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Introduction to Trellis Complexity and Trellis 

Complexity Reduction 

6.1 Introduction 

In this Chapter, an introduction to the complexity of a block code trellis is given, and a 

method is examined which yields trellises with lower complexity. Ultimately, the goal 

is to reduce the trellis complexity by magnitudes in order to achieve a more efficient 

decoding process. 

The trellis complexity of a block code [7], [11], [18] is mainly determined by the number 

of states and branches in a trellis. The state complexity is usually measured by its state 

space dimension profile, and the branch complexity by the total number of branches 

present in the trellis diagram. In Chapter 2 it was shown that for every generator 

matrix G of a block code, there exists a trellis with a minimum number of states and 

branches, called a minimal trellis. It was however also shown, that there exist several 

equivalent codes, described by there relevant generator matrixes. These equivalent 

trellises derived from their respective generator matrixes, describe the same set of code 

words. For each equivalent code, there exists a number of trellis representations, only 

one of which is minimal. The aim is thus to find the equivalent code, or generator matrix 

permutation, that will deliver a minimal trellis with a fewer number of branches and/or 

states than any other minimal trellis for that code. 

6.2 State Complexity 

For a binary (N, 10 linear block code C, the state complexity [35] of an N-section bit-level 

code trellis is measured by its state space dimension profile. The state space dimension 

profile can be defined as follows 

(6.1) 
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where for 0 ~ i ~ N th following holds 

(6.2) 


The maximum value among the state space dimension of a particular code trellis can be 

defined as 

(6.3) 


At this point, it is necessary to give a mathematical formulation of the state space of a 

N-section trellis for the above mentioned code. A generator matrix G is assumed for the 

code. 

At time i, 0 ~ i ~ N, the rows of G are divided into three disjoint subsets: 

• Gt consists of those rows of G whose spans are contained in the interval [l,i] 

• G/ consists of those rows ofG whose spans are contained in the interval [i+ 1,N]. 

• G/ consists of those rows of G whose active spans contain i. 

Let A/, A( and At denote the subsets of information bits that correspond to the rows 

of Gt, G/ and G/ respectively . The information bits in At do not affect the encoder 

outputs after time i, and hence they become the past with respect to time i. The 

information bits in A( only affect the encoder outputs after time i. Since the active 

spans of the rows in G/ contain the time instant if'the information bits in At affect not 

only the past encoder outputs up to time i, but also the future encoder outputs beyond 

time i. It can be said that the information bits in At define a encoder state for the code 

C at time i. Each state is defined by a specific combination of the Pi information bits 

in At. The parameter Pi is the dimension of the state space LJC) . 

The dimension of the state space can be defined as [21)[22J 
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where 

(6.4) 

(6.5) 


denote the dimensions of the past and future sub-codes with respect to time i. 

Due to the fact that the parameters in Equation 6.5 are non-negative, it can be said 

that 

(6.6) 


It follows from the uniqueness of a state label that 

(6.7) 


Furthermore, it follows that 

(6.8) 


for 0 ~ i ~ N . 


Combining the above equations, results in the following bound: 


(6.9) 


From Equations 6.6 and 6.9 it follows that the upper bound on the maximum state 

complexity is given by: 

PmaJc) ~ min{K,N - K}. (6.10) 

This bound was first proved by J.K. Wolf [16]. In general, this bound is fairly loose. 

However, for cyclic codes, this bound gives the exact state complexity. For non-cyclic 

codes, tighter upper bounds have been obtained. 

If the Viterbi algorithm is applied to the N-section trellis of a code, then the maximum 
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number of survivors and path metrics to be stored are both 2PmaJC) . 

From this it follows that the state space dimension is a key measure of the trellis 

complexity and thus also the decoding complexity of a specific block code. It was also 

proven, although not repeated here, that a code C and its dual have the same state 

complexity[21] , [22]. 

6.3 Branch Complexity 

The branch complexity of an N-section trellis diagram for an (N, K) linear block code C 

is defined as the total number of branches in the trellis. This complexity determines the 

number of additions required in a trellis based decoding algorithm to decode a received 

sequence. 

The branch complexity can easily be calculated by summing all the branches leaving 

active states. 

6.4 Overall Complexity 

In order to design more efficient and faster decoding algorithms for trellis based systems, 

methods have to be developed to limit the branch and state complexity as described in 

Sections 6.3 and 6.4. 

It should be obvious that reducing state complexity is the most efficient complexity 

reduction process, since it implies that branches will also be reduced in the process. It 

thus serves a dual purpose. 

