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Abstract

Evolutionary algorithms and swarm intelligence techniques have been shown to success-
fully solve optimization problems where the goal is to find a single optimal solution.
In multimodal domains where the goal is to locate multiple solutions in a single search
space, these techniques fail. Niching algorithms extend existing global optimization al-
gorithms to locate and maintain multiple solutions concurrently. This thesis develops
strategies that utilize the unique characteristics of the particle swarm optimization algo-
rithm to perform niching. Shrinking topological neighborhoods and optimization with
multiple subswarms are used to identify and stably maintain niches. Solving systems of
equations and multimodal functions are used to demonstrate the effectiveness of the new

algorithms.
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Chapter 1

Introduction

1.1 Problem Statement and Overview

Particle Swarm Optimization (PSO) is a recent, novel optimization algorithm, inspired by
simulations of the social behavior of flocks of birds [49]. Numerous studies have shown the
PSO to be a very effective optimization algorithm, outperforming the traditional genetic
algorithm (GA). The algorithm is simple to implement, and does not depend on problem
specific recombination and selection operators to achieve maximum effectiveness.

Two distinct features of the PSO algorithm’s swarming behavior makes it an effective

optimizer:

e cach particle in a swarm retains a memory of the best solution that it has found,

and
e all particles constantly move towards the best solution found by the entire swarm.

This approach allows the algorithm to quickly traverse a search space and rapidly con-
verge. The fact that each particle in a swarm represents an independent candidate
solution, makes the algorithm largely insensitive to multimodal optimization domains
where other numerical techniques may find suboptimal solutions.

Niching techniques extend the search capabilities of population based optimization

techniques to locate multiple solutions in a single search space. Numerous optimization
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problems with multiple, equally acceptable solutions, such as solving systems of equa-
tions, exist. Niching techniques have been investigated in the genetic algorithm (GA)
research field, with very little particle swarm optimization (PSO) based research un-
dertaken on this subject. This thesis investigates the possible application of GA-based
niching techniques to the PSO algorithm, and introduces two new unique PSO-based

niching techniques that utilize the characteristics of the PSO algorithm.

1.2 Objectives

The main objective of this thesis is to study niching in the context of particle swarm

optimization. In reaching this goal, the following subobjectives are identified:

e To provide an overview of existing GA-based and PSO niching techniques.
e To present and analyze the novel nbest and NichePSO algorithms.

e To compare the performance of the above algorithms to well-known GA niching

algorithms.

e To show that the unique swarming nature of the PSO algorithm is a promising

tool when investigating new niching algorithms.

1.3 Contribution

The main contributions of this thesis are:

e The conclusion that GA niching algorithms may not necessarily directly apply to
the PSO algorithm.

e The introduction of a PSO niching technique, developed specifically to solve sys-

tems of linear and non-linear equations.

e The development of a PSO niching algorithm that use multiple swarms to maintain

several solutions concurrently in a single search space.
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1.4 Thesis Outline

Chapter 2 presents an introduction to the theory of optimization. A general evolutionary
computing framework is then given, with specific focus on genetic algorithms. A complete
presentation of the PSO algorithm is then given, including a number of optimizations
and extensions.

Chapter 3 reviews the evolutionary motivation behind niching techniques. A number
of GA niching algorithms are then discussed, followed by an existing PSO-based niching
algorithm. The application of GA niching techniques to the PSO are considered.

Chapters 4 and 5 respectively present the nbest and NichePSO algorithms. The
characteristics of each of these algorithms are analyzed and considered, and experimental
results are presented to illustrate their effectiveness. Chapters 6 presents an empirical
comparison of both these techniques to existing GA niching techniques.

Chapter 7 presents a summary of the research done in this thesis. A number of future
research topics are identified.

An appendix presents a list of publications that followed from the presented work.
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Chapter 2
Background and Literature Review

This chapter presents an overview of classical optimization, evolutionary computation and

recent developments in particle swarm optimization.

