
CHAPTER 9: ANALYSIS OF THE SHA AND SHA-l HASH

ALGORITHMS

In this chapter the SHA and SHA-l hash functions are analysed. First the SHA and SHA-l

hash functions are described along with the relevant notation used in this chapter. This is

followed by describing the algebraic structure of the message expansion algorithm used by

SHA. We then proceed to exploit this algebraic structure of the message expansion algorithm

by applying the generalised analysis framework presented in Chapter 8. We show that it is

possible to construct collisions for each of the individual rounds of the SHA hash function.

The source code that implements the attack is attached in Appendix F. The same techniques

are then applied to SHA-l.

SHA is an acronym for Secure Hash Algorithm. SHA and SHA-l are dedicated hash func-

tions based on the iterative Damgard-Merkle construction [22] [23]. Both of the round func-

tions utilised by these algorithms take a 512 bit input (or a multiple of 512) and produce a

160 bit hash value. SHA was first published as Federal Information Processing Standard 180

(FIPS 180). The secure hash algorithm is based on principles similar to those used in the

design of MD4 [10]. SHA-l is a technical revision of SHA and was published as FIPS 180-1

[13]. It is believed that this revision makes SHA-l more secure than SHA [13] [50] [59].

SHA and SHA-l differ from MD4 with regard to the number of rounds used, the size of the

hash result and the definition of a single step. A further difference between SHAISHA-l and

MD4 is the use of a message expansion algorithm instead of re-using the message blocks

in different orders in each round. SHA-l was designed to be both pre-image resistant and

collision resistant [13].

Chapter 9

Step 1 ensures that the message is padded to a multiple of 512 bits. Steps 3 to 5 are repeated

for each 512 bit block until the entire padded message has been processed.

The purpose of padding is to produce an· 512 bit message. The message is padded by

appending a 1 to the message, followed by m D's followed by a 64 bit integer. The 64 bit

integer is the binary representation of the length of the original message t. If t is less than

232 the first 32 bits of the final 64 bits are zero.

Analysis of the SHA and SHA-l Hash Algorithms

Ho Ox67452301
HI OxEFCDAB89
H2 Ox98BADCFE
H3 Oxl0325476
H4 OxC3D2EIFO.

The message is processed in 512 bit blocks. The padded message M is the concatenation of

n blocks of 512 bits. Let I denote concatenation, then:

Each message block Mi is divided into 16 words Wo, WI, W2, ... ,WI5. Each word has a

length of 32 bits. The execution of the compress function involves 80 steps. The first 16 steps

are performed on Wo, WI, W2, ... ,WI5. The remaining 64 steps are performed on message

words W16, W17, W18, ... ,W79 which are obtained from the following message expansion

algorithm:

Analysis oithe SHA and SHA-l Hash Algorithms

(a) TEMP = A<<<5 + ft(B, C, D) + E + Wt + Kt.

(b) E = D D = C C = B«<30 B = A A = T EM P" "

Kt Ox5A827999 (0 :::;t :::;19)

Kt Ox6ED9EBAl (20 :::;t :::;39)

Kt Ox8FIBBCDC (40 :::;t :::;59)

Kt OxCA62CID6 (60 :::;t :::;79)

(B 1\ C) V (--,B 1\ D)
B(fJC(fJD
(B 1\ C) V (B 1\ D) V (C 1\ D)
B(fJC(fJD

(0 :::;t :::;19)

(20 :::;t :::;39)

(40 :::;t :::;59)

(60 :::;t :::;79)

Figure 9.1 shows a graphical representation of a single step of the SHA and SHA-l round

function.

Analysis of the SHA and SHA -1 Hash Algorithms

Upon completion of the compress function the chaining variables are updated as shown be-

low:

Ho Ho+A

Hi Hi + B

H2 H2+C

H3 H3+D

H4 H4+E

Once the n'th 512 bit block has been processed the resulting values of the chaining variables

serve as the hash result of the message.

The message expansion algorithm used in SHA-I is defined as the message expansion algo-

rithm defined by expression 9.1 with the addition of a left rotation by one bit position. The

message expansion algorithm as used in SHA-1 is defined by expression 9.2.

This modification "corrects a technical flaw that made the standard less secure than had been

thought" [50].

In this chapter the basic elements encountered in the attacks on MD4 and MD5 as formulated

by Dobbertin are applied to SHA and SHA -1. A direct application of the attacks formulated

Analysis of the SHA and SHA-l Hash Algorithms

by Dobbertin requires the establishment of a set of difference equations, followed by a solu-

tion of these equations (see Chapter 8). The use of message expansion algorithms in SHA

and SHA-l instead of the permutation of message words in consecutive rounds prevents an

attacker from deriving sets of difference equations according to the principles laid down in

Chapter 8. Thus when dealing with message expansion algorithms the approach described in

Chapter 8 should be modified. This chapter describes these modifications. Specific attention

is given to the properties of the message expansion algorithms. It is shown that the modified

approach may be used to construct a collision for the first round (first twenty steps) of SHA.

Based on this attack, an attack on the first two rounds of SHA is proposed. Certain elements

(but not all) of the proposed attack are confirmed. The extent to which these attacks are

applicable to SHA-l is considered.

The secure hash algorithm (SHA) is described in Section 9.4. In this section certain proper-

ties of the message expansion algorithm is considered. It is shown that these properties may

be exploited to construct sets of difference equations which are readily solved. A solution to

these difference equations results in the construction of collisions for the first round of SHA.

An attack which exploits the properties of the message expansion algorithm is then proposed
for the first two rounds of SHA.

The message expansion algorithm used in SHA is presented in Chapter 9. The algorithm

expands a 16 word input to 64 words. The expanded message is concatenated to the orig-

inal message to form an 80 word message block. Remember that the message expansion

algorithm is given by:

where all message words, Wf, are 32 bit variables. It is observed that this expansion algo-

rithm is in effect 32 identical linear feedback shift registers which operate in parallel. This

observation may be represented graphically as shown in Figure 9.2.

Analysis of the SHA and SHA -1 Hash Algorithms

I q====4===~
2 q====4===~
3 q==---'~4===~

, ', ', ', ', ', ', ', ', ', ', ', '

32 q~1~I4==&$6

monic primitive polynomials of degree m in Zp[x] (¢(n) is the Euler function) [59]. For the

case in hand this corresponds to 2048 possible monic primitive polynomials in Z2[X]. The

reason for the specific choice of f (x) has not been disclosed, but at least two arguments in

favour of using f (x) have been found. The first argument deals with performance. The poly-

nomial f (x) has a low weight (5), and consequently requires fewer instructions to expand

the message. The second argument deals with the positioning of the non-zero coefficients

in the polynomial. The non-zero coefficients should be spread as evenly as possible over

the polynomial. This requirement ensures that each word is used in the expansion within a

small number of steps. This makes it more difficult for an attacker to hide or minimise the

effect of a specific word. There are 52 primitive polynomials of degree 16 with a weight of

5. It is found that the maximum number of consecutive coefficients which are equal to zero

varies between 5 and 10. There are only 16 primitive polynomials with a maximum number

Analysis of the SHA and SHA-l Hash Algorithms

of consecutive zero coefficients equal to zero. They are:

fl (x) X16 + xlO + x5 + x3 + 1 (9.4)

12 (x) X16 + xlO + x7 + X + 1 (9.5)

h(x) X16 + xlO + x7 + x3 + 1 (9.6)

f4(X) X16 + xlO + x7 + x4 + 1 (9.7)

f5(X) X16 + x10 + x7 + x6 + 1 (9.8)

f6(X) X16 + x10 + x9 + x6 + 1 (9.9)

h(x) x16 + X12 + x6 + X + 1 (9.10)

f8(X) X16 + X12 + x7 + X + 1 (9.11)

fg(x) X16 + X12 + x9 + x6 + 1 (9.12)

flO(X) X16 + X13 + x8 + x2 + 1 (9.13)

fu(x) X16 + X13 + x9 + x6 + 1 (9.14)

!I2(X) X16 + X13 + XU + x6 + 1 (9.15)

!I3 (x) X16 + X14 + x8 + x3 + 1 (9.16)

f14(X) x16 + x15 + x9 + x4 + 1 (9.17)

!I5(X) X16 + X15 + x9 + x6 + 1 (9.18)

f16(X) X16 + X15 + x10 + x4 + 1 (9.19)

(9.20)

Eight of these polynomials has two consecutive non-zero coefficients (12 (x), is (x), f6 (x),

h(x), f8(X), f14(X), !I5(X) and f16(X). The primitive polynomial used in the message

expansion algorithm of SHA (and SHA-l) is found among the remaining eight polynomials

UlO(X).

It is observed that the message block of 512 bits is divided into 16 32-bit words and that each

round requires 20 steps. This differs from hash functions such as MD4 and MD5 where the

number of message words in a message block are equal to the number of steps in each round.

Before presenting a motivation for this design choice consider Proposition 1.

Proposition 1 If the message expansion algorithm defined for SHA is used, it is possible

to construct two distinct messages which, after expansion, are identical in 15 consecutive

expanded words.

Chapter 9

Proof. Consider a single linear feedback shift register with a connection polynomial f (x)
of degree n which is monic and primitive in Z2[X]. It is known that all non-zero sequences

generated by such a linear feedback shift register have n - 1 consecutive zeros. In addition it

is known that any possible output sequence of such a linear feedback shift register is a cyclic

shift of every other possible output sequence of the same linear feedback shift register [60].

Thus there exists a non-zero sequence, a, generated by the linear feedback shift register with

feedback pol ynomial f (x) such that a has n - 1 consecutive zeros starting at a specified

position in the sequence a.

