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Introduction 

This chapter provides the framework on which the rest of the dissertation is based. 

To start off, a historical overview is presented stretching back to the dawn of modern 

telecommunication over half a century ago. Following this historical account, a clear 

breakdown of the topics examined and contributions made is provided. This will provide 

the reader with an overview of the work following the introduction. 

In the next section, the goals and objectives of the dissertation are outlined. They are 

again evaluated in the summary at the end of the dissertation, and should be read 

together with this introductory chapter. 

1.1 Historical Overview 

Since the epochal work by Claude E . Shannon in 1948 [23], various different channel 

encoder and channel decoding techniques have been developed for the transmission of 

data over noisy communication channels. The aim of all these techniques are the same: 

Transmit as much data as possible given a certain time frame and channel characteristic 

with the least amount of errors. This simple statement caused an uproar in the 

communications and mathematical fields when Shannon derived a bound specifying the 

maximum capacity that can be achieved at various energy to noise ratios for a given 

channel. Since 1948 this bound is commonly known as the Shannon Bound [23]. It has 

become the dream of many a designer and researcher to cross this theoretical bound 

discovered by Shannon. To date, the bound has not been reached nor exceeded, although 

the latest techniques come to within dB's of this elusive goal. 

The various coding techniques are abound as sand in the Sahara desert. All channel 

coding techniques can be divided into two main groups, namely the class of convolutional 

codes and the class of block codes . Many hybrid systems have also evolved over the 

years, but in principle, the two above mentioned groups are the two main fields on which 
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research is currently done. 

The enormous difference between the properties of these two groups of codes has always 

lead to either block codes or convolutional codes being researched, but efforts involving 

combinations of these codes were few and far between. This phenomenon mainly 

sprouted from the completely different decoding procedures used to decode the two 

groups of codes. For block codes, pure algebraic techniques involving correlative and 

comparative processes were developed, whereas elegant soft decision techniques were 

discovered for convolutional codes. As the convolutional soft decision decoding 

techniques improved with time, the use of block codes in systems became less attractive . 

This spiraling effect led to a situation were almost all of the effort was being focused on 

convolutional codes and their decoding techniques . 

The decoding techniques for convolutional codes rely on the fact that all convolutional 

codes can be described by a state-time variant diagram termed a trellis diagram . This 

sparked the idea that if a trellis diagram could be obtained for a block code, the same 

elegant convolutional decoding techniques could be applied in the decoding process of 

block codes. 

In 1974 Bahl, Cocke, Jelinek and Raviv [2] proposed a possible method for the 

construction of a block code trellis diagram. Their valuable work was used as a base by 

J .K. Wolf [16] in 1978 in order to develop a procedure for the construction of block code 

trellis diagrams. Forney [5] also elaborated on the topic, and introduced the world to 

coset trellises, which are described in the chapters to follow . 

Parallel to this discovery, a new type of block code was introduced on the 21st of January 

1959. This non-binary block code became known as the Reed-Solomon[20] code, named 

after its discoverers, Irvine Reed and Gus Solomon. The Reed-Solomon code has become 

the most widely used block code and has the best error correcting capability of all block 

codes. Many different techniques, apart from the algebraic ones, have been developed 

to decode Reed-Solomon codes (the Berlekamp Massey [21] technique to name just one). 

Nevertheless , the reasons why this group of codes has never enjoyed the advantages of 

convolutional decoding techniques can firstly be attributed to the enormous size of the 

codes and secondly to the fact that it falls into the category of a block code. This 

dissertation will investigate methods for soft decision maximum likelihood decoding of 

Reed-Solomon codes. A quote from a paper by Cooper [21] is found to be very relevant 
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here: "The Holy Grail of Reed-Solomon decoding research is the soft decision maximum 

likelihood decoder. There is however still a great deal of work to be done before the Grail 

is found and the knights can go hO/ne." 

Now, 50 years later, more and more effort is channeled into the development of novel 

channel encoding techniques employing both block codes and convolutional codes . In this 

manner, it is aimed to combine the best of two worlds in order to get closer to the 

ultimate goal in communication theory - the Shannon Bound. 

1.2 	 Goals and Objectives 

The dissertation is mainly concerned with various decoding techniques of block codes. 

The main objective is to decode block codes with the same decoders that are employed 

in the decoding process of convolutional codes, namely the Viterbi and MAP algorithms. 

From this main goal several secondary goals emanate which are listed below. Each 

secondary goal is considered to be as important as the original goal. 

• 	 This dissertation aims at providing viable trellis construction techniques for block 

codes, their success being evaluated and judged in terms of complexity. 

• 	 Soft decision maximum likelihood techniques, traditionally reserved for the 

decoding of convolutional codes, are applied to the decoding process of block 

codes. 

• 	 Comparisons between the Viterbi decoding techniques and the algebraic 

techniques are made. The comparisons are done for both hard decision and soft 

decision decoding. 

• 	 The trellis construction techniques are then extended to include the construction 

of trellises for the Reed-Solomon family of codes. 

• 	 A novel trellis construction technique for Reed-Solomon codes is presented which 

reduces the amount of calculations required during the construction of such a 

trellis . 
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• 	 Decoding of the Reed-Solomon codes IS attempted employing the Viterbi 

algorithm. 

• 	 The dissertation shows that maximum likelihood decoding can be achieved with 

the techniques mentioned above, and that it compares favorably with the 

traditional algebraic decoding results. 

• 	 An algorithm is investigated which decreases trellis complexity, making decoding 

oflarger block codes possible with the Viterbi algorithm. Simulation results are 

presented to verify the decoding performance using the lower complexity trellises. 

1.3 	 Outline of Dissertation 

In this chapter, the Introduction, a framework IS provided on which the entire 

dissertation is based. 

The second chapter, Foundations of Channel Coding, deals with important coding and 

information theory concepts. The emphasis in this chapter is placed on coding theory, 

and all the relevant topics are discussed. The most important aspect of the coding theory 

as far as this dissertation is concerned, is the discussion of block codes and their 

properties. This discussion will provide the foundation on which all other chapters are 

based. Throughout the remainder of the work, reference will be made to the second 

chapter of the dissertation. 

Decoding of Block Codes is the third chapter of the dissertation, and employs the 

technique discussed in the previous chapter to realise a method for decoding block codes. 

Here techniques normally reserved for the decoding of convolutional codes are adapted 

and used for the decoding of block codes. The main focus in this chapter is the creation 

of trellis diagrams for block codes. This allows the aforementioned decoding processes 

to be used for block codes. Not all the known trellis construction techniques are 

discussed in this chapter, but reference is made to the appendixes at the end of the 

dissertation for more information. 

