
The exchange of information is an important social, economic and political activity. The

importance of the exchange of information regarding all aspects of life has increased dra-

matically over the last 50 years. This period has seen the emergence of massive communi-

cation systems which have the sole purpose of facilitating the exchange of information. The

proliferation of telephone and computer networks (both local and wide area networks) are

manifestations of this phenomenon. As both the amount of information being exchanged and

the significance attached to that information have increased, the need for ensuring the privacy

and authenticity of the information have increased. This is especially true when considering

communication systems where no human interaction is required. A computer network is a

typical example of such a communication system. The need for privacy and authenticity is

especially acute if a breech in either secrecy or authenticity may result in losses (financial or

otherwise) for the participating parties in a communication system.

Organisations and people that use communication systems often express their needs for in-

formation security and trust in terms of three distinct requirements, frequently referred to as

the CIA-Model of security:

• Integrity - ensuring that data and information is only changed and modified in a spec-

ified and authorised manner

• Availability - ensuring that systems work promptly and correctly, and that service is

not denied to authorised users.

Over the past three decades numerous techniques have been invented and developed to ensure

both privacy, authenticity and availability of information in communication systems. These

techniques are often constructed from a number of basic cryptographic primitives. One of

the primitives most widely used is the cryptographic hash function.

Chapter 1

Informally, a hash function is defined as a function that compresses an input string of arbi-

trary length to an output string of fixed length (see Figure 1.1).

I Message M

~ HashFunctionhO

I Hash Result h(M)

Definition 1.1 (Hash Function) A hash function is defined as an easily computable func-

tion, hO, that maps every binary sequence of length fJ or greater to a binary sequence of

length m, where fJ and m are specified parameters.

A wide range of terminology exists for hash functions used in security applications [2],[3].

These terms include message integrity codes, message authentication codes, manipulation

detection codes, cryptographic hash functions or simply hash functions. In this document

hash functions used for security applications are referred to as cryptographic hash functions

or hash functions for conciseness.

Hash functions have their origin in the field of computer science and were originally used

for data storage and retrieval [4]. For data storage applications a hash function is used to

compute an abbreviated representation of a filename. This abbreviation is then used to index

and store the file. When the file is retrieved, the hash value for the given filename is used to

retrieve the data. Using a hash function reduces the storage requirements for a data retrieval

system, since only the hash value has to be stored, instead of the entire filename.

Chapter 1

A number of other uses have been found for hash functions. Amongst others, hash functions

are used in compiler symbol tables, graph theory problems, transposition tables in computer

games, spell checkers, tests for set equality and security applications [2], [3]. It is the appli-

cation of hash functions in security solutions that constitutes the topic for this dissertation.

A short list of security applications that rely on the use of cryptographic hash functions is

shown below:

Because of the wide ranging applications of hash functions in security solutions they are

considered important cryptographic primitives. The above list of applications can roughly

be split into two categories:

The list of security applications primarily represents authentication and non-repudiation ser-

vices. When using a cryptographic hash function in an authentication scheme the authenticity

of the message is transferred to the hash value. It is then necessary to provide protection and

authentication for the hash value only, instead of the entire message. The hash value serves

as an authentication tag for the message, and can be appended to a message. A number

of cryptographic protocols and electronic commerce implementations rely on cryptograph-

ic hash functions to provide these services. These protocols include S/MIME, SSL, TLS,

WTLS, SET as well as the EMV specifications.

Chapter 1

The non-linear and one-way property of cryptographic hash functions are exploited when

used in encryption schemes. Cryptographic hash functions can be used as non-linear ele-

ments in block ciphers based on the Feistel structure. Four block ciphers, LION, BEAR,

LIONESS and AARDVARK that are based on the existence of secure cryptographic hash

functions were recently proposed in [7], [8] and [9]. It is also possible to exploit the non-

linear and one-way properties of a cryptographic hash functions in the construction of stream

ciphers.

Earlier in this section a hash function is defined as a function that compresses an input string

of arbitrary length to an output string of fixed length. The inherent weakness of all hash func-

tions is contained within this definition. An intuitive explanation of the inherent weakness

of hash functions is presented in this section.

Consider the projection of an M dimensional space onto an N dimensional space with M >
N, f is the mapping (hash) function (see Figure 1.2).

From Figure 1.2 it is clear that the projection of all possible representations in M onto N

is not unique if M > N. The lack of uniqueness of the mapping function f 0 implies that
more than one vector in M is mapped to the same vector in N. This is known as a collision.

A graphical representation of the above statement is given for M = 3 and N = 2 in Figure
1.3.

Chapter 1

10: ml H nl
10: m2 H nl

From the above it follows intuitively that the number of collisions increases as the ratio ~

increases.

This argument leads to the conclusion that collisions exist for all hash functions as previously

defined. The existence of collisions for all possible hash functions is an inherent weakness.

This weakness is, by definition, also present in cryptographic hash functions. Consequently

it is required that cryptographic hash functions exhibit the properties of one-wayness and

collision resistance. These properties make it computationally intractable to find collisions.

The properties of one-wayness and collision resistance allow hash functions to be used in

order to provide the services of integrity, digital signatures and non-repudiation.

Chapter I

From a cryptographic point of view one-way hash functions are of particular interest. The

one-way property is defined in [1] as:

Definition 1.2 (One-Way Hash Functions) A one-way hash function is defined as a hash

function such that, for virtually every binary string y of length m it is infeasible to find a

binary string x of length fL or greater such that y = h(x).

A further desirable property of cryptographic hash functions is that of collision resistance.

The concept of a collision was introduced earlier in this section. It is appropriate to introduce

a more formal definition of a collision before defining the concept of collision resistance [59].

Definition 1.3 (Collisions) A collision is obtained for a given hash function h() if two dis-

tinct messages, M and 1\1, are found, such that for a specific initial value (denoted by IV):

h(IV, M) = h(IV, 1\1).

Definition 1.4 (Collision Resistant Hash Function) A collision resistant hash function is

defined as a hash function for which it is computationally intractable to find collisions.

Generally when referring to cryptographic hash functions it is expected that they exhibit the

properties of one-wayness and collision resistance.

It can be shown that the presence of collisions is a pre-requisite for one-wayness by applying

the principles of information theory and source coding to the hashing problem.In this model

Chapter 1

the message to be hashed represents the source, the hash result corresponds to the encoded

symbols or messages, and the hash algorithm represents the source encoding algorithm. Let

H(X) be the entropy of the message source (X is a random variable). Let each symbol

Xi represent a message for i = 1,2,3, ... ,M. It is then known that H(X) ~ log2 M. It
is also known that for each symbol to be encoded uniquely with N bits, N is chosen such

that N = log2 M. This implies that M should not exceed 2N if no collisions are required.

However, remember that for cryptographic hash functions:

Hash functions used in cryptographic applications have to be one-way. If the hash result

corresponds to one, and only one input, the property of one-wayness is violated.

The requirement that the input alphabet should have an arbitrary size implies that M ~ 2N

or M < 2N• If M < 2N the source encoding algorithm may become inefficient. From

a cryptographic point of view this is a minor problem. If M ~ 2N the probability of an

encoding error, Pe, becomes non-zero. If Pe =1= 0, collisions exist. If Pe approach 1, the

function becomes one-way. In order for Pe to approach 1, N ~ H(X) - E, for any E > O.

By setting N to a fixed size and choosing M ~> 2N, the above condition is satisfied. Thus

the source coding algorithm becomes one-way but produces collisions. Thus collisions exist,

not only as a result of the requirement of encoding messages of arbitrary length but also as a

result of the requirement for one-wayness. As long as it remains difficult to obtain messages

that have the same hash result, the function is called collision resistant.

In order to demonstrate the need for cryptographically secure hash functions consider the
following example:

Consider a typical electronic transaction. Two parties agree to the sale of a specified item for

RlOOOO,OO.An (electronic) contract is drafted. The seller computes the hash value of the

contract and applies his digital signature to the hash value. The buyer does the same and the

sale is agreed upon. However the parties involved did not utilise a collision resistant hash

function. Consequently the seller was able to draft an alternative contract which has the same

hash result as the original, except that the agreed upon price is changed from RI0000,00 to

R20000,00. The buyer now finds that he is committed to purchase the item in question at

twice the agreed upon price.

In the above example the participating parties relied upon the hash function to provide as-

surance of the data integrity. In effect the message integrity was transferred to the integrity

of the hash function. It is shown that the use of a weak hash function compromises the

security objective of data integrity. Similar examples pertaining to authentication protocols

and encryption schemes may be listed where the failure of the hash function undermines

the security objective. For this reason efficient and strong cryptographic hash functions are

required.

