
Chapter 4

Model Analysis

M
ODEL analysis will start with the latently infected cell model (3.1)-(3.4), with

and without therapy. As pointed out before, the simpler model provides ana-

lytical insights more readily, which will then be extended to the co-circulating target cell

extended model (3.38)-(3.43).

The models (3.1)-(3.4) and (3.38)-(3.43) are inherently nonlinear. Often in this chap-

ter, approximate solutions will be derived by applying linear analytical tools to the

linearized models. Linear analytical tools enable easier derivation of an analytic solu-

tion. Approximate as the solution may be, it does present the result in a simpler, more

intuitive way, at least within a certain locality, given the diverse backgrounds of the

intended audience. The solutions that will be obtained, or the predictions that will be

made from the linear analysis will be verified by applying them to the nonlinear model.

Instances where these linear analytical tools are applied will be pointed out.

As stated before, the concepts presented in this and the following chapter can be

applied to any other model.

4.1 Steady State Analysis

Steady state analysis [170] for the HIV/AIDS models will be conducted in order to

determine the dependence of the treatment viral load steady state on drug efficacy. The

variation of the treatment steady state when therapy is initiated at various stages of the

infection will also be examined. In particular, this section focuses on the attainment of

durable suppression of the viral load. The intention is to determine when, as the HIV

infection progresses, initiating therapy is most likely to attain durable suppression of the

viral load. Analytical solutions for the expected steady state viral load suppression will

be derived. If steady state is related to the infection stage, then this study can help

decide when best to initiate therapy.
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The latently infected cell model (3.1) - (3.4) in section 3.1 has two steady states

or equilibrium points. The first is the pre-infection steady state and the other is the

infected steady state [Tss,Tlss,Tass,Vss]
T , which is given by (4.1)-(4.4). The pre-infection

steady state is unstable (once infected), while the infected steady state is stable. There

is therefore, only one infected stable steady state and its global asymptotic stability

(attractiveness) has been proven or discussed (without Tl) by [59], as well as [84].

Tss =
cδa

rT βT q
(4.1)

Tlss =
qlcδa

rT q(δl + k)
Vss (4.2)

Tass =
c

rT

Vss (4.3)

Vss =
rT sT q

cδa

+
p − dT

βT

−
pcδa

rT β2
T qTm

(4.4)

where q = qa + ql
k

δl+k
. Tss, Tlss, Tass, and Vss are expressions for the uninfected CD4+ T

cell, latently infected CD4+ T cell, actively infected CD4+ T cell and viral load steady

states, respectively. Equations (4.2) and (4.3) are expressed in that manner to show the

proportional relationship between the virus and infected cell steady states.

The infected steady state is determined by both the host cell and virus parameters.

Variations in steady state set points from one individual to the other, and ultimately

variations in the response to therapy, can therefore be attributed to inter-individual

variations in model parameters as has been previously observed by [41, 71, 171, 172].

A point worth noting is that the CD4+ T cell steady state value (4.1) does not depend

on CD4+ T cell specific parameters sT , p, Tm and dT .

4.1.1 Analysis with Replication Cycle Based HAART

Replication cycle based HAART in this thesis, entails the concomitant use of multiple

drugs from the reverse transcriptase and/or protease inhibitor classes. Model (4.5)-(4.9)

incorporates the effect of HAART for the latently infected cell model (3.1)-(3.4) that was

presented in section 3.1.
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dT

dt
= sT + pT (1 − T/Tmax) − dT T − βT TVi (4.5)

dTl

dt
= (1 − ηrt)qlβT TVi − kTl − δlTl (4.6)

dTa

dt
= (1 − ηrt)qaβT TVi + kTl − δaTa (4.7)

dVi

dt
= (1 − ηpi)rT Ta − cVi (4.8)

dVn

dt
= ηpirT Ta − cVn (4.9)

The treatment steady states for the uninfected CD4+ T cells, infectious virus, non

infectious virus and total viral load are given by:

Tss(η) =
cδa

(1 − ηco)qβT rT

(4.10)

Viss(η) =
(1 − ηco)rT sT q

cδa

+
p − dT

βT

−
pcδa

(1 − ηco)rT β2
T qTm

(4.11)

Vnss(η) =
ηpi

1 − ηpi

Viss (4.12)

Vtss(η) = Viss + Vnss =
1

1 − ηpi

Viss (4.13)

where ηco = ηrt + ηpi − ηrtηpi is the combined efficacy when both reverse transcriptase

and protease inhibitors are used in the regimen. Note also that 0 ≤ ηco ≤ 1.

It is clear from the above equations, why and how HAART reduces the viral load

and increases CD4+ T cell counts. Therapy with HAART therefore, moves the states

from one point to another, and the new on treatment steady states are determined by

the combined drugs efficacy as illustrated in figure 4.1.

An important point to note from equations (4.10)-(4.13), is that the treatment steady

states are independent of when therapy is initiated. Initiating therapy at a stage where

the viral load is below this treatment steady state will result in an increasing viral load,

which is interpreted as failure to control the viral load. However, initiating therapy at a

stage where the viral load is higher than this treatment steady state will obviously result

in some degree of viral load control even though the viral load will eventually settle to

the same steady state, given the same fixed drug efficacy.

Equation (4.11) can be solved to get

ηzss = 1 +
cδa

2βT rT sT q
[(p − dT ) −

√

(p − dT )2 +
4sT p

Tm

] (4.14)

as the minimum combined drug efficacy that is required to obtain an on treatment steady

state viral load of zero.
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Figure 4.1: Viral load steady state for the latently infected cell model as determined by
the combined HAART efficacy. (a) Linear plot. (b) Logarithmic plot. Parameters are
in Table A.1.
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Equation (4.11) can also be solved to get

ηsup = 1 +
cδa

2βT rT sT q
[(p − dT − 50βT ) −

√

(p − dT − 50βT )2 +
4sT p

Tm

] (4.15)

as the minimum combined drug efficacy that is required to obtain a treatment steady

state viral load that is below detection (below 50 copies mL−1), as depicted in figure 4.1.

It should be noted that even though attaining a zero viral load steady state cor-

responds to zero infected cell steady states, that does not necessarily imply perfect

inhibition of virus replication, as for most parameter combinations, ηzss < 1. However,

increasing the combined drug efficacy to a value above ηzss will have no further long

term suppression of the virus that is produced from the CD4+ T cells. This therefore

means that any circulating or detectable plasma viremia is from other sources such as

macrophages, follicular dendritic cells, resting memory T cells and other sources that are

known to harbour pro-viral DNA [39, 40, 113, 117]. Higher drug doses are used though,

because there is differential drug penetration into some compartments [34, 38, 173].

The combined drug efficacy ηzss (4.14) for a zero steady state viral load, as well as

ηsup (4.15) for a below detection steady state viral load are parameter dependent. They

will therefore vary from one individual to another. ηsup (4.15) can result in a combined

drug efficacy as low as 60% to higher than 95% for some parameter combinations. This

explains why some individuals experience virologic failure on therapy that is highly

effective on others. From a vaccination point of view, ηzss (4.14) can be interpreted as

the minimum drug efficacy that is required to prevent the initial virus inoculation from

successfully replicating. This, however, is so if one assumes that virus replication starts

in the CD4+ T cells before spreading to other compartments.

For drug efficacies in the vicinity of ηsup (4.15), the viral load steady state is very

sensitive to small changes in drug efficacy, as it has been previously observed by [71].

However, [71] have since demonstrated that this viral load steady state sensitivity to

small changes in drug efficacy, can be reduced or eliminated when the extended model

(3.38)-(3.43) is used instead. This reduced sensitivity becomes more apparent when

differential drug penetration into target cells is modelled. This realization has been used

to further explain why, contrary to as suggested by equation (4.14), virus eradication

is not possible with the use of HAART and replication competent virus can still be

recovered from individuals on potent HAART, as it has been reported in [28, 31, 33]. In

any case, this variation in steady state response occurs at very low viral loads. So the use

of very high drug doses above ηsup or close to ηzss, bearing in mind that virus eradication

does not seem attainable with HAART, may from a clinical and toxicity perspective, not
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be necessary. The drug efficacy cutoff ηsup as given by equation (4.15) is therefore, a

reasonable upper limit when defining an operating therapeutic range for an individual,

for each class of inhibitor that is used in the combined HAART regimen.

Equation (4.10) implies that it is possible for the uninfected CD4+ T cells to rebound

to pre-infection values under therapy. However, this is not true for most infected indi-

viduals as many attain virologic success with inadequate cell rebounds. Clinical studies

suggest that HIV damages the immune system and the extent of T cell rebound therefore,

depends on the extent to which the immune system is repairable, and not necessarily

on the ability of the drugs to suppress virus replication. There is therefore, a need to

find ways of quantifying the health or damage to the immune system, so that it can

be factored into the equations describing the CD4+ T cell dynamics. From inspecting

equation (4.1), one could expect that βT and infected CD4+ T cell specific parameters

δa and q would correlate to the health or damage to the immune system.

4.1.2 Analysis with Immune Based Therapies

Latently Infected Cell Model

Immune based CD4+ T cell specific therapies, as discussed before, could entail:

• Reducing CD4+ T cell source rate s, hence referred to as source rate limiting

therapy. ηsl is the efficacy (inhibitory effect) of the source suppressing drugs used

and 0 ≤ ηsl < 1.

• Reducing CD4+ T cell proliferation rate p, hence referred to as proliferation sup-

pressive therapy. ηps is the efficacy of the proliferation suppressing drugs used and

0 ≤ ηps < 1.

• Accelerating infected CD4+ T cell death rates δl and δa, hence referred to as

infected cell death accelerating therapy. ηda is the percentage rate at which CD4+

T cell death rate is increased, or the death acceleration factor and ηda ≥ 0.

• Accelerating target CD4+ T cell death rate dT , hence referred to as apoptosis

inducing therapy. ηap is the percentage rate at which apoptosis of target CD4+ T

is induced and ηap ≥ 0.

Immune based therapies in current practice, generally entail the independent use of

the immunosuppressive drug as hyroxyurea (cell proliferation and maturation suppressor)

and the immune stimulant IL-2 (infected cell death accelerator). Model (4.16)-(4.19)

incorporates the effect of immune therapies for the latently infected cell model (3.1)-

(3.4) that was presented in section 3.1.
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dT

dt
= (1 − ηsl)sT + (1 − ηps)pT (1 − T/Tmax) − (1 + ηap)dT T − βT TVi (4.16)

dTl

dt
= qlβT TVi − kTl − (1 + ηda)δlTl (4.17)

dTa

dt
= qaβT TVi + kTl − (1 + ηda)δaTa (4.18)

dVi

dt
= rT Ta − cVi (4.19)

When immunosuppressive therapy is used, then the uninfected CD4+ T cell and viral

load steady states will be:

Tss(η) =
cδa

rT βT q
(4.20)

Vss(η) =
(1 − ηsl)rT sT q

cδa

−
dT

βT

+
(1 − ηps)p

βT

(1 −
cδa

rT βT qTm

) (4.21)

Similarly, the steady states with immune stimulants and apoptosis inducing therapy will

be:

Tss(η) =
(1 + ηda)cδa

rT βT qda

(4.22)

Vss(η) =
rT sT qda

(1 + ηap)cδa

−
(1 + ηap)dT

βT

+
p

βT

(1 −
(1 + ηda)cδa

rT βT qdaTm

) (4.23)

where, qda = qa + ql(
k

k+(1+ηda)δl

).

As with replication cycle based therapies, the steady states are parameter dependent,

and are also independent of when, during the infection progression, therapy is initiated.

As noted before, Tss (4.20,4.22), unlike Vss (4.21,4.23), does not depend on parameters

sT , p and dT . Immunosuppressive therapies that reduce sT and p, or therapies that

accelerate dT will reduce the viral load set point Vss, but will have no effect on the CD4+

T cell steady state Tss, as illustrated by figure 4.3. One would expect however, that the

introduction of these therapies will transiently perturb the CD4+ T cell dynamics, but

the cell count will settle at the steady state Tss, as depicted by figure 4.2.

Increasing the infected cell death rates δl and δa will on the other hand, increase

the CD4+ T cell steady state as well as reduce the viral load set point. So the above

considered CD4+ T cell specific therapies will reduce the viral load, but unlike replication

cycle based HAART, some will not increase the CD4+ T cell count in the long term.