The chapter, Performance Issues of Various Block Codes, investigates the performance 

of a selected group of block codes, namely the Hamming, Reed-Muller and BCH families 
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of codes. Error rate curves of the block codes obtained by using the Viterbi algorithm are 

compared to curves obtained by traditional algebraic decoding techniques. These curves 

are then also compared to the theoretical curves obtained by calculation. It is shown 

that maximum likelihood decoding is achieved by employing the convolutional decoding 

techniques on block codes. 

Trellis Construction for Reed-Solomon Codes is discussed in chapter 5. The importance 

of this group of error correcting block codes has already been pointed out. Very little 

information is available on this topic in literature, and therefore a great amount of detail 

is presented in this chapter. Again, the first step for Viterbi decoding of Reed-Solomon 

codes is the construction of a trellis diagram for the code . As Reed-Solomon codes are 

huge compared to any other type of code, their trellis diagrams are too large to illustrate 

schematically. For this reason a small code was chosen for illustration purposes. A 

topological analysis is done on the constructed trellis, and several novel findings are 

made, resulting in a novel "topological" trellis construction technique for Reed-Solomon 

codes. The performance of this family of codes, when used together with convolutional 

decoders, is examined. Error rate curves are plotted in order to demonstrate that 

decoding of Reed-Solomon codes employing either the Viterbi or MAP algorithms is in 

fact possible. This ultimately means that Reed-Solomon codes can be maximum 

likelihood soft decision decoded by the same algorithms normally used for convolutional 

codes. 

Chapter 6 presents an introduction to trellis complexity, which is accompanied by a 

technique for the successful reduction oftrellis complexity. As mentioned earlier, the 

only liITliting factor in the trellis decodilll;:; JJI'Ul:t!t;t; it; the actual complexity of the trellis. 

The larger the trellis, the more complex the decoding, and this will ultimately make the 

decoding of large block codes impractical. A simple example is used to show that this 

proposed technique is in fact able to reduce the trellis complexity by a significant factor. 

The effect of this technique is that larger codes can now be decoded with the same 

amount of effort required to decode smaller codes, since the trellis size of the larger 

codes can be reduced significantly. This counteracts the apparent drawback of block 

code decoding with the Viterbi Algorithm. Simulation results are presented which show 

that there is no degradation in error correcting performance when such a reduced trellis 

is used in the decoding process. 

A Summary is provided in chapter 7. As mentioned earlier, this chapter should be read 
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together with the current one in order to determine which of the goals and objectives 

have been achieved. An objective stance is taken and the goals are evaluated in the last 

chapter of the dissertation. 

Apart from the chapters listed above, there are a total of eight Appendixes which provide 

more information regarding several topics under discussion to the interested reader. 

1.4 Major Contributions 

The major contributions made in this work are as follows: 

• Trellis complexity resolution. 

• Novel trellis construction techniques based on Wolfs method. 

• Simulation results for verification of techniques. 
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Chapter 2 

Foundations of Channel Coding 

2.1 Introduction 

This chapter is dedicated to describing the general principles of channel coding and error 

correcting codes. The two main groups of error correcting codes that will be discussed 

here, are block codes [3], [4] , [8] and convolutional codes. In order to describe exactly 

how a trellis for a block code is constructed in the following chapter, it is essential that 

several definitions and descriptions be given in this chapter. For this reason, this 

chapter is divided into four parts. The first part gives a general description of the 

fundamentals of block coding. This is then followed by a description of convolutional 

codes. The third part illustrates several decoding principles, along with a detailed 

derivation of metrics. At the end of this section, a short description of general methods 

for block code decoding will be given. The last section will detail the Viterbi algorithm 

[14], as this is, besides the MAP algorithm, still the most important algorithm available 

for decoding block code trellises. 

2.2 Block Codes 

Besides providing a mathematicalframework for block codes[3], [4], [8], [15], this section 

mainly contains a description of block codes. Several coding terms such as Hamming­

weight, Hamming-distance, minimal-distance and error correcting capability, which are 

used freely throughout this work and other standard works on this topic, will be 

described and illustrated. The prior knowledge of material contained in this chapter is 

of utmost importance before attempting to master any additional information and 

methods contained within this work. 
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2.2.1 Linear Block Code, Generator Matrix and Parity Check Matrix 

The vectors of the n-dimensional vector space GF(q)" contain n components, which are 

taken from the symbol alphabet GF(q) = {O,l, .. .,q-l}. If any arbitrary subset of this 

vector space contains qk vectors, then this set is termed a (n, k)-block code C with code 

rate R =kin and its elements are the codewords C = (co,cp ... , c _ I ). If the addition ofn

two codewords and the multiplication of one codeword with an element of GF(q)" gives 

another codeword, the code will be a subset of GF(qt termed a linear block code . From 

the above reasoning, it follows that the zero vector 0 has to be contained within every 

linear block code. 

If the possible 2k information vectors i = (io, i p ... , ik) are each assigned to a codeword 

C in a specific way, a code book is formed. The specific manner of assigning these 

vectors is of utmost importance, as this is what differentiates one code in the space from 

another one. A linear assignment proves very effective with linear block codes, as the 

code can then be described by a multiplication of the information vector i and a (1? x n)­

matrix G: 

c = j·G (2.1) 

The matrix G with elements from GF(q) has a rank k and is termed the generator 

matrix. The row vectors gi form a possible base for the subset of GF(q)" described by C, 

in that every codeword of C is a linear combination of the row vectors gi of G, with i = 

O,l, ... ,k. The vectors gi can be described as either a column vector or a row vector, 

depending on whether a subscript or superscript notation is used, i.e. 

Column vectors j=l, ... ,n (2.2) 

gkj 

Row vectors gi = (gil' gi2 , ... , gin)' i = 1, ... , k (2.3) 

with 
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glgil gl2 gIn 
g2g21 g22 g2n 

(2.4)G=(gi/)= = (gpg2,···,gJ = 

gkgkl gk2 gkm 

The set of all vectors, which are orthogonal to the vectors of C, the so called orthogonal 

complement C~of C, is called the dual code of C. The dimensions of this code is n - k. If 

any n - k base vectors of C~are randomly chosen for the rows hi of the ((n - k) x n)-matrix 

H, then the following holds 

(2.5) 


where 0 is the zero vector of length n - k. The matrix H, which already identifies the 

linear block code C without the use of the accompanying generator matrix G, is termed 

the parity check matrix. 

