possible configurations of

the construction presented in Figure A.2. A general expression for the above construction is

given by:

Ho IV

Hi E(A, B) EB C.

These structures were analysed in [3]. The result of this analysis is that only four of these

constructions are considered secure against all attacks. They are defined by the following

Appendix A

Hi E(u(Hi-r), Xd EB Xi

Hi E(u(Hi-r), (Xi EB Hi-r)) EB Xi EB Hi-I

Hi E(u(Hi-r), Xi) EB Hi~1 EB Xi

Hi E(u(Hi-r), (Xi EB Hi-I)) EB Xi

The function uO is a mapping from the ciphertext space to the key space. A visual represen-

tation of these constructions are presented in Figure A.3.

Figure A.3(a) is known as the Matyas hash scheme [70]. Figure A.3(c) is known as the

Preneel-Miyaguchi hash scheme. The dual of the scheme in Figure A.3(a) is known as the

Davies- Meyer scheme and is depicted in Figure A.4.

Appendix A

Two constructions based on a n bit cipher resulting in a 2 . n bit hash result are proposed in

[49]. These constructions are based upon the availability of a block cipher with a n-bit block

size and a 2 . n bit key. One such block cipher is IDEA. These constructions are considered

variants of the Davies-Meyer scheme mentioned earlier. The first is denoted the tandem

Davies-Meyer, and is shown in Figure A.5(a).

Go IV1

Ho IV2

Wi E(Gi-11IXi, Hi-d

Gi Gi-l EB E(XiIIWi-l, Gi-d

The Davies-Meyer abreast scheme is also defined in [49] and shown in Figure A.5(b). Ana-

lytically the construction is expressed as:

Go IV1

Ho IV;

Gi Gi-l EB E(XiIIHi-l, (Pi-d)

Hi Hi-l EB E(Gi-11IXi, (Hi-d)

Two additional schemes, which employ block ciphers to construct round functions with a

hash length equal to twice the block length, are MDC2 and MDC4. MDC2 is defined as

Appendix A

Ho 1VI

HI 11:2

Tli E(Hi-l, Xd
LTliliRTli

T2i E(Gi-l, Xd
LT2illRT2i

Hi LTlillRT2i

Gi LT2i IIRTli

LTxi Lefthand ~ bits of n bit block.

RTxi Righthand ~ bits of n bit block.

x lor 2.

MDC4 is defined as the application of two consecutive rounds of MDC2. Thus, the result is

that MDC2 is approximately twice as fast as MDC4. It is believed that MDC4 is more secure

than MDC2.

Block diagrammatic forms of MDC2 and MDC4 are presented in Figure A.6(a) and Figure

A.6(b) respectively.

Appendix A

As shown in Section 5.3 MACs can be based on iterative schemes, providing that the re-

sulting hash value is key dependent. Block ciphers are suitable for constructing MAC round

functions since block ciphers are designed to accommodate secret keys. Two constructions

based on blocks ciphers are available.

Appendix A

The block cipher used in CBC mode for a MAC round function construction is described as

follows:

A graphical representation of this construction for a MAC round function is shown in Figure

A.7(a). The block cipher construction used in CFB mode is described as follows:

Refer to Figure A.7(b) for a graphical representation of this construction. Note that in the

case of CFB, the final result has to be encrypted once again in order to remove the linear

dependence of the MAC on the last plaintext block. A third construction was proposed in

[71]. It is represented in Figure A.7(c) and is described below:

It is believed that this construction is harder to invert [2] than the previously mentioned

constructions. In [3] it is advised that, should encryption of the MAC be required, a different

key should be used for encryption purposes.

K E

Xi

Hi

(bl

A number of block ciphers have been proposed. However, not all block ciphers are suitable

for use as round functions in cryptographic hash functions. It should first be noted that the

security of the hash function constructed from a block cipher is based on the assumption

that the underlying block cipher is secure. Thus block ciphers which are considered insecure

should be avoided. In addition certain properties of block ciphers allow the resulting hash

function to be susceptible to specific attacks. These properties include:

The manner in which these properties are exploited is considered in Chapter 3, Section 3.5
and 3.6.

It is conceivable that the round function of a hash function can be based on a stream cipher.

This type of construction is hinted at in [69]. It may be possible to adapt the construction

presented in [72] to construct a round function for an iterated hash function. Little is known

of the security of hash function based on stream ciphers.

Traditionally MACs are based on block ciphers (see Section AA.1). Recently various tech-

niques for constructing hash functions from MDCs were proposed [29], [73], [74]. The

preference for the use of MDC based MACs over block cipher based MACs is based on the
following factors:

Appendix A

Speed of execution is an important functional requirement (see Chapter 4 Section 4.2.4).

The matter of export restrictions is a political one. Several countries, most notably the USA,

restrict the export of certain cryptographic functions. A large number of block ciphers are

covered by these restrictions. Thus, MACs based on block ciphers may not be exported to

other countries. It has been proposed that MACs are used in electronic transactions on the

Internet [5]. The Internet spans across the globe, and participants from different countries

may wish to engage in electronic banking transactions. Thus, MACs based on block ciphers

cannot be used for secure Internet Transactions, due to export restrictions. For this reason

MACs based on MDCs are preferred over MACs based on block ciphers, since MDCs are

not restricted by export controls. Because of these reasons MDC based MACs were adopted

in Kerberos, IPSec and SET [5] [29].

It should be remembered that MDCs were not designed to accommodate a key. Thus, when

constructing MACs from MDCs, care should be taken in the manner in which the key for

the MAC is introduced. The key should be introduced in such a manner that the resulting

hash value does not reveal any information of the secret key. This requirement is based on

the principles of confusion and diffusion as introduced by Shannon [46].

1. Affix construction.

2. IPSec recommendations

3. NMAC construction.

4. HMAC construction.

5. M Dx-MAC construction.

6. XOR-MAC construction.

Appendix A

The secret prefix construction was proposed independently in [75] and [76]. This construc-

tion requires that the secret key, K1, be prepended to the message X. Thus the prefix method

can be described as

h() Iterated MDC

II Concatenate.

A graphical representation of this construction is shown in Figure A.8(a). This construction

is considered insecure due to the message extension or padding attacks [75] [29]. A variant

of the prefix construction with MD5 is used in Kerberos V. This construction is denoted as

MD2.5 [77]. Concern is expressed over the security of this construction in [29].

This construction is described in [75]. The secret suffix construction appends the secret key

K2 to the message X before hashing. The construction is described as follows:

h()

II
Iterated MDC

Concatenate.

Appendix A

A graphical representation of this construction is shown in Figure A.8(b). A number of

attacks on this construction are described in [29]. If off-line attacks are allowed, an inter-

nal collision can be found in approximately O(2!}) off-line operations. A second attack is

possible if a second pre-image attack on the underlying MDC is possible. A third attack is

considered possible if t text-MAC pairs are known. The number of known text-MAC pairs

reduces the computational effort to construct a second pre-image from 0 (2n) to 0 (2 If).

The envelope construction is described in [75]. This construction prepends the secret key,

K1, and appends the secret key, K2, to the message, X, before hashing (see Figure A.8(b».

The construction is described as follows:

h0 Iterated MDC

II Concatenate.

In [75] it is claimed that the effective key length for the envelope construction is equal to the

length of K1 (k1 bits) added to the length of K2 (k2 bits). Thus according to [75] O(2k1 +k2)

operations are required to establish a collision. This is shown to be incorrect in [29]. In [29]

it is demonstrated that the effective key length is less than or equal ki + 1, for whichever

is the larger of k1 or k2• This implies that the number of operations required to establish a

collision are less than or equal to O(2ki+1) for whichever is the larger, k1 or k2• Thus the

security gained by selecting K1 =1= K2 is less than expected. A divide and conquer attack

on the envelope method is described that establishes an internal collision and then searches

exhaustively for the two respective keys.