Hash functions are widely used in cryptographic applications. As demonstrated in the pre-

vious section the properties of one-wayness and collision resistance are of particular im-

portance in security applications. During the last decade numerous proposals were made to

construct dedicated hash functions that are both one-way and collision resistant. These pro-

posals include MD4, MD5, SHA, SHA-l, HAVAL, RIPEMD-128 and RIPEMD-160. MD4

was published in 1990 by Rivest [10]. By the end of 1991 it was demonstrated that neither the

first two rounds (Merkle) nor the last two rounds of MD4 (Bosselaers and den Boer [11]) are

collision resistant. The lessons learned from these attacks led to the design of MD5 [12] and

SHA [13]. In 1996 Dobbertin showed that MD4 is not a collision resistant hash function by

demonstrating a technique which allowed the construction of collisions for all three rounds

of MD4 [14]. Within six months Dobbertin demonstrated that collisions may be found for

the compress function of MD5 [12]. Although details of this attack have not been published,

it is believed to be based on similar techniques as described in [14]. Dobbertin has also

shown that these attacks are applicable to RIPEMD-128. The speed with which these attacks

could be adapted to different hash functions derived from the same basic construction is a

cause for concern since it may be indicative of a fundamental flaw in the design of the basic

construction. This concern has led to the design of RIPEMD-160 to replace RIPEMD-128

[15]. In 1998 Dobbertin showed that the first two rounds of MD4 are not one-way. The at-

tacks formulated by Dobbertin utilises techniques borrowed from a wide range of disciplines

ranging from genetic algorithms to Boolean algebra. These hash functions are all based on

Chapter 1

the same design principles and criteria. The weaknesses found in these hash functions may

be indicative of a common design weakness.

As shown above a number of the popular dedicated hash function constructions were found

to be cryptographically inadequate. In particular it was found that the requirement for colli-

sion resistance is hard to satisfy. One of the reasons for this is the threat model used when

considering the property of collision resistance. In this threat model the cryptanalyst not only

has full knowledge of the algorithm used (Kerckhoff's principle [59]) but also has control

over all aspects of the input to the hash function. The attacker is often a legitimate participant

in the system and is trusted to a certain extent. Given the above threat model it should remain

computationally difficult to construct collisions or find a specified hash results.

Cryptographic hash functions are important cryptographic primitives and are widely used in

security applications where message integrity is required. The design of cryptographic hash

functions have proved to be a difficult task. A recent spate of attacks showed that a number

of commonly used hash functions exhibit cryptographic weaknesses. The absence of secure

cryptographic hash functions will make dependable message integrity, non-repudiation and

message authenticity impractical. It is therefore important to understand the basis of the

attacks, determine if they share common elements and establish design criteria to foil these

attacks.

It is the hypothesis that the recent spate of attacks formulated by Dobbertin has a common

underlying structure and that these attacks exploit certain architectural properties of the MD4

family of hash functions.

In this dissertation only dedicated, iterated cryptographic hash functions are studied. In

particular the MD4 family of hash functions are considered. Although a general review of

Chapter 1

generic attacks are included in this dissertation only the attacks formulated by Dobbertin are

considered in depth.

3. Generalise the analysis of MD4 and MD5 to create a framework for the analysis of

iterated dedicated hash functions.

5. Formulate design criteria to prevent the successful application of the generalised anal-

ysis framework.

In order to lay a foundation for the analysis and design of cryptographic hash functions we

present an in-depth study of the current state of cryptographic hash functions. Included in

this study are the definitions (Chapter 1), taxonomy (Chapter 2), generic threats (Chapter

3), common requirements (Chapter 4) and general designs of cryptographic hash functions

(Chapter 5). Once a general foundation is laid for the understanding of cryptographic hash

functions the focus is shifted to practical dedicated cryptographic hash functions.

As part of the focus on dedicated cryptographic hash functions the attacks on MD4 and MD5

are reconstructed (Chapters 6 and 7). The C-programs used to reconstruct these attacks are

attached as Appendix B, C, D and E. This is one of the main objectives of the dissertation. A

novel approach is derived that allows the attack on MD4 to be optimised to obtain a reduction

in computation time for a collision by a factor 64.

Based on the reconstruction of these attacks a generalised attack is formulated (Chapter

8). The generalised attack provides a framework for the analysis of the collision resistant

property of any cryptographic hash function.

Chapter 1

The newly derived framework for analysing a cryptographic hash functions is applied to

reduced versions of SHA and HAVAL (Chapters 9 and 10). Extensive simulations were

performed using the C programming language. A sample of the resulting source code is

included as Appendices F and G. To the best of our knowledge this is the first cryptanalytical

result that has been published on the HAVAL hash function. The result shows that a collision

can be established for a reduced version of HAVAL in less than a minute on a 200 MHz

Pentium Pro. This result suggests that three and even four round HAVAL should not be used

for security applications where message integrity and non-repudiation is required.

The dissertation is concluded by presenting design criteria for dedicated cryptographic hash

functions (Chapter 11). The design criteria is based on the common weaknesses identified

in the analysis of MD4, MD5, SHA, SHA-l and HAVAL. It is the intention that the applica-

tion of these design criteria will defeat the generalised attack on iterated cryptographic hash

functions presented earlier in the dissertation.

3. Create a generalised framework for the analysis of iterated dedicated hash functions

based on the MD4 family.

5. Formulate design criteria to prevent the successful application of the generalised anal-

ysis framework.

CHAPTER 2: TAXONOMY OF CRYPTOGRAPHIC HASH

FUNCTIONS

In Chapter 1 the relevant definitions and properties related to hash functions were defined.

In this chapter a taxonomy of practical cryptographic hash functions is presented, along with

the common approaches to the design and analysis of cryptographic hash functions.

The taxonomy is based on the terminology that exists in the banking community and is taken

from [3]. Cryptographic hash functions are divided into the following categories:

Informal definitions for the categories of hash functions are suggested in [16] and refined

in [3]. The distinction made between the different cryptographic hash functions is based

quantitatively on the following definitions.

Taxonomy of Cryptographic Hash Functions

A MAC is a hash function for which a secret key is required. This adds to the security of the

hash scheme, since the attacker's abilities decrease as his knowledge decreases. However the

requirement for a secret key does not protect the users against an attack by an insider. The

addition of a secret key leads to the additional problem of key management. It does ·however

have the advantage that a secure channell is no longer required for the hash value, since the

secret key protects the hash value. It is however necessary to provide a secure channel for

the key used in the MAC. More formally:

1. The description of h() must be publicly known and the only secret information lies in

the key, K, (extension of Kerkhoff's principle).

2. The argument X can be of arbitrary length and the result h(K,x) has a fixed length of

n bits (n ::;32 ... 64).

4. Given h() and X, it is hard to determine h(K,x) with a probability of success signif-

icantly higher than 2-n. Even where a large set of pairs {Xi, h(Xi, K)} is known,

where Xi have been selected by the opponent, it is "hard" to determine the key K or
to compute h(K,x')for any Xi =I=- X'.

A MDC is a hash function that is computed without knowledge of a secret key. These

functions are known publicly. For these hash functions, no key management is required, but

an authentic channel needs to be provided for the hash value.

Two variants of MDCs are identified in [16] and [3]. The following definitions are used to

distinguish between one way hash functions (OWHF) and collision resistant hash functions

(CRHF).

IAn authentic or secure channel could be provided through encryption of the hash value, a separate channel

or a courier.

Taxonomy of Cryptographic Hash Functions

Definition 2.2 A One Way Hash Function is a function h() satisfying the following condi-

tions:

1. The description of h() must be publicly known and should not require any secret infor-

mation for its operation (extension of Kerkhoff's principle).

2. The argument X can be of arbitrary length and the result heX) has a fixed length ofn

bits (n :s; 64).

(a) given a Y in the image of h(), it is "hard" to find a message X such that heX) = y.

(b) given X and H(X) it is "hard" to find a message X' =I- X such that h(X) =

h(X').

Definition 2.3 A Collision Resistant Hash Function is a function h() satisfying the follow-

ing conditions:

1. The description of h() must be publicly known and should not require any secret infor-

mation for its operation (extension of Kerkhoff's principle).

2. The argument X can be of arbitrary length and the result heX) has a fixed length of n
bits (n :s; 128).

(a) given a Y in the image of h(), it is "hard" to find a message X such that heX) = y.

(b) given X and H(X) it is "hard" to find a message X' =I- X such that h(X) =

h(X').

Taxonomy of Cryptographic Hash Functions

5. The hash function must be collision resistant: This means that it is hard to find two

distinct messages that hash to the same result.