Since the rows g i of the generator matrix G are possible codewords, it follows from 

equation (2 .5), that 

(2.6) 


where 0 is the (k x (71, - l?))-zero vector. 

2.2.2 Equivalent Codes and Systematic Codes 

If a (n,k) block code C is defined by its generator matrix G, an equivalent code with the 

same parameters can be constructed if the following operations are performed[8]: 

• 	 Elementary row operations: 

Exchanging two rows 

Multiplication of a row with a field element (X E ( GF(q) \ {O}) 

Replacing a row by the addition of that same row and a multiple of any 

other row 

• Exchanging any column vectors 
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If a chosen number of operations are performed in succeSSlOn, then the resulting 

manipulation can be described by a matrix multiplication To' G, where To is a regular 

(k x k) matrix with elements taken from GF(q) . With this type of manipulation, it is 

possible, without changing the original code C (the arrangement of the code vectors c i 

do however change), to rearrange any generator matrix into a form where k of the n 

columns are represented by unit vectors of length k. By exchanging the appropriate k 

rows, the generator matrix can be transformed to: 

(2.7) 


In the above equation I" is the (k x k) unit matrix and A is a (k x (n - k)) matrix. A code 

with a generator matrix in this form is termed a systematic code . The first k code 

symbols correspond with the information vector i, since 

(2.8) 

where the {c) , j = k, ... ,n - k denote the parity bits of the codeword C. 

Although not explicitly proven here, it is shown that every block code can be transformed 

into a corresponding systematic code. 

If the generator matrix G is transformed into the systematic form as per equation (2.7), 

then the corresponding parity check matrix H can be found accordingly: 

, TJH = (-A I - k ), (2.9)
n 

where I n.k indicates the «n - k) x (n - k)) unit matrix. This is fairly simple to prove, since 

" TG·H = (IkA)· ( -- A: =-A+A=O (2.10) 
I n- k 
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as per equation (2.6). 

Just like the row and column operations performed on the generator matrix G do not 

affect the code, so does the performing ofrow and column operations on the parity check 

matrix not affect the code at all. The entire transformation process of the parity check 

matrix H can be described, as before, by a matrix multiplication TH . H, where TH is a 

regular ((n - k) x (n-k» matrix with elements taken from GF(q). Similar to the generator 

matrix, the exchange of columns again provides an equivalent (but not the same) code. 

Often an equivalent form of the original code C may facilitate a far simpler decoding 

procedure. It is often also desirable (for several reasons) to describe a block code C in 

its systematic form C. Simple decoding procedures have also been developed for 

systematic error correcting block codes. 

2.2.3 Cyclic Codes - Generator and Parity Check Polynomials 

When any shifted version of a linear block code C produces another valid codeword in C, 

then this code is labeled cyclic. As shown in a few standard works, any cyclic code can 

be described by a generator polynomial [8] in the form: 

2 n-k 
g ( X) = go t gl . X t g2 . X t ...t gn-k . X (2.11) 

In relation to this, the coefficients of the code polynomial 

(2.12) 


are taken from the components of the code vector C = (co,cp ... ,c _ 1 ).n 

A very simple relationship exists between the code vector c(x) and the information vector 

i(x), namely that one can directly multiply the information polynomial i(x) of degree <;;k 

-1 with the generator polynomial g(x), and as a result obtain the code polynomial c(x) of 

degree <;; n - 1. 

C(x) = i(x)· g(x) (2.13) 

Centre for Radio and Digital Communication (CRDC) 

Department of Electrical and Electronic Engineering 

University of Pretoria 11 



Chapter 2 	 Foundations of Channel Coding 

The resulting generator matrix is given below: 

0go 	 gl g2 gn-k-l gn-k 


go gl g2 gn-k-l gn-k 

(2.14)G= go gl g2 gn-k-I gn-k 

go gl g2 gn-k-I gn-k 

0 go gl g2 gn-k-l gn-k 

Similar to equation (2.5), there exists a so called parity check polynomial hex) of degree 

k for cyclic codes for which the following holds true: 

c(x)· hex) = 0 mod(xn - 1) for all c(x) E C. (2.15) 

This leads to an expression: 

g(x)· hex) = xn - 1. (2.16) 

For any possible h(x), the parity check matrix could be given as follows: 

hk hk_1 hk-2 ~ ~ ho 0 

hk hk- 1 hk_2 ~ ~ ho 

H= hk hk_1 
hk_2 ~ hI ho (2.17) 

0 	 _ _hk 	 hk 1 
hk 2 ~ ~ ho 

2.2.4 Syndrome 

If a codeword is transmitted over a noisy channel, it is possible that some of the symbols 

of the transmitted code are in error. In other words, an error vector e is added to the 

code vector c: 

r = c+ e 	 (2.18) 
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If the received vector r is multiplied with the transposed parity check matrix H T
, then 

the answer is 0 only if e = 0 (error free transmission), or if e E C, which in term 

translates r into another valid codeword. The expression r·HT is called the syndrome s, 

and is not only dependant on the error vector e , but also on the transmitted codeword 

c, since it can be shown with the help of equation (2.5) and (2.18) that the following holds 

true: 

T T Ts=r·H =(cte)·H =e·H (2.19) 

2.3 Convolutional Codes 

Similar to the previous section, this section presents the basic fundamental concepts of 

convolutional codes [5], [6] . Convolutional codes are the second large group of error 

correcting codes. Their structure is vastly different from block codes, and the generation 

of these codes is also done in a completely different way. 

2.3.1 Convolutional Encoder 

In the previous section it was shown that the n symbols of a block code were just 

dependant on the k information symbols of the relevant information vector. However, 

for a convolutional code, an additional parameter is required, namely M. The parameter 

M is called the arrangement of Inemory of the encoder, or in short, the memory of the 

convolutional encoder. The n code symbols of the convolutional code are thus a function 

of M previous information vectors . 

