
CHAPTER 5: GENERAL DEDICATED HASH FUNCTION

CONSTRUCTIONS

This chapter introduces the notion of an ideal cryptographic hash function construction. This

is an impractical construction and consequently the notion of the iterated cryptographic hash

function is introduced. This construction was independently introduced by Damgard and

Merkle and is commonly used in the construction of dedicated cryptographic hash functions.

Dedicated hash function constructions based on this construction include the MD4 family of

hash functions.

In [48] a construction is proposed for a super or ideal cryptographic hash function. The pro-

posed construction is not dependent on a secret key, but can easily be extended by adding a

key dependent element to the construction. In accordance to the definition of a hash function

in Chapter I, an input of variable length results in a hash value of a fixed length of n bits.

The construction consists of a database and a binary symmetric source. The message, X,

is submitted to the hash function. The database is searched for the submitted message. If

the message is found, the hash value associated with the message, h(X), is presented as an

output. If the message is not found in the database, the binary symmetric source generates a

binary string of n bits. This binary string is presented as the hash value h(X). The message,

X, and the newly generated hash function, h(X), is stored in the database for future use.

Thus, the ideal cryptographic hash function is secure in the sense of cryptographic hash

functions. A representation of this construction is shown in Figure 5.1.

Chapter 5

DB: Database
BSS: Binary Simmetric Source

I. An infinite number of messages exists, and consequently infinite storage space is re-

quired for the database.

2. Due to the use of binary symmetric source all users should have access to the same

database or hash function. This is impractical over large, distributed networks (such

as the Internet).

The construction for an ideal cryptographic hash function is reminiscent of the one time pad

or Vernam cipher. Both the one time pad and the ideal cryptographic hash function are con-

sidered impractical. The goal of stream cipher design is to simulate certain properties of a

one time pad while avoiding those properties which make it impractical. Likewise, when de-

signing cryptographic hash functions, the goal should be to simulate certain properties of the

ideal cryptographic hash function while circumventing the properties which are considered
impractical.

The important design requirement of apparent independence between the message and the

hash value was deduced from this construction (Chapter 4). Various building blocks that

facilitate the construction of a hash function that satisfies this requirement, is presented in

Section 5.5.

Chapter 5

The Damgard-Merkle scheme forms the basis of the majority of known hash functions. This

scheme was independently proposed in [22] and [23]. It is an iterated scheme and hash

functions constructed according to this scheme are referred to as iterated hash functions

[49]. The following three components are identified in the Damgard-Merkle scheme:

By definition the hash function should hash a message of arbitrary length to a fixed length.

The segmentation and padding feature of the Damgard-Merkle scheme allows the hashing of

messages of arbitrary length, which is one of the functional requirements.

The segmentation rule is used to divide a message of an arbitrary length into blocks of fixed

lengths. No special segmentation rules are known to exist. When segmentation is required

the message is simply processed in a serial manner, dividing the message into blocks of a

given length. The fixed block length is referred to as the elementary block length. If the

message is not a multiple of the elementary block length, padding is required (see Figure

5.2).

Message X l~~----- ,,,,,
Segmentation , ,

If the message is a multiple of the elementary hash length, padding is not required, but

dependent on the applications, it is sometimes applied.

The padding rule is used to expand a message so that the message length is an exact multiple

of the elementary block length on which the hash function operates. The padding rule can be

used to add additional information to a message (redundancy). The redundancy provides ad-

ditional security for the hash function against attacks (see Chapter 4). A number of padding

rules have been proposed. A summary of these rules follows:

1. Pad the message with O's until the padded message is a multiple of the block length.

This padding rule is ambiguous, since it is not known how many of the trailing zeros

are part of the message. This rule requires that either the length of the message be

known, or that the message length is included in the message.

2. Pad the message with a single 1 followed, if necessary, by O's until the padded mes-

sage is a multiple of the required block length. If the message is a multiple of the

required block length before padding commences, a block is added to the message.

The additional block contains a single 1 followed by O's.

3. Let z be a number of zeros and let r be the number of bits required for the binary

representation of z. Pad the message with z zeros, except for the last r bits. Let the

last r bits contain the binary representation of z. If less than r-bits remains in the last

block, additional blocks are added until r can be appended to the zero padded message.

4. Let r be the number of bits required for the binary representation of the message length.

Let b be the remaining number of bits in the last message block. Let z be the difference

in the number of bits between band r. Pad the message with z zeros, except for the

last r bits. Let the last r bits contain the binary representation of the message length.

If less than r-bits remains in the last block, additional blocks are added until r can be

appended to the zero padded message.

The choice of padding rule depends on the application. However, padding rule number 4

offers the most security. This rule prevents an attacker from deleting or adding message

blocks. If the attacker is an active eavesdropper, the threat posed by attacks such as the block

correcting attack and fixed point attacks are minimised. It does however not necessarily

prevent a legitimate participant from constructing messages of equal length using the fixed

point and block correcting attacks.

Chapter 5

In [23] Damgard presents a proof that if the round function, fO, is a collision resistant

function (CRF), the construction described results in a collision resistant hash function. This

proof holds only if the message length is appended to the message before hashing [3]. A

variant of padding rule 4 is used for dedicated hash functions such as MD4, MD5, SHA and

SHA-l.

For these reasons, padding rule number 4 or a variant thereof, is suggested for use in crypto-

graphic hash functions.

The second building block is the compress function or round function. The compress func-

tion, f 0, reduces an input block Xi of m bits to a block of n bits. The compression function

is the heart of the hash function since this is where the reduction of the message length

Damgard proved that generating a collision for a hash function based on the iterated scheme

requires that either a collision has to be generated for the round function, f 0, or a problem

has to be solved of comparable difficulty. The proof is given in the framework of compu-

tational complexity theory. This effectively implies that the conditions and requirements

imposed on cryptographic hash functions are transferred to the round function fO. In [3]

it is stated that f 0 should be a bijective function. This statement is based on the results

obtained in [30].

The definitions for MACs, OWHFs and CRHFs can be modified and applied to the round

functions used for these functions as follows:

Definition 5.1 The round function for a MAC is a function f() satisfying the following con-

ditions:

1. The description of f() must be publicly known and the only secret information lies in

the key, K, (extension of Kerkhoff's principle).

Chapter 5

3. The argument Xi is a segment of the message X. Xi has a jixed length of m bits and

the result f(K, Xi) has ajixed length ofn bits.

5. Givenf() and Xi, it is hard to determine f(K, Xi) with a probability of success sig-

nificantly higher than 2-n. Even where a large set of pairs {Xi, f (Xi, K)} is known,

where Xi have been selected by the opponent, it is "hard" to determine the key, K, or

to compute f(K, XI) for any Xi :f= XI-

Note the explicit requirement that the secret key should be used in each application of fO.
This requirement is stated to discourage the use of the initial value, IV, as a secret key, K,
in a MAC. If the IV is used as the key K, the key is used only in the first iteration of fO.
This allows an attacker to add message blocks and update the hash value without knowledge

of K. In certain hash functions, such as MD4, knowledge of the hash value and the message

allows an attacker to determine K if K is used as the IV. For this reason it is advised that

f 0 is dependent on K.

Definition S.2 The round function for a OWHF is a function f() satisfying the following

conditions:

1. The description off() must be publicly known and should not require any secret infor-

mation for its operation (extension of Kerkhoff's principle).

2. The argument Xi is a segment of the message X. Xi has a jixed length of m bits and

the result f(Xd has ajixed length ofn bits.

(a) given a Y in the image of f(), it is "hard" to find a message Xi such that f (Xi) =
Y.

Chapter 5

(b) given Xi and f(Xd it is "hard" to find a message block XI "# Xi such that

f(Xi) = f(XD·

Definition 5.3 The round function for a OWHF is a function f() satisfying the following

conditions:

1. The description of f() must be publicly known and should not require any secret infor-

mation for its operation (extension of Kerkhoff's principle).

2. The argument Xi is a segment of the message X. Xi has a fixed length of m bits and

the result f(Xi) has a fixed length ofn bits.

(a) given a Y in the image off 0, it is "hard" to find a message Xi such that f(Xi) =
y.

(b) given Xi and f(Xi) it is "hard" to find a message XI "# Xi such that f(Xi) =

f(XI).

5. The roundfunctionf() must be collision resistant: This means that it is hard to find two

distinct messages that result in the same image for the roundfunctionf().

Thus, the conditions imposed on a round function used in a MAC, OWHF or CRHF, are sim-

ilar to those imposed on the respective cryptographic hash functions. It is also interesting to

note that the conditions imposed on the round functions are similar to those defined in [3] for

one way functions (OWF) and collision resistant functions (CRF). A number of frequently

used building blocks used in the construction of round functions for secure hash functions

are identified in Sections 5.4 and 5.5.

A large number of attacks on hash functions based on the Damgard-Merkle Scheme, focuses

on the compress function [17]. Although attacks on the compress function are usually spe-

cific to the hash algorithm, the general attacks described in Chapter 3 are also applicable.

The parameters of the compress function should be chosen to render these attacks harmless.

Chapter 5

The third building block is the chaining rule. Chaining is used when the message length

exceeds the maximum allowable input length to the compress function.

When processing the message in blocks, the previous result of the compress function has to

be taken into account. This is accomplished by feeding the result from the previous compress

operation back and combine it in some way with the new block that has to be processed.

The chaining rule determines which part of the chaining variable should be fed back. This

approach is often used when a block cipher is used as a round function, since many block

ciphers has a key length that is shorter than the block length. It is advised that the full result

is fed back and used in the next iteration of the compress function.

Note that the introduction of chaining, allows attacks dependent on the chaining. These at-

tacks include meet in the middle attacks, correcting block attacks, fixed point attacks and

differential attacks (see Chapter 3 Section 3.4). The length of the chaining variables, mea-

sured in bits, should therefore be chosen to render these attacks computationally infeasible.

The interaction of the building blocks identified in the Damgard-Merkle scheme are de-

scribed as follows. For a hash function hO with a compress function JOan initial value IV
and a suitably padded message X, the interaction of the various building blocks are described

by:

Ho IV

Hi f(Xi, Hi-I) i E {I, 2, 3 ... j}

h(X) Hj.

A graphical representation of the interaction of the three building blocks are shown in Figure

5.3.

Chapter 5

i= 1,2,j

h(X) = H .
J

IV=H o
U= Chaining Rule

Z = Unit Delay

The construction shown in Figure 5.3 is specific to MDCs. For a MAC the interaction of

the compress function, f 0, the initial value, IV, the secret key, K, and a suitably padded

message, X, is described as follows:

Ho IV

Hi f(K, Xi, Hi-d i E {I, 2, 3 ... j}

h(X) Hj.

A graphical representation of the interaction of the various components of an iterated hash

function used as a MAC, is shown in Figure 5.4.

i= 1,2,....j

h(X) = H .
J

IV=H
o

U= Chaining Rule

Z = Unit Delay

K = Secret Key

A number of the better known dedicated hash functions based on the Damgard-Merkle

scheme include BCA, MD4, MD5, SHA, SHA-l, Haval, RIPEMD, N-Hash, Snefru and

Tiger.

Chapter 5

The majority of hash functions designed in recent years make use of an iterative structure

(Section 5.3). Hash functions based on iterative structures require secure round functions. A

number of conditions are imposed on the round functions (Section 5.3). Currently there are

three round function constructions in popular use. They are:

In this chapter the MD4-family construction is considered in detail. The use of block and

stream ciphers in round function constructions are considered in Appendix A.

The round function construction used for MD4 is described in [10]. This construction has

been widely adopted in the design of other hash functions such as MD5 [45], SHA-l [13],

Tiger [47] and RIPEMD-160 [15]. The round functions of these dedicated hash functions

are similar in design and construction.

Consider the iterated hash function as represented in Figures 5.3 and 5.4. Note that at most

three inputs are supplied to the round function. These inputs consist of the current message

block, Xi, the previous hash result, Hi-I, and a secret key, K. Note that the secret key

is only applicable when the construction is used as a MAC. The generalised MD4-family

construction does not allow for the inclusion of a secret key. Adaptations of this construction

that does make allowance for a secret key is presented in Appendix A.

The round function used in the MD4-family of constructions is itself an iterated construction.

The round function take as input the previous hash result Hi-I and the current message block,

Xi (see Figure 5.5).

Chapter 5

c::
.9•.... c::ro
"5 .9
E

•....
(,)

c::~ ;::l~ ~,..:.,:
"0(,) c::0 ;::l::0 0

.D ~;::l 4-<en 0~ c::Of) .9ro
r/) •....
r/) ro

~
I-<~•..........

