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Performance Issues of Various Block Codes 

4.1 Introduction 

In the previous chapter, the syndrome method of constructing the trellis diagram of a 

block code was presented, as well as techniques to decode block codes by means of these 

trellis diagrams. This chapter will concentrate on performance issues relevant to this 

decoding method. Several different block codes are investigated, and their simulation 

results given. All the simulation software was developed from scratch, and was used to 

achieve the given simulation results. 

4.2 Simulation Results 

The following simulations results were obtained for both soft-decision and hard-decision 

block decoding. The generator matrixes that were used for the simulations are given in 

Appendix C. A simulation was done with a (7,4)-Hamming code for both soft decision 

and hard decision decoding in an AWGN channel. The simulation setup is the same as 

described in Figure 4 of Chapter 2 and consists of a transmitter transmitting over an 

AWGN channel. The achieved results for the (7,4)-Hamming code are compared to both 

the theoretical curves and the error curves obtained for the traditional analytical 

decoding methods. The results prove that the same (maximum likelihood) performance 

is obtained with the Viterbi algorithm than with conventional algebraic methods. This 

holds for both soft decisions as well as hard decisions. As all the curves, including the 

bounds, cluster closely together, this representation (i .e. all curves on one graph) is not 

used in subsequent simulation results in this dissertation. It is clear form the results 

in the example (Figure 16) that the results fall well within the limits defined by the 

BER bounds for the decoding methods under discussion. The following equation was 

used in determining the upper bound for the decoding. 

(4.1) 
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The following two graphs provide the results achieved for the (7,4)-Hamming code. 
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Figure 16 	 BER Comparison of Various Hard Decision Viterbi Decoding Methods 

of the (7,4) Hamming Block Code 

Centre for Radio and Digital Communication (CRDC) 

Department of Electrical and Electronic Engineering 

University of Pretoria 45 



Chapter 4 Performance Issues of Various Block Codes 

1E+00 

~ 

0 1 E-01 
~ 

~ 


Q) 


"0 


0 
~ 

~ 1E-02 
Q) 

"0 

0 
<.) 

co-1E-03 l0 

..0 
0 
~ 

a.. 
1E-04 

\ 

5 	 10 

--e-- Algebraic soft decision-a-- Viterbi Soft decision 

---rr- Channel 

Figure 17 	 BER Comparison of Various Soft Decision Viterbi Decoding Methods of 

the (7,4) Hamming Block Code 

On the following BER graphs curves for various families of codes are depicted. For the 

reasons explained above, the error rate curves will not be compared to the algebraic 

methods, since these curves lie on top of each other. In the figures, a graph termed 

Bipolar Reference is however included. This curve represents the BER performance of 

the uncoded case under identical channel conditions. 
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4.2.1 Bit Error Rate Performance of the(7,4)-Hamming-Code with Viterbi 

Trellis Decoding 
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Figure 18 Bit Error Rates ofthe (7,4)-Hamming-Code in an AWGN Channel 

Figure 18 presents the BER performance of a (7,4)-Hamming-Code. As can be seen 

from the figure, SDML-decoding becomes viable for channels having and Eb)No ratio of 

4 dB and higher. Below this cross over value (3.5 dB in this case), SDML-decoding fairs 

no better than the normal uncoded transmission. The HD-decoding only crosses the 

uncoded graph at 9.2 dB . It is also only marginally better than the uncoded curve for 

EbjNolarger than 9.2 dB. At Pbit = 10.5 the difference between SDML and HD-decoding 

is 1.4 dB. This corresponds with the calculated [10] value for the (7,4)-Code. 
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4.2.2 Block Error Rate Performance of the {7,4)-Hamming-Code with 

Viterbi Trellis Decoding 
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Figure 19 Block Error Rate of the (7,4)-Hamming-Code in an AWGN Channel 

In Figure 19 above, the block error probability ofthe (7,4)-Hamming-Code is given. The 

difference between the BER and the block error rate is as follows: Whereas several bit 

errors may only result in one block error, the BER counts all bit errors. The latter are 

statistically dependant on a few parameters such as the burst error statistics of the 

given channel. For instance, a codeword of length 7 bits is decoded incorrectly. This 

constitutes only one block error, but any number of bits (1 to 7) may be incorrect. 
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4.2.3 Bit Error Rate Performance of the (16,11)-Reed-Muller-Code with 

Viterbi Trellis Decoding 
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Figure 20 Bit Error Rate of the (16, ll)-Reed-Muller-Code in an AWGN Channel 

The above curve is very similar to the curve for the (7,4)-Hamming-Code depicted in 

Figure 18. The difference between the two codes is as follows: To achieve a bit error 

rate of 10.6 with the Reed-Muller-Code, an Eb;/No ratio of only 10.3 dB is required, 

whereas the Hamming-Code requires an Ebit/No ratio of 11.7 dB. The Reed-Muller code 

has a 1.4 dB coding advantage on the (7,4)-Hamming code in this particular example. 
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4.2.4 Bit Error Rate Performance of the (31,21)-BCH-Code with Viterbi 

Trellis Decoding 
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Figure 21 Bit Error Rate of the (31,21)-BCH-Code in an AWGN Channel 

The above figure displays the Bit Error Rate of a (31,21)-BCH-Code. It can be seen that 

this code renders good performance at high values of Ebi/No. A Bit Error Rate of 10.5 is 

achieved at only 9 dB. In Figure 22 another BCH-code is displayed, and in Figure 23, 

a comparison between both the BCH-codes and the (7,4)-Hamming-Code is made. 
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4.2.5 Bit Error Rate Performance of the (15,7)-BCH-Code with Viterbi 

Trellis Decoding 
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Figure 22 Bit Error Rate of the (15,7)-BCH-Code in an AWGN Channel 

In Figure 22, the Bit Error Rate of a (15,7)-BCH-Code is displayed. Again, it can be 

seen that the code provides a relatively good per formance at high values of Ebi/No. To 

gain some insight into the relative performance of the block codes considered, the 

previous two figures are superimposed on the (7,4)-Hamming-Code. The result is shown 

in Figure 23. 
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4.2.6 Performance Comparison of 8CH-Codes with (7,4)-Hamming-Code 

with Viterbi Trellis Decoding 
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Comparison of BCH-Codes with (7,4)-Hamming-Code in an AWGN 

Channel 

From Figure 23, it can be seen that all of the codes perform worse than the uncoded 

bipolar reference system at low values of Eb)No' The cross over point, where the codes 

begin to perform according to their theoretical specification, is at about 5.5 dB. From 

this point onward, the larger codes progressively yield better performance as the block 

length increases. It should be noted that a number of the factors have to be considered 

when deciding on a code for a particular channel. 
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4.2.7 Bit Error Rate Performance of the (16,S)-Reed-Muller-Code R(1,4) 

with Viterbi Trellis Decoding 
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Figure 24 Bit Error Rate of the (16,5)-Reed-Muller-Code R( l,4) in an AWGN 

Channel 
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4.2.8 Bit Error Rate Performance of the (16,11)-Reed-Muller-Code R(2,4) with 

Viterbi Trellis Decoding 
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Figure 25 Bit Error Rate of the (16, ll)-Reed-Muller-Code R(2,4) in an AWGN 

Channel 

Centre for R a dio and Digital Communication (CRDC) 

Depar tme nt of Electrical and Elec tronic Engineering 

Univers ity of Pretor ia 54 



10-4 

Chapter 4 Performance Issues of Various Block Codes 

4.2.9 Bit Error Rate Performance of the (32,16)-Reed-Muller-Code R(2,S) with 

Viterbi Trellis Decoding 
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Figure 26 Bit Error Rate of the (32, 16)-Reed-Muller-Code R(2,5) in an AWGN 

Channel 
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4.2.10 Bit Error Rate Performance of the (32,26)-Reed-Muller-Code R(3,S) with 

Viterbi Trellis Decoding 

to-1 

to-2 

10-3 

Bipolar 

-- -
, 

..... 
"-

"-
"-

SDML 

.... ... 
" " " '\ 

'\ 
'\ , 

... 
...10-4 

\ 
\ 

\. 