Let f(x) = Co + CIX + C2X2 .•. + cnxn with coefficients from GF(2). Then the companion

matrix of the polynomial f (x) is the n x n matrix, C, which has 1's in the diagonal above the

main diagonal and n'th row entries Co, Cl, C2 ... Cn-l [61]. Then the t'th state of the linear

feedback shift register is given by:

with a(t) a 1 x n vector representing the state of the linear feedback shift register. The

elements of the vector a(O) represents the initial state of the shift register. Let the sequence

a be the concatenation (denoted by I) of the n'th element of the vector a (t) for all values of

t> O. Thus:

al a;(1)la;(2)la;(3)1 /a;(t)

a2 a; (1) Ia; (2) Ia; (3) I Ia; (t) .

The states, a1(t) and a2(t), of the linear feedback shift registers which generates the se-

quences al and a2 are given by:

a1(t) Cta1(O)

a2(t) Cta2(O).

Analysis of the SHA and SHA -1 Hash Algorithms

eta1 (0) EBet a2 (0)

et(a1(0) EB a2(0)).

et(a(O))

a(t)

The message expansion algorithm used by SHA consists of 32 identical linear feedback

shift registers applied in parallel. Let the initial conditions a1(0) and a2(0) for all 32 linear

feedback shift registers represent two distinct messages. All elements in a1 and a2 are taken

as the result of the message expansion algorithm. Find values for a1(0) and a2 (0) such that

expression (9.21) is satisfied for all 32 registers. Then, upon expansion, the message words

will be identical in n - 1 consecutive bit positions. The primitive polynomial used by the

linear feedback shift register in the message expansion algorithm in SHA has degree 16. It

is therefore possible to construct two messages which upon expansion will be identical in 15

consecutive words. Thus the proposition is shown to be true. •

With Proposition 1 in hand the use of 20 steps in a round rather than 16 becomes obvious.

If the number of steps in each round is set to 16 instead of 20 and the number of rounds are

retained it would be possible to construct two distinct messages which, in one of the four

rounds, would differ in only one position, thus effectively stripping a round from the hash

function. By defining 20 steps in each round this attack is prevented. However if the number

of steps are limited to 16, and the number of rounds is extended from four to five, the total

number of steps required by the hash function remain at 80.

Thus it appears that the message expansion algorithm was chosen with specific aims, and

that the number of steps in each round was chosen to complement the message expansion

Analysis of the SHA and SHA-l Hash Algorithms

algorithm. One property, and a potential weakness, of the message expansion algorithm is

the fact that if two messages differ only in a single message word, and if that difference is

limited to a single bit position, the words obtained from the message expansion algorithm

will, at most, differ in the same bit position. Even if the differences occur in more than

one message word, as long as these differences occur in the same bit position, the expanded

words would at most differ in the same bit positions. This property is considered a possible

salient point and the extent to which this may be exploited is considered in the next section.

In this section specific attention is given to the exploitation of the message expansion algo-

rithm in order to obtain sets of differential equations.

It is possible to obtain a set of difference equations over all 80 steps of the compress function

of SHA. As remarked in Chapter 8 this is impractical due to the large number of interrelated

equations which have to be solved. An attempt should therefore be made to reduce the

number of difference equations. It is observed that by direct application of Proposition 1 the

number of difference equations may be reduced from 80 to 65. This reduction is obtainable

by requiring that the last 15 words resulting from the message expansion algorithm should

be identical. Although this reduces the effort required to find a collision, the effort required

to solve this set of equations is unknown.

Before proceeding with the analysis of SHA and the construction of difference equations it

is convenient to state the following definition.

Definition 3 A difference pattern is the sequence generated by Mi - Mi for all i. Mi and Mi

represents the first message and second message words at a specific step i of the dedicated

hash function.

The difference operator may be either the difference mod 2 or the difference mod 232• In

order to illustrate the derivation of a set of difference equations consider only the first round.

It is readily observed that for six consecutive steps, the following difference pattern (mod

Analysis of the SHA and SHA-l Hash Algorithms

Mi !vIi 1

MHI MHI -1

MH2 MH2 -1

1VIH3 MH3 0
1'v1iH MH4 0

MH5 MH5 -1

The difference mod 232 is chosen to be either 1,0 or -1 since these differences may be writ-

ten in terms of the rotation invariant integers 0 and -1. By limiting all differences to the LSB

a difference pattern mod 2 may be obtained. The difference pattern mod 2 is given by:

Mi EB Mi 1

MHI EB MHI 1

MH2 EB MH2 1

MH3 EB MH3 0

MH4 EB MiH 0

MH5 EB MH5 1

Mi-Mi

A«<5 A-«<5 M M-
HI - HI + i+1 - i+1

(9.22)

(9.23)

!(Bi+3, CH3, Di+3) - !(BH3, CH3, DH3)

!(BiH, CH4, DH4) - !(BH4, CH4, DiH)

(9.25)

(9.26)

(9.27)

The Boolean mapping! 0 is the mapping defined for the first round of SHA. The variables

are updated as described in Section 9.4. This set of expressions may be solved by setting the

chaining variables C2, D2, B3 and B4 to appropriate values.

There exists many difference patterns for the first round which yields sets of solvable differ-

ence equations. It now remains to determine if the difference pattern leading to this set of

equations can be found in the first round. It is now appropriate to state Corollary 2.

Analysis of the SHA and SHA-l Hash Algorithms

Corollary 2 Each sequence, a, generated by a linear feedback shift register with feedback

polynomial f(x) represents a difference pattern which may be generated by two distinct

sequences, a1 and a2.

This implies that if the k'th element of the sequence ak = 0, al = a%. Conversely it implies

that if ak = 1, al i= a%. Thus the sequence a represents the difference between the two

sequences a1 and a2 if condition (9.28) holds .•

As before, all differences are limited to the LSB of the message words. This causes all dif-

ferences in the expanded message to be generated by a single linear feedback shift register.

An attacker may now search for the desired difference pattern mod 2. Once the difference

pattern mod 2 is found it is expanded to the difference pattern mod 232 through the appli-

cation of Corollary 2. The attacker is free to choose values for a1 (0) and a2(O) as long as

expression (9.28) holds. A difference pattern mod 232 may be established by remarking

that for al EBa% = 1, either al = 1 and a% = 0 or al = 0 and a% = 1. This implies that if

al EBa% = 1, either al- a% = -1 or al- a% = 1. According to Corollary 2 the attacker may

choose whether al - al = 1or al - al = -1 for k < n.

Thus, the attacker searches for an initial value which, in combination with the expanded

message word, would allow the establishment of the set of difference equations defined by

equations (9.22) to (9.27) as the only set of difference equations for the first round. If such

a pattern is found, it is expanded to the desired difference pattern mod 232 by applying

Corollary 2. It is found that there exists only one difference pattern which allows equations

(9.22) to (9.27) to be the only set of difference equations in the first round. The difference

Chapter 9

Mll EEl Mll 1 (9.29)

M12 EEl M12 1 (9.30)

M13 EEl M13 1 (9.31)

M14 EEl M14 0 (9.32)

MIS EEl MIS 0 (9.33)

M16 EEl M16 l. (9.34)

It is observed that Mll to MIS forms part of the initial value and according to Corollary 2 any

combination of the LSB's of Mll to MIS may be chosen in an attempt to obtain the desired

difference pattern mod 232 for message words Mll to M16• There exists a combination

which allows the attacker to find the required difference mod 232.

The difference pattern defined by equation (9.29) to (9.33) results in the set of difference
equations shown below:

A12 - A12 Mll - Mll (9.35)

0 A<<<s - A<<<s + M - M (9.36)12 12 12 12

0 M13 - M13 + !(BI3, C13, D13) - !(BI3, C13, D13) (9.37)

0 !(BI4, C14, D14) - !(B14, 014, D14) (9.38)

0 !(B1S, CIS, D1S) - !(B1S, CIS, ihs) (9.39)

0 M16 - M16 + E16 - E16. (9.40)

Updating of chaining variables are performed as specified in Section 9.4. This set of equa-

tions implies that:

Chapter 9

(9.41)

(9.42)

(9.43)

These choices for A12 and A12 ensures that equation (9.36) is satisfied. Equation (9.37) is

satisfied if:

By setting B14 = 0, equation (9.38) is satisfied. Likewise equation (9.39) is satisfied if

B15 = -1. Equation (9.40) is automatically satisfied due to the choices initially made for

A12 and A12•

It is noted that this is not the only technique which results in a solution for the set of difference

equations given by (9.35) to (9.40). Other more elaborate techniques exist, but are slower

and do not guarantee that a solution is obtained.

Given appropriate choices for the chaining variables in question, it is possible to reconstruct

the message. For the initial values specified for SHA, the following messages result in a

collision for the first round of the compress function of SHA.

Analysis of the SHA and SHA-l Hash Algorithms

Mo = Ox20760CFl Mg = OxF4AD6572

M1 = OxOCIF14 7 5 Mg = Ox5F059EA3

M2 = Ox56139C91 MlO = Ox050A6650

M3 = OxA904D458 Mll = Ox5279Al15

M4 = Ox07F3FF32 Ml2 = OxBB4E5B88

M5 = Ox69B971AD Ml3 = Ox724D80BA

M6 = Ox13E8DD88 Ml4 = Ox438ECCBO

M7 = Ox40CA61AC Ml5 = OxAIEDDF3D

Mll Ox5279Al14

Ml2 OxBB4E5B89

Ml3 Ox724D80BB.

An implementation of this attack on the first round of SHA is attached as Appendix F. At-

tacks similar to that described above may be readily applied to rounds two, three and four if

these rounds are considered individually.

The attack presented above may be extended to other difference patterns. This allows the

formulation of the following attack on the first round of SHA.

First a number of relatively short difference patterns which result in inner collisions are

obtained. It should then be determined if any of these short difference patterns occur in the

first round of SHA. If none of these patterns are found in the first round, a search should

Analysis of the SHA and SHA-l Hash Algorithms

be conducted for concatenations of these difference patterns. If a concatenation of these

difference patterns are found, it is known that the resulting set of difference equations may

be solved and a high probability exist that a message may be reconstructed which would

result in a collision for the first round. Note that the construction of a message which results

in a collision is not assured. This is due to the fact that even though the difference pattern

results in a set of solvable difference equations, the specific choices made to solve these

equations may contradict the bounds incurred by the message expansion algorithm.

