

Trellis Decoding of Reed Solomon and Related Linear Block Codes

By

Werner Heinrich Büttner

A dissertation submitted in partial fulfillment of the requirements for the degree

Master of Engineering (Electronic)

in the

Department of Electrical and Electronic Engineering in the Faculty of Engineering

at the

UNIVERSITY OF PRETORIA

Advisor: Professor L.P. Linde

October 1999

Abstract

TRELLIS DECODING OF REED-SOLOMON AND RELATED LINEAR BLOCK CODES

by

Werner Heinrich Büttner Advisor: Prof. L. P. Linde Department of Electrical and Electronic Engineering Master of Engineering (Electronics)

Reed-Solomon codes, a subset of multilevel non-binary cyclic codes with powerful burst error correcting capabilities, are known to be computationally efficient when algebraic decoding techniques are applied. They may however give weaker performance compared to convolutional coding techniques, at least at moderate bit error rates (around 10^{-5} to 10^{-6}) on the AWGN channel. This disadvantage mainly results from the lack of a general applicable method for soft-decision decoding. The aim is to construct a trellis from the generator matrix of a Reed-Solomon code and to show that apart from the historical Berlekamp Massey frequency domain techniques, other techniques usually reserved for convolutional code decoding, such as Maximum Likelihood (ML) and the Maximum A-Posteriori (MAP) techniques, can be successfully applied in the decoding process. Consequently, the main objective of this dissertation is to analyse, design and implement a soft-input, soft-output Reed-Solomon ML or MAP trellis decoding algorithm with performance and complexity comparable to conventional algebraic block decoding methods.

The main reason why trellis decoding is not often used for cyclic block codes, is the complexity of the decoder, especially in the case of long codes with high redundancy. In fact, it will be almost impossible to implement the Viterbi decoder for Reed-Solomon codes with moderate redundancy, considering the fact that the Viterbi decoder becomes computationally unfeasible and practically intractable for convolutional codes of constraint length greater than 10 to 12. Therefore, in order to reduce trellis complexity, a search for minimal block trellis decoding techniques is launched through:

- manipulation of the generator matrix with a view of obtaining minimal trellis structures, i.e., minimising the number of states in a specific block code trellis;
- devising methods to simplify trellis construction of large block codes (i.e., codes with large block size n and redundancy n-k);
- considering only a certain number of trellis paths which are most likely to be transmitted, in stead of all possible paths. This may for example be achieved through a expurgation process on the original trellis (i.e., eliminating paths not terminating in the zero state) or by applying maximum likelihood (ML) or maximum a-posteriori (MAP) decoding methods such as the Viterbi algorithm which results in significant computational savings through its 'survival path' mechanism. The expurgation process is block code specific, i.e., the existence of unterminated paths may differ for each code and is a function of each code's inherent algebraic structure.

The objective of this reduced search method is therefore to optimise the performance of the code while minimising trellis decoding complexity and the corresponding decoding delay.

In the process of constructing minimal trellis structures for cyclic block codes, a novel topological branch interconnecting (trellis branch indexing or labelling) scheme for block codes, and specifically Reed-Solomon codes, is proposed and developed. The technique identifies unique interconnecting patterns in the branch structures of sub-trellises, by which the remaining parts of the trellis may be uniquely defined without having to resort to complicated trellis branch calculations. It is shown that the complexity of the trellis construction process may be reduced by orders in magnitude (for relatively short block lengths), by exploiting the well defined cyclic trellis patterns inherent to the trellis structures of individual block codes.

After having established methods for efficient block trellis construction and the corresponding minimal trellis coder and decoder design, it is next shown how ML convolutional decoding techniques, such as the Viterbi decoding algorithm, can be successfully employed in the decoding process of block codes which could traditionally only be decoded by means of algebraic techniques. The study then investigates the error performance achievable using the trellis as a means of decoding. It is shown that the performance of ML (Viterbi) trellis block decoding with soft decisions matches the

performance rendered by soft decision algebraic block decoding techniques in all respects.

Key Words: Trellis, Complexity Reduction, Bit Error Rate, Reed-Solomon, Topology.

Opsomming

TRELLIS DEKODEERING VAN REED-SOLOMON EN VERWANTE LINEÊRE BLOK KODES

deur

Werner Heinrich Büttner Studieleier: Prof. L. P. Linde Departement van Elektiese en Elektoniese Ingenieurswese Meesters in Ingenieurswese (Elektronies)

Reed-Solomon kodes, 'n onderafdeling van multivlak nie-binêre sikliese kodes met kragtige foutkorreksie eienskappe, word geken as rekenkundig effektief wanneer algebraiese dekoderingstegnieke gebruik word. Hulle kan egter swakker vaar in vergelyking met konvolusie koderingstegnieke, minstens by gemiddelde bisfoutwaarskynlikhede (omtrent 10⁻⁵ tot 10⁻⁶) in 'n AWGN kanaal. Hierdie nadeel spruit uit die afwesigheid van 'n algemene methode vir sagte-beslissing-dekodering. Die doel is die konstruksie van 'n trellis vanaf die generatormatriks van 'n Reed-Solomon kode en om aan te toon dat benewens die historiese Berlekamp Massey frekwensie tegniek, dit moontlik is om ander tegnieke wat normaalweg uitsluitlik vir die dekodering van konvolusie kodes dien, soos die "Maximum Likelihood" (ML) en die Maksimum A-Posteriori (MAP) tegnieke, suksesvol te benut in die dekoderingsproses. Gevolglik is die hoofdoelstelling van hierdie verhandeling die analise, ontwerp en implementering van 'n sagte-inset, sagte-uitset Reed-Solomon ML of MAP trellis dekoderingsalgoritme met foutkorreksie-eienskappe en kompleksiteit vergelykbaar met konvensionele algebraiese blokdekoderingstegnieke.