An example of a convolutional encoder defined over GF(q) with q = 2, R =kin = 2/3 and 

M = 1 is shown in Figure 1. For each branch i, k = 2 information symbols from the 

symbol alphabet GF(q = 2) are shifted into the shift register. These are then combined 

with the previous information vector (M = 1) to form a codeword C i . The shift registers 

are loaded with zeros at the start of the encoding process. 
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ij_1,0 

911 =1 913=1 
(1) (1 ) 

i1-1 

ij_1 ,1 

921=0 
(1 ) 

ii,O 

911 =1 912=0 913=1 
(0) (0) (0) 

i
j 

i j ,1 

Figure 1 Example of a Convolutional Encoder with R = 2/3 and M = 1 

Several methods of describing convolutional codes and convolutional encoders [5], [14] 

have been developed, For the purposes ofthis study, only the matrix representation and 

the representation in trellis form will be described. The above example of a 

convolutional encoder will be used to illustrate the representation forms . 
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2.3.2 Matrix Representation of Convolutional Codes 

The mapping of the information sequence 

(2.20) 


into the code sequence 

c = (Co, C1 , C2 , •.• , Ci , ••• ) 

can be described (analog to equation (2.1» by 

c = i ·G 

where the generator matrix has the following semi-infinite form: 

(2.21) 

(2.22) 

Go 	 G1 G2 
G

M 
_

I GM 0 


Go GI G2 GM - 1 GM 

(2.23)G= 

Go GI G2 G1V1 - 1 GM 

0 

The (k x n) sub-matrixes 

g(l) 	 g(1) g(1) 
II 	 12 In 

(I)g(1) g(1) 
21 22 g2n

G, = (gy)) = (2.24) 

(I) g(l) g(1)
gkl k2 kn 

can be read directly from Figure 1. In this example, the matrix is as follows: 
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1 

1 

0 

1 

1 

0 

1 

0 

1 

0 

1 

1 
0 

G= 
0 

1 

1 

0 

1 

1 

0 

1 

0 

1 

0 

1 

1 
0 

(2.25) 

0 0 
1 

1 

0 

1 

1 

0 

1 

0 

1 

0 

1 

1 
0 

with 

(2.26)Go = 1 1 

1 o 
~l 

and 

1 
(2.27)o 

The generator matrix can also be represented in a polynomial form, as follows: 

gIl CD) g12 CD) 

g21 CD) g22 CD) 
(2.28)GCD) = (gil (D)) = 

The elements gij(D) ofthe above matrix are polynomials of degree Mij s M 

g .. (D) = g(O) + g(l). D+ g~2) . D2+ .. +g(Mij-I). DMij-l + g(Mij). DMij (2.29)
lj lj lj lj • lj lj 
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with the coefficients g~l) of the matrixes G l from equations (2.23) and (2.24). 

G(D) can thus be written as 

(2.30) 

The so called memory size of a convolutional encoder is defined as follows: 

k 

Vc = "maxM. ~ M·k~. Ij 
j= I J 

In this example this would translate to: 

(2.31) 


1+ D D 
(2.32)G(D) = ( 1 

1 

and 

2 

Vc = "maxM = max(1,l,l) + max(O,O,l) = 1+ 1= 2. (2.33)~ . Ij 


i=1 J 


The memory size Vc exactly determines the amount of registers used in the shift 

register structure of the convolutional encoder. 

2.3.3 Trellis Diagram Representation 

If one defines the contents of the registers Vc containing the previous information 

symbols, which are used to calculate the current codewords, as states of the 

convolutional encoder, then a series of nodes develop . These series of nodes allow the 

representation of the q VG possible states, and emanating branches that represent the 
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q" possible information vectors at a certain instant in time. This graph of topologically 

arranged nodes and branches is called a trellis diagram. In short, it can be describes as 

the time equivalent representation of the state diagram of the convolutional encoder. 

For the convolutional encoder presented in Figure 1 of this section, the corresponding 

trellis diagram is given in Figure 2 below. 

Stages 

;=0 ; = 1 ;=2 

til 
CI)-S en 

00 

01 • 

10 • 

... 11 • 
11/101 11/101 

• • • 

• • • 

• • • 

• • • 

Figure 2 Trellis Diagram of the Convolutional Encoder from Figure 1 

The vectors on the left hand side of the figure indicate the state that the specific encoder 

is in. On the branches, the relevant information vectors along with their respective code 

vectors are indicated. The notation that is used on the branches is a general 
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input/output notation, and this notation will be used throughout the dissertation. This 

means that the information vectors are listed on the left hand side and the resulting 

output or code vectors are listed on the right hand side. 

After M stages, when the information vector has reached the last register block, the 

trellis is fanned out. This means that all the branch transitions from that stage will be 

the same as the branch transitions from any stage after that particular stage where fan­

out has occurred. 

2.4 On the Decoding of Block and Convolutional Codes 

In this section, several decoding principles of error correcting codes will be presented. 

This will be the basis on which the latter chapters on decoding will be based. 

2.4.1 General Decoding Principles 

In Figure 3, a simple structure for a digital transmission system [10] utilizing a channel 

encoder and a channel decoder is shown. At the encoder, k information symbols (an 

information vector i) are mapped onto n code symbols (a codeword c). The code 

sequence is then encoded modulation specifically in the block "Transmitter" and 

transformed into a transmission signal (modulation) . This signal is then transmitted 

over the "Additive White Gaussian Noise" channel, where transmission errors are being 

introduced to the original error free signal. In the "Receiver" block, the received signal 

is demodulated to produce the estimated received sequence r. The decoder establishes 

an estimated equivalent i of the transmitted information sequence i. 

For simplicity reasons, a BPSK-modulation [10] is assumed. Furthermore, no inter­

symbol interference is found in the channel. If this is the chase, then the blocks labeled 

"Transmitter", "AWGN channel" and "Receiver" in Figure 3, can be combined into a 

time-discrete memory-free channel, in which the/h component of the received sequence 

r is only dependant on the l' component of the code sequence c . 
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Source 

Information 
Sequence i 

Channel Encoder 

Code 
Sequence c 

Transmitter 

Transmission 
Signal 

Channel AWGN 

Sink 

Estimated 
Information 
Sequence! 

Channel Decoder 

Received 
Sequence r 

Receiver 
Signal 

Receiver 

Figure 3 Structure of a Digital Transmission System 

There are two possible ways how the receiver passes on the information (obtained from 

the demodulated received sequence) to the decoder: 

• 	 The receiver decides for every received code symbol the corresponding code 

symbol that was most likely sent. This is then passed on to the decoder without 

sending any other information about the certainty or likelihood of the decision . 

This method of decoding is termed hard decision decoding. This means that for 

the previously mentioned time-discrete memory-less channel, the components of 

the error vector e and the received vector r have the same range of values as the 

code symbols. In this binary case this would translate to elements from GF(2) . 

• 	 The decoder passes an additional value to the decoder. This additional value 

expresses the reliability of the preceding decision for a particular code symbol. 