It may be possible to extend the attack described in the previous section to the second and

possibly third and fourth rounds. As before, short difference patterns which results in in-

ner collisions should be obtained for all the rounds in question. The output of the message

expansion algorithm should then be searched for the concatenation of a number of these

patterns. If a difference pattern is found which is composed from the concatenation of the

shorter difference pattern, it may be possible to find a solution to the set of difference equa-

tions. If a solution is obtained, it should be verified if a message may be reconstructed which

would result in a collision. As before the specific choices made to solve these equations may

contradict the bounds incurred by the message expansion algorithm.

An application of this proposed attack showed that it is possible to find difference patterns

which are solvable. Unfortunately it was found that the choices made for a number of the

chaining variables which allow solutions to be found for the short difference equations leaves

a limited number of degrees of freedom. This limits the attackers ability to reconstruct a mes-

sage which results in a collision for more than one round. If more sophisticated techniques

are found to solve the sets of difference equations, fewer explicit choices would have to be

made and it may become possible to find solutions to the sets of difference equations which

allows the construction of messages which result in collisions for two or more rounds.

As remarked in Chapter 9, the only difference between SHA and SHA-I lies in the message

expansion algorithm. In this section the message expansion algorithm used in SHA-I IS

considered and a number of its characteristics are discussed.

Analysis of the SHA and SHA-l Hash Algorithms

The message expansion algorithm used in SHA-l is defined by:

Wt = (Wt-3 EEl Wt-8 EEl Wt-14 EEl Wt_16)«<1.

It is noted that the only difference between the message expansion algorithms used in SHA

and SHA-l is the addition of a rotation by one bit position. A graphic representation of the

message expansion algorithm used in SHA-l is shown in Figure 9.3

The rotation operator introduces diffusion in the message expansion algorithm. A difference

introduced in a single bit position is no longer limited to the same bit position in the expanded

message (as is the case for SHA), but is spread over a number of bit positions. As the original

message is expanded a larger number of bit positions are affected by changing a single bit

in the message word. Thus the addition of diffusion to the message expansion algorithm is

believed to increase the security offered by SHA-I.

The use of the rotation operator makes it difficult to specify a difference pattern which is

easily related to an initial message. Thus the analysis of SHA presented in Section 9.7 is

not directly applicable to SHA-l. It is believed that the addition of the rotation operator to

the message expansion algorithm makes it considerably more difficult to obtain and exploit

difference equations. At present no analysis of the message expansion algorithm used by

SHA·l has been published in the open literature.

Chapter 9

The analysis presented in this chapter leads to the conclusion that SHA-I is more secure

than the original SHA. The additional security of SHA-l is derived solely from the modified

message expansion algorithm. It was shown that it is possible to exploit the characteristics

of the message algorithm defined for SHA by constructing a collision for the first round of

SHA. In addition an attack on more than one round of SHA is proposed. It may be argued

that the ease with which the message expansion algorithm used in SHA is manipulated may

have served as one of the reasons for the modification to the message expansion algorithm
used in SHA-l.

Additional factors which complicates the analysis of SHA and SHA-I have been found.

Specifically the method used for updating the chaining variables and the use of a rotation

over 30 bits for chaining variables Ci, Di and Ei contributes to the difficulty of solving sets

of difference equations. The method used for updating the chaining variables ensures that a

difference introduced in a message propagates to each of the chaining variables. This is not

the case for MD4 and MD5 where a difference may be manipulated to appear only in certain

selected chaining variables. An additional difficulty is the use of rotation over chaining

variables Ci, Di and Ei. A single rotation is introduced when Ci is updated. This rotated

value is re-used in chaining variables Di and Ei. If a set of difference equations is obtained,

the use of the rotation limits the number of choices which could be made for the chaining

variables involved. This in turn reduces the number of solutions which are easily obtained

for the difference equations. It is these factors which, at present, prevent the proposed attack

on the first two rounds of SHA to be successful. If improved solution techniques becomes

available, it may become possible to execute the proposed attack and be able to construct

messages which result in collisions for the first two rounds of SHA.

In this chapter the HAVAL hash function is analysed within the generalised framework pre-

sented in Chapter 8. First we describe the HAVAL hash function and the relevant notation

needed in this chapter. We then show how the generalised attack formulated in Chapter 8

can be applied to the last two rounds of three round HAVAL to establish a collision. This is

the first published cryptanalytical result for the HAVAL hash function. The source code that

implements the attack is attached in Appendix G.

HAVAL is an iterated hash function based on the Damgard-Merkle scheme. The HAVAL

construction is closely related to the MD4 family of hash functions. HAVAL was designed by

Zheng, Pieprzyk and Seberry in 1994 [62]. The HAVAL hash function specification includes

15 variations [62]. These variations are based on the number of iterations (or rounds) used

by the round function (3, 4 or 5) as well as the number bits used as output (128, 160, 192,

224 or 256). The round function of HAVAL takes message blocks in multiples of 1024 bits

and produces an output of 256 bits which can then be reduced to 128, 160, 192, 224 or 256

bits, depending on the security requirements. In this dissertation we focus on three round

HAVAL for all possible output lengths. This is the first time any cryptographic analysis of

HAVAL has been made public. The analysis presented in this chapter may also be applied to
4 and 5 round HAVAL.

Before proceeding with a description of HAVAL and the cryptanalysis of HAVAL it is ap-

propriate to introduce the notation to be used in this chapter. The following operators are

Analysis of the HAVAL Hash Algorithm

Bitwise Exclusive OR (XOR).

Bitwise Complement of X

Bitwise rotation to the right of X by Y positions.

Bitwise AND

In this chapter the bitwise AND between two variables are often indicated by Xl X2 rather than

Xl /\ X2 for brevity. The notation of ordiO for i = 1,2,3,4,5 indicates the word processing

order for round i of the round function. The constants used by the HAVAL hash function are

indicated by Kj,i with j = 2,3,4,5 and i E {32, 33, 34, .. , , 160}. There are a total of 128

additive constants used in the round functions and a further 8 constants that define the default

initial values for HAVAL. The constants can be found in [62]. The constants are defined as

the first 4352 bits of 7r. The 136 constants are not explicitly defined in this Chapter since

they play no role in the analyses presented in this Chapter.

In this section a short description of the HAVAL hash function is presented. For a more

complete description refer to [62].

Analysis of the HAVAL Hash Algorithm

(a) No: Repeatfrom step 3.

(b) Yes: Continue.

3. Order words for each round in the

round function.

6. Has the entire message been processed
?

Step 1 ensures that the message is padded to a multiple of 1024 bits. Steps 3 to 5 are repeated

for each 1024-bit block until the entire padded message has been processed. Step seven is

used to construct the appropriate hash length (128, 160, 192, 224 or 256). Step seven is

performed once the final message block is processed.

The round function of HAVAL requires a 1024-bit message block as input. Consequently

the message to be hashed has to be a multiple of 1024-bits. This is accomplished by using a

padding algorithm. Message padding is applied even if the unpadded message is a multiple

of 1024 bits in length.

Chapter 10

The message is padded by appending a 1 to the message, followed by m O's (m :s: 0) until

the length of padded message equals 944 mod 1024. Once the message is padded to this

length a three bit VERSION field, followed by a 3-bit PASS field and a 10-bit FPTFIELD is

appended to the padded message. Once these fields are appended a 64-bit MSGLEN field is

appended to form a message with a length that is a multiple of 1024. The fields mentioned

above has the following meaning:

VERSION: This is a 3-bit field representing the version of HAVAL in use. The current

version is 1.

PASS: This is a 3-bit field defining the number of rounds or iterations used by the round
function of HAVAL. Valid values are 3, 4 or 5.

FPTFIELD: This is 10-bit field that specifies the length of the hash result. Valid values are

128, 160, 192, 224 or 256.

MSGLEN: This is a 64-bit field representing the length of the original message. The 64-bit

integer is the binary representation of the length of the original message l. If l is less

than 232 the first 32 bits of the final 64 bits are zero.

Ox03707344
Ox13198A2E
Ox85A308D3
Ox243F6A88.

Ox082EFA98
Ox299F31DO

The 1024-bit message block is divided into 32 words of 32 bits each. These words are

processed in a different order for each round or iteration of the round function. The word

Analysis of the HAVAL Hash Algorithm

ardl0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ord20 5 14 26 18 11 28 7 16 0 23 20 22 1 10 4 8

30 3 21 9 17 24 29 6 19 12 15 13 2 25 31 27

ord30 19 9 4 20 28 17 8 22 29 14 25 12 24 30 16 26

31 15 7 3 1 0 18 27 13 6 21 10 23 11 5 2

ord40 24 4 0 14 2 7 28 23 26 6 30 20 18 25 19 3

22 11 31 21 8 27 12 9 1 29 5 15 17 10 16 13

ard50 27 3 21 26 17 11 20 29 19 0 12 7 13 8 31 10

5 9 14 30 18 6 28 24 2 23 16 22 4 1 25 15

The compress or round function is discussed in this section. Each round in the compress

function utilise a different boolean function and a different word order. Each boolean func-

tion takes seven bits as input and produces a single bit as output. The boolean functions

are expanded to form boolean mappings by operating bitwise on 32-bit words. The boolean

mappings used in HAVAL are defined by equations (10.1) to (10.5).

Fl(Bi, Ci, Di, Ei, Fi, Gi, Hi)

F2(Bi, Ci, Di, Ei, Fi, Gi, Hi)

GiDi EBFiCi EBEiBi EBHiGi EBHi.