2.1 Introduction

Optimization is a paradigm present in nearly every aspect of life. It describes the drive to
constantly find improved ways of solving old and new problems. In the context of tech-
nological development and innovation, optimization describes the search for techniques
that make better use of available resources to solve problems. Scientific and engineering
applications regularly require algorithms to locate and fine-tune optimal solutions. Sol-
ving systems of equations, a comparatively simple task when only a few equations and
unknowns are involved, becomes notably more complex as a problem’s dimensionality
grows.

Real-world optimization applications can be realized as function optimization prob-
lems. Function optimization algorithms make assumptions about what a problem looks
like and are not universally applicable [11]. It is therefore justified to investigate alter-
native methods to solve these problems. More importantly, research should focus on
identifying efficient, robust and generally applicable algorithms.

This chapter presents an overview of the theory behind optimization. Section 2.2

defines optimization problems and establishes a common notation used throughout this
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thesis. Evolutionary computation is discussed in section 2.3, with an overview of genetic
algorithms in section 2.4. Swarm intelligence is discussed in section 2.5, focusing in
particular on the particle swarm optimization algorithm. Principle differences between
evolutionary computing and swarm intelligence are touched on in section 2.6. Various
extensions and enhancements are presented in sections 2.7 and 2.8 respectively. Section

2.9 discusses a number of PSO application areas.

2.2 Function Optimization

Function optimization is concerned with finding an optimal solution to an objective, or
cost function, describing a problem. An objective function may additionally be con-
strained by a set of equality and/or inequality constraints. As an example, an objective
function may quantify the allocation of resources, such as distribution of chemicals in a
process control environment. The cost associated with the distribution of an individual
chemical, as well as its interaction with other chemicals, may act as constraints on the
interpretation of the optimal allocation within the process environment.

In this thesis, optimization of an objective function f(x) over a n-dimensional space,
Q is considered, where x € Q, and x = [x1, %9, -+, 7,|". € may either be a real-valued
space, such that €2 C R”, or a discrete space, where each component z; is taken from a
set of values, such as {0,1}.

“Minimizing the objective function f(x)” is formalized as finding a global minimizer
x*, subject to

f(x*) < f(x), Vxe€Q. (2.1)

If f(x*) < f(x) Vx € Q, then x* is considered to be a strict global minimizer. Equation
(2.1) defines an unconstrained minimization problem. If a global minimizer for a function
f(x) cannot be found, it is often acceptable to search for a local minimizer. A local

minimizer xj, satisfies
f(x3) < f(x), Yxe L, LCQ.

The search space limitation, L C €2, signifies that only L is searched. It is possible that

better solutions may exist in €2, but they are not considered.
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In contrast with the unconstrained optimization problem defined in (2.1), a con-

strained minimization problem is defined as

minimizing f(x), x €
subject to  ¢;(x) <0, i=1,...,k
hi(x) =0, i=1,...,m.

Let g(x) < 0 represent the set of k inequality constraints, g(x); < 0. The same inter-
pretation applies to the set of m equality constraints, h(x) = 0. Minimization problems

can be converted into maximization problems by reversing the sign of f(x), i.e.

min f(x) = max(—f(x)) (2.2)

Likewise, any constraints can be adapted by reversing the sign. The rest of this thesis
considers minimization problems, with the assumption that maximization problems can
be converted to minimization problems using equation (2.2).

For optimization problems with multiple objectives, the objective function f(x) may
be extended to represent a set of w sub-objectives, optimized concurrently [14]. For such

an objective function, vector notation for f is preferred, i.e.

f(x) = {f(x1), f(x2), -, f(xw)}

The applied optimization method need not make any special provisions for such an
objective function. How f(x) is evaluated depends on the underlying problem. Objective
functions consisting of multiple sub-objectives are discussed in more detail in section
2.9.2. A minimization problem is considered to be unimodal when its objective function

f(x) has a single global minimum point x*. That is,
f(x*) < f(x), Vxe€Q.