With a binary code alphabet this would mean that the real value and not just a 

one or zero is passed on to the decoder. For the case of a hard decision decoding 

process, the real valued received vector would be transformed into the closest 

matching binary symbol, and passed on to the decoder. With soft decision 

decoding the decoder receives the real valued symbols, and can use this 

additional information, often referred to as channel information, in the decoding 
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process. The effect of soft decision decoding, is that for the same bit error rate, 

a low code rate code needs about 2 dB Ebi/No less using this method, than with 

hard decision decoding. With higher code rates, this difference becomes smaller. 

It is intuitively assumed that the components of the error vector e and the 

received vector r are real valued. 

Independent of which of the above mentioned schemes is used, the result of the decoding 

process can be grouped into either one of the following categories: 

• 	 Correct Decoding, which implies that the decoder has identified the errors 

introduced by the channel, and has corrected them. The decoder thus delivers 

the same information that was initially sent to the information sink. 

• 	 Incorrect Decoding, which means that the decoder does not deliver to the 

information sink the same information that was initially sent. 

• 	 Decoding Failure, implies that the decoder does not deliver any information 

vector to the information sink. 

The following methods are envisaged in the decoding process: 

• 	 Error Detection 

Here the decoder only checks whether or not the received vector represents a 

valid codeword. If this is not the case, then the decoder does not perform any 

operation aimed at correcting such an inherently incorrect vector. In the case 

where e E C, the decoder is not even able to recognize the error seeing that r E 

C even though r * c. 

• 	 Maximum Likelihood Decoding 

If the decoder makes a decision (for any given received vector r) about which one 

of the codewords cwas most likely sent, in other words, 

P(clr) = maxP(clr) 	 (2.34) 
CEe 

then it is called the Maximum-A-Posteriori (MAP) decision rule. According to 

Bayes theorem, the following holds true: 
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( I ) 
- P(r/c). P(c) 

(2.35)P cr - Per) . 

Since we are dealing with the received vector r , the probability of it being the one 

out of all the possible codewords, 

Per) = I P(rle)· P(C) 	 (2.36) 
all CE C 

is constant, as long as it is the vector under inVf~st.igRt.i()n Tfthe cod(,'words c are 

all equiprobable (in other words, all the possible codewords A-Priori­

Probabilities PCc) = l/qk are the same), then the following decision rule applies: 

P(rlc) = max P(rle) 	 (2.37) 
CEC 

If the decoding is done according to this principle, then it is termed Maximum 

Likelihood decoding. 

• 	 Bounded Minimal Distance Decoding 

In this method, not all the possible received vectors r are decoded, but only those 

in which a bounded amount of errors exist. A possible undesirable outcome of 

this type of decoding, is decoding failure . 

For the different decoding methods [10], error probabilities can be defined as follows : 

• 	 Block Error Probability 

. Number of incorrectly decoded codewords
P

BI 
k = hm ----~----~--------- (2.38) 

oc 11"",, <:0 Number f.1 of sent codewords 

• 	 Bit Error Probability 
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. Number of incorrectly decoded information bits 
P . = hm -------'--------'-------'------- (2.39) 

BlI v--> oo Number v of sent information bits 

The optimal decoding (i:. e., the error probability is minimized) of a binary block code or 

convolutional code with the incorporation of reliability information, (/:.e.,soft decision 

decoding) will be investigated in more detail for the BPSK modulation system 

transmitting over a AWGN-channel. 

To derive an expression for the decoding strategy and the metric, the detailed system 

representation of Figure 4 is used. The already described time discrete, memory-less 

channel adds to the transmitted sequence a real valued error vector f. This is not to be 

confused with the error vector e with components from GF(2). As explained in the 

definition of soft decision decoding, the channel decoder uses this real valued received 

sequence y for decoding, and also assumes the function of the modulation specific 

decoding. 

Source 
ijE{O,l} 

Channel Encoder 
cj E{O,l} Modulation 

Specific Encoding 

X j E {-l,l} 

+ 
f E~

J 

Sink 
~ E {O,l} Soft Decision 

Channel Decoder 
Yj E 9t 

Receiver 

Figure 4 System Model for the Derivation of Decoding Strategy 

The components ~ of the error vector f are (given the present assumptions) normally 

distributed random variables with the following density function: 
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(2.40) 


with cy 2= No where No is the single sided noise power spectral density. Analog to the 

previous discussion, the components Yi of the received vector yare also normally 

distributed random variables with average values of -1 and 1, dependant on the sent 

value x
J 
of the transmission sequence x. It follows that the density function of Yj is also 

dependant on the variable Xj. 

(2.41) 


5 . 


.---------------~~----~~------~~----~------~~---------------.~ 
-lOa 

Figure 5 Probability Density Functions 
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Since ~ and Yj are stationary probability values (i.e. their density functions 

Ij Yj 

(2.42)cD (fJ = fcp (t ) . dt z.e. <J>(YiIXj)= fcp(tIXj)'dt 
S=-(f) S=-(f) 

are stationary), the probability p(Yj = alXj) is zero for any arbitrary value of a . 

For the purpose of the following discussion, the MAP decision rule of equation (2.34) is 

considered. If, instead of the received vector r with discrete values for the components 

rj , the vector y with real valued components Yi is used, then equation (2 .34) changes to : 

p(xlY)= max p(xly). (2.43)
all x 

Since, as explained above, no more discrete probabilities P(yl x) exist, the terms P(r Ic) 

and P(r) from equation (2.34) have to be replaced with <p(ylx) and <p(y) respectively. 

(2.44) 


where 

cp(y) = I cp(Ylx), p(x), (2.45) 
all x 

which for a given y, just as with P(r) from equation (2.34), results in a constant value. 

Due to the before mentioned fact, the decision rule as stated in equation (2.43) can be 

rewritten into the following decision rule: 

cp (ylx) = max cp (ylx) (2.46)
all x 

This means, that the most likely sent vector Xfor equally likely transmitted vectors x 

is the one which maximizes the above probability density function. 
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The expression <p(YI x) to be maximized, is transformed with the assistance of equation 

(2.41) . The vectors x and y each have n components in this case. 

To maximize this expression, it is necessary to minimize the sum in the exponential 

function . 

n n n n n 

I(y/ - x/t = I(yJ - 2x,y, + xi) = Iy; - 2Ix,y, + Ix; (2.48) 
/=1 {=! {=1 {=! {=! 

From the above expression it follows that L yi (given the received vector y) as well 

aSL xi =n are constant, which implies that in order to minirnize the given sum, only L x/y, 
has to be maximized. 