Secret Prefix
K1

Secret Suffix
K2

Secret Prefix
K1

Secret Suffix
K2

The attacks on the affix constructions are easier than attacks on an ideal MAC. However,

provided that the hash function, hO, is collision resistant, the attacks on the affix construc-

tions remain computationally infeasible. Key recovery attacks on these constructions are
presented in [31].

In [28] three MAC constructions based on MD5 are presented. These proposals were sub-

mitted to the IPSec working group. The constructions could be viewed as variations of the

affix methods described in Section A.5.!. The three proposals are summarised below:

Appendix A

MD50 MD5 hash function

"
Concatenate

K1 128 bit key

K2 128 bit key

X Message.

MD50 MD5 hash function

II Concatenate

K1 128 bit key

p 384 padding bits

X Message.

MD50

II

The second proposal is effectively the envelope method with K1 padded to form a 512 bit

block. In addition it differs from the envelope method since K1 =1= K2• Thus, K1 specifies

an initial value for the MD5 hash algorithm applied to the message block. Reservation has

been expressed on the use of the initial value as a secret key [3]. The key is however also

appended to the message for hashing. This should increase the security of the resultant

Appendix A

MAC. This technique is considered susceptible to a divide and conquer attack as described

in Section A.5.1.

In [28] it is stated that the chosen message attack requires 264 chosen texts. In [29] it shows

that this can be reduced to 256.5 known text-MAC pairs if it is assumed that the number of

trailing blocks, s, are 216.

NMAC is an acronym for nested message authentication code. It is defined in [73] and [78].

It is a generic construction of the following form:

hKi 0 Keyed hash function or a MAC

K1 Key 1

K2 Key 2

X Message.

The NMAC construction does not propose a technique for constructing a keyed hash func-

tion. The security of this construction is based on the conditions imposed on the compress

function of the keyed hash function and the iterated hash function itself.

The HMAC construction is a variant of the NMAC construction for which the IV is fixed.

This construction requires no changes to the MDC used for constructing a MAC. The con-

struction involves a single key, K, of length k bits. The use of a single key is advantageous

with regard to key management and its associated problems. The HMAC construction is

defined in [73], [74], [78] as:

HMAC(X) = h(K EBopadllh(K EBipadIIX))

Appendix A

h()
K

opad

ipad

The key, K, padded with 0's to form an elementary block

The byte OX3 6 repeated to form a elementary block

The byte OX5C repeated to form a elementary block

Bitwise XOR

k ffi ipad ~ k ffi opad ~
'" '"'" '"s:o s:o

(JQ ~(l)

to to
~ ~~ ~ HMAC

Perform Result
Hash

n-bit

Operation
hash value

Padded
Message

Padding bits

The security of the HMAC construction is based on the security of NMAC. The relation

between these two constructions are found in the construction of the two derived keys K 1

=opad ffiK and K2 =ipad ffiK. Thus HMAC is a specific instance of NMAC. It is stated

in [73] that attacks against HMAC may exist, but that these attacks are not necessarily ap-

plicable to NMAC. Note that effectively using the same key, K, in both applications of h()

does not weaken the construction significantly due to the existence of the divide and conquer

attack mentioned in Section A.5.1.

Appendix A

The HMAC construction has become the mandatory construction for use in authentication

transforms for Internet security protocols. The HMAC construction is also specified in the

SET specification [5]. At present all of the known generic attacks against HMAC are con-

sidered infeasible [73], [74], [78].

This construction is suggested in [29]. The following design goals were set for this construc-

tion:

1. The secret key should be involved at the beginning, at the end, and in every iteration

of the hash function.

5. The approach should be generic, i.e. should apply to any hash function based on the

same principles as MD4.

This construction can be used with MD5, RIPEMD or SHA. MD4 is omitted due to the attack

described in [17]. In this section M Dx refers to one of the three hash functions mentioned

above. Let M Dx refer to an implementation of M Dx with both padding and appending

length omitted. The resulting construction utilises three 128 bit (16 byte) constants, To, T1

and T2• These constants are used to construct three additional 768 bit constants Uo, U1 and

U2• If the key is shorter than 128 bits, the key is expanded to be of a 128 bits length. Once

this is accomplished, three sub-keys, Ko, K1 and K2, are derived as follows:

The constants Ui are required to ensure that the hash is computed over two iterations of the

hash function, thus increasing the difficulty of retrieving K from any of the Ki, even if two

of the sub-keys are known (see Figure A. 10). The mapping from K to Ki is not bijective,

but the reduction in entropy is believed to negligible [29].

Appendix A

128 Bits [I K _

384 BHs [.-------,

U·

384 Bits ['---_I ----'

128 Bits [I=====K=====

Once this step is completed the leftmost 128 bits of the sub-key K1 is split into four 32-bit

blocks denoted as Kdi], with a ::; i ::;3 (see Figure A.ll).

32 Bits
r-----l

K1=

2. K1 [i mod 4] is added modulo 232 to the constants used in round i of each iteration of

MDx.

3. Following the last block after normal processing of M Dx (i.e. including the padding

and addition of message length), append an additional 512 bit block. The additional

block is derived from the constants To, T1, T2 and the sub-key K2 as shown below:

Appendix A

IV = KOn
Padded

Message

no512bits 3
8-

..:!::;

Appended
K2

512 bits

Let s represent the number of common trailing blocks in two messages. In [29] it is stated

that if the MAC length m = ~,a forgery attack requires O(8
2;1) chosen text-MAC pairs and

O()8:1) known texts. Thus M Dx-MAC is more secure than the envelope method described

in Section A.5.l. It is also stated in [29] that the divide and conquer attack described in

Section A.5.1 is not applicable to M Dx-MAC.

This construction is described in [79] and [80] and resembles the multiple message hash

scheme described in [68] and [69]. This scheme does not show how to construct a MAC

from a MDC, but does make use of keyed MDCs in the construction of the MAC. A generic

description of this scheme is presented below:

Appendix A

Fk 0 Keyed pseudorandom function

EEl Bitwise XOR

)(~essage

m Number of elementary blocks in message)(

)([i] Elementary message block i i E {I, 2, 3, ... m}.

Thus the message is divided into elementary block lengths and then processed by a pseudo-

random function. The pseudorandom function, PRF, should be keyed. It is suggested in [79]

and [80] that the PRF could be either a block cipher, or a keyed hash function. The result

of the PRF for each message block is then XOR'ed with the previous result. Once the last

XOR is performed, the ~AC is calculated. Figure A.13 presents a visual interpretation of

this scheme.

Concrete proposals for schemes making use of this construction are presented in [79] and

[80], followed by analysis of the security of these proposals. This scheme is highly paral-

leliseable and has the additional advantages of out of order verification. If only a single block

in a message is changed, the output can be updated without recomputing the entire ~AC.

A number of hash function constructions are under consideration for standardisation. A

summary of these can be found in chapter 3 and chapter 5 of [81]. The multipart standard,

ISO/lEe 10118, contains the following proposals.

Appendix A

ISOIIEC 10118-1: This part of the standard provides general definitions and background to

the remainder of the standard. The iterative hash function construction as defined in

Section 5.3 is contained in this part of the proposed standard.

ISOIIEC 10118-2: This part of the standard specifies hash functions constructed from block

ciphers. Two methods are specified. The first method is the general construction

specified in Section A.4.1 with the block length equal to the hash length (see Figure

A.2). The second is equal to MDC2 (see Figure A.6(a».

ISOIIEC 10118-3: This part of the standard describes the following three dedicated hash

functions, SHS (secure hash standard), RIPEMD-128 and RIPEMD-160.

ISOIIEC 10118-4: This part of the standard specifies two hash algorithms based on modular

arithmetic, namely MASH-I and MASH-2.

In addition to the above standard, ISO/IEC 9797 specifies a method for using a key and a

n-bit block cipher to construct a MAC. The process is summarised as follows:

The construction specified in ISO/IEC 9797 corresponds to the construction shown in Figure
A.7(a).