Figures 4.2 and 4.3 show that, from an end point efficacy perspective, accelerating

infected CD4+ T cell death rates, is better than proliferation suppressive therapy at
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Figure 4.2: CD4+ T cell and viral load steady states as determined by the immune ther-
apy drug efficacy. ps: proliferation suppressing therapy, da: infected cell death acceler-
ating therapy, rt: reverse transcriptase. (a) CD4+ T cells. (b) Viral load. Parameters
are in Table A.1.
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Figure 4.3: Pre-treatment set point and set point adjustment by immune therapies. ps:
proliferation suppressing therapy, da: infected cell death accelerating therapy. ηps =
ηda = 0.25 (a) CD4+ T cell count. (b) Viral load. Parameters are in Table A.2.
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reducing the viral load, given the same drug efficacy. Furthermore, cell death accelerating

therapy has an added advantage of being able to also increase the CD4+ T cell count.

Care should be taken though, not to confuse a lower drug efficacy to automatically imply

a lower pill or drug intake.

There is currently no clinical evidence that shows how immunosuppressive and cell

death rate accelerating therapies affect macrophages. It can be intuitively assumed

though, that these drugs would have some effect on macrophage cells as they do on

CD4+ T cells. However, the effect of immune based therapies on macrophage cells will

not be considered in this thesis.

4.1.3 Combining HAART with Immune Based Therapies

There are numerous studies that have been undertaken on the concomitant use of some

immune based therapies with HAART. In particular, there are some studies that have

investigated the possible inclusion of the immunosuppressive drugs in HAART regimens.

The intention is to improve the efficacy of HAART. This section discusses some of the

results that were obtained from such clinical trials.

The non-dependence of the CD4+ T cell steady state on the CD4+ T cell specific

therapy efficacy (ηsl and ηps) explains why some of the clinical trial outcomes have

reported increased drug toxicity with no added efficacy, when the immunosuppressive

drug hydroxyurea is added to HAART regimens [122, 123, 124]. As pointed out before

in section 4.1.2, proliferation suppressive therapy has marginal reduction of the viral

load, and is not capable of modifying the CD4+ T cell steady state count. This analysis

suggests that the addition of proliferation suppressive or source rate limiting therapy to

replication cycle based HAART regimens, is an ill conceived idea. An option that could

be considered is adding infected CD4+ T cell death accelerators to the HAART regimen.

4.1.4 Conclusions

The following conclusions can be drawn from the analysis that was carried out in this

section.

1. The end result of HIV therapy is to move the pre-treatment viral load to a treat-

ment steady state. This treatment steady state is independent of when therapy

is initiated, but is dependent on the individual’s viral and host cell parameters,

as well as the combined drug efficacy.

2. Initiating therapy when the viral load is below this treatment steady state will

result in an increasing viral load, which will be perceived as failure to control the
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viral load. When therapy is initiated with a viral load that is higher than this

treatment steady state though, there will be an observable reduction in the viral

load.

3. This dependence of the treatment steady state on model parameters and drug

efficacy, also gives an indication whether or not durable viral load suppression to

below detectable levels is attainable for a particular individual.

4. The best way to ensure durable suppression of the viral load to below 50 copies

therefore, is to select a drug dosage that has a treatment steady state of less than

50 copies per mL of plasma.

5. The dependence of the steady states on the individuals model parameters explains

why there is inter-individual variations in viral load and CD4+ T cell set-points,

as well as why some individuals have virologic failure on therapy that is highly

effective on others.

6. For replication cycle based therapy with the latently infected cell model, the

viral load steady state is sensitive to small changes in drug efficacy when one

is operating around the detection cutoff (50 copies mL−1 steady state efficacy.

However, [71] has since shown that this sensitivity is eliminated for the extended

model.

7. Immunosuppressive therapy has no effect on the CD4+ T cell treatment steady

state. This suggests that its concomitant use with replication cycle based HAART

is a bad idea. This is further supported by some clinical trial outcomes that show

increased toxicity with no added efficacy with their use in HAART regimens. The

better option is adding infected CD4+ T cell death accelerators to the HAART

regimen. This would particularly be useful in cases where the individual has

marginal cell gains with HAART.

8. The use of target cell death accelerating therapies at first sight may appear counter

intuitive because current focus of therapy is to increase CD4+ T cell counts.

However, these therapies will not ‘harm’ the immune system in so far as the

CD4+ T cell counts are concerned.

9. Generally, immune based therapies, from an end point efficacy perspective, are

not capable of suppressing the viral load as effectively as replication cycle based

therapies.

When using replication cycle based drugs (RTI and PI), the viral load steady state

is determined by the combined efficacy for these classes of antiretroviral agents. This

implies that using two low efficacy drugs from each class can be as good as using moderate
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efficacy therapy from a single class. Furthermore, using low efficacy and moderate efficacy

from different classes can be as good as using a high efficacy therapy from a single class.

The analysis suggests that it is possible for the uninfected CD4+ T cells to rebound to

pre-infection values under therapy. However, this is not true for many infected individuals

who attain maximal viral load suppression with inadequate CD4+ T cell gains (virologic

success with immunologic failure). There is therefore, a need to find ways of quantifying

organ health or damage to the immune system, so that it can be factored into the

equations describing the CD4+ T cell dynamics.

4.2 Transient Response Analysis

The steady state analysis presented in section 4.1 has shown that the long term end

effect of therapy is to move the viral load and target cell counts from their pre-treatment

values to their treatment steady states. However, the steady state analysis does not

explain the dynamics underlying this transition. Transient response analysis [170] for

the HIV/AIDS models therefore needs to be conducted. Maximal suppression of the viral

load to below detectable levels using HAART is attainable. However, the durability of

such suppression has proved in many cases, to be elusive as the virus often rebounds

(blips) after periods of effective suppression [22, 23, 24, 25]. Issues that are of concern

therefore, are the suppression of the viral load to below detectable levels and the ability

of the drugs to maintain such suppression once attained.

This section focuses on the attainment of maximal and durable suppression of the

viral load. Transient response analysis of an HIV/AIDS model will be used to determine

the extent to which the viral load is suppressible at different stages of the progression

of the HIV/AIDS infection. The intention is to determine when, as the HIV infection

progresses, initiating therapy is most likely to attain maximal and durable suppression

of the viral load, as well as the conditions that are conducive to the minimization of viral

load blips. If response is related to the infection stage, then this study can also help

decide when best to initiate therapy. Simulations are used to show the effect on the viral

load of initiating therapy at different stages of the HIV infection.

4.2.1 Analysis with the Latently Infected Cell Model

An approximate analysis by linearizing the nonlinear equations in (4.5)-(4.9) with the

combined use of reverse transcriptase and protease inhibitors can be obtained. The Jaco-

bian when evaluated at an operating point [T o, T o
l , T o

a , V o
i , V o

n ]T along the state trajectory
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from initial infection is given by:

AL =



















κ1 0 0 −βT T o 0

qlβT V o
i −(δl + k) 0 qlβT T o 0

qaβT V o
i k −δa qaβT T o 0

0 0 rT −c 0

0 0 0 0 −c



















where κ1 = p(1 − 2T o/Tm) − dT − βT V o
i . The assumption is that the individual is

treatment näıve, that is, has no prior exposure to therapy.

It is clear from the entries in matrix AL, that the eigenvalues are functions of the

viral load Vo and the CD4+ T cell count To, at the instance when therapy is initiated.

Since these measurements vary with the stage of the HIV infection, then the eigenvalues

can also be expected to vary with the stage of the HIV infection, that is, with when

therapy is initiated.

The first eigenvalue is λ1 = −c, while the remaining four are the solutions to

(λ + c)(λ + δa)(λ + δl + k)(λ − κ1)

−rT βT T o(λ − κ1 − βT Vi)(kql + qa(λ + δl + k)) = 0 (4.24)

The eigenvalues are either all real or have a complex pair depending on the stage as the

infection progresses. There is therefore, a bifurcation of λ4 and λ5 as they are distinct

at some infection stages and are a conjugate pair at other infection stages, as depicted

in figure 4.4. For the infection stage where λ4 and λ5 are a conjugate pair, the viral load

transient response will have the general form

ṽc(t) = A1e
λ1t + A2e

λ2t + A3e
λ3t + A4e

σt cos(ωt + φ) + vss (4.25)

where λ1, λ2 and λ3 are the real eigenvalues, while ω is the frequency of oscillation and σ is

the transient decay rate for the complex pair. This implies that when therapy is initiated,

the response will oscillate about the steady state before settling. The magnitude of the

oscillation and its decay rate will be parameter, drug efficacy and infection stage (timing)

dependent. Figure 4.5 illustrates the variation of ω and σ with the combined HAART

(RTI and PI) efficacy when therapy is initiated at the asymptomatic stage.

For the infection stages where λ4 and λ5 are distinct, the viral load transient response

will have the general form

ṽr(t) = A1e
λ1t + A2e

λ2t + A3e
λ3t + A4e

λ4t + A5e
λ5t + vss (4.26)

In this case, one can expect the transition to the treatment steady state to be smooth.
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Figure 4.4: Eigenvalue variation with infection progression for the latently infected cell
model. X(0) = [1000, 0, 0, 1]T . Parameters are in Table A.1.

Electrical, Electronic and Computer Engineering 67

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJeeffffrreeyy,,  AA  MM    ((22000066))  



CHAPTER 4 MODEL ANALYSIS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

frequency

decay rate

Frequency and transient decay rate as a function of drug efficacy

Combined drug efficacy − η
co

fre
qu

en
cy

 / d
ec

ay
 ra

te 
− p

er
 da

y

Figure 4.5: Complex eigenvalue variation with combined HAART (RTI and PI) efficacy
when therapy is initiated at the asymptomatic stage. Parameters are in Table A.1.

The absolute values for λ1 and λ2 are relatively large, hence their respective transients

will die out quickly (τ ≤ 0.2 days). The variation in response is therefore mainly due

to the variation in λ3 and the complex eigenvalue parameters ω and σ. This variation

in ω and σ also implies that initiating therapy at some infection stages can be expected

to result in a more oscillatory transition to the steady state than at other stages. For

instances where all the eigenvalues are real, then the transition to the treatment steady

state should be smoother. This analysis is consistent with the often observed ‘viral load

blips’ under HAART, where a blip is defined as a transient rebound of plasma viremia

after suppression has been attained.

The solutions (4.25) and (4.26) are approximations of the true response. However,

the intention was more to understand the nature or form of the response that one can

expect, than it was to obtain an expression for the true response. Now that the type of

response one can expect is determined by this approximate linearization, it will then be

verified using the nonlinear model.

Figure 4.6 shows how the viral load responds to therapy when it is initiated at various

stages of the infection, using the same drug efficacy. In particular, the figure shows how

viral load suppression depends on when therapy is initiated. It can be seen that a fixed

drug dosage can be suppressive at one stage of the infection, but fail when therapy is

initiated too early.
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Figure 4.6: Response to therapy when initiated at various stages of the HIV infection.
d200:day 200; d5:day 5; d50:day 50; d15:day 15. Drug efficacy ηrt = 0.7 Parameters are
in Table A.1.

On the other hand, figure 4.7 shows how the viral load responds to therapy when it

is initiated at the asymptomatic stage of the infection. In this case, the figure shows how

viral load suppression depends on drug efficacy.

4.2.2 Analysis with the Extended Model

The Jacobians for the extended model when evaluated at an operating point

[T o, T o
l , T o

a ,M o,M∗o, V o
i , V o

n ]T along the state trajectory from initial infection is given by:

AE =





























κ1 0 0 0 0 −βT Tss 0

qlβT V o −(k + δl) 0 0 0 qlβT T o 0

qaβT V o k −δa 0 0 qaβT T o 0

0 0 0 −(dM + βMV o) 0 −βMM o 0

0 0 0 qMβMV o −µ qMβMM o 0

0 0 rT 0 rM −c 0

0 0 0 0 0 0 −c




























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Figure 4.7: Response to therapy when initiated at the asymptomatic stage of the infection
using a varying drug efficacy. Parameters are in Table A.2.

The entries in matrix AE show that the eigenvalues will be functions of the viral load Vo,

the uninfected macrophage cell count Mo, and the uninfected CD4+ T cell count To, at

the instance therapy is initiated. And similarly, the eigenvalues, and hence the response

to therapy, can also be expected to vary depending on when therapy is initiated.

4.2.3 On Attaining Maximal and Durable Suppression of the

Viral Load

Viral load suppression is considered to be maximal when the viral load reaches below

levels of detection by the currently available assays. Given a fixed drug efficacy, the initial

viral load and CD4+ T cell count, the minimum viral load and the duration of viral load

suppression to below 50 copies per mL of plasma, if attainable, can be determined from

either (4.25) or (4.26). Even though this minimum value below 50 copies per mL that

the viral load can be reduced to is currently not clinically quantifiable as it can not be

readily measured. However, an estimate of the minimum value that the viral load can be

reduced to is useful in determining whether viral load suppression to below detectable

levels can be attained, for the given drug dosage and instance when therapy is initiated.
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Eigenvalue variation gives an indication of how the duration of viral load suppression

is expected to vary as the infection progresses. Higher values of ω indicate that if viral

load suppression is attained, then it will be short lived. Similarly, higher values of σ

indicate that the transition to the steady state will be more rapid. Very early initiation

of therapy can therefore be expected to result in a shorter viral load suppression period

and a rapid transition to the steady state, which is indicated by the relatively higher

values of ω and σ. Late therapy during the asymptomatic stage will most likely result

in a prolonged viral load suppression period. Increasing the drug dose results in a longer

period of viral load suppression, which is indicated by the decreasing values of ω and σ.