~~&EB~~~EB~~EB~~EB~~EB
CiEi EBCiDi EBHi~ EBHi'

F3(Bi, Ci, Di, Ei,~, Gi, Hi)

F4(Bi, Ci, Di, Ei, Fi, Gi, Hi)

GiFiEi EBGiDi EB~Ci EBEiBi EBEiHi EBHiOO.3)

~~&EB~~~EB&~~EB~~EB~~EB
EiDi EBEiCi EBEiBi EBDiCi EBDiBi EB

Analysis of the HAVAL Hash Algorithm

{

Fl 0 <P3,1 (Bz, Oz, Dz, Ez, Fz, Gz, Hz) ~fPASS:3
l)P Fl 0 <P4,1 (Bz, Oz, Dz, Ez, Fz, Gz, Hz) If PASS-4

Fl 0 <PS,I (Bi, Oi, Di, Ei, Fj, Gi, Hi) if PASS=5

2)R p>>>7 + At>l1 + Wordl(i).

Note that the permutation defined by <Pj,l, j E {3, 4, 5} is performed before the function Fl

is executed. The permutations are defined in Table 10.2.

Permutations B C D E F G H
4- 4- 4- 4- 4- 4- 4-

<P3,1 G H E C B F D

<P3,2 D D G H C E B

<P3,3 B G F E D C H

<P4,1 F B G D C E H

<P4,2 E C F H G B D

<P4,3 G D E B H F C

<P4,4 B D H C F G C

<PS,I E D G H C F B

<PS,2 B F G H E D C

<PS,3 F B H D E G C

<PS,4 G C E F H D B

<Ps,s F C H B D E G

Analysis of the HAVAL Hash Algorithm

The second round of the HAVAL hash function is repeating the following steps for 32 :::;i :::;

63.

{

F20 cP3,2(Bi, Ci, Di, Ei, Fi, Gi, Hi) if PASS=3

l)P F20 cP4,2(Bi, Ci, Di, Ei, Fi, Gi, Hi) ifPASS=4

F20 cP5,2(Bi, Ci, Di, Ei, Fi, Gi, Hi) if PASS=5

2)R p>>>7 + At»ll + Word2(i) + K2,i.

Note that the permutation defined by cPj,2, j E {3, 4, 5} is performed before the function F2

is executed. The permutations are defined in Table 10.2.

{

F30 cP3,3(Bi, Cil Di, Ei, Fi, Gi, Hi) if PASS=3

l)P F3 0 cP4,3(Bi, Ci, Di, Ei, Fi, Gi, Hi) if PASS=4

F30 cP5,3(Bi, Ci, Di, Ei, Fi, Gi, Hi) if PASS=5

2)R p>>>7 + A»>ll + Word3(i) + K3,i.

3)A B, B = C, C = D, D = E.

E F, F=G, G=H, H=R.

Note that the permutation defined by cPj,3, j E {3, 4, 5} is performed before the function F3

is executed. The permutations are defined in Table 10.2.

Analysis of the HAVAL Hash Algorithm

The fourth round of the HAVAL hash function is repeating the following steps for 96 :::;;i :::;;

127.

{
F40 cP4,4(Bi,Ci, Di, Ei, Fi, Gi, Hi)
F40 cP5,4(Bi,Ci, Di, Ei, Fi, Gi, Hi)

P>'»7 A'»>11 W K+ + ord4(i)+ 4,i·

ifPASS=4

ifPASS=5

2)R

3)A

E

B, B=C, C=D, D=E.

F, F = G, G = H, H = R.

Note that the permutation defined by cPj,4,j E {4, 5} is performed before the function F4 is

executed. The permutations are defined in Table 10.2.

The 01 round of the HAVAL hash function is repeating the following steps for 128 :::;;i :::;;

159.

I)P { F5 0 cP5,5(Bi,Ci, Di, Ei, Fi, Gi, Hi) ifPASS=5

2)R p>'»7 A'»>11 W K+ + ord5(i)+ 5,i·

3)A B, B=C, C=D, D=E.

E F, F=G, G=H, H=R.

Note that the permutation defined by cP5,5is performed before the function F5 is executed.

The permutations are defined in Table 10.2.

A single step in a round of the round function is graphically represented as shown in Figure
10.2.

Chapter 10

HAVAL can be used to produce a hash length of 128, 160, 192, 224 or 256 bits, depending

on the security requirement. In this dissertation only the case where the output is 256-bits

(maximum security) is considered. For a detailed description of the procedure used to select

an output of less than 256 bits refer to [62]. Note that a collision for the 256-bit output

implies a collision for all subsets of the output.

In this section the principles derived in Chapter 8 are applied to HAVAL. In order to demon-

strate the applicability of the attack it is shown that the last two rounds of three round HAVAL

is not collision resistant. The last two rounds of three round HAVAL are described by steps

32 to 95. The equations describing the second round of three round HAVAL is described by

Analysis of the HAVAL Hash Algorithm

Hi+1 (F2 a cP3,2(Bi, Ci, Di, Ei, Fi, Gi, Hi)f»7 + A;»ll + Word2(i) + K2,io

Ai+1 Bi, Bi+1 = Ci, Ci+l = Di, Di+1 = Ei

The equations describing the last round of three round HAVAL is described by equation

(10.7) for i E {64, 65, 66, 0 0 o95}.

Hi+1 (F3 a cP3,3(Bi, Ci, Di, Ei, Fi, Gi, Hi)f»7 + A;»ll + Word3(i) + K3,io

Ai+1 Bi, Bi+l = Ci, Ci+l = Di, Di+1 = Ei

In order to establish a collision for the last two rounds of three round HAVAL an inner

collision has to be established as described in Chapter 8. It is possible to derive a set of

difference equations that allows a collision for the full 256-bit output of the last two round of

three round HAVAL. One approach which results in an inner collision for the last two rounds

of HAVAL is described below.

Chapter 10

H57 (F2o cP3,2(B56, C56, D56, E56, F56, G56, H56))»>7 + A~ll + Word2(56) + K2,56o

A57 B56, B57 = C56, C57 = D56, D57 = E56

E57 F56, F57 = G56, G57 = H560 (10.8)

H58 (F2o cP3,2(B57, C57, D57, E57, F57, G57, H57)f»7 + Agrll + Word2(57) + K2,57o

A58 B57, B58 = C57, C58 = D57, D58 = E57

E58 F57, F58 = G57, G58 = H570 (10.9)

H59 (F2 0 cP3,2(B58, C58, D58, E58, F58, G58, H58)f»7 + A?fll + Word2(58) + K2,58o

A59 B58, B59 = C58, C59 = D58, D59 = E58

E59 F58, F59 = G58, G59 = H580 (10.10)

H60 (F2o cP3,2(B59, C59, D59, E59, F59, G59, H59)f»7 + A~ll + Word2(59) + K2,59o

~ ~, ~=~, ~=~, ~=~
E60 F59, F60 = G59, G60 = H590 (10.11)

H61 (F2o cP3,2(B60, C60, D60, E60, F60, G60, H60))»>7 + Aifi511 + Word2(60) + K2,60o

A61 B60, B61 = C60, C61 = D60, D61 = E60

E61 F60, F61 = G60, G61 = H60. (10.12)

H62 (F2o cP3,2(B61, C61, D61, E61, F61, G61, H61)f»7 + A~ll + Word2(61) + K2,61.

A62 B61, B62 = C61, C62 = D61, D62 = E61

E62 F61, F62 = G61, G62 = H610 (to.13)

H63 (F2o cP3,2(B62, C62, D62, E62, F62, G62, H62))»>7 + A~ll + Word2(62) + K2,62o

~ ~, ~=~, ~=~, ~=~
E63 F62, F63 = G62, G63 = H620 (10.14)

H64 (F2 0 cP3,2(B63, C63, D63, E63, F63, G63, H63))»>7 + A~ll + Word2(63) + K2,63o

~ ~, ~=~, ~=~, ~=~
E64 F63, F64 = G63, G64 = H63. (10.15)

H65 (F3o cP3,3(B64, C64, D64, E64, F64, G64, H64))»>7 + Aif:ill + Word3(64) + K3,64.

~ ~, ~=~, ~=~, ~=~
E65 F64, F65 = G64, G65 = H640 (10.16)

Note that ord2(56) and ord3(64) both select message word 19 (WI9). Consider two mes-

sages, M and M that differ only in message word 19. It is then possible to derive a set of

Analysis of the HAVAL Hash Algorithm

difference equations using the principles stated in Chapter 8. In the notation of Chapter 8 we

show that a message can be constructed such that:

f~t(T, M) = f~t(T, M).

where T represents the chaining variables A56, B56, C56, D56, E56, F56, G56 and H56• Once

the inner collision is established it is shown that:

The required inner collision can be established by solving the following set of difference

equations

(F2o cP3,2(B56, C56, D56, E56, F56, G56, H56)f~7 + A~l1 + Word2(56) + K2,56 -

((F2o cP3,2(B56, 656, D56, E56, F56, 656, H56)f~7 + A~l1 +
WOrd2(56) + K2,56) (10.17)

(F2o cP3,2(B57, C57, D57, E57, F57, G57, H57)f~7 + A~l1 + Word2(57) + K2,57 -

((F2o cP3,2(B57, 657, D57, E57, F57, 657, H57)f~7 + A~l1 +
WOrd2(57) + K2,57) (10.18)

(F2 0 cP3,2(B58, C58, D58, E58, F58, G58, H58)f~7 + A~l1 + Word2(58) + K2,58 -

((F2 0 cP3,2(B58, 658, D58, E58, F58, 658, H58)f~7 + A~l1 +
WOrd2(58) + K2,58) (10.19)

(F2o cP3,2(B59, C59, D59, E59, F59, G59, H59)f~7 + A~l1 + Word2(59) + K2,59 -

- - - - - - - >~7 -~>11((F2 0 cP3,2(B59, C59, D59, E59, F59, G59, H59)) + A59 +
WOrd2(59) + K2,59) (10.20)