When selecting a hash function construction the construction should be evaluated according

to the requirements set in Chapter 4. A trade-off between cost, security and speed has to be

made. The generic attacks described in Chapter 3 should be infeasible.

A final matter of interest is the matter of injectivity, surjectivity and bijectivity of the round

function used in an iterated scheme. In [30] it is stated that an injective function should never

be used in an iterated hash function. In [82] the question is raised whether a bijective round

Appendix A

function allows stronger security claims. This question is answered in part in [29], where

it is shown that the known and chosen text attack is not applicable to MACs with bijective

round functions. The influence of the bijectivity of the round functions of MDCs and MACs

on the security of the entire construction remains unresolved.

This appendix contains an implementation of the MD4 hash algorithm as described in [10]

and [44].

/* This header file includes the functions used to implement the MD4 algorithm
* as described in Crypto 91 by R.Rivest
*
* Author: P.R. Kasselman
* Date: August 20, 1996
* Filename: md4.h
* Copyright: Ciphertec cc */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define AO Ox67452301
#define BO Oxefcdab89
#define co Ox98badcfe
#define DO Oxl0325476
#define ROOT2 Ox5a827999
#define ROOT3 Ox6edgebal

#define FSI 3
#define FS2 7
#define FS3 11
#define FS4 19

#define GSI 3
#define GS2 5
#define GS3 9
#define GS4 13

#define HSI 3
#define HS2 9
#define HS3 11
#define HS4 15

int PadBit(int argc, char filename[], unsigned int *PadLen);
void Init(unsigned int *A, unsigned int *B, unsigned int *C, unsigned int *D);
void SaveParms(unsigned int A, unsigned int B, unsigned int C,

unsigned int D, unsigned int *AA, unsigned int *BB,
unsigned int *CC, unsigned int *DD);

void ReadArray(int argc, char filename[], unsigned int M[], int n);
unsigned int Rotate(unsigned int x, unsigned int s);
unsigned int FunctionF(Unsigned int X, unsigned int Y, unsigned int z);
unsigned int FunctionG(unsigned int X, unsigned int Y, unsigned int z);
unsigned int FunctionH(unsigned int X, unsigned int Y, unsigned int z);
void ROundl(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int Xl]);
void Round2(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int Xl]);

Appendix B Source Code: Implementation of MD4

void ROund3(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *0,

unsigned int Xl]);
void Update(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *0,

unsigned int AA, unsigned int BB, unsigned int CC,
unsigned int 00);

void PrintSignature(unsigned int A, unsigned int B, unsigned int C,
unsigned int D);

void PrintReverSe(unsigned int X);
void RestoreFile(char filename[], unsigned int FileLen);

/* This routine performs the bit padding as requied for the M04 algorithm */
int PadBit(int argc, char filename[], unsigned int *PadLen)

unsigned int i,j;
unsigned int FileLen, FileBits, PadBits, PadBytes, TempInt;
unsigned char temp;
FILE *fp;

if(argc != 2)
{

printf("No file specified\n");
exi t (1) ;

}

if (!fp)
{

printf("Error opening file\n");
fclose(fp) ;
exit (1) ;

}

while (! feof (fp))
{

fread(&temp, sizeof(unsigned char), 1, fp);
if(!feof(fp»

{
FileLen++;

}

Source Code: Implementation of MD4

PadBits = abs((448 - FileBits) % 512);
PadBytes = PadBits/8;

/* Pad bit "1" */
temp = Ox80;
fwrite(&temp, sizeof(unsigned char), I, fp);

/* Pad zero bits */
temp = 0;
for(i=O; i<PadBytes-l; i++)

{

fwrite(&temp, sizeof(unsigned char), I, fp);
}

/* Append the size of the file
* (For this implimentation no file larger than 2~32 is expected)*/

Templnt = FileBits;
fwrite(&Templnt, sizeof(unsigned int), I, fp);
Templnt = OxOO;
fwrite(&Templnt, sizeof(unsigned int), I, fp);

void Init(unsigned int *A, unsigned int *B, unsigned int *C, unsigned int *D)
{

*A AO;
*B BO;
*c CO;
*D DO;

void SaveParms(unsigned int A, unsigned int B, unsigned int C,
unsigned int D, unsigned int *AA, unsigned int *BB,
unsigned int *CC, unsigned int *DD)

*AA A;
*BB B;
*CC C;
*DD D;

Source Code: Implementation of MD4

void ReadArray(int argc, char filename[], unsigned int M[], int n)
{

unsigned int i;
unsigned int TempInt;
FILE *fp;

if(argc != 2)
{

printf("No file specified\n");
exit(l) ;

}

if(!fp)
{

printf("Error opening file\n");
fclose (fp) ;
exit(l) ;

}

for(i=O; i<n; i++)
{

fread(&TempInt, sizeof(unsigned int), 1, fp);
M[i] TempInt;

void ROundl(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int Xl])

*A Rotate((*A + FunctionF(*B,*C,*D) + X [0]), 3) ;
*D Rotate ((*D + FunctionF(*A,*B,*C) + X [1]), 7) ;
*c Rotate((*C + FunctionF(*D,*A,*B) + X [2]), 11) ;
*B Rotate ((*B + FunctionF(*C,*D,*A) + X [3]), 19) ;

*A Rotate ((*A + FunctionF(*B,*C,*D) + X[4]), 3) ;
*D Rotate ((*D + FunctionF(*A,*B,*C) + X [5]), 7) ;
*C Rotate ((*C + FunctionF(*D,*A,*B) + X[6]), 11) ;
*B Rotate ((*B + FunctionF(*C,*D,*A) + X[7]), 19) ;

*A Rotate ((*A + FunctionF(*B,*C,*D) + X [8]), 3) ;
*D Rotate ((*D + FunctionF(*A,*B,*C) + X [9]), 7) ;
*c Rotate((*C + FunctionF(*D,*A,*B) + X [10]), 11) ;
*B Rotate ((*B + FunctionF(*C,*D,*A) + X[I1]), 19);

*A Rotate ((*A + FunctionF(*B,*C,*D) + X [12]), 3) ;
*D Rotate((*D + FunctionF(*A,*B,*C) + X[13]), 7) ;
*c Rotate((*C + FunctionF(*D,*A,*B) + X[14]) , 11) ;
*B Rotate ((*B + FunctionF(*C,*D,*A) + X[IS]) , 19);

Source Code: Implementation of MD4

void Round2(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int Xl])

*A Rotate «*A + FunctionG(*B,*C,*D) + X[O] + ROOT2) , 3) ;
*D Rotate((*D + FunctionG(*A,*B,*C) + X[4] + ROOT2) , 5) ;
*C Rotate ((*C + FunctionG(*D,*A,*B) + X [8] + ROOT2) , 9) ;
*B Rotate ((*B + FunctionG(*C,*D,*A) + X[12] + ROOT2) , 13);

*A Rotate ((*A + FunctionG(*B,*C,*D) + X[I] + ROOT2) , 3) ;
*D Rotate ((*D + FunctionG(*A,*B,*C) + X[5] + ROOT2) , 5) ;
*c Rotate ((*C + FunctionG(*D,*A,*B) + X [9] + ROOT2) , 9) ;
*B Rotate«*B + FunctionG(*C,*D,*A) + X[13] + ROOT2) , 13);

*A Rotate ((*A + FunctionG(*B,*C,*D) + X[2] + ROOT2) , 3) ;
*D Rotate ((*D + FunctionG(*A,*B,*C) + X[6] + ROOT2) , 5) ;
*C Rotate ((*C + FunctionG(*D,*A,*B) + X[10] + ROOT2) , 9) ;
*B Rotate ((*B + FunctionG(*C,*D,*A) + X[14] + ROOT2) , 13);