Given the foregoing, maximal suppression of the viral load is most likely to be attained

when therapy is initiated during the asymptomatic, very early and late acute infection

stages of the infection, or when high drug doses are used. It is therefore possible for

a drug dosage to be suppressive at one stage of the infection, but fail when therapy is

initiated at a different stage. For a given instance when therapy is initiated, then the

degree and duration of viral load suppression is drug efficacy dependent.

Durable Suppression

The best way to ensure a more durable suppression of the viral load will be to select a

drug dosage that has a treatment steady state of at most 50 copies per mL of plasma.

Alternatively, durable viral load suppression can be attained when therapy is initiated

at a time when the associated complex eigenvalues have a smaller frequency component.

If any viral load suppression to below the treatment steady state is attained, then it will

be long lived as the virus slowly rebounds before settling to the treatment steady state

value. It is reasonable to assume that the lower to below detectable levels the viral load

is suppressed to, the longer the duration of suppression will be. Maximal suppression

therefore, generally implies durable suppression. Durable suppression is therefore also

most likely to be attained when therapy is initiated during the asymptomatic, very early

and late acute infection stages if the infection, or when a drug dosage that can attain a

viral load treatment steady state below 50 copies per mL of plasma is used.

Viral Load Rebounds Under Therapy

Since a viral load blip is a transient rebound of the viral load to above a specified value

after maximal suppression has been attained, this means that viral load blips are more

likely to occur when drug doses with steady states that are higher than the set value are

used (usually over 400 or 500 copies per mL of plasma). For a fixed drug dosage and
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constant frequency ω, blips are most likely to occur when therapy is initiated at a stage

where the associated transient decay rate σ is low. Rebounds can be expected to be more

pronounced when transient viral load suppression is attained with lower drug doses, as

is the case when therapy is initiated during the asymptomatic stage. Initiating therapy

very early during the acute infection stage could minimize viral load blips, but result

in a shorter duration of suppression. The difference in peak viral load rebounds for the

different infection stages, except for the very early acute infection stage, is not really that

significant, which seems to suggest that viral load rebounds are more drug efficacy and

parameter variation dependent, than they are timing dependent. The sensitivity of the

steady state to slight changes in efficacy could also be the cause of transient rebounds.

These slight efficacy variations could be due to daily variations in drug metabolism, for

example.

4.2.4 Conclusions

The following conclusions can be drawn from the analysis presented in this section:

1. The transition from the pre-treatment steady state to the treatment steady state

is oscillatory. The response is parameter and drug efficacy dependent, but unlike

the treatment steady state, it is also dependent on when therapy is initiated.

2. If a drug is capable of driving the viral load to a particular steady state value,

then the duration of the viral load suppression to below this steady state value

can be maximized by choosing the right time to initiate therapy.

3. Initiating therapy during the mid acute infection stage when the viral load is high,

results in a faster transition to the treatment steady state. This however, implies

a shorter viral load suppression period.

4. Initiating therapy during the asymptomatic stage of the infection however, will

result in a more durable suppression of the viral load. Furthermore, maximal

suppression implies a more durable suppression of the viral load.

5. Viral load blips will occur whenever the drug efficacy is such that the viral load

treatment steady state is higher than the figure that is set as indicative of a blip.

This value in most cases is set at 500 copies per mL of plasma.

6. A point to note is that, from the steady state analysis, there is not much difference

in the required drug efficacy to attain steady state viral loads of 50 or 500 copies

per mL of plasma. Therefore, it is possible that blips could be caused by slight

variations in efficacy due to daily variations in drug pharmacokinetics, or other

such extenuating factors.
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7. The stage of the infection where viral load blips are most likely to occur is not

very clear, but it is clear that viral load rebounds under therapy do not necessarily

imply virologic failure. It could be that the drug dosage is not capable of continued

viral suppression.

8. However, if the individual’s parameters are known, it is then possible to estimate

the duration of viral load suppression, as well as anticipate the magnitude and

timing of the viral load blip.

9. This study therefore, puts emphasis on the need to estimate parameters and

individualize antiretroviral therapy.

4.3 Interruption of Highly Active Antiretroviral Ther-

apy

The viral load will rebound and CD4+ T cell counts will decline during HAART in-

terruption. This is considered as undesirable, especially when the CD4+ T cell count

did not rebound adequately while one was still on HAART. There is therefore, need to

investigate options, therapeutic or otherwise, that will slow down the viral load rebound

and/or CD4+ T cell decline during HAART interruption.

It has been explained in section 4.1.3 why adding immunosuppressive drugs to HAART

regimens that are already capable of maximally suppressing the viral load has marginal

benefits. In any case, these drugs are on their own, only capable of slightly reducing the

viral load set point. This section deals specifically with investigating the possible use of

CD4+ T cell specific immune based therapies as adjuvant to HAART interruptions. The

intention is to slow down viral load rebounds when HAART is interrupted.

4.3.1 Anti-CD4 Therapy as Adjuvant to HAART Interruption

Viral load rebounds occur because HAART interruptions “induce sudden antigenic ac-

tivation with high peaks of viral load, up to a set-point of viral load or higher, which

infects new populations of activated CD4 T cells ..” [120]. More precisely, viral load

rebounds occur because (refer to section 2.4):

1. Viral load suppression with HAART does not necessarily imply a reconstitution

of HIV specific immune responses [127].

2. There is over stimulation of the immune system during infection [92].

3. The availability of new target cells due to cell gains incurred during HAART [174].
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Strategies that reduce cell activation or limit the population of available target cells

can therefore be expected to slow down the rebound rate. These immune based CD4+

T cell specific therapies are referred to as anti-CD4 therapy, since they are perceived

to counteract the increase of CD4+ T cells. These therapies are considered to have no

anti-viral activities because they do not directly interfere with the viruses replication

cycle. Instead, they manipulate the population dynamics of the target CD4+ T cells.

As explained before, anti-CD4 therapy could include:

1. Reducing CD4+ T cell proliferation rate p, referred to as proliferation suppressive

therapy.

2. Reducing CD4+ T cell source rate sT , referred to as source limiting therapy.

3. Accelerating infected CD4+ T cell death rates δl and δa, referred to as cell death

accelerating therapy.

4. Accelerating target CD4+ T cell death rate dT , referred to as apoptosis inducing

therapy.

These therapies are referred to as Anti-CD4 therapy, as they are perceived to be sup-

pressing the expansion of the CD4+ T cell pools.

4.3.2 HAART Interruption with the Latently Infected Cell Model

When HAART is on, the steady states for the viral load and uninfected CD4+ T cell

count for the latently infected cell model were given by equations (4.1) and (??) in section

4.1.1, and are repeated here for ease of reference.

Tss =
cδa

(1 − ηco)qβT rT

(4.27)

Viss =
(1 − ηco)qrT sT

cδa

−
dT

βT

+
p

βT

(1 −
cδa

(1 − ηco)qβT rT Tm

) (4.28)

where q = qa + ql(
k

k+δl

). When HAART is interrupted, the system will move to another

steady state. When proliferation suppressive therapy is used during this period, then

the steady states will be :

Tss =
cδa

qβT rT

(4.29)

Viss =
qrT sT

cδa

−
dT

βT

+
(1 − ηps)p

βT

(1 −
cδa

qβT rT Tm

) (4.30)

Similarly, the steady states when cell death rate accelerating therapy is used will be:

Tss =
(1 + ηda)cδa

qdaβT rT

(4.31)

Viss =
qdarT sT

(1 + ηda)cδa

−
(1 + ηap)dT

βT

+
p

βT

(1 −
(1 + ηda)cδa

qdaβT rT Tm

) (4.32)
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where, qda = qa + ql(
k

k+(1+ηda)δl

).

The use of anti-CD4 therapies at first sight may appear counter intuitive because

current focus of therapy is to increase CD4+ T cell counts. However, anti-CD4 therapies

will not ‘harm’ the immune system. This is made apparent by examining equations (4.29)

and (4.31). These equations show that when proliferation suppressive therapy is used

during HAART interruption, then the CD4+ T cell count will decline to the pre-HAART

steady state value. The CD4+ T cell count will also decline when cell death accelerators

are used during HAART interruption. However, unlike with proliferation suppressors,

this value will be higher than the pre-HAART steady state, and the percentage increase

will be equal to the drug efficacy ηda.

On a similar note, it is clear from equations (4.30) and (4.32) how the use of anti-CD4

therapies during HAART interruption can prevent the viral load from rebounding to pre-

HAART values. Their ability to reduce the viral load set point could imply that their

use during HAART interruptions could reduce the peak viral load. This in turn could

imply that the rate of viral load rebound is reduced, and consequently this would prolong

the duration of HAART interruption. It is also clear that cell death accelerators, from

an end point efficacy perspective, would have better viral load control than proliferation

suppressors.

Figure 4.8(a) shows how one could expect viral load rebound to be slowed down when

cell death accelerating anti-CD4 therapy is used during HAART interruption. For this

case, viral suppression can be maintained for almost 10 days without therapy. Also,

significantly longer HAART interruption periods can be attained by the use of anti-CD4

therapy. One however, needs to weigh the advantages of increasing OFF HAART periods

against the sacrifice of having no drug free days.

Figure 4.8(b) shows that using anti-CD4 therapy results in a rapid initial decline in

CD4+ T cell counts. This is followed by a slower decline as CD4+ T cell counts will

eventually settle at a value that is higher than when no drugs are used during HAART

interruption. When considering the sacrifice of having no drug free days then, one should

also consider the benefits of long term CD4+ T cell gains.

Analysis of the virus and target cell dynamics during HAART interruption with the

extended model should illustrate the same concept: that antiCD4 therapy could be used

to slow down viral load rebounds that occur when HAART is interrupted.
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Figure 4.8: Viral load rebound and CD4+ T cell decline when anti-CD4 therapy is used
during HAART interruption. ηda = ηap: cell death acceleration factors. HAART was
previously ON for 300 days with ηrt = 0.7 (a) Viral load (b) CD4+ T cells. Parameters
are in Table A.2.
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4.3.3 Conclusions

It is not possible for some HIV infected individuals to attain long term viral load control

when HAART is interrupted. A possible way to prolong OFF HAART periods for these

individuals is to use anti-CD4 immune based therapies when HAART is interrupted. The

use of anti-CD4 therapies at first sight may appear counter intuitive because current focus

of therapy is to increase CD4+ T cell counts. However, anti-CD4 therapy has a potential

to prolong the duration of HAART interruptions without excessive reduction in CD4+ T

cell counts. Even though anti-CD4 therapy initially accelerates CD4+ T cell depletion,

it does not necessarily, in the long term harm the immune system in so far as CD4+ T

cell counts are concerned.

What remains then, is to determine the efficacy of the anti-CD4 therapy required for

pre-determined ON/OFF HAART periods. Conversely, if the efficacy is known, then the

ON/OFF HAART period can be determined. The optimal ON/OFF HAART periods

also need to be determined. For the protocol considered in this section, it was assumed

that the immune based therapy is to be used for the entire duration that HAART is

interrupted. The possibility of whether this therapy’s use during OFF HAART periods

can be limited to include schedules with drug holidays, where the individual is either ON

HAART, or ON Anti-CD4 therapy, or completely OFF all drugs, needs to be explored.

4.4 Controllability Analysis

The viral load is considered to be controllable if the control law in use can reduce it by

90% in 8 weeks from the time treatment is initiated and continue to suppress it to below

50 copies per mL of plasma in less than 6 months [1]. There are numerous reported cases

where the viral load of individuals has been suppressed to below detectable levels with

the use of HAART. So, from a medical/clinical perspective, it seems that the viral load

of many HIV infected persons is controllable by the available antiretroviral drugs.

Controllability analysis for the basic 3D HIV/AIDS model has been previously ad-

dressed by [43, 107]. Analysis will therefore be carried out for the latently infected cell

model ΣL (4.33) and the co-circulating target cell extended model ΣE (4.34) with both

HAART and immune based therapies.