Die hoofrede hoekom trellis dekodering nie vrylik gebruik word vir sikliese blokkodes nie, is die kompleksiteit van die dekodeerder, veral in die geval van lang kodes met 'n hoë oortolligheid. Dit word amper 'n rekenkundige onmoontlikheid om 'n Vieterbi dekodeerder vir Reed-Solomon kodes met 'n gemiddelde oortolligheid te implementeer, siende dat dit rekenkundig en prakties onmoontlik is vir konvolusiekodes met 'n beperkings lengte groter as 10 tot 12. Ten einde trellis kompleksiteit te beperk, word

'n soektog na minimale blok trellise geloods deur:

- manipulasie van die generatormatriks met die doel om 'n minimale trellis struktuur te verkry, met ander woorde om die aantal toestande in 'n spesefieke blokkode trellis te minimiseer;
- ontwikkeling van metodes om trellis konstruksie vir groot blok kodes (kodes met groot bloklengte n en oortolligheid n-k) te vereenvoudig;
- om slegs 'n sekere aantal trellis paaie in berekening te bring as een van die mees waarskynlik gestuurde kode, in plaas daarvan om almal in berekening te bring. Hierdie kan byvoorbeeld bewerkstellig word deur 'n proses, waar sekere paaie wat nie in die nul toestand termineer nie, weg te laat. Dit kan vêrder ook gedoen word deur die ML of MAP dekoderingstegnieke soos die Viterbi algoritme te gebruik, wat 'n groot besparing in bewerkings teweegbring deur gebruikmaking van die oorblywende pad meganisme. The proses van uitlating van paaie verskil vir elke blokkode en is 'n funksie van elke kode se inherente algebraiese struktuur.

Die doel van hierde gereduseerde soektog metode is dus om die werkverrigting van die kode te optimiseer terwyl die dekoderingskompleksiteit en die saamhangende dekoderingsvertraging geminimiseer word.

In die konstruksie proses van minimale trellis strukture vir sikliese blokkodes, word 'n nuwe topologiese tak interkonneksie (trellis tak indeksering) skema vir blok kodes, en meer spesifiek Reed-Solomon kodes, voorgestel en ontwikkel. Hierdie tegniek identifiseer unieke interkonneksiepatrone in die takstruktuur van sub-trellise, waarmee die res van die trellis uniek gedefinieer kan word sonder om ingewikkelde trellis takbewerkings te verrig. Daar word aangetoon dat die kompleksiteit van die trellis konstruksieproses ordes vereenvoudig kan word (vir relatiewe klein bloklengtes), deur die goed gedefinieerde sikliese trellispatrone inherent in die trellisstruktuur van individuele blokkodes te gebruik.

Nadat metodes vir effektiewe blok trelliskonstruksie en die minimale trellis kodeerder en dekodeerder bepaal is, word daar aangetoon hoe ML konvolusie dekoderingstegnieke soos die Viterbi algoritme suksesvol benut kan word in die dekoderingsproses van blok kodes, wat normaalweg slegs deur middel van algebraiese tegnieke dekodeer kon word.

Die studie ondersoek dan die foutkorreksieverrigting wat verkry word indien die trellis tegniek as dekoderingsproses benut word.

Daar word aangetoon dat die verrigting van ML (Viterbi) trellis blokdekodering met sagte beslissings in alle aspekte dieselfde is as die verrigting verkry deur sagte beslissing algebraïese tegnieke.

Sleutelwoorde: Trellis, Kompleksiteit Vermindering, Bisfoutwaarskynlikheid, Reed-Solomon, Topologie.

Dedication

This dissertation is dedicated to L. du Preez.

Your support and effort will forever be

remembered.

Acknowledgments

The following persons have given invaluable input, without which this dissertation would not have reached the state which it is in now.

Firstly I would like to thank Professor L.P. Linde, who as my mentor and project leader has always been there when needed. Without his expertise and time, this project would not have become what it is today.

Secondly, I would like to thank L. Staphorst, who has sacrificed enormous amounts of time to assist with various parts of the project. His help is greatly appreciated.

Sincere thanks also goes out to D. J. van Wyk, who had the initial drive to start this project.

Several persons have sacrificed their time to proofread this dissertation. Again, thanks goes out to Professor L.P. Linde, who has on more than one occasion set aside time to read the dissertation. The other people who have contributed in this aspect are amongst other B.H. Waldeck and Y. Iglauer.

Thanks also goes out to S. Swanepoel, who was always available to listen to problems and provide solutions.

I would also like to take this opportunity to thank various other people, the list being to long to reproduce here, who have given their utmost to help make this project a success.