The nature of the differences between OWHF and CRHF is discussed in [17]. The underlying

difference between OWHF and CRHF is related to the the type of attack the respective hash

functions are required to withstand. For cryptographic purposes a CRHF is of greater value
than an OWHF.

Implicit to the above definitions are the requirements for one-wayness, computational in-

tractability, collision resistance and simplicity. These requirements are related to both the

functional and security properties of cryptographic hash functions.

A new hash function should therefore be designed to adhere to the above definitions and im-

plied requirements. The definitions and requirements can be made more formal by specifying

quantitative criteria for the terms hard and easy.

2.2 APPROACHES TO THE DESIGN AND ANALYSIS OF CRYPTOGRAPHIC
HASH FUNCTIONS

Two approaches could be considered for the analysis, design and classification of crypto-

graphic hash functions. Since hash functions are used extensively in authentication applica-

tions and protocols [17], hash functions could be classified along the same lines as authenti-

cation codes. In [18] the following classification is given for authentication schemes:

The above classification is not satisfactory when dealing with hash functions. As explained

in Chapter 1 collisions exist for all hash functions. This property of hash functions leaves

only the computation ally secure classification as a viable option. The above classifications

does not contribute a great deal to design criteria for cryptographic hash functions.

Taxonomy of Cryptographic Hash Functions

In [3] Preneel suggests that the same classification scheme be used as that proposed by

Rueppel for stream ciphers. Accordingly one of three approaches are available:

The information theoretic approach and complexity theoretic approach yields interesting

constructions of variable security. In general the constructions based on these two approach-

es are impractical. This leaves the system based or practical approach. In the system based

approach, practical schemes with fixed parameters and dimensions are studied.

There has been numerous proposals for the design of cryptographic hash functions based on

the system based approach to hash functions. Many of these designs are based on existing

cryptographic primitives such as block and stream ciphers. Other proposals utilise modular

arithmetic and the hardness of number theoretical problems as a basis for design. However

the hash functions which have found the widest acceptance in industry are dedicated hash

functions. The following definition of a dedicated cryptographic hash function is presented:

Definition 2.4 (Dedicated Cryptographic Hash Functions) A dedicated cryptographic hash

function is a hash function which has been designed to meet the requirements set for crypto-

graphic applications and is to be used explicitly for hashing purposes.

One family of dedicated hash functions, known as the MD4-family of hash functions, has

found widespread acceptance in industry. Members of this family of dedicated hash func-

tions are used by the Secure Electronic Transaction (SET) protocol specified by Mastercard

and Visa, Secure Socket Layer (SSL) protocol commonly used for securing Internet com-

merce as well as the Secure MIME (S/MIME) protocol used to secure electronic mail to

name a few of the more popular protocols.

In this dissertation the practical approach is used to analyse dedicated cryptographic hash

functions and establish suitable design criteria for dedicated cryptographic hash functions.

Before proceeding to establish requirements for hash functions, it is appropriate to consider

the threats against hash functions. In this chapter both the attackers as well as the attacks

they are capable of are considered.

Attackers are classified with regard to their capabilities and their position regarding the sys-

tem under attack. As the wealth and resources of an opponent increases, the difficulty of

designing a secure hash function increases. For this reason it is important to be aware of

the capabilities of various classes of attackers. When designing a hash function it should be

decided which class of attacker is to be denied a successful attack.

In addition to the attackers and their capabilities, the attacks they are capable of are consid-

ered. A taxonomy of these attacks are presented in this chapter. For the attacks described in

this chapter, the computational power and storage capabilities required for the execution of

these attacks are emphasised. These requirements are stated as a function of the number of

bits, n, contained in the hash length. In this report the attacks specific to MDCs, MACs and

hash algorithms based on block ciphers are considered.

A distinction is made between the capabilities of attackers and their position with regard to

the hash function they seek to attack.

The capability of an attacker is measured in terms of the resources available to him. In

[19] a taxonomy of attackers on tamper resistant devices is presented. This classification is

based on the resources available to the attackers. This taxonomy can be extended to security

mechanisms in general, including hash algorithms. Attackers are categorised as follows:

Class I (clever outsiders): They are often very intelligent but may have insufficient knowl-

edge of the system. They may have access to only moderately sophisticated equipment.

Threats Against Hash Functions

They often try to take advantage of an existing weakness in the system, rather than try

to create one.

Class II (knowledgeable insiders): They have substantial specialised technical education

and experience. They have varying degrees of understanding of parts of the system,

but potential access to most of it. They often have access to highly sophisticated tools

and instruments for analysis.

Class III (funded organisation): They are able to assemble teams of specialists with relat-

ed and complementary skills backed by great funding resources. The are capable of

in-depth analysis of the system, designing sophisticated attacks, and using the most

advanced analysis tools. They may use Class II adversaries as part of the attack.

The threat from Class I and Class II attackers can be dealt with by placing a hash algorithm

in the public domain and allowing experts in the field to analyse and review the algorithm

before widespread implementation. This approach will also ensure that the threat from Class

III attackers are minimised. When designing a hash function it is advised that the hash

function should be able to withstand attacks from a Class III opponent. This is difficult since

it is not always known what a Class III opponent's capabilities are.

In addition to the taxonomy of attackers based on their capabilities, a taxonomy of attackers

is presented with regard to their position concerning the system they seek to attack. Regard-

ing cryptographic hash f~nctions the following attackers are identified:

Legitimate Participants: These are participants who rightfully share in a communication

process. They are allowed to generate, sign and transmit messages. In the case of

MACs they have access to the shared secret key. These attackers can generate two

messages that yield the same hash value and substitute the one message for another
when convenient.

Active Eavesdroppers: These attackers are not allowed to generate, sign and transmit mes-

sages. They are hostile eavesdroppers who seek to intercept and modify messages

without detection. This imply that they would attempt to construct a false message

Threats Against Hash Functions

that has a specific hash value and replace a valid message when intercepted. They are

not expected to have access to shared secret keys for MACs.

These attackers can belong to Class I, Class II or Class III attackers, depending on their
capabilities. The taxonomy of attackers is summarised in Figure 3.1.

} Position

Before proceeding with a description of the generic attacks on hash Functions, it is useful

to consider the terminology used in describing the generic attacks. The terminology intro-

duced in this section serves as an indication of what an attacker could hope to achieve when

attacking a hash function.

Threats Against Hash Functions

Pre-image: Establishing a pre-image is equivalent to finding a message that results in a

specified hash value.

Second pre-image: A second pre-image requires the attacker to find two messages that re-

sults in a specific hash value.

Pseudo-pre-image: A pseudo-pre-image requires that two messages, X and X', with t-

wo different initial values, IV and IV' should be found such that the h(IV, X) and

h(IV', X') result in the same specified hash value.

Collision: A collision is established if an attacker can find two messages X and X' such

that h(IV, X) and h(IV, X') result in the same unspecified hash value.

Collision for different IV's: A collision for different IV's is established if two messages

and two IV's can be found such that h(IV, X) and h(IV', X') hash to the same hash

value.

Pseudo-collision: A pseudo collision is established if an attacker can find two messages X

and X' such that h(IV, X) and h(IV', X') yield the same hash value for two specified
IV's.

Constructing collisions, collisions for different IV and pseudo-collisions are easier than con-

structing a second pre-image or pseudo pre-image. Attacks specific to MDCs are considered
in Section 3.4.

A MAC makes use of a secret key to compute a hash value. Thus for a MAC the collision

is dependent on both public knowledge (the message) and secret knowledge (the key). The

attacker is therefore faced with two problems. The first deals with the key, the second deals

with the construction of collisions. When dealing with a MAC, an attacker could hope to

achieve one of the following objectives [3]:

Chapter 3

Universal forgery: The attacker constructs an alternative algorithm that mimics the MAC

algorithm.

Selective forgery: For a message chosen by the attacker the correct MAC can be deter-

mined.

Existential forgery: An attacker can determine a correct MAC for at least one plaintext.

The resulting plaintext may be random or non-sensical.

Once the secret key is known to an attacker, he can determine the MAC for any message.

With the MAC algorithm and the secret key known, an attacker can proceed to construct a

collision. Techniques describing key retrieval and the construction of forgeries are consid-

ered in Section 3.5. The objectives for generating a collision for a MAC when the secret key

is known are similar to those for a MDC.

In this section a number of generic attacks on MDCs are considered. These attacks can be

classified as belonging to one of two categories. They are:

These attacks are generic and could be used against any hash function. In this section,

these attacks are summarised and evaluated according to the computational power required

to execute them successfully.