In conclusion, it can be stated that with BPSK transmission of n code symbols over an 

AWGN channel, the Maximum-Likelihood-Decoder maximizes the following sum: 
n 

Ix/y/ = x· yT (2.49) 
' = 1 

In other words, the scalar product of the sent vector x and the received vector y is 

maximized by the Maximum-Likelihood-Decoder. 

2.4.2 Decoding of Block Codes 

For any given code, there usually exists a multitude of different decoding procedures 

[10], [1], [2]. The choice of any given decoding procedure above any other is usually 

governed by the type of application. Other factors which contribute to the choice are, for 

instance, the availability of computing power, the speed of the specific decoding and the 

ease of implementation of given algorithm. These factors obviously also have to be 

considered when choosing a code, since these factors will impose restrictions on the type 

of code to be used, and also limit the parameter choices for the code (e.g. the possible 
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n k may by decoding 

III addition, channel state information also to be considered the decoding 

process Decoding) and 

process (the will SDML are only 

very allow for a 

Theoretically, every 

that every >'or'''n,o 

block code can be decoded process, III 

most likelycompared to all sent vectors 

one vU''''>JvU as per It can 

outlined method, maXlmum 

chosen. the number calculations exponentially with k, it is not a very 

k. main topic this work is to 

rate codes 

with The following chapters will be dedicated to the development and 

tuning of such procedures. 

2.4.3 Decoding of Convolutional Codes 

The convolutional the n symbols are not only 

k information symbols the current information vector, but also on M prevIOUS 

information is the reason why decoder a more information 

to do decoding on than a block above comparison holds true all 

viable decoding 

provide pf(JCE~atlr are able to more 

on 

decoder are to obtained 

obtained by 

block u.V'-'VU.'~L 

then also why the 

use of a convolutional 

to n"·... t-"...rn SDML decoding on a convolutional code with a code set C of T 

necessary to compare with all the possible qTk code sequences as 

in equation (2.43). showed in 1967 that diagram of 

Figure 2, it is not necessary to compare all qk with the vector, but that 

to most likely sent sequence. 

it sufficient, at any given time instant i, to only the incoming 

"best" metric. By applying equation (2.49) the assumption is 

a state 

the 

in a state which best 

path is path. 
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The following figure outlines the process proposed by Viterbi [14]. 

For all states ZI (with 1=O, ... ,qVG_1) put the path-metrics 

A(ZI(i = -1)) equal to 0. 

for i = O, ... ,T-1 

Compute for all connection branches of time instance i the 

branch metric Aas per equation (2.49). 

For all states ZI (l = O, ... ,qVG_1) in which at least on branch enters 

Compute for the qk incoming branches the actual path metric 

A as a sum of the metrics of the survivor branches of the 

stares from which this connection branch emanates and the 

current branch metric A. 

Save the incoming path with the "best" metric as 

survivor together with its path metric. 

~t~Then Else 

Decode the code and information 

sequence =Survivor of state ze(T-1) 

Decode the code and information 

sequence =Survivor of state at 

time T-1 with the best metric A 

Figure 6 Schematic Representation of the Viterbi Algorithm 

In the next chapter, the principles given are used in order to provide SDML methods 

for the decoding of block code trellises. 
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Chapter 3 

Decoding of Block Codes 

3.1 Introduction 

the previous chapter it was explained every linear block code can theoretically 

be decoded (SDML-decoded) 

vector with all and In this 

chapter two most popular methods are 

first one is the method 

Raviv in 1974 [2J, and the one outlined Wolf [16]. 

Both number ofcomparisons In Section I, 

the term Code case the 

IS Trellis Diagram [5J, the construction 

which is in Subsection 3.2. In 

'-J'-' H.U..r .... "''-''''CA~.Uc:. can be nc'""+..... Y'YY\ 

last 

above 

Viterbi 

to obtain 

from the 

In 

parity check matrix 

G, 

Chapter 

to construct the 

Subsection 3.3. 

H, 

Throughout 

block code 

the a number practical are to 

construction. 
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• 	 The trellis diagram has a starting state (states will from time to time also be 

described as nodes) Zo (i = -1) and an ending state ze (i = n - 1). 

• 	 Each connecting branch is assigned a binary value (i.e. a code bit), under the 

condition that two branches leaving the same state or node cannot have the same 

binary value assigned to them. 

• 	 A path from Zo (i =-1) to Ze (i =n - 1) with assigned code bits co' c1 , •.• , c - 1 existsn 

The term "State" means exactly the same as the term "Node", and the naming of states 

and their ordering into a plane of states is completely arbitrary. In Figures 7 and 8, 

two possible "Untrue" trellis diagrams are shown, for the (3,2)-Parity Check Code with 

generator matrix: 

o 
(3.1)

1 

The reason why they are called "Untrue Trellis Diagrams" is the fact that the second 

condition listed above is not met for each of the first nodes. 

i =0 i = 1 	 i =2 

~~-------o--------~~----------o--------~~----------o--------~. 

o 

:~~1~ 
o 

...-------- ­

~-------o--------~w 

Figure 7 Untrue Trellis Diagram A for the (3,2)-Parity-Check-Code 
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It may never happen that after stepping through the trellis diagram one code symbol at 

a time one has to traverse backwards in order to find the correct path. The trellis 

diagram in Figure 7 is called a trivial trellis diagram of a block code. 

i:;; 0 i =1 i =2 

0 0 0 

~: 
1 

/ : 
Figure 8 True Trellis Diagram A for the (3,2)-Parity-Check-Code 

i =0 i =1 i =2 

:-~ /-;e-o
-----o-

:~ : 

~----------o--------~~ 

Figure 9 Untrue Trellis Diagram B for the (3 ,2)-Parity-Check-Code 
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Two code trellis diagrams are "Isomorph" if the one can be transformed into the other 

by changing some or all planes of states. Examples of isomorph trellises are shown in 

Figures 10 and 11, both of which are also valid or true code trellis diagrams. 

i =0 i = 1 i =2 

o------~~-------o~. 

1 
1 

~~--------o--------~~ 

Figure 10 True Trellis Dlagram C for the (3,2)-Parity-Check-Code 

i =0 i =1 i =2 

o 

~:______ ~~_______ _____o__~~ 
Figure 11 True Trellis Diagram B for the (3,2)-Parity-Check-Code 

A code trellis is termed minimal, if for all planes of states the number of nodes in the 

given trellis is minimal compared to all other possible code trellis diagrams for the 

specific code C. Both the code trellis diagrams in Figures 10 and 11 are minimal code 

trellis diagrams for the (3,2)-Parity-Check-Code . This is true, since there exists no other 

code trellis diagram for the same code C in which the planes i =0 and i =1 deliver less 

nodes. Furthermore, a minimal code trellis diagram for a code C is unique except for the 

isomorph variations in the trellis diagrams of the same code C. This means that two 

minimal trellis diagrams for the same code C which are not also isomorph cannot exist. 