Figure 2.1 gives an example of an unimodal objective function, with domain z € [—3, 3] C
R. Unlike a unimodal problem, which has a single minimum x*, a multimodal function
may have multiple minima. Minima may be local or global, relative to the objective

function. A local minimum xj is subject to

f(x3) < f(x), VxeL
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Figure 2.1: f(z) = z?, a unimodal function.

where L C Q. For a function f(x), there may be more than one minimum. One of the

minima may be a global minimum x**, with

f(x™) < f(x)

for all local minima f(x}). Figure 2.2 depicts a multimodal function with two equal
minima, indicated by symbols P and (). Classical optimization techniques consider
only a single solution to an optimization problem f at any given time. Minimizing a
multimodal function such as in figure 2.2 presents a problem, since a single solution may
not always be the only acceptable solution. It is possible to solve multimodal problems
by repeatedly applying a technique that maintains a single solution to the same search
space. Such an approach is known as a sequential technique. A technique that locates
multiple solutions concurrently, is known as a parallel technique.

This thesis will focus on developing evolutionary techniques that solve unconstrained
optimization problems in continuous, real-valued spaces. Niching techniques are de-
veloped to solve both unimodal and multimodal optimization problems, with single or

multi—objective cost functions.
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Figure 2.2: Function f(r) = z* — 22? with two equal minima, P and Q.

2.3 Evolutionary Computing

Evolution is a process through which individuals in a community strive to survive in
their environment. An individual’s survival depends on its ability to continually adapt
to make better use of the resources available in its environment and to co-exist with
other individuals. Several factors may influence how evolution in an environment takes

place. These factors include:

e Changes in an environment, such as the availability of resources required for sur-

vival.

e Interaction between individuals in a community of individuals residing in an envi-

ronment.
e Influences of other communities.

Evolutionary computing simulates the evolution process by representing candidate solu-
tions as a population of individuals within an environment and evolving them over time

[3]. To facilitate the evolutionary process, individuals are evaluated at regular intervals,
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or generations, using a fitness function. A fitness function evaluates the quality of a
potential solution represented by an individual. Depending on the type of evolutionary
algorithm, a population of individuals is adapted using evolutionary operators and strate-
gies in an attempt to find an optimal solution. Evolutionary operators include mutation,
reproduction, selection and competition between individuals. The adapted individuals
represent a next generation. The process of creating a next generation can be repeated
until an acceptable solution is found, or until a maximum number of generational steps
have been taken.

Evolutionary operators manipulate individuals in an effort to produce better indivi-
duals. In an environment where resources are limited, individuals need to be genetically
superior to their siblings in order to survive. The characteristics of an individual, or
the candidate solution represented by it, can be interpreted in two different ways. An
individual’s genotype describes its genetic composition inherited from its parents. Ge-
netic information may initially be random, but over a number of generations it may
become ordered to represent experiences gained by its parents. Genetic information is
passed on to offspring. An individual’s phenotype is an expression of its behavior in an
environment. Mayr identified two such relationships, pleiotropy and polygeny [63].

Pleiotropy describes a situation where changes to genes may affect phenotypic beha-
vior in an unexpected way. Polygeny describes the interaction among genetic information
to produce a specific phenotypic trait. In order to adapt or change the phenotypic
behavior, all genetic information has to change.

Several different evolutionary computing approaches have been suggested, such as ge-
netic algorithms, genetic programs, evolutionary programming and evolutionary strate-
gies [3]. Niching techniques have been specifically investigated under the wing of genetic

algorithms. The next section presents a short introduction to genetic algorithms.

2.4 Genetic Algorithms

Optimization with genetic algorithms (GAs) is generally regarded to have been the first
evolutionary computing technique developed and applied [24]. The technique was in-

troduced in 1975 by Holland [36]. Since the focus of this thesis falls on particle swarm
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Symbol | Meaning

g Generation index
Jmaz Maximum number of generations
C, Population of individuals in generation g

Cy,i Individual ¢ of population Cy
f(Cy;) | Fitness of individual i at generation g
fe Minimum fitness threshold

Table 2.1: GA symbols

optimization, the rest of this section presents only a general overview of GAs, to em-
phasize similarities and differences between the two paradigms. The interested reader is
referred to [31] for a more complete treatment.