And, last but not least, thanks goes to my parents and my girlfriend L. du Preez who have helped and assisted me throughout the whole project.

List of Acronyms and Abbreviations

List of Acronyms

AWGN	Additive White Gaussian Noise
BCH	Bose-Chaudhuri-Hocquenghem
BER	Bit Error Rate
BPSK	Binary Phase Shift Keying
CTD	Code Trellis Diagram
GF	Galois Field
HD	Hard-Decision
MAP	Maximum A-Posteriori Probability
ML	Maximum-Likelihood
MLD	Maximum-Likelihood Decoder
RS	Reed Solomon
SD	Soft-Decision
SDML	Soft-Decision-Maximum-Likelihood
SP	Trellis Sub-Part

List of Abbreviations

dB	Decibel
E	Energy per Bit
E _{bit} /N _o	Energy to Noise Ratio
G	Generator Matrix
н	Parity Check Matrix
h _x	Column x of Parity Matrix H
I	Unit Matrix
M	Encoder Memory Arrangement
N	Number of States
No	Single Sided Noise Power Spectral Density
P(x)	Probability
P _{Bit}	Bit Error Probability
PBlock	Block Error Probability

Centre for Radio and Digital Communication (CRDC)

Department of Electrical and Electronic Engineering

List of Figures

Figure 1	Example of a Convolutional Encoder with R=2/3 and M=1	14
Figure 2	Trellis Diagram of Convolutional Code as per Figure 1	18
Figure 3	Structure of a Digital Transmission System	20
Figure 4	System Model for the Derivation of Decoding Strategy	23
Figure 5	Probability Density Functions	24
Figure 6	Schematic Representation of the Viterbi Algorithm	28
Figure 7	Untrue Trellis Diagram A for the (3,2)-Parity-Check-Code	30
Figure 8	Untrue Trellis Diagram B for the (3,2)-Parity-Check-Code	31
Figure 9	True Trellis Diagram A for the (3,2)-Parity-Check-Code	31
Figure 10	True Trellis Diagram B for the (3,2)-Parity-Check-Code	32
Figure 11	True Trellis Diagram C for the (3,2)-Parity-Check-Code	32
Figure 12	Full Syndrome Trellis Diagram for the (7,4)-Hamming-Code	36
Figure 13	Expurgated Trellis Diagram for the (7,4)-Hamming-Code	37
Figure 14	Syndrome Trellis Diagram A for the (5,3)-Code	38
Figure 15	Syndrome Trellis Diagram B for the (5,3)-Code	39
Figure 16	Comparison between Different HD Methods	45
Figure 17	Comparison between Different SD Methods	46
Figure 18	Bit Error Rate of the (7,4)- Hamming-Code	47
Figure 19	Block Error Rate of the (7,4)-Hamming-Code	48
Figure 20	Bit Error Rate of the (16,11)-Reed-Muller-Code	49
Figure 21	Bit Error Rate of the (31,21)-BCH-Code	50
Figure 22	Bit Error Rate of the (15,7)-BCH-Code	51
Figure 23	Comparison of BCH-Codes with (7,4)-Hamming Code	52
Figure 24	Bit Error Rate of the (16,5)-Reed-Muller-Code R(1,4)	53
Figure 25	Bit Error Rate of the (16,11)-Reed-Muller-Code R(2,4)	54
Figure 26	Bit Error Rate of the (32,16)-Reed-Muller-Code R(2,5)	55
Figure 27	Bit Error Rate of the (32,26)-Reed-Muller-Code R(3,5)	56
Figure 28	Bit Error Rate of the (32,31)-Reed-Muller-Code R(4,5)	57
Figure 29	Comparison of Reed-Muller-Codes for Different Parameters	58
Figure 30	Branch Structure of Reed Solomon Trellis in Galois Field GF(4)	71
Figure 31	Section 1 of the (7,5)-Reed-Solomon Trellis in GF(4)	84
Figure 32	Section 2 of the (7,5)-Reed-Solomon Trellis in GF(4)	85

Department of Electrical and Electronic Engineering

Centre for Radio and Digital Communication (CRDC)

Figure 33	Section 3 of the (7,5)-Reed-Solomon Trellis in GF(4)	86
Figure 34	Section 4 of the (7,5)-Reed-Solomon Trellis in GF(4)	87
Figure 35	Section 5 of the (7,5)-Reed-Solomon Trellis in GF(4)	88
Figure 36	Section 6 of the (7,5)-Reed-Solomon Trellis in GF(4)	89
Figure 37	Section 7 of the (7,5)-Reed-Solomon Trellis in GF(4)	90
Figure 38	Flow Diagram of the Topological Trellis Design Algorithm	96
Figure 39	Symbol Error Rate of (7,5)-Reed-Solomon Code	97
Figure 40	(5,3)-Code Trellis Diagram1	107
Figure 41	(5,3)-Code Trellis Diagram 2	107
Figure 42	Trellis Simulation Software for Parity Check Matrix H,	110
Figure 43	Trellis Simulation Software for Parity Check Matrix H ₂	111
Figure 44	Comparison of Reduced and Original Block Error Rates	118
Figure 45	Graphical Representation of N_{γ} and $\rho(C)$ for (15,7)-BCH	124
Figure 46	Single Code Trellis for Codeword 1	146
Figure 47	Single Code Trellis for Codeword 2	146
Figure 48	Single Code Trellis for Codeword 3	147
Figure 49	Single Code Trellis for Codeword 4	147
Figure 50	Single Code Trellis for Codeword 5	148
Figure 51	Single Code Trellis for Codeword 6	148
Figure 52	Single Code Trellis for Codeword 7	149
Figure 53	Single Code Trellis for Codeword 8	149
Figure 54	Combined Single Code Trellis Diagram	150
Figure 55	Final Syndrome Trellis Diagram	150
Figure 56	Trellis Diagram for Code C ₁	164
Figure 57	Trellis Diagram for Code C ₂	164
Figure 58	Combined Shannon Product Trellis Diagram	165
Figure 59	State Profile for C ₁	167
Figure 60	State Profile for C ₂	168
Figure 61	State Profile for C ₃	168
Figure 62	State Profile for C ₄	168
Figure 63	State Profile for C ₅	169
Figure 64	Syndrome Trellis Diagram for the (7,5,3)-RS-Code	170