\ 
\ 

\ 

10-6 +---t---t---f--+--I-~--+--+--+--t-------+-~ ..--+-----fIIo- [dB] 
o 2 3 4 5 6 7 8 9 10 1 1 12 

Figure 27 Rate of the R(3,5) in an AWGN 
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4.2.11 Bit Error Rate Performance of the (32,31)-Reed-Muller-Code R( 4(5) with 

Viterbi Trellis Decoding 
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Figure 28 	 Bit Error Rate of the (32,31)-Reed-Muller-Code R(4,5) in an AWGN 

Channel 
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4.2.12 Performance Comparison of Reed-Muller-Codes R(x,y) for different (n,k) 

with Viterbi Trellis Decoding 
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Figure 29 Comparison of different Reed-MulIer-Codes 

The above figure compares all the different simulation results which were obtained for 

Reed-Muller codes. What is apparent from the above results, is that the performance 

achieved is not only dependent on the size of the code, but also on the parameters (n,k). 

This is illustrated by the fact that the (32,31)-Reed-Muller-Code performs a lot worse 

than the (16,1l)-Reed-Muller-Code. Again, the choice of the block code is a very critical 

step in the design of a error correcting code. 
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4.2.13 Tabulation of Results 

The results achieved by simulation are presented in the table below. 

Code Cross 

Over HD 

Cross Over 

SDML 

Asymptotic 

Gain HD 

Asymtotic 

Gain SDML 

(7,4)-Hamming 9.2 dB 4.0 dB 0.75 dB 2.0 dB 

(16,ll)-Reed-Muller 9 dB 4.5 dB 1.0 dB 2.5 dB 

(16,5)-Reed-Muller - 3.5 dB - 4.0 dB 

(32, 16)-Reed-Muller - 4.0 dB - 3.5 dB 

(32,26)-Reed-Muller - 5.9 dB - 4.0 dB 

(32,31)-Reed-Muller - 7.0 dB - 1.5 dB 

(31,21)-BCH - 5.1 dB - 3.5 dB 

(15,7)-BCH - 3.5 dB - 3.0 dB 

Table 1 Tabulation of Results achieved with Viterbi Trellis Decoding 

4.2.14 General Discussion of Results 

In the above simulations it was shown that it is indeed possible to employ the Viterbi 

algorithm to decode block codes. Furthermore, it is proven that all block codes which are 

decoded via their trellis diagram representations conform to the term maximum 

likelihood decoding. This means that the bit error rate curves that are obtained for the 

Viterbi decoding of block codes matches the bit error rate curves obtained by analytical 

decoding - which is a maximum likelihood technique. No coding gain is thus lost when 

block codes are decoded employing their trellis diagrams. Put differently, it can be said 

that no sacrifice or penalty is paid in transforming a block code into its respective trellis 

representation. It is also shown that the simulation results are supported by the 

theoretical analyses which were presented for reference purposes. 
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Chapter 5 

Trellis Construction and Decoding of Non-Binary 

Reed-Solomon Codes 

5.1 Introduction to Reed Solomon Codes 

On the 21"t of January 1959 Irvine Reed and Gus Solomon [21] submitted a dull 

sounding title for a paper to the "Journal of the Society for Industrial and Applied 

Mathematics"[20]. The paper was accepted and published in June of 1960 under the 

title "Polynomial Codes over Certain Finite Fields". Little did the unsuspecting world 

know at that stage what dramatic impact this paper would have on the coding ideology 

known to man. The enormous contribution that this class of error correcting codes, 

appropriately called Reed-Solomon Codes[22], has made to the communications sphere, 

cannot be described in this short paragraph. Reed-Solomon codes have proved their 

value in channels with a predominantly bursty error characteristic. 

5.2 Algebraic Reed-Solomon Code Generation 

The class of Reed-Solomon [1], [10],[18],[19],[20,[21],[22] codes are constructed and 

decoded through the use of finite field arithmetic. These fields are sometimes also 

referred to as Galois Fields [24][25], after their discoverer. They too have a very wide 

application in modern communication systems . In order to provide the reader with a 

more complete set of information, Appendix F gives a brief overview of finite fields . 

The reader may find it necessary to consult this appendix first before proceeding with 

the following chapter, since none of the information given in Appendix F is repeated 

here . 

The original approach to the construction of the Reed-Solomon codes over finite fields 

was very simple indeed. Assume that k information symbols 

(5.1) 
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exist over the finite field GF(q). From these information symbols, the following 

polynomial can be constructed 
k-2 k-)p( X ) = mo t m) ·xt ...tmk_2·x t mk_1'x (5.2) 

As with any code, Reed-Solomon codes have a limited set of code words for every specific 

Reed-Solomon code. These code words are found by evaluating the polynomial of 

Equation 5.2 at each of th q elements of the finite Galois field GF(q). The code words 

will thus be in the following form 

(5.3) 

The full set of code words can be formed by allowing the h information symbols to 

assume all possible combinations of values over GF(q). The information symbols are 

taken from GF(q), resulting in each being able to assume q different values. There is no 

need to explain why a Reed-Solomon code has a huge set of possible code words. A Reed­

Solomon code will have qk unique code words. From the discussion and definitions given 

in Chapter 3, it follows that a Reed-Solomon code is linear in nature. 

It is quite common to call the parameter h of the Reed-Solomon code the dimension of the 

code, since the value h forms a vector space of dimension h over the Galois field GF(q). 

The length of a Reed-Solomon code is commonly termed n in accordance with block code 

conventions. 

Due to the polynomial nature of Reed-Solomon codes, it is possible to revert each Reed­

Solomon code to a system of q linear equations with h parameters each. A generic 

system is given in the equation below: 

(5.4) 

q-l) _ . q-l . 2(q - l) . (k-l)(q-l)p(a - mo t m l a + m2 at...t mk_l a 

From normal algebra principles, it follows that any h of these expressions can be used 

in order to construct a system of h equations with h variables. As an example, the first 
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k expressions of Equation 5.4 form the following system: 

1 0 0 0 mo p(o) 

1 a a 2 a (k-l) ml P(a) 

1 a 2 a 42 2(k-l) 
~ P(a 2) (5.5)a = 

1 a k-l a 2(k-l) a (k-l)(k-l) mk _1 
P(a k-I) 

It can be shown that this system has a unique solution for the k information symbols by 

computing the determinant of the following coefficient matrix: 

1 

1 

1 

0 

a 

a 2 

0 

a 2 

a 42 

0 
a (k-l) 

a 2·(k-l) (5.6) 

1 a k-I a 2(k-l) a (k-l)·(k-1) 

It can be shown that the above matrix can be reduced to a Vandermonde matrix, and 

that all Vandermonde matrixes are non-singular. From this, it follows that any k of the 

expressions in Equation 5.4 can be used to solve the system. 

In the modern construction ofReed-Solomon codes, a construction technique is employed 

in which a generator matrix approach is used. It is however not necessary at this point 

to go into the detail of this construction method, as only an overview of Reed-Solomon 

codes is provided here. 

5.3 	 Conventional Decoding Methods for Reed-Solomon 

Codes 

After the discovery of Reed-Solomon codes, a search for an efficient decoding algorithm 

commenced. None of the standard decoding techniques at the time were useful for this 

purpose, for example, simple codes can be decoded through the use of a syndrome look-
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up table. This approach is however out of the question for the standard Reed-Solomon 

codes. A (65,53, 10) Reed-Solomon code, capable of correcting 5 errors, will have to have 

a look-up table of 1020 symbols. No hardware would be able to handle such immense 

data sizes. 

In their 1960 paper, Gus Reed and Irvine Solomon proposed a decoding algorithm based 

on the solution of sets of simultaneous equations as described above in Section 5.2 [60]. 

Although more useful than the look-up table approach, this techniques only allows for 

the decoding of very small Reed-Solomon codes. During the 1960's a large amount of 

work was done towards finding effective decoding algorithms for Reed-Solomon codes. 

Some of the contributors were people like Peterson, Chien and Forney 

[26], [27], [28], [29], [30]. Although several techniques were devised, no major 

improvement on the earlier decoding techniques were found. 

The eventual breakthrough came late in 1967 when Berlekamp [32] devised an effective 

decoding algorithm for nonbinary BCH and Reed-Solomon codes. Following the good 

work ofBerlekamp, Massey [21] showed in 1968 that the decoding problem is equivalent 

to the generation of linear feedback shift registers which generate the Reed-Solomon 

codes. The original Berlekamp decoding technique was adapted by Massey to conform 

to his theory of decoding by linear feedback shift registers. This decoding algorithm is 

suitably termed the Berlekamp-Massey [21] decoding algorithm. 

A lot of different decoding procedure exist, but these will not be described or mentioned 

here, as this would serve no purpose at all. 

The "Holy Grail" of Reed-Solomon decoding research is the maximum likelihood soft 

decision decoder. A soft decision decoder accepts analog values directly from the 

channel. The demodulator is not forced to decide which of the q possible symbols a given 

signal is supposed to represent. The decoder is thus able to make decisions based on the 

quality of a received signal. For example, the decoder is more willing to assume that a 

noisy value represents an incorrect symbol than a clean, noise-free signal. All of the 

information on the "noisiness" of a particular received signal is lost when the 

demodulator assigns a symbol to the signal prior to decoding. 

