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Reed-Solomon codes, a subset of multilevel non-binary cyclic codes with powerful burst 

error correcting capabilities, are known to be computationally efficient when algebraic 

decoding techniques are applied. They may however give weaker performance compared 

to convolutional coding techniques, at least at moderate bit error rates (around 10.5 to 

10.6
) on the AWGN channel. This disadvantage mainly results from the lack of a general 

applicable method for soft-decision decoding. The aim is to construct a trellis from the 

generator matrix of a Reed-Solomon code and to show that apart from the historical 

Berlekamp Massey frequency domain techniques, other techniques usually reserved for 

convolutional code decoding, such as Maximum Likelihood (ML) and the Maximum A­

Posteriori (MAP) techniques, can be successfully applied in the decoding process. 

Consequently, the main objective of this dissertation is to analyse, design and implement 

a soft-input, soft-output Reed-Solomon ML or MAP trellis decoding algorithm with 

performance and complexity comparable to conventional algebraic block decoding 

methods. 

The main reason why trellis decoding is not often used for cyclic block codes, is the 

complexity of the decoder, especially in the case oflong codes with high redundancy. In 

fact, it will be almost impossible to implement the Viterbi decoder for Reed-Solomon 

codes with moderate redundancy, considering the fact that the Viterbi decoder becomes 

computationally unfeasible and practically intractable for convolutional codes of 

constraint length greater than 10 to 12. Therefore, in order to reduce trellis complexity, 

a search for minimal block trellis decoding techniques is launched through: 

Centre for Radio and Digital Communication (CRDC) 

Department of Electrical and Electronic Engineering 

University of Pretoria 

 
 
 



Abstract 

• 	 manipulation of the generator matrix with a view of obtaining minimal trellis 

structures, i .e. , minimising the number of states in a specific block code trellis; 

• 	 devising methods to simplify trellis construction of large block codes (i.e., codes 

with large block size n and redundancy n-k) ; 

• 	 considering only a certain number of trellis paths which are most likely to be 

transmitted, in stead of all possible paths. This may for example be achieved 

through a expurgation process on the original trellis (i.e., eliminating paths not 

terminating in the zero state) or by applying maximum likelihood (ML) or 

maximum a-posteriori (MAP) decoding methods such as the Viterbi algorithm 

which results in significant computational savings through its 'survival path' 

mechanism. The expurgation process is block code specific, i.e., the existence of 

unterminated paths may differ for each code and is a function of each code's 

inherent algebraic structure. 

The objective of this reduced search method is therefore to optimise the performance of 

the code while minimising trellis decoding complexity and the corresponding decoding 

delay. 

In the process of constructing minimal trellis structures for cyclic block codes, a novel 

topological branch interconnecting (trellis branch indexing or labelling) scheme for block 

codes, and specifically Reed-Solomon codes, is proposed and developed. The technique 

identifies unique interconnecting patterns in the branch structures of sub-trellises, by 

which the remaining parts of the trellis may be uniquely defined without having to 

resort to complicated trellis branch calculations. It is shown that the complexity of the 

trellis construction process may be reduced by orders in magnitude (for relatively short 

block lengths) , by exploiting the well defined cyclic trellis patterns inherent to the trellis 

structures of individual block codes. 

After having established methods for efficient block trellis construction and the 

corresponding minimal trellis coder and decoder design, it is next shown how ML 

convolutional decoding techniques, such as the Viterbi decoding algorithm, can be 

successfully employed in the decoding process of block codes which could traditionally 

only be decoded by means of algebraic techniques. The study then investigates the error 

performance achievable using the trellis as a means of decoding. It is shown that the 

performance of ML (Viterbi) trellis block decoding with soft decisions matches the 
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performance rendered by soft decision algebraic block decoding techniques in all 

respects _ 

Key Words: Trellis, Complexity Reduction, Bit Error Rate, Reed-Solomon, Topology_ 
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Opsomming 

'n soektog na minimale blok trellise geloods deur: 

• 	 manipulasie van die generatormatriks met die doel om 'n minim ale trellis 

struktuur te verkry, met ander woorde om die aantal toestande in 'n spesefieke 

blokkode trellis te minimiseer; 

• 	 ontwikkeling van metodes om trellis konstruksie vir groot blok kodes (kodes met 

groot bloklengte n en oortolligheid n-k) te vereenvoudig; 

• 	 om slegs 'n sekere aantal trellis paaie in berekening te bring as een van die mees 

waarskynlik gestuurde kode, in plaas daarvan om almal in berekening te bring. 

Hierdie kan byvoorbeeld bewerkstellig word deur 'n proses, waar sekere paaie 

wat nie in die nul toestand termineer nie, weg te laat. Dit kan verder ook gedoen 

word deur die ML of MAP dekoderingstegnieke soos die Viterbi algoritme te 

gebruik, wat 'n groot besparing in bewerkings teweegbring deur gebruikmaking 

van die oorblywende pad meganisme . The proses van uitlating van paaie verskil 

vir elke blokkode en is'n funksie van elke kode se inherente algebraiese 

struktuur. 

Die doel van hierde gereduseerde soektog metode is dus om die werkverrigting van die 

kode te optimiseer terwyl die dekoderingskompleksiteit en die saamhangende 

dekoderingsvertraging geminimiseer word. 

In die konstruksie proses van minimale trellis strukture vir sikliese blokkodes, word 'n 

nuwe topologiese tak interkonneksie (trellis tak indeksering) skema vir blok kodes, en 

meer spesifiek Reed-Solomon kodes, voorgestel en ontwikkel. Hierdie tegniek 

identifiseer unieke interkonneksiepatrone in die takstruktuur van sub-trellise, waarmee 

die res van die trellis uniek gedefinieer kan word sonder om ingewikkelde trellis 

takbewerkings te verrig. Daar word aangetoon dat die kompleksiteit van die trellis 

konstruksieproses ordes vereenvoudig kan word (vir relatiewe klein bloklengtes), deur 

die goed gedefinieerde sikliese trellispatrone inherent in die trellisstruktuur van 

individuele blokkodes te gebruik. 

Nadat metodes vir effektiewe blok trelliskonstruksie en die minim ale trellis kodeerder 

en dekodeerder bepaal is, word daar aangetoon hoe ML konvolusie dekoderingstegnieke 

soos die Viterbi algoritme suksesvol benut kan word in die dekoderingsproses van blok 

kodes, wat normaalweg slegs deur middel van algebraiese tegnieke dekodeer kon word. 
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Opsomming 

Die studie ondersoek dan die foutkorreksieverrigting wat verkry word indien die trellis 

tegniek as dekoderingsproses benut word. 

Daar word aangetoon dat die verrigting van ML (Viterbi) trellis blokdekodering met 

sagte beslissings in aIle aspekte dieselfde is as die verrigting verkry deur sagte 

beslissing algebraiese tegnieke. 

Sleutelwoorde: Trellis, Kompleksiteit Vermindering, Bisfoutwaarskynlikheid, Reed­

Solomon, Topologie. 
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Chapter 1 Introduction 

Chapter 1 

Introduction 

This chapter provides the framework on which the rest of the dissertation is based. 

To start off, a historical overview is presented stretching back to the dawn of modern 

telecommunication over half a century ago. Following this historical account, a clear 

breakdown of the topics examined and contributions made is provided. This will provide 

the reader with an overview of the work following the introduction. 

In the next section, the goals and objectives of the dissertation are outlined. They are 

again evaluated in the summary at the end of the dissertation, and should be read 

together with this introductory chapter. 

1.1 Historical Overview 

Since the epochal work by Claude E . Shannon in 1948 [23], various different channel 

encoder and channel decoding techniques have been developed for the transmission of 

data over noisy communication channels. The aim of all these techniques are the same: 

Transmit as much data as possible given a certain time frame and channel characteristic 

with the least amount of errors. This simple statement caused an uproar in the 

communications and mathematical fields when Shannon derived a bound specifying the 

maximum capacity that can be achieved at various energy to noise ratios for a given 

channel. Since 1948 this bound is commonly known as the Shannon Bound [23]. It has 

become the dream of many a designer and researcher to cross this theoretical bound 

discovered by Shannon. To date, the bound has not been reached nor exceeded, although 

the latest techniques come to within dB's of this elusive goal. 

The various coding techniques are abound as sand in the Sahara desert. All channel 

coding techniques can be divided into two main groups, namely the class of convolutional 

codes and the class of block codes . Many hybrid systems have also evolved over the 

years, but in principle, the two above mentioned groups are the two main fields on which 
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Chapter 1 Introduction 

research is currently done. 

The enormous difference between the properties of these two groups of codes has always 

lead to either block codes or convolutional codes being researched, but efforts involving 

combinations of these codes were few and far between. This phenomenon mainly 

sprouted from the completely different decoding procedures used to decode the two 

groups of codes. For block codes, pure algebraic techniques involving correlative and 

comparative processes were developed, whereas elegant soft decision techniques were 

discovered for convolutional codes. As the convolutional soft decision decoding 

techniques improved with time, the use of block codes in systems became less attractive . 

This spiraling effect led to a situation were almost all of the effort was being focused on 

convolutional codes and their decoding techniques . 

The decoding techniques for convolutional codes rely on the fact that all convolutional 

codes can be described by a state-time variant diagram termed a trellis diagram . This 

sparked the idea that if a trellis diagram could be obtained for a block code, the same 

elegant convolutional decoding techniques could be applied in the decoding process of 

block codes. 

In 1974 Bahl, Cocke, Jelinek and Raviv [2] proposed a possible method for the 

construction of a block code trellis diagram. Their valuable work was used as a base by 

J .K. Wolf [16] in 1978 in order to develop a procedure for the construction of block code 

trellis diagrams. Forney [5] also elaborated on the topic, and introduced the world to 

coset trellises, which are described in the chapters to follow . 

Parallel to this discovery, a new type of block code was introduced on the 21st of January 

1959. This non-binary block code became known as the Reed-Solomon[20] code, named 

after its discoverers, Irvine Reed and Gus Solomon. The Reed-Solomon code has become 

the most widely used block code and has the best error correcting capability of all block 

codes. Many different techniques, apart from the algebraic ones, have been developed 

to decode Reed-Solomon codes (the Berlekamp Massey [21] technique to name just one). 

Nevertheless , the reasons why this group of codes has never enjoyed the advantages of 

convolutional decoding techniques can firstly be attributed to the enormous size of the 

codes and secondly to the fact that it falls into the category of a block code. This 

dissertation will investigate methods for soft decision maximum likelihood decoding of 

Reed-Solomon codes. A quote from a paper by Cooper [21] is found to be very relevant 
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Chapter 1 	 Introduction 

here: "The Holy Grail of Reed-Solomon decoding research is the soft decision maximum 

likelihood decoder. There is however still a great deal of work to be done before the Grail 

is found and the knights can go hO/ne." 

Now, 50 years later, more and more effort is channeled into the development of novel 

channel encoding techniques employing both block codes and convolutional codes . In this 

manner, it is aimed to combine the best of two worlds in order to get closer to the 

ultimate goal in communication theory - the Shannon Bound. 

1.2 	 Goals and Objectives 

The dissertation is mainly concerned with various decoding techniques of block codes. 

The main objective is to decode block codes with the same decoders that are employed 

in the decoding process of convolutional codes, namely the Viterbi and MAP algorithms. 

From this main goal several secondary goals emanate which are listed below. Each 

secondary goal is considered to be as important as the original goal. 

• 	 This dissertation aims at providing viable trellis construction techniques for block 

codes, their success being evaluated and judged in terms of complexity. 

• 	 Soft decision maximum likelihood techniques, traditionally reserved for the 

decoding of convolutional codes, are applied to the decoding process of block 

codes. 

• 	 Comparisons between the Viterbi decoding techniques and the algebraic 

techniques are made. The comparisons are done for both hard decision and soft 

decision decoding. 

• 	 The trellis construction techniques are then extended to include the construction 

of trellises for the Reed-Solomon family of codes. 

• 	 A novel trellis construction technique for Reed-Solomon codes is presented which 

reduces the amount of calculations required during the construction of such a 

trellis . 
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• 	 Decoding of the Reed-Solomon codes IS attempted employing the Viterbi 

algorithm. 

• 	 The dissertation shows that maximum likelihood decoding can be achieved with 

the techniques mentioned above, and that it compares favorably with the 

traditional algebraic decoding results. 

• 	 An algorithm is investigated which decreases trellis complexity, making decoding 

oflarger block codes possible with the Viterbi algorithm. Simulation results are 

presented to verify the decoding performance using the lower complexity trellises. 

1.3 	 Outline of Dissertation 

In this chapter, the Introduction, a framework IS provided on which the entire 

dissertation is based. 

The second chapter, Foundations of Channel Coding, deals with important coding and 

information theory concepts. The emphasis in this chapter is placed on coding theory, 

and all the relevant topics are discussed. The most important aspect of the coding theory 

as far as this dissertation is concerned, is the discussion of block codes and their 

properties. This discussion will provide the foundation on which all other chapters are 

based. Throughout the remainder of the work, reference will be made to the second 

chapter of the dissertation. 

Decoding of Block Codes is the third chapter of the dissertation, and employs the 

technique discussed in the previous chapter to realise a method for decoding block codes. 

Here techniques normally reserved for the decoding of convolutional codes are adapted 

and used for the decoding of block codes. The main focus in this chapter is the creation 

of trellis diagrams for block codes. This allows the aforementioned decoding processes 

to be used for block codes. Not all the known trellis construction techniques are 

discussed in this chapter, but reference is made to the appendixes at the end of the 

dissertation for more information. 

The chapter, Performance Issues of Various Block Codes, investigates the performance 

of a selected group of block codes, namely the Hamming, Reed-Muller and BCH families 
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of codes. Error rate curves of the block codes obtained by using the Viterbi algorithm are 

compared to curves obtained by traditional algebraic decoding techniques. These curves 

are then also compared to the theoretical curves obtained by calculation. It is shown 

that maximum likelihood decoding is achieved by employing the convolutional decoding 

techniques on block codes. 

Trellis Construction for Reed-Solomon Codes is discussed in chapter 5. The importance 

of this group of error correcting block codes has already been pointed out. Very little 

information is available on this topic in literature, and therefore a great amount of detail 

is presented in this chapter. Again, the first step for Viterbi decoding of Reed-Solomon 

codes is the construction of a trellis diagram for the code . As Reed-Solomon codes are 

huge compared to any other type of code, their trellis diagrams are too large to illustrate 

schematically. For this reason a small code was chosen for illustration purposes. A 

topological analysis is done on the constructed trellis, and several novel findings are 

made, resulting in a novel "topological" trellis construction technique for Reed-Solomon 

codes. The performance of this family of codes, when used together with convolutional 

decoders, is examined. Error rate curves are plotted in order to demonstrate that 

decoding of Reed-Solomon codes employing either the Viterbi or MAP algorithms is in 

fact possible. This ultimately means that Reed-Solomon codes can be maximum 

likelihood soft decision decoded by the same algorithms normally used for convolutional 

codes. 

Chapter 6 presents an introduction to trellis complexity, which is accompanied by a 

technique for the successful reduction oftrellis complexity. As mentioned earlier, the 

only liITliting factor in the trellis decodilll;:; JJI'Ul:t!t;t; it; the actual complexity of the trellis. 

The larger the trellis, the more complex the decoding, and this will ultimately make the 

decoding of large block codes impractical. A simple example is used to show that this 

proposed technique is in fact able to reduce the trellis complexity by a significant factor. 

The effect of this technique is that larger codes can now be decoded with the same 

amount of effort required to decode smaller codes, since the trellis size of the larger 

codes can be reduced significantly. This counteracts the apparent drawback of block 

code decoding with the Viterbi Algorithm. Simulation results are presented which show 

that there is no degradation in error correcting performance when such a reduced trellis 

is used in the decoding process. 

A Summary is provided in chapter 7. As mentioned earlier, this chapter should be read 
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together with the current one in order to determine which of the goals and objectives 

have been achieved. An objective stance is taken and the goals are evaluated in the last 

chapter of the dissertation. 

Apart from the chapters listed above, there are a total of eight Appendixes which provide 

more information regarding several topics under discussion to the interested reader. 

1.4 Major Contributions 

The major contributions made in this work are as follows: 

• Trellis complexity resolution. 

• Novel trellis construction techniques based on Wolfs method. 

• Simulation results for verification of techniques. 
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Chapter 2 

Foundations of Channel Coding 

2.1 Introduction 

This chapter is dedicated to describing the general principles of channel coding and error 

correcting codes. The two main groups of error correcting codes that will be discussed 

here, are block codes [3], [4] , [8] and convolutional codes. In order to describe exactly 

how a trellis for a block code is constructed in the following chapter, it is essential that 

several definitions and descriptions be given in this chapter. For this reason, this 

chapter is divided into four parts. The first part gives a general description of the 

fundamentals of block coding. This is then followed by a description of convolutional 

codes. The third part illustrates several decoding principles, along with a detailed 

derivation of metrics. At the end of this section, a short description of general methods 

for block code decoding will be given. The last section will detail the Viterbi algorithm 

[14], as this is, besides the MAP algorithm, still the most important algorithm available 

for decoding block code trellises. 

2.2 Block Codes 

Besides providing a mathematicalframework for block codes[3], [4], [8], [15], this section 

mainly contains a description of block codes. Several coding terms such as Hamming­

weight, Hamming-distance, minimal-distance and error correcting capability, which are 

used freely throughout this work and other standard works on this topic, will be 

described and illustrated. The prior knowledge of material contained in this chapter is 

of utmost importance before attempting to master any additional information and 

methods contained within this work. 
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2.2.1 Linear Block Code, Generator Matrix and Parity Check Matrix 

The vectors of the n-dimensional vector space GF(q)" contain n components, which are 

taken from the symbol alphabet GF(q) = {O,l, .. .,q-l}. If any arbitrary subset of this 

vector space contains qk vectors, then this set is termed a (n, k)-block code C with code 

rate R =kin and its elements are the codewords C = (co,cp ... , c _ I ). If the addition ofn

two codewords and the multiplication of one codeword with an element of GF(q)" gives 

another codeword, the code will be a subset of GF(qt termed a linear block code . From 

the above reasoning, it follows that the zero vector 0 has to be contained within every 

linear block code. 

If the possible 2k information vectors i = (io, i p ... , ik) are each assigned to a codeword 

C in a specific way, a code book is formed. The specific manner of assigning these 

vectors is of utmost importance, as this is what differentiates one code in the space from 

another one. A linear assignment proves very effective with linear block codes, as the 

code can then be described by a multiplication of the information vector i and a (1? x n)­

matrix G: 

c = j·G (2.1) 

The matrix G with elements from GF(q) has a rank k and is termed the generator 

matrix. The row vectors gi form a possible base for the subset of GF(q)" described by C, 

in that every codeword of C is a linear combination of the row vectors gi of G, with i = 

O,l, ... ,k. The vectors gi can be described as either a column vector or a row vector, 

depending on whether a subscript or superscript notation is used, i.e. 

Column vectors j=l, ... ,n (2.2) 

gkj 

Row vectors gi = (gil' gi2 , ... , gin)' i = 1, ... , k (2.3) 

with 
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glgil gl2 gIn 
g2g21 g22 g2n 

(2.4)G=(gi/)= = (gpg2,···,gJ = 

gkgkl gk2 gkm 

The set of all vectors, which are orthogonal to the vectors of C, the so called orthogonal 

complement C~of C, is called the dual code of C. The dimensions of this code is n - k. If 

any n - k base vectors of C~are randomly chosen for the rows hi of the ((n - k) x n)-matrix 

H, then the following holds 

(2.5) 


where 0 is the zero vector of length n - k. The matrix H, which already identifies the 

linear block code C without the use of the accompanying generator matrix G, is termed 

the parity check matrix. 

Since the rows g i of the generator matrix G are possible codewords, it follows from 

equation (2 .5), that 

(2.6) 


where 0 is the (k x (71, - l?))-zero vector. 

2.2.2 Equivalent Codes and Systematic Codes 

If a (n,k) block code C is defined by its generator matrix G, an equivalent code with the 

same parameters can be constructed if the following operations are performed[8]: 

• 	 Elementary row operations: 

Exchanging two rows 

Multiplication of a row with a field element (X E ( GF(q) \ {O}) 

Replacing a row by the addition of that same row and a multiple of any 

other row 

• Exchanging any column vectors 

Centre for Radio and Digital Communication (CRDC) 

Department of Elec trical and Electronic Engineering 

University of Pretoria 9 



Chapter 2 Foundations of Channel Coding 

If a chosen number of operations are performed in succeSSlOn, then the resulting 

manipulation can be described by a matrix multiplication To' G, where To is a regular 

(k x k) matrix with elements taken from GF(q) . With this type of manipulation, it is 

possible, without changing the original code C (the arrangement of the code vectors c i 

do however change), to rearrange any generator matrix into a form where k of the n 

columns are represented by unit vectors of length k. By exchanging the appropriate k 

rows, the generator matrix can be transformed to: 

(2.7) 


In the above equation I" is the (k x k) unit matrix and A is a (k x (n - k)) matrix. A code 

with a generator matrix in this form is termed a systematic code . The first k code 

symbols correspond with the information vector i, since 

(2.8) 

where the {c) , j = k, ... ,n - k denote the parity bits of the codeword C. 

Although not explicitly proven here, it is shown that every block code can be transformed 

into a corresponding systematic code. 

If the generator matrix G is transformed into the systematic form as per equation (2.7), 

then the corresponding parity check matrix H can be found accordingly: 

, TJH = (-A I - k ), (2.9)
n 

where I n.k indicates the «n - k) x (n - k)) unit matrix. This is fairly simple to prove, since 

" TG·H = (IkA)· ( -- A: =-A+A=O (2.10) 
I n- k 
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as per equation (2.6). 

Just like the row and column operations performed on the generator matrix G do not 

affect the code, so does the performing ofrow and column operations on the parity check 

matrix not affect the code at all. The entire transformation process of the parity check 

matrix H can be described, as before, by a matrix multiplication TH . H, where TH is a 

regular ((n - k) x (n-k» matrix with elements taken from GF(q). Similar to the generator 

matrix, the exchange of columns again provides an equivalent (but not the same) code. 

Often an equivalent form of the original code C may facilitate a far simpler decoding 

procedure. It is often also desirable (for several reasons) to describe a block code C in 

its systematic form C. Simple decoding procedures have also been developed for 

systematic error correcting block codes. 

2.2.3 Cyclic Codes - Generator and Parity Check Polynomials 

When any shifted version of a linear block code C produces another valid codeword in C, 

then this code is labeled cyclic. As shown in a few standard works, any cyclic code can 

be described by a generator polynomial [8] in the form: 

2 n-k 
g ( X) = go t gl . X t g2 . X t ...t gn-k . X (2.11) 

In relation to this, the coefficients of the code polynomial 

(2.12) 


are taken from the components of the code vector C = (co,cp ... ,c _ 1 ).n 

A very simple relationship exists between the code vector c(x) and the information vector 

i(x), namely that one can directly multiply the information polynomial i(x) of degree <;;k 

-1 with the generator polynomial g(x), and as a result obtain the code polynomial c(x) of 

degree <;; n - 1. 

C(x) = i(x)· g(x) (2.13) 
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The resulting generator matrix is given below: 

0go 	 gl g2 gn-k-l gn-k 


go gl g2 gn-k-l gn-k 

(2.14)G= go gl g2 gn-k-I gn-k 

go gl g2 gn-k-I gn-k 

0 go gl g2 gn-k-l gn-k 

Similar to equation (2.5), there exists a so called parity check polynomial hex) of degree 

k for cyclic codes for which the following holds true: 

c(x)· hex) = 0 mod(xn - 1) for all c(x) E C. (2.15) 

This leads to an expression: 

g(x)· hex) = xn - 1. (2.16) 

For any possible h(x), the parity check matrix could be given as follows: 

hk hk_1 hk-2 ~ ~ ho 0 

hk hk- 1 hk_2 ~ ~ ho 

H= hk hk_1 
hk_2 ~ hI ho (2.17) 

0 	 _ _hk 	 hk 1 
hk 2 ~ ~ ho 

2.2.4 Syndrome 

If a codeword is transmitted over a noisy channel, it is possible that some of the symbols 

of the transmitted code are in error. In other words, an error vector e is added to the 

code vector c: 

r = c+ e 	 (2.18) 
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If the received vector r is multiplied with the transposed parity check matrix H T
, then 

the answer is 0 only if e = 0 (error free transmission), or if e E C, which in term 

translates r into another valid codeword. The expression r·HT is called the syndrome s, 

and is not only dependant on the error vector e , but also on the transmitted codeword 

c, since it can be shown with the help of equation (2.5) and (2.18) that the following holds 

true: 

T T Ts=r·H =(cte)·H =e·H (2.19) 

2.3 Convolutional Codes 

Similar to the previous section, this section presents the basic fundamental concepts of 

convolutional codes [5], [6] . Convolutional codes are the second large group of error 

correcting codes. Their structure is vastly different from block codes, and the generation 

of these codes is also done in a completely different way. 

2.3.1 Convolutional Encoder 

In the previous section it was shown that the n symbols of a block code were just 

dependant on the k information symbols of the relevant information vector. However, 

for a convolutional code, an additional parameter is required, namely M. The parameter 

M is called the arrangement of Inemory of the encoder, or in short, the memory of the 

convolutional encoder. The n code symbols of the convolutional code are thus a function 

of M previous information vectors . 