6.5 Generator Matrix Permutations 

In the previous paragraph, an introduction to trellis complexity was given. The most 

important parameter for the determination of trellis complexity is the state space 
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dimension Pmax (C). The lower this value, the lower the actual decoding complexity 

involved [21][22]. 

This section will show how a good choice of a generator matrix G can influence the 

eventual decoding complexity. The method that is considered is a non-systematic search 

through all n! permutations of generator matrixes, in order to find the equivalent code 

that delivers the smallest state space complexity. 

In order to specify that a given permutation of the code symbols wiil actually deliver a 

noticeable change in the state space complexity and hence reduce the decoding 

complexity, a number of codes have to be examined. 

As an example, a (7, 4)-Hamming code is considered. The code has the following 

generator matrix: 

G= 

0 

1 

1 

1 

0 

1 

0 

0 

1 

0 

1 

1 

1 

0 

0 

0 

1 

1 

0 

1 

0 

0 

0 

1 

0 

0 

1 

0 

(6.11) 

This generator matrix has the following state space profile: 

P(C) = (0, 1, 2, 3, 2, 2, 1, 0) (6.12) 

The trellis for this code has the following number of nodes: 

N 

Nr, = LqP;(C) = 1+2+4+8+4+4+2+ 1= 26 
i=O 

(6.13) 

The maximum state space for the code is: 

(6.14) 


In order to test the postulate that equivalent codes might lead to reduced state space 

complexity, the first and the last column of the generator matrix is swapped. This then 
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delivers a new generator matrix G', which In turn yield an equivalent code with 

generator matrix: 

0 0 1 1 1 0 0 

G'= 
0 

1 

1 

0 

0 

1 

0 

0 

1 

0 

0 

0 

1 

1 
(6.15) 

0 0 1 0 1 1 1 

The state space is then found to be 

p(C') = (0, 1, 2, 3, 3, 2, 1, 0) (6.16) 

The trellis for this code has the following number of nodes: 

N 

N' L= I qP;(C) = 1+ 2+ 4+ 8+ 8+ 4+ 2+ 1= 30 
i=O 

(6.17) 

The maximum state space for the code is 

(6.18) 


As can be seen from Equation 6.18 and Equation 6.14 that the maximum state space 

dimension has remained unchanged. Notice however that the number of nodes present 

in the trellises has changed. The first code has 26 nodes in its trellis diagram, and the 

second equivalent code has 30. It is apparent that the first code will therefore be 

considerably simpler to decode. 

Therefore, at this point it has to be said that the state space dimension is a very 

important factor in the complexity of the trellis, but that other factors such as number 

of nodes also have an effect. 

In order to find out if any equivalent code to the generator matrix of Equation 6.11 

yields a smaller state space dimension, all the permutations of the generator matrix 

have to be considered. 

There are in total n! =7! =5040 permutations ofthe generator matrix in Equation 6.11 

to consider. When this is done, the following results are obtained. 
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• 	 There exist 2016 generator matrixes that have 26 nodes and a state space 

dimension of 3. 

• 	 There exist 3024 generator matrixes that have 30 nodes and a state space 

dimension of 3. 

It is thus not possible to find a equivalent code by permutations of the generator matrix 

that has a trellis with less than 26 nodes, and a state space dimension ofless than 3 for 

the (7,4)-Hamming code. 

Next consider the (5, 3)-Code that Wolf has extensively examined in [16]. The parity 

check matrix of this code is given as: 

1 0 1 
(6.19)

010 ~l 
For this code, the state space is given as: 

p(c) = (0, 1, 2, 2, 1, 0) 	 (6.20) 

From this it follows that the maximum state space dimension is: 

Pma)C) = 2 	 (6.21) 

The number of nodes in the trellis can be computed as 

N L = 	L
N 

q Pi (C) = 1+ 2 + 4 + 4 + 2 + 1= 14 (6.22) 
i=O 

If all the n! = 5! = 120 permutations are again considered, the following results are 

obtained: 

• 	 There exist 8 generator matrixes that have 10 nodes and a state space dimension 

of 1. 

• 	 There exist 32 generator matrixes that have 12 nodes and a state space 

dimension of 2. 

• 	 There exist 80 generator matrixes that have 14 nodes and a state space 

dimension of 2. 
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This implies that there is a generator matrix that delivers an equivalent code, with a 

state space dimension of 1 and just 10 nodes in the trellis diagram. The amount of 

decoding time and effort saved if this alternate trellis is used is significant. 