Centre for Radio and Digital Communication (CRDC)

Department of Electrical and Electronic Engineering

List of Tables

Table 2Nodes for State 1 of (7,5) RS-Code in GF(4)7Table 3Nodes for State 2 of (7,5) RS-Code in GF(4)7Table 4Nodes for State 3 of (7,5) RS-Code in GF(4)7Table 5Nodes for State 4 of (7,5) RS-Code in GF(4)7Table 6Nodes for State 5 of (7,5) RS-Code in GF(4)8Table 7Nodes for State 6 of (7,5) RS-Code in GF(4)8Table 8Nodes for State 7 of (7,5) RS-Code in GF(4)8Table 9Original (5,3) Code.bcc File11Table 10Original (5,3) Code.bcc File11Table 11Reduced (5,3) Code.bcc File11Table 12Reduced (5,3) Code.bcc File11Table 13Original Results.res File11Table 14Reduced Results.res File11Table 15Codewords of the (7,4)-Hamming Code in GF(2)12Table 16Partial Code Words $T_3(C)$ with J = {1, 3, 6}12Table 17Sub-Codes C_2 with J = {1, 3, 6}12Table 19Comparison of N_{Σ} and $\rho(C)$ for (11,7)-Hamming Code12Table 20Comparison of N_{Σ} and $\rho(C)$ for (11,7)-Hamming Code12Table 21Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code12Table 22Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code12Table 23Galois Symbol Representation in Different Forms17	Table 1	Tabulation of Results	59
Table 3Nodes for State 2 of (7,5) RS-Code in GF(4)7Table 4Nodes for State 3 of (7,5) RS-Code in GF(4)7Table 5Nodes for State 4 of (7,5) RS-Code in GF(4)7Table 6Nodes for State 5 of (7,5) RS-Code in GF(4)8Table 7Nodes for State 6 of (7,5) RS-Code in GF(4)8Table 8Nodes for State 7 of (7,5) RS-Code in GF(4)8Table 9Original (5,3) Code.bcc File11Table 10Original (5,3) Code.bcc File11Table 11Reduced (5,3) Code.bcc File11Table 12Reduced (5,3) Code.bcc File11Table 13Original Results.res File11Table 14Reduced Results.res File11Table 15Codewords of the (7,4)-Hamming Code in GF(2)12Table 16Partial Code Words $T_j(C)$ with $J = \{1, 3, 6\}$ 12Table 17Sub-Codes C_j with $J = \{1, 3, 6\}$ 12Table 19Comparison of N_{Σ} and $\rho(C)$ for (11,7)-Hamming Code12Table 20Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code12Table 21Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code12Table 22Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code12Table 23Galois Symbol Representation in Different Forms17	Table 2	Nodes for State 1 of (7,5) RS-Code in GF(4)	76
Table 4Nodes for State 3 of (7,5) RS-Code in GF(4)7Table 5Nodes for State 4 of (7,5) RS-Code in GF(4)7Table 6Nodes for State 5 of (7,5) RS-Code in GF(4)8Table 7Nodes for State 6 of (7,5) RS-Code in GF(4)8Table 8Nodes for State 7 of (7,5) RS-Code in GF(4)8Table 9Original (5,3) Code.bcc File11Table 10Original (5,3) Code.bcc File11Table 11Reduced (5,3) Code.bcc File11Table 12Reduced (5,3) Code.bcc File11Table 13Original Results.res File11Table 14Reduced Results.res File11Table 15Codewords of the (7,4)-Hamming Code in GF(2)12Table 16Partial Code Words $T_3(C)$ with $J = \{1, 3, 6\}$ 12Table 17Sub-Codes C_1 with $J = \{1, 3, 6\}$ 12Table 18Results for (15,7)-BCH Code after 2^{32} Permutations12Table 20Comparison of N_{Σ} and $p(C)$ for (11,7)-Hamming Code12Table 21Comparison of N_{Σ} and $p(C)$ for (15,5)-BCH Code12Table 22Comparison of N_{Σ} and $p(C)$ for (15,5)-BCH Code12Table 23Galois Symbol Representation in Different Forms17	Table 3	Nodes for State 2 of (7,5) RS-Code in GF(4)	77
Table 5Nodes for State 4 of (7,5) RS-Code in GF(4)7Table 6Nodes for State 5 of (7,5) RS-Code in GF(4)8Table 7Nodes for State 6 of (7,5) RS-Code in GF(4)8Table 8Nodes for State 7 of (7,5) RS-Code in GF(4)8Table 9Original (5,3) Code.bcc File11Table 10Original (5,3) Code.bcc File11Table 11Reduced (5,3) Code.bcc File11Table 12Reduced (5,3) Code.bcc File11Table 13Original Results.res File11Table 14Reduced Results.res File11Table 15Codewords of the (7,4)-Hamming Code in GF(2)12Table 16Partial Code Words $T_j(C)$ with J = {1, 3, 6}12Table 17Sub-Codes C_j with J = {1, 3, 6}12Table 20Comparison of N_{Σ} and $p(C)$ for (11,7)-Hamming Code12Table 21Comparison of N_{Σ} and $p(C)$ for (11,7)-Hamming Code12Table 22Comparison of N_{Σ} and $p(C)$ for (15,5)-BCH Code12Table 23Galois Symbol Representation in Different Forms17	Table 4	Nodes for State 3 of (7,5) RS-Code in GF(4)	78
Table 6Nodes for State 5 of (7,5) RS-Code in GF(4)8Table 7Nodes for State 6 of (7,5) RS-Code in GF(4)8Table 8Nodes for State 7 of (7,5) RS-Code in GF(4)8Table 9Original (5,3) Code.bcc File11Table 10Original (5,3) Code.bcc File11Table 11Reduced (5,3) Code.bcc File11Table 12Reduced (5,3) Code Trellis.btf File11Table 13Original Results.res File11Table 14Reduced Results.res File11Table 15Codewords of the (7,4)-Hamming Code in GF(2)12Table 16Partial Code Words $T_j(C)$ with $J = \{1, 3, 6\}$ 12Table 17Sub-Codes C_j with $J = \{1, 3, 6\}$ 12Table 18Results for (15,7)-BCH Code after 2^{32} Permutations12Table 20Comparison of N_{Σ} and $\rho(C)$ for (11,7)-Hamming Code12Table 21Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code12Table 22Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code12Table 23Galois Symbol Representation in Different Forms17	Table 5	Nodes for State 4 of (7,5) RS-Code in GF(4)	79