A lot of work has been done on soft decision maximum likelihood decoders for Reed­

Solomon codes, but as to yet, no practical solution has been found. This dissertation 
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attempts to provide a possible solution for more effective SDML decoding for Reed­

Solomon codes. 

5.4 	 Error Correcting Characteristics of Reed-Solomon 

Codes 

The Reed-Solomon code's error correcting capability and performance is now presented. 

For the purpose of this discussion, it is assumed that t of the code word coordinates are 

corrupted during transmission, and are received incorrectly. This state of affairs would 

lead to an incorrect representation in the system of Equation 5.4, and would lead to 

an incorrect solution if Equation 5.5 is solved. Assuming that there is no knowledge 

of where the errors are, all possible constructions of systems from Equation 5.4 are 

made. There are in fact (1) such systems, C+:-1) ofwhich produce, when solved, incorrect 

information symbols. Correct information bits are received as long as the following 

holds true: 

(5.7) 


This condition only applies when t + k - 1 < q - t, which in itself only holds true if the 

following condition is met 2t < q - k + 1. A Reed-Solomon code oflength q and dimension 

k can correct up to t errors, where t is given as: 

(5.8) 


It was proved in 1964 by Singleton [31] that the family of Reed-Solomon codes provides 

the best error correction capability for any code with the same length and dimension. 
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5.5 Various Trellis Construction Techniques 

Trellis construction techniques for Reed-Solomon codes can basically be divided into two 

groups [21],[22],[33],[34]. The first group is termed "Syndrome Trellises of Reed­

Solomon Codes" and the second group "Coset Trellises of Reed Solomon Codes". Both 

these methods aim at obtaining a trellis diagram which would be considered as being 

minimal. In the following subsections, a brief overview on both these methods is 

presented. Another method also exists. This method is called the "Shannon Product of 

Trellises". Due to the way in which the dissertation is organized, this method is 

presented in Appendix D, since it is referred to by several chapters. It is advisable that 

the reader familiarize himself with above mentioned procedure, as it is essential to the 

understanding of the discussion below. 

5.5.1 Syndrome Trellis Design for Reed-Solomon Codes 

Wolfs method of trellis construction was already presented in Chapter 3. This method 

of trellis construction is under investigation in more detail in Section 5.6, and is not 

pursued further. 

A method which is very similar to Wolfs [16] method is presented here as another form 

of syndrome trellis construction. 

A few years back, McElice [19] has proven that trellises found via syndrome techniques 

are minimal. According to a bound calculated by Wolf [16], the maximum number of 

states in a syndrome trellis can be estimated as: 

N max . < min{qk q(n-k)} (5.9)synd - , 

Similar to this, Forney has shown that the minimum number of states at the i-th level 

of the trellis is equal to: 

k q
Ni = -k--=---k-- i= 1,2, ... ,n (5.10) 

qpas! . qfuture 

where 
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kpast = dim(Cpast) 

k future = dim(Cfuture) (5.11) 

Cpast = (i, kpast' d) 

Cfuture = (i, k fiaure , d) 

As shown before, it is necessary to find the syndrome trellis in a certain Galois field. To 

be as general as possible , the determination of the trellis diagram is done in GF(q). 

Firstly, a few definitions are in order at this stage. 

The vector of information symbols is defined as 

X= (X 1,X2 , ... ,Xk ) X i E GF(q) (5.12) 

and the encoded vector as 

Yi E GF(q) (5.13) 

with i= 1,2, ... ,kand j= 1,2, ... ,n. 

Let G be the generator matrix of the Reed-Solomon code In the cyclic form. (see 

Chapter2): 

g) gl 

CS1(gl) 

(5.14)cS2(g2)=G= 

CSk_1(gk)gk 

In the above equation, gi 1 = 1,2, .. . , k is the i-th row ofthe generator matrix G, and 

cs;Cgt) denotes j cyclic shifts of gj . 

Centre for Radio and Digital Communication (CRDC) 

Department of Electrical and Electronic Engineering 

University of Pretoria 66 



Chapter 5 Trellis Construction and Decoding of Non-Binary Reed-Solomon Codes 

The desired Reed-Solomon code can be constructed as a sum of k codes: 

k 

c= I c) (5.15) 
)=1 

where the j-th code Cj is an (n, I,d) code (k = 1) over GF(q) generated by Gj=[gJ 

It is relatively easy to show that q code words in Cj can be obtained as: 

(5.16) 


The corresponding sub-trellises T j , where j=1,2, ... ,k, start at the generic node called the 

root node, and terminate in the finishing node called the destination node. These sub­

trellises have (n+ 1) vertices and the number of states in the ith vertice is defined as 

being: 

No = Nn = 1 

N 
t 
={q

1 
if g~ t- oand g71 

t- 0 

for all other cases 

(5.17) 

where t =0, 1,2,3, ... ,n and represents the tli! element of gj' 

If Tj is a syndrome trellis of the elementary code Cj generated by gi then the combined 

trellis can be obtained from T =Tl . T2 ..... Tk . In other words, the syndrome trellis of 

the code C generated by G is given as T. 

The state profile of the syndrome trellis can be obtained from: 

No = Nn = 1 
(5.18)N - mq t=I,2, ... ,n-1I ­

where m is the number of non-zero elements in the t lh column of G which are followed 

by any other non-zero element. 

The above process is illustrated by means of an example in Appendix E. 
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5.5.2 Coset Trellis Design for Reed-Solomon Codes 

A coset trellis represents a set of parallel sub-trellises [5], each corresponding to one of 

the cosets of the basic code. Such a trellis allows a reduction in the decoder complexity, 

since all the sub-trellises have identical structure and differ only in the labeling of their 

respective trellis branches. Again, the reader is referred to Appendix D, since this 

method also involves Shannon's "Product of Trellises" method. Below, it is now shown 

how the Shannon product of trellises can be successfully employed to find a minimal 

coset trellis representation of a Reed-Solomon code. 

The first step in obtaining the coset trellis representation, is the calculation of the state 

profile from the minimal syndrome trellis representation of the Reed-Solomon code . This 

profile can be obtained by calculating the minimal number of states at every node ofthe 

trellis. 

From the above calculated profile, NSynd splitting points are chosen which have a similar 

number of states. The next step is defining the state and label size profiles of the 

desirable trellis: 

(5.19) 


(5.20) 


where Nc is a number of columns (vertices) in the desired coset trellis, and all vertices 

have a similar number of states: 

i,j = 1,2, ... ,Nc -1 (5.21) 

It is apparent, that in the general case the following applies: 

(:t 1) i,j= 1,2, ... ,N -1 (5.22)c 

Finally, the overall generator matrix of the complete code can be presented in the 

following form: 
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(5.23)G= 

where G i , with i = 1,2, .. . ,Nc - 1, has l columns a nd k rows. Each row of G is used to 

design the trellis diagram of the (n,l ,d) code over GF(q) with the label size profile given 

by Equation 5.20. The overall trellis diagram can be obtained as the Shannon product 

of k constituent trellises . 

Again, as mentioned before, examples to illustrate the process are given in the second 

part of Appendix E. 

5.5.3 Modified Trellis Design Procedure for Reed-Solomon Codes 

This next method is basically a variation on Wolfs method. The basic procedure outlined 

in Chapter 3 still applies to the trellis design procedure for Reed-Solomon codes. It is 

however essential to understand all the implications of using a higher order Galois field 

than GF(2). 

In order to provide a very clear example of the procedure and also due to the large 

complexity, a very simple example is given, namely a (7,5) RS-code in GF(4). Since it 

was decided to keep the Galois field set as small as possible (not counting the binary 

case) ,a Galois field of GF(4) was chosen. In order to have a full understanding on this 

issue, the reader is referred back to the previous sections of this chapter, in which the 

basics of Reed-Solomon codes and Galois fields are presented. 

The following definitions are in order here . 

The Galois field that was chosen is: 

(5 .24) 


The number of states in the trellis are: 
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(5.25) 

The following generator polynomial was chosen for the example: 

g(x) = (xt a).(xt a 2) 

= (x 2 t a .x t a 2 . X t a 3) 
(5.26) 

= (1.x2 t(a 2 ta).x l t 1.xO) 

= (1. x 2t 1· Xl t 1· XO) 

The following generator matrix can be constructed from the above given generator 

polynomial. Note that the generator matrix is in cyclic form, as each row is just a shifted 

replica of the generator polynomial coefficients. 