A genetic algorithm performs optimization by evolving a genetic representation of a
problem. A population of individuals is evolved over a number of generations, using the

following algorithm (refer to table 2.1 for an explanation of symbols used):
1. Set g = 0.
2. Initialize chromosomes of the initial population C,.
3. Evaluate the fitness of each individual in the current population.

4. While not converged:

offspring and the previous population Cy_;.

Individuals may be initialized randomly or by using some technique relevant to the opti-

mization problem. A population is considered to have converged either after a maximum
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number of new populations have been created (when g > gmaz), or when f(Cyp) < fy,
where 3 b € Cy|f(Cyp) < f(Cyi), Vi € Cy. The threshold f, represents a value that
can be used to determine when an individual represents an acceptable solution. The
representation of individuals, fitness functions and the GA evolutionary operators are

now discussed in more detail.

2.4.1 Representation of Individuals

The traditional GA represents individuals with fixed length bit-strings, although variable
length strings have also been used [32]. The significance of each individual bit varies

according to the problem domain being optimized:

- An individual bit may represent a single property of the candidate solution rep-
resented by an individual. Properties therefore have binary values, and can only
be present or absent. This scenario could occur in a process optimization prob-
lem where the presence or absence of chemical gases determine the outcome of a

manufacturing step.

- A bit string can be an encoding of a set of nominal values. In such a case, the
number of bits would be equal to the number of possible nominal values. The bit

string may represent only a single nominal value, or combinations thereof.

- Bits may encode numerical values. An individual’s genotype then has to be con-
verted to a phenotypic representation before it can be interpreted. A 15-bit binary
string representing a real-value between 0 and 1 may for example be decoded to

its phenotype p using the formula

TR
P=55 > 2. (2.3)
i=1
where b; represents the individual bits in a bit string b.

GAs have also been tested using real-valued representations of genetic information. In-
stead of using a bit-string, a vector of numerical values is optimized. Janikow and
Michalewicz reported superior results when comparing numerical representations with

binary representations on real-valued numerical optimization problems [45].
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2.4.2 Fitness Functions

A fitness function maps an individual’s genotype to a scalar value that can be interpreted
to determine the quality of the candidate solution represented by the individual. Fitness
functions are not only used to determine the quality of individuals, but are also used
by crossover and mutation operators (discussed in section 2.4.3). Performing crossover
on individuals with similar fitness may accelerate convergence in a unimodal problem.
Mutation on individuals with poor fitness may lead to better solutions. These operators
depend on an accurate interpretation of a candidate solution by the fitness function. In
multi—objective optimization problems, the fitness function represents all the individual
objectives. When dealing with constrained optimization problems, the equality and

inequality constraints imposed on a search space need not be part of a fitness function.

2.4.3 Evolutionary Operators

Section 2.3 pointed out that evolutionary computing approaches utilize some form of
evolutionary operator to improve the quality of individuals in a population. This section
presents the following operators utilized by GAs: crossover (or recombination), selection

and mutation.

Crossover

The crossover operator operates on binary or numerical genotypic representations. It
produces offspring from two parent individuals by a recombination of their genetic ma-
terial. The recombination process exchanges sections of the parents’ genetic strings to
form two new strings, representing offspring. The process of determining which parts of
the genetic material to exchange, allows for the definition of several different crossover

techniques, of which the most popular are listed below:

One-point crossover: One-point crossover randomly selects a position ¢ in a string of

length [, where i € [1,1 — 1]. All positions after i are swapped.

Two-point crossover: Two-point crossover randomly selects two positions, 7; and is,

where 1,1 € [1,1 — 1], subject to i1 < is. All positions between i; and iy are
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swapped.

Uniform crossover: The uniform crossover operator swaps all positions in the strings
of parents with a probability py.. If p,. = 0.5, positions are swapped with equal
probability.

Mutation

The mutation operator is applied with a probability p,,. It inverts bits in the binary
representation of the search space, or adds small random values to numerical chromo-
somes to extend the diversity of a population. The goal of this process is to allow for
the representation of chromosome values and consequently positions in the search space
that may not have been possible as a result of crossover/recombination operators. Un-
fortunately, if care is not taken, mutation may negatively affect highly fit individuals:

The mutation probability p,, is therefore set to a low value.