*A Rotate ((*A + FunctionG(*B,*C,*D) + X [3] + ROOT2) , 3) ;
*D Rotate ((*D + FunctionG(*A,*B,*C) + X[7] + ROOT2) , 5) ;
*C Rotate ((*C + FunctionG(*D,*A,*B) + X[11] + ROOT2) , 9) ;
*B Rotate ((*B + FunctionG(*C,*D,*A) + X[15] + ROOT2) , 13) ;

void ROund3(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int Xl])

*A Rotate ((*A + FunctionH(*B,*C,*D) + X[O] + ROOT3) , 3) ;
*D Rotate ((*D + FunctionH(*A,*B,*C) + X[8] + ROOT3) , 9) ;
*C Rotate ((*C + FunctionH(*D,*A,*B) + X[4] + ROOT3) , 11) ;
*B Rotate ((*B + FunctionH(*C,*D,*A) + X[12] + ROOT3) , 15) ;

*A Rotate ((*A + FunctionH(*B,*C,*D) + X[2] + ROOT3) , 3) ;
*D Rotate ((*D + FunctionH(*A,*B,*C) + X[10] + ROOT3) , 9) ;
*C Rotate ((*C + FunctionH(*D,*A,*B) + X[6] + ROOT3) , 11) ;
*B Rotate ((*B + FunctionH(*C,*D,*A) + X [14] + ROOT3) , 15);

*A Rotate ((*A + FunctionH(*B,*C,*D) + X[I] + ROOT3) , 3) ;
*D Rotate ((*D + FunctionH(*A,*B,*C) + X[9] + ROOT3) , 9) ;
*C Rotate ((*C + FunctionH(*D,*A,*B) + X [5] + ROOT3), 11) ;
*B Rotate((*B + FunctionH(*C,*D,*A) + X[13] + ROOT3) , 15);

*A Rotate ((*A + FunctionH(*B,*C,*D) + X[3] + ROOT3) , 3) ;
*D Rotate((*D + FunctionH(*A,*B,*C) + X[11] + ROOT3) , 9) ;
*C Rotate ((*C + FunctionH(*D,*A,*B) + X[7] + ROOT3) , 11) ;
*B Rotate ((*B + FunctionH(*C,*D,*A) + X[15] + ROOT3) , 15) ;

Source Code: Implementation of MD4

unsigned int FunctionF(unsigned int X, unsigned int Y, unsigned int Z)
{

unsigned int FunctionG(unsigned int X, unsigned int Y, unsigned int Z)
{

unsigned int FunctionH(unsigned int X, unsigned int Y, unsigned int Z)
{

unsigned int Rotate(unsigned int X, unsigned int s)
{

temp = X;
X = (X « s) I (temp» (32-s));
return(X) ;

void Update(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int AA, unsigned int BB, unsigned int cc,
unsigned int DD)

*A *A + AA;
*B *B + BB;
*c *c + CC;
*D *D + DD;

void PrintSignature(unsigned int A, unsigned int B, unsigned int C,
unsigned int D)

printf("Signature: ");
PrintReverse(A);
PrintReverse(B);

Source Code: Implementation of MD4

PrintReverse(C);
PrintReverse(D);
printf ("\n ") ;

for(i=O; i<4; i++)
{

printf("%.2x", x & OxOOOOOOff);
x = x » 8;

unsigned char TempChar;
unsigned char *array;
unsigned int i;
FILE *fp;

if (! fp)
{

printf("Error opening file\n");
fclose(fp);
exit(l);

}

for(i=O; i<FileLen; i++)
{

fread(&TempChar, sizeof(unsigned char), I, fp);
array[i] ~ TempChar;

}

if (! fp)
{

printf("Error opening file\n");
fclose (fp) ;
exit(l) ;

}

Source Code: Implementation of MD4

for(i=O; i<FileLen; i++)
{

TernpChar = array[i];
fwrite(&TernpChar, sizeof(unsigned char), 1, fp);

}

int rnd4(int argc, char filenarne[])
{

unsigned int i,j;
unsigned int FileLen, PadLen;
unsigned int A, B, C, D, AA, BB, CC, DD;
unsigned int *M, *X;

M (unsigned int *)cal1oc(PadLen/4, sizeof(unsigned int»;
X (unsigned int *)calloc(16, sizeof(unsigned int»;

for(i=O; i<PadLen/64; i++)
{

for(j=O; j<16; j++)
{

Roundl(&A, &B, &C, &D, X);
Round2(&A, &B, &C, &D, X);
Round3(&A, &B, &C, &D, X);

Appendix B Source Code: Implementation of MD4

Update(&A, &B, &C, &D, AA, BB, CC, DD);
}

free (M) ;
free(X) ;

unsigned int RotateRight(unsigned int X, unsigned int s)
{

temp = X;
X = (X » s) I (temp« (32-s));
return(X);

APPENDIX C: SOURCE CODE: ATTACK ON ALL THREE
ROUNDS OF MD4

This is an implementation of the attack on MD4 as described by Dobbertin in [14]. Algo-

rithm 6.3 is used for finding admissible inner almost-collisions in this implementation. This

attack yields two messages that hash to the same value in less than one minute.

/* This a working version of the full attack on MD4. The alternative algorithm
* for establishing inner almost-collisions is used in this program.
*
* Author: P.R. Kasselman
* Filename: md4gaS.c
* Date: 11 October 1996
* Copyright: Ciphertec (1996) */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "md4.h"

#define A 0
#define B 1
#define C 2
#define D 3

int main()
{

unsigned int i,j,k,l, Iteration;
unsigned int Bi, Ci, U, Ut, V, Vt, W, Wt, Z, zt;
unsigned int As, Ds, Bs, Bst, Cs, Cst;
unsigned int Condition, NewZ, NewW, Final, NextPhase;
unsigned int DeltaW, DeltaV;
unsigned int TempInt;
unsigned int ABCDO[47] [4], ABCD1[47] [4], Delta19[4];
unsigned int X1[16], X2[16];
unsigned int Flag23, Flag27, DispFlag23, DispFlag27;
unsigned int LastCondition, Collision, CollisionFlag;
FILE *fp;

TheTime = time(NULL);
srand(TheTime) ;

U = -1;

Ut = 0;

V = Oxfffdfffe;
vt V;

wt Oxfdffdfff;
W = Wt + OxeffffOOO;

Bi 0;
Ci 0;

while(NextPhase != 0)
{

Bst = rand();
Bs Bst + Rotate(l,2S);

Cs rand();
Cst = Cs + Rotate(l,S);

NewW = FunctionF(Vt,Ut,Bi) - FunctionF(V,U,Bi);
DeltaW = Rotate(Wt,2l) - Rotate(W,21);

NewZ = 1;
Condition = 1;

while(Condition != -1)
{

while(NewZ !=O)
{

Zt = rand () I OxOOOOOOOO;
Z = zt + Ox00001001;

NewZ = FunctionF(Wt,Vt,ut) - FunctionF(W,V,U) -
Rotate(Zt,13) + Rotate(Z,13);

}

while(Deltav != 0)
{

As = rand();
DeltaV = FunctionG(AS,zt,Wt) - FunctionG(As,Z,W);

Ternplnt = 1;
Final = 1;

while(Final != 0)
{

while(Ternplnt != 0)
{

Cs = rand();
Cst Cs + Rotate(l,S);

Bst rand();
Bs = Bst + Rotate(l,2S);

Ds = rand();
TempInt = FunctionG(Ds,As,Zt) - FunctionG(Ds,As,Z) - W + wt

- Rotate(Cst,23) + Rotate(Cs,23);

Final = FunctionG(Cst,Ds,AS) - FunctionG(CS,Ds,As) - Z + zt
- Rotate(Bst,19) + Rotate(Bs,19) + 1;

if(NextPhase == 0)
{

printf("An admissable inner collision was found\n");
}

ABCDO [11] [C] Ci;
ABCD1 [11] [C] Ci;

ABCDO [11] [B] Bi;
ABCD1 [11] [B] Bi;