Both the reduced trellis and the original trellis are shown below. 
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As can be seen from the figures above, the first trellis apparently has a much higher 

complexity than the second one. The decoder operating on the second trellis would be 

considerably less complex than the decoder of the first trellis. 

1 1 o 
(6.23)o 1 ~) 

The Parity Check Matrix of the second trellis is 

From the above proof it can be said that there exist equivalent codes, obtainable through 

permutations of generator matrixes, which yield lower trellis complexity than all other 

equivalent codes. 

The best way to find these optimum generator matrixes is the brute force permutation 

approach. This method evaluates all possible permutations of the generator matrix 

under investigation, and selects the best one. 

This approach is however in most cases not a very viable approach. Many codes have 

a fairly large value for n. Assuming n to be only 64, which is in fact still small, a total 

of n! = 64 = 1.267E89 permutations have to be considered. For a Reed-Solomon code of 

n = 512 the value becomes unwieldy high. 

There is no doubt that a reduction in trellis complexity is an essential contribution for 

soft-decision maximum likelihood decoding of block codes. In the example above, the 

decoding time may be shortened considerably, by employing minimum state trellis 

structures with fewer nodes and correspondingly fewer branches. 

The following simulation results are needed to prove that the performance of a specific 

code does not decrease if a reduced trellis is used for the decoding. It would be of no use 

if a trellis could be simplified, but at the cost of performance. The chapter uses a (5,3)­

Code as described in Chapter 9. 

6.6 Decoding in the Trellis Diagrams 

The following simulation results are presented in order to show that the performance of 

a specific code does not decrease if a reduced trellis is used for the decoding. It would 
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be of no use if a trellis could be simplified, but at the cost of performance. 

The code under investigation is the (5,3) -code [16]. This code was used in the previous 

section to derive and construct a reduced trellis. The parity check matrix of the original 

code is given by: 

1 o 1 
H = (6.24) 

I 
[1

1 o 1 0 

This can then be transformed into the generator matrix of this code. See Appendix B 

for a detailed description of this process. The generator matrix is given by: 

o o 1 

1 o 1 (6.25) 

o 1 o ~l 
Using the process described in the previous chapter, a simplified trellis can be found by 

using the following parity check matrix: 

1 1 o 
(6.26) 

o 1 1 ~: 
Again, this parity check matrix has to be transformed into a generator matrix in order 

to obtain the codewords needed for decoding. The process of obtaining the generator 

matrix is a bit more involved, since the code is no longer systematic and any attempt to 

transform it into a systematic code, will destroy the inherent properties of the code, 

nullifying the ability of the matrix to produce a reduced trellis. 

The following property of matrices is used to find the generator matrix. 

(6.27) 

The above equation delivers 3 equations with I5 unknowns. But due to the nature of the 

Centre for Radio and Digital Communication (CRDC) 

Department of Electrical and Electronic Engineering 

University of Pretoria 109 



Chapter 6 Introduction to Trellis Complexity and Trellis Complexity Reduction 

equations, all unknowns that cannot be determined can be chosen randomly. 

o 1 o 
(6.28)o 1 1 

1 0 1 

These two parity check matrices will produce the trellises given on the next page. The 

diagrams were found using simulation software written in C++. The code is partially 

reproduced in Appendix G, but a full version can be obtained from the authors. 

Pmb.for code b~ error 	 j4.326201644522271 L._ :!"i~n~!"!t"..:~ .. 11 Eb/No (dB) 	 Step through Eb/No I 
jOl0000000149011 6 

Decoder type 	 jl 01 01 Eb/No (dB) Min Code ....ords per run
Transmitted r. Herd 

I 	 j-l0 jl0000 
Expurgate Trellis 	 r Soft j00111Received 

EblNo (dB) Me>: 	 Step size (dB) 
Unexpurgate Trellis r Show Metrics 	 j00101 jl0 jlVrterbi output 

• 

Figure 42 	 (5,3) Code Trellis for Parity Check matrix HI Produced by Trellis 

Simulation Software 

As can be seen from the above figure , SDML-decoding and HD-decoding can be obtained 

with the software, as well as expurgation. The transmitted and received vectors are 

displayed together with the output of the Viterbi decoder and the channel EM/No. 
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6.7 Bit Error Rate Calculations 

The two trellises in the preceding paragraph were used in the simulation software to 

find the BER graphs for both the reduced and normal trellises . 

The following configuration files have to be set up for the simulator in order to calculate 

the BER. 

T~e first configuration file for the original trellis is called "Original (5,3) Code. bee" and 

contains the parameters and matrix in order for the simulator to compute the trellis and 

its accompanying weights. 