Selection Operators

The process of selection is concerned with creating a new population of individuals C,
from a previous population Cy ; and newly created offspring. Random selection of
individuals from these groups may lead to the loss of potentially good individuals and
the inclusion of individuals that contain inferior genetic material, that may slow down
the convergence process. Elitism introduces a selection rule that is biased towards highly
fit individuals. Before a new population is selected, all available individuals are ranked
based on their fitness and only the most fit subset of the population is carried over to the
next generation. Alternative selection schemes include tournament and roulette wheel

selection.

2.5 Particle Swarm Optimization

The particle swarm optimization (PSO) algorithm, originally introduced by Kennedy
and Eberhart [49], is modeled after the social behavior of birds in a flock. PSO is a pop-

ulation based search process where individuals, referred to as particles, are grouped into
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a swarm. Each particle in the swarm represents a candidate solution to an optimization
problem. In a PSO system, each particle is “flown” through the multidimensional search
space, adjusting its position in search space according to its own experience and that of
neighboring particles. A particle therefore makes use of the best position encountered by
itself and that of its neighbors to position itself toward an optimal solution. The effect is
that particles “fly” toward a minimum, while still searching a wide area around the best
known solution. The performance of each particle (i.e. the “closeness” of a particle to
the global optimum) is measured using a predefined fitness function which encapsulates
the characteristics of the optimization problem.

Several authors have suggested diversity improvement and convergence acceleration
additions to the PSO. The algorithm’s convergence behavior has also been extensively
analyzed [13, 68, 69, 87]. The rest of this section presents a general mathematical
abstraction of the PSO algorithm to establish a uniform notation, followed by a discussion
of extensions to the algorithm.

Figure 2.3 summarizes the standard PSO algorithm. Each particle 7 in a swarm of

particles maintains the following information:

e X, : The particle’s current position in the search space;
e v, : [ts current velocity;

e y, : The personal best position discovered thus far.

In all cases, x; represents a position in an unconstrained, continuous, n-dimensional
search space, i.e. X = [x1, 29, -,z,]". The velocity vector v contains a velocity element
for each dimension of the search space, i.e. v = [v1, vy, -, v,]7. Different dimensions are
assumed to be independent [13, 87]. The personal best position associated with a particle
1 is the best position that the particle has visited thus far, i.e. a position that yielded
the highest fitness value for that particle. Again, f denotes the objective function, and
f(x;) the fitness of particle .

Particle positions may be initialized randomly within the search space. Some prob-
lems, such as the niching applications discussed later, benefit from the use of uniform
initial particle positions. Particle velocities are initialized to be within the value range

[—VUmaz, Umaz|. The significance of v,,4, is discussed later in this section.
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1. Initialize all particles in the swarm to random positions within the search space.
2. Initialize velocity vectors.

3. Initialize particle personal best positions to be equal to the current positions of the

particles.
4. Repeat until converged:
(a) Update the fitness of each particle i using the fitness function f and the
particle’s current position.
(b) Update each particle’s personal best position
(c) Update the global best particle position
(d) Update each particle’s velocity.
)

(e) Update each particle’s position.

Figure 2.3: The general PSO algorithm

The personal best of a particle at a time step t is updated as:

yi(t) if f(xi(t+1)) = f(yi(t))

(2.4)
xi(t+1) if f(x;(t+1)) < f(yi(t)

yilt+1) = {
Two main approaches to PSO exist, namely lbest and gbest, where the difference is in
the neighborhood topology used to exchange experience among particles. For the gbest
model, the best particle is determined from the entire swarm, and all other particles
flock towards this particle. If the position of the best particle is denoted by the vector
y, then

y(t) = arg féliiéls fyi(t)) (2.5)

where s is the total number of particles in the swarm. For the [best model, a swarm is
divided into overlapping neighborhoods of particles. For each neighborhood Nj, a best
particle position is designated by y;. This best particle is referred to as the neighborhood
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best particle, defined as