ΣL =























dT
dt

= sT + (1 − ηps)pT (1 − T
Tm

) − dT T − βT TVi

dTl

dt
= (1 − ηrt)qlβT TVi − (1 + ηda)δlTl − kTl

dTa

dt
= (1 − ηrt)qaβT TVi − (1 + ηda)δaTa + kTl

dVi

dt
= (1 − ηpi)rT Ta − cVi

(4.33)
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ΣEco =















































dT
dt

= sT + (1 − ηps)pT (1 − T
Tm

) − dT T − βT TVi

dTl

dt
= (1 − ηrt)qlβT TVi − (1 + ηda)δlTl − kTl

dTa

dt
= (1 − ηrt)qaβT TVi − (1 + ηda)δaTa + kTl

dM
dt

= sM − dMM − βMMVi

dM∗

dt
= (1 − αrtηrt)qMβMMVi − µM∗

dVi

dt
= (1 − ηpi)rT Ta + (1 − αpiηpi)rMM∗ − cVi

(4.34)

4.4.1 Controllability

Controllability, by definition, “is a property of a system by which an input can be found

that takes every state variable from a desired initial state to a desired final state in finite

time” [170].

There are ways to determine if a system is controllable. The use of the controllability

matrix is one such way. The controllability matrix for a linear system ẋ = Ax + Bu is

given by Mc = [B AB A2B ... An−1B], where n is the system’s order. Then the system

is said to be controllable if rank Mc = n. That is, if Mc is not singular. In this section

therefore, a linear system’s analytical tool will be applied to the linearized models.

For analysis with the latently infected cell model, the linearized model matrix AL at

an operating point [T̄ T̄l T̄a V̄i]
T along the state trajectory from initial infection is:

AL =













κ1 0 0 −βT T̄

qlβT V̄i −(k + δl) 0 qlβT T̄

qaβT V̄i k −δa qaβT T̄

0 0 rT −c













where, κ1 = p(1 − 2 T̄
Tm

) − (dT + βT V̄i). T̄ , and V̄i are the uninfected CD4+ T cell and

viral load measurements at the respective point in the HIV infection progression.

Similarly for analysis with the extended model, the linearized model matrix AE at an

operating point [T̄ T̄l T̄a M̄ M̄∗ V̄i]
T along the state trajectory from initial infection is:

AE =

























κ1 0 0 0 0 −βT T̄

qlβT V̄i −(k + δl) 0 0 0 qlβT T̄

qaβT V̄i k −δa 0 0 qaβT T̄

0 0 0 −(dM + βM V̄i) 0 −βMM̄

0 0 0 βM V̄i −µ βMM̄

0 0 rT 0 rM −c
























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where, M̄ is the uninfected macrophage measurement at the respective point in the HIV

infection progression.

The assumption is that the individual is treatment näıve. The input matrices BL for

the latently infected cell model and BE for the extended model, will depend on the type

or combination of therapy that is under consideration.

4.4.2 Analysis with Replication Cycle Based HAART

Under mono class therapy using Reverse transcriptase inhibitors exclusively (PI sparing

regimens), the input matrices for the latently infected cell model BLrt and the extended

model BErt are respectively given by:

BLrt = βT V̄iT̄













0

−ql

−qa

0













BErt = V̄i

























0

−qlβT T̄

−qaβT T̄

0

−αrtβMM̄

0

























The controllability matrix MLrt = [BLrt ALBLrt AL
2BLrt AL

3BLrt] for the la-

tently infected cell model is given by:

MLrt = βT T̄ V̄i













0 0 qaβT T̄ rT βT T̄ rT (qaκ1 − κ4)

−ql (k + δl)ql −qlκ2 qlβT T̄ rT (qaβT V̄iqa + κ4) + (k + δl)qlκ2

−qa −kql + δaqa κ3 qaβT T̄ rT (qaβT V̄iqa + κ4) − kqlκ2 − δaκ3

0 −rT qa rT κ4 rT (κ3 − cκ4)













where

κ2 = (k + δl)
2 + qaβT T̄ rT

κ3 = kql(k + δl + δa) − qaδ
2
a − q2

aβT T̄ rT

κ4 = −kql + δaqa + qac.

The matrix MLrt is not of full rank only when the viral load is zero or when the

uninfected CD4+ T cell count is zero. A zero viral load is invalid because the individual

is assumed to be actively infected. When the CD4+ T cell count is zero then the immune
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system is completely damaged. In this case, there is no point trying to control the virus.

All other states apart from when the uninfected CD4+ T cell count or the viral load is

zero, are therefore controllable.

The controllability matrix MErt = [BErt AEBErt AE
2BErt · · · AE

5BErt] for the

extended model can be determined in a similar manner. The matrix MErt is also not

of full rank only when the viral load is zero or when both the uninfected CD4+ T cell

and uninfected macrophage counts are zero. Again, a zero viral load is invalid and when

both the uninfected CD4+ T cell and macrophage counts are zero, then the immune

system is completely damaged and there is no point trying to control the virus. All

other states apart from when the uninfected cell counts or the viral load are zero, are

therefore controllable.

Under mono class therapy using protease inhibitors exclusively, the input matrices

are respectively given by

BLpi = rT T̄a













0

0

0

−1













BEpi = (rT T̄a + αpirMM̄∗)

























0

0

0

0

0

−1

























where, T̄a and M̄∗ are the actively infected CD4+ T cell and macrophage measurements

at the respective point in the HIV infection progression.

The controllability matrix MLpi = [BLpi ALBLpi AL
2BLpi AL

3BLpi] for the

latently infected cell model is given by:

MLpi = rT T̄a













0 βT T̄ βT T̄ (κ1 − c)

0 −qlβT T̄ qlβT T̄ κ6

0 −qaβT T̄ βT T̄ (qaβT V̄i + κ4)

−1 c −κ5

βT T̄ (κ2
1 − cκ1 + κ5)

qlβT T̄ (βT V̄i(κ1 − c) − κ6(k + δl) − κ5)

βT T̄ (qa(βT V̄i(κ1 − c − δa) − κ5) + κ6kql − δaκ4)

βT T̄ rT (qaβT V̄i + κ4) − cκ5












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where

κ5 = qaβT T̄ rT + c2

κ6 = βT V̄i + k + δl + c

Matrix MLpi is not of full rank when the actively infected CD4+ T cell is zero or

when the uninfected CD4+ T cell count is zero. When the actively infected CD4+ T cell

count is zero, then no virus particles can be produced. All other states apart from when

the actively infected or uninfected CD4+ T cell counts are zero, are controllable.

The controllability matrix MEpi = [BEpi AEBEpi AE
2BEpi · · · AE

5BEpi] for the

extended model can be determined in a similar manner. The matrix MEpi is also not of

full rank when both the actively infected CD4+ T cell and infected macrophages counts

are zero or when both the uninfected CD4+ T cell and uninfected macrophage cell counts

are zero. Again, when the infected macrophage cell and actively infected CD4+ T cell

counts are both zero, then no virus particles can be produced. All other states are

controllable.

Under combined HAART using both reverse transcriptase and protease inhibitors,

the input matrices are respectively given by

BLco =













0 0

−qlβT V̄iT̄ 0

−qaβT V̄iT̄ 0

0 −rT T̄a













BEco =

























0 0

−qlβT V̄iT̄ 0

−qaβT V̄iT̄ 0

0 0

−αrtβM V̄iM̄ 0

0 −(rT T̄a + αpirMM̄∗)

























The expression for the controllability matrix MLco = [BLco ALBLco AL
2BLco AL

3BLco]

for the latently infected cell model, as well as the expression for the controllability matrix

MEco = [BEco AEBEco AE
2BEco . . . AE

5BEco] for the extended model can likewise

be determined.
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4.4.3 Analysis with Immune Based Therapies

Without going into much detail, the input matrix BLps and controllability matrix MLps

for the latently infected cell model, when proliferation suppressors are exclusively used,

are respectively given by:

BLps = φ(T̄ )













−1

0

0

0













MLps = φ(T̄ )













−1 −κ1 −κ2
1 −κ3

1 + qaβ
2
T T̄ V̄irT

0 −qlβT V̄i qlβT V̄i(k + δl − κ1) −qlβT V̄i(κ
2
1 + κ1(k + δl) + κ2)

0 −qaβT V̄i βT V̄i(qa(δa − κ1) − qlk) βT V̄i(qaκ
2
1 + κ1(qaδa − kql) − κ3)

0 0 −qaβT V̄irT βT V̄irT (κ4 − qaκ1)













where

φ(T̄ ) = pT̄ (1 − T̄
Tm

)

The matrix MLps is not of full rank only when the viral load is zero or when the

uninfected CD4+ T cell count is zero or when the uninfected CD4+ T cell count has

reached the proliferation shut down cell count. In the latter case, then no proliferation

can take place at any rate, suppressed or otherwise. All other states, except when Vi = 0,

or when T = Tm or when T = 0 are controllable.

Similarly, the input matrix BLda and controllability matrix MLda for the latently

infected cell model, when cell death accelerators are used, are respectively given by:

BLda =













0

−δlT̄l

−δaT̄a

0













MLda =













0 0 βT T̄ rT δaT̄a βT T̄ (κ1rT δaT̄a − κ9)

−δlT̄l δlT̄l(k + δl) κ7 qlβT T̄ (βT V̄ rT δaT̄a + κ9) − κ7(k + δl)

−δaT̄a −kδlT̄l + δ2
aT̄a κ8 qaβT T̄ (βT V̄ rT δaT̄a + κ9) + kκ7 − δaκ8

0 −rT δaT̄a κ9 rT κ8 − cκ9













where

κ7 = −δlT̄l(k + δl)
2 − qlβT T̄ rT δaT̄a

κ8 = kδlT̄l(k + δl) + δa(kδlT̄l − δ2
aT̄a) − qaβT T̄ rT δaT̄a
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κ9 = rT (δ2
aT̄a − kδlT̄l) + crT δaT̄a)

The controllability matrices MEps and MEda for the extended model, or any other

desired matrix, can be determined and analyzed in a similar manner.

4.4.4 Singular Value Decomposition

Minimum singular value (MSV) decomposition [175] will be used as a measure of control-

lability. Since controllability varies along the state trajectory, this means that minimum

singular value as a measure of controllability is an instantaneous concept. When mini-

mum singular value decomposition is applied to the controllability matrices, an estimate

measure of how controllable the system is at a particular time during the progression of

the infection can be obtained, or the extent to which the various stages of the infection

progression are controllable, can be determined. Singular value decomposition as a mea-

sure of controllability is a valid method to use here because the same variables are used

to measure controllability and compared at different times as the infection progresses. It

is usually desirable to have a relatively large singular value, as that implies an easier to

control infection stage. The reasoning is that, the more controllable the viral load at a

particular instance when therapy is initiated, the faster the transition to the treatment

steady state, the lower the total drug intake during the transition period.

These easier to control stages will therefore be identified and simulations will be used

to demonstrate the effect on the viral load of initiating various types of therapies at

different stages as the infection progresses. Comparison will be made between when

therapy is initiated in the acute infection and asymptomatic stages of the infection.

Comparisons will also be made between the different types and combinations of therapy.

The graphs labelled pi, rt and co in figure 4.9(b) show how the minimum singular

value varies with time for the latently infected cell model. These graphs were generated

using matrices MLrt, MLpi and MLco, respectively. Similarly, figure 4.10 shows how the

minimum singular value varies with time for the extended model. Graphs were generated

using matrices MErt, MEpi and MEco, respectively.

The controllability profiles for the reverse transcriptase and protease inhibitors are

similar in that where one controls most effectively, the other one does also. One can not

however, draw any conclusions on which type of drug is more capable of suppressing the

virus. Singular value decomposition as a controllability measure is not valid in this case.

Some stages of the HIV infection are more (or less) controllable than others. This is

so because, for a particular drug, the minimum singular value varies with the instance
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Figure 4.9: (a) Viral load and CD4+ T cells. (b) Controllability to the asymptomatic
stage for the latently infected cell model with replication cycle based therapies. rt: re-
verse transcriptase inhibitors, pi: protease inhibitors, co: combined rt and pi. Parameters
are in Table A.4.
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Figure 4.10: Controllability to the asymptomatic stage for the extended model with repli-
cation cycle based therapies. rt: reverse transcriptase inhibitors, pi: protease inhibitors,
co: combined rt and pi. Parameters are in Table A.4.

during the infection, when therapy is initiated. A higher singular value indicates an easier

to control viral load in the sense that the transition to the treatment steady state is faster.

A lower singular value indicates a more difficult to control viral load characterized by

a slow transition to the final state, given the same control effort. Initiating therapy

therefore, when the viral load is easier to control implies the use of lower drug doses and

consequently more bearable side effects.