An example of a convolutional encoder defined over GF(q) with q = 2, R =kin = 2/3 and 

M = 1 is shown in Figure 1. For each branch i, k = 2 information symbols from the 

symbol alphabet GF(q = 2) are shifted into the shift register. These are then combined 

with the previous information vector (M = 1) to form a codeword C i . The shift registers 

are loaded with zeros at the start of the encoding process. 
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ij_1,0 

911 =1 913=1 
(1) (1 ) 

i1-1 

ij_1 ,1 

921=0 
(1 ) 

ii,O 

911 =1 912=0 913=1 
(0) (0) (0) 

i
j 

i j ,1 

Figure 1 Example of a Convolutional Encoder with R = 2/3 and M = 1 

Several methods of describing convolutional codes and convolutional encoders [5], [14] 

have been developed, For the purposes ofthis study, only the matrix representation and 

the representation in trellis form will be described. The above example of a 

convolutional encoder will be used to illustrate the representation forms . 
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2.3.2 Matrix Representation of Convolutional Codes 

The mapping of the information sequence 

(2.20) 


into the code sequence 

c = (Co, C1 , C2 , •.• , Ci , ••• ) 

can be described (analog to equation (2.1» by 

c = i ·G 

where the generator matrix has the following semi-infinite form: 

(2.21) 

(2.22) 

Go 	 G1 G2 
G

M 
_

I GM 0 


Go GI G2 GM - 1 GM 

(2.23)G= 

Go GI G2 G1V1 - 1 GM 

0 

The (k x n) sub-matrixes 

g(l) 	 g(1) g(1) 
II 	 12 In 

(I)g(1) g(1) 
21 22 g2n

G, = (gy)) = (2.24) 

(I) g(l) g(1)
gkl k2 kn 

can be read directly from Figure 1. In this example, the matrix is as follows: 
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1 

1 

0 

1 

1 

0 

1 

0 

1 

0 

1 

1 
0 

G= 
0 

1 

1 

0 

1 

1 

0 

1 

0 

1 

0 

1 

1 
0 

(2.25) 

0 0 
1 

1 

0 

1 

1 

0 

1 

0 

1 

0 

1 

1 
0 

with 

(2.26)Go = 1 1 

1 o 
~l 

and 

1 
(2.27)o 

The generator matrix can also be represented in a polynomial form, as follows: 

gIl CD) g12 CD) 

g21 CD) g22 CD) 
(2.28)GCD) = (gil (D)) = 

The elements gij(D) ofthe above matrix are polynomials of degree Mij s M 

g .. (D) = g(O) + g(l). D+ g~2) . D2+ .. +g(Mij-I). DMij-l + g(Mij). DMij (2.29)
lj lj lj lj • lj lj 
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with the coefficients g~l) of the matrixes G l from equations (2.23) and (2.24). 

G(D) can thus be written as 

(2.30) 

The so called memory size of a convolutional encoder is defined as follows: 

k 

Vc = "maxM. ~ M·k~. Ij 
j= I J 

In this example this would translate to: 

(2.31) 


1+ D D 
(2.32)G(D) = ( 1 

1 

and 

2 

Vc = "maxM = max(1,l,l) + max(O,O,l) = 1+ 1= 2. (2.33)~ . Ij 


i=1 J 


The memory size Vc exactly determines the amount of registers used in the shift 

register structure of the convolutional encoder. 

2.3.3 Trellis Diagram Representation 

If one defines the contents of the registers Vc containing the previous information 

symbols, which are used to calculate the current codewords, as states of the 

convolutional encoder, then a series of nodes develop . These series of nodes allow the 

representation of the q VG possible states, and emanating branches that represent the 
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q" possible information vectors at a certain instant in time. This graph of topologically 

arranged nodes and branches is called a trellis diagram. In short, it can be describes as 

the time equivalent representation of the state diagram of the convolutional encoder. 

For the convolutional encoder presented in Figure 1 of this section, the corresponding 

trellis diagram is given in Figure 2 below. 

Stages 

;=0 ; = 1 ;=2 

til 
CI)-S en 

00 

01 • 

10 • 

... 11 • 
11/101 11/101 

• • • 

• • • 

• • • 

• • • 

Figure 2 Trellis Diagram of the Convolutional Encoder from Figure 1 

The vectors on the left hand side of the figure indicate the state that the specific encoder 

is in. On the branches, the relevant information vectors along with their respective code 

vectors are indicated. The notation that is used on the branches is a general 
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input/output notation, and this notation will be used throughout the dissertation. This 

means that the information vectors are listed on the left hand side and the resulting 

output or code vectors are listed on the right hand side. 

After M stages, when the information vector has reached the last register block, the 

trellis is fanned out. This means that all the branch transitions from that stage will be 

the same as the branch transitions from any stage after that particular stage where fan­

out has occurred. 

2.4 On the Decoding of Block and Convolutional Codes 

In this section, several decoding principles of error correcting codes will be presented. 

This will be the basis on which the latter chapters on decoding will be based. 

2.4.1 General Decoding Principles 

In Figure 3, a simple structure for a digital transmission system [10] utilizing a channel 

encoder and a channel decoder is shown. At the encoder, k information symbols (an 

information vector i) are mapped onto n code symbols (a codeword c). The code 

sequence is then encoded modulation specifically in the block "Transmitter" and 

transformed into a transmission signal (modulation) . This signal is then transmitted 

over the "Additive White Gaussian Noise" channel, where transmission errors are being 

introduced to the original error free signal. In the "Receiver" block, the received signal 

is demodulated to produce the estimated received sequence r. The decoder establishes 

an estimated equivalent i of the transmitted information sequence i. 

For simplicity reasons, a BPSK-modulation [10] is assumed. Furthermore, no inter­

symbol interference is found in the channel. If this is the chase, then the blocks labeled 

"Transmitter", "AWGN channel" and "Receiver" in Figure 3, can be combined into a 

time-discrete memory-free channel, in which the/h component of the received sequence 

r is only dependant on the l' component of the code sequence c . 
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Source 

Information 
Sequence i 

Channel Encoder 

Code 
Sequence c 

Transmitter 

Transmission 
Signal 

Channel AWGN 

Sink 

Estimated 
Information 
Sequence! 

Channel Decoder 

Received 
Sequence r 

Receiver 
Signal 

Receiver 

Figure 3 Structure of a Digital Transmission System 

There are two possible ways how the receiver passes on the information (obtained from 

the demodulated received sequence) to the decoder: 

• 	 The receiver decides for every received code symbol the corresponding code 

symbol that was most likely sent. This is then passed on to the decoder without 

sending any other information about the certainty or likelihood of the decision . 

This method of decoding is termed hard decision decoding. This means that for 

the previously mentioned time-discrete memory-less channel, the components of 

the error vector e and the received vector r have the same range of values as the 

code symbols. In this binary case this would translate to elements from GF(2) . 

• 	 The decoder passes an additional value to the decoder. This additional value 

expresses the reliability of the preceding decision for a particular code symbol. 

With a binary code alphabet this would mean that the real value and not just a 

one or zero is passed on to the decoder. For the case of a hard decision decoding 

process, the real valued received vector would be transformed into the closest 

matching binary symbol, and passed on to the decoder. With soft decision 

decoding the decoder receives the real valued symbols, and can use this 

additional information, often referred to as channel information, in the decoding 

Centr'e for Radio and Digital Communication (CRDC) 

Depal·tment of Electrical and Electronic Engineering 

University of Pretoria 20 



Chapter 2 	 Foundations of Channel Coding 

process. The effect of soft decision decoding, is that for the same bit error rate, 

a low code rate code needs about 2 dB Ebi/No less using this method, than with 

hard decision decoding. With higher code rates, this difference becomes smaller. 

It is intuitively assumed that the components of the error vector e and the 

received vector r are real valued. 

Independent of which of the above mentioned schemes is used, the result of the decoding 

process can be grouped into either one of the following categories: 

• 	 Correct Decoding, which implies that the decoder has identified the errors 

introduced by the channel, and has corrected them. The decoder thus delivers 

the same information that was initially sent to the information sink. 

• 	 Incorrect Decoding, which means that the decoder does not deliver to the 

information sink the same information that was initially sent. 

• 	 Decoding Failure, implies that the decoder does not deliver any information 

vector to the information sink. 

The following methods are envisaged in the decoding process: 

• 	 Error Detection 

Here the decoder only checks whether or not the received vector represents a 

valid codeword. If this is not the case, then the decoder does not perform any 

operation aimed at correcting such an inherently incorrect vector. In the case 

where e E C, the decoder is not even able to recognize the error seeing that r E 

C even though r * c. 

• 	 Maximum Likelihood Decoding 

If the decoder makes a decision (for any given received vector r) about which one 

of the codewords cwas most likely sent, in other words, 

P(clr) = maxP(clr) 	 (2.34) 
CEe 

then it is called the Maximum-A-Posteriori (MAP) decision rule. According to 

Bayes theorem, the following holds true: 
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( I ) 
- P(r/c). P(c) 

(2.35)P cr - Per) . 

Since we are dealing with the received vector r , the probability of it being the one 

out of all the possible codewords, 

Per) = I P(rle)· P(C) 	 (2.36) 
all CE C 

is constant, as long as it is the vector under inVf~st.igRt.i()n Tfthe cod(,'words c are 

all equiprobable (in other words, all the possible codewords A-Priori­

Probabilities PCc) = l/qk are the same), then the following decision rule applies: 

P(rlc) = max P(rle) 	 (2.37) 
CEC 

If the decoding is done according to this principle, then it is termed Maximum 

Likelihood decoding. 

• 	 Bounded Minimal Distance Decoding 

In this method, not all the possible received vectors r are decoded, but only those 

in which a bounded amount of errors exist. A possible undesirable outcome of 

this type of decoding, is decoding failure . 

For the different decoding methods [10], error probabilities can be defined as follows : 

• 	 Block Error Probability 

. Number of incorrectly decoded codewords
P

BI 
k = hm ----~----~--------- (2.38) 

oc 11"",, <:0 Number f.1 of sent codewords 

• 	 Bit Error Probability 

Centre for Radio and Digital Communication (CRDC) 

Department of Electrical and Electronic Engineering 

University of Pretoria 22 



Chapter 2 Foundations of Channel Coding 

. Number of incorrectly decoded information bits 
P . = hm -------'--------'-------'------- (2.39) 

BlI v--> oo Number v of sent information bits 

The optimal decoding (i:. e., the error probability is minimized) of a binary block code or 

convolutional code with the incorporation of reliability information, (/:.e.,soft decision 

decoding) will be investigated in more detail for the BPSK modulation system 

transmitting over a AWGN-channel. 

To derive an expression for the decoding strategy and the metric, the detailed system 

representation of Figure 4 is used. The already described time discrete, memory-less 

channel adds to the transmitted sequence a real valued error vector f. This is not to be 

confused with the error vector e with components from GF(2). As explained in the 

definition of soft decision decoding, the channel decoder uses this real valued received 

sequence y for decoding, and also assumes the function of the modulation specific 

decoding. 

Source 
ijE{O,l} 

Channel Encoder 
cj E{O,l} Modulation 

Specific Encoding 

X j E {-l,l} 

+ 
f E~

J 

Sink 
~ E {O,l} Soft Decision 

Channel Decoder 
Yj E 9t 

Receiver 

Figure 4 System Model for the Derivation of Decoding Strategy 

The components ~ of the error vector f are (given the present assumptions) normally 

distributed random variables with the following density function: 
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Chapter 2 Foundations of Channel Coding 

(2.40) 


with cy 2= No where No is the single sided noise power spectral density. Analog to the 

previous discussion, the components Yi of the received vector yare also normally 

distributed random variables with average values of -1 and 1, dependant on the sent 

value x
J 
of the transmission sequence x. It follows that the density function of Yj is also 

dependant on the variable Xj. 

(2.41) 


5 . 


.---------------~~----~~------~~----~------~~---------------.~ 
-lOa 

Figure 5 Probability Density Functions 
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Chapter 2 Foundations of Channel Coding 

Since ~ and Yj are stationary probability values (i.e. their density functions 

Ij Yj 

(2.42)cD (fJ = fcp (t ) . dt z.e. <J>(YiIXj)= fcp(tIXj)'dt 
S=-(f) S=-(f) 

are stationary), the probability p(Yj = alXj) is zero for any arbitrary value of a . 

For the purpose of the following discussion, the MAP decision rule of equation (2.34) is 

considered. If, instead of the received vector r with discrete values for the components 

rj , the vector y with real valued components Yi is used, then equation (2 .34) changes to : 

p(xlY)= max p(xly). (2.43)
all x 

Since, as explained above, no more discrete probabilities P(yl x) exist, the terms P(r Ic) 

and P(r) from equation (2.34) have to be replaced with <p(ylx) and <p(y) respectively. 

(2.44) 


where 

cp(y) = I cp(Ylx), p(x), (2.45) 
all x 

which for a given y, just as with P(r) from equation (2.34), results in a constant value. 

Due to the before mentioned fact, the decision rule as stated in equation (2.43) can be 

rewritten into the following decision rule: 

cp (ylx) = max cp (ylx) (2.46)
all x 

This means, that the most likely sent vector Xfor equally likely transmitted vectors x 

is the one which maximizes the above probability density function. 
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Chapter 2 Foundations of Channel Coding 

The expression <p(YI x) to be maximized, is transformed with the assistance of equation 

(2.41) . The vectors x and y each have n components in this case. 

To maximize this expression, it is necessary to minimize the sum in the exponential 

function . 

n n n n n 

I(y/ - x/t = I(yJ - 2x,y, + xi) = Iy; - 2Ix,y, + Ix; (2.48) 
/=1 {=! {=1 {=! {=! 

From the above expression it follows that L yi (given the received vector y) as well 

aSL xi =n are constant, which implies that in order to minirnize the given sum, only L x/y, 
has to be maximized. 

In conclusion, it can be stated that with BPSK transmission of n code symbols over an 

AWGN channel, the Maximum-Likelihood-Decoder maximizes the following sum: 
n 

Ix/y/ = x· yT (2.49) 
' = 1 

In other words, the scalar product of the sent vector x and the received vector y is 

maximized by the Maximum-Likelihood-Decoder. 

2.4.2 Decoding of Block Codes 

For any given code, there usually exists a multitude of different decoding procedures 

[10], [1], [2]. The choice of any given decoding procedure above any other is usually 

governed by the type of application. Other factors which contribute to the choice are, for 

instance, the availability of computing power, the speed of the specific decoding and the 

ease of implementation of given algorithm. These factors obviously also have to be 

considered when choosing a code, since these factors will impose restrictions on the type 

of code to be used, and also limit the parameter choices for the code (e.g. the possible 
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n k may by decoding 

III addition, channel state information also to be considered the decoding 

process Decoding) and 

process (the will SDML are only 

very allow for a 

Theoretically, every 

that every >'or'''n,o 

block code can be decoded process, III 

most likelycompared to all sent vectors 

one vU''''>JvU as per It can 

outlined method, maXlmum 

chosen. the number calculations exponentially with k, it is not a very 

k. main topic this work is to 

rate codes 

with The following chapters will be dedicated to the development and 

tuning of such procedures. 

2.4.3 Decoding of Convolutional Codes 

The convolutional the n symbols are not only 

k information symbols the current information vector, but also on M prevIOUS 

information is the reason why decoder a more information 

to do decoding on than a block above comparison holds true all 

viable decoding 

provide pf(JCE~atlr are able to more 

on 

decoder are to obtained 

obtained by 

block u.V'-'VU.'~L 

then also why the 

use of a convolutional 

to n"·... t-"...rn SDML decoding on a convolutional code with a code set C of T 

necessary to compare with all the possible qTk code sequences as 

in equation (2.43). showed in 1967 that diagram of 

Figure 2, it is not necessary to compare all qk with the vector, but that 

to most likely sent sequence. 

it sufficient, at any given time instant i, to only the incoming 

"best" metric. By applying equation (2.49) the assumption is 

a state 

the 

in a state which best 

path is path. 
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Chapter 2 Foundations of Channel Coding 

The following figure outlines the process proposed by Viterbi [14]. 

For all states ZI (with 1=O, ... ,qVG_1) put the path-metrics 

A(ZI(i = -1)) equal to 0. 

for i = O, ... ,T-1 

Compute for all connection branches of time instance i the 

branch metric Aas per equation (2.49). 

For all states ZI (l = O, ... ,qVG_1) in which at least on branch enters 

Compute for the qk incoming branches the actual path metric 

A as a sum of the metrics of the survivor branches of the 

stares from which this connection branch emanates and the 

current branch metric A. 

Save the incoming path with the "best" metric as 

survivor together with its path metric. 

~t~Then Else 

Decode the code and information 

sequence =Survivor of state ze(T-1) 

Decode the code and information 

sequence =Survivor of state at 

time T-1 with the best metric A 

Figure 6 Schematic Representation of the Viterbi Algorithm 

In the next chapter, the principles given are used in order to provide SDML methods 

for the decoding of block code trellises. 
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Chapter 3 

Decoding of Block Codes 

3.1 Introduction 

the previous chapter it was explained every linear block code can theoretically 

be decoded (SDML-decoded) 

vector with all and In this 

chapter two most popular methods are 

first one is the method 

Raviv in 1974 [2J, and the one outlined Wolf [16]. 

Both number ofcomparisons In Section I, 

the term Code case the 

IS Trellis Diagram [5J, the construction 

which is in Subsection 3.2. In 

'-J'-' H.U..r .... "''-''''CA~.Uc:. can be nc'""+..... Y'YY\ 

last 

above 

Viterbi 

to obtain 

from the 

In 

parity check matrix 

G, 

Chapter 

to construct the 

Subsection 3.3. 

H, 

Throughout 

block code 

the a number practical are to 

construction. 
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Chapter 3 	 Decoding of Block Codes 

• 	 The trellis diagram has a starting state (states will from time to time also be 

described as nodes) Zo (i = -1) and an ending state ze (i = n - 1). 

• 	 Each connecting branch is assigned a binary value (i.e. a code bit), under the 

condition that two branches leaving the same state or node cannot have the same 

binary value assigned to them. 

• 	 A path from Zo (i =-1) to Ze (i =n - 1) with assigned code bits co' c1 , •.• , c - 1 existsn 

The term "State" means exactly the same as the term "Node", and the naming of states 

and their ordering into a plane of states is completely arbitrary. In Figures 7 and 8, 

two possible "Untrue" trellis diagrams are shown, for the (3,2)-Parity Check Code with 

generator matrix: 

o 
(3.1)

1 

The reason why they are called "Untrue Trellis Diagrams" is the fact that the second 

condition listed above is not met for each of the first nodes. 

i =0 i = 1 	 i =2 

~~-------o--------~~----------o--------~~----------o--------~. 

o 

:~~1~ 
o 

...-------- ­

~-------o--------~w 

Figure 7 Untrue Trellis Diagram A for the (3,2)-Parity-Check-Code 
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Chapter 3 Decoding of Block Codes 

It may never happen that after stepping through the trellis diagram one code symbol at 

a time one has to traverse backwards in order to find the correct path. The trellis 

diagram in Figure 7 is called a trivial trellis diagram of a block code. 

i:;; 0 i =1 i =2 

0 0 0 

~: 
1 

/ : 
Figure 8 True Trellis Diagram A for the (3,2)-Parity-Check-Code 

i =0 i =1 i =2 

:-~ /-;e-o
-----o-

:~ : 

~----------o--------~~ 

Figure 9 Untrue Trellis Diagram B for the (3 ,2)-Parity-Check-Code 
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Chapter 3 Decoding of Block Codes 

Two code trellis diagrams are "Isomorph" if the one can be transformed into the other 

by changing some or all planes of states. Examples of isomorph trellises are shown in 

Figures 10 and 11, both of which are also valid or true code trellis diagrams. 

i =0 i = 1 i =2 

o------~~-------o~. 

1 
1 

~~--------o--------~~ 

Figure 10 True Trellis Dlagram C for the (3,2)-Parity-Check-Code 

i =0 i =1 i =2 

o 

~:______ ~~_______ _____o__~~ 
Figure 11 True Trellis Diagram B for the (3,2)-Parity-Check-Code 

A code trellis is termed minimal, if for all planes of states the number of nodes in the 

given trellis is minimal compared to all other possible code trellis diagrams for the 

specific code C. Both the code trellis diagrams in Figures 10 and 11 are minimal code 

trellis diagrams for the (3,2)-Parity-Check-Code . This is true, since there exists no other 

code trellis diagram for the same code C in which the planes i =0 and i =1 deliver less 

nodes. Furthermore, a minimal code trellis diagram for a code C is unique except for the 

isomorph variations in the trellis diagrams of the same code C. This means that two 

minimal trellis diagrams for the same code C which are not also isomorph cannot exist. 

Of utmost importance for the following sections, is the fact that the Viterbi Algorithm 

described in Subsection 2.4.3 can now be applied to a true code trellis diagram for the 

SDML decoding of block codes, without the necessity to compare the received vector with 

all of the possible q" sent vectors. 
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Decoding Block Codes 3 

3.3 Syndrome Trellis 

A block code its [10] 

Section Equation can be 

In manner: 

c· HT 	::: coli{' + C/'J + ... + c _, II: ::: 0 (3.2)
n

or 

(3.3)+ ... + 

n hand OT column vector. where 0 the zero row vector 

A state is U.v.LULv as 

(i) ::: call, + c,~+ ... + cilli+1 - C/lp+l 	 (3.4) 
p=o 

01) is a column vector n h 


possible to construct a valid 
 diagram, a 

trellis, by: 

(i) 	 (3.5)(i l)+a· 

Equation 3.5 is as follows: 

• the 	 ~::: 1 one state exists . state is called 

state 	z~ (i - - 1) ::: OT. 


i::: 0, 1, . "' n - 1: 


zT(i) 

any ex ( 

a state if at 

means 

by 

enters for 

number of states at ~ is 

ex GF(q) all states of Equation 

~a 
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Chapter 3 	 Decoding of Block Codes 

3.5. 


At the same time a connection branch is constructed from the state zT(i ­

1) to the corresponding state zT(i) and labeled ex = Ci, according to 


Equation 3.5. 


• 	 Finally, all nodes without a path ending in the final state z: (1 =n - 1) = OT are 

removed as well as all other nodes which branch off these removed nodes. This 

can be seen from Equations 3.3 and 3.4. This expurgating or "cleaning" of the 

code trellis diagram is not absolutely necessary for the decoding process. The 

decoding can also be done on a non-expurgated trellis, but then only paths which 

do end in the state z: (1 = n - 1) = OT must be considered, and the others 

ignored. 

The syndrome trellis diagram obtained by means of the above method consists of a total 

of 11, + 1 planes each comprising a maximum of q".n states. The q" paths of the trellis 

diagram starting at state z[ (i = -1) = OT and ending in state z: (1 = n - 1) = OT 

represent the q" codewords. 

Since the syndrome trellis diagram only contains qh paths, another upper bound for the 

maximum number of states in a plane exists, since at any time i no more than qh states 

can be reached by traversing q" paths . This then defines the upper bound on the number 

of states Ni at time i as: 

< min(n-k,k)N i - q 	 (3.6) 

In order to illustrate the process outlined above, the syndrome trellis diagram for the 

(7,4)-Hamming-Code is constructed. The parity check matrix for the above mentioned 

code is as follows: 

1 1 1 0 0 


0 1 0 1 1 (3.7)
H~ [i 
1 1 0 1 0 ~l 

Beginning at the starting state 
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(3.8) 

two connecting branches, one for ex =0 and one for ex = 1 respectively are constructed to 

the states 

(3.9) 

and 

(3.10)ZT (i ~ 0) ~ ZT (i ~ - 1) +1 ~ ~ [~l +1 m~ m 
According to Equations 3.9 and 3.10, at time i =0 the states mentioned above are 

possible. Which one of them actually occurs is dependant on the first code bit co. 

At each one of these two states, two new connecting branches emanate . In order to 

determine the two new destination states, the following two expressions are added tozT(i 

= 0): 

and 

For each level or plane in the syndrome trellis diagram the process is repeated for each 

active or connected node. The correct column vector of the parity check rna trix has to be 

used for every iteration. 

The result of this iterative construction is depicted in Figure 12. The solid lines depict 

the case for which ex =0 and the dotted lines the case ex = 1. It has to be noted that when 
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0: = 0, the trellis will always move from a certain state j in plane m to the same state k 

in plane n. This allows for fast trellis construction, when the system is implemented in 

hardware, as half of the connecting branches are calculated by default. This saves a 

tremendous amount of calculating time, which in term means more effective 

transmission systems. 

If the trellis is expurgated as described above, a trellis diagram representation IS 

obtained as depicted in Figure 13 . 

[j 

• 


i =0 i=1 i =2 i =3 i =4 i =5 i =6 

Figure 12 Full Syndrome Trellis Diagram for the (7,4)-Hamming-Code 
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o i =0 i =1 i =2 i =3 i =4 i =5 i =6 

o 
o 

o 

• 


I 

o • 

• 


• 
 • • 

• 
, '.i / • • 

• • 

• • • • 

""" '::",//" '/' 

l\ ..~ 
• 


Figure 13 Expurgated Trellis Diagram for the (7,4)-Hamming-Code 

As shown in Section 3.2, it is indeed possible to SDML decode a block code by utilizing 

its syndrome trellis diagram (a special case of a true code trellis diagram). The 

complexity of the decoding is dependant on the number of nodes in the trellis. This is 

governed by the following equation: 
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n-l 

(3.11)N'L = LNi 
i=-l 

From the definition of the minimal code trellis diagram in Section 3.2, it follows that 

a code trellis diagram is minimal when N'[ is minimal for all code trellis diagrams of C. 

The syndrome trellis diagram of a given linear block code is a minimal code trellis 

diagram. This means, that there exist no other non-isomorph code trellis diagrams with 

fewer nodes than the code trellis diagram obtained through the use of the syndrome 

construction procedure outlined above . 

However, this does not hold for equivalent codes. As was shown in Subsection 2.2.2, 

an equivalent code can be obtained from a code C, by performing matrix operations on 

the parity check matrix of the original code C. For such an equivalent code it is very 

possible and also likely, that syndrome trellis diagrams can exist which have a different 

number of nodes. An example for such a case is the (5,3)-Code with the following parity 

check matrix. 

1 0 1 
(3.12)

010 

The syndrome trellis diagram for this code is depicted in Figure 14. 

i=O i=1 i=2 i=3 i=4 

(~) "----1~-..,-~--.e----A 

(~) 


(~) 


Figure 14 Syndrome Trellis Diagram A for the (5,3)-Code 
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If columns of the parity check matrix of Equation 3.12 are interchanged, an equivalent 

code is obtained with the following parity check matrix. 

1 0 o 
(3.13)

01 1 

The syndrome trellis diagram for this code is depicted in Figure 15. 

i=O i=1 i=2 i=3 i=4 

( ~) ~-.a>;--~--.-------,/.___-;e 

.... 
,./" '" 

.. " .. , 

(~) 

(~) 

Figure 15 Syndrome Trellis Diagram B for the (5,3)-Code 

As can be seen from Figures 14 and 15 above, the number of nodes differ for the two 

equivalent codes . In Figure 14, Nr. equals 14, but in Figure 15 , Nr. only equals 12. It 

can be seen that in both cases qk = 8 paths traverse the code trellis diagrams. These 8 

paths represent the qk = 8 codewords. In the second diagram however, the topological 

distribution ofthese paths is more favorable than the distribution in the second diagram. 

The reason for this being that the reduced number of nodes imply a much simpler 

decoding complexity. To summarize, it can be said that the less nodes a syndrome trellis 

diagram contains, the simpler the eventual decoding becomes. 