..c -5:--......,,

The message block Xi is segmented into k sub-blocks. The previous hash result is set equal

to the initial chaining variable, C, for the round function. The set of message sub-blocks are

permutated and applied to the j'th iteration of the round functions. The chaining variable,

C, is then updated and applied to the next iteration of the round function. This process is

repeated three or four times. The permutation of the sub-block and the method used for

updating the chaining variable for each round is different for each iteration in the round

function. Each iteration of the round function is constructed from the elementary building

blocks described in Section 5.5.

This section contains descriptions of the building blocks frequently used in the construction

of round functions for cryptographic hash functions. These building blocks facilitate the

Chapter 5

fulfillment of the requirements of diffusion and confusion as defined by Shannon [46] (see

Chapter 4 Section 4.3.1). For this reason the building blocks identified in this section are

also commonly used in the construction of other cryptographic functions.

The use of bit permutations as building blocks in cryptographic primitives are considered

in [48]. A bit permutation of a vector modifies the order of the components of the vector,

without changing the values of the individual bits. In [48] it is recommended that the new bit

positions should be calculated from the old bit positions using a simple expression. As an

example, consider the simple cyclic rotation over a vector of length l. The bit in position i is

rotated over d-positions and the new bit position is given by i+d mod l. These permutations

are popular and are used in a number of dedicated hash functions, including MD4, MD5,

SHA and SHA-I.

If the bit permutation is implemented in dedicated hardware, the bit permutations can be

achieved through "hard wiring" the permutation into silicon. The price paid for this approach

is the large amount silicon required to accomplish such a task [48].

If the bit permutation is to be implemented in software on general purpose processors, a

permutation where individual bits are to be moved around should be avoided due to the re-

duction in performance. Lookup tables can be used to speed-up the bit permutation process,

but as remarked in [48] the size of the lookup tables grows exponentially, rendering this

technique infeasible. Instead it is advised that bit permutations be implemented in a block-

wise manner. Bit permutations which satisfy this requirement include vector rotations, as

described earlier. Note that the choice of a specific vector length, say 32 bits, is likely to

favour certain architectures, while putting others at a disadvantage. Thus, portability of the

algorithm is decreased.

As mentioned previously, vector rotations form popular building blocks for a number of well

known dedicated hash functions. The degree of security obtained from the use of these vector

rotations is considered inadequate in certain dedicated hash functions. The use of vector

rotations in MD4 in particular is shown to add little in terms of additional security [14], [17].

One of the reasons the vector rotations in MD4 are ineffective is that the rotation factor, d,

is a constant for each step. With the rotation constants known, the effect of the rotations

Chapter 5

can be calculated and countered. In the RC5 and RC6 encryption algorithm data dependent

vector rotations are introduced [27], [50]. It is therefore conceivable that security obtained

from vector rotations can be increased by making the rotation factor, d, data dependent when

designing dedicated hash functions.

Thus, when choosing a bit permutation the method of implementation, the portability of

the algorithm, the reduction in speed for a complicated bit permutation technique and the

required cryptographic strength should be kept in mind.

Bitwise Boolean operations are widely used in the MD-family of hash functions (MD4, MD5

and SHA-l). A bitwise Boolean operation treats all individual components of the binary

vector in the same manner. Commonly used bitwise operators are complementation, bitwise
AND, OR and XOR.

Bitwise binary operators are easily described in both hardware and software. For a processor

architecture with word length k, the bitwise Boolean operation on a vector of length n can

be split into rIl operations, if n > k. For these reasons bitwise Boolean operations are

portable, not only between different processor architectures, but also between hardware and

software platforms.

A number of desirable properties of Boolean functions are proposed in chapter 3 of [51].

These properties should be used as design criteria when constructing bitwise Boolean oper-

ations for cryptographic hash functions.

A substitution box, or S-box, is defined as an n x m mapping of a n bit vector to an m bit

vector, m and n need not be equal [51].

S-boxes are traditionally used as building blocks in block ciphers and stream ciphers. S-

boxes have not been used extensively in the design of cryptographic hash functions. An

example of a dedicated hash function that makes use of S-boxes is Tiger [47].

Chapter 5

For ease of implementation and description it is proposed to keep S-boxes small, specify a

way to generate the S-boxes at run time, or limit the number of S-boxes used [48]. When

using hardware implementations the S-boxes should be kept small due to the silicon area

required. In software S-boxes are usually contained in arrays. This limits portability due to

specific data word lengths used by specific processors.

In chapter 4 of [51] it is remarked that if m = 1 the mapping is a Boolean function. Thus a

Boolean function is a special instance of a S-box. The MD family of hash functions makes

use of bitwise Boolean functions rather than S-boxes. This choice is due to the memory and

performance penalties associated with the use of large S-boxes. It is believed that the use of

cryptographically strong S-boxes instead of bitwise Boolean operators will result in stronger

cryptographic hash functions [47]. An extensive treatment of the issue of S-box design and

analysis is given in [51].

Modular arithmetic has been identified as a building block from which hash functions can be

constructed [48]. A number of hash functions have been based on modular arithmetic [2]. In

[2] three arguments are presented in favour of using modular arithmetic:

The schemes based on modular arithmetic are classified according to the size of the modulus

used. Schemes with a small modulus (32 bits) have been proposed in [52]. These schemes

are believed vulnerable to divide and conquer attacks [3]. Schemes with a large modulus

(512 bit or more) are evaluated in [3]. It has been shown in [40] that these schemes are

insecure when used with the RSA signature scheme. The use of modular arithmetic for the

construction of cryptographically strong hash functions is considered limited [2].

Chapter 5

In this chapter, a generic construction for building MACs and MDCs that satisfies the re-

quirements presented in Chapter 4, was introduced. In particular the construction of the

iterated hash scheme used by the MD4 family of functions were considered. The design of

appropriate round functions is considered in Section 5.4 and 5.5. Commonly used building

blocks for cryptographic primitives are discussed in Section 5.5.

In this chapter the MD4 algorithm is considered. The MD4 algorithm is described followed

by the reconstruction of the analysis of MD4 as presented by Dobbertin [14]. In addition

the attack presented by Dobbertin is extended in a novel way that allows the computational

requirements to be reduced by a factor 64.

MD4 is a dedicated hash function proposed by R. Rivest [10], [44]. MD4 is an acronym

for "Message Digest 4". MD4 is an unkeyed dedicated cryptographic hash function (MDC).

MD4 is based on the iterative construction proposed discussed in Chapter 5. The MD4

algorithm was designed to meet the following criteria.

The most prominent design criterion is security. This implies that it should be computa-

tionally infeasible to find two messages, M1 and M2, that hashes to the same value. In other

words, MD4 is intended to be a collision resistant hash function. The remaining three criteria

are concerned with high speed implementation in software.

A complete definition of MD4, including the padding rule is given in [10] and [44]. Since

this chapter is specifically concerned with the cryptanalysis of MD4 it is useful to consider

the operation of MD4 before concentrating on the analysis.

Analysis of the MD4 Hash Algorithm

Before proceeding to describe the operation of MD4 it is appropriate to define the notation

used in this chapter.

32-bit word, j E {O,1,2 ... 15}

Alternative 32-bit word, j E {O,1, 2, ... 15}

Hash variables

Chaining variables after step i, i E {O, 1,2, ... 47}

X[j]
X[j]

(AA, BB, CC, DD)

MD4 is an iterated hash function. Each iteration requires the application of the compress

function. For MD4 the compress function is defined by the sequential application of three

distinct rounds. The elementary size of a message block is 512 bits. If the message is not

a multiple of 512 bits, a padding rule is used. Before the message block is processed it is

divided into 16 blocks of 32 bits each. Four 32-bit chaining variables are used to produce a

128-bit hash value. The following steps are identified in the MD4 algorithm.

Chapter 6

(a) No: Repeatfrom step 4.

(b) Yes: Continue.

3. Hash and chaining variable initial-

isation.

8. Has the entire message been pro-

cessed?

A block diagram of the steps in the MD4 algorithm is shown in Figure 6.1. A description of

each of the steps identified in the MD4 algorithm is presented next.

The first two steps ensure that the message length is a multiple of 512 bits. This allows the

message to be processed in blocks of 512 bits at a time. The padding rule is described in [10]

and [44].

Analysis of the MD4 Hash Algorithm

Ao

Bo

Co

Do

Ox67452301
OxEFCDAB89
Ox98BADCFE

The hash variables contains the hash value for each iteration and is initialised as shown

below:

AA Ao

BB Bo

CC Co

DD Do.

Steps 4-8 performs the iterative computation of the hash value. The hash value is computed

by applying three distinct rounds to each 512 bit block of the message. The hash function

derives its strength from these three rounds. The hash variables are updated once all three

rounds have been completed. If all of the 512 bit blocks have been processed the updated

hash variables contains the final hash value.

R(S, T, U, V, X, K, W, r, j)

S

(S + fr(T, U, V) + X[j] + Kr)«<wrj

R(S, T, U, V, X, K, W, r, j)

Analysis of the MD4 Hash Algorithm

X[j] j'th 32 bit word of the message, j E {O,1,2 ... 15}

r Round r r E {I, 2, 3}

Circular rotate x left byWrj bits

Modulo 232 addition of x and y.

Each round differs from the other with regard to Kr and fro The index j in X[j] is used

to permutate the 512 bit input in 32-bit blocks for each round of the hash function. In each

round W takes on one of four values.

F(X, Y, Z)

G(X, Y,Z)

H(X, Y,Z)

(X A Y) V (-,X A Z)

(X A Y) V (X A Z) V (Y A Z)

XEBYEBZ

Bitwise NOT

Bitwise XOR.

The function G (X, Y, Z) is a majority function. Thus for each bit position in X, Y, and Z the

binary value that occurs more than once is selected. The function F(X, Y, Z) is essentially a

selection function. A graphical representation of the selection function F(X, Y, Z) is shown
in Figure 6.2.

Analysis of the MD4 Hash Algorithm

Three distinct rounds are identified for MD4. These rounds constitutes the compress function

for MD4. It is therefore considered appropriate to give a detailed description of the rounds of

MD4, since all the known attacks on MD4 focuses on the compress function. The equations

describing the round functions are presented with this fact in mind.

For the first round K1 = OxOOOOOOOOand is omitted from the equations. The boolean

function II = F(X, Y, Z) for the first round. The four possible rotation constants for the

first round of MD4 are defined as:

f81

f82

f83

f84

Chapter 6

The complete set of equations for the first round are shown below:

A3 (Ao + F(Bo, Co, Do) + X [0]) <<<fsl (6.1)

D3 (Do + F(A3, Bo, Co) + X [1]) <<<fs2 (6.2)

C3 (Co + F(D3, A3, Bo) + X[2])«<fs3 (6.3)

B3 (Bo + F(C3, D3, A3) + X [3]) <<<fs4 (6.4)

A7 (A3 + F(B3, C3, D3) + X[4])«<fs1 (6.5)

D7 (D3 + F(A7, B3, C3) + X [5]) <<<fs2 (6.6)

C7 (C3 + F(D7, A7, B3) + X [6]) <<<fs3 (6.7)

B7 (B3 + F(C7, D7, A7) + X [7]) <<<fs4 (6.8)

Au (A7 + F(B7, C7, D7) + X[8])«<fs1 (6.9)

Du (D7 + F(Au, B7, C7) + X[9])<<<fs2 (6.10)

Cu (C7 + F(Du, Au, B7) + X[1O])«<fs3 (6.11)

Bu (B7 + F(Cu, Du, Au) + X[1l])<<<fs4 (6.12)

A15 (Au + F(Bu, Cu, Du) + X[12])«<fs1 (6.13)

D15 (Du + F(AI5, Bu, Cu) + X[13])«<fs2 (6.14)

C15 (Cu + F(DI5, A15, Bu) + X[14])«<fs3 (6.15)

B15 (Bu + F(CI5, D15, A15) + X[15])«<fs4 (6.16)

For the second round K2 takes on the value as defined previously. The boolean function

h = G(X, Y, Z) for the second round. The four possible rotation constants for the first

round of MD4 are defined as:

gsl

gs2

gs3

gs4

Analysis of the MD4 Hash Algorithm

The complete set of equations describing the second round are shown below:

A19 (A15 + g(BI5, 015, D15) + X[O] + K2(<<gSI (6.17)

D19 (D15 + g(AI9, B15, 015) + X[4] + K2)<<<gS2 (6.18)

019 (015 + g(DI9, A19, B15) + X[8] + K2)«<gs3 (6.19)

B19 (B15 + g(019, D19, A19) + X[12] + K2)«<gs4 (6.20)

A23 (A19 + g(BI9,CI9, D19) + X[l] + K2)«<gsl (6.21)

D23 (D19 + g(A23, B19, 019) + X[5] + K2)«<gs2 (6.22)

023 (019 + g(D23, A23, B19) + X[9] + K2)«<gs3 (6.23)