ABCDO[IS] [A] U;
ABCD1[IS] [A] Ut;

ABCDO[IS] [D] V;
ABCD1[IS] [D] Vt;

ABCDO[IS] [C] W;
ABCD1[IS] [C] Wt;

ABCDO[IS] [B] z;
ABCD1[IS] [B] Zt;

ABCDO[19] [A] As;
ABCD1[19] [A] As;

ABCDO[19] [D] Ds;
ABCD1[19] [D] Ds;

ABCDO[19] [C] Cs;
ABCD1[19] [C] Cst;

ABCDO[19] [B] Bs;
ABCD1[19] [B] Bst;

Appendix C

Xl[13]
X2[13]

rand() ;
Xl [13] ;

Xl[14] RotateRight(ABCDO[15] [C],ll) - ABCDO[ll] [C] -
FunctionF(ABCDO[15] [D],ABCDO[15] [A],ABCDO[ll] [B]);

Xl[15] RotateRight(ABCDO[15] [B],19) - ABCDO[ll] [B] -
FunctionF(ABCDO[15] [C],ABCDO[15] [D],ABCDO[15] [A]);

Xl[O] = RotateRight(ABCDO[19] [A],3) - ABCDO[15] [A] -
FunctionG(ABCDO[15] [B],ABCDO[15] [C],ABCDO[15] [D]) - ROOT2;

Xl[4] RotateRight(ABCDO[19] [D],5) - ABCDO[15] [D] -
FunctionG(ABCDO[19] [A],ABCDO[15] [B],ABCDO[15] [C]) - ROOT2;

X2[4] = RotateRight(ABCDl[19] [D],5) - ABCDl[15] [D] -
FunctionG(ABCDl[19] [A],ABCDl[15] [B],ABCDl[15] [C]) - ROOT2;

Xl[8] = RotateRight(ABCDO[19] [C],9) - ABCDO[15] [C] -
FunctionG(ABCDO[19] [D],ABCDO[19] [A],ABCDO[15] [B]) - ROOT2;

X2[8] = RotateRight(ABCDl[19] [C],9) - ABCDl[15] [C] -
FunctionG(ABCDl[19] [D],ABCDl[19] [A],ABCDl[15] [B]) - ROOT2;

Xl[12] = RotateRight(ABCDO[19] [B],13) - ABCDO[15] [B] -
FunctionG(ABCDO[19] [C],ABCDO[19] [D],ABCDO[19] [A]) - ROOT2;

X2[12] = RotateRight(ABCDl[19] [B],13) - ABCDl[15] [B] -
FunctionG(ABCDl[19] [C],ABCDl[19] [D],ABCDl[19] [A]) - ROOT2;

ABCDO[ll] [D] = RotateRight(ABCDO[15] [D],7) -
FunctionF(ABCDO[15] [A],ABCDO[ll] [B],ABCDO[ll] [C]) - Xl[13];

ABCDO[ll] [A] RotateRight(ABCDO[15] [A] ,3) -
FunctionF(ABCDO [11] [B],ABCDO [11] [C] ,ABCDO [11] [D]) - Xl [12];

CollisionFlag = 1;
Flag23 = 0;
DispFlag23 = 0;

Appendix C

Flag27 = 0;
DispFlag27 = 0;

while(CollisionFlag != 0)
{

Iteration++;

if(Flag23 == 0)
{

Xl[l]
X2[1]

rand ();
Xl [1] ;

Xl [5] rand ();
X2 [5] Xl [5] ;

else if (DispFlag23
printf("Xl and X5
DispFlag23 = 1;

0) {

are fixed\n");

if(Flag27 == 0)
{

Xl [2] = rand ();
X2 [2] = Xl [2] ;

else if (DispFlag27 == 0)
printf("X2 is fixed\n");
DispFlag27 = 1;

Xl[3]
X2[3]

rand() ;
Xl [3] ;

ABCDO[O] [A] AO;
ABCDO[O] [B] BO;
ABCDO[O] [C] CO;
ABCDO[O] [D] DO;

ABCDO[3] [A] Rotate«ABCDO[O] [A] +
FunctionF(ABCDO[O] [B],ABCDO[O] [C],ABCDO[O] [D]) +
Xl [0]), 3);

ABCDO[3] [D] = Rotate«ABCDO[O] [D] +
FunctionF(ABCDO[3] [A],ABCDO[O] [B],ABCDO[O] [C]) +
Xl [1]), 7);

ABCDO[3] [C] = Rotate«ABCDO[O] [C] +
FunctionF(ABCDO[3] [D],ABCDO[3] [A],ABCDO[O] [B])
+ Xl [2]), 11);

ABCDO[3] [B] = Rotate«ABCDO[O] [B] +
FunctionF(ABCDO[3] [C],ABCDO[3] [D],ABCDO[3] [A])
+ Xl [3]), 19);

ABCDO[7] [A] = Rotate«ABCDO[3] [A] +
FunctionF(ABCDO[3] [B],ABCDO[3] [C],ABCDO[3] [D]) +

ABCDO[7] [D] = Rotate«ABCDO[3] [D] +
FunctionF(ABCDO[7] [A],ABCDO[3] [B],ABCDO[3] [C]) +
Xl [5]), 7);

X1[6] = (RotateRight(ABCDO[7] [C], 11) - ABCDO[3] [C] -
FunctionF(ABCDO[7] [D],ABCDO[7] [A],ABCDO[3] [B]»;

X1[7] (RotateRight(ABCDO[7] [B], 19) - ABCDO[3] [B] -
FunctionF(ABCDO[7] [C],ABCDO[7] [D],ABCDO[7] [A]));

Templnt = Rotate«ABCDO[7] [A] +
FunctionF(ABCDO[7] [B],ABCDO[7] [C],ABCDO[7] [D]) +
Xl [8]), 3);

Xl[9] = (RotateRight(ABCDO[11] [D], 7) - ABCDO[7] [D] -
FunctionF(ABCDO[11] [A],ABCDO[7] [B],ABCDO[7] [C]»;

X1[10] = (RotateRight(ABCDO[11] [C], 11) - ABCDO[7] [C] -
FunctionF(ABCDO [11] [D],ABCDO [11] [A],ABCDO [7] [B]»;

X1[ll] (RotateRight(ABCDO[11] [B], 11) - ABCDO[7] [B] -
FunctionF(ABCDO[11] [C],ABCDO[11] [D],ABCDO[11] [A]»;

ABCDO[23] [A] = Rotate«ABCDO[19] [A] +
FunctionG(ABCDO[19] [B],ABCDO[19] [C],ABCDO[19] [D])

+ Xl[l] + ROOT2), G81);

ABCD1[23] [A] = Rotate«ABCDl[19] [A] +
FunctionG(ABCD1[19] [B],ABCDl[19] [C],ABCD1[19] [D])

+ X2[1] + ROOT2), G81);

if(Co11ision == 0)
{

ABCDO[23] [D] = Rotate«ABCDO[19] [D] +
FunctionG(ABCDO[23] [A],ABCDO[19] [B],ABCDO[19] [C])

Appendix C

ABCDl[23] [D] = Rotate((ABCDl[19] [D] +
FunctionG(ABCDl[23] [A],ABCDl[19] [B],ABCDl[19] [C])

+ X2[5] + ROOT2), GS2);

if(Collision == 0)
{

ABCDO[23] [C] = Rotate((ABCDO[19] [C] +
FunctionG(ABCDO[23] [D],ABCDO[23] [A],ABCDO[19] [B])
+ Xl[9] + ROOT2), GS3);

ABCDl[23] [C] = Rotate((ABCDl[19] [C] +
FunctionG(ABCDl[23] [D],ABCDl[23] [A],ABCDl[19] [B])
+ X2[9] + ROOT2), GS3);

if(Collision == -1*Rotate(1,14»
{

ABCDO[23] [B] = Rotate((ABCDO[19] [B] +
FunctionG(ABCDO[23] [C],ABCDO[23] [D],ABCDO[23] [A])