For cyclic codes an alternative code trellis diagram construction method exists, which 

differs completely from the syndrome trellis diagram construction technique described 

previously. It is done by using the content of the shift registers (which are used in the 

coding and decoding process) as states in the trellis diagram. This method will however 

not be considered here, as it does not produce a minimal trellis diagram. Another 
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method of obtaining a syndrome trellis diagram is considered in Appendix I, where it 

is included as an example. 

As mentioned in Section 3.3, the decoding complexity relates to the number of nodes in 

the code trellis diagram. It should be clear that a good trellis construction is the 

procedure that will result in a trellis being minimal, i.e. the trellis should have the least 

number of nodes N[ possible. This is indeed an immense task, since n! permutations of 

the column vectors of the parity check matrix will have to be processed in order to find 

the equivalent code trellis diagram with the least amount of nodes, i.e. the minimal 

trellis representation. For smaller codes, this process can be done by hand, but for a 

large code (n»), this task becomes nearly intractable. 

In a following chapter, methods are investigated which reduce the number of nodes in 

the code trellis diagram. 

3.4 	 Derivation of the Parity Check Matrix 

In Section 3.3 the parity check matrix H was assumed known for the calculation of the 

syndrome trellis diagram [16]. A decoder would normally only have the generator matrix 

G available for the specific code to be decoded. In order to perform the decoding, the 

decoder will have to determine the topological structure of the trellis diagram, for which 

it will need to have the parity check matrix H, obtainable from the generator matrix G. 

For generator matrixes in the systematic form G' defined in Equation 2.7, it is fairly 

elementary to find the parity check matrix according to Equation 2.9. For the general 

non-systematic form of the generator matrix, this process is however a bit more 

complicated. 

A method that presents itself, is the direct solving of Equation 2.6 (G'H T = 0) after 

fixing the values of (n - k)2 unknowns. This approach is not a trivial process since it is 

not just a matter of fixing any of the (n - k)2 unknowns, but also which of the unknowns 

to fix . This is explained in more detail in the following outline: 

• 	 For non-systematic block codes, it is also possible to obtain a matrix 

representation in the form of Equation 2.9. The (n - k)2 chosen unknowns would 
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be the elements of the «n - k) x (n - k)) unit matrix in H' =(-ATII".,,). If the given 

generator matrix G is split up into the two sub-matrixes G tetl and G,ighl where G tetl 

is a (k x k) matrix and G,ighl a (k x (17, - k)) matrix, i.e. G = I G,ighl], then[G letl 

Equation 2.6 can be rewritten as 

G· H' T = (G'eft !Grighl)' ( ; A J = - G'eft . A + Grighl = 0 (3.14) 
n-k 

or 

G'eft . A = Grighl (3.15) 

The following are the 17, - k linear equations for the calculation of the 17, - k column 

vectors of the matrix A = (G], G2 , .. ·, G - k ) : n 

G'eft 'G] = grighl , ] 

G'eft . G 2 = gright,2 

G'eft . G n_k = gright ,n-k (3.16) 

Each of these (inhomogeneous) equations only has a solution if the rank of the 

extended matrix [Gletl I G,;ghl,;],i =1,2, __ .,17, - k, is not larger than the rank of G ,etl . 

This is however not necessarily fulfilled, since the first k columns ofthe matrix 

G, which forms the matrix G ,etl., can be linearly dependant, which in turn could 

make the rank of G tetl smaller than k. By extending the matrix G tetl by adding one 

column from Gright> the rank can be increased but then the equations are not 

uniquely solvable. 

This shows that it is not possible to choose and fix any of the (17, - k)2 unknowns. 

• A possible solution to Equation 2.6 can be found from a matrix H with n - k 
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identical row vectors identical. This can be any particular code vector from C~ . 

(n - k) 2 unknowns can be chosen and fixed in such a manner that the matrix 

H solves Equation 2.6. However, the matrix obtained by the procedure above, 

is indeed not a parity check matrix, since it has the rank 1 and not n - k, which 

does not comply with the definition of a parity check matrix given in Section 2.2. 

Since this approach does not render a tractable solution, the parity check matrix H has 

to be calculated on the following basis: 

• 	 Firstly the generator matrix G is, as described in Section 2.2, is transformed by 

elementary row matrix operations so that unit vectors of length k are present in 

k of the n columns of the matrix. 

• 	 By swapping columns, the transformed generator matrix is changed into its 

systematic form G' given by Equation 2.7. 

• 	 The corresponding parity check matrix H ' is then determined from Equation 2.9. 

• 	 The column swapping procedure in step two above is then applied in reverse 

order on H' to so obtain a possible parity check matrix H. 

An example of this procedure is given in Appendix B. 

3.5 	 Decoding of the Trellis Diagram 

As already mentioned several times, the Viterbi algorithm outlined Figure 6 of 

Subsection 2.4.3 , can be used to theoretically SDML-decode any linear block code 

through its syndrome trellis. This means that for every codeword C all the steps 

depicted in Figure 7 have to be performed once with the end state z; (1 =n- 1) = OT 

known. 

However, unlike the normal Viterbi algorithm the most likely sent codeword cand not 
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the most likely sent information vector i is obtained. The output is a valid codeword that 

satisfies Equation 2.5. Therefore, all that needs to be done is to reverse the mapping 

between the information vector and the code vector to obtain the most probable 

transmitted information vector. This is done with a lookup table or by solving Equation 

2.1. In order for the decoder to work on an arbitrary block code, of which only the 

generator matrix is know to the decoder initially, the second method of obtaining the 

information vector from the code vector is preferred. 
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Chapter 4 

Performance Issues of Various Block Codes 

4.1 Introduction 

In the previous chapter, the syndrome method of constructing the trellis diagram of a 

block code was presented, as well as techniques to decode block codes by means of these 

trellis diagrams. This chapter will concentrate on performance issues relevant to this 

decoding method. Several different block codes are investigated, and their simulation 

results given. All the simulation software was developed from scratch, and was used to 

achieve the given simulation results. 

4.2 Simulation Results 

The following simulations results were obtained for both soft-decision and hard-decision 

block decoding. The generator matrixes that were used for the simulations are given in 

Appendix C. A simulation was done with a (7,4)-Hamming code for both soft decision 

and hard decision decoding in an AWGN channel. The simulation setup is the same as 

described in Figure 4 of Chapter 2 and consists of a transmitter transmitting over an 

AWGN channel. The achieved results for the (7,4)-Hamming code are compared to both 

the theoretical curves and the error curves obtained for the traditional analytical 

decoding methods. The results prove that the same (maximum likelihood) performance 

is obtained with the Viterbi algorithm than with conventional algebraic methods. This 

holds for both soft decisions as well as hard decisions. As all the curves, including the 

bounds, cluster closely together, this representation (i .e. all curves on one graph) is not 

used in subsequent simulation results in this dissertation. It is clear form the results 

in the example (Figure 16) that the results fall well within the limits defined by the 

BER bounds for the decoding methods under discussion. The following equation was 

used in determining the upper bound for the decoding. 

(4.1) 
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The following two graphs provide the results achieved for the (7,4)-Hamming code. 
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Figure 16 	 BER Comparison of Various Hard Decision Viterbi Decoding Methods 

of the (7,4) Hamming Block Code 
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Figure 17 	 BER Comparison of Various Soft Decision Viterbi Decoding Methods of 

the (7,4) Hamming Block Code 

On the following BER graphs curves for various families of codes are depicted. For the 

reasons explained above, the error rate curves will not be compared to the algebraic 

methods, since these curves lie on top of each other. In the figures, a graph termed 

Bipolar Reference is however included. This curve represents the BER performance of 

the uncoded case under identical channel conditions. 
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4.2.1 Bit Error Rate Performance of the(7,4)-Hamming-Code with Viterbi 

Trellis Decoding 

10-1 
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10-6 +----+--+---+---t--+--+-----f---i------f---+--..--L.......f-_ [dB] 

o 1 2 3 4 5 6 7 8 9 10 11 12 EbitlNO 

Figure 18 Bit Error Rates ofthe (7,4)-Hamming-Code in an AWGN Channel 

Figure 18 presents the BER performance of a (7,4)-Hamming-Code. As can be seen 

from the figure, SDML-decoding becomes viable for channels having and Eb)No ratio of 

4 dB and higher. Below this cross over value (3.5 dB in this case), SDML-decoding fairs 

no better than the normal uncoded transmission. The HD-decoding only crosses the 

uncoded graph at 9.2 dB . It is also only marginally better than the uncoded curve for 

EbjNolarger than 9.2 dB. At Pbit = 10.5 the difference between SDML and HD-decoding 

is 1.4 dB. This corresponds with the calculated [10] value for the (7,4)-Code. 
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4.2.2 Block Error Rate Performance of the {7,4)-Hamming-Code with 

Viterbi Trellis Decoding 
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Figure 19 Block Error Rate of the (7,4)-Hamming-Code in an AWGN Channel 

In Figure 19 above, the block error probability ofthe (7,4)-Hamming-Code is given. The 

difference between the BER and the block error rate is as follows: Whereas several bit 

errors may only result in one block error, the BER counts all bit errors. The latter are 

statistically dependant on a few parameters such as the burst error statistics of the 

given channel. For instance, a codeword of length 7 bits is decoded incorrectly. This 

constitutes only one block error, but any number of bits (1 to 7) may be incorrect. 
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4.2.3 Bit Error Rate Performance of the (16,11)-Reed-Muller-Code with 

Viterbi Trellis Decoding 
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Figure 20 Bit Error Rate of the (16, ll)-Reed-Muller-Code in an AWGN Channel 

The above curve is very similar to the curve for the (7,4)-Hamming-Code depicted in 

Figure 18. The difference between the two codes is as follows: To achieve a bit error 

rate of 10.6 with the Reed-Muller-Code, an Eb;/No ratio of only 10.3 dB is required, 

whereas the Hamming-Code requires an Ebit/No ratio of 11.7 dB. The Reed-Muller code 

has a 1.4 dB coding advantage on the (7,4)-Hamming code in this particular example. 
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4.2.4 Bit Error Rate Performance of the (31,21)-BCH-Code with Viterbi 

Trellis Decoding 
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Figure 21 Bit Error Rate of the (31,21)-BCH-Code in an AWGN Channel 

The above figure displays the Bit Error Rate of a (31,21)-BCH-Code. It can be seen that 

this code renders good performance at high values of Ebi/No. A Bit Error Rate of 10.5 is 

achieved at only 9 dB. In Figure 22 another BCH-code is displayed, and in Figure 23, 

a comparison between both the BCH-codes and the (7,4)-Hamming-Code is made. 
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4.2.5 Bit Error Rate Performance of the (15,7)-BCH-Code with Viterbi 

Trellis Decoding 
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Figure 22 Bit Error Rate of the (15,7)-BCH-Code in an AWGN Channel 

In Figure 22, the Bit Error Rate of a (15,7)-BCH-Code is displayed. Again, it can be 

seen that the code provides a relatively good per formance at high values of Ebi/No. To 

gain some insight into the relative performance of the block codes considered, the 

previous two figures are superimposed on the (7,4)-Hamming-Code. The result is shown 

in Figure 23. 

Centre for Radio and Digita l Communication (CRDC) 

Department of Electrical and Electronic Engineering 

University of Pretoria 51 



Chapter 4 Performance Issues of Various Block Codes 

4.2.6 Performance Comparison of 8CH-Codes with (7,4)-Hamming-Code 

with Viterbi Trellis Decoding 
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Comparison of BCH-Codes with (7,4)-Hamming-Code in an AWGN 

Channel 

From Figure 23, it can be seen that all of the codes perform worse than the uncoded 

bipolar reference system at low values of Eb)No' The cross over point, where the codes 

begin to perform according to their theoretical specification, is at about 5.5 dB. From 

this point onward, the larger codes progressively yield better performance as the block 

length increases. It should be noted that a number of the factors have to be considered 

when deciding on a code for a particular channel. 
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4.2.7 Bit Error Rate Performance of the (16,S)-Reed-Muller-Code R(1,4) 

with Viterbi Trellis Decoding 

10- 1 

10-2 

10-3 

10-4 
SDML 

10-5 

Bipolar Reference 

'" " " "­
..... , 

" " " "'\ 
'\ ,, 

'\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

10-6 +---J--+--+---j-- t---t---+---+--+---+- -f-- -+-- [dB] 

o 2 3 4 5 6 7 8 9 10 11 12 


Figure 24 Bit Error Rate of the (16,5)-Reed-Muller-Code R( l,4) in an AWGN 

Channel 
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4.2.8 Bit Error Rate Performance of the (16,11)-Reed-Muller-Code R(2,4) with 

Viterbi Trellis Decoding 
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Figure 25 Bit Error Rate of the (16, ll)-Reed-Muller-Code R(2,4) in an AWGN 

Channel 
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4.2.9 Bit Error Rate Performance of the (32,16)-Reed-Muller-Code R(2,S) with 

Viterbi Trellis Decoding 
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Figure 26 Bit Error Rate of the (32, 16)-Reed-Muller-Code R(2,5) in an AWGN 

Channel 
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4.2.10 Bit Error Rate Performance of the (32,26)-Reed-Muller-Code R(3,S) with 

Viterbi Trellis Decoding 
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Figure 27 Rate of the R(3,5) in an AWGN 
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4.2.11 Bit Error Rate Performance of the (32,31)-Reed-Muller-Code R( 4(5) with 

Viterbi Trellis Decoding 
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Figure 28 	 Bit Error Rate of the (32,31)-Reed-Muller-Code R(4,5) in an AWGN 

Channel 
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4.2.12 Performance Comparison of Reed-Muller-Codes R(x,y) for different (n,k) 

with Viterbi Trellis Decoding 
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Figure 29 Comparison of different Reed-MulIer-Codes 

The above figure compares all the different simulation results which were obtained for 

Reed-Muller codes. What is apparent from the above results, is that the performance 

achieved is not only dependent on the size of the code, but also on the parameters (n,k). 

This is illustrated by the fact that the (32,31)-Reed-Muller-Code performs a lot worse 

than the (16,1l)-Reed-Muller-Code. Again, the choice of the block code is a very critical 

step in the design of a error correcting code. 

Centre for Radio and Digital Communication (CRDC) 

Department of Electrical and Electronic Engineering 

University of Pretoria 58 



Chapter 4 Performance Issues of Various Block Codes 

4.2.13 Tabulation of Results 

The results achieved by simulation are presented in the table below. 

Code Cross 

Over HD 

Cross Over 

SDML 

Asymptotic 

Gain HD 

Asymtotic 

Gain SDML 

(7,4)-Hamming 9.2 dB 4.0 dB 0.75 dB 2.0 dB 

(16,ll)-Reed-Muller 9 dB 4.5 dB 1.0 dB 2.5 dB 

(16,5)-Reed-Muller - 3.5 dB - 4.0 dB 

(32, 16)-Reed-Muller - 4.0 dB - 3.5 dB 

(32,26)-Reed-Muller - 5.9 dB - 4.0 dB 

(32,31)-Reed-Muller - 7.0 dB - 1.5 dB 

(31,21)-BCH - 5.1 dB - 3.5 dB 

(15,7)-BCH - 3.5 dB - 3.0 dB 

Table 1 Tabulation of Results achieved with Viterbi Trellis Decoding 

4.2.14 General Discussion of Results 

In the above simulations it was shown that it is indeed possible to employ the Viterbi 

algorithm to decode block codes. Furthermore, it is proven that all block codes which are 

decoded via their trellis diagram representations conform to the term maximum 

likelihood decoding. This means that the bit error rate curves that are obtained for the 

Viterbi decoding of block codes matches the bit error rate curves obtained by analytical 

decoding - which is a maximum likelihood technique. No coding gain is thus lost when 

block codes are decoded employing their trellis diagrams. Put differently, it can be said 

that no sacrifice or penalty is paid in transforming a block code into its respective trellis 

representation. It is also shown that the simulation results are supported by the 

theoretical analyses which were presented for reference purposes. 
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Chapter 5 

Trellis Construction and Decoding of Non-Binary 

Reed-Solomon Codes 

5.1 Introduction to Reed Solomon Codes 

On the 21"t of January 1959 Irvine Reed and Gus Solomon [21] submitted a dull 

sounding title for a paper to the "Journal of the Society for Industrial and Applied 

Mathematics"[20]. The paper was accepted and published in June of 1960 under the 

title "Polynomial Codes over Certain Finite Fields". Little did the unsuspecting world 

know at that stage what dramatic impact this paper would have on the coding ideology 

known to man. The enormous contribution that this class of error correcting codes, 

appropriately called Reed-Solomon Codes[22], has made to the communications sphere, 

cannot be described in this short paragraph. Reed-Solomon codes have proved their 

value in channels with a predominantly bursty error characteristic. 

5.2 Algebraic Reed-Solomon Code Generation 

The class of Reed-Solomon [1], [10],[18],[19],[20,[21],[22] codes are constructed and 

decoded through the use of finite field arithmetic. These fields are sometimes also 

referred to as Galois Fields [24][25], after their discoverer. They too have a very wide 

application in modern communication systems . In order to provide the reader with a 

more complete set of information, Appendix F gives a brief overview of finite fields . 

The reader may find it necessary to consult this appendix first before proceeding with 

the following chapter, since none of the information given in Appendix F is repeated 

here . 

The original approach to the construction of the Reed-Solomon codes over finite fields 

was very simple indeed. Assume that k information symbols 

(5.1) 
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exist over the finite field GF(q). From these information symbols, the following 

polynomial can be constructed 
k-2 k-)p( X ) = mo t m) ·xt ...tmk_2·x t mk_1'x (5.2) 

As with any code, Reed-Solomon codes have a limited set of code words for every specific 

Reed-Solomon code. These code words are found by evaluating the polynomial of 

Equation 5.2 at each of th q elements of the finite Galois field GF(q). The code words 

will thus be in the following form 

(5.3) 

The full set of code words can be formed by allowing the h information symbols to 

assume all possible combinations of values over GF(q). The information symbols are 

taken from GF(q), resulting in each being able to assume q different values. There is no 

need to explain why a Reed-Solomon code has a huge set of possible code words. A Reed­

Solomon code will have qk unique code words. From the discussion and definitions given 

in Chapter 3, it follows that a Reed-Solomon code is linear in nature. 

It is quite common to call the parameter h of the Reed-Solomon code the dimension of the 

code, since the value h forms a vector space of dimension h over the Galois field GF(q). 

The length of a Reed-Solomon code is commonly termed n in accordance with block code 

conventions. 

Due to the polynomial nature of Reed-Solomon codes, it is possible to revert each Reed­

Solomon code to a system of q linear equations with h parameters each. A generic 

system is given in the equation below: 

(5.4) 

q-l) _ . q-l . 2(q - l) . (k-l)(q-l)p(a - mo t m l a + m2 at...t mk_l a 

From normal algebra principles, it follows that any h of these expressions can be used 

in order to construct a system of h equations with h variables. As an example, the first 
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k expressions of Equation 5.4 form the following system: 

1 0 0 0 mo p(o) 

1 a a 2 a (k-l) ml P(a) 

1 a 2 a 42 2(k-l) 
~ P(a 2) (5.5)a = 

1 a k-l a 2(k-l) a (k-l)(k-l) mk _1 
P(a k-I) 

It can be shown that this system has a unique solution for the k information symbols by 

computing the determinant of the following coefficient matrix: 

1 

1 

1 

0 

a 

a 2 

0 

a 2 

a 42 

0 
a (k-l) 

a 2·(k-l) (5.6) 

1 a k-I a 2(k-l) a (k-l)·(k-1) 

It can be shown that the above matrix can be reduced to a Vandermonde matrix, and 

that all Vandermonde matrixes are non-singular. From this, it follows that any k of the 

expressions in Equation 5.4 can be used to solve the system. 

In the modern construction ofReed-Solomon codes, a construction technique is employed 

in which a generator matrix approach is used. It is however not necessary at this point 

to go into the detail of this construction method, as only an overview of Reed-Solomon 

codes is provided here. 

5.3 	 Conventional Decoding Methods for Reed-Solomon 

Codes 

After the discovery of Reed-Solomon codes, a search for an efficient decoding algorithm 

commenced. None of the standard decoding techniques at the time were useful for this 

purpose, for example, simple codes can be decoded through the use of a syndrome look-
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up table. This approach is however out of the question for the standard Reed-Solomon 

codes. A (65,53, 10) Reed-Solomon code, capable of correcting 5 errors, will have to have 

a look-up table of 1020 symbols. No hardware would be able to handle such immense 

data sizes. 

In their 1960 paper, Gus Reed and Irvine Solomon proposed a decoding algorithm based 

on the solution of sets of simultaneous equations as described above in Section 5.2 [60]. 

Although more useful than the look-up table approach, this techniques only allows for 

the decoding of very small Reed-Solomon codes. During the 1960's a large amount of 

work was done towards finding effective decoding algorithms for Reed-Solomon codes. 

Some of the contributors were people like Peterson, Chien and Forney 

[26], [27], [28], [29], [30]. Although several techniques were devised, no major 

improvement on the earlier decoding techniques were found. 

The eventual breakthrough came late in 1967 when Berlekamp [32] devised an effective 

decoding algorithm for nonbinary BCH and Reed-Solomon codes. Following the good 

work ofBerlekamp, Massey [21] showed in 1968 that the decoding problem is equivalent 

to the generation of linear feedback shift registers which generate the Reed-Solomon 

codes. The original Berlekamp decoding technique was adapted by Massey to conform 

to his theory of decoding by linear feedback shift registers. This decoding algorithm is 

suitably termed the Berlekamp-Massey [21] decoding algorithm. 

A lot of different decoding procedure exist, but these will not be described or mentioned 

here, as this would serve no purpose at all. 

The "Holy Grail" of Reed-Solomon decoding research is the maximum likelihood soft 

decision decoder. A soft decision decoder accepts analog values directly from the 

channel. The demodulator is not forced to decide which of the q possible symbols a given 

signal is supposed to represent. The decoder is thus able to make decisions based on the 

quality of a received signal. For example, the decoder is more willing to assume that a 

noisy value represents an incorrect symbol than a clean, noise-free signal. All of the 

information on the "noisiness" of a particular received signal is lost when the 

demodulator assigns a symbol to the signal prior to decoding. 

A lot of work has been done on soft decision maximum likelihood decoders for Reed­

Solomon codes, but as to yet, no practical solution has been found. This dissertation 
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attempts to provide a possible solution for more effective SDML decoding for Reed­

Solomon codes. 

5.4 	 Error Correcting Characteristics of Reed-Solomon 

Codes 

The Reed-Solomon code's error correcting capability and performance is now presented. 

For the purpose of this discussion, it is assumed that t of the code word coordinates are 

corrupted during transmission, and are received incorrectly. This state of affairs would 

lead to an incorrect representation in the system of Equation 5.4, and would lead to 

an incorrect solution if Equation 5.5 is solved. Assuming that there is no knowledge 

of where the errors are, all possible constructions of systems from Equation 5.4 are 

made. There are in fact (1) such systems, C+:-1) ofwhich produce, when solved, incorrect 

information symbols. Correct information bits are received as long as the following 

holds true: 

(5.7) 


This condition only applies when t + k - 1 < q - t, which in itself only holds true if the 

following condition is met 2t < q - k + 1. A Reed-Solomon code oflength q and dimension 

k can correct up to t errors, where t is given as: 

(5.8) 


It was proved in 1964 by Singleton [31] that the family of Reed-Solomon codes provides 

the best error correction capability for any code with the same length and dimension. 
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5.5 Various Trellis Construction Techniques 

Trellis construction techniques for Reed-Solomon codes can basically be divided into two 

groups [21],[22],[33],[34]. The first group is termed "Syndrome Trellises of Reed­

Solomon Codes" and the second group "Coset Trellises of Reed Solomon Codes". Both 

these methods aim at obtaining a trellis diagram which would be considered as being 

minimal. In the following subsections, a brief overview on both these methods is 

presented. Another method also exists. This method is called the "Shannon Product of 

Trellises". Due to the way in which the dissertation is organized, this method is 

presented in Appendix D, since it is referred to by several chapters. It is advisable that 

the reader familiarize himself with above mentioned procedure, as it is essential to the 

understanding of the discussion below. 

5.5.1 Syndrome Trellis Design for Reed-Solomon Codes 

Wolfs method of trellis construction was already presented in Chapter 3. This method 

of trellis construction is under investigation in more detail in Section 5.6, and is not 

pursued further. 

A method which is very similar to Wolfs [16] method is presented here as another form 

of syndrome trellis construction. 

A few years back, McElice [19] has proven that trellises found via syndrome techniques 

are minimal. According to a bound calculated by Wolf [16], the maximum number of 

states in a syndrome trellis can be estimated as: 

N max . < min{qk q(n-k)} (5.9)synd - , 

Similar to this, Forney has shown that the minimum number of states at the i-th level 

of the trellis is equal to: 

k q
Ni = -k--=---k-- i= 1,2, ... ,n (5.10) 

qpas! . qfuture 

where 
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kpast = dim(Cpast) 

k future = dim(Cfuture) (5.11) 

Cpast = (i, kpast' d) 

Cfuture = (i, k fiaure , d) 

As shown before, it is necessary to find the syndrome trellis in a certain Galois field. To 

be as general as possible , the determination of the trellis diagram is done in GF(q). 

Firstly, a few definitions are in order at this stage. 

The vector of information symbols is defined as 

X= (X 1,X2 , ... ,Xk ) X i E GF(q) (5.12) 

and the encoded vector as 

Yi E GF(q) (5.13) 

with i= 1,2, ... ,kand j= 1,2, ... ,n. 

Let G be the generator matrix of the Reed-Solomon code In the cyclic form. (see 

Chapter2): 

g) gl 

CS1(gl) 

(5.14)cS2(g2)=G= 

CSk_1(gk)gk 

In the above equation, gi 1 = 1,2, .. . , k is the i-th row ofthe generator matrix G, and 

cs;Cgt) denotes j cyclic shifts of gj . 
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The desired Reed-Solomon code can be constructed as a sum of k codes: 

k 

c= I c) (5.15) 
)=1 

where the j-th code Cj is an (n, I,d) code (k = 1) over GF(q) generated by Gj=[gJ 

It is relatively easy to show that q code words in Cj can be obtained as: 

(5.16) 


The corresponding sub-trellises T j , where j=1,2, ... ,k, start at the generic node called the 

root node, and terminate in the finishing node called the destination node. These sub­

trellises have (n+ 1) vertices and the number of states in the ith vertice is defined as 

being: 

No = Nn = 1 

N 
t 
={q

1 
if g~ t- oand g71 

t- 0 

for all other cases 

(5.17) 

where t =0, 1,2,3, ... ,n and represents the tli! element of gj' 

If Tj is a syndrome trellis of the elementary code Cj generated by gi then the combined 

trellis can be obtained from T =Tl . T2 ..... Tk . In other words, the syndrome trellis of 

the code C generated by G is given as T. 