For MDCs two attacks are considered to be independent of the algorithm. This implies that

these attacks can be carried out against the ideal cryptographic hash function described in

Chapter 1. These attacks are known as the random attack and the birthday attack.

21
\ 't..< So b3SLt x
±:. ',-, ~ s; (;;,S '1..L

Threats Against Hash Functions

In this attack it is assumed that the attacker is given a message X and requires a message

X' such that X' =1= X and h(IV, X') = h(IV, X) (i.e. the attacker has to find a second pre-
image). This can be accomplished by randomly selecting X' from all possible admissible
messages. The probability of success is 2-n with n the length in bits of the hash value. If

an attacker performs T trials, the probability of finding a valid value for X' so that X' =1= X
and h(X') = h(X) becomes T . 2-n. Thus, the larger n the larger number of trials Tare
required. According to [1] approximately 0.7· 2-n trials are required to find a collision using

this technique. Thus for a n-bit hash value the expected workload to find a second pre-image

is in the order of O(2n).

This attack is based on the the birthday paradox from probability theory. According to this

paradox, it can be shown that the probability that two individuals in a group of 23 people

share a birthday, is approximately 52%. The number of people in the group is much smaller

than expected. A related problem states that for two groups of 17 people, the probability that

two people have a common birthday, is larger than 50%. This property can be exploited to

attack hash functions as explained below.

Pr(h(X) = h(X')) = 1- e-~

Threats Against Hash Functions

1. Fora n bit hash value letTl = T2 ~ 0(2%)

4. Compare the hash values for the Tl variations of X with the T2variations of X'. When

a message X and X' is found for which h(IV, X) = h(IV, X'), a collision is estab-
lished.

The attacker can now generate a message that contains X and then later replace X with X'
and claim that he originally generated X', since the hash values for both messages are the
same.

In [20] and [21] alternative algorithms for efficient collision search is proposed. These tech-

niques are based on Pollard's p method for finding cycles in periodic functions in a finite

domain. These techniques were used in the analysis of DES.

The significance of this attack is that the number of operations required to find a collision

is 0(2%) instead of 0(2n) for the random attack. A similar order of magnitude is required
in storage capabilities. Thus a birthday attack requires less operations than a random attack.

The only way to defend against birthday attacks is by increasing the number of bits n in

order to make it computationally infeasible to launch a birthday attack.

If a message is longer than the maximum block length of the hash algorithm, the message

is segmented. The segments are then processed iteratively (Chapter 5 Section 5.3). This is

known as the Damgard-Merkle scheme [22], [23]. A number of attacks have been derived

which are only applicable if an iterated structure is used. The attacks are summarised below.

Chapter 3

This is a variation of the birthday attack. This attack allows the attacker to construct two

messages, X and X', for which h(X) = h(X'). The messages X and X' should be at least

twice as long as the elementary block length of the hash function. The following algorithm

describes the meet in the middle attack.

Algorithm 3.2 Meet in the middle attackfor hash functions
Consider Figure 3.2.

4. Work forward from the IV and compute rl variations of the intermediate values I Ml

with I Ml = h(IV, XD and save this in a buffer of intermediate values I Ml.

5. Work backward from h(X) and compute r2 variations on h(X) = h(I M2, X~) and

save the intermediate values in a buffer of intermediate values 1M2•

6. Use a search algorithm and search for two intermediate values that are equal in I Ml

and 1M2 respectively. If two equal values are found, a collision is established.

IMI 1M2

Og~oI II t
I II I

[jbj

As in the case of the birthday attack the number of operations required to establish a collision

are in the order of O(2~). The advantage of this attack is that it allows an attacker to hit a

Threats Against Hash Functions

specific hash value. This attack is only possible if the message is longer than an elementary

message block.

It is possible to defend against these attacks by increasing the number of bits in a hash value

to such an extent that the meet in the middle attack is computationally infeasible. Another

defence against this attack is to constrain the message lengths to less than the elementary

block length.

When imposing constraints on the solutions obtained with the meet in the middle attack, the

attack is called the constrained meet in the middle attack.

To avoid the meet in the middle attack, two-fold iterated schemes were suggested in [6].

These schemes include computing two hash values for a given message using two differen-

t IV's (h(IV, X) and h(IV', X)) or computing the hash value on the concatenation of the

message to itself (h(IV, XliX)). These schemes can be extended to so-calledp-fold schemes

where p hash values are computed for the same message using p initial values, or by concate-

nating the message p times to itself and then computing a hash value (h(IV, XIIXII ... X)).

A graphical representation of these p-fold schemes are shown in Figure 3.3.

Chapter 3

It has been shown in [24] and [25] that the meet in the middle attack can be extended to break

these schemes. The extension of the meet in the middle attack to attack p-fold schemes is

called the generalised meet in the middle attack. For this attack only O(lOP. 2~) operations

are required instead of O(2T) [24], [25].

This attack can be foiled by choosing the number of bits, n, large enough in order to make

the attack computationally infeasible.

Several variants of the correcting block attack exists. The first variant assumes that an attack-

er has a message X for which a forgery, X', has to be constructed. All the blocks in X' are

then changed so that they differ from X. One message block in X', XI is then constructed so

that h(X) = h(X'). The block XI is then designated as the correcting block. The correcting

block is usually inserted as the last block in the message, but may be inserted at the beginning

of a message or in the middle of a message. For this variant of the correcting block attack,

the construction of the correcting block XI may be accomplished with the random attack.

Since a specific hash value has to be generated, the birthday attack cannot be used. If two

correcting blocks are allowed, it is possible to use the meet in the middle attack to generate

two blocks, XI and XI+l' that together cancel the effect that message blocks Xh to XI-l have
on the chaining variable. Another alternative in constructing the correcting block requires

the attacker to have knowledge of the algorithm. By manipulating the algorithm a correcting

block XI can be constructed. Note that the construction of a message block by manipulat-
ing the algorithm depends on the algorithm. If the construction of XI is independent of the
algorithm, the amount of work required is 0 (2~).

Another variant of the correcting block attack is described next. An attacker generates two

messages X and X' and then generates two correcting blocks Y and Y'. The correcting

blocks are then concatenated to X and X'. The correcting blocks Y and Y' should be chosen
such that h(IV, XIIY) = h(IV, X'IIY'). If the final hash value is specified, the correcting
blocks Y and Y' can be constructed using the random attack. If the final hash value is not

specified, the birthday attack can be used to generate a collision. If more than one block is

allowed as a correcting block, the meet in the middle attack can be used. Note that with the

meet in the middle attack the attacker can generate a specific hash value. It is also possible

to construct the correcting blocks Y and Y' by manipulating the algorithm. The attack then

Threats Against Hash Functions

It is possible to defend against block correcting attacks by adding redundancy to the message

before hashing. Redundancy includes padding rules and attaching the number of blocks or

bits in a message as the last block. If the attacker is the originator of the message these

measures are not sufficient, since the attacker can control the number of blocks or the length

of the message under consideration. Choosing the value of n large enough, makes the block

correcting attack computationally infeasible. If the hash function itself can be manipulated

to produce a correcting block, the attack becomes dependent on the algorithm used. The

algorithm should be replaced if that is the case.

A fixed point may be defined as a hash value for which h(Xi, Hi-d = Hi-I. This property

allows an attacker to insert an arbitrary number of blocks corresponding to Xi after the first
occurrence of Xi (see Figure 3.4).

h() h() h(Hi_l ,Xi+l)

h() h() h()

A collision can be established if the chaining variables can be set equal to Hi-I. This can

be accomplished by using the random attack to find a suitable value for Xi-lor the meet in

the middle attack which would allow the attacker to specify Xi-I and Xi-2 so that Hi-I can

be established. It might also be possible to manipulate the hash algorithm to find a suitable

Threats Against Hash Functions

value for Xi-I that will produce Hi-I. It is possible to foil this attack by adding redundancy

to the message. The redundancy should contain the number blocks in the message. The fixed

point can be found by the random attack, or by the meet in the middle attack. This implies

that the work factor is approximately O(2~). By choosing n sufficiently large, it becomes

computationally infeasible to perform the random attack or the meet in the middle attack.

The value of an attack in which one block is repeated a number of times and still yields the

same hash code is debatable.

Differential cryptanalysis is based on the study of the relationship between input and output

differences in iterated cryptographic algorithms. Since hash functions are usually based on

iterated algorithms, differential cryptanalysis is applicable to cryptographic hash functions.

The differential attack against hash functions is a probabilistic attack. An attacker searches

for input differences that will result in specific output differences. If an attacker intends to

create a collision the output difference should be zero.