+ Xl[13] + ROOT2), GS4);

ABCDl[23] [B] = Rotate((ABCDl[19] [B] +
FunctionG(ABCDl[23] [C],ABCDl[23] [D],ABCDl[23] [A])
+ X2[13] + ROOT2), GS4);

if(Collision == Rotate(1,6»
{

ABCDO[27] [A] = Rotate((ABCDO[23] [A] +
FunctionG(ABCDO[23] [B],ABCDO[23] [C],ABCDO[23] [D])

+ Xl[2] + ROOT2), GSl);

ABCDl[27] [A] = Rotate((ABCDl[23] [A] +
FunctionG(ABCDl[23] [B],ABCDl[23] [C],ABCDl[23] [D])

+ X2[2] + ROOT2), GSl);

Appendix C

if(Collision
{

ABCDO[27] [D] = Rotate«ABCDO[23] [D] +
FunctionG(ABCDO[27] [A],ABCDO[23] [B],ABCDO[23] [C])

+ Xl[6] + ROOT2), GS2);

ABCD1[27] [D] = Rotate«ABCD1[23] [D] +
FunctionG(ABCD1[27] [A],ABCD1[23] [B],ABCD1[23] [C])

+ X2[6] + ROOT2), GS2);

if(Collision == 0)
{

ABCDO[27] [C] = Rotate«ABCDO[23] [C] +
FunctionG(ABCDO[27] [D],ABCDO[27] [A],ABCDO[23] [B])
+ Xl[lO] + ROOT2), GS3);

ABCDl[27] [C] = Rotate«ABCDl[23] [C] +
FunctionG(ABCDl[27] [D],ABCDl[27] [A],ABCDl[23] [B])
+ X2[10] + ROOT2), GS3);

if(Collision == -1*Rotate(l,23))
{

ABCDO[27] [B] = Rotate«ABCDO[23] [B] +
FunctionG(ABCDO[27] [C],ABCDO[27] [D],ABCDO[27] [A])

+ Xl[14] + ROOT2), GS4);

ABCDl[27] [B] = Rotate«ABCDl[23] [B] +
FunctionG(ABCDl[27] [C],ABCDl[27] [D],ABCDl[27] [A])
+ X2[14] + ROOT2), GS4);

if(Collision == Rotate(l,19))
{

ABCDO[31] [A] = Rotate«ABCDO[27] [A] +
FunctionG(ABCDO[27] [B] ,ABCDO[27] [C],ABCDO[27] [D])

+ Xl[3] + ROOT2), GSl);

Appendix C

FunctionG(ABCD1[27] [B],ABCD1[27] [C],ABCD1[27] [D])
+ X2[3] + ROOT2), G81);

if(Co1lision 0)
{

ABCDO[31] [D] = Rotate«ABCDO[27] [D] +
FunctionG(ABCDO[31] [A],ABCDO[27] [B],ABCDO[27] [C])

+ X1[7] + ROOT2), G82);

ABCD1[31] [D] = Rotate«ABCD1[27] [D] +
FunctionG(ABCD1[31] [A],ABCD1[27] [B],ABCD1[27] [C])

+ X2[7] + ROOT2), G82);

if(Collision == 0)
{

ABCDO[31] [C] = Rotate«ABCDO[27] [C] +
FunctionG(ABCDO[31] [D],ABCDO[31] [A],ABCDO[27] [B])
+ X1[11] + ROOT2), G83);

ABCD1[31] [C] = Rotate«ABCD1[27] [C] +
FunctionG(ABCD1[31] [D],ABCD1[31] [A],ABCD1[27] [B])
+ X2[11] + ROOT2), G83);

if(Collision == -1)
{

ABCDO[31] [B] = Rotate«ABCDO[27] [B] +
FunctionG(ABCDO[31] [C],ABCDO[31] [D],ABCDO[31] [A])

+ X1[15] + ROOT2), G84);

ABCD1[31] [B] = Rotate«ABCD1[27] [B] +
FunctionG(ABCD1[31] [C],ABCD1[31] [D],ABCD1[31] [A])
+ X2[15] + ROOT2), G84);

if(Collision == 1)
{

FunctionH(ABCDO[31] [B],ABCDO[31] [C],ABCDO[31] [D])
+ Xl[O] + ROOT3), HSl);

ABCDl[35] [A] = Rotate«ABCDl[31] [A] +
FunctionH(ABCDl[31] [B],ABCDl[31] [C],ABCDl[31] [D])

+ X2[0] + ROOT3), HSl);

if(Collision 0)
{

ABCDO[35] [D] = Rotate«ABCDO[31] [D] +
FunctionH(ABCDO[35] [A],ABCDO[31] [B],ABCDO[31] [C])

+ Xl[8] + ROOT3), HS2);

ABCDl[35] [D] = Rotate«ABCDl[31] [D] +
FunctionH(ABCDl[35] [A],ABCDl[31] [B],ABCDl[31] [C])

+ X2[8] + ROOT3), HS2);

if(Collision == 0)
{

ABCDO[35] [C] = Rotate«ABCDO[31] [C] +
FunctionH(ABCDO[35] [D],ABCDO[35] [A],ABCDO[31] [B])
+ Xl[4] + ROOT3), HS3);

ABCDl[35] [C] = Rotate«ABCDl[31] [C] +
FunctionH(ABCDl[35] [D],ABCDl[35] [A],ABCDl[31] [B])
+ X2[4] + ROOT3), HS3);

if(Collision == 0)
{

ABCDO[35] [B] = Rotate«ABCDO[31] [B] +
FunctionH(ABCDO[35] [C],ABCDO[35] [D],ABCDO[35] [A])

+ Xl[12] + ROOT3), HS4);

ABCDl[35] [B] = Rotate«ABCDl[31] [B] +
FunctionH(ABCDl[35] [C],ABCDl[35] [D],ABCDl[35] [A])
+ X2[12] + ROOT3), HS4);

if(Collision 0)
{

CollisionFlag = 0;

Appendix C

printf("\tXl\t\t X2\n");
for(i=O; i<16; i++)

{
printf("(%u)\t%.8X\t %.8X\n", i, Xl[i], X2[i]);

}

if(lfp)
{

printf("Error opening file\n");
fclose (fp) ;
exi t (1) ;

}

for(i=O; i<16; i++)
{

TernpInt = Xl[i];
fwrite(&TernpInt, sizeof(unsigned int), I, fp);

}

if (! fp)
{

printf("Error opening file\n");
fclose(fp) ;
exit(l) ;

}

for(i=O; i<16; i++)
{

TernpInt = X2[i];
fwrite(&TernpInt, sizeof(unsigned int), I, fp);

}

Appendix C

rnd4(2,"Xl.dat");
rnd4(2, "X2 .da t");

#define AO Ox67452301
#define BO Oxefcdab89
#define co Ox98badcfe
#define DO Oxl0325476