Table 7Nodes for State 6 of (7,5) RS-Code in GF(4)8Table 8Nodes for State 7 of (7,5) RS-Code in GF(4)8Table 9Original (5,3) Code.bcc File11Table 10Original (5,3) Code.bcc File11Table 11Reduced (5,3) Code.bcc File11Table 12Reduced (5,3) Code.bcc File11Table 13Original Results.res File11Table 14Reduced Results.res File11Table 15Codewords of the (7,4)-Hamming Code in GF(2)12Table 16Partial Code Words $T_j(C)$ with $J = \{1, 3, 6\}$ 12Table 17Sub-Codes C_j with $J = \{1, 3, 6\}$ 12Table 18Results for (15,7)-BCH Code after 2^{32} Permutations12Table 20Comparison of N_{Σ} and $p(C)$ for (11,7)-Hamming Code12Table 21Comparison of N_{Σ} and $p(C)$ for (15,5)-BCH Code12Table 22Comparison of N_{Σ} and $p(C)$ for (15,5)-BCH Code12Table 23Galois Symbol Representation in Different Forms17	Table 6	Nodes for State 5 of (7,5) RS-Code in GF(4)	80
Table 8Nodes for State 7 of (7,5) RS-Code in GF(4)8Table 9Original (5,3) Code.bcc File11Table 10Original (5,3) Code Trellis.btf File11Table 11Reduced (5,3) Code.bcc File11Table 12Reduced (5,3) Code Trellis.btf File11Table 13Original Results.res File11Table 14Reduced Results.res File11Table 15Codewords of the (7,4)-Hamming Code in GF(2)12Table 16Partial Code Words $T_j(C)$ with J = {1, 3, 6}12Table 17Sub-Codes C_j with J = {1, 3, 6}12Table 18Results for (15,7)-BCH Code after 2^{32} Permutations12Table 20Comparison of N_{Σ} and $p(C)$ for (11,7)-Hamming Code12Table 21Comparison of N_{Σ} and $p(C)$ for (15,5)-BCH Code12Table 22Comparison of N_{Σ} and $p(C)$ for (15,5)-BCH Code12Table 23Galois Symbol Representation in Different Forms17	Table 7	Nodes for State 6 of (7,5) RS-Code in GF(4)	81
Table 9Original (5,3) Code.bcc File11Table 10Original (5,3) Code Trellis.btf File11Table 11Reduced (5,3) Code Trellis.btf File11Table 12Reduced (5,3) Code Trellis.btf File11Table 13Original Results.res File11Table 14Reduced Results.res File11Table 15Codewords of the (7,4)-Hamming Code in GF(2)12Table 16Partial Code Words $T_j(C)$ with J = {1, 3, 6}12Table 17Sub-Codes C_j with J = {1, 3, 6}12Table 18Results for (15,7)-BCH Code after 2^{32} Permutations12Table 19Comparison of N_{Σ} and $p(C)$ for (11,7)-Hamming Code12Table 20Comparison of N_{Σ} and $p(C)$ for (11,7)-Hamming Code12Table 21Comparison of N_{Σ} and $p(C)$ for (15,5)-BCH Code12Table 22Comparison of N_{Σ} and $p(C)$ for (15,5)-BCH Code13Table 23Galois Symbol Representation in Different Forms17	Table 8	Nodes for State 7 of (7,5) RS-Code in GF(4)	82
Table 10Original (5,3) Code Trellis.btf File11Table 11Reduced (5,3) Code.bcc File11Table 12Reduced (5,3) Code Trellis.btf File11Table 13Original Results.res File11Table 14Reduced Results.res File11Table 15Codewords of the (7,4)-Hamming Code in GF(2)12Table 16Partial Code Words $T_3(C)$ with $J = \{1, 3, 6\}$ 12Table 17Sub-Codes C_3 with $J = \{1, 3, 6\}$ 12Table 18Results for (15,7)-BCH Code after 2^{32} Permutations12Table 19Comparison of N_{Σ} and $p(C)$ for (11,7)-Hamming Code12Table 20Comparison of N_{Σ} and $p(C)$ for (11,7)-Hamming Code12Table 21Comparison of N_{Σ} and $p(C)$ for (15,5)-BCH Code12Table 22Comparison of N_{Σ} and $p(C)$ for (15,5)-BCH Code13Table 23Galois Symbol Representation in Different Forms17	Table 9	Original (5,3) Code.bcc File	112
Table 11Reduced (5,3) Code.bcc File11Table 12Reduced (5,3) Code Trellis.btf File11Table 13Original Results.res File11Table 14Reduced Results.res File11Table 15Codewords of the (7,4)-Hamming Code in GF(2)12Table 16Partial Code Words $T_3(C)$ with J = {1, 3, 6}12Table 17Sub-Codes C_3 with J = {1, 3, 6}12Table 18Results for (15,7)-BCH Code after 2^{32} Permutations12Table 19Comparison of N_{Σ} and $p(C)$ for (11,7)-Hamming Code12Table 20Comparison of N_{Σ} and $p(C)$ for (11,7)-Hamming Code12Table 21Comparison of N_{Σ} and $p(C)$ for (11,7)-Hamming Code12Table 22Comparison of N_{Σ} and $p(C)$ for (15,5)-BCH Code12Table 23Galois Symbol Representation in Different Forms17	Table 10	Original (5,3) Code Trellis.btf File	113
Table 12Reduced (5,3) Code Trellis.btf File11Table 13Original Results.res File11Table 14Reduced Results.res File11Table 15Codewords of the (7,4)-Hamming Code in GF(2)12Table 16Partial Code Words $T_j(C)$ with $J = \{1, 3, 6\}$ 12Table 17Sub-Codes C_j with $J = \{1, 3, 6\}$ 12Table 18Results for (15,7)-BCH Code after 2^{32} Permutations12Table 19Comparison of N_{Σ} and $\rho(C)$ for (11,7)-Hamming Code12Table 20Comparison of N_{Σ} and $\rho(C)$ for (11,7)-Hamming Code12Table 21Comparison of N_{Σ} and $\rho(C)$ for (11,7)-Hamming Code12Table 22Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code12Table 23Galois Symbol Representation in Different Forms17	Table 11	Reduced (5,3) Code.bcc File	114
Table 13Original Results.res File11Table 14Reduced Results.res File11Table 15Codewords of the (7,4)-Hamming Code in GF(2)12Table 16Partial Code Words $T_3(C)$ with J = {1, 3, 6}12Table 17Sub-Codes C_3 with J = {1, 3, 6}12Table 18Results for (15,7)-BCH Code after 2^{32} Permutations12Table 19Comparison of N_{Σ} and $p(C)$ for (11,7)-Hamming Code12Table 20Comparison of N_{Σ} and $p(C)$ for (11,7)-Hamming Code12Table 21Comparison of N_{Σ} and $p(C)$ for (11,7)-Hamming Code12Table 22Comparison of N_{Σ} and $p(C)$ for (15,5)-BCH Code12Table 23Galois Symbol Representation in Different Forms17	Table 12	Reduced (5,3) Code Trellis.btf File	115