Analysis oime HAVAL Hash Algorithm

(F2 0 rP3,2(B60, C60, D60, E60, F60, G60, H60))»>7 + A~11 + Word2(60) + K2,60 -

- - - - - - - ';»7 -»>11((F2 0 rP3,2(B60, C60, D60, E60, F60, G60, H60))"53 + A60 +
WOrd2(60) + K2,60) (10.21)

(F2o rP3,2(B6I, C6I, D6I, E6I, F6I, G6I, H6I)?»7 + Atf11 + Word2(6I) + K2,6I -

- - - - - - - ';»7 ->>>11((F2 0 rP3,2(B6I, C6I, D6I, E6I, F6I, G6I, H6d? + A6I +
WOrd2(6I) + K2,6d (10.22)

(F2 0 rP3,2(B62, C62, D62, E62, F62, G62, H62)?»7 + A~11 + Word2(62) + K2,62 -

- - - - - - - ';»7 -»>11((F2 0 rP3,2(B62, C62, D62, E62, F62, G62, H62))"53 + A62 +
WOrd2(62) + K2,62) (10.23)

(F2o rP3,2(B63, C63, D63, E63, F63, G63, H63)?»7 + Airf11 + Word2(63) + K2,63 -

- - - - - - - ';»7 -»>11((F2o rP3,2(B63, C63, D63, E63, F63, G63, H63))"53 + A63 +
WOrd2(63) + K2,63) (10.24)

(F3o rP3,3(B64, C64, D64, E64, F64, G64, H64)?»7 + A~11 + Word3(64) + K3,64 -

- - - - - - - ';»7 -»>11((F3o rP3,3(B64, C64, D64, E64, F64, G64, H64)) "53 + A64 +
WOrd3(64) + K3,64) (10.25)

H57 =I- H57 B56 = B56 C56 = C56 D56 = D56

E56 E56 F56 = F56 G56 = G56 H56 = H56

WOrd3(56) =I- Word3(56) A56 = A56

H65 H65 B64 = B64 C64 = 664 D64 = D64

E64 E64 F64 = F64 G64 = 064 H64 = H64

Word3(64) =I- Word3(64)0

The reader is reminded that Word3(64) = WOrd3(56) = WIg and WOrd3(64) = WOrd3(56) = WIg.

Analysis of the HAVAL Hash Algorithm

WI9 - W19

(F2 0 ¢3,2(B57, 057, D57, E57, F57, G57, H57) f»7 -

(F2 0 ¢3,2(B57, 057, D57, E57, F57, G57, H57))»>7

(F2 0 ¢3,2(B58, 058, D58, E58, F58, G58, H58)f»7 -

(F2 0 ¢3,2(B58, 058, D58, E58, F58, G58, H58))»>7

(F2 0 ¢3,2(B59, 059, D59, E59, F59, G59, H59)f»7 -

(F2 0 ¢3,2(B59, 059, D59, E59, P59, G59, H59)f»7

(F2 0 ¢3,2(B60, 060, D60, E60, F60, G60, H60)f»7 -

(F2 0 ¢3,2(B60, 060, D60, E60, F60, G60, H60)f»7

(F2 0 ¢3,2(B61, 061, D61, E61, F61, G61, H6df»7 -

(F2 0 ¢3,2(B61, 061, D61, E61, F61, G61, H6df»7.

(F2 0 ¢3,2(B62, 062, D62, E62, F62, G62, H62)f»7 -

(F2 0 ¢3,2(B62, C62, D62, E62, F62, G62, H62))»>7.

(F2 0 ¢3,2(B63, 063, D63, E63, F63, G63, H63))»>7 -

(F2 0 ¢3,2(B63, 063, D63, E63, F63, G63, H63)f»7.

A~l1 + W19 - (A~l1 + W19)

(10.33)

(10.34)

From equations (10.26) to (10.34) it is observed that the chaining variables listed in Table

10.3 are affected when trying to solve the set of difference equations.

A56 B56 056 D56 E56 F56 G56 H56

A57 B57 057 D57 E57 F57 G57 H57 H57

A58 B58 058 D58 E58 F58 G58 G58 H58

A59 B59 059 D59 E59 F59 F59 G59 H59

A60 B60 060 D60 E60 E60 F60 G60 H60

A61 B61 061 D61 D61 E61 F61 G61 H61

A62 B62 062 C62 D62 E62 F62 G62 H62

A63 B63 B63 063 D63 E63 F63 G63 H63

A64 B64 B64 064 D64 E64 F64 G64 H64

Analysis of the HAVAL Hash Algorithm

Table 10.3 will be used to indicate which of the chaining variables are affected in each step

of the solution of the set of difference equations. Once a chaining variable is chosen to have

certain value it is marked in

In this section one technique that allows a solution to the set of differential equations de-

scribed by equations (10.26) to (10.34) is described. In order to solve the set of differential

equations the following properties of Boolean algebra are used [63].

For two boolean variables, denoted by Xl and X2, where Xl =F- X2, the following expressions

hold:

(10.35)

(10.36)Xl 1\ (Xl V X2)

Xl 1\ (Xl V X2)

These expressions aid in the solution of the set of differential equations defined by the next

8 steps.

An inner collision can be established by finding a solution to equations (10.26) to (l0.34).

In order to find a solution to this set of difference equations it is useful to remember that

A64 = B63 = C62 = D61 = E60 = F59 = G58 = H57 and A64 = 1363 = 662 = D61 =
E60 = P59 = 058 = fI57• By taking the above relationships into account the following

condition has to be satisfied in order to solve the set of equations.

H57 - H57

H>>>ll _ A»>ll
57 57

(10.38)

(10.39)

A-»>ll H»>ll - H H-
57 - 57 - 57 - 57·

Chapter 10

Let the difference between H57 - H57 and WI9 - WI9 be denoted by:

I::1H57 = H57 - H570

I::1WI9 = WI9 - WI90

I::1WI9 = I::1H57 °

(10.41)

(10.42)

(10.43)

In order for equation (10.40) to be satisfied, I::1H57 can be chosen as OxAAAAAAAAA,

OxAAAAAAAAB, Ox55555555 or Ox55555556. The probability that equations (10.38)

and (10.39) holds for each of the possible values of I::1H57 are given in Table 10.4.

I::1H57 Pr

OxAAAAAAAAA 0.112

OxAAAAAAAAB 0.448

Ox555555555 0.448

Ox555555556 0.110

Table 10.4: Probability that a given I::1H satisfies (10.38) and (10.39) for random values of

H57

Here H57 can be selected at random. Note that any choice for H57 implies a selection for

H57 through the chosen relationship of I::1H57• If equation (10.38) and (10.39) holds for the

chosen H57, continue with Step 2. The affected chaining variables for Step 1 are shown in

Table 10.5.

A56 B56 D56 H56

A57 B57 D57

A58 B58 D58 H58

A59 B59 H59

A60 B60 H60

A61 B61 H61

A62 B62 H62

A63 H63

H64

Analysis of the HAVAL Hash Algorithm

Once suitable values for H57 and H57 have been found, a solution has to be found to equation

(10.33). Equation (10.33) can be solved by applying the permutation (P3,2 and considering

the resulting function F2. Equation (10.33) can then be written as:

O=(~~~ffi~~~ffi~~ffi~~ffi~~ffi~~ffi~~ffi
B63C63 ffiB63) - (E63C63H63 ffiF63G63C63 ffiE63C63 ffiE63G63 ffiC63D63 ffi
F63H63 ffiF63G63 ffiB63C63 ffiB63). (10.44)

(B63C63 ffiB63) - (B63C63 ffiB63)

(B63C63 ffiB63)

(10.45)

(10.46)

(10.48)

(10.49)

Thus our choice for C63 satisfies equation (10.46). The chaining variable table after the

completion of step 2 is shown below.

A56 B56 D56

A57 B57 D57

A58 B58 D58

A59 B59

A60 B60

A61 B61

A62 B62

A63

Analysis of the HAVAL Hash Algorithm

The next step is to solve equation (10.32). As before equation (10.32) can be solved by

applying the permutation ¢3,2 and considering the resulting function F2. Equation (10.32)

can then be written as:

O=(~~~ffi~~~ffi~~ffi~~ffi~~ffi~~ffi~~ffi

B62C62 ffi B62) - (E62C62H62 ffi F62G62C62 ffi E62C62 ffi E62G62 ffi C62D62 ffi

F62H62 ffi F62G62 ffi B62C62 ffi B62). (10.50)

If only the terms that differ from each other are considered equation (10.50) reduces to:

o = (E62C62H62 ffi F62G62C62 ffi E62C62 ffi C62D62 ffi B62C62) -

(E62C62H62 ffi F62G62C62 ffi E62C62 ffi C62D62 ffi B62(62).

E62C62H62

E62C62

F62G62C62 ffi C62D62

B62C62

E62C62H62.

E62C62.

ffiF62G62C62 ffi C62D62.

B62C62.

(10.52)

(10.53)

(10.54)

(10.55)

B62C62

C62C62C62

E62C62

C62C62C62

C62 V C62.

C62 V C62.

(10.56)

(10.57)

B62C62

C62C62C62

(10.58)

(10.59)

(10.60)

E62C62

C62C62C62

(10.61)

(10.62)

(10.63)

Chapter 10

E62C62H62

C62 C62662 H62

o· H62

o

E62C62H62.

662662C62H62.

o· H62.

o.

(10.64)

(10.65)

(10.66)

(10.67)

Note that no explicit choice is made for H62. Chaining variable D62 is already determined

through the choice for C63• By setting:

C62 V 662.

C62 V C62.