#define FSI 7
#define FS2 12
#define FS3 17
#define FS4 22

#define GSI 5
#define GS2 9
#define GS3 14
#define GS4 20

#define HSI 4
#define HS2 11
#define HS3 16
#define HS4 23

#define ISI 6
#define IS2 10
#define IS3 15
#define IS4 21

int T[64] = {Oxd76aa478, Oxe8c7b756, Ox242070db, Oxclbdceee, Oxf57cOfaf,
Ox4787c62a, Oxa8304613, Oxfd469501, Ox698098d8, Ox8b44f7af, Oxffff5bbl,
Ox895cd7be, Ox6b901122, Oxfd987193, Oxa679438e, Ox49b40821, Oxf61e2562,
Oxc040b340, Ox265e5a51, Oxe9b6c7aa, Oxd62fl05d, Ox02441453, Oxd8ale681,
Oxe7d3fbc8, Ox21elcde6, Oxc33707d6, Oxf4d50d87, Ox455a14ed, Oxage3e905,
Oxfcefa3f8, Ox676f02d9, Ox8d2a4c8a, Oxfffa3942, Ox8771f681, Ox6d9d6122,
Oxfde5380c, Oxa4beea44, Ox4bdecfa9, Oxf6bb4b60, Oxbebfbc70, Ox289b7ec6,
Oxeaa127fa, Oxd4ef3085, Ox04881d05, Oxd9d4d039, Oxe6db9ge5, Oxlfa27cf8,
Oxc4ac5665, Oxf4292244, Ox432aff97, Oxab9423a7, Oxfc93a039, Ox655b59c3,
Ox8fOccc92, Oxffeff47d, Ox85845ddl, Ox6fa87e4f, Oxfe2ce6eO, Oxa3014314,
Ox4e0811al, Oxf7537e82, Oxbd3af235, Ox2ad7d2bb, Oxeb86d391};

char *PadBit(char *Message, unsigned int *Length);
void char_2_int_array(char *Message, unsigned int *MessageInt, unsigned in-
t Length);
unsigned int *AppendLength(unsigned int *MessageInt,

unsigned int *AppendLength, unsigned int OrgLen);
unsigned int MD5_F(unsigned int X, unsigned int Y, unsigned int Z);
unsigned int MD5_G(unsigned int X, unsigned int Y, unsigned int Z);
unsigned int MD5_H(unsigned int X, unsigned int Y, unsigned int Z);
unsigned int MD5_I(unsigned int X, unsigned int Y, unsigned int Z);
void InitMD5Buf(unsigned int *A, unsigned int *B,
unsigned int *C, unsigned int *D);
void SaveMD5Parms(unsigned int A, unsigned int B, unsigned int C,

unsigned int D, unsigned int *AA, unsigned int *BB,
unsigned int *CC, unsigned int *DD);

void ROundl(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int XX);

Implementation: MD5

void ROund2(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int *X);
void Round3(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int *X);
void ROund4(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int *X);
void Update(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int AA, unsigned int BB, unsigned int CC,
unsigned int DD);

unsigned int RotateLeft(unsigned int X, unsigned int s);
void Printsignature(unsigned int *A);
void PrintReverse(unsigned int X);
unsigned int Reverse(unsigned int X);
void MDS(char *Message, unsigned int Length, unsigned int *Hash);

int i,j;
int PaddedSize, AppendSize;
unsigned int *Messagelnt, *X;
unsigned int A, B, C, D, AA, BB, CC, DD;

X =(unsigned int *)calloc(16, sizeof(unsigned int));
if(X == NULL)

{
printf("Error Allocating Memory\n");
exit(l) ;

}

/* Determine the number of Padding bytes required */
Message = PadBit(Message, &PaddedSize);

Messagelnt =(unsigned int *)calloc(PaddedSize/(sizeof(unsigned int)), size-
of (unsigned int));

char_2_int_array(Message, Messagelnt, PaddedSize);
AppendSize = PaddedSize;

for(i=O; i<PaddedSize/(sizeof(unsigned int)); i++)
{

Messagelnt[i] = Reverse(Messagelnt[i]);
}

for(i=O; i«AppendSize*8)/S12; i++)
{

Implementation: MD5

for(j=O; j<16; j++)
{

Roundl(&A, &B, &C, &D, X) ;
Round2(&A, &B, &C, &D, X) ;
Round3(&A, &B, &C, &D, X) ;
Round4(&A, &B, &C, &D, X) ;
Update(&A, &B, &C, &D, AA, BB, CC, DD) ;

}

Hash[O] A;
Hash[l] B;
Hash[2] C;
Hash[3] D;

free (X);
free(Messagernt);

/* This routine performs the bit padding as requied for the MD4 algorithm */
char *PadBit(char *Message, unsigned int *Length)
{

char *TempPtr;
unsigned int i,j;
unsigned int FileLen, FileBits, PadBits, PadBytes;
unsigned char temp;

/* Compute the number of bits needed for padding */
PadBits = abs((448 - FileBits) % 512);
if (PadBits == 0)

{

PadBits = 5l2*(FileBits/5l2) + 512;

TempPtr = (char *)realloc(Message, (*Length+PadByteS»;
if(TempPtr == NULL)

{

printf("Error Reallocating Memory\n");
exit(l) ;

}

TempPtr[*Length] = Ox80;
/* Pad zero bits */
for(i=l; i<PadBytes; i++)

{

Implementation: MD5

TempPtr[*Length+i]
]

Message = (char *)realloc(TempPtr, (*Length+PadByteS»i
if(Message == NULL)

{
printf("Error Reallocating Memory\n")i
exit(l)i

]

unsigned int *AppendLength(unsigned int *MessageInt,
unsigned int *AppendLength, unsigned int OrgLen)

int ii
unsigned int *TempPtri

TempPtr = (unsigned int *)rea1loc(MessageInt, *AppendLength)i
if(TempPtr == NULL)

{

printf("Error Reallocating Memory\n")i
exit(l) i

}

TempPtr[*AppendLength/sizeof(unsigned int)-2]
TempPtr[*AppendLength/sizeof(unsigned int)-l]

OrgLen*8i
o i

MessageInt = (unsigned int *)realloc(TempPtr, *AppendLength)i
if(MessageInt == NULL)

{

printf("Error Reallocating Memory\n")i
exit(1) i

}

void char_2_int_array(char *Message, unsigned int *MessageInt,
unsigned int Length)

for(i=Oi i«Length/sizeof(unsigned int»i i++)
{

fOr(j=Oi j<sizeof(unsigned int)i j++)
{

MessageInt[i] = (MessageInt[i] « 8*sizeof(char» I
(Message[i*sizeof(unsigned int) + j] & OxOOOOOOff)i

Implementation: MD5

unsigned int MD5_F(unsigned int X, unsigned int Y, unsigned int Z)
{

unsigned int MD5_G(unsigned int X, unsigned int Y, unsigned int Z)
{

unsigned int MD5_H(unsigned int X, unsigned int Y, unsigned int Z)
{

unsigned int MD5_I(unsigned int X, unsigned int Y, unsigned int Z)
{

void InitMD5Buf(unsigned int *A, unsigned int *B,
unsigned int *C, unsigned int *D)
{

*A AO;
*B BO;
*c CO;
*D DO;

void SaveMD5Parrns(unsigned int A, unsigned int B, unsigned int C,
unsigned int D, unsigned int *AA, unsigned int *BB,
unsigned int *CC, unsigned int *DD)

*AA A;
*BB B;
*CC C;
*DD D;

void ROundl(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int *X)

*A *B + RotateLeft((*A + MD5_F(*B,*C,*D) + X[O] + T [0]), FSI) ;
*D *A + RotateLeft ((*D + MD5_F (*A, *B, *C) + X[l] + T [I]), FS2) ;
*c *D + RotateLeft«*C + MD5_F(*D,*A,*B) + X[2] + T [2]), FS3) ;
*B *C + RotateLeft ((*B + MD5_F(*C,*D, *A) + X[3] + T[3]), FS4) ;

*A *B + RotateLeft ((*A + MD5_F(*B,*C,*D) + X[4] + T [4]), FSI) ;
*D *A + RotateLeft((*D + MD5_F(*A,*B,*C) + X [5] + T [5]), FS2) ;
*c *D + RotateLeft«*C + MD5_F(*D,*A, *B) + X[6] + T [6]), FS3) ;

Implementation: MD5

*B *c + RotateLeft«*B + M05_F (*c, *0, *A) + X[7] + T [7]), FS4) ;

*A *B + RotateLeft((*A + M05_F(*B, *c, *0) + X[8] + T [8]) , FS1) ;
*0 *A + RotateLeft ((*0 + M05_F(*A, *B, *C) + X[9] + T[9]), FS2) ;
*c *0 + RotateLeft«*C + M05_F (*0, *A, *B) + X[lO] + T[lO]), FS3) ;
*B *c + RotateLeft«*B + M05_F(*c, *0, *A) + X[ll] + T[ll]), FS4) ;