B23 (B19 + g(023, D23, A23) + X[13] + K2)«<gs4 (6.24)

A27 (A23 + g(B23, 023, D23) + X[2] + K2)«<gsl (6.25)

D27 (D23 + g(A27, B23, 023) + X[6] + K2)<<<gs2 (6.26)

027 (023 + g(D27, A27, B23) + X[IO] + K2)«<gs3 (6.27)

B27 (B23 + g(027, D27, A27) + X[14] + K2)<<<gS4 (6.28)

A31 (A27 + g(B27, 027, D27) + X[3] + K2)<<<gSI (6.29)

D31 (D27 + g(A31, B27, 027) + X[7] + K2)<<<gS2 (6.30)

031 (027 + g(D31, A31, B27) + X[ll] + K2)«<gs3 (6.31)

B31 (B27 + g(031, D31, A31) + X[15] + K2)«<gs4 (6.32)

For the third round K3 takes on the value as previously defined. The boolean function h =

H(X, Y, Z) for the third round. The four possible rotation constants for the first round of

MD4 are defined as:

hsl

hs2

hs3

hs4

Chapter 6

The complete set of equations describing the third round are shown below:

A35 (A31 + h(B31, C31, D31) + X[O] + K3)«<hsl (6.33)

D35 (D31 + h(A35, B31, C3d + X[8] + K3)«<hs2 (6.34)

C35 (C31 + h(D35, A35, B3d + X[4] + K3)«<hs3 (6.35)

B35 (B31 + h(C35, D35, A35) + X[12] + K3)«<hs4 (6.36)

A39 (A35 + h(B35, C35, D35) + X[2] + K3)«<hsl (6.37)

D39 (D35 + h(A39, B35, C35) + X[lO] + K3)«<hs2 (6.38)

C39 (C35 + h(D39, A39, B35) + X[6] + K3)«<hs3 (6.39)

B39 (B35 + h(C39, D39, A39) + X[14] + K3)«<hs4 (6.40)

A43 (A39 + h(B39, C39, D39) + X[l] + K3)«<hsl (6.41)

D43 (D39 + h(A43, B39, C39) + X[9] + K3)«<hs2 (6.42)

C43 (C39 + h(D43, A43, B39) + X[5] + K3)«<hs3 (6.43)

B43 (B39 + h(C43, D43, A43) + X[13] + K3)«<hs4 (6.44)

A47 (A43 + h(B43, C43, D43) + X[3] + K3)«<hsl (6.45)

D47 (D43 + h(A47, B43, C43) + X[ll] + K3)«<hs2 (6.46)

C47 (C43 + h(D47, A47, B43) + X[7] + K3)«<hs3 (6.47)

B47 (B43 + h(C47, D47, A47) + X[15] + K3)«<hs4 (6.48)

A graphical representation of the three rounds that constitutes the compress function of MD4

is shown in Figure 6.3 (derived from [11D.

AA = Ao

BB = Bo

CC = Co

DD = Do

A47 + AA

B47 + BB

C47 + CC

D47+DD

Analysis of the MD4 Hash Algorithm

BB, CC, and DD. If there are unprocessed message blocks remaining, Ao, Bo, Co, and Do

contains the new initial values for the next iteration of MD4.

The MD4 hash function has been extensively analysed since its introduction in 1990 [10],[44].

In 1991 an attack on the last two rounds of MD4 was presented by Bosselaers and den Boer

[11]. An unpublished attack on the first two rounds of MD4 is credited to Merkle. In 1994

Vaudenay published an attack on the first two rounds of MD4 [53]. In 1995 Dobbertin p-

resented a technique to cryptanalyse the MD4 hash function [14]. The result included in

this chapter builds on the results obtained by Dobbertin by presenting an algorithm which

requires 0(26) times less iterations for finding a collision.

This contains selected results obtained from the cryptanalysis of MD4. The remainder of

this chapter is organised as follows. First the notation used for the cryptanalysis of MD4 is

introduced. A review of the attack in [14] is then presented. This is followed by a description

of an alternative algorithm which can be used to speed up the attack proposed in [14]. The

results obtained from the use of the alternative algorithm are then considered. The source

code that implements this attack is included for reference purposes as Appendix C.

Before proceeding with a description of the cryptanalysis of MD4 the following notation is

introduced.

x [j] 32-bit word

j E [1,16]

M1 Message 1

M2 Message 2

Zi Chaining variable for M1 after step i

Zi Chaining variable for M2 after step i

Z E {A,B,C,D}

i E [0,47]

Chapter 6

X[12] = X[12] + 1

COMPRESS;- = Value of chaining variables after steps

y to z of the compress function is performed.

(A- - A B- - i3. e- - C- D - D)z z, z z, z z, z z

z<<<X

_z<<<x

Left circular rotation of Z by X bit positions.

_(Z<<<X).

The following relationship exists between the notation used in [14] and the notation used in

this appendix.

V D15 A* A19

B Bll V D15 B* B19

C Cll W C15 B* B19

U A15 W C15 C* C19

U A15 Z B15 C* C19

Z B15 D* D19·

The cryptanalysis of MD4 is described in [14]. The attack could be viewed as a divide and

conquer attack. The attack is divided into two parts. The first part is concerned with the

establishment of a so-called inner almost-collision. The second part of the attack is based

on a differential attack and the matching of initial values. The differential attack can only

succeed if the criteria set for the establishment of the inner almost-collisions has been met.

Analysis of the MD4 Hash Algorithm

In order for the differential attack to be successful the above condition has to be met. Thus

obtaining an inner almost-collision is central to the success of the attack described in [14].

The above condition implies that the following relationship should hold between the chaining

variables obtained for message M1 and M2 after step 19.

A19

B 1<<<2519 -

Using these relationships and conditions the following set of non-linear equations were de-
rived in [14].

1

F(.A15, Bll, Cll) - F(A15, Bll, Cll)

F(D15, .A15, Bll) - F(D15, A15, Bll)

F(015, D15, .A15) - F(C15, D15, A15)

G(fh5, 015, D15) - G(B15, C15, D15)

G(.A19, B15, 015) - G(A19, B15, C15)

G(D19, .A19, B15) - G(D19, A19, B15)

.A~<29 _ A~<29

D~<25 _ D~<25

0~<21 _ C~<21

B~<13 _ B~<13

A15 - .A15

(6.50)

(6.51)

(6.52)

(6.53)

(6.54)

(6.55)D15 - D15

C15 - 015 +
oi'§<23 - ci'§<23

B15 - B15 - 1+
Bi'§<19- Bi'§<19

Chapter 6

X[13]

X[14]

X[15]

X[O]
X[4]

X[8]

X[12]

Dll

All

Arbitrary

C~<21 - Cll - F(DI5, A15, Bll)

B~<13 - Bll - F(CI5, D15, A15)

Alt<29 - A15 - F(B15, C15, D15) - K1

D'Ji<27 - D15 - F(AI9, B15, C15) - K1

C~<23 - C15 - F(DI9, A19, B15) - K1

B~<19 - B15 - F(CI9, D19, A19) - K1

D~<25 - F(AI5, Bll, Cll) - X[13]

A~<29 - F(Bll, Cll, Dll) - X[12].

(6.58)

(6.59)

(6.60)

(6.61)

(6.62)

(6.63)

(6.64)

(6.65)

(6.66)

B15 = B15 - G(C\9, D19, lh9) + G(C19, D19, A19) +
.8lt<19 - Blt<19 - 1

615 C15 - G(DI9, A19, .815) + G(DI9, A19, B15) +
6~<23 _ C~<23

D15 6~<21 _ C~<21

D15 D15 - G(AI9, B15, 615) + G(AI9, B15, C15)

Cll D~<25 - D~<25.

(6.68)

(6.69)

(6.70)

(6.71)

The solutions obtained for the above equations should also satisfy the following two condi-
tions.

G(.815,615,DI5) - G(BI5,CI5,DI5)

F(615, D15, A15) - F(CI5, D15, A15)

(6.72)

(6.73)

Analysis of the MD4 Hash Algorithm

In his paper Dobbertin suggests an algorithm to solve the set of non-linear equations de-

scribed by (6.67) to (6.73). This algorithm is replicated below.

1. Choose A19, B19, G19, D19, B15 and G15 randomly. Compute B19, C\9, B15, 615, D15

and D15 as described in (6.67) to (6.71). Test if (6.72) is satisfied. If the test is passed

goto 2.

2. Take A19, B19, G19, D19, B15 and G15 found in 1 as "basic values". Change one

random bit in each of these variables, compute B19, 619, B15, 615, D15 and D15 and
test if (6.72) is satisfied. Then test if the left 4 bits of (6.73) are equal to O. If this

test is passed take the corresponding values A19, B19, G19, D19, B15 and G15 as the

new "basic values". The next is doing the same as before, but now testing if the 8 left

bits of (6.73) instead of 4 bits are zero. Continue with the left 12,16 ... left bits until

(6.73) is fulfilled.

3. Now (6.72) and (6.73) are satisfied and we obtain an inner almost-collision by setting

Bll = 0 and defining All, Gll, Dll and Xli] according to equations (6.58) to (6.66).

For the inner almost-collision to be admissible, it is required that the following equation

holds:

If equation (6.74) does not hold the differential attack is unlikely to succeed. Algorithm 6.2

has to be repeated until equation 6.74 is satisfied.

In the next section an alternative algorithm for solving the above set of non-linear Boolean

equations is presented.

In this section we proceed to describe an alternative algorithm that leads to the solution of

equations (6.50) to (6.57) and the establishment of inner almost-collisions.

Analysis of the MD4 Hash Algorithm

OxOOOOOOOO
OxOOOOOOOO

The choice of A15 and A15 immediately satisfies equation (6.50). The choices for Bn and

On implies that D15 and D15 are equal. A collision can now be established by setting:

D15 OxFFFDFFFE
D15 D15

015 OxEDFFCFFF
615 OxFDFFDFFF
B15 B + B«<19 - B«<19 - 1

15 19 19

The values for D15, D15, 615 and 015 are chosen to satisfy equations (6.52) and (6.53) and
to facilitate the easy manipulation of the functions F(X, Y, Z) and G(X, Y, Z). The choice
of the relationship between B15 and B15 ensures that it is easy to find a solution to equation
(6.57). The following set of equations now needs to be solved.

F(615,DI5,AI5) - F(CI5,DI5,AI5)

G(BI5, 615, D15) - G(BI5, C15, D15)

G(AI9, B15, 615) - G(AI9, B15, C15)

G(DI9, A19, B15) - G(DI9, A19, B15)

(6.75)

(6.76)

(6.77)o
C15 - 615 +
6{t<23 - C{t<23 (6.78)

(6.79)

Thus equations (6.50) to (6.57) can be reduced to equations (6.75) to (6.79). Note that

equations (6.75) to (6.79) each contain a single unknown variable. It is now possible to

define an algorithm that has a high probability to yield an admissible inner almost-collision.

The suggested algorithm for finding an inner almost-collision is defined below:

Analysis of the MD4 Hash Algorithm

1. Choose a random value for B15 and compute B15• Repeat this step until equation

(6.75) and (6.76) are satisfied.

3. Choose a random value for D19, B19, 019 and compute B19 and G19• Repeat this step

until equation (6.78) and equation (6.79) are satisfied.

(a) If equation (6.74) holds an admissible inner collision was found. Proceed to

construct M1 and M2 as described by equations (6.58) to (6.66).

(b) If equation (6.74) does not hold, repeat this algorithm from step 1.

Once an admissible inner almost-collision is found, the differential attack described in [14]

may be used to find a collision for all three rounds of MD4.

When comparing the performance of Algorithm 6.2 with that of Algorithm 6.3, two obser-

vations are made.

It is noted that when Algorithm 6.3 is used to find an admissible inner almost-collision, only

a subset of all possible admissible inner almost-collisions is produced. This is due to the

selection of A15, A15, B15, B15, G15 and 015, When constructing an admissible inner almost-

collision the attacker is free to choose 5 variables at random. This leaves the attacker with

2160 options. Each random choice does not however guarantee an admissible inner almost-

collision. On average the attacker has to make 28 random choices for the 5 variables before

an inner almost-collision is found. This reduces the number of inner almost-collisions to an

estimated 2152. According to [14] approximately one in every nine inner almost-collisions

are admissible. Thus approximately 2149 admissible inner almost-collisions can be found

with Algorithm 6.3. It is pointed out in [14] that it is possible to construct approximately 2106

message pairs that yield a collision for each admissible inner almost-collision under the MD4

Analysis of the MD4 Hash Algorithm

hash function. Thus with the use of Algorithm 6.3 it is possible, to generate approximately

2255 message pairs that hash to the same value using MD4. When using Algorithm 6.2 the

number of message pairs that result in a collision are estimated at 2281•

Algorithm 6.3 has an advantage over Algorithm 6.2 when the number of operations required

to find an admissible inner almost-collision is considered. A practical measurement of Al-

gorithm 6.2 shows that approximately 0(214) trials are required to find an admissible in-

ner almost-collision. A similar measurement shows that Algorithm 6.3 requires on average

0(28) trials to find an admissible inner almost-collision. This represents a speedup factor of

approximately 64.