The differences can be found with a probabilistic search (random attack). For a random

attack, IV, h(IV, X) and IV' are specified. The attacker has to find X' so that h(IV, X) =

h(IV', X'). Another technique that an attacker could use is the birthday attack. For the

birthday attack it is assumed that IV and IV' are specified. It now remains to find values

for X and X' such that h(IV, X) = h(IV', X') with the birthday attack as described in

Section 3.4.1. It is also possible to use the meet in the middle attack to establish a collision.

This requires that the attacker should be able to choose two message blocks in both the

original and the forged message. This places the magnitude of the work factor at O(2~). It
is also possible to execute the differential attack by manipulating the hash algorithm. The

differential attack then becomes dependent on the algorithm. When block ciphers are used,

the differences should be chosen in such a way as to exploit the chaining.

Differential attacks can be launched against the chaining of an iterated hash Function, or

against the hash algorithm itself. In Chapters 6, 7, 9 and 10 it is shown how differential

analysis is employed against the compress function of dedicated hash functions such as MD4,
MD5, SHA and HAVAL.

Threats Against Hash Functions

All of the attacks against MDCs are applicable to MACs if the key for the MAC is known

to the attacker. In addition to the attacks on MDCs, the following attacks are applicable to

MACs.

A key collision occurs when, for two distinct keys, K1 and K2, h(X, Kd = h(X, K2).

Due to the presence of a key, this attack is applicable to MACs. MACs based on block

ciphers are especially vulnerable to this attack, since this phenomenon has been observed in

block ciphers [20], [21]. It was shown in [20] that this attack can be implemented against

the Data Encryption Standard (DES) using the meet in the middle attack. In [21] a refined

technique based on the theory of distinguished points are proposed. Both attacks resulted in

the discovery of key collisions for DES. This attack allows an attacker to construct a message

that yields the same hash value for different keys used. For DES, 21 collisions were found in

[21] and 48 collisions are described in [20]. When the meet in the middle or birthday attacks

are used, approximately O(2~) operations are required (n is the number of bits in the hash

value). For these attacks a large storage space and an efficient sorting algorithm is required.

In [21] a technique is suggested that reduces the storage requirements and eliminates the

necessity of an efficient sorting algorithm.

Another block cipher with a large number of known key collisions is LOKI. It is known that

15 key collisions exist for every key in LOKI [26]. For this reason it is advised that LOKI is

not used as a round function for the construction of a MDC or MAC [27]. For a MDC the

birthday attack or the meet in the middle attack can be used. For a MAC a key collision can

be established.

Exhaustive key search is intended to recover the key for a MAC. For a given MAC both the

hash value, h(K, X), and the message, X, are known. The key is recovered by exhaustively

trying all possible keys, Ki, until a key, K, is found that results in h(K, X). If key collisions
exist for the hash function, hO, several messages Xi and their corresponding hash values,

Threats Against Hash Functions

h(K, Xd, are required to confirm that K is a valid key. Therefore this attack is effectively a

known plaintext-MAC attack. The effort required to find a k-bit binary key is on the order of

O(2k). In [3] it is stated that for a k-bit key and a n-bit hash value the number of plaintext-

MAC pairs, M, required to determine the key uniquely is slightly larger than ~, provided

that no key collisions occur.

This attack allows the generation of a forgery and, in general, does not allow key recovery.

The attack is described [28] and [29]. The attack requires that the MAC is based on an

iterative structure (see Chapter 5 Section 5.3). The basic idea is that for two messages, Xl

and X2, with:

Xl alilb.

X2 a211b.

The MAC results, h(K, Xl) = h(K, X2), are likely to occur given O(2~) chosen messages,

with n the hash length. This is reminiscent of the birthday attack. Given h(K, Xl) =

h(K, X2) it is expected that h(K, ad = h(K, a2)' This implies that for an arbitrary string c,
the MAC values h(K, alllc) and h(K, a211c) are equal. Thus, a forgery can be obtained by
requesting h(K, alllc), and in effect obtaining the MAC for h(K, a21Ic).

This attack imposes requirements on the storage space available to an attacker and also as-

sumes that the secret key, K, is not changed before 0 (2 ~) chosen messages can be requested.
Note that a forgery is obtained without retrieving the secret key K.

This attack is presented by Preneel and van Oorschot in [29]. It is viewed as an extension of

the chosen text attack described above. The attack is outlined as a proof in [29]. Note that

this attack, as is the case for the chosen text attack, generally enables forgery attacks, not key
retrieval.

The attack states that r known plaintexts are required with r = /2 .2~. For the previous

Threats Against Hash Functions

attack it was assumed that the MAC was given by a permutation gO of the hash result, hO
(e.g. the unity mapping). For this attack it is assumed that a random mapping is used with the

resulting MAC having m bits instead of n bits with m < n. When considering this attack,

it is necessary to differentiate between a collision before the random mapping is applied,

(internal collision) and a collision after the random mapping is applied (external collision).

With gO being a random mapping function, 2n-m external collision are expected. Additional

computations are now required to generate a verifiable forgery. An internal collision can be

identified by attaching a known string y to each collision pair and checking whether the

corresponding MACs are equal. This requires 2 . (1 + 2n-m) chosen text-MAC requests.

For internal collisions the resulting MACs are always equal. Retain only the text-MAC

pairs resulting in internal collisions. At this stage 2n-2m external collisions and a single

internal collision should be available. If more than one external collision remains, these

external collisions have to be eliminated by choosing a different value for y and proceed as

before, until a single external collision remains. It is believed to be highly probable that

the remaining external collision is the result of an internal collision. It is expected that the

number of chosen and known texts required to find an internal collision are:

_2·_2
n
_-

m
.2

m
+ 2 r~l~2 . 2n-m + 2 r~l.

2m -1 m m

Known text-MAC pairs

Chosen text-MAC pairs

V2. 2~

2 . 2n-m + 2 r;l.
This attack is extended to cover the case where all the known texts have a common sequence

of s trailing blocks. It is stated that if that is the case, fewer known and chosen texts are

required. In particular it is shown that if:

the probability that the set of known messages, r, contains two messages that collide under
the hash function, hO, is approximately:

Threats Against Hash Functions

Given this probability, an internal collision for hO can be found if the known text-MAC pairs
have s identical trailing blocks. If gO is a random mapping, this attack requires:

In [29] both these attacks are applied to MAA [30] and CBC-MAC (see Chapter 5 Section

5.4). The refined version of this attack with s-blocks is shown to be effective against MAA.

The refined attack cannot be applied to CBC-MAC with maximal feedback, since the round

function is bijective. The unrefined attack described initially can however be employed a-

gainst CBC-MAC.

In [31] these attacks are extended to and tailored for forgery and key recovery for MAA and

the envelope MAC constructions (see Chapter 5 Section A.5).

It is noted that a large number of chosen texts and known texts along with their MAC values

are required. If it is assumed that key collisions does not occur for the chosen MAC, the

secret key, K, may not change while collecting the known and chosen texts. It is therefore

suggested that the chosen text attacks, and known and chosen text attacks, described in this

and the previous section can both be foiled by effective key management. By changing the

secret key at a regular interval, it becomes impossible to collect enough chosen and known

texts to execute these forgery attacks.

It has been suggested that block ciphers could be adapted for use as building blocks for cryp-

tographic hash functions [23], [32], [3]. The motivations for these suggestions are presented

in Chapter 5. It should be noted that when using block ciphers in a hash function config-

uration, additional attacks based on the underlying block cipher are possible. The attacks

discussed in Sections 3.4 and 3.5 are applicable to hash functions derived from block cipher-

s. Specifically the construction of fixed points is considered easy if the underlying block

cipher is either DES or LOKI [3].

Threats Against Hash Functions

Symmetry under complementation was one of the first properties discovered for DES [33].

Let E(K, X) denote the encryption of X with the key K. Then for a message, X, and a key,

K, the complementation property is stated as follows:

with C the ciphertext and C the complement of C. This property is known to exist for DES
and LOKI91 [34]. When used in a hash function construction as a MAC, this reduces the

effort required for exhaustive search by a factor of two. In addition, this property allows the

construction of trivial collisions. It is known that LOKI89 has a large set of keys for which

this property holds [34].

E(K,X)

E(K,C)

C

X, VX.

Thus the encryption, E, and decryption, D, operations are equivalent for a given key K.
Thus for certain keys, some block ciphers are involutions. This property holds for certain

keys of DES, LOKI89, LOKI91 [34] [35] and IDEA [36].

E(K1,X) C

E(K2, C) X, VX.