*A *B + RotateLeft ((*A + M05_F(*B, *c, *0) + X[12] + T [12]) , FS1) ;
*0 *A + RotateLeft ((*0 + M05_F(*A,*B,*C) + X[13] + T [13]), FS2) ;
*c *0 + RotateLeft((*c + M05_F (*0, *A, *B) + X[14] + T [14]) , FS3) ;
*B *c + RotateLeft«*B + M05_F(*C, *0, *A) + X[15] + T[15]), FS4) ;

void Round2(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-

t *0,
unsigned int *X)

*A *B + RotateLeft«*A + M05_G(*B, *C, *0) + X[l] + T[16]), GS1) ;
*0 *A + RotateLeft ((*0 + M05_G(*A,*B,*C) + X[6] + T[17]), GS2) ;
*c *0 + RotateLeft«*C + M05_G(*O, *A, *B) + X[ll] + T[18]), GS3) ;
*B *c + RotateLeft«*B + M05_G(*C,*O,*A) + X[O] + T[19]), GS4) ;

*A *B + RotateLeft«*A + M05_G(*B,*C,*0) + X[5] + T[20]), GS1) ;
*0 *A + RotateLeft ((*0 + M05_G(*A,*B,*C) + X[lO] + T[21]), GS2) ;
*c *0 + RotateLeft«*C + M05_G(*O,*A,*B) + X[15] + T[22]), GS3) ;
*B *c + RotateLeft«*B + M05_G(*C,*O,*A) + X[4] + T[23]), GS4) ;

*A *B + RotateLeft«*A + M05_G(*B, *C, *0) + X[9] + T[24]), GS1) ;
*0 *A + RotateLeft((*0 + M05_G(*A,*B,*C) + X[14] + T[25]), GS2) ;
*c *0 + RotateLeft((*C + M05_G(*O,*A,*B) + X[3] + T [26]), GS3);
*B *c + RotateLeft«*B + M05_G(*C,*O,*A) + X[8] + T [27]), GS4) ;

*A *B + RotateLeft ((*A + M05_G(*B, *C, *0) + X[13] + T[28]), GS1) ;
*0 *A + RotateLeft((*0 + M05_G(*A, *B, *C) + X[2] + T[29]), GS2) ;
*c *0 + RotateLeft((*C + M05_G(*O,*A,*B) + X[7] + T[30]), GS3) ;
*B *c + RotateLeft«*B + M05_G(*C,*O,*A) + X[12] + T[31]), GS4) ;

void Round3(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *0,

unsigned int *X)

*A *B + RotateLeft«*A + M05_H(*B, *C, *0) + X[5] + T[32]), HS1) ;
*0 *A + RotateLeft((*0 + M05_H(*A,*B,*C) + X[8] + T [33]), HS2) ;
*c *0 + RotateLeft«*C + M05_H(*O, *A, *B) + X[ll] + T[34]), HS3) ;
*B *c + RotateLeft«*B + M05_H (*C, *0, *A) + X[14] + T[35]), HS4) ;

*A *B + RotateLeft ((*A + M05_H(*B, *C, *0) + X[l] + T[36]), HS1) ;
*0 *A + RotateLeft ((*0 + MO5_H (*A, *B, *C) + X[4] + T [37]) , HS2) ;
*c *0 + RotateLeft ((*C + M05_H(*O, *A, *B) + X[7] + T[38]), HS3) ;
*B *c + RotateLeft«*B + M05_H (*C, *0, *A) + X[lO] + T[39]), HS4) ;

*A *B + RotateLeft«*A + M05_H(*B,*C,*O) + X[13] + T[40]), HS1) ;
*0 *A + RotateLeft ((*0 + M05_H(*A, *B, *C) + X[O] + T[41]), HS2) ;
*c *0 + RotateLeft«*C + M05_H(*O, *A, *B) + X[3] + T[42]), HS3);

Electrical and Electronic Engineering 249

*B *C + RotateLeft((*B + MD5_H(*C, *D,*A) + X[6] + T[43]), H84) ;

*A *B + RotateLeft((*A + MD5_H(*B,*C,*D) + X[9] + T[44]), H81) ;
*D *A + RotateLeft((*D + MD5_H(*A, *B, *C) + X[12] + T[45]), H82) ;
*C *D + RotateLeft((*C + MD5_H(*D,*A,*B) + X[15] + T[46]), H83);
*B *C + RotateLeft((*B + MD5_H(*C, *D, *A) + X[2] + T[47]), H84) ;

void Round4(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int *X)

*A *B + RotateLeft((*A + MD5_I(*B,*C,*D) + X[O] + T [48]), 181) ;
*D *A + RotateLeft((*D + MD5_I(*A,*B,*C) + X[7] + T[49]), 182) ;
*C *D + RotateLeft((*C + MD5_I(*D,*A,*B) + X[14] + T [50]), 183);
*B *C + RotateLeft((*B + MD5_I(*C,*D,*A) + X[5] + T[51]), 184);

*A *B + RotateLeft((*A + MD5_I(*B,*C,*D) + X[12] + T[52]), 181) ;
*D *A + RotateLeft((*D + MD5_I(*A,*B,*C) + X[3] + T[53]), 182);
*C *D + RotateLeft((*C + MD5_I(*D, *A,*B) + X[10] + T [54]), 183);
*B *C + RotateLeft((*B + MD5_I(*C,*D,*A) + X[I] + T[55]), 184);

*A *B + RotateLeft((*A + MD5_I(*B,*C,*D) + X[8] + T[56]), 181) ;
*D *A + Rota teLeft ((*D + MD5_I(*A,*B,*C) + X[15] + T[57]), 182) ;
*C *D + Rota teLeft ((*C + MD5 _I(*D,*A,*B) + X[6] + T[58l), 183);
*B *C + RotateLeft ((*B + MD5 _I(*C,*D,*A) + X[13] + T[59]), 184);

*A *B + RotateLeft((*A + MD5_I(*B,*C,*D) + X[4] + T[60]), 181) ;
*D *A + RotateLeft ((*D + MD5_I(*A,*B,*C) + X[ll] + T[61]), 182);
*C *D + RotateLeft((*C + MD5_I (*D, *A, *B) + X[2] + T[62]), 183);
*B *C + RotateLeft((*B + MD5_I(*C,*D,*A) + X[9] + T[63]), 184);

void Update(unsigned int *A, unsigned int *B, unsigned int *C, unsigned in-
t *D,

unsigned int AA, unsigned int BB, unsigned int CC,
unsigned int DD)

*A *A + AA;
*B *B + BB;
*c *c + CC;
*D *D + DD;

unsigned int RotateLeft(unsigned int X, unsigned int s)
{

temp = X;
X = (X < < s) I (temp > > (32-s));
return(X) ;

Implementation: MD5

void printSignature(unsigned int *A)
{

for(i=O; i<4; i++)
{

PrintReverse(A[i]);
}

for(i=O; i<4; i++)
{

printf("%.2x", X & OXOOOOOOff);
X = X » 8;

unsigned int Reverse(unsigned int X)
{

int i;
unsigned int Y;

Y=O;

for(i=O; i<4; i++)
{

Y (Y«8) I X & OxOOOOOOff;
X X» 8;

}

return (Y) ;

#undef AO
#undef BO
#undef CO
#undef DO

#undef FSI
#undef FS2
#undef FS3
#undef FS4

#undef GSI
#undef GS2
#undef GS3
#undef GS4

#undef HSI
#undef HS2
#undef HS3
#undef HS4

Implementation: MD5

#undef 181
#undef 182
#undef 183
#undef 184

	Front
	Chapters 1-4
	Chapters 5-8
	Chapters 9-12
	BACK
	Bibliography
	Appendices
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendices E-G