The state profile of the syndrome trellis can be obtained from: 

No = Nn = 1 
(5.18)N - mq t=I,2, ... ,n-1I ­

where m is the number of non-zero elements in the t lh column of G which are followed 

by any other non-zero element. 

The above process is illustrated by means of an example in Appendix E. 
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5.5.2 Coset Trellis Design for Reed-Solomon Codes 

A coset trellis represents a set of parallel sub-trellises [5], each corresponding to one of 

the cosets of the basic code. Such a trellis allows a reduction in the decoder complexity, 

since all the sub-trellises have identical structure and differ only in the labeling of their 

respective trellis branches. Again, the reader is referred to Appendix D, since this 

method also involves Shannon's "Product of Trellises" method. Below, it is now shown 

how the Shannon product of trellises can be successfully employed to find a minimal 

coset trellis representation of a Reed-Solomon code. 

The first step in obtaining the coset trellis representation, is the calculation of the state 

profile from the minimal syndrome trellis representation of the Reed-Solomon code . This 

profile can be obtained by calculating the minimal number of states at every node ofthe 

trellis. 

From the above calculated profile, NSynd splitting points are chosen which have a similar 

number of states. The next step is defining the state and label size profiles of the 

desirable trellis: 

(5.19) 


(5.20) 


where Nc is a number of columns (vertices) in the desired coset trellis, and all vertices 

have a similar number of states: 

i,j = 1,2, ... ,Nc -1 (5.21) 

It is apparent, that in the general case the following applies: 

(:t 1) i,j= 1,2, ... ,N -1 (5.22)c 

Finally, the overall generator matrix of the complete code can be presented in the 

following form: 
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(5.23)G= 

where G i , with i = 1,2, .. . ,Nc - 1, has l columns a nd k rows. Each row of G is used to 

design the trellis diagram of the (n,l ,d) code over GF(q) with the label size profile given 

by Equation 5.20. The overall trellis diagram can be obtained as the Shannon product 

of k constituent trellises . 

Again, as mentioned before, examples to illustrate the process are given in the second 

part of Appendix E. 

5.5.3 Modified Trellis Design Procedure for Reed-Solomon Codes 

This next method is basically a variation on Wolfs method. The basic procedure outlined 

in Chapter 3 still applies to the trellis design procedure for Reed-Solomon codes. It is 

however essential to understand all the implications of using a higher order Galois field 

than GF(2). 

In order to provide a very clear example of the procedure and also due to the large 

complexity, a very simple example is given, namely a (7,5) RS-code in GF(4). Since it 

was decided to keep the Galois field set as small as possible (not counting the binary 

case) ,a Galois field of GF(4) was chosen. In order to have a full understanding on this 

issue, the reader is referred back to the previous sections of this chapter, in which the 

basics of Reed-Solomon codes and Galois fields are presented. 

The following definitions are in order here . 

The Galois field that was chosen is: 

(5 .24) 


The number of states in the trellis are: 
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(5.25) 

The following generator polynomial was chosen for the example: 

g(x) = (xt a).(xt a 2) 

= (x 2 t a .x t a 2 . X t a 3) 
(5.26) 

= (1.x2 t(a 2 ta).x l t 1.xO) 

= (1. x 2t 1· Xl t 1· XO) 

The following generator matrix can be constructed from the above given generator 

polynomial. Note that the generator matrix is in cyclic form, as each row is just a shifted 

replica of the generator polynomial coefficients. 

1 1 1 0 0 0 0 

0 1 1 1 0 0 0 

G= 0 0 1 1 1 0 0 (5.27) 

0 0 0 1 1 1 0 

0 0 0 0 1 1 1 

From this generator matrix, the following information is obtained: 

The trellis depth equals: 

(5.28)~ = Num(Gcolumns) = n = 7 

The number of possible code words are: 

2)n (2)7 7 (5.29)New = (GF(2) = 2 = 4 = 16384 

The number of branches emanating from each node is determined by the number of 

symbols in the code. Thus, for the binary case , the number of symbols would be 2 and 

the number of associated branches also 2. However, for a code in GF(4), there are 4 

branches associated with the following 4 symbols: 
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Symbols = {O, 1, 	 a, a 2} (5.30) 

At this point it can already be said that each node will have the following branch 

structure depicted in Figure 30 below: 

[0 	 0] ~--01--~' . o~. 

~ : ~------ 1 ------~••­

~ ~:~ 

[0 a'] ~a2 • 

Figure 30 Branch Structure of Reed-Solomon Trellis is Galois Field GF(4) 

Next, from the generator matrix G given by Equation 5.27, the parity check matrix can 

be calculated. This is done by performing elementary matrix operations on the matrix 

as outlined in Chapter 2. For a complete discussion on this topic, the reader is referred 

to Appendix B . Only a few steps are shown below. 

1 1 1 0 00 0 

0 1 1 1 00 0 

G= 0 0 1 1 1 0 0 

0 0 0 1 1 1 0 

0 0 0 0 1 1 1 

This is further transformed into: 

= 


1 0 0 0 o1 1 

1 1 0 0 00 1 

1 1 1 0 00 0 (5.31) 

0 1 1 1 00 0 

0 0 1 1 1 0 0 
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1 0 0 0 o1 1 

0 1 0 0 o1 0 

G= 0 0 1 0 00 1 (5.32) 

0 0 0 1 o1 1 

0 0 0 0 1 1 0 

From the above systematic generator matrix G it is possible to read off the parity check 

matrix in the following form: 

1 0 1 
(5.33)H=(: ~l0 1 1 

Next a lookup table can be constructed to simplify the derivation of the trellis diagram. 

The lookup table is based on elementary Galois field mathematics presented above in 

Section 5.2. 

The lookup table for GF(2 2 
) is divided into 4 separate lookup tables, one for each 

symbol in the Galois field. These tables are constructed using the primary polynomial 

in GF(4) . This polynomial can be expressed as: 

(5.34) 

The table for code symbol "0": 

0+ 0= 0 


0+ 1= 1 

(5.35)

0+ a =a 

0+a 2 =a 2 

The table for code symbol "1": 
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The table for code symbol " a " 

1+ 0 = 1 

1+ 1= 0 
(5.36) 

1+a=a 2 

1+a 2 =a 

a + 0= a 

a+l=a 2 

(5.37) 
a I a = 0 

a+a 2 =1 

The table for code symbol" a 2,,: 

a 2 +O=a 2 

a 2 +1=a 
(5.38) 

a 2 +a=1 

a 2 +a 2 =0 

Since the number of states in the trellis is 16, they can be divided into 4 sub-parts 

containing 4 states each. The significance of this is explained later. The 4 sub-parts 

along with their respective 4 states each are numbered as follows: 

Sub-part 1 along with first set of four states: 

(5.39)s~ = {[0 0], [0 1], [0 a], [0 a 2]} 

Sub-part 2 along with second set of four states: 

(5.40) 

Sub-part 3 along with third set of four states: 

s~ = {[a O],[a l],[a a ],[a a 2]} (5.41) 
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Sub-part 4 along with fourth set of four states: 

(5.42) 

The next step in the design process is to identify trellis branches associated with the 

individual code words. This is done by finding all the connecting branches between 

nodes of the trellis. The starting node is taken as state [0,0] , and paths are calculated 

from here onwards. The reader is again reminded that this process is very similar to the 

one provided in Chapter 3. It should also be noted that paths emanating from nodes 

are only calculated for states that have at least one incoming branch . An exception to 

the rule is the above mentioned starting state. 

As shown in Figure 20, each symbol in the Galois field causes a branch to emanate from 

each node, implying, at first glance that 4 calculations will have to be done in order to 

find the 4 branches emanating from every node or state. 

For the first section of the trellis, the first column of the parity check matrix is used for 

all calculations. 

For reference, the parity check matrix is repeated. For completeness, the unit matrix 

has been appended to the end: 

1 0 1 1 1 
(5.43)o 1 1 00 ~l 

The following calculations yield the first 4 branches emanating from node [00] where 

each branch is labeled with a specific input symbol, 0, I, a or a2
: 

(5.44) 
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[0 O]~ 0: [0 0]+ 0..[1 1]=[0 0] 
1 : [0 0]+1.[1 1] =[1 1] 


(5.45) 
a : [0 O]+a.[l 1] =[a a] 

a2 : [0 0]+a 2 '[1 1]=[a 2 a2] 


It can be seen that quite a number of calculations are involved in order to find the nodes 

that are connected by a specific connection branch associated with a specific symbol. In 

order to still give a good overview of the process, a shorthand notation is employed to 

summarise all the relevant results of the calculations. 

It can be seen that the next batch of calculations will deliver a set of 16 active nodes, due 

to the fact that 4 branches exit any active node. An active node is any node which has 

at least one trellis branch entering it. When the trellis is "fanned-out", in other words 

such that each node or state has at least one branch entering it, the calculations will 

yield 64 branches interconnecting the various nodes. 

The method used to obtain the trellis branches, is based on the same structure used in 

Equation 5.45, but by only displaying the starting and ending nodes of each branch. 

The details of the calculations are left out. These may be readily filled in by the reader 

without a lot of effort. 

For each depth of the trellis, the next column of the parity check matrix is used. This 

means, that at the last section of the trellis, the last column of the parity check matrix 

is employed to base the calculations on and so on. 

On the next few pages, the complete results of all the calculations are presented. 
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The results for the first section of the trellis are presented on this page. 

The relevant column of the parity check matrix is the following: 

The following equation was used to calculate the table below: 

NewState ~ OldState +Symbols, ( J 
Old 

State 

New 

States 

Old 

State 

New 

States 

Old 

State 

New 

States 

Old 

State 

New 

States 

[0 0] [0 0] [1 0] [a 0] [a 2 0] 
.. -......... . ...... ... ~....... ............... , .... ... ...... .......... ~... ............. ....... ....... .. ............. ~....................... ................. .. ... ~..... .... . .... .. ...... . 

. . 
: [1 1] : 

.... ...... .. ... ·······1· ........... ............... ........ .. ...... ... ~....................... ·0 ••• -, ••• • •• 0_ •••• •• •• ~•••••••••• •••••••••••••••••••••• , •• ···········1······················· 

[a a 2] 
...................... j......................... ····· ················1······.............. ............ '.......... .. .j.... .... ............... 

[0 1] [1 1] [a 1] [a 2 1] 
••••••••••••• • •••• •••• ~•• •••• •• ••• ,. ••• • ••••• • _, •• • • • ••••••••• o ••••• ~. ••••••••••••• ••••••••• • •••••• ••••••••••••••• ~•••••••• • •• • ••••• •• •••• ••••••••••••••••••••••• ~••••••••••••••••••••••• 

~ ~ 1 . 
......................:- ........................................... .. :- .... ........................... ............ .1" ............................................•......... ............. . 

.... ...... ..... .....··1········ ...... .. ...... ............ .. ........ " 1" .. ....... .. ....... .. ... .. ... .... .. ...... ····1················, .. ... . .................... .. .1 ...................... . 

[0 a] [1 a] [a a] [a 2 a] 
················· ·····1·············· ········· ......................:-- ............................................1' .......... .. .................... .. .......... <••••••••••••••••••••••• 

··· ·· ······ ··········T··········· ··· ····· ·· ..................... -:-- .... .... ........ ..... ....... .. ........ .. ... .r- .................... ......................:....................... 
...................... 1' ...... ... ..... ...................... .. ....... ~.............................................;- ............................................ ~...... ................ . 

[0 a 2 
] [1 a2

] . [a a2
] ; [a 2 a2

] . ...................... :-- ......... ...... ......................... ... 1' .................. ...........................1'............................................. ~....................... 

············· ·· ·······1··················· ·· ·· ...................... ~............................................. ~....................... ·······················r ···· ·················· 

·· ·· ·········· ····· ···1······················· ...... .. ....... ........ j..............................................:- .................................. ... .. ...... ~... .................... 

Table 2 Nodes for State 1 of (7,5) RS-Code in GF(4) 
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The results for the second section of the trellis are presented on this page. 

The relevant column of the parity check matrix is the following: 

The following equation was used to calculate the table below: 

NewState ~ OldState + Symbols· ( :) 

New 

State 

Old New Old New Old New Old 

States State StatesStates State States State 

[0 0] . [0 0] [1 0] . [a, 0] . [a,2 0] . 
···· · ················T··· ··~~····~·~···· · · ······ ··· ··· ·········T····················· ········ ·· ··· ········T· ···················· .... ... ....... ..... ... .~......... .. ............ 


· ·· ···· ···· ···· ···· ···r ·· · ·[~····~~·· ···· ···· ·· ········ ···· ····T········· ·· ·· ··· ····· ··· ··· ·· ··· ···· ······T· ·· ············ ···· ·· ······ ·· ··· ···········T····· ··· ····· ········ 

............ .. ........ 1" ..... [~.; ... ~].... ... .... .... ....... .. .... . ]".................... .. . ..................... ]" .... ..... ... .. ... ... .. ·· ············ ·· ······ ·1······················· 

[0 1] : [1 1.] . [1 1] [a, 1] : [a,2 1] . 
....... ... .. . .. . .... ··1··· ··· ·· ········· ·· ·· ·· ···· ··· ······ ··· ·······1·· ·· ............................ ........ .. .. ··1··· ···················· ···· ······· ········ ·· ··1······················· 


. . [0 1] . ................. ..... ]" .. ... .. ......................................+.....(~.; ....~]....... .............. .. .. .. .. 1'...................... ·· ..······· .. ······ .. ··1··· .. ······· .. ······ ..· 
...... ... ..... ....··· ·i····... ......... .... ... . ..... .. .. ············i······ .. -........ ...... ·· ······· ··· ····· ···· ··1··· ················ ···· ... ..... ... ... ..... .... ~... ... .... .. ... ..... .. . 

: : [a, 1] 

[0 a,] . [1 a,] [a, a,] [a, a,] [a,2 a,] . 
.... ... ...... . .... .... ~........... -, ..... ..... . .. ... ...... .. ... ... .. ~.; ... .. .. .. ... ... ... .. .. .. .·· ··· ·· ··············i.······ ..... ..... ... . '" ... .. ... .... ........ ... ~....................... 


[a,2 a,] 
.............·.... ....1..............·......... .. .................... j....................... ........... .. ......... ~.......[~ ....~] ..............·.. .. ·........·1· ....·....·..·........· 


......................1" .... .. .. .................... ...............1" ................. .. .. ...................... '1" .....[~ .."~]""" ...... .... ...........-r ..................... 

[0 a,2] . [1 a,2] l [a, a,2] . [a,2 a,2] . [a,2 a,2] 

...................... ~.............. . . ... ..... .. . . ............... .. .~.. ......... ............ ....................... ...... .. . ..................... ~.... .... ......... ..... . 
~............... 


: : . l [a, a,2] 
.. ................. . .. ~........ .. .. ......... .. .... .. ...... .. ......... ~.... .. ...................... .............. .. .. ~...................... . ..... ... ........... ... ~....... ...... .. ... .... . 


. : l l [1 a,2] 
....•.......... ... .. .. ..: ... .. ....... .. .. .......... .. .. .... ..... ... .... ..:... ...... . . . ... ...... .. .... .... ... .. .. .. .. .. . ..:..... . ................. ·· ·· .· ... · ··· ... ·.···.01· .. ·· .. · .. . . ·· . . · ... ··. 


l : : 1 [0 a,2] 

Table 3 Nodes for State 2 of (7,5) RS-Code in GF(4) 
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The results for the third section of the trellis are presented on this page. 

The relevant column of the parity check matrix is the following: 

The following equation was used to calculate the table below: 

NewState = OldState + Symbols· ( ~) 

Old 

State 

New 

States 

Old 

State 

New 

States 

Old 

State 

New 

States 

Old 

State 

New 

States 

[0 0] [0 0] [1 0] [1 0] [a 0] : [a 0] [a 2 0] : [a 2 0] 
• ••• ••••• •••• •• •••••• • ..:•••••••••••••••• • •••••••••••••••••••••• ••• ••• "' • • ••••••••••••••• •• •••••• • •••••••••••••••••••• "'•••••••••••••••••••••••••••••••••••••••••••••• ..! ••••••••••••••••••• ••• • 

: [0 1] : [1 1] : [a 1] . [a 2 1] 
••• • • ••• • •• •• • •••• • ••• 01 · •• •• • • ••• • •••• •• ••• • • •••••• • ••••••• ••• ••••• • .,:•••••••••••••••••••••• ••••••••••••••••••••••• " • • •••••• • ••••••••••••••••••••• • ••••••••••••••• ..!••••• •• ••• ••• ••• ••• • •••· . . . 

: [0 a] . [1 a] [a a] : [a 2 a] .................... .. :- ..... ~~....~~i··· ·· · .......................+.. ...~.~....~~i····· · ....................... 1" .....~~... .~~i···· · · ..... .. ... ... ........·:-·· ···r~~... ·~~i · ··· · 

[0 1] : [0 1] [1 1] : [1 1] [a 1] . [a 1] [a 2 1] . [a 2 1] 
••••••••••••••••• - •••• ~.... •• • •••••• •••• ••• •• • • •••• • •••••••••••••••• ~.. .... •••• ••••••••••••• • • • • ••• • • ••••••••••••• ~. . .. •••••••• • • •• •• •••• • • •• ••••• • ••••••••••••• .t• •• •••• ••• • ••• ••••• •• • • 

· . 
: [0 0] [1 0] : [a 0] [a 2 0] ...... .... ......... ... ~.. .................... ........ .. ..... ..... .... +.. ... .. ...... ................................~.... ...... ... .... .. ................... .... ... ~......... .. ........ .... 

[0 a 2 
] . [1 a 2 

] : [a a 2 
] : [a2 a 2 

] 

············ ····· · ·· ·T·· ···[~····~·j ··· ··· · · ····· ···· ·· · ··· ·· ··T ·····[~ ···~·j· .. ··· ........... ... .... ..... ~.......[~ ....~.j ... ...······················T··· · ~~~·· ·~i···· · · 

[0 a] . [0 a] [1 a] . [1 a] [a a] [a a] [a 2 a] [a 2 a] 
.... .................. ~. .. . . . .. .... ........... .. ..... ...... ... .. ..... ~... ..... .... ...... .. ... .. ..................... ~..... ... .. .... ..... .. .. . ... .... ..... .... ..... ..... .. ... .. .... ..... .· .· . 

· [0 a 
2 
] . [1 a 2J . [a a 2 

] [a 
2 a 2J 

........... ...... ..... ~... ........................................... ~.............. .. ... ........ ....... ........ .... ~...... ..... .... ..... ... ...... .......... ... ... . .... ... ... ...... .... .. 

· [0 0] . [1 0] [a 0]..... ..... ....... .. .. ·1······· .......................... ...... .. .. ···i·······...... .. ...... .. ..........············1····· ..... .. .................................. 
[0 1] [1 1] [a 1] 

[0 a 2 
] [0 a 2 

] [1 a 2 
] . [1 a2

] [IX a2
] . [a ai 

] [a 2 a2
] [a 2 a2

] 
.... .... .. ............ ~.............................................. ~................................. ............. ~....... ................ ..................... .. .....-................ 

: [0 a] : [1 a] . [a a] [a 2 a] 
...... ........ .... .... ~...... .. ...... ......... • ••••••••• •• ••• • •••• •• ~ ......... . ... .. .. .. .... .... ..... . ..... ....... . .t . ....... .. .. ........... . ........ .. ... ......... • .................... . 

: [0 1] : [1 1J . [a 1] [a2 1] 
·· ·· · · ·· ··· ·· · · ······T·· ···[~··· ·~·j· · ·· ·· ·· ····· ····· ··· ···· ···T·····[~····~j .. ···· ··· · ·················T·····[~····~j······ ............. ......... · ··· ·~~·;···~i· · · ··· 

Table 4 Nodes for State 3 of (7,5) RS-Code in GF(4) 
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The results for the fourth section of the trellis are presented on this page. 

The relevant column of the parity check matrix is the following: 

The following equation was used to calculate the table below: 

NewState ~ OldState + Symbols · ( :) 

Old 

State 

New 

States 

Old 

State 

New 

States 

Old 

State 

New 

States 

Old 

State 

New 

States 

[0 0] [0 0] [1 0] [1 0] [a 0] [a 0] [a 2 0] [a 2 0] 
... ............... ... . ~.......................... . .............. ..... l ... .. ....... .. ...... ... ............ .. ...... .. . ~..... . ............... . . .............. . ....... . ......•..... ... ...... 

: [1 1] : [0 1] : [a 2 1] [a 1] 
......... ........ ... .. ~. . .... .. ........... .... . .... ... ..... .... ... .. ~.............................................. ~... .. .. .... .... ........ .... ....... .. . ..... .... . ....... ............. . 

: : . 
: [a · a2

] : [a 2 a] [0 a] [1 a]
•..... ..... .•. •.. .. ..• .;...... .. ... .... ... ..... ..........•.••....•... 4..............................•.......•....•.. 4•.....•..•...••...•..... ' ...•. .......... .. .... .......... ... ........ .. .. . 

[ [a 2 a~] [ [a aZ
] [1 a2

] [0 a2] 

[0 1] [0 1] [1 1] [1 1] [a 1] [a 1] [a 2 1] 
.... ... ......... ······1······ ·· ··· ...... ...... . ..... .... ··· ··· ·· ····i··· ···· ···· ······ ·· ···· ······················1···················· ... . .................... . 

[1 0] [0 0] [a 2 0] [a 0] 
...... .............. .. ~.. .. ......... .......... . .................... . ~....... .. ... ........... . ..................... "..... ... ............... .. .. .................. . ................... . . 

[a a2
] [ [a 2 a2

] [0 a2
] [1 a2] 

··· ·· ·················1······················· ············ ·· ·········1······················· ············· ···· ·····i······················· ......... .... .. ............. ............... . 

: [a 2 a] : [a a] : [1 a] [0 a] 

[0 a] [0 a] [1 a] [1 a] [a a] [a a] [a 2 a] [a 2 a].. .. ..... .. ..... ... ... ~..............................................+.................. .. ........ ................. ~.... .... ..... .. ............................... 4...... .. ...... ... .... .. 

[1 a~] : [0 a2
] [ [a 2 a2] [a a2] .............. ... .. ... ~........ . .............. .. ....................+........................... ......... ... ... .. ~....................... ................... ...~....................... 

: [a 0] : [a 2 0] : [0 0] : [1 0] 
....... ............... ~. ...................... . ..................... ~. .. ................. ... .... . . ........... .. ... ~......... .. .. ... ....... .... .... .. ... ......... ~.... .... ............ .. . 

j [a2 1] [ [a 1] [1 1] [0 1] 

[0 a 2 
] : [0 a 2 

] [1 a2 
] : [1 a2 

] [a a2 
] . [a a2

] [a 2 a2
] • [a 2 a2

] 
••• •• ••••••• ••••••.••• ~........ ••••••••••••••• • ••••••••••••• •• •••••• ~...... ••••••••••••••••• •••••••••••••••••••••• ~.......... ... ••••••• ••• .. ... .. ... . ... ... . .. .. .r. .... . .... .. ... . ...... . 

[1 a] [0 a] [a 2 a] [a a]... .. ................. ~..................................... ... ...... ~. ........... .. .. ....... ................. ..... ~.... ................... . ................... .. i.. ··· ·· ············.... 
: [a 1] : [a 2 1] : [0 1] . [1 1] 

· ···· ·· ···· ······ ···T ····[~·;···~~··· ·· · ···················· · ·T··· ··[~··· ·~j······ ····· · ······ · ········T···· · [~····~·j······ ......................'.......[~ ....~; ...... 

Table 5 Nodes for State 4 of (7,5) RS-Code in GF(4) 
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The the of are on page. 

The column of check matrix is following: 

-(1)
Its - \ 0 

The was to table below: 

NewState = OldState+ Symbols­ 1\
0; 

Old New Old New Old New Old New 

State States State States State States State States 

Table 6 State 5 of (7, RS-Code in GF(4) 
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The results for the sixth section of the trellis are presented on this page. 

The relevant column of the parity check matrix is the following: 

The following equation was used to calculate the table below: 

NewState ~ OldState + Symbols· ( ~) 

NewNew Old New Old New OldOld 

State States StatesState State States StateStates 

[0 0] . [0 0] [1 0] : [1 0] [a 0] . [a 0] [a 2 0] : [a 2 0] 
•••••••••••••••••••••• ..: •••• • • •• ••• •• • ••• ••••••••••••••••••• ••• •••••• • .1 ••• ••••• ••••• • •••••• ••• ••••••••••••••• ••• •• ••• ..:••••••••••••••••••••••••••••••••••••••••••••• .t••••••••••••••••••••••• 

[a2: [1 0] i [0 0] i 0] : [a 0] 
······················1··············.. ·· ·· ··· .......................+.. .. .................. ····· .. ······ .. ········i·····..·.. ···· .. ···· ..· ·············.. ···· ·· ·1······ ..·······....···· 


[a 2: [a 0] 0] : [0 0] : [1 0] 
... .. ..... ..... ····· ··1· .... ......... ...... ... ... .. -, .. ........... .. ~......... .. .. .. ... .... . . ..... ..... ···········1······················· ... ............ ... .. ··1···· ········ ·· ·· ······· 

: 0] [a 0] : [1 0] : [0 0][a 2 

[0 1] [0 1] [1 1] [1 1] [a 1] [a 1] [a 2 1] [a 2 1] 
.. ... ................. ~.......... .. ... .. ...... . ....... ... ...... ... .. 1"....... ..... .......... ········· ·············1··· ··············· ····· ··· ··· ····· ·· ···· ·· ···i···················· ·· · 


[1 1] : [0 1] : [a 2 1] : [a 1] 
.. ..... ... ..... ... .. .. ~. ..... .. ... ... ......... ...................... ~......... ......... .... ... .... ........ ........ . ~. ...................... ...................... ~................... ... . 


: [a 1] : [a 2 1] : [0 1] : [1 1] 
... ...... ..... ... ..... "... ........ ............. ...... .. ....... ....... .,:..... ..... .. ....... ... ....... ....... ..... ..... .,:... .......................................... "....................... 