Message_length_(k): 

3 

Code_length_( n): 

5 

Galois_field_prime_ value: 

2 

Generator_matrix: 

10011 

0101 0 


00101 


Table 9 Original (5,3) Code. bee File 

The second configuration file for the original trellis is called "Original (5,3) Code 

Trellis.btf' and is created by the simulator, but it can also be entered if the above data 

is not known. 

Number_of_states_in_the_trellis: 

Depth_oLthe_trellis: 
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6 

Active_nodes in the_trellis 

1 1 1 1 1 1 

0 0 1 1 1 0 

0 0 1 1 0 0 

0 1 1 1 0 0 

BranchO _destinations: 

0 0 0 0 0 -1 

-1 -1 1 1 -1 -1 

-1 -1 2 -1 -1 -1 

-1 3 3 -1 -1 -1 

Branch1_destinations: 

3 2 1 -1 -1 -1 

-1 -1 0 -1 0 -1 

-1 -1 3 0 -1 -1 

-1 1 2 1 -1 -1 

BranchO_weights: 

-1 -1 -1 -1 -1 -1 

-1 -1 -1 -1 -1 -1 

-1 -1 -1 -1 -1 -1 

-1 -1 -1 -1 -1 -1 

Branch Lweights: 

1 1 1 -1 -1 -1 

-1 -1 1 -1 1 -1 

-1 -1 1 1 -1 -1 

-1 1 1 1 -1 -1 

Table 10 Original (5,3) Code Trellis. btf File 

The first configuration file for the reduced trellis is called "Reduced (5,3) Code. bee" and 

contains the parameters and matrix in order for the simulator to compute the trellis and 
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its accompanying weights . 

Message_lengthJk): 

3 

Code_lengthJn): 

5 

GaloisJieldyrime_value: 

2 

Generator_matrix: 


10101 


10110 


1101 1 


Table 11 Reduced (5,3) Code.bcc File 

The second configuration file for the original trellis is called "Reduced (5,3) Code 

Trellis.btf' and is created by the simulator, but it can also be entered ifthe above data 

is not known. 

Number_oLstates_in_the_trellis: 

4 

Depth_oLthe_trellis: 

6 

Active_nodes_in_the_trellis 

1 1 1 1 1 1 

o 0 0 1 1 0 

o 1 1 000 


00000 0 


BranchO_destinations: 

o 0 0 0 0 -1 
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-1 -1 -1 1 -1 -1 

-1 2 -1 -1 -1 -1 

-1 -1 -1 -1 -1 -1 

Branch1_destinations: 

2 2 -1 1 -1 -1 

-1 -1 -1 0 0 -1 

-1 0 1 -1 -1 -1 

-1 -1 -1 -1 -1 -1 

BranchO_weights: 

-1 -1 -1 -1 -1 -1 

-1 -1 -1 -1 -1 -1 

-1 -1 -1 -1 -1 -1 

-1 -1 -1 -1 -1 -1 

Branch 1_weig hts: 

1 1 -1 1 -1 -1 

-1 -1 -1 1 1 -1 

-1 1 1 -1 -1 -1 

-1 -1 -1 -1 -1 -1 

Table 12 Reduced (5 ,3) Code Trellis. btf File 

For a complete description of the files the reader is referred to the help file included with 

the software. The above files are just given so that the reader can reproduce the results 

obtained with ease. 

The simulator is set up to use a A WGN channel, and the channel energy to noise ratio 

Ebi/No is varied from -10 dB to 13 dB. Simulations were run until a hundred errors were 

found for each increment of Ebi/No. 

The results that were obtained were stored in a file for each case. The files were 

computed in order to obtain the desired BER. For the purpose of comparison, the Block 

Error, also known as Word Error Rate, is displayed in the graphs. By doing so, the 

statistical dependance is removed (as explained in Chapter 4) and a pure comparison 
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can be made. 


The numerical results are also repeated below for both cases. 