K1 =J- K2•

These properties of block ciphers can be exploited in certain hash functions based on blocks

ciphers to yield fixed points (see Section 3.4.2).

Threats Against Hash Functions

In addition to the above attacks, the following attacks are considered feasible. These attacks

are not so much an attack on the hash algorithm, than an attack on the interaction of the hash

algorithm with the environment in which it is used.

In [37] an attack on public key systems implemented in hardware is described by Boneh,

DeMillo and Lipton from the Math and Cryptography Research Group, Bellcore. Based

on the attack presented in [37], Biham and Shamir describes an attack that retrieves the

key for a hardware implementation of DES [38]. This attack is termed differential fault

analysis (DFA). Both of these attacks are specifically applicable to algorithms implemented

in hardware, and for this reason are considered as high level attacks.

The attacks described in [38] exploit the effect of a transient error in a hardware device. The

resulting erroneous output is then analysed to determine the secret key. In [38] it is claimed

that less than 200 ciphertexts are required to find the last sub-key in a DES implementation.

The remaining eight key bits can be found by exhaustive search.

In [39] Quisquater claims that this technique is applicable to MACs implemented in hard-

ware. According to [37] attacks based on differential fault analysis can be countered by

verifying results before output and protecting the registers used to store values using error

correcting codes. Thus differential fault analysis imposes conditions on the implementation

of a hash algorithm, rather than on the design of a hash algorithm.

Differential power analysis was first proposed by Kocher []. This attack allows an attacker

to derive the secret key used by an algorithm. This is accomplished by observing the fluctu-

ations in power consumption of the device, while performing cryptographic operations. It is

a non-destructive attack. This type of attack is especially efficient against smart card imple-

mentations. It has been demonstrated that a secret key can be obtained using this approach.

This attack can be used against MACs implemented in hardware.

Threats Against Hash Functions

As remarked in Chapter I hash functions are often used in digital signature schemes. It

has been shown in [40], that even if the hash function is a collision resistant hash function,

the signature scheme can be attacked successfully. The success of this attack is due to the

underlying multiplicative structure of both the hash function and the signature scheme [3].

These attacks are concerned with attacks such as replay of messages and the construction

of valid messages from previously intercepted messages. It is thus in effect an attack on

the protocol. These attacks can be thwarted by the use of a nonce or a timestamp. It is

thus necessary to protect a system in which messages and hash values are vulnerable to

interception with a suitable protocol.

The calculation of the equivalent shift register length for a given stream Cipher, allows an

attacker to construct a linear feedback shift register that mimics the operation of the stream

cipher. This calculation is based on the Massey-Berlekamp algorithm. Similarly an attacker

could attempt to construct an equivalent system for a cryptographic hash function. This

attack is applicable to MACs in particular [3]. The attacker attempts to find a system that

produces the same MAC for a given message, without knowledge of the secret key [3]. No

standard technique is known to exist for mimicking hash functions.

These attacks exploit a weakness in the algorithm. These attacks are usually discovered only

after the publication of a hash algorithm. These attacks are only a threat if the work factor

for finding a collision is substantially less than O(2~). This dissertation investigates attacks

of this nature.

Threats Against Hash Functions

The distinction between classes of attackers are based on their capabilities, the informa-

tion at their disposal and their position with regard to the system under consideration. The

difference with regard to Class I and Class II attackers lie, to a large degree, within the in-

formation at their disposal. The advantage that Class II attackers have over Class I attackers

can be eradicated by publishing the hash algorithm and its design criteria.

All three classes of attackers are capable of executing any of the attacks presented in this

chapter. The probability of success however, increases as the attacker's capabilities increases.

The feasibility of the attacks presented in this chapter are measured in terms of effort required

to establish a collision for a hash function. In general Class III attackers have the largest

resources in terms of computing power, followed by Class II and then Class I attackers.

A further point of interest is the position of the class of attacker with respect to the system

under consideration. A legitimate participant can construct two messages that result in the

same hash value. One message can be signed and transmitted and at a later stage the mes-

sages can be swapped. An active eavesdropper is not allowed to construct and sign messages.

Active eavesdroppers are expected to intercept and modify messages. The eavesdropper is

restricted to finding messages that hash to specific values. As seen in Section 3.3 the com-

putational effort required to construct two messages that result in the same hash value is

considerably less than that required to hit a specific hash value. For example, even though a

Class II attacker might not be capable to construct a message that results in a specific hash

value, it may be possible for the Class II attacker to construct two messages that yield the

same hash value.

Thus although all three classes of attackers are capable of all possible attacks, the probability

of success differs substantially as the attackers' knowledge and capabilities differs. In addi-

tion it appears that legitimate participants require less effort to construct messages that result

in collisions, than active eavesdroppers.

Threats Against Hash Functions

All of the above attacks pose requirements in terms of processing power and storage space.

When designing a hash function the parameters that contribute the security of the function,

such as the hash length, should be chosen in such a manner as to render any of the above

attacks infeasible. In order to make a sufficiently informed choice for these parameters the

capabilities of an opponent has to be known or estimated. Estimating the computational

power of an opponent is a complicated process. The following aspects should be considered

when estimating computational capabilities.

In addition to these aspects, additional factors, such as the opponent's ability to construct

dedicated hardware or hardware subsystems and the interconnection of these systems to

realise the above attacks, should be taken into account. The feasibility of an attack also

depends on the class of attacker dealt with (see Section 3.2).

The generic attacks described in this chapter are not considered feasible for hash lengths of

128-bits or more. It is already considered that 128 bits will not provide sufficient protection

within the next few years, due to the increase in available computational power [41]. The

development of new fields in computing such as quantum computing may also change the

estimate of computationally secure hash lengths [42].

A taxonomy of possible attackers were presented. The taxonomy is based on the attackers'

capabilities and their position with regard to the system they seek to attack.

Threats Against Hash Functions

A review of the general attacks against MDCs were presented in Section 3.4. These attacks

are discussed in [17]. It was shown that these attacks require a maximum of O(2n) operations

and a minimum of 0 (2~). Due to the definition of hash functions, these attacks cannot

be avoided. When designing a hash function, the relevant parameters should be chosen to

minimise the effect of these attacks. The feasibility of a specific attack is measured by the

workload associated with each of these attacks. The workload is expressed in terms of the

number of bits, n, contained in the hash values. This implies that an attack can be made

infeasible by choosing n sufficiently large.

In addition to the general attacks on MDCs, the general attacks on MACs were presented in

Section 3.5. These attacks are aimed at either retrieving the secret key, or obtaining a forgery

for the MAC. The probability of success for these techniques are proportional to the size of

the secret key and the number of bits, n, in the resulting hash function.

When constructing cryptographic hash functions based on block ciphers, additional attacks

are possible. These additional attacks were presented in Section 3.6. These attacks exploit

certain properties of block ciphers and allows the establishment of collisions. As before, a

legitimate participant has a larger probability of success than an active eavesdropper.

Several high level attacks were presented. These attacks concentrate on the environment in

which a hash function is used. Hash functions and the systems within which they are used,

should be implemented in a secure manner to avoid these attacks.

The relationship between attackers and the type of attacks they are capable of were investi-

gated in Section 3.8. It is shown that an attacker operating as a legitimate participant has a

larger probability of success than an attacker operating as an active eavesdropper. Therefore

legitimate participants poses a more significant threat than active eavesdroppers. Likewise,

it is more likely that a Class III attacker will execute an attack successfully than a Class II or
Class I attacker.

When designing a cryptographic hash function, both the attackers and the attacks they are

capable of should be considered. Cryptographic hash functions should be designed to with-

stand the attacks described in this chapter.

CHAPTER 4: REQUIREMENTS FOR CRYPTOGRAPHIC HASH

FUNCTIONS

This chapter contains a description of the requirements for cryptographic hash functions.

These requirements are based on:

The requirements are divided into two classes, namely functional requirements and security

requirements [43]. These requirements are often contradictory. The contradictions are not

restricted to the security requirements and the functional requirements, but are sometimes

found in the functional or security requirements themselves. The conflict between security

and functional requirements are treated in a separate section in this chapter.

The functional requirements deals with the practical implementation of a hash function. The

requirements presented in this section are intended as goals to be met by practical hash

algorithms.

According to the definition of a hash function a message of arbitrary length is compressed to

a string of fixed length. Thus a fundamental functional requirement for a cryptographic hash

function is the reduction of a message of arbitrary length to a string of fixed length.

Concerning the input length of the message, several solutions are possible. The designer

could specify different hash algorithms for different message lengths. This is an impractical

solution. Alternatively a scalable hash algorithm can be used. The third possibility is the use

Requirements for Cryptographic Hash Functions

of padding to extend the message to a specific length, or a multiple of a specific length. This

is the most often used technique.