(10.68)

(10.69)

A56

A57

A58

A59

A60

A61

A62

In this step equation (l 0.31) is solved. Equation (10.31) can be solved by applying the

permutation cP3,2 and considering the resulting function F2. Equation (10.31) then reduces

Analysis of the HAVAL Hash Algorithm

o (E61 C61H61 EEl F61 G61 C61 EEl E61 C61 EEl E61 G61 EEl C61D61 EEl F61H61 EEl

F61G61 EEl B61C61 EEl B6d - (E61C61H61 EEl F61G61C61 EEl E61C61 EEl

E61 G61 EEl C61 D61 EEl F61 H61 EEl F61 G61 EEl B61 C61 EElB61). (10.70)

The choice for B62 in Step 3 also ensures that equation (10.70) holds. Consequently the

chaining variable table remains unchanged (see Table 10.7) after the completion of Step 4.

In this step equation (10.30) is solved. Equation (10.30) can be solved by applying the

permutation cP3,2 and considering the resulting function expression. Equation (10.30) can
then be written as:

O=(~~~EEl~~~EEl~~EEl~~EEl~~EEl~~EEl

F60G60 EEl B60C60 EEl B60) - (E60C60H60 EEl F60G60C60 EEl E60C60 EEl

E60G60 EEl C6oD60 EEl F60H60 EEl F60G60 EEl B60C60 EEl B60). (10.72)

E60C60H60 E60C60H60' (10.74)

E60C60 E60C60. (10.75)

E60G60 E60G60. (10.76)

(10.77)

Analysis of the HAVAL Hash Algorithm

The value for G60 is already determined by the choice made for E62 in Step 3. The value

chosen in Step 3 for E62 satisfies equation (10.76). Similarly the previous choice for F62

implies that the value for H60 is fixed. Likewise it is found that this particular choice for F62

assures that equation (10.74) holds if C60 is chosen such that:

This choice for C60 also assures that equation (10.75) holds. The chaining variable table can

now be updated to reflect the additional choices made. Table 10.8 is shown below.

In this step equation (10.29) is solved. Equation (10.29) can be solved by applying the

permutation rP3,2 and considering the resulting function expression. Equation (10.29) can

then be written as:

O=(~~~ffi&~~ffi~~ffi~~ffi~~ffi&~ffi
FS9GS9 ffiBS9CS9 ffiBS9) - (ES9CS9Hs9 ffiFS9GS9CS9 ffiES9CS9 ffi
ES9GS9 ffiCs9Ds9 ffiFS9Hs9 ffiFS9GS9 ffiBS9CS9 ffiBS9)' (10.79)

Analysis of the HAVAL Hash Algorithm

F59G59C59 EB F59G59

F59H59

F59G59C59 EB F59G59.

F59H59·

(10.81)

(10.82)

(10.83)

The values for G59 and H59 are already determined by the choices made for D62 and E62

in Step 3. The values chosen in Step 3 for D62 and E60 also satisfies equations (10.81) and

(10.82) C59 is chosen such that:

In this step equation (10.28) is solved. As before consider the expression obtained by apply-

ing the permutation ¢3,2 to equation (10.28) and considering the resulting function expres-

sion. Equation (10.28) can then be written as:

o = (E58C58H58 EB F58G58C58 EB E58C58 EB E58G58 EB C58D58 EB F58H58 EB -

F58G58 EB B58C58 EB B58)(E58C58H58 EB F58G58C58 EB E58C58 EB

E58G58 EB C58D58 EB F58H58 EB F58G58 EB B58C58 EB B58). (10.85)

Analysis of the HAVAL Hash Algorithm

o = (F58G58C58 EB E58G58 EB F58G58) -

(F58G58C58 EB E58G58 EB F58G58).

F58G58C58 F58G58C58' (10.87)

E58G58 E58G58· (10.88)

F58G58 F58G58. (10.89)

(10.90)

The value for F58 is determined by the choice for B62 in Step 5. This choice for F58 also

ensures that equations (10.87) and (10.89) holds. The value for E58 is determined by the

value chosen for C60 in step 5. This choice also assures that equation (10.88) holds. The

chaining variable table remains unchanged after the completion of step 7.

In this step equation (10.27) is solved. As before consider the expression obtained by apply-

ing the permutation cP3,2 to equation (10.27) and considering the resulting function expres-

sion. Equation (10.27) can then be written as:

o = (E57C57H57 EB F57G57C57 EB E57C57 EB E57G57 EB C57D57 EB F57H57 EB

F57G57 EB B57C57 EB B57) - (E57C57H57 EB F57G57C57 EB E57C57 EB

E57G57 EB C57D57 EB F57H57 EB F57G57 EB B57C57 EB B57). (10.91)

o = (E57C57H57 EB F57H57) -

(E57C57H57 EB F57H57).

E57C57H57'

F57H57.

(10.93)

(10.94)

Analysis oithe HAVAL Hash Algorithm

The value for F57 is determined by the choice for C60 in step 5. This choice also satisfies

equation (10.94). Similarly the value of E57 is determined by the choice for C59 in step 6.

Given this value for E57 equation (10.93) holds if C57 is chosen such that:

After the completion of step 8 the set of difference equations defined by equations (10.26) to

(10.34) are solved. The chaining variables not marked in can take on randomly selected

values.

Once the set of difference equations is solved it remains to construct the two messages that
will result in a collision for the last two rounds of three round HAVAL. In general a message

word for the second round can be derived using the following equation:

Word2(i) = Hi+1 - (F2o ¢3,2(Bi, Ci, Di, Ei, Fi, Gi, Hi)?»7 - Arll
- K2,i. (10.96)

By applying equation (10.96) for 32 ~ i ~ 63 two messages, M and M can be derived.

In order to meet a specific initial value (i = 32) appropriate selections should be made for

H32, H33, H34, H35, H36, H37, H38 and H39• An implementation of this attack is included in

Appendix G.

Analysis of the HAVAL Hash Algorithm

A collision for the last two rounds of HAVAL was constructed using the techniques described

in this chapter.

For the initial values of:

A32 OxEC4E6C89
B32 Ox082EFA98
e32 Ox299F31DO
D32 OxA4093822
E32 Ox03707344
F32 Ox13198A2E
G32 Ox85A308D3
H32 Ox243F6A88.

Analysis of the HAVAL Hash Algorithm

Wo Ox3A379EDO W16 Ox79F23F4E
WI OxlEB81543 W17 Ox9C1596E8
W2 Ox279COO73 WI8 OxB62B4D8B
W3 OxC9295C45 WI9 OxDEC04668
W4 Ox6988BCBA W20 Ox4BA12694
W5 OxEEIE55A2 W2I Ox9D8DED5C
W6 OxDE458436 W22 Ox456CFCB4
W7 OxBIC55B3C W23 Ox7253D2B9
W8 OxBDA229EB W24 Ox61ED5DB4
W9 OxE27926BE W25 OxE4C2E748

WlO Ox8BACAC22 W26 OxFD80A2AD
Wll OxBDF710B4 W27 OxC033F56E
WI2 Ox6516723B W28 Ox3010FDA9
WI3 Ox26991773 W29 Ox344A7F71
WI4 Ox9EA6FDIF W30 OxODB561C7
WI5 OxOBB27961 W3I OxC7AIE175

The alternative message is identical to the first with the exception that WI9 is chosen such
that:

The resulting collision (including the feed forward step) for the last two rounds of three

round HAVAL is:

fi~(IV, W) Ox4DF09D997588F9C7BE20863B2EED2AAC
D5BIEl16D927279E250D19CB00850706.

In this chapter it was shown that the generalised technique described in Chapter 8 can be

applied to the HAVAL hash function. In particular it is shown that the last two rounds of three

Analysis of the HAVAL Hash Algorithm

round HAVAL is not collision resistant. It is demonstrated that a collision can be established

for all 256 output bits produced. This attack is considerably more efficient than the birthday

attack which would require 2128 evaluations of the last two rounds of HAVAL. This is the

first cryptanalytical results obtained for the HAVAL hash function. It is believed that it is

possible to extend the attack to all three rounds of HAVAL. The attack can be executed on

a 200 MHz Pentium Pro in less than a minute. Source code that implements this attack is

attached as Appendix G.

CHAPTER 11: DESIGN CRITERIA FOR DEDICATED HASH

FUNCTIONS

In this chapter guidelines and design criteria for the design of dedicated hash functions based

on the MD4 family of hash functions are presented. The discussion of the design criteria in

this chapter is based on the experience gained from the analysis of dedicated hash functions

included in the MD4 family of hash functions. These hash functions include MD4, MD5,

HAVAL, SHA and SHA-l. These hash functions share a common ancestry (MD4), and

consequently they share a number of features. These hash functions also differ in a number

of respects, such as the Boolean mappings and the message word re-use mechanisms.

Each of the components encountered in the MD4 family of hash functions is discussed with

regard to their contribution to the security of the hash functions in which they occur. In this

chapter the emphasis is on the security requirements expected from the building blocks with

occasional reference to the functional requirements.

The compress function construction used for MD4 is described in [10]. This construction has

been widely adopted in the design of other hash functions such as MD5 [45], SHA, SHA-I

[13] and Tiger [47]

The MD4 family of hash functions takes two parameters as inputs namely the previous hash

result and the message block. If the first message block is processed, the previous hash result

is replaced by the initial value. The generalised MD4 family construction does not allow for

the inclusion of a secret key. A survey of a number of adaptations of this construction that

does make allowance for a secret key is presented in Chapter 5.

The compress function used in the MD4 family of constructions, is an iterated construction.

The compress function takes as input the previous hash result Hi-1 and the current message

block, Mi.

Chapter 11

number of steps. Each step is constructed from a number of elementary operations, including

Boolean mappings, rotations and additions mod 232 •

The message block Mi is segmented into k sub-blocks. The initial chaining variable, C,

is set equal to the previous hash result. The set of message sub-blocks is divided into a

number of i-bit message words. These message words are re-used in consecutive rounds of

the compress function according to a specified rule. The chaining variable, C, is updated in

each step of each round of the compress function. The output of the compress function is

obtained by adding the initial value of the chaining variable C (i.e. the previous output of the

compress function or the initial value) to the final value of the chaining variable. The final

hash value for the message is the output obtained from the final application of the compress

function.