N =A{yizi(t),yi_111 (1), - yi—1(t), yi(t), (2.6)
Yit1(t), s Yig-1(t), yira(t) } (2.7)
yit+1) € N; | f(3;(t +1)) = min{f(y;)},Vy: € N; (2.8)

Neighborhoods are usually determined using particles indices, although topological neigh-
borhoods have also been used [47, 48, 51, 85]. The gbest PSO is a special case of lbest
with [ = s, where [ is the number of particles per neighborhood, and s is the total
number of particles in the swarm; that is, the neighborhood is the entire swarm. For
each iteration of a gbest PSO, the j*-dimension of particle i’s velocity vector, v;, and

its position vector, x;, is updated as follows:

vij(t+1) = vi(t) + e (O (Y () — 2i(t)) +
Cara, (1) (95 () — i5(t)) (2.9)

where ¢; and ¢, are acceleration constants and 7 j(t),72,(t) ~ U(0, 1). For each iteration

of the lbest PSO, the velocity update for particle 7 is defined to be

vig(t+1) = wi(t) + eir; () (yig(t) — iy (t) +
Co12,i(8) (9,3 (1) — i 5 (1)) (2.11)

Upper and lower bounds are specified on v; to avoid too rapid movement of particles in

the search space; that is, v; ; is clamped to the range [—vmaz, Vmaaz)-

2.6 Evolutionary Computing vs. Swarm Intelligence

Sections 2.4 and 2.5 presented genetic algorithms and particle swarm optimization re-
spectively. The GA is an evolutionary computing (EC) technique, while PSO is classified
as a swarm intelligence (SI) approach. This section outlines similarities and fundamental
differences between EC and SI.

Behavioral similarities between EC and SI can be categorized based on the following

points:
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e A group of agents, be it a population of individuals or swarm of particles, explore

a search space.

e Bach individual or particle represents a candidate solution to an optimization pro-

blem.
e A fitness function is used to evaluate the quality of a candidate solution.

Regardless of their similarities, EC and SI are motivated by radically different beha-
vioral models. The following points elucidate the conceptual differences between the two

paradigms:

e SI uses the behavior of a swarm of particles in a search space to optimize a prob-
lem. Particles may be simple, but their collective behavior in a swarm solves
complex problems. The behavior of the swarm as a whole and individual particles

is therefore tightly coupled.

e Individuals in EC algorithms, such as GAs, each perform an independent explo-
ration of a search space. Behavioral similarity is maintained through generational

recombination operators.

e SI coordinates movement of particles in a search space through social interaction.
Social interaction shares information between particles about potential solutions.
Particles in SI thus exert a direct influence on each other, i.e. a particle’s candidate
solution is not just as a result of the particle’s exploration of the search space, but

it is also determined by solutions found by other particles.

e The movement of particles in PSO is influenced by a conscience factor, known as a
‘personal best’, as well as the social component mentioned above. SI thus retains
a memory of previous experience. EC retains no knowledge of favorable solutions
and have no direct improvement strategy biased towards possible solutions (EC
retains possible solutions only through recombination operators and fitness rank-

based selection schemes).

From the above it follows that the collective efforts of a set of agents in a search space
clearly differentiates the methodologies behind SI from EC.
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2.7 Extensions to the PSO

Section 2.5 presented the standard PSO algorithm. Numerous authors have proposed
extensions to improve on the original algorithm. The proposed extensions attempt to

satisty the following requirements:

e More effective traversal of a search space, whilst ensuring that search efforts are

not duplicated.

e Accelerated convergence, without disregarding potential global solutions in multi-

modal domains.

Evolutionary techniques that have been successfully applied to evolutionary algorithms
and GAs, have also been successfully adapted to the PSO. This section looks into these
methods. Section 2.7.1 investigates convergence acceleration techniques that allow the
PSO to more efficiently locate solutions. Diversity improvements techniques are then

discussed in section 2.7.2.