Table 14Reduced Results.res File11Table 15Codewords of the (7,4)-Hamming Code in GF(2)12Table 16Partial Code Words $T_j(C)$ with J = {1, 3, 6}12Table 17Sub-Codes C_j with J = {1, 3, 6}12Table 18Results for (15,7)-BCH Code after 2^{32} Permutations12Table 19Comparison of N_{Σ} and $p(C)$ for (11,7)-Hamming Code12Table 20Comparison of N_{Σ} and $p(C)$ for (15,5)-BCH Code12Table 21Comparison of N_{Σ} and $p(C)$ for (11,7)-Hamming Code12Table 22Comparison of N_{Σ} and $p(C)$ for (15,5)-BCH Code12Table 23Galois Symbol Representation in Different Forms17	Table 13	Original Results.res File	116
Table 15Codewords of the (7,4)-Hamming Code in GF(2)12Table 16Partial Code Words $T_j(C)$ with J = {1, 3, 6}12Table 17Sub-Codes C_j with J = {1, 3, 6}12Table 18Results for (15,7)-BCH Code after 2^{32} Permutations12Table 19Comparison of N_{Σ} and $\rho(C)$ for (11,7)-Hamming Code12Table 20Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code12Table 21Comparison of N_{Σ} and $\rho(C)$ for (11,7)-Hamming Code12Table 22Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code12Table 23Galois Symbol Representation in Different Forms17	Table 14	Reduced Results.res File	117
Table 16Partial Code Words $T_{J}(C)$ with J = {1, 3, 6}12Table 17Sub-Codes C_{J} with J = {1, 3, 6}12Table 18Results for (15,7)-BCH Code after 2^{32} Permutations12Table 19Comparison of N_{Σ} and $\rho(C)$ for (11,7)-Hamming Code12Table 20Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code12Table 21Comparison of N_{Σ} and $\rho(C)$ for (11,7)-Hamming Code12Table 21Comparison of N_{Σ} and $\rho(C)$ for (11,7)-Hamming Code12Table 22Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code12Table 23Galois Symbol Representation in Different Forms17	Table 15	Codewords of the (7,4)-Hamming Code in GF(2)	120
Table 17Sub-Codes C_{j} with J = {1, 3, 6}12Table 18Results for (15,7)-BCH Code after 2^{32} Permutations12Table 19Comparison of N_{Σ} and $\rho(C)$ for (11,7)-Hamming Code12Table 20Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code12Table 21Comparison of N_{Σ} and $\rho(C)$ for (11,7)-Hamming Code12Table 21Comparison of N_{Σ} and $\rho(C)$ for (11,7)-Hamming Code12Table 22Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code12Table 22Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code13Table 23Galois Symbol Representation in Different Forms17	Table 16	Partial Code Words $T_{j}(C)$ with $J = \{1, 3, 6\}$	121
Table 18Results for (15,7)-BCH Code after 2^{32} Permutations12Table 19Comparison of N_{Σ} and $\rho(C)$ for (11,7)-Hamming Code12Table 20Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code12Table 21Comparison of N_{Σ} and $\rho(C)$ for (11,7)-Hamming Code12Table 21Comparison of N_{Σ} and $\rho(C)$ for (11,7)-Hamming Code12Table 22Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code12Table 22Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code13Table 23Galois Symbol Representation in Different Forms17	Table 17	Sub-Codes C, with $J = \{1, 3, 6\}$	121
Table 19Comparison of N_{Σ} and $\rho(C)$ for (11,7)-Hamming Code12Table 20Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code12Table 21Comparison of N_{Σ} and $\rho(C)$ for (11,7)-Hamming Code obtained with the Optimised Search Algorithm12Table 22Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code obtained with the Optimised Search Algorithm13Table 23Galois Symbol Representation in Different Forms17	Table 18	Results for (15,7)-BCH Code after 2 ³² Permutations	123
Table 20Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code12Table 21Comparison of N_{Σ} and $\rho(C)$ for (11,7)-Hamming Code obtained with the Optimised Search Algorithm12Table 22Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code obtained with the Optimised Search Algorithm13Table 23Galois Symbol Representation in Different Forms17	Table 19	Comparison of N_{Σ} and $\rho(C)$ for (11,7)-Hamming Code	127
Table 21Comparison of N_{Σ} and $\rho(C)$ for (11,7)-Hamming Code obtained with the Optimised Search Algorithm12Table 22Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code obtained with the Optimised Search Algorithm13Table 23Galois Symbol Representation in Different Forms17	Table 20	Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code	128
obtained with the Optimised Search Algorithm12Table 22Comparison of N_{Σ} and $p(C)$ for (15,5)-BCH Code obtained with the Optimised Search Algorithm13Table 23Galois Symbol Representation in Different Forms17	Table 21	Comparison of N_{Σ} and $\rho(C)$ for (11,7)-Hamming Code	
Table 22Comparison of N ₂ and ρ(C) for (15,5)-BCH Code obtained with the Optimised Search Algorithm13Table 23Galois Symbol Representation in Different Forms17		obtained with the Optimised Search Algorithm	129
obtained with the Optimised Search Algorithm13Table 23Galois Symbol Representation in Different Forms17	Table 22	Comparison of N_{Σ} and $\rho(C)$ for (15,5)-BCH Code	
Table 23 Galois Symbol Representation in Different Forms 17		obtained with the Optimised Search Algorithm	130
	Table 23	Galois Symbol Representation in Different Forms	173