An example of two messages that were constructed using Algorithm 6.3 for finding ad-

missible inner almost-collisions is shown below. The common hash value is included for

reference.

X[O] OxD6E3C2EA X[8] Ox25BOC32D
X[l] Ox31759BA4 X[9] OxDIE9E09B
X[2] Ox09028A49 X[lO] OxEC08A64A
X[3] OxOODC9F7B X[ll] Ox32CC035A
X[4] Ox9688334C X[12] Ox669080A4
X[5] Ox6A848F6B X[13] Ox31C4794B
X[6] OxB5E292DD X[14] OxFFFFBFFB
X[7] Ox4DCC5516 X[15] OxA281EB3F

X[12] = Ox669080A5

Analysis of the MD4 Hash Algorithm

This chapter contains a concise description of the operation of MD4. Attention has been paid

in particular to the three rounds that constitutes the compress function for MD4. This is due

to the importance of these rounds in the cryptanalysis of MD4 as presented in this Chapter.

An implementation of the MD4 algorithm is attached as Appendix B.

The description of MD4 is followed by a description of the attack by Dobbertin on MD4. It

is shown that a speedup of the attack on MD4 is possible. The speedup factor is estimated

to be a factor of 64. The improvement in speed is attained at the cost of a reduction in the

number of possible messages which result in a collision. These results were also presented

at the Comsig 97 conference [56].

Chapter 6

In this chapter we begin with a concise description of the MD5 hash algorithm. We then pro-

ceed by reconstructing the attack on MD5 as formulated by Dobbertin. The reconstruction

is based on the source code used by Dobbertin to implement the attack. This is the first time

a detailed description of the attack on MD5 is published.

MD5 is a dedicated hash function proposed by R. Rivest [45]. MD5 is the successor to MD4.

MD5 is an extension of MD4. In extending MD4 to become MD5, a more conservative

approach was taken. MD5 has the following features not encountered in MD4:

7. The elementary function used in the second round was changed from (X 1\ Y) V (X 1\

Z) V (Y 1\ Z) to (X 1\ Z) V (Y 1\ (-.Z)). The intention of this change is to reduce the

symmetry in g().

The most prominent design criterion is security. In [45] it is conjectured that it is computa-

tionally infeasible to find two messages, M1 and M2, that hashes to the same value, or to find

a message that results in a specified hash value. In other words, MD5 is intended to be both

collision resistant and pre-image resistant.

A complete definition of MD5, including the padding rule is given in [45]. In view of the

analysis of MD5 it is useful to consider the operation of the algorithm.

Analysis of the MD5 Hash Algorithm

Before proceeding to describe the operation of MD5 it is convenient to introduce the follow-

ing notation:

Xj

Xj

(AA, BB, CC, DD)

(A, Bi, Ci, Di)

32-bit word, j E {O, 1,2 ... 15}

Alternative 32-bit word, j E {O,1,2, ... 15}

Hash variables

Chaining variables after step i, i E {O,1, 2, ... 47}

(a) No: Repeatfrom step 4.

(b) Yes: Continue.

3. Hash and chaining variable initial-

isation.

9. Has the entire message been pro-
cessed?

Analysis of the MD5 Hash Algorithm

MD5 is an iterated hash function based on the Damgard-Merkle construction [22], [23]. Each

iteration requires the application of the compress function. The MD5 compress function

is defined by the sequential application of four distinct rounds. The elementary size of a

message block is 512 bits. If the message is not a multiple of 512 bits, a padding rule is used.

Before the message block is processed, it is divided into 16 blocks of 32 bits each. Four

32-bit chaining variables are used, producing a 128-bit hash value. Algorithm 7.1 presents

the main steps in MD5 along with a block diagrammatic representation of the structure of

MD5 (see Figure 7.1). A description of each of the steps identified in the MD4 algorithm is
presented next.

The first two steps ensure that the message length is a multiple of 512 bits. This allows the

message to be processed in blocks of 512 bits at a time. The padding rule is described in
[45].

Ao Ox67452301
Bo OxEFCDAB89
Co Ox98BADCFE
Do Oxl0325476.

The hash variables contains the hash value for each iteration and is initialised as shown

below:

AA Ao

BB Bo

CC Co

DD Do.

Analysis of the MD5 Hash Algorithm

Steps 4-9 perform the iterative computation of the hash value. The hash value is obtained

from the application of four distinct rounds to each 512 bit block of the message. The hash

function derives its strength from these four rounds. The hash variables are updated once

all four rounds have been completed. If all of the 512 bit blocks have been processed the

updated hash variables contain the final hash value. The elementary operation within each

round is described by:

S + Ur(T, U, V) + Xj + Ii) «< Wrj

R(S, T, U, V, X, K, W, r, j)

Xj j'th 32 bit word of the message, j E {O,1,2 ... 15}

r Round r r E {I, 2, 3, 4}

z Step(r-1)·16+j

Circular rotate x left byWrj bits

Modulo 232 addition of x and y.

Each round differs from the other with regard ir. The index j in Xj is used to permutate the

512 bit input in 32-bit blocks for each round of the hash function. In each round W takes on

one of four values. For each step the additive constant Ii is unique.

i(X, Y,Z)

g(X, Y,Z)

h(X, Y,Z)

i(X, Y, Z)

(X 1\ Y) V ((,X) 1\ Z)

(X 1\ Z) V (Y 1\ (,Z))

XEBYEBZ

Y EB (X V (,Z)).

Bitwise NOT

Bitwise XOR.

The constants for ~ are defined in [45] and may be found in Appendix D which contains the

source code for an implementation of MD5.

Four distinct rounds constitute the compress function for MD5. The following equations

describe these rounds.

fs1

fs2

fs3

fs4

Chapter 7

A3 Bo + (Ao + !(Bo, Co,Do) + Xo + To)«<f
s1 (7.1)

D3 A3 + (Do + !(A3, Bo, Co) + Xl + Td«<f
s2 (7.2)

C3 D3 + (Co + !(D3, A3, Bo) + X2 + T2)<<<fs3 (7.3)

B3 C3 + (Bo + !(C3, D3, A3) + X3 + T3)<<<f
s4 (7.4)

A7 B3 + (A3 + !(B3, C3, D3) + X4 + T4)«<f
s1 (7.5)

D7 A7 + (D3 + !(A7, B3, C3) + X5 + T5)<<<f
s2 (7.6)

C7 D7 + (C3 + !(D7, A7, B3) + X6 + T6)«<f
s3 (7.7)

B7 C7 + (B3 + !(C7, D7, A7) + X7 + T7) <<<fs4 (7.8)

Au B7 + (A7 + !(B7, C7, D7) + Xs + Ts)«<f
s1 (7.9)

Du Au + (D7 + !(Au, B7, C7) + Xg + Tg)«<f
s2 (7.10)

Cu Du + (C7 + !(Du, Au, B7) + XlO + TlO(<<f
s3 (7.11)

Bu Cu + (B7 + !(Cu, Du, Au) + Xu + Tu)<<<f
s4 (7.12)

A15 Bu + (Au + !(Bu, Cu, Du) + X12 + T12)«<f
s1 (7.13)

D15 A15 + (Du + !(A15, Bu, Cu) + X13 + T13)<<<f
s2 (7.14)

C15 D15 + (Cu + !(D15, A15, Bu) + X14 + T14) «<fs3 (7.15)

B15 C15 + (Bu + !(C15, D15, A15) + X15 + T15)<<<fs4 (7.16)

gs1

gs2

gs3

gs4

Chapter 7

A19 B15 + (A15 + g(B15, G15, D15) + Xl + T16)«<gSl (7.17)

D19 A19 + (D15 + g(A19, B15, G15) + X6 + T17)«<gS2 (7.18)

G19 D19 + (G15 + g(D19, A19, B15) + Xu + TIS) «<gs3 (7.19)

B19 G19 + (B15 + g(G19, D19, A19) + Xo + T19)<<<gS4 (7.20)

A23 B19 + (A19 + g(B19, G19, D19) + X5 + T20)«<gSl (7.21)

D23 A23 + (D19 + g(A23, B19, G19) + XlO + T2d<<<gS2 (7.22)

G23 D23 + (G19 + g(D23, A23, B19) + X15 + T22)«<gs3 (7.23)

B23 G23 + (B19 + g(G23, D23, A23) + X4 + T23)«<gs4 (7.24)

A27 B23 + (A23 + g(B23, G23, D23) + X9 + T24)«<gsl (7.25)

D27 A27 + (D23 + g(A27, B23, G23) + X14 + T25)«<gS2 (7.26)

G27 D27 + (G23 + g(D27, A27, B23) + X3 + T26)«<gs3 (7.27)

B27 G27 + (B23 + g(G27, D27, A27) + Xs + T27)«<gs4 (7.28)

A31 B27 + (A27 + g(B27, G27, D27) + X13 + T2S)<<<gSl (7.29)

D31 A31 + (D27 + g(A31, B27, G27) + X2 + T29)«<gs2 (7.30)

G31 D31 + (G27 + g(D31, A31, B27) + X7 + T30)«<gs3 (7.31)

B31 G31 + (B27 + g(G31, D31, A31) + X12 + T3d«<gs4 (7.32)

hsl

hs2

hs3

hs4

Chapter 7

A35 B31 + (A31 + h(B31, C31, D3d + X5 + T32)«<hsl (7.33)

D35 A35 + (D31 + h(A35, B31, C3d + Xs + T33)«<hs2 (7.34)

C35 D35 + (C31 + h(D35, A35, B31) + Xu + T34)«<hs3 (7.35)

B35 C35 + (B31 + h(C35, D35, A35) + X14 + T35)«<hs4 (7.36)

A39 B35 + (A35 + h(B35, C35, D35) + Xl + T36)«<hsl (7.37)

D39 A39 + (D35 + h(A39, B35, C35) + X4 + T37)«<hs2 (7.38)

C39 D39 + (C35 + h(D39, A39, B35) + X7 + T3S)«<hs3 (7.39)

B39 C39 + (B35 + h(C39, D39, A39) + XlO + T39)«<hs4 (7.40)

A43 B39 + (A39 + h(B39, C39, D39) + X13 + T40)«<hsl (7.41)

D43 A43 + (D39 + h(A43, B39, C39) + Xo + T4d«<hs2 (7.42)

C43 D43 + (C39 + h(D43, A43, B39) + X3 + T42)«<hs3 (7.43)

B43 C43 + (B39 + h(C43, D43, A43) + X6 + T43)«<hs4 (7.44)

A47 B43 + (A43 + h(B43, C43, D43) + X9 + T44) «<hsl (7.45)

D47 A47 + (D43 + h(A47, B43, C43) + X12 + T45)«<hs2 (7.46)

C47 D47 + (C43 + h(D47, A47, B43) + X15 + T46) «<hs3 (7.47)

B47 C47 + (B43 + h(C47, D47, A47) + X2 + T47) «<hs4 (7.48)

is3

is4

Analysis of the MD5 Hash Algorithm

A51 B47 + (A47 + i(B47, C47, D47) + Xo + T4S)«<isl (7.49)

D51 A51 + (D47 + i(A51, B47, C47) + X7 + T49) «<is2 (7.50)

C51 D51 + (C47 + i(D51, A51, B47) + X14 + T50) «<is3 (7.51)

B51 C51 + (B47 + i(C51, D51, A51) + X5 + T5d«<is4 (7.52)

A55 B51 + (A51 + i(B51, C51, D5d + X12 + T52)«<isl (7.53)

D55 A55 + (D51 + i(A55, B51, C5d + X3 + T53)«<is2 (7.54)

C55 D55 + (C51 + i(D55, A55, B5d + XlO + T54)«<is3 (7.55)

B55 C55 + (B51 + i(C55, D55, A55) + Xl + T55)«<is4 (7.56)

A59 B55 + (A55 + i(B55, C55, D55) + Xs + T56) «<isl (7.57)

D59 A59 + (D55 + i(A59, B55, C55) + X15 + T57)«<iS2 (7.58)

C59 D59 + (C55 + i(D59, A59, B55) + X6 + T5S)«<is3 (7.59)

B59 C59 + (B55 + i(C59, D59, A59) + X13 + T59)«<is4 (7.60)

A63 B59 + (A59 + i(B59, C59, D59) + X4 + T60)«<isl (7.61)

D63 A63 + (D59 + i(A63, B59, C59) + Xu + T6d«<is2 (7.62)

C63 D63 + (C59 + i(D63, A63, B59) + X2 + T62)«<is3 (7.63)

B63 C63 + (B59 + i(C63, D63, A63) + X9 + T63)«<is4 (7.64)

AA = Ao

BB = Bo

CC = Co

DD = Do

A47 + AA

B47 + BB

C47 +CC

D47 +DD

Once the last 512 bit message block have been processed, the final hash value is given by

AA, BB, CC, and DD. If there are unprocessed message blocks remaining, Ao, Bo, Co,

and Do contains the new initial values for the next iteration of MD5.