If the message is longer than the elementary block length of the hash algorithm, the message

is padded to be a multiple of the elementary block length. The padded message is then seg-

mented and processed iteratively by the hash algorithm. This process is known as chaining

and is commonly used in hash functions (see Chapter 5 Section 5.3).

Repeatability is important since it should be possible to produce the same hash value for the

same message.

In Chapter 5 an ideal construction is presented for a cryptographic hash function. In this

construction the hash value is generated independent from the message. The construction

requires the use of a database to produce the same hash value for the same message. The

construction is impractical due to the storage requirements, accessibility of such a database

and the difficulty of constructing binary symmetric sources. Attaining repeatability through

the use of a database is therefore infeasible.

Repeatability can be achieved in a practical hash function by making the hash value depen-

dent on the message. Thus possession of the message implies possession of the hash value.

The hash function should not be dependent on the type of data to be processed. In other
words, a specific file type should be processed in the same manner by the given hash function

as any other file (e.g. a binary executable should be processed in the same manner as an

ASCII file). A hash function should therefore not be designed to process a specific data type,

especially if the hash function is intended for widespread use.

Requirements for Cryptographic Hash Functions

The fast calculation of hash values for messages is an important requirement. When using

a digital signature scheme the hash value instead of the message is signed. For this rea-

son it should be faster to compute and sign the hash value than to sign the entire message.

The reduction in time and bandwidth requirements are important motivations for using hash

functions.

The speed of a hash function can be increased by efficient implementation or efficient design.

A fast hash function can be designed by either optimising the algorithm for a specific com-

puter architecture or by simplifying the design to reduce the number of operations required

by the hash algorithm.

This requirement specifies that the message should be processed only once. This effectively

rules out all of the so-called p-fold schemes. Thus a message is loaded into memory only

once. When computing online this has the advantage that no permanent storage is required.

When computing the hash value for a file on a computer disk drive, the time required to

access the file and load it into memory more than once is eliminated. This requirement

augments the requirement for fast calculation.

This requirement is the main reason why MDCs are preferred over MACs. A MAC requires

that a secret key is shared between two or more users. This introduces the problem of key

management. It also serves as an argument against the use of MACs in an environment where

the issue of key management poses a problem.

The hash function should be designed to be modular. This allows the hash algorithm to

be replaced within a system if a weakness or deficiency in the algorithm is detected after

implementation in a system. Implicit in this requirement is the need for a well defined

Requirements for Cryptographic Hash Functions

interface between the hash function and the system it is used in. The interface components

of importance are:

If the hash algorithm is intended for widespread use, ease of implementation is important.

This requirement ensures the proliferation of the algorithm, since many unskilled users can

implement and use the algorithm independently. It is also important to supply sufficient test

data for an independent user to verify the operation of the algorithm.

An algorithm optimised for a specific architecture is advantageous in terms of speed and ease

of implementation for the architecture concerned [10], [44], [45]. It is, however, possible that

a penalty is paid when transferring the algorithm to another architecture. The penalty may

be paid in both a loss of speed and increased complexity of implementation.

It is important that a hash function's algorithm, test data, documentation and implementation

should be easily obtainable if intended for use in the public domain.

The security requirements for cryptographic hash functions deals with those properties of a

hash function that influences the security of the hash function.

Requirements for Cryptographic Hash Functions

The concepts of confusion and diffusion in cryptography were first introduced by Shannon

[46].

Confusion is described as: "The method of confusion is to make the relation between the

simple statistics of the ciphertext and the simple description of the key a very complex and
involved one" .

Diffusion is described as: "In the method of diffusion the statistical structure of the plaintext

which leads to its redundancy is dissipated into long range statistics." These concepts are

interpreted in [1] as follows:

Confusion: The ciphertext statistics should depend on the plaintext statistics in a manner

too complicated to be exploited by the cryptanalyst.

Diffusion: Each digit of the plaintext and each digit of the secret key should influence many

digits of the ciphertext.

The concepts of confusion and diffusion can be applied to hash functions. For MDCs a secret

key is not required. Thus the security of the MDC depends solely on the concept of diffusion.

In other words, there should be no apparent relationship between the input to the MDC and

the resulting output. For MACs a secret key is required, thus in addition to the requirement

of diffusion the concept of confusion is considered relevant. Thus, for a MAC, a person in

possession of the MAC algorithm, the message, X, and the MAC result, it should be difficult

to determine the key K, used to determine the MAC result.

For the ideal hash function construction presented in Chapter 5 a binary symmetric source

is used to generate the hash function. Thus there is no dependence between the hash value

and the message. In terms of hash functions this is the most secure a hash function could

be, since it is impossible to manipulate a message to yield a specific hash value. The ideal

hash function construction presented in Chapter 5 is impractical due to the requirement for

repeatability. In practical hash functions the hash value depends on the message. For a secure

Requirements for Cryptographic Hash Functions

hash function it is required that there is no apparent or predictable relationship between the

hash value and the message. This requirement is related to the concept of diffusion.

When designing a cryptographic hash function the computational feasibility of the known

generic attacks should be considered. It should be computationally infeasible to employ

any of the generic attacks described in Chapter 3 to construct a collision. It should not be

possible to construct a collision in less than O(2~) operations (n being the hash length).

Several degrees of computational infeasibility is defined.

Collision Resistance: This requirement states that it should be computationally infeasible to

construct two arbitrary messages, X and X', such that h(X) = h(X'). Hash functions

that meet this criterion are called collision resistant hash functions (CRHF).

Finding a Specific Hash Value: This requirement states that, given a message, X, and the

corresponding hash value h(X) it is computationally infeasible to find a second mes-

sage, X', such that h(X) = h(X'). A hash function that satisfies this criterion is said

to be a one way hash function (OWHF). The condition for a OWHF is weaker than the

condition for a CRHF.

Sensical Collisions: A sensical collision is a collision for which X and X' can be construct-

ed such that h(X) = h(X'), and X and X' are meaningful in the context used. This is

the weakest condition imposed on cryptographic hash functions.

It is recommended that a cryptographic hash function is designed to meet the requirements

set for a collision resistant hash function.

Supplementary to the requirements of computational infeasibility of finding collisions for a

hash function is the requirement for the computational infeasibility of finding a combination

of the hash function and the signature scheme that results in a forged signature.

Requirements for Cryptographic Hash Functions

Central to the computational feasibility of finding a collision for a hash function lies the hash

space. The generic attacks described in Chapter 3 are evaluated in terms of the order of

the number of operations required to establish a collision. None of the generic techniques

requires less than O(2~) operations. The hash length n should be chosen large enough to

render the generic attacks harmless, given limited time and resources. Current estimates

recommend that n 2: 128 bits, and preferably n = 160 bits. The length of the hash value
should be updated every 3-5 years to accommodate the increase in computational power and

advances in computing technology.

The matter of key space is applicable to MACs. A MAC key should be chosen long enough

in order to prohibit exhaustive key search. For a k-bit key approximately O(2k) operations

are required to recover a key through exhaustive search. It is proposed that the length of the

key should be at least 64 bits.

When considering the hash length of a MAC two factors should be kept in mind. First is

the use of a secret key. The secret key adds to the security of the MAC, and consequently

the requirements imposed on the hash length is reduced to half of that specified for a MDC

with a similar level of security (see Chapter 2). The reduction in the hash space reduces the

effort required by an opponent who is in possession of the secret key, K, to find a collision or

establish a forgery. Thus for a MAC the security is derived from the difficulty of retrieving

the key rather than the difficulty of finding a collision. Thus a MDC with hash length n

would afford the same level of security as a MAC with a key of length ~. The second fact

which should influence the choice of a MAC length is the results obtained from the attack

in [29]. In [29] it is shown that the workload for generating a collision doubles if the length

of the MAC value, m is less than the length of the chaining variable, n. The mapping from

n to m should appear random. It is proposed that the chaining variables should be at least

128-bits with the final MAC value chosen as 64 bits.

The importance of key management should be kept in mind when designing a system that
makes use of a MAC.

Requirements for Cryptographic Hash Functions

Due to the functional requirement for repeatability, the hash value depends on the message.

If the hash value depends on the message, it is important that the hash value depends on

every bit in the message. If this is not the case an attacker could easily manipulate the bits

not used in the computation of the hash value to produce another message that yields the

same hash value.