Figures 4.9(b) and 4.10 show that the very early stages of the acute infection stage

are relatively more difficult to control as compared to the asymptomatic stage. The

section of the acute infection stage where the viral load is much higher than the steady

state viral load is relatively the easiest to control. It can also be seen from figure 4.9

that up to the asymptomatic stage, controllability and viral load are correlated, whereas

there is no obvious correlation between the CD4+ T cell or macrophage cell count with

controllability. So it seems that from a viral load controllability perspective, the mea-

sured viral load at the initiation of therapy is a better prognostic indicator of virologic

success, when compared to the CD4+ T cell or macrophage cell counts.

For controllability with the use of immune based therapies, graphs ‘ps’ and ‘da’ in
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Figure 4.11: Controllability to the asymptomatic stage for the latently infected cell model
with immune based therapies. ps: proliferation suppressors, da: death accelerators.
Parameters are in Table A.4.

figure 4.11 were generated using matrices MLps and MLda, respectively. When figure 4.11

is compared with figure 4.9, the results show that viral load controllability characteristics

are independent of the type of immune based therapy that is used, as it was also the

case with replication cycle based therapy.

4.4.5 Controllability to the Advanced Stage

Model parameters are thought to vary with time as has been shown in [84, 167]. For this

section, in an attempt to account for the slow decline in CD4+ T cells counts during the

asymptomatic stage, and for the rapid increase of the viral load at the advanced stage of

the infection, parameters rT and βT are assumed to increase linearly with time as given

by equation (4.35) as

y(t) =

{

yo, 0 ≤ t ≤ tb

yo(1 + my(t − tb)), t > tb
(4.35)

where the variable y represents the concerned parameter (rT or βT ), yo is the original

value, and my is the rate at which the parameter changes. All parameters are assumed
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to be constant during the acute infection stage. The parameters change at a slower

rate during the asymptomatic stage, which is then followed by a higher rate during the

advanced stage. These assumptions, though not clinically validated, do give virus and

CD4+ T cell profiles that comply with clinical observations.

For illustrative purposes, clinical latency is attained after 200 days and the immune

system is taken to break down 400 days from initial infection. Figure 4.12(a) illustrates

the relatively slower CD4+ T cell decline during the asymptomatic stage, and figure

4.12(b) shows the minimum singular value plots to the advanced stage.

It can be seen that in all cases, the advanced stage is not as controllable as the

asymptomatic stage and that controllability now correlates with the CD4+ T cells. There

is a period of time from just when the virus rebounds and the CD4+ T cells decline, when

the viral load controllability slightly increases.

Virus dynamics are oscillatory, so the response when therapy is initiated will initially

either overshoot or undershoot before settling to the new steady state. Initiating therapy

when the viral load is easier to control implies that the viral load will rebound and settle

to the treatment steady state faster than when therapy is initiated where the viral load

is more difficult to control. If any viral load suppression to below the treatment steady

state is attained, then it will be short lived as the virus quickly rebounds and settles.

This will call for early changes or an increase in dosage in order to re-suppress the virus.

On the other hand, initiating therapy when the viral load is more difficult to control

implies that the viral load will slowly rebound and settle to the treatment steady state.

Any viral load suppression attained will therefore, be relatively durable as the virus

slowly rebounds and settles.

The reciprocal of the minimum singular value will give an indication of the viral load

settling time and consequently, an indication of the duration of viral load suppression. In

terms of the objectives of therapy, therapy is best initiated at a time when treatment will

effectively suppress the viral load for as long as possible before it rebounds. If a drug is

capable of driving the viral load to a particular steady state value, then the durability of

the viral load suppression to below this steady state value can be maximized by choosing

the right time to initiate therapy. This would be at a time when the viral load is higher

than this steady state value and more difficult to control.

The viral load controllability analysis that has been carried out in this section com-

plements the transient response analysis that was presented in the previous section 4.2.

This controllability analysis further explains why differing responses to therapy, as previ-

ously illustrated in figure 4.6 (section 4.2.2), can be attained depending on when, during
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Figure 4.12: Controllability to the advanced stage with a progressive asymptomatic
stage. Parameters rT and βT slowly changing at rates mr1 = mβ1 = 0.005, then rapidly
at rates mr2 = mβ2 = 0.1. (a) CD4+ T cell decline. (b) Controllability. L-co: Latently
infected cell model with combined rt and pi; L-da: Latently infected cell model with cell
death accelerators; E-co: Extended model with combined rt and pi. Parameters are in
Table A.4.
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the HIV infection, therapy is initiated.

4.4.6 Conclusions

The following conclusions can be drawn from this study.

1. It is apparent that the controllability profiles for the different therapies are similar,

or that viral load controllability characteristics are independent of the type of

therapy that is used.

2. Even though any viral load for all stages of the infection, apart from when the

associated T cell count is zero, is theoretically controllable, some stages are more

controllable than others.

3. The early acute infection stage and the advanced stages are the most difficult

stages to control.

4. The mid-acute infection stage, when the viral load is very high is the easiest stage

to control.

5. There is a strong correlation between the viral load and controllability up to the

asymptomatic stage, while controllability strongly correlates with the CD4+ T

cell count during the advanced stage of the infection.

6. From a viral load controllability point of view, therapy is best initiated when the

viral load is easier to control because this implies the use of lower drug doses and

consequently bearable sides effects.

7. This study seems to indicate that when therapy is initiated at the appropriate

time, the use of highly potent HAART may not be necessary. However, caution

is needed due to resistance issues.

4.5 Identifiability Analysis

There is a need to accurately estimate all viral, host cell and immune response specific

parameters. Before such an extensive parameter estimation exercise can be carried out,

an identifiability analysis needs to be carried out to investigate whether or not it is pos-

sible to determine all the parameters. If it is found to be possible, then the conditions

or restrictions that apply need to be known before hand. The issues to address are the

variables to be measured, the minimal number of measurements for a complete determi-

nation of all parameters, the frequency and when, during the course of the viral infection,

such measurements can be taken. It is important to know this in advance, especially

where budgets are concerned. The measured variable combination and conditions that
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result in the least number of measurements or costs less, could then be selected. All the

foregoing will be investigated in this chapter using a well established nonlinear system

identifiability theory.

Identifiability is a basic system property of whether all parameters can be calculated

from the measured output. The identifiability concept applied here was presented and

analyzed by [63]. The concept is based on the practical requirement that if parameters

can be expressed as functions of known quantities of the model, then it is possible to

work in the algebraic framework. In essence, if as many such function expressions as

there are unknown parameters can be generated, then it is possible to solve for all the

unknown parameters.

There are other identifiability analysis tools for nonlinear systems that are available

in literature besides the one that is adopted in this thesis. However, the approach

as presented by [63] is more practically applicable because it explicitly addresses the

issue of the minimum number of measurements that would be required for the eventual

determination of the model parameters.

According to [63], if the system is algebraically identifiable, then this enables one

to construct the parameters from solving algebraic equations depending only on the

information of the input and output. Also, if the system is geometrically identifiable, then

this enables one to construct the parameters from solving algebraic equations depending

on the information of the input, the output and the initial conditions of the system.

4.5.1 The Need for Parameter Estimates

The preceding model analysis of sections 4.1 to 4.4, as well as the eventual design of in-

dividualized dosage schedules will all depend on model parameters. If model parameter

estimates can be obtained during the early stages of the HIV infection, they can be used

to predict viral load set points, which are an important indicator of disease progression

[166]. In this case, if such estimates can be obtained, then it must be within a reason-

ably short period of time. From an HIV vaccination point of view, such estimates can

be used to determine the vaccine efficacy. Estimates for model parameters are available

in for example, [50, 84, 85, 176]. Not much effort however, has been put into simultane-

ously estimating all of these parameters [63]. The available estimates, especially for the

compartmental models, are sparse and incomplete. There are indications though, that

accuracy of estimates for some of the model parameters is increasing as more innovative

approaches for their estimation are employed.

Another reason for the need for accurate parameter estimates is the fact that there
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are inter-individual variations in parameters [98, 171]. Furthermore, parameters are

thought to vary from one stage to the next as the infection progresses [80, 84]. There

is a possibility though, that what seems to be changes in model parameters with time

could just be the effect of un-modelled dynamics or external disturbances. Obtaining an

individual’s parameters at different stages of the viral infection could therefore, settle

this issue.

HIV drug pharmacokinetics, pharmacodynamics and adverse reactions are geneti-

cally predisposed [41, 126]. Furthermore, the response time to therapy, for example,

the time to effectively suppress the viral load are parameter dependent [60]. Given this

parameter dependence of the response to therapy, one can therefore consider exploiting

inter-individual variations in parameters to individualize treatment and enhance the ben-

efits of antiretroviral therapy [177, 178]. There will be a need then, for test measurements

to be done over a short period of time.

All variables in the models presented in this and chapter 3 can essentially be mea-

sured, though some with less accuracy and high cost. However, variables that are rou-

tinely measured for deciding when to initiated therapy and for monitoring of patients

on antiretroviral therapy are the viral load and the total CD4+ T cell count Ttot, which

is the sum of the uninfected and infected CD4+ T cells. In settings where all vari-

able measurements are obtainable, this will improve the identifiability properties of the

system.

It has been observed that for individuals in the asymptomatic stage of the infection

and those on antiretroviral drugs, the infected CD4+ T cell pool makes a very small

percentage (< 1%) of the total CD4+ T cell count [26, 161]. This means that in this

case, the assumption that the uninfected CD4+ T cell count is approximately equal to

the total CD4+ T cell count can be made. The same is assumed to apply to macrophage

measurements. This thesis has therefore, opted to take the uninfected CD4+ T cell count

as the measured output instead of the total CD4+ T cell count. The same applies to

macrophage measurements. The actual parameter extraction is outside the scope of this

thesis.

4.5.2 Identifiability Properties of the Latently Infected Cell

Model

The identifiability analysis of the latently infected cell model ΣLnp(4.36) has already

been carried out by [63]. A summary of their findings will be presented in this section

for comparative purposes.
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Table 4.1: Identifiability of system ΣLnp with some known parameters.

Known parameters Identifiability of remaining parameters

ql, qa identifiable
ql, δl identifiable
ql, k identifiable
ql, δa not identifiable
ql, rT identifiable
ql, c not identifiable
qa, δl identifiable
qa, k identifiable
qa, δa not identifiable
qa, rT identifiable
qa, c not identifiable
δl, k not identifiable
δl, δa not identifiable
δl, rT identifiable
δl, c not identifiable
k, δa not identifiable
k, rT identifiable
k, c not identifiable

δa, rT not identifiable
δa, c not identifiable
[63]

ΣLnp =























dT
dt

= sT − dT T − βT TV
dTl

dt
= qlβT TV − kTl − δlTl

dTa

dt
= qaβT TV + kTl − δaTa

dV
dt

= rT Ta − cV

(4.36)

If the viral load (V) and uninfected CD4+ T cell count (T) are taken as the measured

system outputs, system ΣLnp has been shown not to be algebraically identifiable. Besides

the identification of sT , dT and βT , five of the seven remaining parameters may be

computed in terms of the measurements if two of the remaining parameters are known.

A summary on the identifiability of system ΣLnp when various combinations of two model

parameters are known is presented in Table 4.1.

However, ΣLnp(4.36) has been shown to be geometrically identifiable. Therefore, all

the original parameters of ΣLnp are identifiable from the measurements of the viral load

and uninfected CD4+ T cell count if the initial values for both the actively and latently

infected CD4+ T cells for the individual are known. And as [63] put it, one needs to
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Table 4.2: Minimum number of measurements for the latently infected cell model ΣLnp.

Measured Property T Tl Ta V Total

T , V Geometric 6 1 1 8 16
[63]

have a “comprehensive test” done before measurements are taken.

The required minimum number of measurements for a complete first determination

of all ten parameters are as summarized in Table 4.2.

4.5.3 Identifiability Properties of the Extended Model

An analysis of the extended model ΣEnp in (4.37) will be presented for when different

combinations of model variables are the measured outputs.

ΣEnp =















































dT
dt

= sT − dT T − βT TV
dTl

dt
= qlβT TV − kTl − δlTl

dTa

dt
= qaβT TV + kTl − δaTa

dM
dt

= sM − dMM − βMMV
dM∗

dt
= qMβMMV − µM∗

dV
dt

= rT Ta + rMM∗ − cV

(4.37)

Identifiability with viral load and uninfected CD4+ T cell count measurements

In the first instance, take outputs as the uninfected CD4+ T cell count, T and the viral

load V . That is,

y1 = T, y2 = V.

For output y1, compute

ẏ1 = sT − dT y1 − βT y1y2. (4.38)

Thus, output y1 has an observability index equal to 1 and three parameters that may be

identified. Higher order derivatives yield

ÿ1 = −dT ẏ1 − βT (y1y2)
(1), (4.39)

y
(3)
1 = −dT ÿ1 − βT (y1y2)

(2). (4.40)

where (y)(n) is the nth derivative of y.