Of utmost importance for the following sections, is the fact that the Viterbi Algorithm 

described in Subsection 2.4.3 can now be applied to a true code trellis diagram for the 

SDML decoding of block codes, without the necessity to compare the received vector with 

all of the possible q" sent vectors. 
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3.3 Syndrome Trellis 

A block code its [10] 

Section Equation can be 

In manner: 

c· HT 	::: coli{' + C/'J + ... + c _, II: ::: 0 (3.2)
n

or 

(3.3)+ ... + 

n hand OT column vector. where 0 the zero row vector 

A state is U.v.LULv as 

(i) ::: call, + c,~+ ... + cilli+1 - C/lp+l 	 (3.4) 
p=o 

01) is a column vector n h 


possible to construct a valid 
 diagram, a 

trellis, by: 

(i) 	 (3.5)(i l)+a· 

Equation 3.5 is as follows: 

• the 	 ~::: 1 one state exists . state is called 

state 	z~ (i - - 1) ::: OT. 


i::: 0, 1, . "' n - 1: 


zT(i) 

any ex ( 

a state if at 

means 

by 

enters for 

number of states at ~ is 

ex GF(q) all states of Equation 

~a 
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3.5. 


At the same time a connection branch is constructed from the state zT(i ­

1) to the corresponding state zT(i) and labeled ex = Ci, according to 


Equation 3.5. 


• 	 Finally, all nodes without a path ending in the final state z: (1 =n - 1) = OT are 

removed as well as all other nodes which branch off these removed nodes. This 

can be seen from Equations 3.3 and 3.4. This expurgating or "cleaning" of the 

code trellis diagram is not absolutely necessary for the decoding process. The 

decoding can also be done on a non-expurgated trellis, but then only paths which 

do end in the state z: (1 = n - 1) = OT must be considered, and the others 

ignored. 

The syndrome trellis diagram obtained by means of the above method consists of a total 

of 11, + 1 planes each comprising a maximum of q".n states. The q" paths of the trellis 

diagram starting at state z[ (i = -1) = OT and ending in state z: (1 = n - 1) = OT 

represent the q" codewords. 

Since the syndrome trellis diagram only contains qh paths, another upper bound for the 

maximum number of states in a plane exists, since at any time i no more than qh states 

can be reached by traversing q" paths . This then defines the upper bound on the number 

of states Ni at time i as: 

< min(n-k,k)N i - q 	 (3.6) 

In order to illustrate the process outlined above, the syndrome trellis diagram for the 

(7,4)-Hamming-Code is constructed. The parity check matrix for the above mentioned 

code is as follows: 

1 1 1 0 0 


0 1 0 1 1 (3.7)
H~ [i 
1 1 0 1 0 ~l 

Beginning at the starting state 
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(3.8) 

two connecting branches, one for ex =0 and one for ex = 1 respectively are constructed to 

the states 

(3.9) 

and 

(3.10)ZT (i ~ 0) ~ ZT (i ~ - 1) +1 ~ ~ [~l +1 m~ m 
According to Equations 3.9 and 3.10, at time i =0 the states mentioned above are 

possible. Which one of them actually occurs is dependant on the first code bit co. 

At each one of these two states, two new connecting branches emanate . In order to 

determine the two new destination states, the following two expressions are added tozT(i 

= 0): 

and 

For each level or plane in the syndrome trellis diagram the process is repeated for each 

active or connected node. The correct column vector of the parity check rna trix has to be 

used for every iteration. 

The result of this iterative construction is depicted in Figure 12. The solid lines depict 

the case for which ex =0 and the dotted lines the case ex = 1. It has to be noted that when 
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0: = 0, the trellis will always move from a certain state j in plane m to the same state k 

in plane n. This allows for fast trellis construction, when the system is implemented in 

hardware, as half of the connecting branches are calculated by default. This saves a 

tremendous amount of calculating time, which in term means more effective 

transmission systems. 

If the trellis is expurgated as described above, a trellis diagram representation IS 

obtained as depicted in Figure 13 . 

[j 

• 


i =0 i=1 i =2 i =3 i =4 i =5 i =6 

Figure 12 Full Syndrome Trellis Diagram for the (7,4)-Hamming-Code 
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o i =0 i =1 i =2 i =3 i =4 i =5 i =6 

o 
o 

o 

• 


I 

o • 

• 


• 
 • • 

• 
, '.i / • • 

• • 

• • • • 

""" '::",//" '/' 

l\ ..~ 
• 


Figure 13 Expurgated Trellis Diagram for the (7,4)-Hamming-Code 

As shown in Section 3.2, it is indeed possible to SDML decode a block code by utilizing 

its syndrome trellis diagram (a special case of a true code trellis diagram). The 

complexity of the decoding is dependant on the number of nodes in the trellis. This is 

governed by the following equation: 
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n-l 

(3.11)N'L = LNi 
i=-l 

From the definition of the minimal code trellis diagram in Section 3.2, it follows that 

a code trellis diagram is minimal when N'[ is minimal for all code trellis diagrams of C. 

The syndrome trellis diagram of a given linear block code is a minimal code trellis 

diagram. This means, that there exist no other non-isomorph code trellis diagrams with 

fewer nodes than the code trellis diagram obtained through the use of the syndrome 

construction procedure outlined above . 

However, this does not hold for equivalent codes. As was shown in Subsection 2.2.2, 

an equivalent code can be obtained from a code C, by performing matrix operations on 

the parity check matrix of the original code C. For such an equivalent code it is very 

possible and also likely, that syndrome trellis diagrams can exist which have a different 

number of nodes. An example for such a case is the (5,3)-Code with the following parity 

check matrix. 

1 0 1 
(3.12)

010 

The syndrome trellis diagram for this code is depicted in Figure 14. 

i=O i=1 i=2 i=3 i=4 

(~) "----1~-..,-~--.e----A 

(~) 


(~) 


Figure 14 Syndrome Trellis Diagram A for the (5,3)-Code 
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If columns of the parity check matrix of Equation 3.12 are interchanged, an equivalent 

code is obtained with the following parity check matrix. 