Table of Contents

Chapter 1			1	
Introductio	n		1	
1.1	Histori	Historical Overview		
1.2	Goals	Goals and Objectives		
1.3	Outline	e of Dissertation	4	
1.4	Major	Major Contributions		
Chapter 2			7	
Foundation	s of Cha	annel Coding	7	
2.1	Introd	uction	7	
2.2	Block	Codes	7	
	2.2.1	Linear Block Code, Generator Matrix and Parity Check Matrix	8	
	2.2.2	Equivalent Codes and Systematic Codes	9	
	2.2.3	Cyclic Codes - Generator and Parity Check Polynomials	11	
	2.2.4	Syndrome	12	
2.3	Convo	lutional Codes	13	
	2.3.1	Convolutional Encoder	13	
	2.3.2	Matrix Representation of Convolutional Codes	15	
	2.3.3	Trellis Diagram Representation	17	
2.4	On the Decoding of Block and Convolutional Codes		19	
	2.4.1	General Decoding Principles	19	
	2.4.2	Decoding of Block Codes	26	
	2.4.3	Decoding of Convolutional Codes	27	
Chapter 3			29	
Decoding o	f Block	Codes	29	
3.1	Introd	luction	29	
3.2	Block Codes		29	
3,3	Syndro	ome Trellis	33	
3.4	Calcul	ation of the Parity Check Matrix	40	
3.5	Decod	ling in the Syndrome Trellis Diagram	42	