Now there are three equations (4.38), (4.39) and (4.40) with three unknown parameters.
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Parameters sT , dT and βT can therefore, be computed from any persistently exciting

trajectory y(t) such that rank ∂(ẏ1, ÿ1, y
(3)
1 )/ ∂(sT , dT , βT ) = 3. That is, if

rank









1 −y1 −y1y2

0 −ẏ1 −(y1y2)
(1)

0 −ÿ1 −(y1y2)
(2)









= 3.

The three equations (4.38), (4.39) and (4.40) can be solved to get a unique solution

for sT , dT and βT . At least four measurements of the uninfected CD4+ T cell count

y1 and at least three measurements of the viral load y2, are needed for a complete first

determination of these three parameters.

For the remaining twelve parameters (δl, δa, ql, qa, k, rT , sM , dM , βM , rM , µ, c), com-

pute

ẏ2 = rT Ta + rMM∗ − cy2, (4.41)
...

y
(5)
2 = rT qaβT (y1y2)

(3) + rT βT (θ2 + µqa)(y1y2)
(2)

+rT βT µθ2(y1y2)
(1) − (θ1 + c + δa)y

(4)
2 − (θ4 + (k + δl)θ3)y

(3)
2

+(θ5 + sM − (k + δl)θ4)ÿ2 + (k + δl)θ5ẏ2

+sM(Σ + (ψ1 − βMy2)ÿ2) +
Σ̇

Σ
− (dM − βMy2)Λ, (4.42)

where,

θ1 = k + δl + µ,

θ2 = kql + (k + δl)qa,

θ3 = µ + c + δa,

θ4 = µc + δa(µ + c),

θ5 = rMβMsM − µcδa,

ψ1 = δa − dM − βMy2,

Σ = ÿ2 + (ψ1 − βMy2)ẏ2,

Λ = y
(4)
2 − rT qaβT (y1y2)

(2) − rT βT (θ2 + µqa)(y1y2)
(1)

−rT βT µθ2y1y2 + (k + δl + θ3)y
(3)
2 + (θ4 + θ3(k + δl))ÿ2

−(θ5 + sM − θ4(k + δl))ẏ2 − θ5(k + δl)y2 − ψ1sMy2.

However, the system is not algebraically identifiable. Besides the identification of sT ,

dT and βT , only eight of the remaining twelve parameters can be computed in terms of

the measured outputs and the other four parameters. The system can be shown to be

geometrically identifiable, or identifiable with known initial conditions. One therefore,
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needs a comprehensive test to obtain initial measurements for both the actively and

latently infected CD4+ T cells, as well as for the infected and uninfected macrophages.

Even though this system is geometrically identifiable with measured outputs taken as the

viral load and uninfected CD4+ T cells, the required minimum number of measurements

of these outputs is too high as outlined in Table 7. Attempts to obtain estimates of all

15 parameters of this model, with the viral load and uninfected CD4+ T cell counts as

the measured outputs will therefore, not be a practical approach when cost and patient

discomfort are taken into consideration. One therefore needs to consider measuring

something else or increasing the number of measured outputs.

Identifiability with viral load and uninfected CD4+ T cell count and macrophage

measurements

The identifiability property of system ΣEnp (4.37) can be improved by also measuring

the uninfected macrophages. Then, taking the outputs as

y1 = T, y2 = V, y3 = M, and let x1 = y1y2, x2 = y1y3,

and compute

ẏ1 = sT − dT y1 − βT x1. (4.43)

Then, sT , dT and βT can therefore, as illustrated before, be computed from any persis-

tently exciting trajectory y(t) such that rank ∂(ẏ1, ÿ1, y
(3)
1 )/∂(sT , dT , βT ) = 3. That is,

if

rank









1 −y1 −x1

0 −ẏ1 −ẋ1

0 −ÿ1 −ẍ1









= 3.

For output y3, compute

ẏ3 = sM − dMy3 − βT x2. (4.44)

Similarly, sM , dM and βM can be computed from any persistently exciting trajectory

y(t) such that rank ∂(ẏ3, ÿ3, y
(3)
3 )/ ∂(sM , dM , βM) = 3. That is, if

rank









1 −y3 −x2

0 −ẏ3 −ẋ2

0 −ÿ3 −ẍ2









= 3.
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For the remaining nine parameters (δl, δa, ql, qa, k, rT , rM , µ, c), define

θ1 = k + δl + µ,

θ2 = kql + (k + δl)qa,

θ3 = µ + c + δa,

θ4 = µc + δa(µ + c),

θ5 = µc(µ + c)(k + δl),

θ6 = cδa(c + δa)(k + δl),

θ7 = δaµ(δa + µ)(k + δl).

Then compute

ẏ2 = rT Ta + rMM∗ − cy2, (4.45)

ÿ2 = qarT βT x1 + rMβMx2 + rT kTl

−(µ + c)ẏ2 − µcy2 − rT (δa − µ)Ta, (4.46)

y
(3)
2 = qarT βT ẋ1 + rMβM ẋ2 + rT βT (kql + µqa)x1

+rMβMδax2 − θ3ÿ2 − θ4ẏ2 − δaµcy2

−rT k(k + δl − µ)Tl, (4.47)

y
(4)
2 = qarT βT ẍ1 + rMβM ẍ2 + rT βT (θ2 + µqa)ẋ1

+rMβM(k + δl + δa)ẋ2 + rT βT µθ2x1

+rMβMδa(k + δl)x2 − (θ3 + k + δl)y
(3)
2

−(θ4 + θ3(k + δl))ÿ2 − (δaµc + θ4(k + δl))ẏ2

−(k + δl)δaµcy2. (4.48)

The remaining nine parameters can therefore be computed from any persistently exciting

trajectory y(t) such that rank ∂(y
(4)
2 , . . . , y

(12)
2 )/ ∂(δl, δa, ql, qa, k, rT , rM , µ, c) = 9.

That is, if

rank















ψ1 ψ2 ψ3 . . . ψ8 ψ9

ψ̇1 ψ̇2 ψ̇3 . . . ψ̇8 ψ̇9

...
...

... . . .
...

...

ψ
(8)
1 ψ

(8)
2 ψ

(8)
3 . . . ψ

(8)
8 ψ

(8)
9















= 9,
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where,

ψ1 = rT βT qa(ẋ1 + µx1) + rMβM(ẋ2 + δax2)

−y
(3)
2 − θ3ÿ2 − θ4ẏ2 − δaµcy2,

ψ2 = rMβM(ẋ2 + (k + δl)x2) − y
(3)
2

−(θ4 + c)ÿ2 − θ5ẏ2 − (k + δl)µcy2,

ψ3 = rT βT k(ẋ1 + µx1),

ψ4 = rT βT (ẍ1 + θ1ẋ1 + µ(k + δl)x1),

ψ5 = rT βT (ql + qa)(ẋ1 + µx1) + rMβM(ẋ2 + δax2)

−y
(3)
2 − θ3ÿ2 − θ4ẏ2 − δaµcy2,

ψ6 = βT (qaẍ1 + (θ3 + µqa)ẋ1 + µθ3x1),

ψ7 = βM(ẍ2 + δa(k + δl)x2),

ψ8 = rT βT (qaẋ1 + θ3x1) − y
(3)
2

−(k + δl + µ + δa)ÿ2 − θ6ẏ2 − (k + δl)δacy2,

ψ9 = −y
(3)
2 − (δa + θ1)ÿ2 − θ7ẏ2 − (k + δl)δaµy2.

System ΣE (4.37) can be shown to be algebraically identifiable, and all fifteen pa-

rameters can be computed for measurements of the uninfected CD4+ T cells, the viral

load and uninfected macrophages, if

rT βT βMkqlqa(k − ql)(k + δl − δa) 6= 0,

δa 6= c and c 6= µ.

Again, bearing in mind that the infected cells are a small portion of the total cell count,

then in most instances where it is not possible to obtain discriminatory macrophage and

CD4+ T cell count measurements, one can take the total cell count as representative of

the uninfected cells.

Identifiability with viral load and discriminatory CD4+ T cell count measurements

Considering that macrophage measurements are currently more difficult to obtained

compared to discriminatory CD4+ T cell count measurements, one option would be

to measure the actively infected CD4+ T cells instead of the uninfected macrophages.

Setting

y1 = T, y2 = V, y4 = Ta, and x1 = y1y2,

then outputs y1, y2 and y4 have observability indices r1 = 1, r2 = 3 and r4 = 2,

respectively. Identifiability of parameters sM , dM and βM is as presented earlier in this
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section 4.5.3. For identifiability of the remaining twelve parameters, define

△1 = ẏ2

y2

− dM − βMy2,

△2 = ÿ2 − rT ẏ4 + (µ + c)ẏ2 − rT µy4 + µcy2,

and compute

ẏ2 = rT y4 + rMM∗ − cy2, (4.49)

ÿ2 = rT ẏ4 + rT µy4 − (µ + c)ẏ2 − µcy2 + rMβMy2M, (4.50)

y
(3)
2 = rT ÿ4 − (µ + c + dM)ÿ2 + rT (µ + dM)ẏ4

−(µc + dM(µ + c))ẏ2 + rT dMµy4

−(dMµc − rMβMsM)y2 + (
ẏ2

y2

− βMy2)△2. (4.51)

Then the seven parameters (rT , rM , µ, c, sM , dM , βM) in (4.51) can be computed from any

persistently exciting trajectory y(t) such that

rank ∂(y
(3)
2 , . . . , y

(9)
2 )/∂(rT , rM , µ, c, sM , dM , βM) = 7. That is, if

rank















υ1 sMυ6 υ2 υ3 rMυ6 υ4 υ5

υ̇1 sM υ̇6 υ̇2 υ̇3 rM υ̇6 υ̇4 υ̇5

...
...

...
...

...
...

...

υ
(6)
1 sMυ

(6)
6 υ

(6)
2 υ

(6)
3 rMυ

(6)
6 υ

(6)
4 υ

(6)
5















= 7,

where,

υ1 = ÿ4 + (µ△1)ẏ4 − µ△1y4,

υ2 = −ÿ2 + rT ẏ4 − (c −△1)ẏ2 − rT△1y4 + △1cy2,

υ3 = −ÿ2 − (µ −△1)ẏ2 + △1µy2,

υ4 = −ÿ2 + rT ẏ4 − (µ + c)ẏ2 + rT µy4 − µcy2,

υ5 = (rMsM + △2)y2,

υ6 = βMy2.

However, the above matrix only has rank = 6, and therefore not all the seven parameters

can be estimated. It can be shown that one needs prior knowledge of either sM or rM in

order to determine the other six parameters.

For the still remaining parameters (δl, δa, ql, qa, k), compute

ẏ4 = qaβT x1 + kTl − δay4, (4.52)

ÿ4 = qaβT ẋ1 + βT (kql + (k + δl)qa)x1

−(k + δl + δa)ẏ4 − δa(k + δl)y4. (4.53)
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The five parameters can be computed from any persistently exciting trajectory y(t) such

that

rank ∂(ÿ4, . . . , y
(6)
4 )/∂(δl, δa, ql, qa, k) = 5.

That is, if

rank



















φ1 φ2 φ1 + βT qax1 βT kx1 φ1

φ̇1 φ̇2 φ̇1 + βT qaẋ1 βT kẋ1 φ̇3

φ̈1 φ̈2 φ̈1 + βT qaẍ1 βT kẍ1 φ̈3

φ
(3)
1 φ

(3)
2 φ

(3)
1 + βT qax

(3)
1 βT kx

(3)
1 φ

(3)
3

φ
(4)
1 φ

(4)
2 φ

(4)
1 + βT qax

(4)
1 βT kx

(4)
1 φ

(4)
3



















= 5,

where,

φ1 = −ẏ4 + βT qlx1 − δay4,

φ1 = −ẏ4 − (k + δl)y4,

φ3 = βT (ẋ1 + (k + δl)x1.

However, the above matrix has rank < 5, and therefore not all five remaining parameters

can be estimated. One needs prior knowledge of either δl, ql or k in order to determine

the other four parameters. The system is therefore not algebraically identifiable if the

viral load, uninfected and actively infected CD4+ T cell counts are the measured outputs.

To test for geometric identifiability of the remaining parameters, use (4.50) and (4.52)

ÿ2 = rT ẏ4 + rT µy4

−(µ + c)ẏ2 − µcy2 + rMβMy2M,

ẏ4 = qaβT x1 + kTl − δay4.

to generate a 7th equation for the y2 dynamics and a 5th equation for the y4 dynamics. The

system is geometrically identifiable if the viral load, the uninfected and actively infected

CD4+ T cells counts are the measured outputs. The initial measurements for the latently

infected CD4+ T cells, Tl and uninfected macrophages, M will also be required.