1 1 1 0 0 0 0 

0 1 1 1 0 0 0 

G= 0 0 1 1 1 0 0 (5.27) 

0 0 0 1 1 1 0 

0 0 0 0 1 1 1 

From this generator matrix, the following information is obtained: 

The trellis depth equals: 

(5.28)~ = Num(Gcolumns) = n = 7 

The number of possible code words are: 

2)n (2)7 7 (5.29)New = (GF(2) = 2 = 4 = 16384 

The number of branches emanating from each node is determined by the number of 

symbols in the code. Thus, for the binary case , the number of symbols would be 2 and 

the number of associated branches also 2. However, for a code in GF(4), there are 4 

branches associated with the following 4 symbols: 
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Symbols = {O, 1, 	 a, a 2} (5.30) 

At this point it can already be said that each node will have the following branch 

structure depicted in Figure 30 below: 

[0 	 0] ~--01--~' . o~. 

~ : ~------ 1 ------~••­

~ ~:~ 

[0 a'] ~a2 • 

Figure 30 Branch Structure of Reed-Solomon Trellis is Galois Field GF(4) 

Next, from the generator matrix G given by Equation 5.27, the parity check matrix can 

be calculated. This is done by performing elementary matrix operations on the matrix 

as outlined in Chapter 2. For a complete discussion on this topic, the reader is referred 

to Appendix B . Only a few steps are shown below. 

1 1 1 0 00 0 

0 1 1 1 00 0 

G= 0 0 1 1 1 0 0 

0 0 0 1 1 1 0 

0 0 0 0 1 1 1 

This is further transformed into: 

= 


1 0 0 0 o1 1 

1 1 0 0 00 1 

1 1 1 0 00 0 (5.31) 

0 1 1 1 00 0 

0 0 1 1 1 0 0 
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1 0 0 0 o1 1 

0 1 0 0 o1 0 

G= 0 0 1 0 00 1 (5.32) 

0 0 0 1 o1 1 

0 0 0 0 1 1 0 

From the above systematic generator matrix G it is possible to read off the parity check 

matrix in the following form: 

1 0 1 
(5.33)H=(: ~l0 1 1 

Next a lookup table can be constructed to simplify the derivation of the trellis diagram. 

The lookup table is based on elementary Galois field mathematics presented above in 

Section 5.2. 

The lookup table for GF(2 2 
) is divided into 4 separate lookup tables, one for each 

symbol in the Galois field. These tables are constructed using the primary polynomial 

in GF(4) . This polynomial can be expressed as: 

(5.34) 

The table for code symbol "0": 

0+ 0= 0 


0+ 1= 1 

(5.35)

0+ a =a 

0+a 2 =a 2 

The table for code symbol "1": 
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The table for code symbol " a " 

1+ 0 = 1 

1+ 1= 0 
(5.36) 

1+a=a 2 

1+a 2 =a 

a + 0= a 

a+l=a 2 

(5.37) 
a I a = 0 

a+a 2 =1 

The table for code symbol" a 2,,: 

a 2 +O=a 2 

a 2 +1=a 
(5.38) 

a 2 +a=1 

a 2 +a 2 =0 

Since the number of states in the trellis is 16, they can be divided into 4 sub-parts 

containing 4 states each. The significance of this is explained later. The 4 sub-parts 

along with their respective 4 states each are numbered as follows: 

Sub-part 1 along with first set of four states: 

(5.39)s~ = {[0 0], [0 1], [0 a], [0 a 2]} 

Sub-part 2 along with second set of four states: 

(5.40) 

Sub-part 3 along with third set of four states: 

s~ = {[a O],[a l],[a a ],[a a 2]} (5.41) 
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Sub-part 4 along with fourth set of four states: 

(5.42) 

The next step in the design process is to identify trellis branches associated with the 

individual code words. This is done by finding all the connecting branches between 

nodes of the trellis. The starting node is taken as state [0,0] , and paths are calculated 

from here onwards. The reader is again reminded that this process is very similar to the 

one provided in Chapter 3. It should also be noted that paths emanating from nodes 

are only calculated for states that have at least one incoming branch . An exception to 

the rule is the above mentioned starting state. 

As shown in Figure 20, each symbol in the Galois field causes a branch to emanate from 

each node, implying, at first glance that 4 calculations will have to be done in order to 

find the 4 branches emanating from every node or state. 

For the first section of the trellis, the first column of the parity check matrix is used for 

all calculations. 

For reference, the parity check matrix is repeated. For completeness, the unit matrix 

has been appended to the end: 

1 0 1 1 1 
(5.43)o 1 1 00 ~l 

The following calculations yield the first 4 branches emanating from node [00] where 

each branch is labeled with a specific input symbol, 0, I, a or a2
: 

(5.44) 
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[0 O]~ 0: [0 0]+ 0..[1 1]=[0 0] 
1 : [0 0]+1.[1 1] =[1 1] 


(5.45) 
a : [0 O]+a.[l 1] =[a a] 

a2 : [0 0]+a 2 '[1 1]=[a 2 a2] 


It can be seen that quite a number of calculations are involved in order to find the nodes 

that are connected by a specific connection branch associated with a specific symbol. In 

order to still give a good overview of the process, a shorthand notation is employed to 

summarise all the relevant results of the calculations. 

It can be seen that the next batch of calculations will deliver a set of 16 active nodes, due 

to the fact that 4 branches exit any active node. An active node is any node which has 

at least one trellis branch entering it. When the trellis is "fanned-out", in other words 

such that each node or state has at least one branch entering it, the calculations will 

yield 64 branches interconnecting the various nodes. 

The method used to obtain the trellis branches, is based on the same structure used in 

Equation 5.45, but by only displaying the starting and ending nodes of each branch. 

The details of the calculations are left out. These may be readily filled in by the reader 

without a lot of effort. 

For each depth of the trellis, the next column of the parity check matrix is used. This 

means, that at the last section of the trellis, the last column of the parity check matrix 

is employed to base the calculations on and so on. 

On the next few pages, the complete results of all the calculations are presented. 
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The results for the first section of the trellis are presented on this page. 

The relevant column of the parity check matrix is the following: 

The following equation was used to calculate the table below: 

NewState ~ OldState +Symbols, ( J 
Old 

State 

New 

States 

Old 

State 

New 

States 

Old 

State 

New 

States 

Old 

State 

New 

States 

[0 0] [0 0] [1 0] [a 0] [a 2 0] 
.. -......... . ...... ... ~....... ............... , .... ... ...... .......... ~... ............. ....... ....... .. ............. ~....................... ................. .. ... ~..... .... . .... .. ...... . 

. . 
: [1 1] : 

.... ...... .. ... ·······1· ........... ............... ........ .. ...... ... ~....................... ·0 ••• -, ••• • •• 0_ •••• •• •• ~•••••••••• •••••••••••••••••••••• , •• ···········1······················· 

[a a 2] 
...................... j......................... ····· ················1······.............. ............ '.......... .. .j.... .... ............... 

[0 1] [1 1] [a 1] [a 2 1] 
••••••••••••• • •••• •••• ~•• •••• •• ••• ,. ••• • ••••• • _, •• • • • ••••••••• o ••••• ~. ••••••••••••• ••••••••• • •••••• ••••••••••••••• ~•••••••• • •• • ••••• •• •••• ••••••••••••••••••••••• ~••••••••••••••••••••••• 

~ ~ 1 . 
......................:- ........................................... .. :- .... ........................... ............ .1" ............................................•......... ............. . 

.... ...... ..... .....··1········ ...... .. ...... ............ .. ........ " 1" .. ....... .. ....... .. ... .. ... .... .. ...... ····1················, .. ... . .................... .. .1 ...................... . 

[0 a] [1 a] [a a] [a 2 a] 
················· ·····1·············· ········· ......................:-- ............................................1' .......... .. .................... .. .......... <••••••••••••••••••••••• 

··· ·· ······ ··········T··········· ··· ····· ·· ..................... -:-- .... .... ........ ..... ....... .. ........ .. ... .r- .................... ......................:....................... 
...................... 1' ...... ... ..... ...................... .. ....... ~.............................................;- ............................................ ~...... ................ . 

[0 a 2 
] [1 a2

] . [a a2
] ; [a 2 a2

] . ...................... :-- ......... ...... ......................... ... 1' .................. ...........................1'............................................. ~....................... 

············· ·· ·······1··················· ·· ·· ...................... ~............................................. ~....................... ·······················r ···· ·················· 

·· ·· ·········· ····· ···1······················· ...... .. ....... ........ j..............................................:- .................................. ... .. ...... ~... .................... 