Chapter 7

MD5 is a dedicated hash function as described in Section 7.4. As noted in Section 7.4

MD5 is an extension of MD4. MD5 was designed to be a more secure hash function and

is therefore more conservative in design than MD4. In 1996 Dobbertin presented an attack

on MD4, showing that it is possible to find collisions for MD4 in less than a second on a

personal computer. The cryptanalysis of MD4 is presented in [14]. Additional work relating

to the cryptanalysis of MD4 is presented in [17]. Dobbertin applied similar cryptanalytical

techniques to RIPEMD and found that the first two rounds and last two rounds of RIPEMD

are not collision resistant [54]. At the rump session of EUROCRYPT'96 it was announced

that it is possible to find collisions for the compress function of MD5 [54]. An outline of

this attack was published in [55]. In [12] it is stated that using these techniques, the attack

requires approximately 10 hours on a personal computer with a Pentium processor. From

these publications it appears as if the techniques employed in the cryptanalysis of MD5 are

similar to those used on MD4 and RIPEMD.

The attack on MD5 as described in this chapter is based mostly on the notes of Antoon

Bosselaers and the C source code developed by Dobbertin.

Z Message word, chaining variable or a collection of chaining variables.

Z Alternative value for Z.

-Z>>>Y = -(Z>>>Y) bits.

Analysis of the MD5 Hash Algorithm

The attack on MD5 is based on the assumption that all the message words are identical except

for one message word Xi. The difference between Xi and Xi is given by:

where ~ is a 32 bit word with a small Hamming weight. For the attack on MD5 as described

by Dobbertin in [12] and [55], the following choices are made:

(7.66)

(7.67)

It is stated in [55] that it may be possible to utilise other message words as well as other

values for~. The message word X 14 is used in equations (7.15) (7.26), (7.36) and (7.51)

(once in each round). Using the notation defined in Section 7.5.1 the following definitions

are presented.

Value of chaining variables after equations

y to x of the compress function was applied to the message.

Value of chaining variables after equations

y to x of the compress function was applied to the modified message.

----------- 7.15
COMPRESs+:~g - COMPRESS7.26 = 0

7.36 ----------- 7.36
COMPRESS7.51 - COMPRESS7.51 = 0

If these conditions are met, so-called inner collisions are established. The attacker then has

to find suitable message words which would link equation (7.26) to equation (7.36). From

the above it appears that the attack on MD5 is a divide and conquer attack. Three phases are

identified in this attack.

Analysis of the MD5 Hash Algorithm

The inner collisions may be found by deriving two sets of difference equations (one for each

step). These equations then has to be solved simultaneously due to the large overlap in words.

At the same time a link between these equations has to be sought.

Each of these steps are discussed in a separate section in this chapter. Reference implemen-

tations are attached as appendices. An efficient technique exists to determine if solutions to

certain Boolean expressions of a particular form exists. This technique is common to the first

two phases of the attack and is therefore discussed in a separate section. Use is also made of

the continuous approximation techniques used in the analysis of MD4 and RIPEMD.

The first phase deals with the solution of a set of difference equations with the specific aim
of finding an inner collision, such that equation (7.68) is satisfied. The difference equations
are derived from equations (7.15) to (7.26) and are written as:

(C15 - DI5f»/s3 - (\5 - DI5f»/s3

(B15 - CI5f»/s4 - (fh5 - C'15f»/s4

(A19 - Bl5f»gsl - (..419 - ih5f»gsl

(D19 - Al9f»gs2 - (D19 - ..419f»gs2

(C19 - Dl9f»gs3 - (619 - Dl9f»gs3

X14 - Xl4. (7.70)

1(CI5, D15, A15) - 1((\5, D15, A15) (7.71)

g(BI5, C15, D15) - g(ih5, 615, D15) (7.72)

g(AI9, B15, C15) - g(..419, fh5, 615) (7.73)

C15 - 615 + g(DI9, A19, B15) -

g(DI9, A19, ih5) (7.74)

B15 - ih5 + g(CI9,DI9,AI9)-

g(619, D19, ..419) (7.75)

Analysis of the MD5 Hash Algorithm

AI9 - AI9 + g(BI9, GI9, DI9) -

g(BI9, GI9, DI9) (7.76)

DI9 - DI9 + g(A23, BI9, GI9) -

g(A23, BI9, GI9) (7.77)

GI9 - GI9 + g(D23, A23, BI9) -

g(D23, A23, BI9) (7.78)

BI9 - BI9 + g(G23, D23, A23) -

g(G23, D23, A23) (7.79)

A23 - A23 + g(B23, G23, D23) -

g(B23,G23,D23) (7.80)
- - (7.81)D23 - D23 + XI4 - XI4·

Equations (7.70) to (7.81) may be simplified by making appropriate choices for certain chain-

ing variables. From equation (7.81) the following condition is imposed on D23 and D23:

By setting A23 = A23 and BI9 = BI9 the conditions imposed by equations (7.80) and (7.79)

are satisfied if:

Equations (7.84) and (7.85) are satisfied relatively easily due to the low complexity and

consequent ease with which the Boolean function gO can be manipulated. If equations

(7.84) and (7.85) holds, a high probability exists that:

g(D23, A23, BI9) = g(D23, A23, BI9).

Analysis of the MD5 Hash Algorithm

(C D »:»gs3 (C D- »:»gs3 - (D- D):»>gs323 - 23 - 23 - 23 - 23 - 23

Given the above assumptions, the set of difference equations from (7.70) to (7.81) may be
reduced to:

(C15 - Dl5f:»fs3 - (G15 - Dl5f:»fs3

(B15 - GI5»:»fs4 - (B15 - Gl5f:»fs4

(A19 - Bl5f:»gsl - (A19 - Bl5f:»gsl

(D A »:»gs2 (D- A-):»>gs219 - 19 - 19 - 19

(G19 - Dl9f:»gs3 - (G19 - ih9f:»gs3

Xl4 - X14· (7.89)

!(GI5,DI5,AI5) - !(GI5,DI5,AI5) (7.90)

g(BI5, G15, D15) - g(BI5, G15, D15) (7.91)

g(AI9, B15, G15) - g(AI9, B15, G15) (7.92)

C15 - G15 + g(DI9, A19, B15) -

g(ih9, A19, B15) (7.93)

B15 - B15 + g(CI9, D19, A19) -

g(GI9, ih9, A19) (7.94)

A19 - A19 + g(BI9, G19, D19) -

g(BI9, G19, D19) (7.95)

D19 - D19 + g(A23, B19, G19) -

g(A23, B19, GI9). (7.96)

Analysis of the MD5 Hash Algorithm

Valid solutions to C15, (\5 and D15 may be found by setting:

substituting equations (7.98) and (7.66) in (7.97) the following expression for C15 is ob-

tained.

((_1)»>183 + 1«<9)«<183 + D15

(-1 + 1«<9)«<183 + D15

(-1 + 1«<9)«<17+ D15.

(7.99)

(7.100)

(7.101)

With equations (7.98) and (7.101) in hand the difference between C15 and 615 is obtained

as:

615 - C15

615 - C15

((-1 + 1«<9)«<17+ D15) - (D15 -1)

((-1 + 1«<9)«<17+ 1

Ox03FEOOOl.

(7.102)

(7.103)

(7.104)

C15 and 615 are easily computed as:

OxFEOOFFFF

OxOlFFOOOO.

(7.106)

(7.107)

(7.108)

(7.109)

Analysis of the MD5 Hash Algorithm

This simplification is a direct result of the manipulation of the bitwise Boolean function gO.
With these simplifications the condition imposed by expression (7.68) may be written as:

with:

cSl OxOOOOOOOO (7.112)1

cSl OxOOOOOOOO (7.113)2

cSl Ox08000000 (7.114)3

cSl OxF8000000. (7.115)
4

o X14 - X14 - (GIS - D1Sf»js3 + ((\s - D1Sf»js3. (7.116)

- <<<j 4 - <<<j 4 -a GlS-G1S+j(G1S,D1S,A1S) s -!(G1s,D1S,A1S) s -B1S+B1S(7.117)

- <<< 3 - - <<< 3 -OBIS - B1S + g(B1S, GIS, D1S) gs - g(B1S, GIS, D1S) gs - A19 + A19 (7.118)

o (D19 - A19f»gs2 - (D19 - A19f»gs2 -

g(A19, B1S, GIS) + g(A19, Fits, (\s)
»> 3 - - 3 -(G19 - D19) gs - (G19 - D19f»gs - GIS + GIS -

g(DI9, A19, B1S) + 9(DI9, A19, Fits)
- >>> 4 - <<<S »> 4 -(A19 - A19) gs - (A19 - A19 - 1) gs - B1S + B1S -

g(G19,D19,A19) + g(G19,D19,A19)

A19 - A19 + g(B19, G19, D19) - g(B19, G19, D19)

D19 - D19 + g(A23, B19, G19) - g(A23, B19, C\9) -

(D23 - A23f»gs2 + (D23 - A23f»gs2.

(7.121)

(7.122)

A solution to equations (7.89) to (7.96) will probably result in an inner collision for the first

two rounds of MD5, given the assumptions and choices described earlier in this section.

Algorithm 7.2 presents the procedure used by Dobbertin to find a solution to the set of

difference equations as defined by equations (7.89) to (7.96).

Analysis of the MD5 Hash Algorithm

1. Make initial choicesfor D15, G15, (\5, D19 and D19 as defined by equations (7.105)-

(7.109). Set a counter n = O.

4. Choose a random value for B15 and calculate fh5 from the result obtained in step 3.

Proceed to step 6.

5. 1fn > 0 use the values for A15Basic' B15Basic and G15Basic as determined in step 14.
Choose values with a small Hamming distance from these basic values for A15, B15

and G15 and proceed to step 6.

10. Determine, for each valid value of A19 and A19, a possible solution to (7.119) by

determining all possible valid values for B15 and fh5 (note that infuture computations,

these values for B15 and fh5 should be used, instead of the values computed in step
4).

11. Confirm whether equation (7.118) holds for the newly computed results obtained for

B15, H15, A19 and A19.

12. If equation (7.118) holds, confirm if equation (7.117) holds. If equation (7.118) does

not hold, proceed to step 2.

14. (a) If the left 4· n bits of equation (7.120) are equal to zero, set n = n + 1. Preserve

the current values for A15, B15 and G19 as A15Basic' B15Basic and G19Basic·

(b) If 0 < n < 8 and the left 4· n bits of equation (7.120) are not equal to zero,

return to step 5.

(c) If the left 4· n bits of equation (7.120) are not equal to zero, and n = 0 return to

step 1.

Analysis of the MD5 Hash Algorithm

15. If n = 8, determine if the assumptions made when reducing the set of difference e-

quationsfrom equations (7.70) - (7.81) to equations (7.116) - (7.123) holds. Confirm
the validity of equations (7.78) - (7.81). Specifically confirm whether equation (7.123)

holds. If all of these conditions are satisfied, there exists a high probability that an

inner collision was found. If any of these conditions are not satisfied, return to step 1.

Algorithm 7.2 may be modified to restart after a number of iterations to prevent dead ends,

while searching for a solution. An algorithm which allows the construction of all possible

solutions to an expression of a certain form is described in Section 7.5.6. Algorithm 7.2

produces an inner almost collision for the first two rounds of MD5 in less than one hour on

a 120 MHz Pentium Pc. An implementation of Algorithm 7.2 is attached as Appendix E.