For the output options considered in this section, measuring the actively infected

CD4+ T cells instead of the uninfected macrophage cells significantly reduces the number

of required measurements, even though the system is no longer algebraically identifiable.

This illustrates that, improving the identifiability property of a system does not neces-

sarily imply a reduction in the required number of measurements. More importantly,

the point that is being illustrated here is that, careful consideration of what needs to be

measured is necessary. Table 4.3 summarizes the results for when various model variables

are the measured outputs.
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Table 4.3: Minimum number of measurements for the extended model ΣEnp.

Measured Property T Tl Ta M M∗ V Total

T , V Geometric 15 1 1 1 1 17 36
T , M , V Algebraic 11 0 0 11 0 13 35
T , Ta, V Geometric 5 1 6 1 1 10 24

4.5.4 When to Take Measurements

If either one of the measured outputs y1, y2 or y3 is constant, the higher order derivatives

will be zero and parameter extraction from the measured outputs will not be possible.

When one therefore, considers the variation of the model variables with time as depicted

in Figure 4.13, then one can see that the measured outputs are constant for the asymp-

tomatic stage. It has been observed that for HIV infected individuals, the viral load

remains relatively constant during this long asymptomatic stage, while the CD4+ T cell

count slowly declines. This means that measurements should be taken during the acute

infection stage and during the advanced stage of the HIV infection.

For individuals in the asymptomatic stage of the infection, one then needs to use

antiretroviral drugs to perturb the quasi-steady state. When measurements are taken

during the acute infection stage of the infection, then the assumption that the measured

total CD4+ T cell count is representative of the uninfected cell population does not

hold. This will necessitate for discriminatory CD4+ T cell measurements to be the

standard practice, unless antiretroviral agents are again used, but in this case to reduce

the proportion of infected cells in the total cell count.

4.5.5 Identifiability With the Use of Antiretroviral Agents

It has again been observed that in the short period following the initiation of therapy,

the CD4+ T cell count does not change much [90, 179]. Therefore, during this short

period, a complete determination of all the parameters will not be possible. Another

point worth noting is that, current assays do not differentiate between infectious and

noninfectious virus particles. That is, Vtot = Vi +Vn is the measured viral load. It would

be better then, for parameter estimation purposes, if reverse transcriptase inhibitors were

exclusively used when measurements are taken.

A summary of the model parameters that are affected by therapy has been presented

in Table 3.3 in section 3.10.
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Figure 4.13: When to take measurements.

For parameter identifiability under the use of antiretroviral agents, the effect of the

drugs will affect the identification of the affected model parameters. In fact, for the

models ΣLnp (4.36) and ΣEnp (4.37), with the use of replication cycle based reverse

transcriptase and protease inhibitors, the identifiable parameters will be the composite

parameters. That is, ηrtql, ηrtqa, ηpirT , αrtηrtqM and αpiηpirM would be obtainable,

instead of the original parameters ql, qa, rT , qM and rM . This means that the drug

control effect or efficacy can not be separated from the parameter it affects.

The same holds when immune based therapies are used.

It would be better when using replication cycle based therapies, to use reverse

transcriptase inhibitors exclusively. Protease inhibitors increase the proportion of non-

infectious virus particles in the measured viral.

4.5.6 Conclusions

In this section, a nonlinear system identifiability theory has been applied to analyze the

identifiability properties of some HIV/AIDS models. The intention was to investigate

the possibility of simultaneously estimating all the model parameters from measured

system outputs, such as the viral load and CD4+ T cell count. Other issues addressed
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include the minimum number of measurements for a complete first approximation of all

parameters, the timing and the conditions under which such measurements can be taken.

The extended system ΣEnp given by equation (4.37) is identifiable with proper mea-

surements. The identifiability property of the system has been analyzed when various

system variable combinations are taken as the measured outputs.

• System ΣEnp is geometrically identifiable when the viral load and the uninfected

CD4+ T cells are the measured system outputs. That is, it is possible to obtain all

16 model parameters from viral load and uninfected CD4+ T cell count measure-

ments if the initial conditions for both the latently and actively infected CD4+ T

cells, and both the uninfected and infected macrophages are known.

• System ΣEnp is algebraically identifiable when the viral load, the uninfected CD4+

T cells and the uninfected macrophages are the measured system outputs. It

is therefore possible to obtain all model parameters from the measured system

outputs.

• System ΣEnp is geometrically identifiable when the viral load, the uninfected CD4+

T cells and actively infected CD4+ T cells are the measured system outputs. It

is possible to obtain all the model parameters from the measured system outputs

if the initial conditions for both the latently infected CD4+ T cells, and both the

uninfected and infected macrophages are known.

This shows that careful consideration of what should be to measured is necessary.

If antiretroviral drugs are used when measurements are taken, then composite pa-

rameters ηrtql, ηrtqa, ηpirT , αrtηrtqM and αpiηpirM would be obtainable, instead of the

original parameters ql, qa, rT , qM and rM .

This information will be useful for the eventual parameter estimation, as well as for

formulating guidelines for clinical practice.

4.6 Model Reduction

The HIV/AIDS models analyzed in this thesis have been shown to be identifiable with

proper measurements (refer to section 4.5), and the conditions that apply have been

outlined. However, there are too many parameters to be identified, and in some cases,

too many measurements would be required to obtain these parameters for some medical

settings. The model reduction exercise was carried out to reduce the total number of

parameters and lessen the eventual cost of the parameter estimation. However, the

resulting or composite parameter set must have clinical significance or meaning.
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4.6.1 Residualization of the Latently Infected Cell Model

Reduction of the latently infected cell model ΣLnp(4.36) without proliferation as it was

presented and analyzed in section 4.5 will be carried out. The model is re-presented here

for ease of reference as:

dT

dt
= sT − dT T − βT TV (4.54)

dTl

dt
= qlβT TV − kTl − δlTl (4.55)

dTa

dt
= qaβT TV + kTl − δaTa (4.56)

dV

dt
= rT Ta − cV (4.57)

Equations (4.54) - (4.57) are a minimal realization of the system. The Jacobians at

some operating point x̄ = [T o, T o
l , T o

a , V o
i ]T are given by

A =













−(dT + βT V o
i ) 0 0 −βT T o

qlβT V o
i −(δl + k) 0 qlβT T o

qaβT V o
i k −δa qaβT T o

0 0 rT −c













The eigenvalues of matrix A are the solutions to

(λ + c)(λ + δa)(λ + k + δl)(λ + dT + βT V o
i ) − rT βT T o(λ + dT )(qlk − qa(λ + k + δl)) = 0

When suppressive therapy is initiated at the asymptomatic stage, then for a typical

parameter estimate set in table A.3,

0 < rT βT T oqlk < 0.005

The eigenvalues can therefore be approximated very well by

λ̄1 = −c; λ̄2 = −δa; λ̄3 = −(k + δl); λ̄4 = −dT

From all the available parameter estimates,

λ̄1 < λ̄2 < λ̄3 < λ̄4

The dynamics of Tl and T are much slower than those of V and Ta, hence Tl and T can

be residualized.
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Note that residualizing the slower transients Tl and T is equivalent to assuming that

their values remain constant for some time after therapy is initiated, as has been observed

in practice. A residualization can be obtained by setting dTl

dt
and dT

dt
to zero to obtain

T =
sT

dT + βT V
(4.58)

Tl =
qlβT sT V

(dT + βT V )(k + δl)
(4.59)

A second order approximation of the full order system is therefore given by

dV

dt
= rT Ta − cV (4.60)

dTa

dt
=

βT sT

(dT + βT V )
(ql

k

k + δl

+ qa)V − δaTa (4.61)

and has non trivial steady states given by

Vss =
sT rT

cδa

(ql

k

k + δl

+ qa) −
dT

βT

(4.62)

Tass =
c

rT

Vss (4.63)

The nonlinear term in Equation (4.61) can be expanded to give

dTa

dt
=

βT sT

dT

(ql

k

k + δl

+ qa)V (1 −
βT

dT

V + · · · ) − δaTa (4.64)

and when the higher order terms are ignored, the reduced order system can be linearized

as

dV

dt
= rT Ta − cV (4.65)

dTa

dt
=

βT sT

dT

(ql

k

k + δl

+ qa)V − δaTa (4.66)

This linearized system’s characteristic equation is given by

λ2 + (c + δa)λ + cδa(1 − R0) = 0 (4.67)

where

R0 =
βT sT rT

cδadT

(ql

k

k + δl

+ qa) (4.68)

is the basic reproductive number [85] and defined as the number of secondary infections

resulting from one infected T cell. At steady state, then on average, only one secondary

infection results per infected CD4+ T cell. That is, R0(ss) = 1.
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4.6.2 Response Time Estimation with Reduced Model

Medically, the viral load is considered to be controllable if the antiretroviral drugs in use

can reduce the viral load by 90% or by 1 log10 scale, in 8 weeks from when treatment is

initiated and continue to suppress it to below 50 copies per milliliter of plasma in less

than 6 months [1]. The time taken from when therapy is initiated to reduce the viral

load by 90% is here referred to as the response time, tres and the time taken to suppress

the viral load to below 50 copies is the suppression time, tsup. Similarly, the time from

when suppressive therapy is terminated to when the viral load rebounds to more than 50

copies is referred to as the rebound time, treb. This section only estimates the response

and suppression times tres and tsup when therapy is initiated at the asymptomatic stage

of the infection.

Equations (4.65) and (4.66) under combined antiretroviral therapy are expressed as

dV

dt
= upirT Ta − cV (4.69)

dTa

dt
=

urtβT s

d
(ql

k

k + δl

+ qa)V − δaTa (4.70)

where upi = (1 − ηpi) is the control effort for the protease inhibitors used, while urt =

(1− ηrt) is for the reverse transcriptase. For a reduction in viral load therefore, as is the

case with effective therapy, the clearance rate of the virus must exceed its replication

rate [85]. This means that

c >
uβT sT rT

δadT

(ql

k

k + δl

+ qa)

where u = urtupi is the combined control effect of the drug combination used and 0 ≤

u ≤ 1. The system is therefore stable and its eigenvalues are

λ1,2 =
−c − δa ±

√

(c + δa)2 − 4cδa(1 − R0(u))

2

where

R0(u) = uR0(ss) = u

is the number of secondary infections resulting from an infected CD4+ T cell under

therapy.

The solution for the viral load V (t) for equations (4.69) and (4.70) has the form

V (t) = A1e
λ1t + A2e

λ2t (4.71)

where

A1 =
λ2

λ2 − λ1

V̄ (4.72)

A2 =
λ1

λ1 − λ2

V̄ (4.73)
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and V̄ could be the steady state or viral load measurement before therapy.

A first estimate for the response time to therapy as well as the time to suppress the

viral load can be obtained by solving equation (4.71). In order to do that, one only needs

to know the death rate of the actively infected CD4+ T cells δa, the clearance rate of

the virus c, as well as the reproductive number R0(u). It is interesting to note that these

three parameter estimates are attainable. For how to estimate δa, c and R0(u) from viral

load measurements under therapy, refer to [84, 85, 90]. Methods for obtaining parameter

estimates by using control theory techniques are presented in [62, 64, 66].

The estimation error due to residualization is bounded [175]. If one assumes that the

absolute error in time estimation is constant for high enough drug efficacies, including

u = 0, (even though perfect inhibition of virus replication is not practically attainable)

then, this could be utilized to derive an expression for the difference in time estimates

due to residualization. For u = 0, the equations for the residualization difference model

are given by

dVr

dt
= rT Tar − cVr (4.74)

dTar

dt
= −δaTar + kTlr (4.75)

dTlr

dt
= −kTlr − δlTlr (4.76)

These equations are linear and the solution for the residualization difference in viral load

Vr(t) has the form

Vr(t) = B1e
γ1t + B2e

γ2t + B3e
γ3t (4.77)

where

γ1 = −δa; γ2 = −(k + δl); γ3 = −c

and

B1 =
γ1

γ2 − γ1

γ3

γ3 − γ1

V̄ (4.78)

B2 =
γ1

γ1 − γ2

γ3

γ3 − γ2

V̄ (4.79)

B3 =
γ1

γ1 − γ3

γ3

γ2 − γ3

V̄ (4.80)

Time estimates can be obtained by adding Equations (4.71) and (4.77) and solving for

tres and tsup. This however, would increase the number of required parameters to include

a not readily attainable estimate for the combined rate k + δl, at which latently infected

Electrical, Electronic and Computer Engineering 106

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJeeffffrreeyy,,  AA  MM    ((22000066))  



CHAPTER 4 MODEL ANALYSIS

400 405 410 415 420 425 430 435 440 445 450
0

100

200

300

400

500

600

700

800

900

1000
Time response − 100% effective therapy

Time in days

Vi
ra

l l
oa

d 
− 

pe
r m

L 
pl

as
m

a

Residual 

Reduced 

Full 

Figure 4.14: Viral load time response for u = 0. Full (4D nonlinear), reduced (2D linear)
and difference(residual) models. Viral load at start of therapy is 5000 copies per mL
plasma. Parameters are in Table A.3.