-10.000000 0.769231 

-9.000000 0.625000 

-8.000000 0.769231 

-7.000000 0.588235 

-6.000000 0.588235 

-5.000000 0.454545 

-4.000000 0.555556 

-3.000000 0.384615 

-2.000000 0.303030 

-1.000000 0.303030 

0.000000 0.294118 

1.000000 0.270270 

2.000000 0.147059 

3.000000 0.119048 

4.000000 0.068966 

5.000000 0.078740 

6.000000 0.046512 

7.000000 0.018553 

8.000000 0.019455 

9.000000 0.005388 

10.000000 0.010834 

11.000000 0.001283 

12.000000 0.000764 

13.000000 0.000126 

Table 13 Original Results.res File 

-10.000000 0.757576 

-9.000000 0.699301 

-8.000000 0.588235 

-7 .000000 0.591716 

-6.000000 0.540541 
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-5.000000 0.469484 


-4.000000 0.450450 


-3.000000 0.369004 


-2.000000 0.352113 


-1.000000 0.298507 


0.000000 0.247525 


1.000000 0.223714 


2.000000 0.151976 


3.000000 0.140056 


4.000000 0.105708 


5.000000 0.065876 


6.000000 0.050429 


7.000000 0.027541 


8.000000 0.017794 


9.000000 0.009327 


10.000000 0.004335 


11.000000 0.001692 


12.000000 0.000590 


13.000000 0.000160 


Table 14 Reduced Results.res File 

On the next page the results for the original and reduced trellis performance are 

superimposed on one graph. 

From the figure below, it can be seen that the error performance of the two trellises are 

practically identical, thus verifying the statements made and results achieved in the 

previous paragraphs. The assumption made here is that if there is no performance 

degradation for a small code, then there will be no performance degradation for larger 

codes. 
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Pblock 

100 

10-1 

10-2 

10-3 

[dB] 

-10 -9 	 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 J J 12 13 EbilNo 

Figure 44 Comparison of Reduced and Original Block Error Rates 

6.8 	 Algorithms for the Determining Minimal Trellis 

Diagram Representations 

In Section 6.5 an algorithm which used a brute force search in order to find the 

minimal trellis representation from the permutations of the generator matrix was 

presented. This algorithm is of course ideal when small codes are considered, since it 

will most certainly find the minimum trellis representation. However, as soon as large 
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codes, or even just medium length codes are considered, the algorithm becomes 

intractable. This stems from the fact that n! permutations have to be considered in order 

to find the permutation of the generator matrix which will lead to a minimal trellis 

construction. This creates the need for better algorithms, some of which will be 

discussed here. 

6.8.1 Terminated Brute Force Search Algorithm 

As mentioned above, the brute force search algorithm becomes unviable for large codes. 

An obvious alternative would be to consider as many permutations of the generator 

matrix as possible. This search could be limited by a certain amount of permutations, 

time or processing power of the platform used. This however boils down to luck and is 

not a very good approach. 

However, the initial idea of a terminated brute force search does however hold merit. 

All which needs to be done is to determine good end of search criteria. A good option for 

doing this presents itself in the form of bounds of the state space profile. As described 

in Section 6,5, a generator matrix which would deliver a minimal trellis representation 

can be identified from the state space profile and the amount of nodes the trellis would 

produce. It is thus necessary to establish a bound to the state space profile. This would 

allow the brute force search to continue until the bound is reached or approached to a 

certain extent. 

Consider a linear block code (n,k) C with code symbols from the symbol alphabet GF(q). 

1= {O, 1,2, ... ,n - I} is the set of the indexes i of the code symbols Ci . From this J can be 

defined as being a subset of I such that J ~ I with J 5 1. 

A partial code is defined as a code having undergone a sub-dividing operation. This 

operation TJ involves setting all code symbols Ci to 0 whose indexes are not contained in 

J but only in 1. 
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(6.29) 


The partial code TjG) i found by applying the operation above on every code word. 

(6.30) 

Furthermore, a sub-code CJ is defined as the subset of code words c of C whose 

components at the indexes (1 - J) are equal to zero. 

(6.81) 


An example will be given here to illustrate the principles discussed above. Consider 

again the (7,4)-Hamming code with generator matrix: 

o o 1 1 1 o o 
1 1 o o 1 o o 

G= 
1 o 1 o o o 1 

(6.32) 

1 o 1 o 1 1 o 

This generator matrix yields the following 16 code words presented in tabular format 

below: 

(0 0 0 0) 

(0 0 0 1) 

(00 1 0) 

(0 0 1 1) 

(0 100) 

(0 1 0 1) 

(0 1 1 0) 

(0 1 1 1) 

Table 15 

c 

(0 0 0 0 0 0 0) 

(1 0 1 0 1 10) 

(1 0 1000 1) 

(0 0 0 0 1 1 1) 

(1 1 0 0 1 0 0) 

(0 1 100 1 0) 

(0 1 1 0 1 0 1) 

(1 1 0 0 0 1 1) 

(1 0 0 0) 

(1 0 0 1) 

(1 0 10) 

(1 0 1 1) 

(1 1 0 0) 

(1 1 0 1) 

(1 1 1 0) 

(11 1 1) 

Code Words of the (7,4)-Hamming Code in GF(2) 

c 

(00 1 1 100) 

(100 1 0 1 0) 

(100 1 1 0 1) 

(00 1 1 0 11) 

(1 1 1 1 0 0 0) 

(0 1 0 1 1 1 0) 

(0 1 0 100 1) 

(1 1 1 1 1 1 1) 
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As an example, choose J = {I, 3, 6}. If the sub-division operation is performed on the 

code, then the partial code is found to be the following set of code words. 