The second phase is similar to the first phase insofar as it involves the solution of a set of
difference equations, with the specific aim of finding an inner collision such that equation
(7.69) is satisfied. The difference equations are derived from equations (7.36) to (7.51) and
are written as:

(B35 - C35f»hs4 - (B35 - C35f»hs4

(A39 - B35f»hsl - (..439 - ih5f»hsl

(D A)»>hs2 (D- A- »»hs239 - 39 - 39 - 39

(C39 - D39f»hs3 - (039 - D39f»hs3

(B C)»>hs4 (B- C-)»>hs439 - 39 - 39 - 39

X14 - X14 (7.124)

h(B35, C35, D35) - h(ih5, C35, D35) (7.125)

h(A39, B35, C35) - h(..439, ih5, C35) (7.126)

h(D39, A39, B35) - h(D39, ..439, ih5) (7.127)

B35 - B35 +
h(C39,D39,A39) - h(039,D39,..439) (7.128)

A39 - ..439 +
h(B39, C39, D39) - h(ih9, 039, D39) (7.129)

D39 - D39 +
h(A43, B39, C39) - h(..443, 1339, 039) (7.130)

C39 - 039 +
h(D43, A43, B39) - h(D43, ..443, ih9) (7.131)

Analysis of the MD5 Hash Algorithm

B39 - B39 +
h(C43,D43,A43) - h(043,D43,A43) (7.132)

A43 - A43 +
h(B43, C43, D43) - h(B43' 043, D43) (7.133)

D43 - D43 +
h(A47, B43, C43) - h(A47, B43, 043) (7.134)

C43 - 043 +
h(D47, A47, B43) - h(D47, A47, B43) (7.135)

B43 - B43 +
h(C47,D47,A47) - h(047,D47,A47) (7.136)

o A47 - A47 +
i(B47, C47, D47) - i(B47, 047, D47) (7.137)

o D47 - D47 +
i(A51, B47, C47) - i(A51, B47, 047) (7.138)

o C47 - 047 + X14 - X14. (7.139)

Two stages are distinguished in this phase of the attack. The first deals with the differen-

tial properties of the set of equations and the second deals with the solution of the set of

difference equations.

Before proceeding to find solutions to equations (7.124) to (7.139) the following observations

are made. Dobbertin defines the differences for the chaining variables B39, A43, C43 and D43

as:

A43 A43 - Ei (7.140)

B39 B39 - d (7.141)

C43 C43 - E~ (7.142)

D43 D43 - d (7.143)

(7.144)

Chapter 7

c2 Ox40004000 (7.145)1

d Ox80004000 (7.146)

c2 OxFFFBFEOO (7.147)
3

c2 Ox40000200. (7.148)4

The values chosen for ci, c~, c~, and d may be obtained from a differential attack. The
differential attack is applied to equations (7.132) to (7.139). By starting at equation (7.139)
and working back to equation (7.132), the following differential relationships are observed:

C47 - 047

D47 - D47

A47 - A47
B43 - .8

43

X14 - X14

i(A51, B47, 047) - i(A51,B47, C47)

i(B47, 047, D47) - i(B47, C47, D47)

(B47 - C47 f»hs4 - (B47 - 047 f»hs4 -

h(C47, D47, A47) + h(047' D47, A47)

(C47 - D47 f»hs3 - (047 - D47)»>hS3 -

h(D47, A47, B43) + h(D47, A47, .843)

(D47 - A47 f»hs2 - (D47 - A47 f»hs2 -

h(A47, B43, C43) + h(A47, .843, 043)

(A47 - B43f»hsl - (A47 - .843f»hsl -

h(B43, C43, D43) + h(.843' 043, D43)

(B43 - C43f»hs4 - (.843 - 043)»>hs4 -

h(C43, D43, A43) + h(043' D43, A43)

(7.149)

(7.150)

(7.151)

C47 - C47 ~

Ox00000200

By setting A51, B47 and 647 to zero and observing the difference obtained from equation

(7.149), equation (7.150) yields:

Analysis of the MD5 Hash Algorithm

For randomly chosen values for A51, B47 and 047 the relationship defined in equation (7.158)

holds with a probability of 19%. Consider equation (7.151). By setting B47, 047 and D47

to zero and by observing the differential values defined by equations (7.157) and (7.158) the

following difference is obtained from equation (7.151).

For randomly chosen values of B47, 047 and D47 the relationship defined by equation (7.159)

holds with a 19% probability. By setting A47 to one and B47, 047 and D47 to zero, we obtain

the following differential from equation (7.152).1

For randomly chosen values of A47, B47, 047 and D47 the relationship in equation (7.160)

holds with a probability of 33%. By setting 047 and D47 to zero and by setting A47 and 1343

to -I, the following relationship is observed from equation (7.153).

The relationship in equation (7.161) holds with a probability of 11% if the values for 047,

D47, A47 and 1343 are chosen at random and the previously determined differential values

are observed. From equation (7.154) the following differential relationship is observed by
- - - -setting D47 equal to zero, A47 and B47 to -1 and 043 to - OxFFFBFEOO.

This relationship holds with a probability of 8% for randomly chosen values for D47, A47,

1347 and 043• If the following settings are made:

A47 OxO 0 0 0 0 0 0 0

B43 OxOOOOOOOO

043 -OxFFFBFEOO

D43 -(Ox4 0000200 + Ox4 0000200»)

'This relationship only holds when (-C47)»>hs4 = -(C47)»>hs4

Analysis of the MD5 Hash Algorithm

Equation (7.163) holds with a probability of 5% if A47, B43, 043 and D43 are chosen at

random and the previously computed differentials are used. Consider equation (7.156). By

setting:

B43 OxOOOOOOOO
043 - OxFFFBFEO 0
D43 -(Ox4 0000200 + Ox400 00200))
A43 Ox4 0000200 - Ox4 0004 000

- - -This equation holds with a probability of 1.8% for randomly chosen values for B43, C43, D43

and A43•

Let Pr(~i,j,k,l) denote the probability that a differential associated with a specific step holds.

The differential attack is summarised in Table 7.1.

{i, j, k, I} Ai - Ai Bj - Bj Ck - Ok Dl-Dl Pr(~' 'kl)t,J, ,

{51, 47, 51, 51} 0 0 0 0 -

{51,47,47,51} 0 0 OxOOOOO200 0 1.0

{51, 47, 47, 47} 0 0 OxOOOO0200 OxOOOOO200 0.19

{47,47,47,47} OxOOOOOOOO 0 OxOOOO0200 OxOOOO0200 0.19

{47,43,47,47} OxOOOOOOOO OxFFFCOOOO OxOOOO0200 OxOOOO0200 0.33

{47,43,43,47} OxOOOOOOOO OxFFFCOOOO OxFFFBFEOO OxOOOO0200 0.11

{47, 43, 43, 43} OxOOOOOOOO OxFFFCOOOO OxFFFBFEOO Ox40000200 0.08

{43, 43, 43, 43} Ox40004000 OxFFFCOOOO OxFFFBFEOO Ox40000200 0.05

{43,39,43,43} Ox40004000 Ox80084000 OxFFFBFEOO Ox40000200 0.018

Analysis of the MD5 Hash Algorithm

Let Pr(~) denote the probability that the differential pattern in Table 7.1 holds. Assuming

statistical independence between successive steps the probability that the differential attack

holds is approximately:

However, a practical implementation has shown that the assumption of statistical indepen-

dence is not valid. There exists a high probability that, given that one differential is satisfied,

that the following differential will also be satisfied. A practical implementation of the differ-

ential attack has shown that the probability that the differential attack described in Table 7.1

holds is approximately:

1
Pr(~) = 26000'

It appears that there exists a number of differentials which may be used instead of those

shown in Table 7.1.

If the following constraints are imposed on B39, A43, C43 and D43 the probability that the

differential attack holds is increased. Choose A43 at random except for bits 10, 15 and 31

which should be set to one and bit 19 which should be set to zero. C43 may be chosen at

random except for bits 15 and 31 which should be set to one and bits 10 and 19 which should

be set to zero2• Let D 43 be specified by:

where 11 is a 32 bit binary vector with a low Hamming weight. In a similar fashion let B39

be defined as:

The condition imposed by expression (7.69) for determining an internal collision may be

re-written as:

4 ---------- 7.44
0= COMPRESS+.·tl - COMPRESS7.51

Analysis of the MD5 Hash Algorithm

If the constraints described above are imposed on B39, A43, C43 and D43 the probability that

expression 7.167 holds is approximately:

1
Pr(~) = 1500'

Thus, the differential attack described here allows the problem of finding a solution to ex-

pression (7.69) to be reduced to finding a solution to the following expression:

(B C »~hs4 (B- C)~>hs435 - 35 - 35 - 35

(A39 - B35f~hsl - (A39 - Fh5f~hsl

(D A »~hs2 (D- A- »~hS239 - 39 - 39 - 39

(C39 - D39 f~hs3 - (639 - .D39f~hs3

(B C »~hs4 (B- C- »~hs439 - 39 - 39 - 39

h(B35,C35,D35) - h(Fh5,C35,D35) (7.170)

h(A39, B35, C35) - h(A39, B35, C35) (7.171)

h(D39,A39,B35) - h(.D39,A39,B35) (7.172)

B35 - B35 +
h(C39,D39,A39) - h(639,.D39,A39) (7.173)

A39 - A39 +
h(B39, C39, D39) - h(B39, 639, .D39) (7.174)

D39 - D39 +
h(A43, B39, C39) - h(A43, B39, 639) (7.175)

C39 - 639 +
h(D43, A43, B39) - h(.D43, A43, B39).(7.176)

Additional simplifications to equations (7.124) - (7.139) can be achieved by making the
following observations:

(B35 - C35»~hs4 - (B35 - C35f~hs4

(B C)~>23 (B- C)~>2335 - 35 - 35 - 35

(7.177)

(7.178)

Analysis of the MD5 Hash Algorithm

B35 ((B35 - 035)<<<9- 1«<9)«<23 + 035. (7.180)

B35 B35 - 035 - 1 + 035. (7.181)

B35 B35 - 1. (7.182)

(A B)»>hSl (A- B- »»hsl39 - 35 - 39 - 35

(A B »
»hsl (A- B- »»hsl39 - 35 - 39 - 35

h(-1,035, D35) - h(O, 035, D35) (7.185)

035 EElD35 - 035 EElD35 (7.186)

XEBY+XEBY=l

XEBY=l-XEBY

(7.187)

(7.188)

1 (A B)»>hsl + (A- B- »»hsl- 39 - 35 39 - 35 2· (035 EB D35) (7.189)

(1 - (A39 - B35f»hsl -

(A39 - B35f»hsl f»l (7.190)

D - (1 (A B)»>hsl (A- B- »»hSl)»>l tI'lO35 - - 39 - 35 - 39 - 35 Q7 35·

Analysis of the MD5 Hash Algorithm

(C D)»>hs3 (C- D-)»>hs3 DAB D- fT'I A- tT\ B-39 - 39 - 39 - 39 = 39 EB 39 EB 35 - 39 Q7 39 Q7 35

D39 EB A39 EB B35

D39 EB A39 EB B35

(7.193)

(7.194)

D39 EB A39

D39 EB A39

(7.195)

(7.196)

X X- - (C D »»hs3 (C- D-)»>hs3- - 39 - 39 - 39 - 39 .

(B C »»hs4 (B- C- »»hs439 - 39 - 39 - 39 B35 - B35 +
h(C39, X, 0) - h(C\9' X, 0) (7.199)

(A B »»hsl (A- B- »»hsl43 - 39 - 43 - 39 (X EB D39 - X EB D39) + h(B39, C39, D39)

-h(B39, 039, ih9) (7.200)

Chapter 7

(7.201)

(7.202)

1. Choose B35 and B35 as specified by equations (7.183) and (7.184)

2. Find valuesfor A43, B39, C43, D43 which will satisfy the differential attack summarised

in Table 7.1.

3. Determine C39 - C39from equation (7.176).

4. Choose a random value for C39 and determine 039 from the result obtained in step 3.

Now determine D39 - D39from equation (7.176).

5. With D39 - D39 in hand determine all possible solutions to C39 and 039 using an
iterative search procedure.

8. Determine solutions for D39 and D39 from equation (7.200) using an iterative ap-
proach.

(a) If the assumption in expression (7.198) does not hold return to step 1.

(b) If the assumption in (7.198) holds, determine all possible solutions to C35 using

equation (7.171).

Analysis of the MD5 Hash Algorithm

The third phase requires that the solutions to the sets of equations obtained from the previous

two phases are connected. When commencing with the third phase of the attack, the chaining

variables C15, B15, A19, D19, C19 B19 and A23 are known from phase one of the attack. The

chaining variables C35, D35, A39, B39, C39, D39, A43 and D43 are known from phase two

of the attack. A number of message words and chaining variables may now be computed.

Message words Xl, X6, Xu, Xo and X5 may be computed from equations (7.17), (7.18),

(7.19), (7.20) and (7.21). Likewise message words X4, X7, XlO and X13 may be obtained

from equations (7.38), (7.39), (7.40) and (7.41). In addition chaining variables D23 and D43

are be obtained from equations (7.22) and (7.41) respectively.

A connection is obtained if solutions to X2, X3, Xs and X12 is found such that equations

(7.203)-(7.203) holds.