: : : : 
: [a2 1] [a 1] : [1 1] : [0 1] 

[0 a] [0 a] [1 a] [1 a] [a a] [a a] [a 2 a] [a 2 a] 
...................... ~.. ... .... .... ...... .. ........... ....... ... ... ~.. ....... .. .. .. ... ....................... .... +. ................. .... . ..................... ~....................... 


...................... <.......~ ~ ... .a}...... ............... .......<.......[? ...~.~..... . ......................1......~~.~ ...~~...... ......................L....~~ ....~} ... ... 


2 2 2 2 2 2 2[0 a ] . [0 a ] [1 ail . [1 a ] [a a ] : [a a ] [a 2 a ] . [a 2 a ] 
..... .. .............. . ~..... .... ... ... .. ... .. ........................ ~............. ....... ... ...................... ~... .... .. ... ..... ...... . ................. .... ~..... ....... .. .. ....... 


2 2 2 2[a 2 . [1 a ] : [0 a ] i a ] : [a a ] 
.. .................... .. ............... ............................. ... ............................ .. ............. ~. ......... ............. . ...... .. ....... .. .... ~....... ............... . 
~ ~ 

2: [a a ] : [(;(2 a2] : [0 a2] : [1 a2] 
... .. .. .. .... ......... ... .............. ... .. ... ..... ..... .... .... .... .... ... .. .. ...... ... .~....... ........ .... .. ...... ..... ... .... .... ... ~...................... . 
~............ . .......... ~ 


2 2 2 2 2
: [0: 0: ] : [0: 0: ] : [1 0: ] : [0 0: ] 

Table7 Nodes for State 6 of (7,5) RS-Code in GF(4) 

Centre for Radio and Digital Communication (CRDC) 

Department of Electrical and Electronic Engineering 

University of Pretoria 81 



Chapter 5 Trellis Construction and Decoding of Non-Binary Reed-Solomon Codes 

The results for the seventh section of the trellis are given on this page. 

The relevant column of the parity check matrix is the following: 

The following equation was used to calculate the table below: 

NewState ~ OldState +Symbols' ( ~) 

Old 

State 

New 

States 

Old 

State 

New 

States 

Old 

State 

New 

States 

Old 

State 

New 

States 

[0 0] : [0 0] [1 0] : [1 0] [a 0] : [a 0] 
• • ••••••• • •••••• • ••• • • .,:••••••••••• • ••••••••••••••••••••••• • •••••••••• -1•••• • ••••••••••••••••••••••••••••••••••••••••• -1 ••••••••••••••••••••• • •· .· . 

· [0 1] . [1 1] . [a 1] 
• ••••••••••••••••••••• -1 • • ••••••••••••••• • •••••••••••••••••••••••••••• -1•••••••••••••••••••• • ••••• • •••••••••••••••• • •• ..:••• • •••••• • ••••••••••••

[0 a] . [1 a] . [a a] 
••••• •• ••••••• • ••••••• ..:•••••••• • •••••••••••••••••••• • ••••••• •• •••••• ,: • •• ••• • •••• • •••••••• • •••• • •••••••••••• • ••••••• -1•••••••••• • •••••• • •••••· .· . 

•

•

[a2 0] [a2 0] 

•• • • • •••••• • ••••••••• • •••••••••••••• • •••••• • • 

••••••••••••••••••••••••••• • •••••• • •••••• • • 

••••••••• • •••••••••••• 

[0 1] [0 1] [1 1] [1 1] [a 1] . [a 1] [a2 1] . [a2 1].......... .. .. ......··i······ ........................................ ~..................... .. .......................~...... .. ....... ..... ... ................ ...... ~....................... 
: [0 0] i [1 0] : [a 0] : [a2 0] 

• •••••••• ••• ••••• ••• •• .j;.. . ...... . ..... . .... . ......................... .:..... . ..................... .. ... . .......... . .. .:...... . .............. . ...................... .. -1 ..... .. ....... .. .... . . . 

: [0 a 2 
] : [1 a 2 

] : [a a 2 
] l [a2 a 2 

] 
.. ... .... ..... ... ..... ~.......... ..... ....................... ... ... .. ~.................. .. .......................... ~..................... ..................... .. .. ~.............. ......... 

l [0 a] j [1 a] i [et ex] ~ [ex 2 ex] 

[0 a] . [0 a] [1 a] . [1 a] [a a] : [a a] [a2 a] : [a2 a] 
············ ·· ········r·····[~····~~]····· · ····· · ······· · ·········r·····[·~····~~]······ ······· · ·········· · ···r····[~····~~j· · ···· ·········· · ···· · ·······r·····i~~· · ··~9· · ··· 

·· ·· ··············· · ··t· ·· ·[~····~·~······ ············ · ········ · ·1·······(~·····~]······ ·.. ·· · ···· · ····· · ······t·· · ·[~· .. ·~~······ ······ · ···············1· ·····[~·;···~]······ 
...................... j....................... ··········· .. ······ .. ··i·· .. ................... ···.. ······ ..·······.. i····· .. ······ .. ······.. ·..··.. ·············· .. i····· ..······· .. ····· .. 

: [0 1] : [1 1] : [a 1] [a2 1] 

[0 a 2 
] [0 a 2 

] [1 az:J . [1 a 2
] [a a 2

] • [a a 2
] [a2 a 2

] [ [a2 a 2
] .... .. ................ r······[~ ...;j...... ················ ·· ····r······r~ ....~j.............................r······r~... ·~i· · ···· ......................."...... [~~... ~j...... 

........... .. ........·1·······[~ ....~.j .... .. ·········· · ····· · ······:-······r~···· · ~i······ ..................... ·1······· 
r 
~....~.j.............................<....•. [~.; ..•.~ j...... 

.. .. ....... .. ........ .~... .. .........................................+.............................................~................................ .............. ~....................... 
[0 0] : [1 0] : [a 0] [a2 0] 

Table 8 Nodes for State 7 of (7,5) RS-Code in GF(4) 
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From the above tables, it is possible to construct a complete trellis by connecting all 

relevant branches on an empty trellis grid. 

Before this is done however, a few important comments are in order. It is obvious that 

quite a lot of calculations are needed in order to be able to draw the final trellis diagram. 

It is easy to see that the complexity will increase as nand k of the code increases. 

However, as the order of the Galois field increases an even greater increase in 

complexity is affected. 

One possible solution to overcome the complexity is to employ a lookup table. which 

alleviates the need for extensive branch calculations. 

Observing the tables that have been constructed a definite pattern emerges. The 

practical implication of this is, that once a point in the lookup table is found, the next 

outcomes may be uniquely determined from the entries of those tables which yielded the 

last output result. The other elements can just be read of in sequence. In this way, the 

derivation of the complete trellis is vastly simplified. 

The next step in the design process is to produce a graphical display of the trellis 

diagram from the calculated data. It is a fairly simple process, in which a starting and 

ending node or state are connected with an interconnecting branch. The branches in the 

above tables of results are defined by listing the starting and ending states of a 

particular section in the trellis. The associated symbol, which is the output for that 

particular branch, may also be found from above the tables, since for each given node, 

the first result was obtained from the first symbol, the second result was obtained from 

the second symbol and so on. This is illustrated on the next few pages, where trellis 

patterns for subsequent sections of the trellis diagrams are displayed consecutively. 
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5.6 	 A Topological Trellis Construction Scheme for Reed-Solomon 

Codes 

As mentioned before, one of the largest restrictions on the use of a Reed-Solomon trellis, 

is the large complexity involved. The small code described above, viz the (7,5) RS-code, 

already had a fairly huge trellis structure. This of course makes the decoding process 

complex and slow to perform. 

The firs t task in the decoding process is the construction of the trellis diagram which is 

used by the decoder. The realtime construction of the trellis can be omitted if the trellis 

is hard coded in the decoder. This however imposes a serious limitation on the 

versatility of the encoder/decoder, as a new decoder/encoder will have to be designed for 

every new application. It would be very advantageous if an elegant trellis construction 

technique could be developed. 

As the base of the Galois field increases, the number of possible symbols in the code 

increases. This in turn has a negative impact on the complexity of the system. The 

number of branches per node in the trellis expands exponentially. A method is required 

which would limit the required number of calculations involved in obtaining a trellis 

diagram. Such a method would lead to large savings in computational complexity. 

In this discussion, the code to be considered is the one used in Subsection 6.2.3, namely 

the (7,5) RS-code. This code has a parity check matrix in which the number of values in 

a column is 2. The whole procedure can easily be expanded in order to accommodate 

larger parity matrixes and codes. 

This is where the previously mentioned partitioning of the states into 4 sub-parts is 

applied. As the state numbering follows a binary sequence, it can be seen that each state 

is numbered by a unique ordering of the 4 symbols in the field. Due to this, each set of 

four sub-parts has the same unique symbol in the first position of this state numbering 

scheme. The second symbol is then just one of the four remaining symbols. In other 

words, for each unique symbol in the first position of a state which identifies the sub­

part of the states, any of the four other symbols are employed to identify a state within 

the sub-parts. This might seem very insignificant, but will prove invaluable later on. 
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As can be seen from the trellis diagrams, the first node of each sub-part is coded in a 

specific colour, which it retains in all other states as well. Due to the fact that 4 nodes 

or states exist within each sub-part, 4 colours are used. These colours are given in the 

order blue, red, green and yellow. Again, this seems very unimportant, but together 

with the first observation, it will provide a very practical method by which the 

complexity of trellis design can be simplified and confined. 

The next important observation is the parity check matrix. Every column of the parity 

check rna trix determines the connecting branches for a specific section of the trellis, viz 

the first column specifies the first section of the trellis, the second column the second 

section, and so on. 

The values inside the parity check matrix depends on the Galois field used. In other 

words, if GF(2) is used, the only possible values in the matrix are the binary values ° 
and 1. If however GF(4) is used, then the possible values the parity check matrix can 

assume are the 4 symbols in this field, namely O,l,a and a2
. At the moment all that 

needs to be remembered, is that there is a different construction associated with the 

element 0, than with the non zero elements 1, a and a 2
. 

The examples show that the calculations made to obtain the branches of the trellis seem 

to follow a cyclic pattern. This can be explained as follows. A lookup table for each 

symbol can be constructed, as was done before. This lookup table gives the result of 

adding any possible valid symbol to the symbol of the lookup table. When the first 

calculation for a node is made, a specific position in the lookup table will provide the 

answer. If this answer is found, no more calculations need to be made, since the 

remaining branch connections can be read off from the subsequent positions of the 

lookup table i.e. the specification of trellis branches follow a very specific topological 

pattern. The table has to be wrapped when the bottom of the table is reached before all 

branches have been specified. 

The tricky task now is to formalize all these findings, in order to provide a systematic 

algorithm for trellis construction with low complexity. 

The foregoing findings may be summarized point-wise as follows: 

• The trellis state numbering is divided into several sub-parts , in which the first 
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element of the numbering stays the same symbol in the sub-part. 

• 	 Colour coding a specific node is important. The colour of a node or state has to 

remain the same in each of the sub-parts. 

• 	 The parity check matrix's columns can be divided into those that have a zero 

element in the first position and those that do not. 

• 	 The symbol in the second position ofthe parity check matrix column, is important 

as far as the selection of subsequent points is concerned. 

• 	 The results of the calculations are cyclic. The answers can thus be read offfrom 

a lookup table as soon as the starting point in the table has been established. 

The discussion will commence by describing and explaining the last few steps in the 

above list based on the (7,5) RS-example. It is said that the results and calculations are 

cyclic. This can be illustrated by using the first node, and the first column of the parity 

check matrix to calculate the 4 branches that emanate from this active starting node . 

The node is labeled [0 0] . In order to find the 4 nodes to which it is connected, the first 

column of the parity check matrix is multiplied by the symbols and added to the starting 

node [0 0]. In this way four new nodes in the second section of the trellis are obtained 

namely [00], [0 1], [0 a] and [0 a2
]. Ignoring the first element of the node, the second 

one changes cyclically. The first calculation can be solved by using the first row of the 

lookup table of Equation 5.35. The answer of the lookup is o. In order to find the next 

three nodes, all that has to be done is to continue reading off the rows of the lookup table 

in Equation 5.35. If the bottom of the table is reached prematurely, i.e . before the 

desired amount of nodes have been numbered, then the table entries are wrapped 

around. The cyclic procedure therefore follows a mod N cyclic pattern where N denotes 

the number of branches emanating from a specific node in the code trellis. This wrap­

around does not occur since it only occurs when the first element is read off a row other 

than the first one. The sequence of branch labels obtained when reading the elements 

offthe lookup table in order are 0, 1, a and a 2
. Comparing this with the results obtained 

by calculation, it can be seen that they correspond precisely. 

This is the first step in constructing a trellis with low complexity. 

The next step is to describe how the values in the columns of the parity check matrix 

affect the structure of the trellis diagram. Recall, that the columns of the parity check 

matrix can be divided into two large groups. The first group includes those columns that 

have the zero element in the first position and the second group those columns that do 
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not have a zero element in the first position. At this point, the state division into 4 sub­

parts becomes important. Two possibilities now exist. If the parity check matrix column 

has a zero in the first position, then a branch emanating from a node in a specific sub­

part will terminate in a node in the same sub-part. If however a column of the parity 

check matrix is non-zero, then a branch emanating from a node in a specific sub-part, 

will have a termination in a node from each sub-part of the trellis diagram. As an 

example of the first case, consider Figure 26. It can be seen that the branches 

emanating from the [0 0] node all end in the same sub-part. This holds true for all 

instances. The second case is illustrated in Figure 27. Here it can be seen that the 4 

branches emanating from node [00] terminate in each of the 4 sub-parts. This is due 

to the cyclic phenomenon described in the previous paragraph. Here it is just applicable 

to the second position of the column of the parity check matrix. It is important to note 

that the sub-part in which a branch terminates is also determined by the same cyclic 

principle described in the above paragraph on cycling. If the first branch enters sub-part 

3, then the second branch will enter sub-part 4, the third branch sub-part 1 and the last 

branch sub-part 2. This becomes extremely important when numbering the branches 

with their corresponding symbols from the Galois field set. 

After discussing all of the important issues, a description ofthe colour coding part is now 

in order . The colour coding displays the culmination of all the above mentioned steps. 

Figure 28 is used as a starting point. This sub-trellis was formed using the parity check 

column [1 1]. As discussed before, the fact that the first element is a 1, forces the 

branches leaving a node in a specific sub-part to enter nodes in different sub-parts. This 

can be seen by just observing the node [00]. The branches enter node [00] in sub-part 

1, node [10] in sub-part 2, [a 0] in sub-part 3 and [a 2 0] in sub-part 4. These 4 branches 

are all marked with blue. Now the interesting part reveals itself. The first node of the 

second sub-part is also coloured in blue, and it can be seen that they enter the nodes 

activated by blue branches leaving node [00]. This phenomenon occurs throughout the 

figure. In order to draw the trellis, only the branches of the first sub-part have to be 

calculated. Hereafter, due to the cyclic phenomenon, all that is required to uniquely 

identify and label subsequent branches in this section of the trellis. 

There is just one other form of topology, which occurs if the first element of the column 

of the parity check matrix is zero . In this case, as illustrated by Figure 26, all the 

branches emanating from a node in a specific sub-part activate all other nodes in the 

same sub-part. All that needs to be calculated for this section of the trellis is the first 
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section. Hereafter all remaining trellis branches may be labeled according to the cyclic 

pattern described. 

In fact, it should be noticed that all that is really necessary to calculate are the branches 

of the first node in the trellis. This, together with the two types of topologies and the 

cycling phenomenon determines the trellis uniquely and completely. 

For the above trellis, it would normally be necessary to do 404 complex calculations in 

GF(4). If the cyclic topology is exploited, the whole trellis can be calculated with only 28 

complex calculations in GF(4) a saving in the order of a factor of 14. 

This method provides an enormous step forward in the whole trellis design procedure 

for Reed-Solomon codes. Note that the proposed algorithm does not provide a minimal 

(i.e . minimum number of states and branches) trellis, but only simplifies the trellis 

construction. A procedure to find a minimal trellis is given in the following chapter. 

On the next page, a flow diagram of the topological trellis design procedure is presented. 
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Figure 38 Flow Diagram of the Topological Trellis Design Algorithm 
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5.7 Symbol Error Rate of Reed-Solomon Code 

In this section, the performance of Reed-Solomon codes is investigated. The main task 

at hand is to show that Reed-Solomon codes can be decoded with the Viterbi Algorithm. 

The decoding performance is shown to be the same as for algebraic techniques, since the 

Viterbi algorithm is a maximum likelihood technique. 
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Figure 39 Simulated Symbol Error Rate of (7,5)-Reed-Solomon Code 
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As mentioned and shown previously, the trellis diagrams for Reed-Solomon codes are 

very large. This is the main problem with Reed-Solomon codes. As it was possible to 

construct a trellis for a Reed-Solomon code in the previous chapter, it is now possible to 

Viterbi decode the Reed-Solomon code. This is illustrated on a relatively small code, as 

it takes quite a long time to construct a symbol error rate curve . The same principles of 

course apply to larger codes also . 

Again consider the(7 ,5)-Reed-Solomon code from the previous chapter. The simulation 

setup employs a Reed-Solomon encoder, the output of which is transmitted over an 

AWGN channel. In the decoder, a SDML Viterbi decoder is employed. The simulation 

setup is the same as depicted in Chapter 2. 

On the previous page, the symbol error rate for the Reed-Solomon code is shown. 

5.8 General Discussion on Reed-Solomon Performance 

Reed-Solomon codes were traditionally decoded in the frequency domain using the 

Berlekamp Massey algorithm [20]. This method uses Fourier transforms to do the 

decoding. Due to the Fourier transform, the decoding is only an approximation, and 

marginally better decoding results can be obtained employing a maximum likelihood 

decoding technique such as the Viterbi algorithm. Although the scope of this 

dissertation was not to show that Viterbi decoding is better than Berlekamp Massey 

decoding of Reed-Solomon codes , an attempt was made to use existing standard software 

to find symbol error rate curves for a Berlekamp Massey algorithm. This was possible, 

but these software packages do not provide for such small codes as the (7,5)-Reed­

Solomon code used here. Reed-Solomon codes usually have typical specifications such 

as n = 255 and k = 251 or the likes. This meant that a Berlekamp Massey algorithm 

would have to be re-written in order to do this comparison. The other problem was that 

the trellis complexity sky-rockets with high values of nand k and that a normal personal 

computer would not be able to calculate the required symbol error rates for the large 

block lengths. This does not even take into account the Galois fields which are 

commonly used in VHDL Reed-Solomon coders. These often run in fields as high as 

GF(128) or GF(256) compared to the GF(4) field used in the Viterbi simulation presented 

here . 
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The comparison which seemed possible at first proved not to be possible with the current 

state of computer hardware available. The solution to this problem would be the VHDL 

implementation of such a Viterbi Reed-Solomon decoder. This could then be compared 

with the normal Berlekamp Massey decoders using a bit error rate analyzer, but this 

falls beyond the scope of this dissertation. 

What has been shown is that it is indeed possible to decode Reed-Solomon codes with 

decoding techniques usually reserved for convolutional code decoding. This opens many 

possibilities for integrating coding schemes employing both powerful Reed-Solomon codes 

and convolutional codes. It is possible to use the same decoder in the decoding process 

by deriving the resultant trellis of the concatenation of all codes employed. 
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Chapter 6 

Introduction to Trellis Complexity and Trellis 

Complexity Reduction 

6.1 Introduction 

In this Chapter, an introduction to the complexity of a block code trellis is given, and a 

method is examined which yields trellises with lower complexity. Ultimately, the goal 

is to reduce the trellis complexity by magnitudes in order to achieve a more efficient 

decoding process. 

The trellis complexity of a block code [7], [11], [18] is mainly determined by the number 

of states and branches in a trellis. The state complexity is usually measured by its state 

space dimension profile, and the branch complexity by the total number of branches 

present in the trellis diagram. In Chapter 2 it was shown that for every generator 

matrix G of a block code, there exists a trellis with a minimum number of states and 

branches, called a minimal trellis. It was however also shown, that there exist several 

equivalent codes, described by there relevant generator matrixes. These equivalent 

trellises derived from their respective generator matrixes, describe the same set of code 

words. For each equivalent code, there exists a number of trellis representations, only 

one of which is minimal. The aim is thus to find the equivalent code, or generator matrix 

permutation, that will deliver a minimal trellis with a fewer number of branches and/or 

states than any other minimal trellis for that code. 

6.2 State Complexity 

For a binary (N, 10 linear block code C, the state complexity [35] of an N-section bit-level 

code trellis is measured by its state space dimension profile. The state space dimension 

profile can be defined as follows 

(6.1) 
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where for 0 ~ i ~ N th following holds 

(6.2) 


The maximum value among the state space dimension of a particular code trellis can be 

defined as 

(6.3) 


At this point, it is necessary to give a mathematical formulation of the state space of a 

N-section trellis for the above mentioned code. A generator matrix G is assumed for the 

code. 

At time i, 0 ~ i ~ N, the rows of G are divided into three disjoint subsets: 

• Gt consists of those rows of G whose spans are contained in the interval [l,i] 

• G/ consists of those rows ofG whose spans are contained in the interval [i+ 1,N]. 

• G/ consists of those rows of G whose active spans contain i. 

Let A/, A( and At denote the subsets of information bits that correspond to the rows 

of Gt, G/ and G/ respectively . The information bits in At do not affect the encoder 

outputs after time i, and hence they become the past with respect to time i. The 

information bits in A( only affect the encoder outputs after time i. Since the active 

spans of the rows in G/ contain the time instant if'the information bits in At affect not 

only the past encoder outputs up to time i, but also the future encoder outputs beyond 

time i. It can be said that the information bits in At define a encoder state for the code 

C at time i. Each state is defined by a specific combination of the Pi information bits 

in At. The parameter Pi is the dimension of the state space LJC) . 

The dimension of the state space can be defined as [21)[22J 
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where 

(6.4) 

(6.5) 


denote the dimensions of the past and future sub-codes with respect to time i. 

Due to the fact that the parameters in Equation 6.5 are non-negative, it can be said 

that 

(6.6) 


It follows from the uniqueness of a state label that 

(6.7) 


Furthermore, it follows that 

(6.8) 


for 0 ~ i ~ N . 


Combining the above equations, results in the following bound: 


(6.9) 


From Equations 6.6 and 6.9 it follows that the upper bound on the maximum state 

complexity is given by: 

PmaJc) ~ min{K,N - K}. (6.10) 

This bound was first proved by J.K. Wolf [16]. In general, this bound is fairly loose. 

However, for cyclic codes, this bound gives the exact state complexity. For non-cyclic 

codes, tighter upper bounds have been obtained. 

If the Viterbi algorithm is applied to the N-section trellis of a code, then the maximum 
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number of survivors and path metrics to be stored are both 2PmaJC) . 

From this it follows that the state space dimension is a key measure of the trellis 

complexity and thus also the decoding complexity of a specific block code. It was also 

proven, although not repeated here, that a code C and its dual have the same state 

complexity[21] , [22]. 

6.3 Branch Complexity 

The branch complexity of an N-section trellis diagram for an (N, K) linear block code C 

is defined as the total number of branches in the trellis. This complexity determines the 

number of additions required in a trellis based decoding algorithm to decode a received 

sequence. 

The branch complexity can easily be calculated by summing all the branches leaving 

active states. 

6.4 Overall Complexity 

In order to design more efficient and faster decoding algorithms for trellis based systems, 

methods have to be developed to limit the branch and state complexity as described in 

Sections 6.3 and 6.4. 

It should be obvious that reducing state complexity is the most efficient complexity 

reduction process, since it implies that branches will also be reduced in the process. It 

thus serves a dual purpose. 

6.5 Generator Matrix Permutations 

In the previous paragraph, an introduction to trellis complexity was given. The most 

important parameter for the determination of trellis complexity is the state space 
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dimension Pmax (C). The lower this value, the lower the actual decoding complexity 

involved [21][22]. 

This section will show how a good choice of a generator matrix G can influence the 

eventual decoding complexity. The method that is considered is a non-systematic search 

through all n! permutations of generator matrixes, in order to find the equivalent code 

that delivers the smallest state space complexity. 

In order to specify that a given permutation of the code symbols wiil actually deliver a 

noticeable change in the state space complexity and hence reduce the decoding 

complexity, a number of codes have to be examined. 

As an example, a (7, 4)-Hamming code is considered. The code has the following 

generator matrix: 

G= 

0 

1 

1 

1 

0 

1 

0 

0 

1 

0 

1 

1 

1 

0 

0 

0 

1 

1 

0 

1 

0 

0 

0 

1 

0 

0 

1 

0 

(6.11) 

This generator matrix has the following state space profile: 

P(C) = (0, 1, 2, 3, 2, 2, 1, 0) (6.12) 

The trellis for this code has the following number of nodes: 

N 

Nr, = LqP;(C) = 1+2+4+8+4+4+2+ 1= 26 
i=O 

(6.13) 

The maximum state space for the code is: 

(6.14) 


In order to test the postulate that equivalent codes might lead to reduced state space 

complexity, the first and the last column of the generator matrix is swapped. This then 

Centre for Radio and Digital Communication (CRDC) 

Department of Electrical and Electronic Engineering 

University of Pretoria 104 



Chapter 6 Introduction to Trellis Complexity and Trellis Complexity Reduction 

delivers a new generator matrix G', which In turn yield an equivalent code with 

generator matrix: 

0 0 1 1 1 0 0 

G'= 
0 

1 

1 

0 

0 

1 

0 

0 

1 

0 

0 

0 

1 

1 
(6.15) 

0 0 1 0 1 1 1 

The state space is then found to be 

p(C') = (0, 1, 2, 3, 3, 2, 1, 0) (6.16) 

The trellis for this code has the following number of nodes: 

N 

N' L= I qP;(C) = 1+ 2+ 4+ 8+ 8+ 4+ 2+ 1= 30 
i=O 

(6.17) 

The maximum state space for the code is 

(6.18) 


As can be seen from Equation 6.18 and Equation 6.14 that the maximum state space 

dimension has remained unchanged. Notice however that the number of nodes present 

in the trellises has changed. The first code has 26 nodes in its trellis diagram, and the 

second equivalent code has 30. It is apparent that the first code will therefore be 

considerably simpler to decode. 