CD4+ T cells are cleared from plasma. Figure 4.14 shows the viral load time response

for when perfect inhibition is assumed for the full, reduced and difference models.

An alternate approach is to consider that simulations show that the differences in

response and suppression time estimates due to residualization can be approximated as

difres = tres/R0 (4.81)

difsup = tsup(1 + 1/R0) (4.82)

where R0 can be obtained. This means that residualization differences in time estimates

can be obtained if the basic reproductive number is known, by adding the respective

difference to the appropriate solution of equation (4.71).

Figures 4.15, 4.16 and 4.17 show the response and suppression time graphs for the full

and the reduced order systems when therapy is on and varying drug efficacies are used.

Table 4.4 summarizes the results for the response time estimates, with the associated

absolute errors in brackets. Table 4.5 does likewise for the suppression time estimates.
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Figure 4.15: Response and suppressions times for full (4D nonlinear) and reduced (2D
linear) order systems: chemotherapy effectiveness: 90% (u = 0.1). Viral load at start of
therapy (day 400) is 5000 copies per mL plasma. Parameters are in Table A.3.
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Figure 4.16: Response and suppression times for full (4D nonlinear) and reduced (2D
linear) order systems: chemotherapy effectiveness: 80% (u = 0.2). Viral load at start of
therapy (day 400) is 5000 copies per mL plasma. Parameters are in Table A.3.

Electrical, Electronic and Computer Engineering 109

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJeeffffrreeyy,,  AA  MM    ((22000066))  



CHAPTER 4 MODEL ANALYSIS

400 402 404 406 408 410 412 414 416 418 420
400

450

500

550

600

650

700
Response time − 70% effective therapy

Time in days

Vi
ra

l lo
ad

 −
 p

er
 m

L 
pla

sm
a

Reduced Full 

(a)

400 405 410 415 420 425 430 435 440 445 450
0

10

20

30

40

50

60

70
Suppression time − 70% effective therapy

Time in days

Vi
ra

l lo
ad

 −
 p

er
 m

L 
pla

sm
a

Full Reduced 

(b)

Figure 4.17: Response and suppression times for full (4D nonlinear) and reduced (2D
linear) order systems: chemotherapy effectiveness: 70% (u = 0.3). Viral load at start of
therapy (day 400) is 5000 copies per mL plasma. Parameters are in Table A.3.
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Table 4.4: Response times

Control Full system Reduced
u(%effect) days days(error)
0.05 (95%) 6 7 (1)
0.10 (90%) 6 7 (1)
0.15 (85%) 7 8 (1)
0.20 (80%) 7 8 (1)
0.25 (75%) 8 9 (1)
0.30 (70%) 9 9 (0)

Table 4.5: Suppression times

Control Full system Reduced
u(%effect) days days(error)
0.05 (95%) 23 23 (0)
0.10 (90%) 24 24 (0)
0.15 (85%) 26 25 (-1)
0.20 (80%) 28 26 (-2)
0.25 (75%) 30 28 (-2)
0.30 (70%) 33 29 (-4)

4.6.3 Conclusions

The following conclusions can be drawn from this study.

1. Estimates for the response time to therapy and the time to suppress the viral

load, can be determined from values for the death rate of the actively infected

CD4+ T cells δa, the clearance rate of the virus c, the drug efficacy u and either,

the basic reproductive number R0, or the combined rate k + δl at which latently

infected CD4+ T cells are cleared from plasma.

2. The time estimates are parameter dependent and will therefore vary from one

individual to the other.

3. The estimated response times, unlike the suppression times, do not exhibit any

significant variation with drug efficacy.

4. The initial response is heavily influenced by the virus clearance rate constant

c, which is much larger than the actively infected CD4+ T cell clearance rate

constant δa.

5. The estimated suppression times are shorter than the actual suppression times.

When designing a therapy based on the estimates, the drug dosage is always
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conservative. In some of the cases of HIV patients, this is desirable.

6. The error in suppression time estimation increases with decreasing drug efficacy.

This is because the perfect inhibition assumption used to determine the difference

in estimation due to residualization, does not hold for low drug efficacies.

7. This approach enables the determination of the drug efficacy in order to obtain

predetermined response and suppression times.

8. This approach can be incorporated into an interruptible control strategy for the

viral load.

9. Viral response and suppression time estimates can aid clinicians in scheduling

therapy and viral load measurements.

4.7 Chapter Summary

Linear analytical tools were used in some sections of this chapter to derive approximate

solutions. The approximate solutions that were obtained, or the predictions that were

made from the linear analysis were verified by applying them to the nonlinear model.

Since the response was usually as expected or predicted, one can conclude that the linear

solution gives a very good approximation.

The following is a summary of the antiretroviral issues that have been addressed by

the model analysis that was carried out in this chapter.

4.7.1 Persistent Virus Replication under HAART

The continuous virus replication that has been observed under potent HAART is because

the currently used antiretroviral agents are not capable of completely inhibiting virus

replication in all the virus producing compartments. However, if the reported virus

replication occurs elsewhere and not in the CD4+ T cells, then this suggests that the

drugs’ efficacy at least equals that required for a zero viral load steady state, as given

by equation (4.14).

4.7.2 Variable Response to Therapy

Results from the steady state analysis in section 4.1 indicate that antiretroviral therapy

moves the viral load from the pre-treatment value to a treatment steady state. This

steady state is drug efficacy and parameter dependent, and will therefore, vary from one

individual to the other, given the same drug efficacy. However, the treatment steady

state is independent of when therapy in initiated during the course of the infection.
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The dependence of the treatment steady states on the model parameters and drug

efficacy suggests that if the said model parameters and drug efficacy are known, then

it is possible to assess whether or not the individuals viral load can be suppressed to

below detectable levels, as well as to determine the individual’s operating therapeutic

range. This steady state analysis can conversely, be used to determine the drug efficacy

required in order to attain and maintain a certain degree of viral load suppression.

The analysis therefore, provides some insight on the issue of variability in response

between individuals on the same regimen. The study confirms previous observations

that, for a fixed drug efficacy, this variation in response to therapy between individuals

is due to inter-individual variations in parameters.

Results from the transient response analysis in section 4.2 show that the transition

from the pre-treatment viral load to the treatment steady state is generally oscillatory.

The magnitude and frequency of these oscillations are parameter, drug efficacy and tim-

ing dependent. The controllability analysis that was presented in section 4.4 shows that

from a viral load controllability perspective, some stages of the HIV infection are more

controllable than others. The transition from the pre-treatment viral load to the treat-

ment steady state will therefore depend on when therapy is initiated. The transient

response and controllability analysis therefore, collectively suggest that a particular in-

dividual can have variable response to antiretroviral therapy depending on when therapy

is initiated.

4.7.3 Transient Viral Load Rebounds or Virologic Failure?

As discussed before, for a fixed drug efficacy, the transition from the pre-treatment viral

load to the treatment steady state is generally oscillatory. The viral load will therefore

transiently oscillate about the treatment steady state before settling. When therapy is

initiated therefore, the viral load will initially be suppressed to a value that is below the

treatment steady state, then rebound to a value above this treatment steady state, before

settling. Viral load rebounds are therefore, from a treatment steady state perspective,

all transient.

As the viral load oscillates about the steady state value, some oscillations will be

larger than others and the viral load will take longer to settle in some cases, depending

on the individuals parameters, drug efficacy and when therapy is initiated. However,

given that the treatment steady state is independent of when therapy is initiated, it can

be concluded that what a viral load rebound is indicative of, does not depend on when

therapy is initiated.
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This generally means that for an individual, if the drug efficacy is such that the

treatment steady state will be at or above a value that is considered indicative of virologic

failure, then the viral ‘blip’ will, in the clinical context, also be indicative of virologic

failure. On the other hand, if the drug efficacy is such that the treatment steady state is

below detectable levels, then the viral blip will be, in the clinical context again, transient.

4.7.4 Indicators of Virologic and Immunologic Success

Given the preceding analysis, how can one tell in advance, what benefits an individual

initiating therapy can expect to obtain, and who will fail to attain viral load suppression?

On an individual basis, the attainment of maximal suppression of the viral load, as well

as the duration of such suppression once attained, depend on:

1. The HIV infection stage at which therapy is initiated. This stage in turn is defined

by the viral load cell count measurements at that time.

2. The virus and target cell parameters.

3. The combined efficacy of the drugs used in the regimen.

However, the maximum cell count to which the cell counts can rebound to depend on

the drug efficacy.

This analysis therefore, seems to confirm the findings of some clinical studies that

suggests that the virologic and immunologic conditions (viral load and T cell counts)

at the start of therapy, determine the outcome of therapy. On the other hand, durable

suppression depends on the treatment steady state that the given drug combination

efficacy can attain. This also depends on the model parameters and is independent of

when therapy is initiated. Does this then disqualify the viral load and cell counts as the

indicators of virologic success?

It appears that viral load and T cell counts at the start of therapy are more indicators

of virologic response than they are of virologic success. True virologic success, for a

particular individual, is determined by the end point drug efficacy. And this lends

support to findings that have suggested that virologic failure can be attributed to the

regimen used.

It has been argued before that the basic reproductive ratio Ro, is one of the prog-

nostic indicators of virologic success. Given that Ro is exclusively determined by the

individual’s model parameters, which are in turn co-determinants of virologic success,

then the argument is justified.
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4.7.5 When Best to Initiate Antiretroviral Therapy?: Clarify-

ing the Confusion

Results from all the preceding sections in this chapter will be analyzed together in order

to determine the best time to initiate therapy during the course of the HIV infection.

This will be compared with the recommendations from the guidelines, as well as out-

comes of some clinical trials. Timing the initiation of therapy can be looked at from

different perspectives.

A maximal viral load suppression perspective:

For a particular regimen, the maximality of viral load suppression to below the treatment

steady state is highest when therapy is initiated during the early-acute, late-acute and

asymptomatic stages of the infection.

A durable viral load suppression perspective:

For a truly durable suppression of the viral load, the drug efficacy should be high enough

to attain a treatment steady state that is below levels of detection. The treatment steady

state does not depend on when therapy is initiated.

A viral load point to point controllability perspective:

The degree of viral load controllability is highest during the mid-acute infection stage,

as the viral load will reach the treatment steady state in a shorter period of time. In

this case, one can know if there is need to adjust dosage sooner if viral load suppression

is not attained. Also, initiating therapy at this stage will minimize viral load blips.

An Immunologic success perspective:

It appears target cells will rebound irrespective of when therapy is initiated. The maxi-

mum to which they can rebound to depends on the model parameters and drug efficacy.

No conclusion on timing the initiation of therapy can be drawn from this perspective.

A Virologic success perspective: True virologic success is attained if the drug effi-

cacy is such that the treatment steady state is below levels of detection.

A clinical trial perspective:

From the trial outcomes with STI for autoimmunization, the best time to initiate ther-

apy is during the early acute infection stage.
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Guidelines recommendation:

Not very clear. On an individual basis, the objectives range from suppressing the viral

load to below detectable levels, to maintaining CD4+ T cell counts at levels that are just

sufficient to delay the onset of AIDS and opportunistic infections. But the guidelines are

more inclined towards initiating therapy during the mid-asymptomatic stage.

Compromise: When best to initiate?

The compromise is objective driven and some objectives are in conflict. There is need

therefore, to prioritize one’s objectives in order to find an optimal solution.

4.7.6 The Possibility of Individualizing Antiretroviral Therapy

The bottom line is that, therapy should be individualized and objectives need to be

prioritized. Then the benefits of therapy can be maximized by appropriate drug dosing to

attain the desired effect as well as selecting the right time to initiate therapy. Determining

the appropriate dose however, places an emphasis on the need to obtain the individual’s

parameter estimates.

Since the identifiability and model reduction studies have indicated the possibility of

attaining the full parameters estimates from system measurements, and the reducibility

of this parameter set if need be, then this affirms that it is possible to individualize

antiretroviral therapy. If parameters are obtained, then one can determine the individuals

therapeutic range. However, if antiretroviral drugs are used when measurements are

taken, then it may not be possible to separate the drug efficacy from the model parameter

that it affects.
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