Chapter 4			41
Performance	e Issue	s of Various Block Codes	41
4.1	Introduction		
4.2	Simulat	tion Results	41
	4,2,1	Bit Error Rate Performance of the (7,4)- Hamming-Code	47
	4.2.2	Block Error Rate Performance of the (7,4)-Hamming-Code	48
	4.2,3	Bit Error Rate Performance of the (16,11)-Reed-Muller-Code	49
	4,2,4	Bit Error Rate Performance of the (31,21)-BCH-Code	50
	4.2.5	Bit Error Rate Performance of the (15,7)-BCH-Code	51
	4.2.6	Comparison of BCH-Codes with (7,4)-Hamming Code	52
	4.2.7	Bit Error Rate of the (16,5)-Reed-Muller-Code R(1,4)	53
	4.2.8	Bit Error Rate of the (16,11)-Reed-Muller-Code R(2,4)	54
	4.2.9	Bit Error Rate of the (32,16)-Reed-Muller-Code R(2,5)	55
	4.2.10	Bit Error Rate of the (32,26)-Reed-Muller-Code R(3,5)	56
	4.2.11	Bit Error Rate of the (32,31)-Reed-Muller-Code R(4,5)	57
	4.2.12	Comparison of Reed-Muller-Codes for Different Parameters	58
	4.2.13	Tabulation of Results	59
	4.2.14	General Discussion of Results	59
Chapter 5			60
Trellis Cons	struction	and Decoding of Non-Binary Reed-Solomon Codes	60
5.1	Introdu	uction to Reed-Solomon Codes	60
5.2	Algebra	aic Reed-Solomon Code Construction	60
5.3	Conver	ntional Decoding methods for Reed-Solomon Codes	62
5.4	Error C	Correcting Characteristics of Reed-Solomon Codes	64
5.5	Various	s Trellis Construction Techniques	65
	5.5.1	Syndrome Trellis Design for Reed-Solomon Codes	65
	5.5.2	Coset Trellis Design for Reed-Solomon Codes	68
	5.5.3	Modified Trellis Design Procedure for Reed-Solomon Codes	69
5.6	Topolo	gical Analysis of a Reed-Solomon Trellis	91
5.7	Symbo	I Error Rate of Reed-Solomon Codes	97
5.8	Genera	al Discussion on Reed-Solomon Performance	98
Chapter 6			100
Introductio	on to Tre	ellis Complexity and Trellis Complexity Reduction	100
6.1	Introdu	uction	100

Centre for Radio and Digital Communication (CRDC)

Department of Electrical and Electronic Engineering

	~ ~ ~		100	
6.2	State Complexity			
6.3	Branch Complexity			
6.4	Overall Complexity			
6.5	Generator Matrix Permutations			
6.6	Decodi	Decoding in the Trellis Diagrams		
6.7	Bit Erro	or Rate Calculations	112	
6.8	Algorit	hms for Determining Minimal Trellis Diagram Representations	118	
	6.8.1	Terminated Brute Force Search Algorithm	119	
	6.8.2	Systematic Search Algorithm	126	
	6.8.3	Optimised Systematic Search Algorithm	128	
Chapter 7			131	
Conclusion			131	
7.1	Conclu	ision	131	
References			133	
Appendix A			137	
Another Syr	drome	Trellis Construction Technique	137	
A.1	Introd	uction	137	
A.2	Genera	ation of the Code Book	137	
A.3	Calcula	ation of the Syndromes	139	
A.4	Constr	ucting the Syndrome Trellis Diagram	145	
Appendix B			151	
Computatio	n of the	e Parity Check Matrix from the Generator Matrix	151	
B.1	Introd	uction	151	
B.2	Explan	nation by Example	151	
Appendix C			155	
Generator M	latrixe	s of Simulated Codes	155	
C.1	Introd	uction	155	
C.2	Genera	ator Matrixes of given BCH-Codes	155	
C.3	Genera	ator Matrixes of given Reed-Muller Codes	157	
Appendix D			161	

Centre for Radio and Digital Communication (CRDC)

Department of Electrical and Electronic Engineering

Shannon P	roduct of Trellises	161
D.1	Introduction	161
D.2	Analytical Approach to the Shannon Trellis Product	161
D.3	Shannon Product of Trellises by Example	163
Appendix E		166
Coset and	166	
E.1	Introduction	166
E.2	Syndrome Construction	166
E.3	Coset Construction	170
Appendix F	172	
Galois Field Arithmetic		172
F.1	Introduction	172
F.2	Fields	172
Appendix (175	
Simulation Code		175
G.1	Introduction	175
G.2	Simulation Code	175