(0 0 0 0 0 0 0) 

(0 0 0 0 0 0 1) 

(0 1 0 0 0 0 0) 

(0 1 0000 1) 

(0 0 0 1 0 0 0) 

(000 100 1) 

(0 1 0 1 000) 

(0 10 100 1) 

Table 16 Partial Code Words TJ(C) with J ={I, 3, 6} 

When the selection criteria for the sub-codes are applied, the following result is obtained. 

(0 0 0 0 0 0 0) 

(0 10 100 1) 

Table 17 Sub-Codes CJ with J = {I, 3, 6} 

Given the above definitions, it is now possible to define the dimensional distribution: 

K(C) = {ki (C) with 0:; i:; n} (6.33) 

where 

(6.34) 

From the principles of duality between TiC) and CJ, it follows that the mverse 

dimensional distribution can be given as : 
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R(c) = {!S(C) with 0 s; is; n} (6.35) 

where 

is (C) = min{k(T;(C)) with iJi = i} for os; is; n (6.36) 
J 

The information above can now be used to formulate a terminated brute force search 

algorithm. To start off, a (15,7)-BCH code is chosen as an example. The generator 

matrix of the code is: 

1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 

0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 

0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 

G= 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 (6.37) 

0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 

0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 

0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 

Just as in Section 6.5 , permutations of the generator matrix are examined in order to 

find the trellis diagram with the least amount of nodes, and the lowest state space 

profile . As no criteria are known at this stage for the termination of the algorithm, a run 

lasting eight days (Pentium III processor) was performed. In this time, a total of 232 

permutations of the generator matrix were considered, but this only constitutes about 

0.08% of the total n! = 15! = 1307674368000 possibilities. The results obtained are 

presented in tabular form below. 
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N~ Pmax(C) = 5 Pmax(C) = 6 Pmax(C) = 7 

206 3600 - -

214 86712 - -

222 320904 - -

230 476976 - -

238 2989824 21600 -

246 - 295728 -

254 6473592 818472 -

262 - 1870896 -

270 - 9492504 -

278 - 496320 -

286 - 24652824 -

294 - 4688640 -

302 - 22750126 -

318 - 63860208 -

326 - 6441624 -

334 - 34550356 -

350 - 132288532 -

382 - 165657036 -

390 - 7416529 

398 - 34507084 

414 - 90973995 

446 - 217439332 

510 - - 245168364 

Table 18 Results for N~ and Pmax(C) for (15,7)-BCH code after 232 permutations 
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Using the definition of the Forney bound on the state space profile, the following result 

is obtained: 

pmaJ C) ~ {O 1 2 3 3 3 4 4 4 4 3 3 3 2 1 O} ~ 4 (6.41) 

Also from Forney [30] [31] a lower bound for the number of nodes in the trellis diagram 

can be calculated from: 

N[ ~ I
n 

qk,(C)-kj(C) = 1+ 2+ 4+ 8+ 8+ 16+ 16+ 16+ 16+ 8+ 8+ 8+ 4+ 2+ l~ 126(6.42) 
;=0 

From the above two bounds and the results calculated, it is possible to specify that the 

minimum values for Nr, and pee) lie in the region of: 

4 ~ p( C) ~ 5 (6.43) 

and 

(6.44) 


From the above analysis it can be said that the double lower bound criteria for the 

termination of the brute force search provides good approximated results for the minimal 

trellis representation. In the example above, the state space profile was approximated 

as being 5, although, with all probability, it is in fact 4. The number of nodes which the 

minimal trellis would contain was approximated as being 206, although there are most 

probably only 126 nodes present in the minimal trellis diagram . As mentioned earlier, 

a full brute search would take 100 days to complete. With the test run which was done, 

it took 8 days to accumulate enough data to use for an analysis. However, with the two 

bounds which can now be used to terminate the brute force search, it is quite possible, 

that a good approximation can be found within a few hours. 
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6.8.2 Systematic Search Algorithm 

The following search algorithm will attempt to arrange the generator matrix in such a 

way, so that the probability that this specific permutation of the generator matrix will 

produce a minimal trellis diagram, is increased. The whole algorithm is based on a 

statement by Forney [30]: 

"In order to minimise the state space complexity, the dimension buildup has to increase 

as fast as possible." 