A number of basic building blocks are used in the construction of the compress functions of

the MD4 family of hash functions. These include message expansion algorithms, message

block permutations, rotations, addition mod 232 and Boolean mappings or S-boxes. In this

section the contribution of each of these basic building blocks to the security of the dedicated

hash functions is considered.

The Boolean mappings used in MD4, MD5, SHA, SHA-I and HAVAL are constructed with

the same technique and exhibit similar properties. The Boolean mappings used by these

functions take a number of 32 bit input words and produce a single 32 bit output word.

The Boolean mappings utilised by these hash functions are constructed from Boolean func-

tions. A number of design criteria for Boolean functions are established in Chapter 3 of

[51]. These criteria deal with the zero-one balance, high non-linearity values and the prop-

agation properties of the Boolean functions. In the definition of MD4 [10] and MD5 [45]

it is stated that if the inputs to the Boolean function are independent and unbiased, then the

output of the Boolean function will be independent and unbiased. The functions defined for

MD4 and MD5 are used in both SHA and SHA-l. It should be noted that a number of the

Design Criteria for Dedicated Hash Functions

Boolean functions defined for use with MD4 and MD5 do not satisfy the criteria set forth

in [51]. HAVAL represents a family of hash functions derived from MD4 and is defined

in [62]. The Boolean functions used in HAVAL are derived from bent functions and were

designed to have zero-one balance, a high non-linearity and satisfy the strict avalanche crite-

rion (SAC). In addition these functions are linearly inequivalent in structure and are mutually

output -uncorrelated.

Having obtained a Boolean function which satisfies the desired properties, a Boolean map-

ping is constructed by applying the Boolean function to a number of bits in parallel. Boolean

mappings constructed in this manner inherits the properties of the Boolean function. The

number of bits are chosen to reflect a specific computer architecture. Currently 32 bit ma-

chines are in common use and consequently the Boolean mappings are defined over 32 bit

variables. Many general purpose processors contain logical bitwise operators in their,instruc-

tion sets. Thus the use of bitwise logical functions as Boolean mappings are advantageous,

if the overall performance of the hash function is considered.

It is maintained that the design criteria applied to construct the Boolean mappings used by

the MD4 family are necessary, but not sufficient. The practice of extending the Boolean

function to a Boolean mapping by applying the Boolean function in parallel to a number

of bits, has proved to be a salient point in the cryptanalysis of MD4, MD5 and HAVAL

(Chapters 6 7 10). If a single input bit used by the Boolean mapping is changed, at most a

single output bit of the Boolean mapping is changed. In addition, the compliance to the SAC

by the Boolean function used to construct the Boolean mapping, implies that a single input

bit may be changed without any changes occurring in the output of the Boolean mapping.

For these reasons it is proposed that the Boolean mapping should be constructed to satisfy

the bit independence criterion (BIC) as described in [51].

The only dedicated hash function which uses randomly generated Boolean mappings is Tiger

[47]. This hash function was designed with 64-bit architectures in mind. For this reason it

utilises four 8 x 64 bit S-boxes. The following design criteria for the Boolean mappings are

quoted verbatim from [47].

1. All the entries of all the S boxes should be distinct. Moreover, no two entries should

have more than three equal bytes.

Design Criteria for Dedicated Hash Functions

3. The columns of all the S boxes should be as different as possible, and have some long

cycles.

4. No two differences of S box entries (Si(td EEl Si(t2) and Sj(t3) EEl Sj(t4)) should have

more than four equal bytes.

5. The speed of the generation should not be too slow, in order to enable applications to

generate the S boxes on the fly.

6. This algorithm, and the structure of the S boxes of Tiger, were chosen in a way which

reduces linear and differential properties, and similarities of these properties in the four

S boxes (between other things, by reducing the number of S boxes, and making them

independent, unlike some original idea we had, which was intended to reduce the total

memory size of the S boxes, and by choosing the large S boxes, which reduce linear

and differential properties).

Items 1-4 as well as item 6 address the security properties of the S-boxes while items 5 and

7 deal with the functional requirements of the S-boxes. It is claimed by the designers of

Tiger that the use of randomly generated Boolean mappings increase the security of the hash

function. No quantitative arguments are presented to support this statement.

The randomly generated Boolean mapping used in Tiger is more difficult to manipulate than

the Boolean mappings constructed from Boolean functions which are applied in parallel.

This is due to the design criteria which have to be met by the randomly generated Boolean

mappings. The design criteria applied in the generation of the Boolean mappings used by

Tiger has the effect that it is impossible to construct a collision for a given Boolean mapping.

Furthermore, a change in a single input bit is likely to cause a difference in more than one
output bit.

Thus, it appears that the use of well chosen, randomly generated Boolean Mappings, avoid

the problems and potential weaknesses observed in the bitwise Boolean mappings. Howev-

er, the use of randomly generated Boolean mappings may result in an increase of resource

requirements, such as storage capability and processor time. It is recommended that random

mappings are utilised for optimal security.

Design Criteria for Dedicated Hash Functions

The rotation operator is used by all members of the MD4 family of hash functions. Rotations

may be described in a number of ways. In [48] a rotation is described as a bit permutation.

The rotation of x by n bits may also be viewed as a linear feedback shift register of length d

with a feedback polynomial

The rotation operation provides diffusion of bits throughout the hash function. MD4 and

MD5 contain a single rotation in each step. HAVAL, SHA and SHA-I contain two rotations

applied to different chaining variables in each step. The use of rotations may complicate the

solution of the sets of difference equations obtained. In particular in SHA and SHA-I the use

of two rotations and the permanent effect of the second rotation impose certain limits on an

attacker, since an attacker has to choose values for chaining variables, which are invariant to

the rotations (see Chapter 9). It is shown in [14] and [58] that it is possible to counter these

rotations and find solutions to the sets of difference equations containing these rotations. A

similar result is shown in Chapter 10 for HAVAL. However, the absence of rotations would

have reduced the workload for finding inner collisions considerably.

Thus, rotations complicate the task of an attacker (depending on the use of the rotation) and

therefore contribute to the security of the hash function. The rotation amounts should be

chosen to obtain optimal diffusion in the compress function of the hash function.

None of the dedicated hash functions based on MD4 utilises data dependent rotations. It

is unknown if data dependent rotations add or subtract to the security of dedicated hash

functions. It may be possible for an attacker to exploit the data dependence. From a security

point of view, it is recommended that caution be exercised if data dependent rotations are

used.

The iterative hash scheme employed in the MD4 family of hash functions requires that a

message, M, is segmented into a number of message blocks, Mi. Each message block is

Design Criteria for Dedicated Hash Functions

processed by the compress function f O. The compress functions of the MD4 family of hash

functions divide the message block, Mi, into a number of message words. Each bit of each

of these message words is re-used at least twice by each of the compress functions used by

the MD4 family of hash functions. Two techniques of message re-use are employed by the

MD4 family of hash functions. The first technique applies a permutation which changes the

order in which the message words are accessed in consecutive rounds. The second technique

applies a message expansion algorithm which derives new message words from the original

message words. Both techniques are considered in this section.

Each of the hash functions derived from MD4 takes a message block of fixed length as input.

The message block is then divided into message words of 32 bits each. The message block

is used in every round of the hash function. The order in which the message words are pro-

cessed in each of these rounds are determined by the message permutation. MD4, MD5 and

HAVAL employs message permutations. By exploiting the order in which message words

are accessed in consecutive rounds, an attacker may obtain a set of difference equations. If

this set of difference equations are solvable it may be possible to find collisions for the hash

function. If message permutations are to be used care should be taken to choose the permu-

tations in such a manner as to prevent solvable difference equations to be derived. This may

prove difficult, if it is remembered that it is possible to obtain a solvable difference equa-

tion set representing 12 consecutive steps in MD5. Consequently it is advised that message

permutations are avoided in the construction of dedicated hash functions.

SHA and SHA-l uses a message expansion algorithm instead of a fixed message permu-

tation. The properties of the message expansion algorithm used by SHA is described in

Chapter 9. From the analysis of SHA and SHA-l it appears that the use of a message expan-

sion algorithm adds to the effort required to derive a set of difference equations. The danger

exist that an attacker may manipulate the message expansion algorithm to find one or more

possible sets of solvable difference equations. An example of how the message expansion

algorithm used by SHA may be manipulated is presented in Chapter 9.

Design Criteria for Dedicated Hash Functions

It is noted that the dedicated hash functions based on the MD4 construction may be used as

block ciphers. Specifically the initial value may be taken as the plaintext and the message

block taken as the key. The hash result then represents the ciphertext. Thus, if we use

SHA in this manner, we obtain a block cipher with a 160 bit block length (the initial value)

and a 512 bit key (the message word). I The analogy may be extended to the message

expansion algorithm. In block cipher terminology the message expansion algorithm is the

equivalent of the key schedule. It is known that weak key schedules weaken the associated

block cipher [64], [65]. In particular weak key scheduling algorithms allow related key

attacks [65]. These attacks exploit a chosen difference between two unknown keys and allow

the recovery of the keys given a number of known or chosen plaintexts. A weak message

expansion algorithm may weaken the associated hash function by allowing the construction

of two or more messages, which upon expansion, exhibit a specified difference pattern. This

may allow the derivation of a set (or sets) of solvable difference Equations, which result

in collisions. Thus both strong key scheduling algorithms and strong message expansion

algorithms attempt to limit the extent to which an attacker may exploit specified differences

between two distinct keys or messages. It is therefore suggested that the message expansion

algorithm should meet the same requirements as those set for key scheduling algorithms.