Table 2 Nodes for State 1 of (7,5) RS-Code in GF(4) 
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The results for the second section of the trellis are presented on this page. 

The relevant column of the parity check matrix is the following: 

The following equation was used to calculate the table below: 

NewState ~ OldState + Symbols· ( :) 

New 

State 

Old New Old New Old New Old 

States State StatesStates State States State 

[0 0] . [0 0] [1 0] . [a, 0] . [a,2 0] . 
···· · ················T··· ··~~····~·~···· · · ······ ··· ··· ·········T····················· ········ ·· ··· ········T· ···················· .... ... ....... ..... ... .~......... .. ............ 


· ·· ···· ···· ···· ···· ···r ·· · ·[~····~~·· ···· ···· ·· ········ ···· ····T········· ·· ·· ··· ····· ··· ··· ·· ··· ···· ······T· ·· ············ ···· ·· ······ ·· ··· ···········T····· ··· ····· ········ 

............ .. ........ 1" ..... [~.; ... ~].... ... .... .... ....... .. .... . ]".................... .. . ..................... ]" .... ..... ... .. ... ... .. ·· ············ ·· ······ ·1······················· 

[0 1] : [1 1.] . [1 1] [a, 1] : [a,2 1] . 
....... ... .. . .. . .... ··1··· ··· ·· ········· ·· ·· ·· ···· ··· ······ ··· ·······1·· ·· ............................ ........ .. .. ··1··· ···················· ···· ······· ········ ·· ··1······················· 


. . [0 1] . ................. ..... ]" .. ... .. ......................................+.....(~.; ....~]....... .............. .. .. .. .. 1'...................... ·· ..······· .. ······ .. ··1··· .. ······· .. ······ ..· 
...... ... ..... ....··· ·i····... ......... .... ... . ..... .. .. ············i······ .. -........ ...... ·· ······· ··· ····· ···· ··1··· ················ ···· ... ..... ... ... ..... .... ~... ... .... .. ... ..... .. . 

: : [a, 1] 

[0 a,] . [1 a,] [a, a,] [a, a,] [a,2 a,] . 
.... ... ...... . .... .... ~........... -, ..... ..... . .. ... ...... .. ... ... .. ~.; ... .. .. .. ... ... ... .. .. .. .·· ··· ·· ··············i.······ ..... ..... ... . '" ... .. ... .... ........ ... ~....................... 


[a,2 a,] 
.............·.... ....1..............·......... .. .................... j....................... ........... .. ......... ~.......[~ ....~] ..............·.. .. ·........·1· ....·....·..·........· 


......................1" .... .. .. .................... ...............1" ................. .. .. ...................... '1" .....[~ .."~]""" ...... .... ...........-r ..................... 

[0 a,2] . [1 a,2] l [a, a,2] . [a,2 a,2] . [a,2 a,2] 

...................... ~.............. . . ... ..... .. . . ............... .. .~.. ......... ............ ....................... ...... .. . ..................... ~.... .... ......... ..... . 
~............... 


: : . l [a, a,2] 
.. ................. . .. ~........ .. .. ......... .. .... .. ...... .. ......... ~.... .. ...................... .............. .. .. ~...................... . ..... ... ........... ... ~....... ...... .. ... .... . 


. : l l [1 a,2] 
....•.......... ... .. .. ..: ... .. ....... .. .. .......... .. .. .... ..... ... .... ..:... ...... . . . ... ...... .. .... .... ... .. .. .. .. .. . ..:..... . ................. ·· ·· .· ... · ··· ... ·.···.01· .. ·· .. · .. . . ·· . . · ... ··. 


l : : 1 [0 a,2] 

Table 3 Nodes for State 2 of (7,5) RS-Code in GF(4) 
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The results for the third section of the trellis are presented on this page. 

The relevant column of the parity check matrix is the following: 

The following equation was used to calculate the table below: 

NewState = OldState + Symbols· ( ~) 

Old 

State 

New 

States 

Old 

State 

New 

States 

Old 

State 

New 

States 

Old 

State 

New 

States 

[0 0] [0 0] [1 0] [1 0] [a 0] : [a 0] [a 2 0] : [a 2 0] 
• ••• ••••• •••• •• •••••• • ..:•••••••••••••••• • •••••••••••••••••••••• ••• ••• "' • • ••••••••••••••• •• •••••• • •••••••••••••••••••• "'•••••••••••••••••••••••••••••••••••••••••••••• ..! ••••••••••••••••••• ••• • 

: [0 1] : [1 1] : [a 1] . [a 2 1] 
••• • • ••• • •• •• • •••• • ••• 01 · •• •• • • ••• • •••• •• ••• • • •••••• • ••••••• ••• ••••• • .,:•••••••••••••••••••••• ••••••••••••••••••••••• " • • •••••• • ••••••••••••••••••••• • ••••••••••••••• ..!••••• •• ••• ••• ••• ••• • •••· . . . 

: [0 a] . [1 a] [a a] : [a 2 a] .................... .. :- ..... ~~....~~i··· ·· · .......................+.. ...~.~....~~i····· · ....................... 1" .....~~... .~~i···· · · ..... .. ... ... ........·:-·· ···r~~... ·~~i · ··· · 

[0 1] : [0 1] [1 1] : [1 1] [a 1] . [a 1] [a 2 1] . [a 2 1] 
••••••••••••••••• - •••• ~.... •• • •••••• •••• ••• •• • • •••• • •••••••••••••••• ~.. .... •••• ••••••••••••• • • • • ••• • • ••••••••••••• ~. . .. •••••••• • • •• •• •••• • • •• ••••• • ••••••••••••• .t• •• •••• ••• • ••• ••••• •• • • 

· . 
: [0 0] [1 0] : [a 0] [a 2 0] ...... .... ......... ... ~.. .................... ........ .. ..... ..... .... +.. ... .. ...... ................................~.... ...... ... .... .. ................... .... ... ~......... .. ........ .... 

[0 a 2 
] . [1 a 2 

] : [a a 2 
] : [a2 a 2 

] 

············ ····· · ·· ·T·· ···[~····~·j ··· ··· · · ····· ···· ·· · ··· ·· ··T ·····[~ ···~·j· .. ··· ........... ... .... ..... ~.......[~ ....~.j ... ...······················T··· · ~~~·· ·~i···· · · 

[0 a] . [0 a] [1 a] . [1 a] [a a] [a a] [a 2 a] [a 2 a] 
.... .................. ~. .. . . . .. .... ........... .. ..... ...... ... .. ..... ~... ..... .... ...... .. ... .. ..................... ~..... ... .. .... ..... .. .. . ... .... ..... .... ..... ..... .. ... .. .... ..... .· .· . 

· [0 a 
2 
] . [1 a 2J . [a a 2 

] [a 
2 a 2J 

........... ...... ..... ~... ........................................... ~.............. .. ... ........ ....... ........ .... ~...... ..... .... ..... ... ...... .......... ... ... . .... ... ... ...... .... .. 

· [0 0] . [1 0] [a 0]..... ..... ....... .. .. ·1······· .......................... ...... .. .. ···i·······...... .. ...... .. ..........············1····· ..... .. .................................. 
[0 1] [1 1] [a 1] 

[0 a 2 
] [0 a 2 

] [1 a 2 
] . [1 a2

] [IX a2
] . [a ai 

] [a 2 a2
] [a 2 a2

] 
.... .... .. ............ ~.............................................. ~................................. ............. ~....... ................ ..................... .. .....-................ 

: [0 a] : [1 a] . [a a] [a 2 a] 
...... ........ .... .... ~...... .. ...... ......... • ••••••••• •• ••• • •••• •• ~ ......... . ... .. .. .. .... .... ..... . ..... ....... . .t . ....... .. .. ........... . ........ .. ... ......... • .................... . 

: [0 1] : [1 1J . [a 1] [a2 1] 
·· ·· · · ·· ··· ·· · · ······T·· ···[~··· ·~·j· · ·· ·· ·· ····· ····· ··· ···· ···T·····[~····~j .. ···· ··· · ·················T·····[~····~j······ ............. ......... · ··· ·~~·;···~i· · · ··· 

Table 4 Nodes for State 3 of (7,5) RS-Code in GF(4) 
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The results for the fourth section of the trellis are presented on this page. 