The dimension buildup is given below: 

(6.45) 

with 

J = {O,l, ... ,i - I} (6.46) 

and 

(6.47) 


In order for the dimension buildup to increase rapidly, it is necessary for the rank of the 

sub-matrices Gr.J to decrease as fast as possible. If this is not possible, then the increase 

of the rank should be kept as small as possible. 

The most elegant way to accomplish this, is to arrange the columns of the generator 

matrix from right to left such that the sub-matrixes GI-J with I - J = {i, i + 1, ... ,n} for 

i = n, n - 1, ... , 1, 0 do not increase in rank with each added column. 

The algorithm can be formalised as follows: 

9. Choose a random column of the generator matrix as being glt" 

10. Set the counter i = n - 1 
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• Search through the remaining columns gj in order to find the next gi so 

that: 

(6.48) 

• If at least one such a column exists, use it as gj for the new generator 

matrix C. 

• Decrease i by one. 

• Repeat as long as Rank(gi,gi+l'gi+2, ... ,gn-pgn) < k . 

3. Use the remaining columns of the generator matrix as g"g2,gi-1 and giofC. 

The results obtained for 4 different (11, 7)-Hamming code are given below. A comparison 

is made between the complete brute force search, and the systematic search algorithm. 

The lower bound is also given in the table. 

Code Given G Matrix Lower Bound Syst. Search Brute Force 

(11, 7)-Hamming A p=4 

N l:=94 

p=3 

Nl:=38 

p=4 

N l:=84 

p=3 

N l:=38 

(11,7)-Hamming B p=4 

Nr;=94 

p=2 

N r; =28 

p=4 

N r; =94 

p=2 

Nl:=28 

(11,7)-Hamming C p=4 

N r; =94 

p=3 

Nl:=54 

p=4 

N r;=74 

p=3 

N r;=54 

Table 19 Comparison of Results for Nl: and p(C) for (11,7)-Hamming codes. 

As can be seen from the results above, the systematic search does not deliver wonderful 

results, but it can be seen that a reduction in the trellis complexity does occur, requiring 

only a minimal amount of computations. Another test was done with three (15,5)-BCH 
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codes. In this test run, the brute force search was terminated according to the criteria 

presented in the previous section. 

Code Given G Matrix Lower Bound Syst. Search Term. B. F. 

(15,5)-BCH A p=5 

N~=254 

p=4 

N~=126 

p=4 

N~=134 

p=4 

N1;=134 

(15,5)-BCH B p=7 

N 1;=510 

p=4 

N~=126 

p=6 

N~=254 

p=5 

N~=206 

(15,5)-BCH C p=4 

N~=158 

p=3 

N~=86 

p=4 

N~=138 

p=4 

N~=110 

Table 20 Comparison of Results for N~ and Prna)C) for (l5,5)-BCH codes. 

From the above table of results, it can be seen, that when it is impossible to perform a 

complete brute force search, the systematic search algorithm compares very favorably 

with the terminated brute force search. In its favor as well is the fact the systematic 

algorithm required three minutes to find a solution, whereas the terminated brute force 

search was running for 9 hours . 

It will now be attempted to optimise the systematic search algorithm. 

6.B.3 	Optimised Systematic Search Algorithm 

After analysing the systematic search algorithm, two apparent problems were seen, 

which limited the effectiveness of the search algorithm. 

• 	 With each arrangement of the columns in order to limit the rank of the sub­

matrices, the column which increases the rank the least should be chosen. Most 

of the time, especially for large codes, a choice has to be made between two or 

more columns. It is possible that a wrong choice at this point could place a 
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drastic limit on the performance of the algorithm. 

• 	 This is especially true for the initial choice of the starting column. This is done 

arbitrarily, since at this point the rank of all the columns are 1. 

A solution to this would be to consider all permutations again. This would mean that 

each one of the 15 columns should be chosen as a starting column for the new matrix. 

The same procedure as in the previous section is applied, but when a choice has to be 

made between 2 columns which would not increase the rank of the sub-matrix much, it 

is not made randomly. All of the columns which would provide such a solution are 

considered. Of course, the further on the algorithm is, the more permutations there are 

to consider. If the codes are too large, this algorithm can be applied together with the 

lower bounds on the state space profile and number of nodes in the minimal trellis. The 

following results were obtained for the three (11,7)-Hamming codes and three (15,5)­

BCH codes. 