1 0 o 
(3.13)

01 1 

The syndrome trellis diagram for this code is depicted in Figure 15. 

i=O i=1 i=2 i=3 i=4 

( ~) ~-.a>;--~--.-------,/.___-;e 

.... 
,./" '" 

.. " .. , 

(~) 

(~) 

Figure 15 Syndrome Trellis Diagram B for the (5,3)-Code 

As can be seen from Figures 14 and 15 above, the number of nodes differ for the two 

equivalent codes . In Figure 14, Nr. equals 14, but in Figure 15 , Nr. only equals 12. It 

can be seen that in both cases qk = 8 paths traverse the code trellis diagrams. These 8 

paths represent the qk = 8 codewords. In the second diagram however, the topological 

distribution ofthese paths is more favorable than the distribution in the second diagram. 

The reason for this being that the reduced number of nodes imply a much simpler 

decoding complexity. To summarize, it can be said that the less nodes a syndrome trellis 

diagram contains, the simpler the eventual decoding becomes. 

For cyclic codes an alternative code trellis diagram construction method exists, which 

differs completely from the syndrome trellis diagram construction technique described 

previously. It is done by using the content of the shift registers (which are used in the 

coding and decoding process) as states in the trellis diagram. This method will however 

not be considered here, as it does not produce a minimal trellis diagram. Another 
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method of obtaining a syndrome trellis diagram is considered in Appendix I, where it 

is included as an example. 

As mentioned in Section 3.3, the decoding complexity relates to the number of nodes in 

the code trellis diagram. It should be clear that a good trellis construction is the 

procedure that will result in a trellis being minimal, i.e. the trellis should have the least 

number of nodes N[ possible. This is indeed an immense task, since n! permutations of 

the column vectors of the parity check matrix will have to be processed in order to find 

the equivalent code trellis diagram with the least amount of nodes, i.e. the minimal 

trellis representation. For smaller codes, this process can be done by hand, but for a 

large code (n»), this task becomes nearly intractable. 

In a following chapter, methods are investigated which reduce the number of nodes in 

the code trellis diagram. 

3.4 	 Derivation of the Parity Check Matrix 

In Section 3.3 the parity check matrix H was assumed known for the calculation of the 

syndrome trellis diagram [16]. A decoder would normally only have the generator matrix 

G available for the specific code to be decoded. In order to perform the decoding, the 

decoder will have to determine the topological structure of the trellis diagram, for which 

it will need to have the parity check matrix H, obtainable from the generator matrix G. 

For generator matrixes in the systematic form G' defined in Equation 2.7, it is fairly 

elementary to find the parity check matrix according to Equation 2.9. For the general 

non-systematic form of the generator matrix, this process is however a bit more 

complicated. 

A method that presents itself, is the direct solving of Equation 2.6 (G'H T = 0) after 

fixing the values of (n - k)2 unknowns. This approach is not a trivial process since it is 

not just a matter of fixing any of the (n - k)2 unknowns, but also which of the unknowns 

to fix . This is explained in more detail in the following outline: 

• 	 For non-systematic block codes, it is also possible to obtain a matrix 

representation in the form of Equation 2.9. The (n - k)2 chosen unknowns would 
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be the elements of the «n - k) x (n - k)) unit matrix in H' =(-ATII".,,). If the given 

generator matrix G is split up into the two sub-matrixes G tetl and G,ighl where G tetl 

is a (k x k) matrix and G,ighl a (k x (17, - k)) matrix, i.e. G = I G,ighl], then[G letl 

Equation 2.6 can be rewritten as 

G· H' T = (G'eft !Grighl)' ( ; A J = - G'eft . A + Grighl = 0 (3.14) 
n-k 

or 

G'eft . A = Grighl (3.15) 

The following are the 17, - k linear equations for the calculation of the 17, - k column 

vectors of the matrix A = (G], G2 , .. ·, G - k ) : n 

G'eft 'G] = grighl , ] 

G'eft . G 2 = gright,2 

G'eft . G n_k = gright ,n-k (3.16) 

Each of these (inhomogeneous) equations only has a solution if the rank of the 

extended matrix [Gletl I G,;ghl,;],i =1,2, __ .,17, - k, is not larger than the rank of G ,etl . 

This is however not necessarily fulfilled, since the first k columns ofthe matrix 

G, which forms the matrix G ,etl., can be linearly dependant, which in turn could 

make the rank of G tetl smaller than k. By extending the matrix G tetl by adding one 

column from Gright> the rank can be increased but then the equations are not 

uniquely solvable. 

This shows that it is not possible to choose and fix any of the (17, - k)2 unknowns. 

• A possible solution to Equation 2.6 can be found from a matrix H with n - k 
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identical row vectors identical. This can be any particular code vector from C~ . 

(n - k) 2 unknowns can be chosen and fixed in such a manner that the matrix 

H solves Equation 2.6. However, the matrix obtained by the procedure above, 

is indeed not a parity check matrix, since it has the rank 1 and not n - k, which 

does not comply with the definition of a parity check matrix given in Section 2.2. 

Since this approach does not render a tractable solution, the parity check matrix H has 

to be calculated on the following basis: 

• 	 Firstly the generator matrix G is, as described in Section 2.2, is transformed by 

elementary row matrix operations so that unit vectors of length k are present in 

k of the n columns of the matrix. 

• 	 By swapping columns, the transformed generator matrix is changed into its 

systematic form G' given by Equation 2.7. 

• 	 The corresponding parity check matrix H ' is then determined from Equation 2.9. 

• 	 The column swapping procedure in step two above is then applied in reverse 

order on H' to so obtain a possible parity check matrix H. 

An example of this procedure is given in Appendix B. 

3.5 	 Decoding of the Trellis Diagram 

As already mentioned several times, the Viterbi algorithm outlined Figure 6 of 

Subsection 2.4.3 , can be used to theoretically SDML-decode any linear block code 

through its syndrome trellis. This means that for every codeword C all the steps 

depicted in Figure 7 have to be performed once with the end state z; (1 =n- 1) = OT 

known. 

However, unlike the normal Viterbi algorithm the most likely sent codeword cand not 
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the most likely sent information vector i is obtained. The output is a valid codeword that 

satisfies Equation 2.5. Therefore, all that needs to be done is to reverse the mapping 

between the information vector and the code vector to obtain the most probable 

transmitted information vector. This is done with a lookup table or by solving Equation 

2.1. In order for the decoder to work on an arbitrary block code, of which only the 

generator matrix is know to the decoder initially, the second method of obtaining the 

information vector from the code vector is preferred. 
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