The relevant column of the parity check matrix is the following: 

The following equation was used to calculate the table below: 

NewState ~ OldState + Symbols · ( :) 

Old 

State 

New 

States 

Old 

State 

New 

States 

Old 

State 

New 

States 

Old 

State 

New 

States 

[0 0] [0 0] [1 0] [1 0] [a 0] [a 0] [a 2 0] [a 2 0] 
... ............... ... . ~.......................... . .............. ..... l ... .. ....... .. ...... ... ............ .. ...... .. . ~..... . ............... . . .............. . ....... . ......•..... ... ...... 

: [1 1] : [0 1] : [a 2 1] [a 1] 
......... ........ ... .. ~. . .... .. ........... .... . .... ... ..... .... ... .. ~.............................................. ~... .. .. .... .... ........ .... ....... .. . ..... .... . ....... ............. . 

: : . 
: [a · a2

] : [a 2 a] [0 a] [1 a]
•..... ..... .•. •.. .. ..• .;...... .. ... .... ... ..... ..........•.••....•... 4..............................•.......•....•.. 4•.....•..•...••...•..... ' ...•. .......... .. .... .......... ... ........ .. .. . 

[ [a 2 a~] [ [a aZ
] [1 a2

] [0 a2] 

[0 1] [0 1] [1 1] [1 1] [a 1] [a 1] [a 2 1] 
.... ... ......... ······1······ ·· ··· ...... ...... . ..... .... ··· ··· ·· ····i··· ···· ···· ······ ·· ···· ······················1···················· ... . .................... . 

[1 0] [0 0] [a 2 0] [a 0] 
...... .............. .. ~.. .. ......... .......... . .................... . ~....... .. ... ........... . ..................... "..... ... ............... .. .. .................. . ................... . . 

[a a2
] [ [a 2 a2

] [0 a2
] [1 a2] 

··· ·· ·················1······················· ············ ·· ·········1······················· ············· ···· ·····i······················· ......... .... .. ............. ............... . 

: [a 2 a] : [a a] : [1 a] [0 a] 

[0 a] [0 a] [1 a] [1 a] [a a] [a a] [a 2 a] [a 2 a].. .. ..... .. ..... ... ... ~..............................................+.................. .. ........ ................. ~.... .... ..... .. ............................... 4...... .. ...... ... .... .. 

[1 a~] : [0 a2
] [ [a 2 a2] [a a2] .............. ... .. ... ~........ . .............. .. ....................+........................... ......... ... ... .. ~....................... ................... ...~....................... 

: [a 0] : [a 2 0] : [0 0] : [1 0] 
....... ............... ~. ...................... . ..................... ~. .. ................. ... .... . . ........... .. ... ~......... .. .. ... ....... .... .... .. ... ......... ~.... .... ............ .. . 

j [a2 1] [ [a 1] [1 1] [0 1] 

[0 a 2 
] : [0 a 2 

] [1 a2 
] : [1 a2 

] [a a2 
] . [a a2

] [a 2 a2
] • [a 2 a2

] 
••• •• ••••••• ••••••.••• ~........ ••••••••••••••• • ••••••••••••• •• •••••• ~...... ••••••••••••••••• •••••••••••••••••••••• ~.......... ... ••••••• ••• .. ... .. ... . ... ... . .. .. .r. .... . .... .. ... . ...... . 

[1 a] [0 a] [a 2 a] [a a]... .. ................. ~..................................... ... ...... ~. ........... .. .. ....... ................. ..... ~.... ................... . ................... .. i.. ··· ·· ············.... 
: [a 1] : [a 2 1] : [0 1] . [1 1] 

· ···· ·· ···· ······ ···T ····[~·;···~~··· ·· · ···················· · ·T··· ··[~··· ·~j······ ····· · ······ · ········T···· · [~····~·j······ ......................'.......[~ ....~; ...... 

Table 5 Nodes for State 4 of (7,5) RS-Code in GF(4) 
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The the of are on page. 

The column of check matrix is following: 

-(1)
Its - \ 0 

The was to table below: 

NewState = OldState+ Symbols­ 1\
0; 

Old New Old New Old New Old New 

State States State States State States State States 

Table 6 State 5 of (7, RS-Code in GF(4) 
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The results for the sixth section of the trellis are presented on this page. 

The relevant column of the parity check matrix is the following: 

The following equation was used to calculate the table below: 

NewState ~ OldState + Symbols· ( ~) 

NewNew Old New Old New OldOld 

State States StatesState State States StateStates 

[0 0] . [0 0] [1 0] : [1 0] [a 0] . [a 0] [a 2 0] : [a 2 0] 
•••••••••••••••••••••• ..: •••• • • •• ••• •• • ••• ••••••••••••••••••• ••• •••••• • .1 ••• ••••• ••••• • •••••• ••• ••••••••••••••• ••• •• ••• ..:••••••••••••••••••••••••••••••••••••••••••••• .t••••••••••••••••••••••• 

[a2: [1 0] i [0 0] i 0] : [a 0] 
······················1··············.. ·· ·· ··· .......................+.. .. .................. ····· .. ······ .. ········i·····..·.. ···· .. ···· ..· ·············.. ···· ·· ·1······ ..·······....···· 


[a 2: [a 0] 0] : [0 0] : [1 0] 
... .. ..... ..... ····· ··1· .... ......... ...... ... ... .. -, .. ........... .. ~......... .. .. .. ... .... . . ..... ..... ···········1······················· ... ............ ... .. ··1···· ········ ·· ·· ······· 

: 0] [a 0] : [1 0] : [0 0][a 2 

[0 1] [0 1] [1 1] [1 1] [a 1] [a 1] [a 2 1] [a 2 1] 
.. ... ................. ~.......... .. ... .. ...... . ....... ... ...... ... .. 1"....... ..... .......... ········· ·············1··· ··············· ····· ··· ··· ····· ·· ···· ·· ···i···················· ·· · 


[1 1] : [0 1] : [a 2 1] : [a 1] 
.. ..... ... ..... ... .. .. ~. ..... .. ... ... ......... ...................... ~......... ......... .... ... .... ........ ........ . ~. ...................... ...................... ~................... ... . 


: [a 1] : [a 2 1] : [0 1] : [1 1] 
... ...... ..... ... ..... "... ........ ............. ...... .. ....... ....... .,:..... ..... .. ....... ... ....... ....... ..... ..... .,:... .......................................... "....................... 


: : : : 
: [a2 1] [a 1] : [1 1] : [0 1] 

[0 a] [0 a] [1 a] [1 a] [a a] [a a] [a 2 a] [a 2 a] 
...................... ~.. ... .... .... ...... .. ........... ....... ... ... ~.. ....... .. .. .. ... ....................... .... +. ................. .... . ..................... ~....................... 


...................... <.......~ ~ ... .a}...... ............... .......<.......[? ...~.~..... . ......................1......~~.~ ...~~...... ......................L....~~ ....~} ... ... 


2 2 2 2 2 2 2[0 a ] . [0 a ] [1 ail . [1 a ] [a a ] : [a a ] [a 2 a ] . [a 2 a ] 
..... .. .............. . ~..... .... ... ... .. ... .. ........................ ~............. ....... ... ...................... ~... .... .. ... ..... ...... . ................. .... ~..... ....... .. .. ....... 


2 2 2 2[a 2 . [1 a ] : [0 a ] i a ] : [a a ] 
.. .................... .. ............... ............................. ... ............................ .. ............. ~. ......... ............. . ...... .. ....... .. .... ~....... ............... . 
~ ~ 

2: [a a ] : [(;(2 a2] : [0 a2] : [1 a2] 
... .. .. .. .... ......... ... .............. ... .. ... ..... ..... .... .... .... .... ... .. .. ...... ... .~....... ........ .... .. ...... ..... ... .... .... ... ~...................... . 
~............ . .......... ~ 


2 2 2 2 2
: [0: 0: ] : [0: 0: ] : [1 0: ] : [0 0: ] 

Table7 Nodes for State 6 of (7,5) RS-Code in GF(4) 
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The results for the seventh section of the trellis are given on this page. 

The relevant column of the parity check matrix is the following: 

The following equation was used to calculate the table below: 

NewState ~ OldState +Symbols' ( ~) 

Old 

State 

New 

States 

Old 

State 

New 

States 

Old 

State 

New 

States 

Old 

State 

New 

States 

[0 0] : [0 0] [1 0] : [1 0] [a 0] : [a 0] 
• • ••••••• • •••••• • ••• • • .,:••••••••••• • ••••••••••••••••••••••• • •••••••••• -1•••• • ••••••••••••••••••••••••••••••••••••••••• -1 ••••••••••••••••••••• • •· .· . 