Code Given G Matrix Lower Bound Syst. Search Brute Force 

(11 ,7)-Hamming A p=4 

Nr.=94 

p=3 

Nr.=38 

p=3 

Nr.=38 

p=3 

Nr.=38 

(11,7)-Hamming B p=4 

Nr.=94 

p=2 

Nr.=28 

p=2 

Nr.=28 

p=2 

Nr.=28 

(11,7)-Hamming C p=4 

Nr.=94 

p=3 

Nr.=54 

p=3 

Nr.=58 

p=3 

Nr.=54 

Table 21 Comparison of Results for Nr. and p(C) for (11, 7)-Hamming codes obtained 

with the Optimised Search Algorithm 
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Code Given G Matrix Lower Bound Syst. Search Term. B. F. 

(15,5)-BCH A p=5 

Nz;=254 

p=4 

Nz;=126 

p=4 

Nz;=134 

p=4 

Nz;=134 

(15 ,5)-BCH B p=7 

N z;=510 

p=4 

N z; =126 

p=6 

Nz;=218 

p=5 

Nz;=206 

(15,5)-BCH C p=4 

Nz;=158 

p=3 

Nz;=86 

p=4 

Nz;=114 

p=4 

N z;=110 

Table 22 	 Comparison of Results for Nz; and p(C) for (15,5)-BCH codes obtained with 

the Optimised Search Algorithm 

As can be seen from the above results, the optimised systematic search approaches the 

terminated brute force search and the lower bounds. It however requires far fewer 

computations in order to find a solution. 

The optimised systematic search provides an elegant algorithm in order to find a 

minimal trellis approximation with the minimum amount of computations required. 
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Chapter 7 

Conclusion 

7.1 Conclusion 

The main objective of Ll1i<; ui<;<;el'LaLion was to show that it is indeed possible to utilIze 

decoding techniques traditionally reserved for convolutional code decoding for the 

decoding of block codes. This main goal was extended even further when it was 

attempted to decode one of the most powerful families of block codes, namely the Reed­

Solomon codes, with the Viterbi algorithm. This opens the way for endless possibilities 

employing block codes and convolutional codes combined together into one encoding 

scheme. 

Apart from this main objective, various techniques for trellis construction were gathered, 

developed and evaluated. This should prove helpful in further research projects to follow 

on this dissertation. Again, the basic idea of trellis construction was extended to include 

non-binary Reed-Solomon codes. A novel technique was found which utilizes the 

topological structure of the Reed-Solomon codes in order to simplify and streamline the 

trellis construction procedure. This ensures that trellis construction does not have to be 

hard-coded in a hardware implementation. A re-programmable Reed-Solomon trellis 

construction integrated circuit can be developed, which can then be used in conjunction 

with the standard Viterbi algorithm . 

Early on during the research it became clear that trellis size remains a stumble block 

of trellis decoders for block codes. A method needed to be devised in order to reduce the 

trellis complexity. A technique was found which reduces trellis complexity significantly, 

namely the manipulation of the generator matrix. It facilitates the Viterbi decoding of 

large block codes by reducing trellis complexity. 
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All the research was backed up with mathematical and simulation results. This proves 

that maximum likelihood decoding employing techniques such as Viterbi, SOYA and 

MAP are a viable means of decoding block codes of considerable size . 

A large library of simulation software was written, which allowed for various 

simulations to be run. Amongst others, a Viterbi decoder and a trellis construction tool 

was written. All these software modules were kept generic, so that they could be applied 

to both binary and non-binary codes. 

Another direct contribution made via this dissertation is the novel topological trellis 

construction technique for Reed-Solomon codes. Additionally, it was shown that Viterbi 

decoding is viable for block codes, even for the most complex of codes, such as the non­

binary Reed-Solomon code family. Simulation software was produced which can be used 

in the development of numerous novel coding techniques employing both block coders 

and convolutional decoders. This was possible before, but now it is possible to have just 

one standard maximum likelihood decoder. There are also possibilities for combining 

the trellises of both block and convolutional codes, creating even more opportunities for 

successful hybrid systems. 

Design and development of suitable hardware solutions for the trellis decoding 

techniques in this dissertation is left as a possible future research project. 

It can be said, that the "Holy Grail" of soft decision block code decoding has as yet not 

been found, but this work should in itself be a contribution to the quest and serve as a 

valuable platform for further research. 
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