C27

B27

A31

D31

C31

B31

A35

D35

C35

D27 + (C23 + g(D27, A27, B23) + X3 + T26)«<gs3

C27 + (B23 + g(C27, D27, A27) + Xs + T27)«<gS4

B27 + (A27 + g(B27, C27, D27) + X13 + T2S)«<gSl

A31 + (D27 + g(A31, B27, C27) + X2 + T29)<<<gs2

D31 + (C27 + g(D31, A31, B27) + X7 + T30)«<gs3

C31 + (B27 + g(C31, D31, A31) + X12 + T3d«<gs4

B31 + (A31 + h(B31, C31, D3d + X5 + T32)«<hsl

A35 + (D31 + h(A35, B31, C3d + Xs + T33)«<hs2

D35 + (C31 + h(D35, A35, B3d + Xu + T34)«<hs3

(7.203)

(7.204)

(7.205)

(7.206)

(7.207)

(7.208)

(7.209)

(7.210)

(7.211)

Equations (7.203)-(7.203) are bounded by the chaining variables A27, B23, C23 and D23 as

obtained from phase one of the attack, as well as by chaining variables A35, B31, C35 and

D35, obtained from phase two of the attack. Thus the only chaining variables which may be

manipulated without affecting the previous phases of the attack, are A31, B27, C27 and D31•

An additional constraint is imposed by the fact that X5, X7, Xu and X13 are determined by

phase one and two of the attack. This leaves only four message words namely X2, X3, Xs
and X12, which may be used to establish a connection. The fact that expression (7.68) is

simplified to expression (7.111) gives an attacker additional degrees of freedom and allows,

to a limited extent, the manipulation of chaining variables B23 C23 and D27• Note that D23,

which is associated with the first stage of the attack, depends on X 10 which is obtained from

Analysis of the MD5 Hash Algorithm

the second phase of the attack. Thus the chaining variables in the two previous phases are

interdependent on each other. This requires that the results obtained from the previous phases

has to be manipulated simultaneously when attempting to establish a connection between the

two phases.

Three stages are identified in the third phase of the attack. The first stage is concerned with

finding suitable values for the chaining variables 023, E23, A27 and D27• The second stage

requires that a connection be made between phase one and two. During the third stage it is

required that the existence of an inner collision obtained for the second phase is verified.

Remember that the attack on the first phase is simplified in Section 7.5.3 by requiring that

condition (7.111) instead of condition (7.68) has to be met. From Section 7.5.3 it is known

that if condition (7.111) is met, condition (7.68) holds with a high probability. The following

procedure is proposed by Dobbertin to find suitable values for 023, E23, A27 and D27•

(a) If condition (7.68) does not hold, restart from step 1.

(b) If condition (7.68) does hold, proceed to stage two of phase three.

Analysis of the MD5 Hash Algorithm

The second stage is directly concerned with establishing a connection between the two phas-

es. The following simplification to equation (7.209) is of particular importance:

(A35 - B31f»hs1 - A31 - X5 - T32

(A35 - B31f»hs1 - A31 - X5 - T32

D31

h(B31, 031, D3d (7.213)

B31 EEl 031 EEl D31 (7.214)

((A35 - B31)»>hs1 - A31 - X5 - T32)

EElB31EEl 031. (7.215)

Dobbertin proposes the following algorithm to establish a connection between the two phas-

es.

(a) If equations (7.204) and (7.210) yields the same result for Xs a connection was

found.

Analysis of the MD5 Hash Algorithm

(b) If equations (7.204) and (7.210) yields different results for Xs continue from step

80

(a) If the current Hamming distance is less than the previous Hamming distance,

save the current Hamming distance and set B27B . = B270 Return to step 4.
as'l.C

(b) If the current Hamming distance is not less than the previous Hamming distance,

proceed from step 9.

9. Set: 023 = 023 - (XJ - Xl), B23 = B23 - (XJ - Xl) and recompute D27• Confirm
if equation (7.212) holds.

(a) If equation (7.2 I 2) does not hold, restart from step 1.

(b) If equation (7.212) does hold, proceed to step 10.

100 Determine if the changes made in step 9 still allows an inner collision for the first

phase.

Step 8 in Algorithm 7.5 is reminiscent of the continuous approximation used in phase one of

the attack on MD5.

Upon successful completion of Algorithm 7.5 X2, X3, Xs and X12 may be computed from

equations (7.206), (7.203), (7.204) and (7.208) respectively. Once the first two stages have

been completed, only the third stage of the third phase remains.

The third stage requires that the existence of an inner collision for the first two stages be

confirmed. If an inner collision is not found, the attacker should restart from stage 1 of

the third phase. If the inner collision for the second phase exists, a collision for the round

function of MD5 was found. The message words and initial value for which the collision

holds may now be calculated.

Analysis of the MD5 Hash Algorithm

The following collision was constructed for the round function of MD5 The initial value for

which a collision was found is given by:

AO = OxF7987AA4

EO = Ox6EFOOD2B

CO = OxCAFBC OA2

DO = Ox7678589B

Xo = OxAAIDDA5E

Xl = OxD97ABFF5

X2 = OxA5CA745B

X3 = OxC9DDCECB

X4 = Oxl006363E

X5 = Ox7218209D

X6 = OxEOIC135D

X7 = Ox9DA64DOE

Xs = Ox4CIE82F6

Xg = OxAF5B46C9

XlO = Ox236BB992

Xu = Ox6B7A669B

Xl2 = Ox40CC7121

Xl3 = OxD93E0972

Xl4 = Ox95FACCCD

Xl5 = Ox72409780

Note that due to the overlap in message words (specifically XlO) and the consequent interde-

pendence of the chaining variables in phases one and two of the attack, considerable effort is

required to find solutions to both phase one and two which will allow a successful connection

Analysis of the MD5 Hash Algorithm

to be made. Given a solution to the second phase the probability that the solution to the first

phase will still result in an inner collision for the first phase is estimated at 25%.

The techniques used to construct a connection described in this section, manipulates the

results obtained from phases one and two of the attack simultaneously. However the potential

effort required to solve the sets of equations simultaneously is avoided by finding a solution

to expression (7.111) instead of (7.68). This allows the limited manipulation of the chaining

variables B23, C23 and An. Thus, the chaining variables which are most influenced by the

interdependence between phase one and two, may be manipulated to a limited extent. An

implementation of the third phase of the attack is attached as Appendix E.3.

In Sections 7.5.3 and 7.5.4 it is assumed that an algorithm exists for determining if solutions

to certain Boolean expressions exist. This section gives a description of such an algorithm

as used by Dobbertin in the analysis of MD5. Dobbertin's attack requires the solution of sets

of difference equations. From the previous sections it is observed that these equations are of

the form:

with 10 a bitwise Boolean function which operates on binary words of length t. The vari-

ables Xl and X2 are related by:

Analysis of the MD5 Hash Algorithm

It is important to note that due to the nature of bitwise calculations, the i'th bit of the solution

corresponds to the i'th bit of Xl' To be more specific, if a bit in position i is changed in Xl,

this can at most cause bit changes ranging from bit position i up to the MSB (allowing for

carry) when equation (7.218) is evaluated.

In [55] it is stated that all solutions of Xl has the structure of a binary tree and can be com-

puted using a bitwise recursive process. This process is presented as Algorithm 7.6.

1. Initialise aI, bl, a2, b2, T and Xl. Set 6x to represent the desired difference between Xl

and X2.

4. If the current depth of the tree, i, equals I (the length ofa binary word), record Xl as a

valid solution. Decrement the depth counter i by one. Return to the instruction (step)

following the most recent entry or re-entry into Algorithm 7.6. If control is returned

to the instruction following the original entry into Algorithm 7.6, Algorithm 7.6 is

terminated.

5. Calculate the right hand side of equation (7.218). Determine if the i'th bit of the result

equals zero.

6. If the i'th bit of the right hand side of equation (7.218) equals zero, increment the

tree-depth counter i and re-enter Algorithm 7.6 at step 3.

7. Toggle the i'th bit in Xl. Re-compute the right hand side of equation (7.218). Deter-

mine if the i'th bit of the result equals zero.

8. If the i'th bit of the right hand side of equation (7.218) equals zero, increase the tree-

depth counter i by one. Re-enter Algorithm 7.6 at step 3.

9. Toggle the i'th bit in Xl and return the number of valid solutions found for Xl' Decre-

ment the tree-depth counter i by one. Return to the instruction (step) following the

most recent entry, or re-entry into Algorithm 7.6. If control is returned to the instruc-

tionfollowing the original entry into Algorithm 7.6, Algorithm 7.6 is terminated.

Analysis of the MD5 Hash Algorithm

Algorithm 7.6 may be modified to search only for a limited number of solutions. In order to

illustrate the relationship between Algorithm 7.6 and a binary tree, the following example is

presented.

Let l equal 4. Thus all the variables in equation (7.218) are 4 bit words. For these 4 bit

words, let the LSB be numbered 0 and the MSB 3. Let 10 be a bitwise Boolean function
defined by:

Let the subscript 2 denote the base 2. The following is an example of the application of

Algorithm 7.6 to the four bit problem. Set:

Choose a random value for Xl, say 10012• A numerical example of the use of Algorithm 7.6

to find solutions to the given expressions is presented in Table 7.2.

Eight distinct headings are included in Table 7.2. The Operation nr. indicates the number

of the operation. The Step nr. indicates which step in Algorithm 7.6 is associated with the

given operation number. The column denoted i contains the tree-depth counter. The column

marked i = 4? indicates a test condition. The fifth column is marked Xl and contains the

present value of Xl. The column marked Equation (7.218) contains the value to which equa-

tion (7.218) evaluates. The Resume From column contains an operation number. Associated

with the operation number is a step number. If the Resume From column contains an oper-

ation number, the next step which should be executed is the step following the step number

associated with operation number in the Resume From column. The Node column contains

the current node in the binary tree depicted in Figure 7.3. The variables which are updated

in each operation are marked in

Analysis of the MD5 Hash Algorithm

Operation Step z i = 4? Xl Equation Resume From Node

nr. nr. (7.218) Operation nr.

1 2 0 No 10012 - - r

2 3 0 No 10012 - - r

3 5 0 No 10012 110) - r

4 6 No 10012 11102
y-\

- [j

5 3 1 10012 11102 - B

6 5 1 No 10012 I I) - B

7 7 1 No - B

8 9 No :; - 4

9 7 0 No .'101 - r',>

10 8 No 10002 00002 -

11 3 1 No 10002 00002 - A

12 5 1 No 10002 - A....

13 6 No 10002 00002 - (

14 3 2 10002 00002 - C

15 5 2 No 10002 - C
' ..

16 6 No 10002 00002 -

17 3 3 10002 00002 - G

18 5 3 No 10002 - G

19 6 No 10002 00002 - 0

20 3 4 10002 00002 - 0

21 4 No 10002 00002 1

22 7 3 No - G> ..

23 8 No 00002 00002 -

24 3 4 00002 00002 - P

25 4 No 00002 00002 .,

26 9 No 1 - 16

27 7 2 No 1 - C..... .

28 8 No 11002 10002 -
29 3 3 11002 10002 - H

30 5 3 No 11002 II - H

31 7 3 No [) j I 'I - H
'.

Analysis of the MD5 Hash Algorithm

Operation Step ~ i = 4? Xl Equation Resume From Node

nr. nr. (7.218) Operation nr.

32 9 No -

33 9 No ! - I".. ,)

34 7 1 No 1 I I; - A,.,

35 8 .. No 10102 00002 -

36 3 2 10102 00002 - D

37 5 2 No 10102 I - D,.

38 6 No 10102 00002 - ;

39 3 3 10102 00002 - I

40 5 3 No 10102 - I,

41 6 No 10102 00002 -

42 3 4)cs 10102 00002 - T

43 4 No 10102 00002 1 1

44 7 3 No) L - I. "

45 8 4 No 00102 00002 - S

46 3 4 00102 00002 - S

47 4 No 00102 00002
I
I

48 9 No
'L

-

49 7 2 No II 1 - D

50 8 No 11102 10002 - J

51 3 3 11102 10002 - J

52 5 3 No 11102 I - J..

53 7 3 No 1 1 - J

54 9 No ,
- DI

55 9 No -.

56 9 {) No ' ..!
- 10 I

57 9 0 No I - I r....

An implementation of Algorithm 7.6 with reference to the example given above, is listed in

Appendix E.

Analysis of the MD5 Hash Algorithm

Since all possible values of Xl are included in this tree, all possible solutions to equation

(7.218) are also included in this tree. The relationship between the binary tree in Figure 7.3

and Algorithm 7.6 may be observed from the above example by tracing the node positions at

each step of the example. It is noted that if the children of a node (for instance node B) does

not yield solutions, the entire branch may be pruned from the search space. Thus Algorithm

7.6 in effect searches through a binary tree. The pruned binary tree which contains only the

solutions to the above example is shown in Figure 7.4.