· [0 1] . [1 1] . [a 1] 
• ••••••••••••••••••••• -1 • • ••••••••••••••• • •••••••••••••••••••••••••••• -1•••••••••••••••••••• • ••••• • •••••••••••••••• • •• ..:••• • •••••• • ••••••••••••

[0 a] . [1 a] . [a a] 
••••• •• ••••••• • ••••••• ..:•••••••• • •••••••••••••••••••• • ••••••• •• •••••• ,: • •• ••• • •••• • •••••••• • •••• • •••••••••••• • ••••••• -1•••••••••• • •••••• • •••••· .· . 

•

•

[a2 0] [a2 0] 

•• • • • •••••• • ••••••••• • •••••••••••••• • •••••• • • 

••••••••••••••••••••••••••• • •••••• • •••••• • • 

••••••••• • •••••••••••• 

[0 1] [0 1] [1 1] [1 1] [a 1] . [a 1] [a2 1] . [a2 1].......... .. .. ......··i······ ........................................ ~..................... .. .......................~...... .. ....... ..... ... ................ ...... ~....................... 
: [0 0] i [1 0] : [a 0] : [a2 0] 

• •••••••• ••• ••••• ••• •• .j;.. . ...... . ..... . .... . ......................... .:..... . ..................... .. ... . .......... . .. .:...... . .............. . ...................... .. -1 ..... .. ....... .. .... . . . 

: [0 a 2 
] : [1 a 2 

] : [a a 2 
] l [a2 a 2 

] 
.. ... .... ..... ... ..... ~.......... ..... ....................... ... ... .. ~.................. .. .......................... ~..................... ..................... .. .. ~.............. ......... 

l [0 a] j [1 a] i [et ex] ~ [ex 2 ex] 

[0 a] . [0 a] [1 a] . [1 a] [a a] : [a a] [a2 a] : [a2 a] 
············ ·· ········r·····[~····~~]····· · ····· · ······· · ·········r·····[·~····~~]······ ······· · ·········· · ···r····[~····~~j· · ···· ·········· · ···· · ·······r·····i~~· · ··~9· · ··· 

·· ·· ··············· · ··t· ·· ·[~····~·~······ ············ · ········ · ·1·······(~·····~]······ ·.. ·· · ···· · ····· · ······t·· · ·[~· .. ·~~······ ······ · ···············1· ·····[~·;···~]······ 
...................... j....................... ··········· .. ······ .. ··i·· .. ................... ···.. ······ ..·······.. i····· .. ······ .. ······.. ·..··.. ·············· .. i····· ..······· .. ····· .. 

: [0 1] : [1 1] : [a 1] [a2 1] 

[0 a 2 
] [0 a 2 

] [1 az:J . [1 a 2
] [a a 2

] • [a a 2
] [a2 a 2

] [ [a2 a 2
] .... .. ................ r······[~ ...;j...... ················ ·· ····r······r~ ....~j.............................r······r~... ·~i· · ···· ......................."...... [~~... ~j...... 

........... .. ........·1·······[~ ....~.j .... .. ·········· · ····· · ······:-······r~···· · ~i······ ..................... ·1······· 
r 
~....~.j.............................<....•. [~.; ..•.~ j...... 

.. .. ....... .. ........ .~... .. .........................................+.............................................~................................ .............. ~....................... 
[0 0] : [1 0] : [a 0] [a2 0] 

Table 8 Nodes for State 7 of (7,5) RS-Code in GF(4) 
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From the above tables, it is possible to construct a complete trellis by connecting all 

relevant branches on an empty trellis grid. 

Before this is done however, a few important comments are in order. It is obvious that 

quite a lot of calculations are needed in order to be able to draw the final trellis diagram. 

It is easy to see that the complexity will increase as nand k of the code increases. 

However, as the order of the Galois field increases an even greater increase in 

complexity is affected. 

One possible solution to overcome the complexity is to employ a lookup table. which 

alleviates the need for extensive branch calculations. 

Observing the tables that have been constructed a definite pattern emerges. The 

practical implication of this is, that once a point in the lookup table is found, the next 

outcomes may be uniquely determined from the entries of those tables which yielded the 

last output result. The other elements can just be read of in sequence. In this way, the 

derivation of the complete trellis is vastly simplified. 

The next step in the design process is to produce a graphical display of the trellis 

diagram from the calculated data. It is a fairly simple process, in which a starting and 

ending node or state are connected with an interconnecting branch. The branches in the 

above tables of results are defined by listing the starting and ending states of a 

particular section in the trellis. The associated symbol, which is the output for that 

particular branch, may also be found from above the tables, since for each given node, 

the first result was obtained from the first symbol, the second result was obtained from 

the second symbol and so on. This is illustrated on the next few pages, where trellis 

patterns for subsequent sections of the trellis diagrams are displayed consecutively. 
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Chapter 5 Trellis Construction and Decoding of Non-Binary Reed-Solomon Codes 

5.6 	 A Topological Trellis Construction Scheme for Reed-Solomon 

Codes 

As mentioned before, one of the largest restrictions on the use of a Reed-Solomon trellis, 

is the large complexity involved. The small code described above, viz the (7,5) RS-code, 

already had a fairly huge trellis structure. This of course makes the decoding process 

complex and slow to perform. 

The firs t task in the decoding process is the construction of the trellis diagram which is 

used by the decoder. The realtime construction of the trellis can be omitted if the trellis 

is hard coded in the decoder. This however imposes a serious limitation on the 

versatility of the encoder/decoder, as a new decoder/encoder will have to be designed for 

every new application. It would be very advantageous if an elegant trellis construction 

technique could be developed. 

As the base of the Galois field increases, the number of possible symbols in the code 

increases. This in turn has a negative impact on the complexity of the system. The 

number of branches per node in the trellis expands exponentially. A method is required 

which would limit the required number of calculations involved in obtaining a trellis 

diagram. Such a method would lead to large savings in computational complexity. 

In this discussion, the code to be considered is the one used in Subsection 6.2.3, namely 

the (7,5) RS-code. This code has a parity check matrix in which the number of values in 

a column is 2. The whole procedure can easily be expanded in order to accommodate 

larger parity matrixes and codes. 

This is where the previously mentioned partitioning of the states into 4 sub-parts is 

applied. As the state numbering follows a binary sequence, it can be seen that each state 

is numbered by a unique ordering of the 4 symbols in the field. Due to this, each set of 

four sub-parts has the same unique symbol in the first position of this state numbering 

scheme. The second symbol is then just one of the four remaining symbols. In other 

words, for each unique symbol in the first position of a state which identifies the sub­

part of the states, any of the four other symbols are employed to identify a state within 

the sub-parts. This might seem very insignificant, but will prove invaluable later on. 
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As can be seen from the trellis diagrams, the first node of each sub-part is coded in a 

specific colour, which it retains in all other states as well. Due to the fact that 4 nodes 

or states exist within each sub-part, 4 colours are used. These colours are given in the 

order blue, red, green and yellow. Again, this seems very unimportant, but together 

with the first observation, it will provide a very practical method by which the 

complexity of trellis design can be simplified and confined. 

The next important observation is the parity check matrix. Every column of the parity 

check rna trix determines the connecting branches for a specific section of the trellis, viz 

the first column specifies the first section of the trellis, the second column the second 

section, and so on. 

The values inside the parity check matrix depends on the Galois field used. In other 

words, if GF(2) is used, the only possible values in the matrix are the binary values ° 
and 1. If however GF(4) is used, then the possible values the parity check matrix can 

assume are the 4 symbols in this field, namely O,l,a and a2
. At the moment all that 

needs to be remembered, is that there is a different construction associated with the 

element 0, than with the non zero elements 1, a and a 2
. 

The examples show that the calculations made to obtain the branches of the trellis seem 

to follow a cyclic pattern. This can be explained as follows. A lookup table for each 

symbol can be constructed, as was done before. This lookup table gives the result of 

adding any possible valid symbol to the symbol of the lookup table. When the first 

calculation for a node is made, a specific position in the lookup table will provide the 

answer. If this answer is found, no more calculations need to be made, since the 

remaining branch connections can be read off from the subsequent positions of the 

lookup table i.e. the specification of trellis branches follow a very specific topological 

pattern. The table has to be wrapped when the bottom of the table is reached before all 

branches have been specified. 

The tricky task now is to formalize all these findings, in order to provide a systematic 

algorithm for trellis construction with low complexity. 

The foregoing findings may be summarized point-wise as follows: 

• The trellis state numbering is divided into several sub-parts , in which the first 
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element of the numbering stays the same symbol in the sub-part. 

• 	 Colour coding a specific node is important. The colour of a node or state has to 

remain the same in each of the sub-parts. 