Therefore, at this point it has to be said that the state space dimension is a very 

important factor in the complexity of the trellis, but that other factors such as number 

of nodes also have an effect. 

In order to find out if any equivalent code to the generator matrix of Equation 6.11 

yields a smaller state space dimension, all the permutations of the generator matrix 

have to be considered. 

There are in total n! =7! =5040 permutations ofthe generator matrix in Equation 6.11 

to consider. When this is done, the following results are obtained. 
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• 	 There exist 2016 generator matrixes that have 26 nodes and a state space 

dimension of 3. 

• 	 There exist 3024 generator matrixes that have 30 nodes and a state space 

dimension of 3. 

It is thus not possible to find a equivalent code by permutations of the generator matrix 

that has a trellis with less than 26 nodes, and a state space dimension ofless than 3 for 

the (7,4)-Hamming code. 

Next consider the (5, 3)-Code that Wolf has extensively examined in [16]. The parity 

check matrix of this code is given as: 

1 0 1 
(6.19)

010 ~l 
For this code, the state space is given as: 

p(c) = (0, 1, 2, 2, 1, 0) 	 (6.20) 

From this it follows that the maximum state space dimension is: 

Pma)C) = 2 	 (6.21) 

The number of nodes in the trellis can be computed as 

N L = 	L
N 

q Pi (C) = 1+ 2 + 4 + 4 + 2 + 1= 14 (6.22) 
i=O 

If all the n! = 5! = 120 permutations are again considered, the following results are 

obtained: 

• 	 There exist 8 generator matrixes that have 10 nodes and a state space dimension 

of 1. 

• 	 There exist 32 generator matrixes that have 12 nodes and a state space 

dimension of 2. 

• 	 There exist 80 generator matrixes that have 14 nodes and a state space 

dimension of 2. 
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This implies that there is a generator matrix that delivers an equivalent code, with a 

state space dimension of 1 and just 10 nodes in the trellis diagram. The amount of 

decoding time and effort saved if this alternate trellis is used is significant. 

Both the reduced trellis and the original trellis are shown below. 
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As can be seen from the figures above, the first trellis apparently has a much higher 

complexity than the second one. The decoder operating on the second trellis would be 

considerably less complex than the decoder of the first trellis. 

1 1 o 
(6.23)o 1 ~) 

The Parity Check Matrix of the second trellis is 

From the above proof it can be said that there exist equivalent codes, obtainable through 

permutations of generator matrixes, which yield lower trellis complexity than all other 

equivalent codes. 

The best way to find these optimum generator matrixes is the brute force permutation 

approach. This method evaluates all possible permutations of the generator matrix 

under investigation, and selects the best one. 

This approach is however in most cases not a very viable approach. Many codes have 

a fairly large value for n. Assuming n to be only 64, which is in fact still small, a total 

of n! = 64 = 1.267E89 permutations have to be considered. For a Reed-Solomon code of 

n = 512 the value becomes unwieldy high. 

There is no doubt that a reduction in trellis complexity is an essential contribution for 

soft-decision maximum likelihood decoding of block codes. In the example above, the 

decoding time may be shortened considerably, by employing minimum state trellis 

structures with fewer nodes and correspondingly fewer branches. 

The following simulation results are needed to prove that the performance of a specific 

code does not decrease if a reduced trellis is used for the decoding. It would be of no use 

if a trellis could be simplified, but at the cost of performance. The chapter uses a (5,3)­

Code as described in Chapter 9. 

6.6 Decoding in the Trellis Diagrams 

The following simulation results are presented in order to show that the performance of 

a specific code does not decrease if a reduced trellis is used for the decoding. It would 
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be of no use if a trellis could be simplified, but at the cost of performance. 

The code under investigation is the (5,3) -code [16]. This code was used in the previous 

section to derive and construct a reduced trellis. The parity check matrix of the original 

code is given by: 

1 o 1 
H = (6.24) 

I 
[1

1 o 1 0 

This can then be transformed into the generator matrix of this code. See Appendix B 

for a detailed description of this process. The generator matrix is given by: 

o o 1 

1 o 1 (6.25) 

o 1 o ~l 
Using the process described in the previous chapter, a simplified trellis can be found by 

using the following parity check matrix: 

1 1 o 
(6.26) 

o 1 1 ~: 
Again, this parity check matrix has to be transformed into a generator matrix in order 

to obtain the codewords needed for decoding. The process of obtaining the generator 

matrix is a bit more involved, since the code is no longer systematic and any attempt to 

transform it into a systematic code, will destroy the inherent properties of the code, 

nullifying the ability of the matrix to produce a reduced trellis. 

The following property of matrices is used to find the generator matrix. 

(6.27) 

The above equation delivers 3 equations with I5 unknowns. But due to the nature of the 
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equations, all unknowns that cannot be determined can be chosen randomly. 

o 1 o 
(6.28)o 1 1 

1 0 1 

These two parity check matrices will produce the trellises given on the next page. The 

diagrams were found using simulation software written in C++. The code is partially 

reproduced in Appendix G, but a full version can be obtained from the authors. 

Pmb.for code b~ error 	 j4.326201644522271 L._ :!"i~n~!"!t"..:~ .. 11 Eb/No (dB) 	 Step through Eb/No I 
jOl0000000149011 6 

Decoder type 	 jl 01 01 Eb/No (dB) Min Code ....ords per run
Transmitted r. Herd 

I 	 j-l0 jl0000 
Expurgate Trellis 	 r Soft j00111Received 

EblNo (dB) Me>: 	 Step size (dB) 
Unexpurgate Trellis r Show Metrics 	 j00101 jl0 jlVrterbi output 

• 

Figure 42 	 (5,3) Code Trellis for Parity Check matrix HI Produced by Trellis 

Simulation Software 

As can be seen from the above figure , SDML-decoding and HD-decoding can be obtained 

with the software, as well as expurgation. The transmitted and received vectors are 

displayed together with the output of the Viterbi decoder and the channel EM/No. 
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6.7 Bit Error Rate Calculations 

The two trellises in the preceding paragraph were used in the simulation software to 

find the BER graphs for both the reduced and normal trellises . 

The following configuration files have to be set up for the simulator in order to calculate 

the BER. 

T~e first configuration file for the original trellis is called "Original (5,3) Code. bee" and 

contains the parameters and matrix in order for the simulator to compute the trellis and 

its accompanying weights. 

Message_length_(k): 

3 

Code_length_( n): 

5 

Galois_field_prime_ value: 

2 

Generator_matrix: 

10011 

0101 0 


00101 


Table 9 Original (5,3) Code. bee File 

The second configuration file for the original trellis is called "Original (5,3) Code 

Trellis.btf' and is created by the simulator, but it can also be entered if the above data 

is not known. 

Number_of_states_in_the_trellis: 

Depth_oLthe_trellis: 
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6 

Active_nodes in the_trellis 

1 1 1 1 1 1 

0 0 1 1 1 0 

0 0 1 1 0 0 

0 1 1 1 0 0 

BranchO _destinations: 

0 0 0 0 0 -1 

-1 -1 1 1 -1 -1 

-1 -1 2 -1 -1 -1 

-1 3 3 -1 -1 -1 

Branch1_destinations: 

3 2 1 -1 -1 -1 

-1 -1 0 -1 0 -1 

-1 -1 3 0 -1 -1 

-1 1 2 1 -1 -1 

BranchO_weights: 

-1 -1 -1 -1 -1 -1 

-1 -1 -1 -1 -1 -1 

-1 -1 -1 -1 -1 -1 

-1 -1 -1 -1 -1 -1 

Branch Lweights: 

1 1 1 -1 -1 -1 

-1 -1 1 -1 1 -1 

-1 -1 1 1 -1 -1 

-1 1 1 1 -1 -1 

Table 10 Original (5,3) Code Trellis. btf File 

The first configuration file for the reduced trellis is called "Reduced (5,3) Code. bee" and 

contains the parameters and matrix in order for the simulator to compute the trellis and 

Centre for Radio and Digital Communication (CRDC) 

Department of Electrical and Electronic Engineering 

University of Pretoria 113 



Chapter 6 Introduction to Trellis Complexity and Trellis Complexity Reduction 

its accompanying weights . 

Message_lengthJk): 

3 

Code_lengthJn): 

5 

GaloisJieldyrime_value: 

2 

Generator_matrix: 


10101 


10110 


1101 1 


Table 11 Reduced (5,3) Code.bcc File 

The second configuration file for the original trellis is called "Reduced (5,3) Code 

Trellis.btf' and is created by the simulator, but it can also be entered ifthe above data 

is not known. 

Number_oLstates_in_the_trellis: 

4 

Depth_oLthe_trellis: 

6 

Active_nodes_in_the_trellis 

1 1 1 1 1 1 

o 0 0 1 1 0 

o 1 1 000 


00000 0 


BranchO_destinations: 

o 0 0 0 0 -1 
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-1 -1 -1 1 -1 -1 

-1 2 -1 -1 -1 -1 

-1 -1 -1 -1 -1 -1 

Branch1_destinations: 

2 2 -1 1 -1 -1 

-1 -1 -1 0 0 -1 

-1 0 1 -1 -1 -1 

-1 -1 -1 -1 -1 -1 

BranchO_weights: 

-1 -1 -1 -1 -1 -1 

-1 -1 -1 -1 -1 -1 

-1 -1 -1 -1 -1 -1 

-1 -1 -1 -1 -1 -1 

Branch 1_weig hts: 

1 1 -1 1 -1 -1 

-1 -1 -1 1 1 -1 

-1 1 1 -1 -1 -1 

-1 -1 -1 -1 -1 -1 

Table 12 Reduced (5 ,3) Code Trellis. btf File 

For a complete description of the files the reader is referred to the help file included with 

the software. The above files are just given so that the reader can reproduce the results 

obtained with ease. 

The simulator is set up to use a A WGN channel, and the channel energy to noise ratio 

Ebi/No is varied from -10 dB to 13 dB. Simulations were run until a hundred errors were 

found for each increment of Ebi/No. 

The results that were obtained were stored in a file for each case. The files were 

computed in order to obtain the desired BER. For the purpose of comparison, the Block 

Error, also known as Word Error Rate, is displayed in the graphs. By doing so, the 

statistical dependance is removed (as explained in Chapter 4) and a pure comparison 
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can be made. 


The numerical results are also repeated below for both cases. 


-10.000000 0.769231 

-9.000000 0.625000 

-8.000000 0.769231 

-7.000000 0.588235 

-6.000000 0.588235 

-5.000000 0.454545 

-4.000000 0.555556 

-3.000000 0.384615 

-2.000000 0.303030 

-1.000000 0.303030 

0.000000 0.294118 

1.000000 0.270270 

2.000000 0.147059 

3.000000 0.119048 

4.000000 0.068966 

5.000000 0.078740 

6.000000 0.046512 

7.000000 0.018553 

8.000000 0.019455 

9.000000 0.005388 

10.000000 0.010834 

11.000000 0.001283 

12.000000 0.000764 

13.000000 0.000126 

Table 13 Original Results.res File 

-10.000000 0.757576 

-9.000000 0.699301 

-8.000000 0.588235 

-7 .000000 0.591716 

-6.000000 0.540541 
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-5.000000 0.469484 


-4.000000 0.450450 


-3.000000 0.369004 


-2.000000 0.352113 


-1.000000 0.298507 


0.000000 0.247525 


1.000000 0.223714 


2.000000 0.151976 


3.000000 0.140056 


4.000000 0.105708 


5.000000 0.065876 


6.000000 0.050429 


7.000000 0.027541 


8.000000 0.017794 


9.000000 0.009327 


10.000000 0.004335 


11.000000 0.001692 


12.000000 0.000590 


13.000000 0.000160 


Table 14 Reduced Results.res File 

On the next page the results for the original and reduced trellis performance are 

superimposed on one graph. 

From the figure below, it can be seen that the error performance of the two trellises are 

practically identical, thus verifying the statements made and results achieved in the 

previous paragraphs. The assumption made here is that if there is no performance 

degradation for a small code, then there will be no performance degradation for larger 

codes. 
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Figure 44 Comparison of Reduced and Original Block Error Rates 

6.8 	 Algorithms for the Determining Minimal Trellis 

Diagram Representations 

In Section 6.5 an algorithm which used a brute force search in order to find the 

minimal trellis representation from the permutations of the generator matrix was 

presented. This algorithm is of course ideal when small codes are considered, since it 

will most certainly find the minimum trellis representation. However, as soon as large 
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codes, or even just medium length codes are considered, the algorithm becomes 

intractable. This stems from the fact that n! permutations have to be considered in order 

to find the permutation of the generator matrix which will lead to a minimal trellis 

construction. This creates the need for better algorithms, some of which will be 

discussed here. 

6.8.1 Terminated Brute Force Search Algorithm 

As mentioned above, the brute force search algorithm becomes unviable for large codes. 

An obvious alternative would be to consider as many permutations of the generator 

matrix as possible. This search could be limited by a certain amount of permutations, 

time or processing power of the platform used. This however boils down to luck and is 

not a very good approach. 

However, the initial idea of a terminated brute force search does however hold merit. 

All which needs to be done is to determine good end of search criteria. A good option for 

doing this presents itself in the form of bounds of the state space profile. As described 

in Section 6,5, a generator matrix which would deliver a minimal trellis representation 

can be identified from the state space profile and the amount of nodes the trellis would 

produce. It is thus necessary to establish a bound to the state space profile. This would 

allow the brute force search to continue until the bound is reached or approached to a 

certain extent. 

Consider a linear block code (n,k) C with code symbols from the symbol alphabet GF(q). 

1= {O, 1,2, ... ,n - I} is the set of the indexes i of the code symbols Ci . From this J can be 

defined as being a subset of I such that J ~ I with J 5 1. 

A partial code is defined as a code having undergone a sub-dividing operation. This 

operation TJ involves setting all code symbols Ci to 0 whose indexes are not contained in 

J but only in 1. 
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(6.29) 


The partial code TjG) i found by applying the operation above on every code word. 

(6.30) 

Furthermore, a sub-code CJ is defined as the subset of code words c of C whose 

components at the indexes (1 - J) are equal to zero. 

(6.81) 


An example will be given here to illustrate the principles discussed above. Consider 

again the (7,4)-Hamming code with generator matrix: 

o o 1 1 1 o o 
1 1 o o 1 o o 

G= 
1 o 1 o o o 1 

(6.32) 

1 o 1 o 1 1 o 

This generator matrix yields the following 16 code words presented in tabular format 

below: 

(0 0 0 0) 

(0 0 0 1) 

(00 1 0) 

(0 0 1 1) 

(0 100) 

(0 1 0 1) 

(0 1 1 0) 

(0 1 1 1) 

Table 15 

c 

(0 0 0 0 0 0 0) 

(1 0 1 0 1 10) 

(1 0 1000 1) 

(0 0 0 0 1 1 1) 

(1 1 0 0 1 0 0) 

(0 1 100 1 0) 

(0 1 1 0 1 0 1) 

(1 1 0 0 0 1 1) 

(1 0 0 0) 

(1 0 0 1) 

(1 0 10) 

(1 0 1 1) 

(1 1 0 0) 

(1 1 0 1) 

(1 1 1 0) 

(11 1 1) 

Code Words of the (7,4)-Hamming Code in GF(2) 

c 

(00 1 1 100) 

(100 1 0 1 0) 

(100 1 1 0 1) 

(00 1 1 0 11) 

(1 1 1 1 0 0 0) 

(0 1 0 1 1 1 0) 

(0 1 0 100 1) 

(1 1 1 1 1 1 1) 
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As an example, choose J = {I, 3, 6}. If the sub-division operation is performed on the 

code, then the partial code is found to be the following set of code words. 

(0 0 0 0 0 0 0) 

(0 0 0 0 0 0 1) 

(0 1 0 0 0 0 0) 

(0 1 0000 1) 

(0 0 0 1 0 0 0) 

(000 100 1) 

(0 1 0 1 000) 

(0 10 100 1) 

Table 16 Partial Code Words TJ(C) with J ={I, 3, 6} 

When the selection criteria for the sub-codes are applied, the following result is obtained. 

(0 0 0 0 0 0 0) 

(0 10 100 1) 

Table 17 Sub-Codes CJ with J = {I, 3, 6} 

Given the above definitions, it is now possible to define the dimensional distribution: 

K(C) = {ki (C) with 0:; i:; n} (6.33) 

where 

(6.34) 

From the principles of duality between TiC) and CJ, it follows that the mverse 

dimensional distribution can be given as : 
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R(c) = {!S(C) with 0 s; is; n} (6.35) 

where 

is (C) = min{k(T;(C)) with iJi = i} for os; is; n (6.36) 
J 

The information above can now be used to formulate a terminated brute force search 

algorithm. To start off, a (15,7)-BCH code is chosen as an example. The generator 

matrix of the code is: 

1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 

0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 

0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 

G= 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 (6.37) 

0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 

0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 

0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 

Just as in Section 6.5 , permutations of the generator matrix are examined in order to 

find the trellis diagram with the least amount of nodes, and the lowest state space 

profile . As no criteria are known at this stage for the termination of the algorithm, a run 

lasting eight days (Pentium III processor) was performed. In this time, a total of 232 

permutations of the generator matrix were considered, but this only constitutes about 

0.08% of the total n! = 15! = 1307674368000 possibilities. The results obtained are 

presented in tabular form below. 
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N~ Pmax(C) = 5 Pmax(C) = 6 Pmax(C) = 7 

206 3600 - -

214 86712 - -

222 320904 - -

230 476976 - -

238 2989824 21600 -

246 - 295728 -

254 6473592 818472 -

262 - 1870896 -

270 - 9492504 -

278 - 496320 -

286 - 24652824 -

294 - 4688640 -

302 - 22750126 -

318 - 63860208 -

326 - 6441624 -

334 - 34550356 -

350 - 132288532 -

382 - 165657036 -

390 - 7416529 

398 - 34507084 

414 - 90973995 

446 - 217439332 

510 - - 245168364 

Table 18 Results for N~ and Pmax(C) for (15,7)-BCH code after 232 permutations 
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Using the definition of the Forney bound on the state space profile, the following result 

is obtained: 

pmaJ C) ~ {O 1 2 3 3 3 4 4 4 4 3 3 3 2 1 O} ~ 4 (6.41) 

Also from Forney [30] [31] a lower bound for the number of nodes in the trellis diagram 

can be calculated from: 

N[ ~ I
n 

qk,(C)-kj(C) = 1+ 2+ 4+ 8+ 8+ 16+ 16+ 16+ 16+ 8+ 8+ 8+ 4+ 2+ l~ 126(6.42) 
;=0 

From the above two bounds and the results calculated, it is possible to specify that the 

minimum values for Nr, and pee) lie in the region of: 

4 ~ p( C) ~ 5 (6.43) 

and 

(6.44) 


From the above analysis it can be said that the double lower bound criteria for the 

termination of the brute force search provides good approximated results for the minimal 

trellis representation. In the example above, the state space profile was approximated 

as being 5, although, with all probability, it is in fact 4. The number of nodes which the 

minimal trellis would contain was approximated as being 206, although there are most 

probably only 126 nodes present in the minimal trellis diagram . As mentioned earlier, 

a full brute search would take 100 days to complete. With the test run which was done, 

it took 8 days to accumulate enough data to use for an analysis. However, with the two 

bounds which can now be used to terminate the brute force search, it is quite possible, 

that a good approximation can be found within a few hours. 
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6.8.2 Systematic Search Algorithm 

The following search algorithm will attempt to arrange the generator matrix in such a 

way, so that the probability that this specific permutation of the generator matrix will 

produce a minimal trellis diagram, is increased. The whole algorithm is based on a 

statement by Forney [30]: 

"In order to minimise the state space complexity, the dimension buildup has to increase 

as fast as possible." 

The dimension buildup is given below: 

(6.45) 

with 

J = {O,l, ... ,i - I} (6.46) 

and 

(6.47) 


In order for the dimension buildup to increase rapidly, it is necessary for the rank of the 

sub-matrices Gr.J to decrease as fast as possible. If this is not possible, then the increase 

of the rank should be kept as small as possible. 

The most elegant way to accomplish this, is to arrange the columns of the generator 

matrix from right to left such that the sub-matrixes GI-J with I - J = {i, i + 1, ... ,n} for 

i = n, n - 1, ... , 1, 0 do not increase in rank with each added column. 

The algorithm can be formalised as follows: 

9. Choose a random column of the generator matrix as being glt" 

10. Set the counter i = n - 1 
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• Search through the remaining columns gj in order to find the next gi so 

that: 

(6.48) 

• If at least one such a column exists, use it as gj for the new generator 

matrix C. 

• Decrease i by one. 

• Repeat as long as Rank(gi,gi+l'gi+2, ... ,gn-pgn) < k . 

3. Use the remaining columns of the generator matrix as g"g2,gi-1 and giofC. 

The results obtained for 4 different (11, 7)-Hamming code are given below. A comparison 

is made between the complete brute force search, and the systematic search algorithm. 

The lower bound is also given in the table. 

Code Given G Matrix Lower Bound Syst. Search Brute Force 

(11, 7)-Hamming A p=4 

N l:=94 

p=3 

Nl:=38 

p=4 

N l:=84 

p=3 

N l:=38 

(11,7)-Hamming B p=4 

Nr;=94 

p=2 

N r; =28 

p=4 

N r; =94 

p=2 

Nl:=28 

(11,7)-Hamming C p=4 

N r; =94 

p=3 

Nl:=54 

p=4 

N r;=74 

p=3 

N r;=54 

Table 19 Comparison of Results for Nl: and p(C) for (11,7)-Hamming codes. 

As can be seen from the results above, the systematic search does not deliver wonderful 

results, but it can be seen that a reduction in the trellis complexity does occur, requiring 

only a minimal amount of computations. Another test was done with three (15,5)-BCH 
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codes. In this test run, the brute force search was terminated according to the criteria 

presented in the previous section. 

Code Given G Matrix Lower Bound Syst. Search Term. B. F. 

(15,5)-BCH A p=5 

N~=254 

p=4 

N~=126 

p=4 

N~=134 

p=4 

N1;=134 

(15,5)-BCH B p=7 

N 1;=510 

p=4 

N~=126 

p=6 

N~=254 

p=5 

N~=206 

(15,5)-BCH C p=4 

N~=158 

p=3 

N~=86 

p=4 

N~=138 

p=4 

N~=110 

Table 20 Comparison of Results for N~ and Prna)C) for (l5,5)-BCH codes. 

From the above table of results, it can be seen, that when it is impossible to perform a 

complete brute force search, the systematic search algorithm compares very favorably 

with the terminated brute force search. In its favor as well is the fact the systematic 

algorithm required three minutes to find a solution, whereas the terminated brute force 

search was running for 9 hours . 

It will now be attempted to optimise the systematic search algorithm. 

6.B.3 	Optimised Systematic Search Algorithm 

After analysing the systematic search algorithm, two apparent problems were seen, 

which limited the effectiveness of the search algorithm. 

• 	 With each arrangement of the columns in order to limit the rank of the sub­

matrices, the column which increases the rank the least should be chosen. Most 

of the time, especially for large codes, a choice has to be made between two or 

more columns. It is possible that a wrong choice at this point could place a 
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drastic limit on the performance of the algorithm. 

• 	 This is especially true for the initial choice of the starting column. This is done 

arbitrarily, since at this point the rank of all the columns are 1. 

A solution to this would be to consider all permutations again. This would mean that 

each one of the 15 columns should be chosen as a starting column for the new matrix. 

The same procedure as in the previous section is applied, but when a choice has to be 

made between 2 columns which would not increase the rank of the sub-matrix much, it 

is not made randomly. All of the columns which would provide such a solution are 

considered. Of course, the further on the algorithm is, the more permutations there are 

to consider. If the codes are too large, this algorithm can be applied together with the 

lower bounds on the state space profile and number of nodes in the minimal trellis. The 

following results were obtained for the three (11,7)-Hamming codes and three (15,5)­

BCH codes. 

Code Given G Matrix Lower Bound Syst. Search Brute Force 

(11 ,7)-Hamming A p=4 

Nr.=94 

p=3 

Nr.=38 

p=3 

Nr.=38 

p=3 

Nr.=38 

(11,7)-Hamming B p=4 

Nr.=94 

p=2 

Nr.=28 

p=2 

Nr.=28 

p=2 

Nr.=28 

(11,7)-Hamming C p=4 

Nr.=94 

p=3 

Nr.=54 

p=3 

Nr.=58 

p=3 

Nr.=54 

Table 21 Comparison of Results for Nr. and p(C) for (11, 7)-Hamming codes obtained 

with the Optimised Search Algorithm 
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Code Given G Matrix Lower Bound Syst. Search Term. B. F. 

(15,5)-BCH A p=5 

Nz;=254 

p=4 

Nz;=126 

p=4 

Nz;=134 

p=4 

Nz;=134 

(15 ,5)-BCH B p=7 

N z;=510 

p=4 

N z; =126 

p=6 

Nz;=218 

p=5 

Nz;=206 

(15,5)-BCH C p=4 

Nz;=158 

p=3 

Nz;=86 

p=4 

Nz;=114 

p=4 

N z;=110 

Table 22 	 Comparison of Results for Nz; and p(C) for (15,5)-BCH codes obtained with 

the Optimised Search Algorithm 

As can be seen from the above results, the optimised systematic search approaches the 

terminated brute force search and the lower bounds. It however requires far fewer 

computations in order to find a solution. 

The optimised systematic search provides an elegant algorithm in order to find a 

minimal trellis approximation with the minimum amount of computations required. 
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Chapter 7 

Conclusion 

7.1 Conclusion 

The main objective of Ll1i<; ui<;<;el'LaLion was to show that it is indeed possible to utilIze 

decoding techniques traditionally reserved for convolutional code decoding for the 

decoding of block codes. This main goal was extended even further when it was 

attempted to decode one of the most powerful families of block codes, namely the Reed­

Solomon codes, with the Viterbi algorithm. This opens the way for endless possibilities 

employing block codes and convolutional codes combined together into one encoding 

scheme. 

Apart from this main objective, various techniques for trellis construction were gathered, 

developed and evaluated. This should prove helpful in further research projects to follow 

on this dissertation. Again, the basic idea of trellis construction was extended to include 

non-binary Reed-Solomon codes. A novel technique was found which utilizes the 

topological structure of the Reed-Solomon codes in order to simplify and streamline the 

trellis construction procedure. This ensures that trellis construction does not have to be 

hard-coded in a hardware implementation. A re-programmable Reed-Solomon trellis 

construction integrated circuit can be developed, which can then be used in conjunction 

with the standard Viterbi algorithm . 