It should be computationally infeasible to reconstruct a message from its hash value. This

is both a functional and a security requirement. From the point of view of security require-

ments, the construction of a message from its hash value allows an attacker to construct the

message even if the message is encrypted. The requirement for one-wayness can be wavered

if both the hash value and the message is encrypted. This solution incurs a time penalty, due

to the additional encryption required.

A cryptographic hash algorithm should exhibit maximum error extension. This implies that

if one bit is changed in the message, approximately half the bits in the hash value should

change. This ensures that an attacker can not expect a collision close to a specific message

with a high probability. This implies that the attacker has to search the entire hash space.

This is similar to the requirements set for a block cipher.

The output values and preimages of a hash function should be distributed smoothly. This

condition is required to prevent an attacker from searching for those preimages which are

known to occur more frequently, thus reducing the effort required for finding a collision.

When a hash function based on the Damgard-Merkle scheme is used, the preimages and

output values of every block should be distributed smoothly to minimise the possibility of a

successful attack on the chaining (see Chapter 3 Section 3.4.2).

Requirements for Cryptographic Hash Functions

In [43] it is proposed that a hash algorithm should not be a decomposable algorithm. This

would prevent an attacker from analysing individual building blocks to construct a collision.

This requirement is intended to prevent attacks dependent on the algorithm.

If the Damgard-Merkle scheme is used every bit in the chaining variables should be used in

the next iteration of the hash algorithm. This ensures that the applicability of the meet in the

middle attack is minimised. An additional condition on the chaining variables is imposed

by the meet in the middle attack. The number of operations required for the meet in the

middle attack are O(2'i), with n the number of bits in the chaining variable. Consequently

the chaining variable should have at least the same length as the hash value. For ease of

implementation the chaining variable is often chosen the same as the hash value. The number

of bits, n, should be at least 128 bits.

Redundancy could be added to the message to prevent certain variants of block correcting

and fixed point attacks. Redundancy is especially useful for detecting the addition of message

blocks. Redundancy appended to messages include:

The use of a time-stamp has the advantage that it prevents replay attacks. The addition of

time-stamps introduces several problems and potential weaknesses which could result in a

successful high level attack. The use of time-stamps require a synchronised clock. Synchro-

nised clocks are expensive to implement over distributed networks. The use of time-stamps

Requirements for Cryptographic Hash Functions

require a timing window to allow for transition times, especially when used in distributed

systems. As the timing window increases, the possibility of a successful replay attack in-

creases. If the timing window becomes too small, synchronisation becomes a problem. An

additional risk is introduced when utilising a small timing window. A small timing window

implies that the grain of the time-stamp becomes small. A time-stamp with a fine grain in-

creases the probability that an attacker could find two messages with a given time stamp that

results in a collision. Once such a pair is generated, the attacker waits for the time specified

by the time-stamp before sending the messages.

The addition of the message length to the message has the advantage that the message length

can not be increased or decreased. When using the Damgard-Merkle construction, padding is

required to extend the length of the message to a multiple of the elementary block length. The

padding scheme should be designed to contain sufficient redundancy to prevent the addition

of blocks.

The addition of the message length to the message before hashing makes it easy to detect

if a segment of the message was added or deleted. It does not allow the user to detect if

a segment of a message was replaced with a different segment. Substitution of message

segments can be detected by adding an intermediate result to the message. When using the

Damgard-Merkle construction, a chaining variable could be appended to the message before

hashing.

Several of the above requirements for cryptographical hash functions are contradictory. In

this section a short review is given of the contradictions. Where applicable resolution strate-

gies for these conflicting requirements are suggested.

Requirements for Cryptographic Hash Functions

This contradiction stems from the definition of an ideal cryptographic hash function. For

practical purposes the repeatability in a hash function can not be achieved through the use

of a database as is the case with the ideal cryptographic hash function. Instead, repeatability

is obtained by deriving the hash value from the message. This implies that the hash value

depends on the message and not on a binary symmetric source. It is therefore possible to

manipulate the message to yield a specific hash value. This is not possible when using a

binary symmetric source to generate the random numbers. Thus by making the hash value

dependent on the message, repeatability is obtained at the cost of reduced security. This

problem can be overcome by using the message as a seed to a good pseudo random number

generator. Therefore it is sufficient to state that there should be no apparent relationship

between the message and the hash function.

In Section 4.2.1 the need for chaining is introduced as a functional requirement. Unfor-

tunately the use of chaining structures make the hash function vulnerable to a variety of

attacks, designed specifically to exploit the chaining mechanism (Chapter 3 Section 3.4.2).

The attacks on the chaining require at least 0(2%) operations. The alternatives to chain-
ing are considered impractical. If possible the message length should be limited to a single

block to avoid chaining and the consequent attacks. If chaining can not be avoided it is ad-

vised that the number of bits, n, be chosen such that the most powerful attack on chaining is

computationally infeasible. Suitable values for n exceeds 128 bits.

Th~ requirement for speed is rooted in limited computing resources and CPU power. Hash

operations are specifically intended to speed-up digital signature schemes. When designing

a hash algorithm for fast execution the designer is often faced with a trade-off between speed

of execution and security [3]. The designer should be careful not to increase the security

and thereby sacrificing an unacceptable amount of processing time. Likewise the designer

should not increase the speed of an algorithm at an excessive cost to the security of the hash

function. The designer should decide what level of security and what hashing times are

Chapter 4

tolerable. Note that a slow algorithm is not necessarily more secure than a fast algorithm (a

badly designed algorithm can be both slow and insecure).

A contradiction between the two functional requirements specified in Section 4.2.4 and Sec-

tion 4.2.9 exist. In order to design a fast hash function without paying severe penalties in

terms of security, hash algorithms are optimised with a specific computer architecture in

mind [10], [44] [45] and [47]. This is acceptable as long as the majority of the intended

users share this architecture. When the specified architecture is not common to the majority

of users, penalties are paid in terms of speed and a lack of ease of implementation. If a hash

function is designed with a specific architecture in mind, the design should be optimised

to make use of the general architecture of the processors or systems concerned (e.g. 32-bit

Intel architecture). The design should not require specific instructions available only to cer-

tain processors if diverse processors architectures are used (e.g. multiply and accumulate

instruction in a DSP is not available in the 80x86 family).

Note that when implementing an algorithm the implementation should be optimised for the

architecture used. However, when defining an algorithm it should not be overly optimised

for a specific architecture.

In Section 4.3.11 it is stated that a hash function should not be decomposable. This implies

that the hash function does not have individual building blocks. This presents a problem in

terms of the functional requirement for ease of implementation. If a hash algorithm is not

composed from individual building blocks, it becomes difficult to implement the algorith-

m step-wise and test the functionality of each block. It is proposed that a hash function is

constructed from individual building blocks, but that analysis of individual blocks and the

interaction of these blocks does not allow the hash function to be manipulated in a determin-

istic way. This approach allows a user to implement and test each block and its interaction

with other building blocks before constructing the entire hash algorithm.

Requirements for Cryptographic Hash Functions

In Sections 4.3.5, 4.3.6 and 4.3.3 security requirements are set which influences the length of

a message and the consequent hash value. These security requirements are formulated to foil

the known generic attacks presented in Chapter 3. Most of these attacks can be made com-

putationally infeasible by increasing the number of bits n. The disadvantage of this defence

mechanism is that as the computational power of computers increase the number of bits n

has to be increased. When the hash values are transmitted over a channel, an increase in n

results in an increase in bandwidth required. Thus, unless bandwidth availability grows at the

rate of computational power, poorer throughput and reduced performance of communication

systems that make use of cryptographically secure hash functions will be the result.

Another defence technique is to add redundancy to the message and then compute the hash

value. The addition of redundancy once again implies reduced performance.

If bandwidth is constrained, a designer could decrease the security to improve the throughput

of a system. If security is deemed to be of greater concern than bandwidth requirements, the

number of bits, n, should be chosen to be secure in terms of computational feasibility.

This chapter contains a description of both functional and security requirements for crypto-

graphic hash functions. The functional requirements deals with the successful implementa-

tion and proliferation of cryptographic hash functions. The security requirements stated in

this chapter are intended to render the known generic attacks on hash functions harmless.

Many of the requirements mentioned in this chapter are conflicting. Some of these contra-

dictions are discussed in Section 4.4. It is the intention of this discussion to make a designer

aware of these contradictions and to suggest strategies to find optimal trade-offs for these

contradictions.

Due to the conflicting nature of the requirements for cryptographic hash functions, a design-

er should consider these requirements as a guideline. The designer should be influenced

by the application for which the cryptographic hash function is to be designed and should

accordingly make appropriate trade-offs between these requirements.

	Front
	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	Chapters 5-8
	Chapters 9-12
	Back