/

/

/

0,..."'/
/

/

/E //
'", \, \, \, \

0/ "1, \, \

K / \ L
1\ 1\

I \ 1\
I \ I \

I \ I \

01 \ 1 0 / \ I
I \ I \

f \ I \

I \ I \

\
\
\
\
\ I

\
\

\

" HII

/ \

/ \

/ \

0/ \ I
/ \

/ \

/ \

\
\
\
\

\1
\

\

" JII

/ \

/ \

1 \o 1 \ I
/ \

1 \

/ \

Pruned Branches
Solution Branches

,,,
0',,,

M'•
II

/ \

/ \

/ \

0/ \ I
/ \

/ \

/ \

\
\
\
\ I
\

\
\

" NII

1 \

1 \

1 \

01 \ I
1 \

1 \

/ \

Analysis of the MD5 Hash Algorithm

It should be remembered that Algorithm 7.6 only yields results if the Boolean functions oper-

ate bitwise on a multiple bit word. Any rotations or other sources of diffusion in the Boolean

function, renders the above approach ineffective. The power of this search algorithm lies in

the ability to reject entire branches at a time (e.g. in operation Of. 3, all the children nodes

which are attached to node A are immediately rejected as possible solutions). The ability

to reject entire subsets of possible solutions has the result that the existence of solutions, as

well as the solutions themselves, can be determined quickly and efficiently.

This chapter contains a description of the cryptanalysis of MD5 as developed by Dobbertin.

The attack on MD5 is similar to the attack on MD4 in a number of aspects. Both attacks

require that sets of difference equations should be solved. Furthermore both attacks rely, to

some extent, upon the fact that certain differential patterns are more likely to propagate than

others. Furthermore both attacks depend on the fact that the Boolean expressions used in the

compress functions may be manipulated. In both attacks, the fact that the rotation operations

may be separated from the Boolean equations by the use of counter rotations allows the

attacker to establish and solve equations of a certain form.

The attack on MD5 is however considerably more complex than the attack on MD4. The

additional complexity of this attack is reflected in the amount of time required to find a

collision for the compress function of MD5 when it is compared to the time required to

find a collision for the compress function of MD4. The additional complexity appears to

be due mainly to the use of an additional round. A further contribution to the complexity

is the use of the XOR function in the third round. In the attack on MD4, Dobbertin avoids

dealing with the XOR function (except briefly during the differential attack on MD4 [14]).

In the attack on MD5 this is not the case. The contribution of the constants to the security

of MD5 is considered to be low. The constants are only brought into play during the third

phase of the attack, when a connection between the results obtained for phase one and two

are established. Certain choices and conditions are imposed which appears to speed up the

process of finding an inner collision for the second phase of the attack. It is unclear why

these choices are made.

Of particular interest is the algorithm used by Dobbertin to determine if solutions to Boolean

equations of a specific form exist. This algorithm is presented in Section 7.5.6. It appears

Analysis of the MD5 Hash Algorithm

that this algorithm is particularly suited to evaluate Boolean equations which has no diffusion

properties over a certain number of bits. It is therefore particularly useful when dealing

with bitwise operations as used in MD4 and MD5. If other cryptographic primitives, which

utilises bitwise operations are analysed, this algorithm may be a useful tool. It is not known

if this algorithm is described in the literature.

I would like to make use of this opportunity to thank Antoon Bosselaers and the personnel

at the COSIC group at the Katholieke Universiteit Leuven for their assistance and support

during this investigation into the cryptanalysis of MD4 and MD5. The algorithms and tech-

niques presented in this chapter were derived from the programs written by Dobbertin and

the notes of Bosselaers.

CHAPTER 8: GENERALISED ANALYSIS OF THE MD4 FAMILY

OF DEDICATED HASH FUNCTIONS

The vast majority of hash functions (MDCs and MACs) are based on the iterated model

known as the Damgard-Merkle scheme [22], [23]. This generalised construction is discussed

in Chapter 5 Section 5.3. It was proved by Oamgard that the security of the overall construc-

tion relies on the security of the compress function. Dedicated hash functions, including

the MDx family of hash functions, are primarily based on the iterative model presented by

Damgard and Merkle.

In 1996 Dobbertin presented an attack against RIPEMD-128 and MD4 [54], [14]. These

attacks showed that it is possible to construct collisions for MD4 and RIPEMD-128. In

addition to the above attacks Dobbertin presented an attack on the compress function of

MD5. This attack demonstrated that it is computationally feasible to establish collisions for

the compress function of MD5 [12], [55].

The similarity in the structure of the hash functions (MD4, MD5 and RIPEMD-128) suggests

a common factor in the attacks. If a common factor could be found in all of the attacks, it

may be indicative of a weakness in the design of an entire hash function family. Once

this weakness is identified it may be possible to derive design criteria for dedicated hash

functions. Hash functions designed according to these design criteria would be immune to

these attacks.

For these reasons the attacks against MD4 and MD5 were reconstructed and studied (Chapter

6 and 7). Many interesting techniques and properties were discovered in the course of this

analysis. Specifically a technique was discovered to speed-up the construction of collisions

against MD4. This work resulted in a publication [56].

In this chapter the attacks on MD4 and MD5 are generalised to provide a framework for the

analysis of any iterated cryptographic hash function.

Generalised Analysis of the MD4 Family of Dedicated Hash Functions

The attacks described by Dobbertin applies directly to the compress function of the hash

functions. It is the aim of these attacks to find two messages M and £1 with length equal to

a single block such that:

I(IV, M) = I(IV, £1)

with 10 the compress function and IV the initial value used. The compress functions of

the dedicated hash function under consideration are constructed by applying a number of

steps iteratively. Each step may be expressed as an equation containing Boolean mappings,

rotation operators, additive constants and addition mod 232 operators.

Let J! 0 represents the application of the compress function from step i to step j. Before

proceeding it is appropriate to state the following definitions.

Definition 1 (Inner-Collision) An inner-collision is defined if, between steps i and j of the

compress function, I! (C, M) = Jl (C, £1). Ci is the internal chaining variable and is given

by C = Ij(IV, M) = Ij(IV, £1).

Definition 2 (Almost Inner-Collision) An almost inner-collision is defined if, between step-

s i and j, of the compress function I! (C, M) = I! (C, £1) +~i with ~i a specified difference.

As before Ci is the internal chaining variable.

1(IV, M) = 1(IV, £1)

Ij(IV, M)
I!+l (Ci, M)
Jf+l (Cj, M)

Ij(IV, £1)
J!+l(Ci, £1)

k -Ij+l(Cj, M)

Generalised Analysis of the MD4 Family of Dedicated Hash Functions

for a compression function defined by l steps. Thus a number of consecutive inner-collisions

may be used to construct a collision. It is noted that an inner-collision may be constructed

from an almost inner-collision if differences and chaining variables are found such that:

fl(Ci, M)

f;(Cj + ~j, M)

fl(Ci, 111) + ~j

fjk(Cj, M)

The attacks defined by Dobbertin are focused on finding inner-collisions and almost inner-

collisions for sections of the compress function which would result in the construction of

collisions for the entire compress function. These attacks share two elements. The first ele-

ment deals with the derivation of sets of difference equations. The second element requires

a solution to these sets of difference equations.

The chaining variables in MD4 and MD5 are 32 bit words. For these hash functions a

difference equation is defined as the difference mod 232 between two expressions. This

may be written as:

The first expression, E1(Mi), describes a given step. The variables in this expression are

associated with the first message. The second expression, E2(Nli), describes the same step

as the first. The variables used in the second expression are associated with the second

message. Expression 8.1 is referred to as a difference equation. A set of difference equations

is obtained if difference equations can be derived for a number of consecutive steps in the
hash function.

Obtaining a set of difference equations for all the steps of a hash function is possible but not

recommended since the dedicated hash functions described in the literature has upwards of

48 steps (MD4), and writing difference equations for all the steps results in a large number

of interrelated non-linear equations which are difficult to solve.

For this reason the difference between two messages is restricted to a single message word.

In MD4, MD5 message words are re-used in consecutive rounds. The order in which the

Generalised Analysis of the MD4 Family of Dedicated Hash Functions

message words are processed is changed for each round. In the analysis of MD4 and MD5

the message words in which the differences occur are selected according to the number of

steps separating the occurrence of the given word in consecutive rounds.

There exist no exact rule for selecting the message word which will be altered. Instead a

general guideline is that the number of steps between the occurrence of a given word should

not be too small (less than four steps for MD4 and MD5) since this makes it difficult to derive

a set of solvable difference equations. At the same time the number of steps between the

occurrence of two steps should not be too large since this increases the number of variables

which has to be solved.

In hash functions with an even number of rounds, a trade-off between the number of steps

separating the message word in each pair of rounds has to be found. The difference equations

should be setup to yield inner-collisions for each pair of rounds.

If the number of rounds are uneven, difference equations should be established for any com-

bination of even rounds. One of the sets of difference equations should be setup to result in

an almost inner-collision. This almost inner-collision should be specified in such a manner

that a difference pattern propagates and interacts with the message word in the unmatched

round. This interaction should result in a collision or inner-collision. As an example consider

MD4 where it was shown that

1(IV, M) = 1(IV, M)

111;' (C12, M)

l]g(C19 + ~19, M)

Thus by limiting the difference between two messages to a single word, the number of equa-

tions in the set of difference equations are reduced to a manageable size. However it should

be noted that there does not necessarily exist solutions to such a set of difference equations.

Generalised Analysis of the MD4 Family of Dedicated Hash Functions

Once a set of difference equations is obtained, the problem remains to solve these equations.

Dobbertin proposed one technique which resembles the operation of a genetic algorithm

[14]. An investigation into the use of genetic algorithms to solve expressions similar to those

encountered in the MD4 family are presented in [57]. The techniques used by Dobbertin

to solve these sets of difference equations are summarised in [17] and [58]. The techniques

required to solve these sets of equations are fairly specific to each set of equations. However,

some common elements may be obtained from these techniques.

In both the analysis of MD4 and MD5 the difference between the messages are restricted

to a single word. The Hamming distance between the two message words are kept small,

since it is generally easier to manipulate the effect of a small number of bits on the chaining

variables. The position at which the difference in the message word is introduced depends on

the diffusion mechanisms of the hash function. One of the diffusion mechanisms in MD4 and

MD5 is rotation. The bit positions in which differences are introduced are chosen specifically

to counter the effect of rotation.

Another technique employed in both the attacks on MD4 and MD5 is the choice of specific

values to simplify the sets of difference equations. These choices effectively allows the ma-

nipulation of the Boolean mappings. In the attack on MD5 this approach is used to establish

certain differential patterns which simplifies the sets of difference equations.

The utilisation of a technique called iterative approximation is encountered in the attacks on

MD4 and MD5. This technique evaluates the result obtained from a random initial setting.

These initial settings are referred to as the basic values for the set of equations. The basic

values are then changed by small increments and the corresponding result is observed. If the

result is a closer approximation to the desired result, the changed basic values becomes the

new basic values. This process is repeated until the desired result is obtained.

Another approach used to find solutions to sets of difference equations is used in the analysis

of MD5. This technique requires that a large number of possible solutions are collected and

then tried one after the other. This process is combined with the iterative approximation

technique. A large number of basic values and possible solutions are generated. These

possible solutions are then tried one after the other. The best solution is retained and serves

as the basis for the next iteration. The techniques used to produce a large number of possible

Generalised Analysis of the MD4 Family of Dedicated Hash Functions

The generalisation of the attack as described in this chapter was applied to a limited number

of rounds of the HAVAL and SHA hash functions. Both are part of the MDx-family of hash

functions. Using the generalised technique it can be shown that collisions can be establihed

for limited rounds of HAVAL and single rounds of SHA. The details of these attacks are

included in Chapters 9 and 10. To the best of my knowledge this is the first publicly published

cryptanalytical results for SHA and HAVAL.

This chapter generalises the approach used by Dobbertin in the cryptanalysis of MD4 and

MD5 as discussed in Chapters 6 and 7. The attacks on MD4 and MD5 focus on reducing

the problem of finding a collision to solving a limited number of interrelated equations. This

may be viewed as a divide and conquer approach. The complexity of finding collisions are

reduced through two mechanisms. The first mechanism reduces the number of equations

to be solved and the second simplifies these equations to facilitate the establishment of a

solution. Detailed descriptions of these mechanisms may be found in [14], [17] and [57].

The application of this generalised technique to two other hash functions in the MD4 family,

SHA-l and HAVAL, is presented in the next two chapters.

	Front
	Chapters 1-4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7
	CHAPTER 8
	Chapters 9-12
	Back