In [66] a number of design criteria for key scheduling algorithms are proposed. In particular

it is advised that the key schedule provides some guarantee of key/ciphertext Strict Avalanche

Criterion and Bit Independence Criterion. In addition each bit should be used by round ~ of

a R-round cipher. In [67] it is stated that the key schedule should have a high diffusion, and

should behave irregularly with regard to the components of the round function of the block

cipher.

In [67] a distinction is made between two kinds of key schedules namely pseudo-random key

generation and key evolution. In the pseudo random approach the cipher key is used to seed

a pseudo-random noise generator. The output of the pseudo-random noise generator serves

as the round key. The relationship between the cipher key and the round keys generated

in this way are complex. However, these schemes are slow and keys cannot be generated

online (during encryption). Thus, pseudo-random round key generation schemes incurs a

performance penalty. The key evolution strategy uses the cipher key as key to the first round

and derives each round key from the previous round key by means of a transformation 'ljJ.

IIt should be noted that it is not recommended to use hash functions in this mode. Dedicated hash functions

are not designed to be used as secret key encryption algorithms, and are likely to exhibit characteristics which

make them susceptible to linear and differential cryptanalysis.

Design Criteria for Dedicated Hash Functions

The transform 1/J may be described by bit permutations, rotations or elements from coding

theory and abstract algebra. The advantage of this scheme is that it is fast and the round keys

may be derived online. A disadvantage is that the underlying structure of the transform 1/J

may be exploited by an attacker.

From the preliminary study of SHA and SHA-l it is observed that the key evolution strategy

is used by the message expansion algorithms. As noted above it was shown that the underly-

ing structure of the message expansion algorithm may be exploited to enable the construction

of collisions for a limited number of rounds (see Chapter 9). In both [66] and [67] the impor-

tance of diffusion of key bits in the key scheduling algorithm is stressed. It is noted that the

diffusion in the message expansion algorithm used by SHA is poor. Although the diffusion

properties are improved by the addition of a rotation operator in SHA -1, it is unknown if it

provides sufficient protection.

Addition mod 232 is used by all the dedicated hash functions based on MD4. The addition

mod 232 contributes to the avalanche effect in the dedicated hash function. The contribution

to the avalanche effect is ascribed to the propagation of the carry bit in addition operations.

Additive constants are used by all members of the MD4 family of hash functions. MD4,

SHA, SHA-l and HAVAL use different constants in each round, while MD5 uses a differ-

ent additive constant for each step. The use of an additive constant contributes little to the

collision resistant property of the hash function. The attacks by Dobbertin, which results in

collisions for hash functions require the derivation and solution of sets of difference equa-

tions. The constants are easily cancelled from these difference equations, and therefore does

not contribute to the difficulty of solving the set of difference equations. The use of different

Design Criteria for Dedicated Hash Functions

additive constants in each round does add to the pre-image resistance of a hash function.

However the use of a different additive constant for each step requires additional storage

capabilities and is considered unjustified if compared to the increase in security obtained

(especially in terms of collision resistance).

A single step in each of the dedicated hash functions belonging to the MD4 family is com-

posed by combining addition mod 232, rotation operations and Boolean mappings or S-

boxes. These steps are repeated a number of times (at least 48 times). A number of these

steps represent a single round of the hash function. Each step compresses n 32-bit variables

to a single 32 bit variable. In [57] the use of genetic algorithms to find solutions to expres-

sions of the form encountered in dedicated hash functions is investigated. From the results in

[57] it is observed that a single step in a dedicated hash function is neither collision resistant

nor pre-image resistant. It is more difficult to find collisions for a number of these steps used

iteratively. However it was shown that for MD4 [14] and MD5 [12] it is possible to find

collisions for these iterated structures.

The Damgard-Merkle constructions [22] [23] shows that a collision resistant hash function

may be constructed from a collision resistant function. The general design of the MD4 family

resembles the iterative structure of the Damgard-Merkle construction. The security offered

by the Damgard-Merkle construction would be attainable if the compress function of the

dedicated hash functions are collision resistant. It is observed that the compress functions of

these dedicated hash functions are themselves constructed by iteratively applying a number

of similar steps. However, the ability to construct collisions for single steps and even a num-

ber of consecutive steps, (cryptanalysis of MD4 and MD5) implies that the level of security

offered by the Damgard-Merkle construction can not be attained. It should however be noted

that this does not imply that collisions are easily constructed for these hash functions.

In this chapter the basic building blocks encountered in dedicated hash functions are con-

sidered. Observations regarding the contribution of these building blocks to the security of

dedicated hash functions derived from MD4 are made. The security offered by Boolean

Design Criteria for Dedicated Hash Functions

mappings are considered. It is believed that randomly generated Boolean mappings offer

more security than the bitwise Boolean mappings currently employed by the majority of the

members of the MD4 family. The functional advantages of using bitwise Boolean mappings

rather than randomly generated Boolean mappings outweighed the additional security ob-

tained from randomly generated Boolean mappings in the design of the MD4 family (with

the exception of Tiger). Rotations complicate the task of the cryptanalyst considerably and

is considered a valuable building block. Specific attention is given to the message expansion

algorithm. It is observed that the message expansion algorithm is similar to key schedule

algorithms. Based on this observation and the results obtained from the analysis of the mes-

sage expansion algorithms used by SHA and SHA-I, it is proposed that message expansion

algorithms should exhibit properties similar to that required for key scheduling algorithms.

Specific attention needs to be given to the diffusion properties of message expansion algo-

rithms. Additive constants contribute little to the collision resistance property of the hash

functions considered. Addition mod 232 adds to the diffusion process in the hash function

due to the properties of the carry bit. The building blocks used in the MD4 family are com-

bined into a single step, which is used iteratively. It is known that the individual steps are

not collision resistant and consequently it is not known if the compress function constructed

from these individual steps is collision resistant. If the step functions could be replaced by

collision resistant one way functions, the resulting compress function would also be colli-

sion resistant and one-way according to the Damgard-Merkle construction. It is not known

if collision resistant one way functions exist.

Cryptographic hash functions are important primitive building blocks in information securi-

ty. These functions form the comer stone of numerous authentication protocols, encryption

algorithms and digital signatures. These cryptographic primitives are vital for creating a

secure electronic commerce environment. Electronic commerce protocols such as SET and

EMV rely on the existence of cryptographic hash functions. The two properties that make

hash functions indispensable in cryptographic applications, are collision resistance and one-

wayness. Throughout this dissertation we paid specific attention to the property of collision

resistance. The property of collision resistance is vital for the non-repudiation service ob-

tained through digital signatures.

However, designing hash functions that exhibit this property has proven to be extremely

difficult. In the period from 1990 to 1994 a number of practical cryptographic hash functions

were designed and implemented. These cryptographic hash functions include MD4, MD5,

SHA, SHA -1, HAVAL, RIPEMD-128 and RIPEMD 160. It was thought that these algorithms

exhibited the properties of collision resistance and one-wayness. However in 1996 Dobbertin

demonstrated that MD4 is not a collision resistant hash function. Within months the result

was extended to RIPEMD-128 and MD5. One of the objectives of this dissertation was to

generalise these attacks, apply it to other hash functions, and then derive design criteria that

will defeat the generalised attack.

In pursuit of this objective a general introduction to cryptographic hash functions is presented

in Chapters 1,2,3,4. Chapter 1 introduced the relevant definitions and concepts surrounding

cryptographic hash functions. Once the relevant concepts and definitions were in place, a

number of generic attacks against cryptographic hash functions were considered in Chapter

3. Based on the definitions in Chapter 1 and the generic attacks presented in Chapter 3, a

number of high level functional and security requirements were formulated. Given these

requirements, a number cryptographic hash function designs were reviewed, including the

MD4-family of functions.

Chapter 12

After introducing the relevant concepts and definitions regarding cryptographic hash func-

tions, a detailed description and re-construction of the attack on MD4 as formulated by

Dobbertin is presented in Chapter 6. Using a novel approach, an alternative solution is p-

resented which illustrates that a speed-up factor of 64 of the attack on MD4 as formulated

by Dobbertin, can be achieved. In Chapter 7 the attack on MD5 as formulated by Dob-

bertin is considered. The attack is reconstructed from the source code used by Dobbertin to

construct the collisions for MD5. Of particular interest are the techniques used to solve the

non-linear Boolean equations. In Chapter 8 the attacks on MD4 and MD5 are generalised.

The generalised attack presents a framework for the analyses of all iterated hash functions. In

Chapters 9 and 10 the generalised attack is applied to SHA and HAVAL. It is shown that the

generalised attack can be applied to reduced versions of SHA and HAVAL. The new results

obtained for the HAVAL hash function indicates that three round HAVAL should not be used

for cryptographic applications. To the best of our knowledge this is the first cryptanalytical

result that has been published regarding the HAVAL cryptographic hash function.

In Chapter 11 we conclude this dissertation by presenting design criteria for dedicated cryp-

tographic hash functions. The design criteria are based on the lessons learned from the

analysis of MD4, MD5, SHA, SHA-l and HAVAL. It is the intention that the application of

these design criteria will defeat the generalised attack presented in Chapter 8.

In this dissertation the attacks on MD4 and MD5 were generalised and applied to the SHA

and HAVAL hash functions. Design criteria were proposed to defeat this generalised attack.

It remains to determine the full extent to which the generalised attack presented in Chapter

8 can be applied to a number of dedicated cryptographic hash functions. It may prove in-

teresting to apply this technique to a number of the Advanced Encryption Standard (AES)

candidates to determine the difficulty of obtaining collisions for these cryptographic primi-

tives. Another topic of interest lies in the design of message/key expansion algorithms. The

use of strong diffusion structures such as those proposed by Massey in such a design may

prove to be a challenging and interesting topic.

	Front
	Chapters 1-4
	Chapters 5-8
	CHAPTER 9
	CHAPTER 10
	CHAPTER 11
	CHAPTER 12
	Back