Early on during the research it became clear that trellis size remains a stumble block 

of trellis decoders for block codes. A method needed to be devised in order to reduce the 

trellis complexity. A technique was found which reduces trellis complexity significantly, 

namely the manipulation of the generator matrix. It facilitates the Viterbi decoding of 

large block codes by reducing trellis complexity. 
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All the research was backed up with mathematical and simulation results. This proves 

that maximum likelihood decoding employing techniques such as Viterbi, SOYA and 

MAP are a viable means of decoding block codes of considerable size . 

A large library of simulation software was written, which allowed for various 

simulations to be run. Amongst others, a Viterbi decoder and a trellis construction tool 

was written. All these software modules were kept generic, so that they could be applied 

to both binary and non-binary codes. 

Another direct contribution made via this dissertation is the novel topological trellis 

construction technique for Reed-Solomon codes. Additionally, it was shown that Viterbi 

decoding is viable for block codes, even for the most complex of codes, such as the non­

binary Reed-Solomon code family. Simulation software was produced which can be used 

in the development of numerous novel coding techniques employing both block coders 

and convolutional decoders. This was possible before, but now it is possible to have just 

one standard maximum likelihood decoder. There are also possibilities for combining 

the trellises of both block and convolutional codes, creating even more opportunities for 

successful hybrid systems. 

Design and development of suitable hardware solutions for the trellis decoding 

techniques in this dissertation is left as a possible future research project. 

It can be said, that the "Holy Grail" of soft decision block code decoding has as yet not 

been found, but this work should in itself be a contribution to the quest and serve as a 

valuable platform for further research. 
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Appendix A 

Another Syndrome Trellis Construction 

Technique 

A.I Introduction 

In Section 3.3 of Chapter 3 a method ofconstructing a syndrome trellis diagram 

as proposed by Wolf was described. In this Appendix, another method of 

constructing the syndrome trellis diagram will be investigated. The method is 

similar to the one described by Wolf, but in this method, the syndromes of the 

parity check matrix are directly used to construct the trellis diagram. 

In order to ensure complete understanding of this method, an example to 

illustrate the various steps is provided. 

A.2 Generation of the Code Book 

Consider the following binary linear block code (5,3,2) with the following parity 

check matrix: 

1 0 1 
(A.I)o 1 0 

with n = 5, k = 3 and (n - k) = 2. 

By using the above mentioned values for n, k and (n - k) together with definitions 

from Chapter 2, the following parameters can be calculated. Firstly, the number 

of code words is, 
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(A.2) 


and the number of states are: 

2n k 25 3 
- = - = 22 = 4 (A.3) 

As shown in Appendix B, it is possible to obtain the generator matrix G from the 

parity check matrix H of a given block code C. The reverse is of course also 

possible, provided that the parity check matrix is in the systematic form, or 

transformed into the systematic form first. 

For further information on this transformation, Appendix 3 should be consulted. 

As mentioned above, the reverse process (generator matrix G from parity check 

matrix H) would look as follows. Note that the parity check matrix was already 

in systematic form which means that there is no need to first transform the parity 

check matrix into systematic form before the generator matrix is calculated. 

o o1 

1 o1 (A.4) 

o 1 0 ~l 
The code book can now be constructed by calculating the result of taking all the 

possible linear combinations of the generator matrix. 

In other words, each row is Modula-2 added to every other row. The resulting 

output vector is one of the codewords in the code book. Noting that it is a linear 

code, it is also necessary to consider the all zero state. The following is a list of 

all the codewords and their associated code bits. 
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cI = 1 0 0 1 1 = CII C I2 Cl3 CI4 CI5 


C - 0 1
2 - 1 0 0 = C2l C22 C23 C24 C25 


C3 -- 0 0 1 0 1 C32 C33 C34 
= C31 C3S 


C -- 1 1 0 0 1 [1 E8 2]
4 = C4l C42 C43 C44 C45 
(A.5)

C -- 1 0 1 1 0 = [1 E8 3]5 CS1 CS2 C53 C54 C55 

= 0 1 1 1 1 [2 E8 3]C6 = C61 C62 C63 C64 C65 


C - 1 1 1 0 0 [1E82E83]
7 - = C71 cn c73 C74 C75 


C - 0 0 0 0 [All 0]
S - 0= CSI CS2 CS3 C84 C85 

The above list contains all the possible codewords. We are now ready to proceed 

to the next step. 

A.3 Calculation of the Syndromes 

The next step in the process is to calculate the syndromes for each of the code 

words. 

In order to evaluate the syndromes, some definitions would be in order here. 

Syndrome SIn is defined as follows: 

(A.6) 

The transformed codeword is defined below: 

C

CII = (CII 0 0 0 0) 

I2 =(C1I C I2 0 0 0) 

(A.7) 
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• Consider codeword Cl = (C ll Cl2 cn Cl4 CIS) = [1 0 0 1 1] 

Start with the first transformed codeword. This is used to calculate the 

first syndrome . 

~ T (
S11 = CII . H = 1 0 0 0 0) . 

1 1 

1 0 

0 1 = (1 1) = ~3 (A.8) 

1 0 

0 1 

Using the other transformed codewords, the other syndromes are 

calculated. 

1 1 

1 0 
~ T ( 0 1Sl2 = CI2 . H = 1 0 0 0 0). = (1 1) = ~3 (A.9) 

1 0 

0 1 

1 1 

1 0 
~ T ( 0 1SI3 = = 1 0 0 0 0). = (1 1) = S3 (A.IO)Cl3 . H 

1 0 

0 1 
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1 1 

1 0 
~ T ( 0 1SI4 = Cl4 . H = 1 0 0 1 0)­ = (0 1) = ~1 (A.II) 

1 0 

0 1 

1 1 

1 0 
~ T ( = (0 (A.12)0 1SJ 5 = CI5 . H = 1 0 0 1 1) . 0) = ~o 

1 0 

0 1 

• Consider codeword C2 = (C21 c22 c23 C24 C25 ) = [0 1 0 1 0] 
Due to space limitations, only the calculated syndromes for the rest of the 

codes will be displayed. 

~ T ( )
S21 = C21 . H = 0 0 = ~o (A.13) 

(A.14) 

(A.15) 

0) = ~o (A.16) 
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(A.17) 

• Consider codeword C3 = =[0 0 1 0 1 ] (C31 C32 C33 C34 C35 ) 

The syndromes for this codeword are given below. 

0) = ~o (A. IS) 

0) = ~o (A.19) 

(A.20) 

1) = ~l (A.2I) 

~ T (
S35 = C35 · H = 0 0) = ~o (A.22) 

• Consider codeword C4 = (C41 C43 C45 ) = [1 1 0 0 1]C42 C44 

The syndromes are given below. 

~ T (
S41 = C41 . H = 1 1) = ~3 (A.23) 

~ T (
S42 = C42 . H = 0 1) = ~1 (A.24) 

~ T (
S43 = C43 . H = 0 1) = ~l (A.25) 
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S44 = C- 44 . H T = ( 0 1) = SI (A.26) 

S45 = C- 45 · H T = ( 0 0) = SO (A.27) 

• 	 Consider codeword C5 = (C51 C52 C53 C54 C55 ) = [1 0 1 1 0] 
The appropriate syndromes for this code are listed below. 

1) = S3 	 (A.28) 

1) = S3 	 (A.29) 

(A.30) 


(A.31) 


(A.32) 


• 	 Consider codeword C6 = J = [0 1 1 1 1](C61 	 C62 C63 C64 c6

The syndromes for this codeword are given below. 

0) = So (A.33) 

0) = S2 (A.34) 
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(A.35) 

T (0 1) (A.36) 

·H T = (0 0) = ~O (A.37) 

Consider codeword C7 - (C71 c73 C74 ) - [1 1 1 0 0] 
The are 

·H T = (1 1) = (A.38)S71 

= (0 1) (A.39) 

(0 0)::: (AAO) 

·H (0 0) ~o (A.41) 

::: ·H T (0 0)= (AA2) 

codeword )-[0 0 0 0 0] 
codeword are as below.The 

(A.44) 
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(A.45) 

0)= ~ (A.46) 

(A.47) 

After having calculated the relevant syndromes for the codewords, one can now 

proceed to draw the syndrome trellis diagram. 

A.4 Constructing the Syndrome Trellis Diagram 

Each one of the previously calculated syndromes is associated with a node in the 

syndrome trellis diagram. The time element ofthe trellis diagram is enclosed in 

the number of the specific syndrome. The first syndrome of a code would be the 

first in time, and the last syndrome last in time (further down the trellis). 
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• 	 Construct single code trellis for C1 = (1 0 0 1 1) 


i =a i =1 i =2 i =3 i =4 


[0 oj ,/ 
[0 Ij. 	 • 

[I oj. 	 1 


J[I lj. 	 a 

Figure 46 Single Code Trellis for Codeword 1 


• 	 Construct single code trellis for C2 = (0 1 0 1 0 ) 


i =a i = 1 i =2 i =3 i =4 


Figure 47 Single Code Trellis for Codeword 2 


'. 
• 

• 
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• Construct single code trellis for C3 = (0 0 1 0 1) 

i =0 i = 1 i =2 i =3 i =4 

[0 0] --.--0-------0- - -----­ • ./ 
[0 Ij. ...-_ _ O~' • 

[I 0]. 

Figure 48 Single Code Trellis for Codeword 3 

• Construct single code trellis for C4 =(1 1 0 0 1) 

i =0 i =1 i =2 i =3 i =4 

[0 0] • • • ./ 
[0 Ij. • O~' •/ - 0'. 


[I 0]. 1 • 

Figure 49 Single Code Trellis for Codeword 4 
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• Construct single code trellis for C5 = (1 0 1 1 0) 

i =0 i =1 i =2 i =3 i =4 

[0 oj o 

r[0 Ij. 1 • 

[I oj. 

[1 lj. 0-/ • • • 
Figure 50 Single Code Trellis for Codeword 5 

• Construct single code trellis for C6 = (0 1 1 1 1) 

1i =0 i = i =2 i =3 i =4 

[0 oj . 0 

1/ 
[0 Ij. 

[1 oj. 1 

[1 Ij. 'V 
Figure 51 Single Code Trellis for Codeword 6 
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• Construct single code trellis for C7 = (1 1 1 0 0) 

i = 0 i = 1 i = 2 i = 3 

[0 0] • • ~O '. 
1 

[0 I]. 

[I oj. 

Figure 52 Single Code Trellis for Codeword 7 

• Construct single code trellis for Cg =(0 0 0 0 0 ) 

i=O i=1 i=2 i=3 

[0 oj __--o- - -.'---O---+tIf-----O- - -.••.---o--.a_- ­

[0 Ij. 

[I oj. 

Figure 53 Single Code Trellis for Codeword 8 

i = 4 

0 '. 
• 


• 


• 


i =4 
o- - _e 

• 

• 

• 
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- Combination of all single code trellis diagrams 

i=O i=1 i=2 i=3 i=4 

-
[I Ij_ - -
Figure 54 Combined Single Code Trellis Diagram 

- Create the final syndrome trellis diagram 

i =0 i =1 i = 2 i =3 i =4 
[0 oj.-----o----~~---O----~~---O----,.~---O----~~---O----~ 

o[0 Ij_ ~-----O----~~----r_----.- -
- ..,.----O--~I[I oj ­ ........ 


': 1 
~.... ." ....... 


r . ... • •..~ • . 

[I Ij_ ~----O---~~/~·----O 

Figure 55 Final Syndrome Trellis Diagram 
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Appendix B 

Computation of the Parity Check Matrix from 

the Generator Matrix 

B.l Introduction 

In Section 3.4 it was described analytically how the parity check matrix H of a linear 

block code was generated from the generator matrix G. An example to illustrate the 

proposed method is given below: 

B.2 Explanation by Example 

Given the following generator matrix 

0 0 1 1 1 0 0 

1 1 0 0 1 0 0 
G= 

1 0 1 0 0 0 I 
(B.l) 

1 0 1 0 1 1 0 

of a (7,4)-Hamming-Code. 

Firstly, we will try and transform a column of this generator matrix G in such a manner 

that it represents the first unit vector after transformation 

1 

e1 = 
0 

0 
(B.2) 

0 

The first step in achieving this is the swapping of the first and second row. 

according to Chapter 2 such elementary matrix operations are allowed. 

Note that 
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The elements ofthe first and the fourth row in the second column are now made 0, in 

that the second row is added to these two rows. 

1 0 1 0 0 0 1 


0 1 1 0 1 0 1 

(B.6) 

0 0 1 1 1 0 0 


0 0 0 0 1 1 1 


In the third row of the third column there is already a 1 present. This makes the next 

operation easier since all that is require is to make the rest of the elements in this 

column 0. This is done by adding the third row to the particular rows. 
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1 0 0 1 1 0 1 

0 1 0 1 0 0 1 
(B.7) 

0 0 1 1 1 0 0 

0 0 0 0 1 1 1 

Preferably, only a 1 in the fourth row of the 4 column should be present. There is 

however a zero. There is also no lower row with a 1 in the fourth column, which can be 

exchanged with the fourth row in order to meet the requirement. Rows further up in the 

matrix can also not be used to perform the row swapping operation, since this would also 

disturb the unit vectors already present in several of the columns. The only possible 

solution is not to use the fourth column, but to move along to another column further to 

the right of the matrix. The column that we choose for this is the fifth one. This one is 

chosen due to the fact that it already has a one in the fourth row. This makes it a lot 

easier. The other ones present in this column will also have to be made 0, and this is 

accomplished by adding the fourth row to the particular rows. By doing this, we obtain 

the following generator matrix which still produces exactly the same code. It does 

however have a different mapping between the information vectors i and the code 

vectors c (for clarification on this, the reader is referred back to Section 2.1 in Chapter 

2). 

1 0 0 1 0 1 0 

0 1 0 1 0 0 1 
(B.8)

0 0 1 1 0 1 1 

0 0 0 0 1 1 1 

In the first, second, third and fifth columns the following unit vectors are present. This 

completes the first step in finding the parity check matrix. 

1 


0 

e ­ e2 =1­

0' 


0 


0 

1 
(B.9) 

0 

0 
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0 

0 
e ­3 ­ 1 

0 

0 


0 

(B.I0)e4 = 

0 


1 


To bring this matrix into the systematic form G' it is necessary to exchange the fourth 

and the fifth columns. In the systematic form matrix G', the following matrix 

110 

1 o 1 
(B.ll)A= 

1 1 1 

o 1 1 

IS contained in the fourth, sixth and seventh columns. In these columns of the 

corresponding parity check matrix H , the unit matrix I".k is present. The remaining 

columns (first, second, third and fifth columns) make up the transposed matrix 

1 1 

(B.12)o 1 

1 1 

This results in the parity check matrix that was used to construct the syndrome trellis 

diagram of Chapter 3. It can easily be shown that all the relevant equations in Section 

3.4 are satisfied. 

1 1 100 

o 1 o 1 1 (B.13) 

1 1 010 ~l 
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Appendix C 

Generator Matrixes of Simulated Codes 

C.l Introduction 

For reasons of completeness and also so that simulation results can be repeated 

by other people basing their work on this piece , this Appendix C will contain 

most of the generator matrixes G of the codes used in this work. In order to 

obtain the parity check matrix H for a particular code, the generator matrix G as 

given in this appendix can be transformed using the process described in 

Chapter 3 and illustrated in Appendix B. 

C.2 Generator Matrixes of given BCH-Codes 

The (15,7)-BCH-Code has the following generator polynomial gIven III the 

exponential form below. 
4 6 7 8

( ) (C.l)gx =l+x +x +x +x 

The generator matrix can be obtained from the polynomial and is as follows. 

1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 

0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 

0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 

G= 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 (C.2) 

0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 

0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 

0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 
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For the (31,21)-BCH-Code, the generator polynomial and generator matrix is as 

given below. 

G = 

(C.3) 


100 I 0 I 101 I 100 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 

o J 00\ 0 I \ 0 \ I I 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 \ 00\ 0 \ \ 0 \ \ \ 0 000 0 0 0 0 000 0 0 0 0 0 0 0 

000 I 0 0 I 0 \ 0 I \ I 000 0 0 0 0 0 0 0 000 0 0 0 0 
o 0 001 0 0 10\ \ 0 I \ 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
00000 I 00 I 0 \ 10\ \\ 000000000000000 
000 0 0 0 \ 001 0 \ \ 0 \ \ 0 0 000 0 0 000 0 0 0 0 

o 0 0 0 0 0 0 \ 001 0 \ 0 \ \ 0 0 0 0 0 0 0 0 0 000 0 
o 0 0 0 0 0 0 0 \ 0 0 I 0 I 10\ I \ 0 0 0 0 000 0 0 000 
o 000 0 0 000 \ 0 0 \ 0 I 10\ \ 100 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 I 0 0 \ 0 I I 0 I \ 0 0 0 0 0 0 0 0 0 0 (C.4) 
000 0 000 0 0 0 0 \ 00\ 0 \ 101 \ \ 0 0 000 0 0 0 0 
000000000000100101\0\1\00000000 
o 0 0 0 0 0 0 0 0 0 000 \ 0 0 10\ \ 0 \ I I 0 0 0 0 000 
000 0 0 0 0 0 0 0 0 000 I 0 0 10\ 0 \ I 100 0 0 0 0 
o 0 0 000 0 0 0 0 0 000 0 I 001 0 I 101 \ 000 0 0 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 101 \ 0 I \ 0 0 0 0 
o 0 0 0 0 000 0 0 0 0 0 000 0 I 001 0 \ 0 \ \ 000 
o 0 0 0 0 0 0 0 000 0 0 0 000 0 \ 0 0 10\ 0 I \ 100 
o 0 0 0 000 0 0 0 0 000 0 0 0 00\ 0 0 \ 0 I 0 1 \ I 0 
o 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 \ 0 I 10\ \ \ 
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C.3 Generator Matrixes of given Reed-Muller-Codes 

Here follow several Reed-MulIer-Codes and their generator matrixes. 

(16,5)-Reed-Muller-Code R(1,4)• 

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 (C.5)G= 

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

(16,11)-Reed-Muller-Code R(2,4)• 
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 

1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 

0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 

0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 0 1 1 0 0 0 0 0 (j 0 0 0 0 1 ' 1 (C.6)G= 

0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

Centre for Radio and Digital Communication (CRDC) 

Department of Electrical and Electronic Engineering 

University of Pretoria 157 



Appendix C Generator Matrixes of Simulated Codes 

• (32,31)-Reed-Muller-Code R(4,5) (Parity-Cheek-Code) 

G = 

100 0 0 0 000 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o I 000 0 0 0 000 0 0 0 000 000 0 0 0 0 0 0 0 0 0 0 0 

o 0 I 0 0 0 0 0 0 0 0 0 0 000 000 000 000 000 000 

000 1 0 0 0 0 000 000 000 0 0 0 0 0 0 0 000 0 0 0 0 

000 0 0 0 000 000 000 0 0 0 000 000 000 000 
o 0 000 100 000 000 000 0 0 0 0 0 0 0 000 0 0 0 0 I 
000 0 0 0 I 000 0 0 0 000 0 0 0 000 000 000 0 0 0 

o 0 000 0 0 I 000 0 0 0 0 0 0 0 0 0 0 000 000 0 0 0 0 
000 0 000 0 1 0 000 0 0 0 000 000 000 0 0 0 000 1 
o 0 000 000 0 1 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 001 
o 0 0 0 0 0 0 000 100 000 000 000 0 0 0 0 0 0 000 

o 0 0 0 0 000 0 0 0 1 000 000 000 0 0 0 0 0 0 0 0 0 0 
000 0 000 000 0 0 I 000 0 0 0 000 0 0 0 0 0 0 0 0 0 
o 0 000 000 0 0 0 0 0 I 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 

o 0 0 0 000 000 000 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (C.7) 
o 000 000 000 000 000 1 000 000 000 000 001 
o 0 0 0 0 0 000 000 000 0 0 I 000 0 0 0 000 0 000 
o 0 0 0 000 000 0 0 0 0 000 0 I 000 0 0 0 0 0 0 0 0 0 
00000 0 000 000 0 0 0 0 000 1 0 0 0 0 0 0 0 0 000 
o 000 000 0 0 0 0 000 000 000 J 0 0 0 0 0 0 0 0 001 

o 0 0 0 0 0 0 0 0 000 000 000 0 0 0 1 000 000 000 1 
o 0 0 0 0 0 0 000 0 0 0 0 000 0 0 0 0 0 1 000 0 0 0 0 0 
000 0 0 0 000 0 0 0 0 0 0 0 0 0 0 000 0 I 0 000 000 
o 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 000 0 I 0 0 0 0 0 0 
000 000 000 000 000 0 0 0 0 000 000 1 0 0 0 0 0 

o 0 0 0 0 0 0 0 0 0 0 000 000 000 0 0 0 0 0 0 1 000 0 
000 0 0 0 000 0 0 0 000 0 0 0 0 000 000 0 0 1 000 

o 0 000 0 0 0 000 000 000 0 0 0 0 000 0 0 0 0 I 0 0 

000 0 000 0 0 0 000 000 000 000 000 0 0 0 0 1 0 
o 0 000 0 0 0 000 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 
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• (32,26)-Reed-Muller-Code R(3,5) 

( 100 0 0 000 I 0 0 0 0 0 0 0 I 000 0 0 0 0 0 0 0 0 000 

) I 000 1 000 0 0 0 0 0 0 0 0 0 0 0 0 000 0 000 000 


o 0 0 0 0 000 I 000 1 0 0 0 0 0 0 0 0 0 0 0 000 000 
000000000000000010001000000000 
1 0 1 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 
000 0 1 0 1 000 0 0 0 000 0 0 0 000 0 000 0 0 0 0 
00000 0 0 0 1 0 I 0 0 0 0 000 000 0 0 0 0 0 0 0 0 0 
000 0 0 0 000 0 0 0 1 0 1 0 0 0 000 0 0 000 0 0 0 0 
o 0 0 0 0 000 000 0 0 0 0 0 1 0 1 0 0 000 0 0 0 0 0 0 
0000000 0 0 0 0 000 0 0 0 000 1 0 1 000 0 0 0 0 
o 0 0 0 0 0 0 000 0 0 0 0 000 0 0 0 0 0 0 0 1 0 1 0 1 0 0 
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 000 0 0 0 0 
001 I 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 000 0 

G = 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (C.S) 
0000001 100 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 1 100 0 0 0 0 000 0 0 000 0 0 0 000 
o 0 0 0 0 0 000 0 1 1 0 0 0 0 0 0 000 0 0 000 0 0 0 0 1 1 
o 0 0 0 0 000 000 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 000 0 

000 0 0 0 0 0 0 0 0 000 1 1 0 0 0 0 0 0 0 000 0 0 0 0 

o 0 0 0 0 0 0 000 000 000 1 100 000 0 0 0 000 0 

000000000000000000 I 10000000000 

o 0 0 0 0 0 0 000 0 0 0 000 0 0 0 0 1 I 0 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 001 I 0 0 0 000 I I 
000000000000000000000000 I 10000 II 
o 0 0 0 0 0 0 0 0 0 000 000 0 0 0 0 0 0 0 000 I 100 I I 
0000000000000000000000000000 II 
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• (32, 16)-Reed-Muller-Code R(2,5) 

G= 

000 I 000 000 000 000 000 000 I 000 

o 000 0 0 0 I 0 0 000 1 0 000 000 000 0 0 

1 0 101 0 I 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

o 000 000 0 1 0 1 0 1 0 1 0 0 000 0 0 0 0 0 0 0 I 0 

00000 0 000 0 0 0 0 000 I 0 1 0 0 I 0 0 I 0 1 0 I 0 

000 000 I 0 0 0 0 0 0 I I 000 000 I 0 0 0 0 0 0 
I 100 I I 0 000 0 000 000 0 0 0 000 0 0 0 0 0 
000 0 0 0 001 100 I I 0 0 000 000 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I J 0 0 1 1 0 0 I 1 0 0 0 0 

I I I 0 0 0 0 0 0 000 0 0 0 0 0 0 0 000 0 0 0 0 0 
00001 I I 1 0 000 000 0 0 0 0 0 0 0 0 0 0 0 0 0 I I 
o 0 0 0 0 000 I I I 100 000 000 000 000 0 0 
000 0 0 0 0 0 0 0 0 0 I I I 000 000 000 000 
o 0 0 0 0 000 000 0 000 0 I I 1 I 000 0 0 000 
o 000 000 0 0 0 0 000 000 000 I I I 100 0 0 
000 000 000 0 0 0 0 0 0 0 000 000 0 0 

(C.9) 
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Appendix D 


Shannon Product of Trellises 


D.l Introduction 

In Chapter 5, extensive use of the Shannon Product of trellises theory was made. This 

Appendix focuses on this unique trellis "combination" method developed by Shannon. 

it should however be noted that the Shannon product of trellises is in itself also a fully 

functional method of designing a trellis diagram from first principles. It does however 

not always deliver a minimal trellis representation. 

D.2 Analytical Approach to the Shannon Trellis Product 

The method will first be described on an analytical basis, and will be illustrated with an 

example afterwards. 

Let C1 and C2 be binary linear block codes with parameters (N,KI,DI) and (N,K2,D2) 

respectively. The two generator matrixes for the codes will be G 1 and G 2. It is further 

assumed that C1 and C2 only have the all-zero code word in common. From this would 

follow that: 

(D.l) 

Their direct sum is defined as follows: 
6 (:, 

(D.2)C =Cl GJ C2 = { U + v : U E Cp V E C2 } 

From this it would follow that C is an (N,KI+K2,d) linear block code with minimum 

distance equal to 

(D.3) 
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and generator matrix 

(D.4) 


T

Let T j and Tz be N-section trellis diagrams for C j and Czrespectively. Then aN-section 

trellis T for the direct-sum code C can be constructed by taking the Shannon product of 

j and Tz. 

Let 

T=T;x~ 	 (D.5) 

denote the Shannon product of T j and Tz. 


The state spaces of T1 and 1'2 at time i are given as 


(D.6) 


respectively. 

The construction of the Shannon product T is carried out according to the following 

procedure: 

• 	 For all i, the state space product from of C1 and C2 is obtained according to 

Equation D.6. This product can then be given as 

(D.7) 

Then L 1 ( C1) x L 2 ( C2 ) forms the state space of T j x T2 at time i. In other words, 

the two-tuples from L 1 ( C1) X L 2 ( C2 ) form the nodes of T at level i. 