• 	 The parity check matrix's columns can be divided into those that have a zero 

element in the first position and those that do not. 

• 	 The symbol in the second position ofthe parity check matrix column, is important 

as far as the selection of subsequent points is concerned. 

• 	 The results of the calculations are cyclic. The answers can thus be read offfrom 

a lookup table as soon as the starting point in the table has been established. 

The discussion will commence by describing and explaining the last few steps in the 

above list based on the (7,5) RS-example. It is said that the results and calculations are 

cyclic. This can be illustrated by using the first node, and the first column of the parity 

check matrix to calculate the 4 branches that emanate from this active starting node . 

The node is labeled [0 0] . In order to find the 4 nodes to which it is connected, the first 

column of the parity check matrix is multiplied by the symbols and added to the starting 

node [0 0]. In this way four new nodes in the second section of the trellis are obtained 

namely [00], [0 1], [0 a] and [0 a2
]. Ignoring the first element of the node, the second 

one changes cyclically. The first calculation can be solved by using the first row of the 

lookup table of Equation 5.35. The answer of the lookup is o. In order to find the next 

three nodes, all that has to be done is to continue reading off the rows of the lookup table 

in Equation 5.35. If the bottom of the table is reached prematurely, i.e . before the 

desired amount of nodes have been numbered, then the table entries are wrapped 

around. The cyclic procedure therefore follows a mod N cyclic pattern where N denotes 

the number of branches emanating from a specific node in the code trellis. This wrap­

around does not occur since it only occurs when the first element is read off a row other 

than the first one. The sequence of branch labels obtained when reading the elements 

offthe lookup table in order are 0, 1, a and a 2
. Comparing this with the results obtained 

by calculation, it can be seen that they correspond precisely. 

This is the first step in constructing a trellis with low complexity. 

The next step is to describe how the values in the columns of the parity check matrix 

affect the structure of the trellis diagram. Recall, that the columns of the parity check 

matrix can be divided into two large groups. The first group includes those columns that 

have the zero element in the first position and the second group those columns that do 
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not have a zero element in the first position. At this point, the state division into 4 sub­

parts becomes important. Two possibilities now exist. If the parity check matrix column 

has a zero in the first position, then a branch emanating from a node in a specific sub­

part will terminate in a node in the same sub-part. If however a column of the parity 

check matrix is non-zero, then a branch emanating from a node in a specific sub-part, 

will have a termination in a node from each sub-part of the trellis diagram. As an 

example of the first case, consider Figure 26. It can be seen that the branches 

emanating from the [0 0] node all end in the same sub-part. This holds true for all 

instances. The second case is illustrated in Figure 27. Here it can be seen that the 4 

branches emanating from node [00] terminate in each of the 4 sub-parts. This is due 

to the cyclic phenomenon described in the previous paragraph. Here it is just applicable 

to the second position of the column of the parity check matrix. It is important to note 

that the sub-part in which a branch terminates is also determined by the same cyclic 

principle described in the above paragraph on cycling. If the first branch enters sub-part 

3, then the second branch will enter sub-part 4, the third branch sub-part 1 and the last 

branch sub-part 2. This becomes extremely important when numbering the branches 

with their corresponding symbols from the Galois field set. 

After discussing all of the important issues, a description ofthe colour coding part is now 

in order . The colour coding displays the culmination of all the above mentioned steps. 

Figure 28 is used as a starting point. This sub-trellis was formed using the parity check 

column [1 1]. As discussed before, the fact that the first element is a 1, forces the 

branches leaving a node in a specific sub-part to enter nodes in different sub-parts. This 

can be seen by just observing the node [00]. The branches enter node [00] in sub-part 

1, node [10] in sub-part 2, [a 0] in sub-part 3 and [a 2 0] in sub-part 4. These 4 branches 

are all marked with blue. Now the interesting part reveals itself. The first node of the 

second sub-part is also coloured in blue, and it can be seen that they enter the nodes 

activated by blue branches leaving node [00]. This phenomenon occurs throughout the 

figure. In order to draw the trellis, only the branches of the first sub-part have to be 

calculated. Hereafter, due to the cyclic phenomenon, all that is required to uniquely 

identify and label subsequent branches in this section of the trellis. 

There is just one other form of topology, which occurs if the first element of the column 

of the parity check matrix is zero . In this case, as illustrated by Figure 26, all the 

branches emanating from a node in a specific sub-part activate all other nodes in the 

same sub-part. All that needs to be calculated for this section of the trellis is the first 
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section. Hereafter all remaining trellis branches may be labeled according to the cyclic 

pattern described. 

In fact, it should be noticed that all that is really necessary to calculate are the branches 

of the first node in the trellis. This, together with the two types of topologies and the 

cycling phenomenon determines the trellis uniquely and completely. 

For the above trellis, it would normally be necessary to do 404 complex calculations in 

GF(4). If the cyclic topology is exploited, the whole trellis can be calculated with only 28 

complex calculations in GF(4) a saving in the order of a factor of 14. 

This method provides an enormous step forward in the whole trellis design procedure 

for Reed-Solomon codes. Note that the proposed algorithm does not provide a minimal 

(i.e . minimum number of states and branches) trellis, but only simplifies the trellis 

construction. A procedure to find a minimal trellis is given in the following chapter. 

On the next page, a flow diagram of the topological trellis design procedure is presented. 
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Figure 38 Flow Diagram of the Topological Trellis Design Algorithm 
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5.7 Symbol Error Rate of Reed-Solomon Code 

In this section, the performance of Reed-Solomon codes is investigated. The main task 

at hand is to show that Reed-Solomon codes can be decoded with the Viterbi Algorithm. 

The decoding performance is shown to be the same as for algebraic techniques, since the 

Viterbi algorithm is a maximum likelihood technique. 
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Figure 39 Simulated Symbol Error Rate of (7,5)-Reed-Solomon Code 
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As mentioned and shown previously, the trellis diagrams for Reed-Solomon codes are 

very large. This is the main problem with Reed-Solomon codes. As it was possible to 

construct a trellis for a Reed-Solomon code in the previous chapter, it is now possible to 

Viterbi decode the Reed-Solomon code. This is illustrated on a relatively small code, as 

it takes quite a long time to construct a symbol error rate curve . The same principles of 

course apply to larger codes also . 

Again consider the(7 ,5)-Reed-Solomon code from the previous chapter. The simulation 

setup employs a Reed-Solomon encoder, the output of which is transmitted over an 

AWGN channel. In the decoder, a SDML Viterbi decoder is employed. The simulation 

setup is the same as depicted in Chapter 2. 

On the previous page, the symbol error rate for the Reed-Solomon code is shown. 

5.8 General Discussion on Reed-Solomon Performance 

Reed-Solomon codes were traditionally decoded in the frequency domain using the 

Berlekamp Massey algorithm [20]. This method uses Fourier transforms to do the 

decoding. Due to the Fourier transform, the decoding is only an approximation, and 

marginally better decoding results can be obtained employing a maximum likelihood 

decoding technique such as the Viterbi algorithm. Although the scope of this 

dissertation was not to show that Viterbi decoding is better than Berlekamp Massey 

decoding of Reed-Solomon codes , an attempt was made to use existing standard software 

to find symbol error rate curves for a Berlekamp Massey algorithm. This was possible, 

but these software packages do not provide for such small codes as the (7,5)-Reed­

Solomon code used here. Reed-Solomon codes usually have typical specifications such 

as n = 255 and k = 251 or the likes. This meant that a Berlekamp Massey algorithm 

would have to be re-written in order to do this comparison. The other problem was that 

the trellis complexity sky-rockets with high values of nand k and that a normal personal 

computer would not be able to calculate the required symbol error rates for the large 

block lengths. This does not even take into account the Galois fields which are 

commonly used in VHDL Reed-Solomon coders. These often run in fields as high as 

GF(128) or GF(256) compared to the GF(4) field used in the Viterbi simulation presented 

here . 
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The comparison which seemed possible at first proved not to be possible with the current 

state of computer hardware available. The solution to this problem would be the VHDL 

implementation of such a Viterbi Reed-Solomon decoder. This could then be compared 

with the normal Berlekamp Massey decoders using a bit error rate analyzer, but this 

falls beyond the scope of this dissertation. 

What has been shown is that it is indeed possible to decode Reed-Solomon codes with 

decoding techniques usually reserved for convolutional code decoding. This opens many 

possibilities for integrating coding schemes employing both powerful Reed-Solomon codes 

and convolutional codes. It is possible to use the same decoder in the decoding process 

by deriving the resultant trellis of the concatenation of all codes employed. 
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