• 	 A state (o)J),(J?») E Li(CJX LJC2 )is adjacent to a state 

(1) (2») '\' (C) '\' (C) 'f d l 'f (1) . d' (1) d (2).( (J ;+1 ,(J ;+1 E I... ;=1 1 X I... ;+1 2 1 an on y 1 (J i IS a ]acent to (J i+1 an (J i IS 

adjacent to (J 2; . Letl(CY (1) CY (1») denote the label of the branch that 
1 , 1+ 1 
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connects eJ?) to eJ i~? in trellis T j and l(eJ /2) ,eJ 2!) denote the label of the branch 

that connectseJ?) toeJ 2! in trellis T2• Then two adjacent states (eJ?) ,eJ?)) and 

(eJ i~i, eJ i~i) in trellis T are connected by a branch with label 

l(eJ (I) eJ (I)) + l(eJ (2) eJ (2)) (D.8)
1 'HI I' 1+1 

For O~ i~ N, letPi(CI ) and Pi(C2 ) be the dimensions of the state spaces 

given in Equation D.6 respectively. Then the state space dimension profile of T j 

x T2 is given by 

D.3 Shannon Product of Trellises by Example 

The following example will illustrate the technique as described in Section D.2. 


The two block codes C1 and C2 are assumed to be linear, and have generator matrixes in 


the following form: 


1 1 1 000 
(D.lO)

1 o 1 101 

and 

o 1 1 1 1 o 
(D.ll) 

o o o 1 1 1 

From the discussion in Section D.2 it follows that 

(D.l2) 

and that the direct-sum is given as 
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1 1 1 1 0 0 0 0 

0 1 0 1 1 0 1 0 
(D.13)= G = (~:J 0 0 1 1 1 1 0 0 

0 0 0 0 1 1 1 1 

The following two figures show the trellis diagrams for the two codes C1 and C2 

respectively. 

Figure 56 Trellis Diagram for Code C1 

These trellises are then combined with the Shannon procedure as described in Section 

D.2. The result is given in the figure below. 

Figure 57 Trellis Diagram for Code C2 
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Figure 58 Combined Shannon Product Trellis Diagram 
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Appendix E 

Coset and Syndrome Trellises by Example 

E.l Introduction 

In this Appendix, the two techniques for Reed-Solomon trellis construction as presented 

in Section 5.5 of Chapter 5, are illustrated by example. The first part is concerned 

with the syndrome construction technique, and the second part is concerned with the 

coset trellis design technique. 

E.2 Syndrome Construction 

This example will illustrate the use of the syndrome technique in obtaining a trellis 

diagram for a (7, 5, 3) Reed-Solomon code, with symbols taken from GF(8). The 

generator polynomial for this specific Reed-Solomon code is given as 

g(X) = ex 3 + ex 4 . X + X2 (E.1) 

from which the generator matrix G can be constructed. 

gl 

g2 

G= g3 

g4 

g5 

= 


a 3 a 4 1 0 0 0 0 

0 a 3 a 4 1 0 0 0 

0 0 a 3 a 4 1 0 0 (E.2) 

0 0 0 a 3 a 4 1 0 

0 0 0 0 a 3 a 4 1 

The overall Reed-Solomon code can be presented in the following form: 

(E.3) 


In Equation E.3 Cj with j=1,2, ... ,5 is a (7, 1, 3) sub-code generated by gj ' These sub-

Centre for Radio and Digital Communication (CRDC) 

Department of Electrical and Electronic Engineering 

University of Pretoria 166 



Appendix E Coset and Syndrome Trellises by Example 

codes can be expressed in the following format: 

4C] = Xl . gl = (ex 3 XI , ex Xl' Xl' 0, 0, 0, 0) 
3 4C2 = x 2 . g2 = (0, ex x 2 ' ex x 2 ' x 2 ' 0, 0, 0) 

3 4C3 = X3 . g3 = (0, 0, ex x 3' ex x 3' X3 , 0, 0) (E.4) 

3 4C4 = x 4 . g4 = (0, 0, 0, ex x 4 ' ex x 4 ' x 4 , 0) 
3 4Cs = Xs . gs = (0, 0, 0, 0, ex X S' ex XS' Xs) 

The component trellises have a very simple structure with the following state profiles: 

N/t) = (1, 8, 8, 1, 1, 1, 1, 1) 

N2 (t) = (1, 1, 8, 8, 1, 1, 1, 1) 

N3 (t) = (1, 1, 1, 8, 8, 1, 1, 1) (E.5) 

N4(t) = (1, 1, 1, 1, 8, 8, 1, 1) 

Ns(t) = (1, 1, 1, 1, 1, 8, 8, 1) 

The state profiles from Equation E.5 are represented in graphical format below. 

Figure 59 Sate Profile for C1 
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Figure 60 State Profile for Cz 

Figure 61 State Profile for C3 

Figure 62 State Profile for C4 
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Figure 63 State Profile for C5 

When the procedure as described in Section 6.2 is applied to the above state profiles, 

then a new state profile for the entire code can be written as: 

N(t) = {I, 8, 64, 64, 64, 64, 64, 8, I} (E.6) 

The result of this procedure is given in the figure on the next page. Due to the huge 

amount of states and branches, no labeling is done on the graph itself. It should be 

noted that several branches have been omitted in state 3, state 4 and state 5. 
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Figure 64 Syndrome Trellis Diagram for the (7, 5, 3) Reed-Solomon Code 

E.3 Coset Construction 

For this example, a (7, 5, 3) Reed-Solomon code is chosen with symbols taken from 

GF(8). The chosen code has the following generator polynomial 

g(X) = a 3 +a . X + X2 +a 3. X 3 + X4 (E.7) 

From the above generator polynomial, the generator matrix can be constructed as 

follows: 
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~l (E.8) 

The state profile can be obtained as given below: . 

q3 
lVo = 0 3 =1 

q .q 

q3 

(E.9) 


From this point onwards, a number of different but isomorphic trellis diagrams exist. 

The one chosen depends solely on the designer, and the procedure as given in Section 

5.5 is applied. The trellis is then again the Shannon product of a number of sub­

trellises. Due to the large complexity of even this small code, the resulting trellis 

diagrams will not be presented here. 
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. Appendix F 

Galois Field Arithmetic 

F.1 	 Introduction 

This appendix will give a brief introduction into the arithmetic of fields. A field is a set 

of elements in which one is able to do addition, subtraction, multiplication and division 

without ever having to leave the set. Addition and multiplication must satisfy the 

commutative, associative and distributive laws. 

F.2 	 Fields 

Let F be a set of elements on which two binary operations called addition and 

multiplication are defined. The set Ftogether with the two binary operations mentioned 

above is a field if the following conditions are satisfied: 

• 	 F is a commutative group under addition. The identity element with respect to 

addition is called the zero element or the additive identity of F and is denoted by 

O. 

• 	 The set of nonzero elements in F is a commutative group under multiplication. 

The identity element with respect to multiplication is called the unit element or 

the multiplicative identity of F and is denoted by 1. 

• 	 Multiplication is distributive over addition, that is, for any three elements a, b 

and c in F the following holds: 

a·(b+c)=a·b+a·c. (F.l) 

It follows from the above definition, that a field consists of at least two elements, the 

additive identity and the multiplicative identity. 

The number of elements in a field is called the order of the field. A field with a finite 

number of elements is called a finite field. In a field, the additive inverse of an element 

a is denoted by -a and the multiplicative inverse of a is denoted by a,I, provided that a 
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is not equal to zero. Subtracting a field element b from another field element a is 

defined as adding the additive inverse. If b is a nonzero element dividing by b is defined 

as multiplying by the multiplicative inverse. 

A number of basic properties of fields exist and are given below. 

• For every element a in a field a· 0 = O· a = 0 

• For any two nonzero elements a and b in a field a· b 1:. 0 

• a · b = 0 and a 1:. 0 implies that b = 0 

• For any two elements a and b in a field - (a .b) = (- a)· (b) = (a)· (- b) 

• For a 1:. 0, a ·b = a· c implies that b = c 

Fields are normally indicated by GF(q). This notation is used in honor of Galois who 

discovered these fields . The binary field in which most everyday calculations are done 

is called GF(2). Every Galois field contains a given number of symbols. In GF(4) the set 

is limited to 4 symbols . The symbols can be expressed in exponential or polynomial form, 

which makes addition and multiplication easier depending on which representation is 

used. A table is given below to illustrate the above process with 8 symbols . 

No. Exponential Representation Polynomial Representation 

1 0 0 

2 1 1 

3 a a 

4 a 2 a 2 

5 a 3 a 3 = a + 1 

6 a 4 a 3 . a = (a + 1) ·a = a 2 + a 

7 as 4 2 1a ·a= ...=a +a+ 

8 a 6 S 2 1a ·a = ... = a + 

Table 23 Galois Symbol Representation in Exponential and Polynomial Form 
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This discussion was just a very brief introduction to the study offinite fields and Galois 

fields . For further information, the reader is referred to standard works[21], [24], [25] on 

this topic. 
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Appendix G 

Simulation Code 

G.l Introduction 

This is just a partial reproduction of the simulation code used in the dissertation. The 

full code is available on request from the authors . 

G.2 Simulation Code 

/ / -- ----- --------- -- ------------ ------ ----- ---- ------- --- -- ------- ----------­
#inelude <vel \ vel.h> 

#pragma hdrstop 

#inelude <stdio.h> 

#include <math.h> 

#include <vel / elipbrd.hpp> 

#include "main.h" 

/ / ----- -- ------- --- ---------------- ------- ------ ------ ------------- ------ ---­
#pragma resource "*.d{m" 
TForml *Forml; 

/ / -------- ---- ------------- --- ----- ------- ----- -------- ------ ------ ---------­
/ / Constructor 
--1astcall TForm l::TForm 1(TComponent* Owner) 

: TForm{Owner) 
( 

/ / S etup the system 

ReadSpecs(); 

states =pow{2,(fLoat)(n-k)); 


/ / 20-stage PN Generator 

int data_sourceJeedback[2] ={2,19}; 

DataSource =new PN_Gen{20,2,data_sourceJeedback); 


/ / Create the coder 

HammingCoder =new Cyelic{n,k,genyol); 


/ / Create channel 
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Pe =0.1; 

Channel = new BSC(1,-l,Pe); 

No =Channel->Compute_No_neededJor_Pe(); 

A WGN =new Noise(O,No); 


/ / Create the block code's trellis 

HammingTrellis = new Trellis(states,(n+1)); 

Ham m ingTrellis->Bloch Trellis(n, h,parity); 


/ / Create the Viterbi decoder 

HammingDecoder =new Viterbi(states, (11, +1)); 


/ / Create a few buffers 

message =new Matrix(1,k); 

received =new Matrix(1,n); 

code = new Matrix(1,n); 


/ / Display startup Pe and associated Eb / No 

Editl->Text=(1O*logl O((floatXn) / (float)(k*No))); 

Edit5->Text=Pe; 


/ / Initial node spacing factors 

zi = (Image1->Width)/(4*(n+2)); 

zo =(Image1- >Height) / (4*(states+ 1)); 


/ / Display the startup trellis 
Draw Trellis(); 

) 
/ / ---------- --- -- -- ---- --- ------ -- --- -- -- ----- ---- ---------- --- -- ----- ------­

/ / ---- --------- -- ---- --- ----- --- -- ----- ---- ---- --- -- ----- ----- ---- - ----- ----­
void TForm1::ReadSpecs() 
{ 

FILE *specs; 

char temp[30j; 


OpenDialog1->Filter ="Block code specs (* .bcs) I*.BCS"; 
if (OpenDialog l->Execute()) 

( 
specs =fopen((OpenDialog l->FileName).cstr(), "rt "); 

/ / Read 11, from file 

fscanf(specs, "%s",temp); 

fscanf(specs, "%i",&n); 


/ / Read k from file 

fscanf(specs, "%s",temp); 

fscanf(specs, "%i",&h); 


/ / Read generator polynomial from file 

Centre for Radio and Digital Communication (CRDC) 

Department of Electrical and Electronic Engineering 

University of Pretoria 176 



Appendix G Simulation Code 

fscanf(specs, "%s If, temp); 

genyol = new int[n-k+IJ; 

for (int i=O; i«n-k+l); i++) 

( 

fscanf(specs, "%s",temp); 
genyol[iJ =atoi(temp); 

} 

/ / R ead the H matrix from file 
fscanf(specs, "%s",temp); 
VECALLOC(parity, (n-l?),n); 
for (int i=O; i«n-k); i++) 
{ 

for (int j=O; j<n; j++) 
( 

fscanf(specs, "%s",temp); 
parity[iJ[jJ =atoi(temp); 

} 

} 


fclose(specs); 
} 
else exit(O); 

} 
/ / ------ -------- -- ---- -------- -- -- --- -- ---- ------ - ------ - -------------- -----­

/ / -- ---- ------- ------ - --- ------------ -------- --- -- ------ -- ------------- -----­

/ / Display the trellis information 
void TForm1::DrawTrellisO 
( 

/ / Determine spacing between nodes 

int x_step = zi; 

int y_step =zo; 


/ / Refresh the canvas 

Image l->Canvas->Pen->Color=clBlack; 

Image l->Canvas- >Brush->Color=cl White; 


Image1- >Canvas- >Rectangle(0, O,Image1-> Width,Image1->Height); 

/ / Draw nodes 

Image l->Canvas->Brush->Color=clBlack; 

for (int m=l; m <=(n+J); m++) 

{ 

for (int 1=1; l<=states; 1++) 
Image 1->Canvas->Ellipse(( m *x_step- 3), (l*y _step-3), (m *x_step+3), (l*y _step +3)); 

} 
Image l->Canvas->Brush->Color=cl Wh ite; 

/ / Draw the branches of the trellis 
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for (int j=O; j<n; j++) 
{ 

for (int m=O; m<states; m++) 
{ 


for (int l=O; l <states; l ++) 

( 

Image1->Canuas->MoueTo((j+ l)*x_step, y_step*(m+ 1)); 
if (HammingTrellis->OutgoingBranches(j,m,l)==l) 

( 	 if (HammingTrellis->ReturnBranchCause(j,m,l)==O) 
Image1- >Canuas- > Pen->Color=clBlue; 
else Image1->Canuas- >Pen->Color=clRed; 
Image1->Canuas->LineTo((j+2)*x_step, y_step*(l+ 1)); 

} 

} 


} 
} 

Image l->Canuas->Pen->Color=clBlack; 
} 
/ / --- ---- --- -------------- -- ---- -- ------- -- ---- - ---- -- ----------- ----- ------­

/ / ---- --- ----- ------ ------- - ---- -- - ---- -- -- ------ ------ ------ - ---- --- - ------­

/ / Display the computed metrics 
uoid TForm l::ShowMetricsO 
{ 

char metric[4}; 

Image l->Canuas->Pen->Color=clBlack; 


/ / Determine the spacing between metrics 

int x_step = zi; 


int y_step =zo; 


/ / Write metris to the canuas 

for (int m=l; m<=(n+1); m++) 

{ 

for (int l=l; l<=states; l++) 
( 

if (HammingTrellis->ReturnStateActiue(m-1, l-l)) 
{ 
sprintf(metric, "%2.2{", (HammingDecoder- >ReturnMetric(l-l, m -1))); 

Image 1->Canuas->TextOut((m *x_step), (l*y _step-20), metric); 
} 

} 
} 

} 
/ / ----- ------- ------- ----- -- ---- -- ------ - -- ------------- ---------- ------ - - --­

/ / -- --------- -- ------ ------------- ---- -------- --- ------ ----- --- ------- ------­
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/ / Display the most probable path 
uoid TForm1::DrawPathO 
{ 

/ / Redraw the trellis 
DrawTrellisO; 
Image1->Canuas->Pen->Color==clGreen; 

Image1->Carwas->Pen-> Width ==3; 

/ / Draw best path 

int x_step =zi; 

int y_step =20; 


for (intj=O;j<n;j++) 
{ 

for (int m=O; m<states; m++) 
{ 
for (int l=O; l<states; l++) 

( 
Image1->Canuas- >MoueTo((j+ l)*x_step, y_step*(m+ 1)); 
L f 

(Ham mingDecoder- >ReturnPath(m,j)*H ammingDecoder- >ReturnPath(l,j+1)*Ham mingTrellis­
>OutgoingBranches(j, m, l)) 

Image 1->Canuas->LineTo((j+2)*x_step, y _step*(l+ 1)); 
if (HammingDecoder->ReturnPath(m,j)==l) 

Image1->Canvas->Ellipse(((j+ 1)*x_step-5),((m +1)*y_step-5), ((j+ 1)*x_step+3),((m+1)*y_step+5)); 
) 

) 
) 

Image1->Canuas- >Pen->Color=clBlack; 

Image1->Canvas->Pen->Width=1; 


) 
/ / --- ------------------ ----- ------ ----- ------ ----------- ----------- ---------­

/ / -- ----- --- -- - ----- ---------- ---- --- -- -- ----- --- ----- ----------- -----------­
/ / Transmit and receive a single code word 
void -fastcall TForm1::Button1Click(TObject *Sender) 
{ 

AnsiString c; 

AnsiString r; 

AnsiString v; 

float receive[15}; 

float noise; 


/ / Flush shift register based coder 

HammingCoder->FlushO; 


/ / Construct message vector 

for (int x=O; x<k; x++) 

{ 
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message->ChangeElement(O,x,DataSource->Output(O)); 

DataSource->Shift(); 


) 

/ / Construct code word 

HammingCoder->Compute(message); 


/ / Buffer the code word that is going to be transmitted 

for (int y=O; y<n; y++) code->ChangeElement(O,y,HammingCoder->Return_code_bit(y)); 


/ / Transverse channel 

for (int y=O; y<n; y++) 

( 


noise = A WGN->Output(1); 


received->ChangeElement(O,y,Channel->Transverse_Channel((float)(2*code->ReturnElement(O 
,y)-l)+noise)); 

/ / Differentiate between hard decision and soft decision decoding approaches 
if (Radio Group 1- >Itemlndex==O) receive(yJ = (float)received-> ReturnElement(O,y ),­

if (RadioGroup1->Itemlndex==1) receive(yJ =2*code->ReturnElement(O,y)-1+noise; 
) 

/ / Decode the received code word 

HammingDecoder->Decode(receive,HammingTrellis); 


/ / Draw the best path as determined by the Viterbi decoder 

DrawPath(); 


/ / Display computed metrics if necessary 

if (CheckBox1- >State== 1) ShowMetrics(); 


/ / Display all info 

for (int y=O; y <n; y++) 


( 
c += code->ReturnElement(O,y); 

if (RadioGroup1->Itemlndex==O) r += ((received->ReturnElem ent(O,y)+1) / 2); 
else r = ""; 

v += HammingDecoder->ReturnCodeBit(y); 
) 

Edit2->Text=c.cstr(); 

Edit3->Text=r.c_str(); 

Edit4->Text=v.cstr(); 


) 
/ / - -- ----- -- ---- - ------- ------- -- -------- ----- ------------ ------ ----- -------­

/ / - - - ------ ---- - ------ ----- ---- ------------ ------ - ---- - - ----- - --- -- - - -- -- - --­
/ / Expurgate the trellis 
void --fastcall TForm1::Button2Click(TObject *Sender) 
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( 
HammingTrellis ->Expurgate(); 


DrawTrellis(); 

DrawPath(); 

if (CheckBox1->State==1) ShowMetrics(); 


} 
/ / ------ ------ ------------ -- -- --- ------ ------ --- ----------------------------­

/ / ----- - ------ ----- -- ---- ----- -- - ----------- - ---- - --- --- ------ -- ----------- -­
/ / Unexpurgate the trellis 
void -fastcall TForm1 ::Button3Click(TObject *Sender) 
( 

/ / Re-create the block code's trellis 

HammingTrellis- >Block Trellis(n, h,parity); 


/ / Draw the unexpurgated trellis 

DrawTrellis(); 

DrawPathO; 


/ / Display metrics if necesaary 

if (ChechBox1->State==1) ShowMetrics(); 


} 
/ / ---- -- ----- ------- ---- ----- ------ ---- -- ----------- ------ ------ -- ----------­

/ / -- --------------------------------------------- ----------- -------- ---- ----­
/ / Compute the Pe associated with a give noise power 
float TForm1 .·:Get_Pe(float N) 
{ 

float pe=O; 

float y=O; 


for (int i=O; i<1000; i++) 
{ 

pe += (0.01/ sqrt(3.1415* N))*exp(-(y+ 1)*(y+ 1)/ N); 
y += 0.01; 

} 
return pe; 

} 
/ / --- ------- -------- ----- ------------------ ------------------- --------------­

/ / ----- ------- ---------- --- --- ------ ----- -------- -------- ----------- --------­
/ / Transmit x code words at different Eb / No values 
void -fastcall TForm1::Button6Click(TObject *Sender) 
{ 

float receive[30}; 

float noise; 

float error; 

int temp; 
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FILE *output; 

output =fopen("results.txt ", "wt "); 

/ / Turn displays off 

Edit2->Enabled =false; 

Edit2->Update(); 

Edit3->Enabled = false; 

Edit3->Update(); 

Edit4->Enabled =false; 

Edit4->Update(); 

Edit5->Enabled = false; 

Edit 5->Update(); 


/ / Step through the given range of Eb/No 
for (float step=atof(Edit 6- >Text.c_str()); step<=atof(Edit 7- >Text.c_str()); 

step+=atof(Edit8->Text.c_str())) 
{ 

No =((float)(n)/(float)(k))/(pow(J 0, (step/ 10))); 

A WGN->Change_variance(No/ 2); 


Pe=Get_Pe(No); 

error=O; 


Edit1->Text=(1 O*log1O((float)(n)/ (float)(k* No))); 

Edit1-> U pdateO; 


/ / Step through the given amount of code words 

for (float i=O; i<atoi(Edit9->Text.c_str()); i++) 

{ 

ProgressBar l->Position =(i/atoi(Edit9->Text.c_str()))*100; 

/ / Flush the shift register based coder 

HammingCoder->FlushO; 


/ / Construct message vector 

for (int x=O; x<k; x++) 

( 

message->ChangeElement(O,x,DataSource->Output(O)); 
DataSource- >Shift0; 

} 

/ / Construct code word 
HammingCoder->Compute(message); 

for (£nt y=O; y < n y + + ) 
code->ChangeElement(O,y,HammingCoder->Return_code_bit(y)); 

/ / Transverse channel 

for (int y=O; y<n; y++) 

( 

noise =A WGN->Output(1); 

received->ChangeElement(O,y, Channel- >Transverse_ Channel((float )(2*code->ReturnElement(O 
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,y)-l)+noise)); 

if (RadioGroup1->Itemlndex==0) receive[yJ =(float)received->ReturnElement(O,y); 
if (RadioGroup1->Itemlndex==1) receive[yJ = 

2*code->ReturnElement(0,y)-1 + noise; 
} 

/ / Decode the received code word 

HammingDecoder->Decode(receive, HammingTrellis); 


/ / Count errors 
temp = 0; 

for (int y=O; y<n; y++) temp += 
HammingDecoder->ReturnCodeBit(y)/\(code->ReturnElement(O,y)); 

error += (temp>O); 
} 

fprintf(output, "%f %f \n ", 10*log1O((float)(n) / (float)(k*No)), error / atof(Edit 9->Text.cs tr())); 
} 

fclose(output); 
Edit2->Enabled =true; 


Edit3->Enabled = true; 

Edit4->Enabled =true; 

Edit5->Enabled =true; 


} 
/ / ----- ---------- ---- --- -- ------------ - -------------- -------------- ---------­

/ / --- ------ - ----- - - --- --- - ------- ------ ----- -- --- ------- ---- --- ---- ------ ---­
/ / Compute the new Eb/No when Pe is changed 
void --1astcall TForm1::Changing_Pe(TObject *Sender, WORD &Key, TShiftState Shift) 
{ 

if (Key == 13) 
( 

Pe =atof(Edit5->Text.c_str()); 

Channel- >Change_Pe(Pe); 

No =Channel->Compute_No_neededJor _Pe(); 

Edit l->Text=(lO*log1O((float)(n)/ (float)(k* No))); 


} 
} 
/ / -- ----- ------ ------ ------ ------- ------ ------ --- ---- ---- --- ------------- ---­

/ / --- ----- - ----- - ---- - -- ----- - ------ -- ---- -- ------ - ------ ----- - -- ----- ------­
/ / Refresh shown Pe 
void --1astcall TForm1::Exit_Pe_Change(TObject *Sender) 
{ 

Edit5->Text = Pe; 
} 
/ / --- -- ----------- ------- ---- - -~ --------- --- --- ----- ------ ------- ---------- -­
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/ / ------ - - - - - ----------------- --- ----------- - - - - -------- -- -- ----------------­
/ / Toggles between displaying the metrics and not displaying the metrics 
uoid ~astcall TFonn 1::MetricState(TObject *Sender) 
{ 

if (CheckBox1->State == 1) ShowMetrics(); 

else (DrawTrellis(); DrawPath();} 


} 
/ / --- --------- ----- ---- ------- - - - ------------ ----- -------- ------- -----------­

/ / --- -------- - ---------- - --------- -- - - ------------ - ------ --- ---- ------- -----­
/ / Zoom in 
uoid ~astcall TFormi::Test1Click(TObject *Sender) 
( 

/ / Adjust spacing between nodes 

zi *= 2; 


zo *= 2; 


/ / Redisplay all 

DrawTrellis(); 

DrawPath(); 


if (CheckBox1->State == 1) ShowMetrics(); 
} 
/ / -- -------- --------- - ------------ ---------- - ----------- --------------------­

/ / --- ----- --------------------- -- -------- -- --------- --- --------- - -----------­
/ / Zoom out 
uoid ~astcall TForm1::ZoomOutlClick(TObject *Sender) 
{ 

if ((zo>1O)*(zi> 10)) 

{ 


zi / = 2; 

zo / = 2; 


} 


Draw Trellis(); 
DrawPath(); 

if (CheckBox1->State == 1) ShowMetrics(); 
} 
/ / -- ------ -- --------- ---- ----- ----- --- -------------------------------- ------­

/ / ------ ------ ----- -- --- -- ------- ---------- -- -------- --- -------- ---------- --­
/ / Copy current displayed trellis, path and metrics to the clipboard 
uoid ~astcall TForm1::Dowhat1Click(TObject *Sender) 
( 

Clipboard()- >Assign(Image1->Picture); 
} 
/ / --- -- ----- --- ------- -------------------- -- ------ ------- ----------------- --­
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