2.7.1 Convergence Acceleration Techniques

Convergence acceleration (CA) techniques use different methods to help the PSO algo-

rithm solve optimization problems faster. CA techniques
- directly affect particle trajectories around solutions in a search space, and

- attempt to more effectively share information about previously discovered solu-

tions.

The rest of this section reviews a number of well-known and more recent CA techniques.

Inertia Weight

The use of the inertia weight w was introduced by Shi and Eberhart [80] and was not
present in the original paper by Kennedy and Eberhart [49]. The inertia weight controls



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 19

the influence of a particle’s previous velocity, resulting in a memory effect. The velocity

update equation (equation (2.9)) is redefined to be

vt +1) = wvi (t) + e () (i () — 2i5(t)) +
cara,j(t) (4 (t) — i (1)) (2.12)

Decreasing w from a relatively large value to a small value over time results in a rapid
initial exploration of the search space, that gradually becomes more focussed. Small
w-values result in small adaptations to particle positions, effectively yielding a local
search. When w = 1, equation (2.12) is equivalent to the original PSO velocity update in
equation (2.9). Van den Bergh investigated the effect of w on the convergence properties
of the PSO [87]. It was found that there exists a strong relationship between w and the
acceleration coefficients, ¢; and ¢y, namely that the relationship between w, ¢; and ¢y
may be expressed as

w > %(cl +c9) —1 (2.13)

Parameter settings that satisfy the relationship in equation (2.13) lead to convergent
particle trajectories. The interested reader is referred to [87] for a thorough treatment
of the subject.

Shi and Eberhart suggested using a fuzzy controller to adapt the inertia weight [81,
82]. Their controller adapts w depending on the global best solution’s distance from an
optimum, found by evaluating f(y). On unimodal functions, the fuzzy controller PSO
exhibited favorable performance when compared to a PSO using a linearly decreasing

inertia weight [81].

Constriction Factor

The term v,,,4, is used to limit the maximum velocity that a particle can achieve. Particles
with a very high velocity have distinctly divergent behavior, as their position updates
are erratic, and do not focus on a solution. Clerc and Kennedy showed that v,,,, is not

necessary if an alternative velocity update equation is used, namely [13]

vij(t+1) = x[i(t) + e (0) (i () — i () + coray (8) (45 (8) — 2i4(2))]
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where

2
pe e
with ¢ = ¢; + ¢ and ¢ > 4. The parameter x ‘constricts’ rapid growth of the velocity
vector that may lead to non-convergent particle trajectories. Clerc preceded the deriva-
tion of this model by an analysis obtained by rewriting equations (2.12) and (2.10) as
difference equations, and performing an eigenvector analysis. Eberhart and Shi found
that the use of the constriction factor approach in conjunction with velocity clamping

leads to improved performance [22].

Evolutionary Computing Generational Operators

Angeline used an evolutionary computing selection rule to improve interaction between
particles in the particle swarm [2]. Before velocity updates take place for individual
particles, each particle is assigned a performance score based on a comparison to a
randomly selected subset of the particle swarm. A particle scores a mark for each of the
other particles in the subset that have worse fitness than itself. Particles are then ranked
according to this score. The position vectors of the top half of the swarm are copied
onto that of the bottom half. The personal best positions of the bottom half remain
unchanged. The selection process thus resets ‘poor performers’ to locations within the
search space that have yielded better results.

Lovbjerg et al used a breeding operator and particle subpopulations to achieve faster
convergence (subpopulations are discussed in section 2.7.2) [60]. To identify breeding
particles, each particle in the swarm is assigned a breeding probability, p,. Note that
particle fitness does not influence the assignment of p,: any particle can be chosen for
breeding. All particles marked for breeding are then randomly paired off until the set
of marked particles is empty. New particle positions are calculated using an arithmetic
crossover operator. The offspring of ‘parent’ particles ¢ and j occur, at time step ¢t + 1,
at positions

X, (t+1) = pxi(t + 1) + (1 — p)x;(t + 1)

and

x’j(t +1) =px;(t+ 1)+ (1 —p)xi(t + 1).
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Velocity vectors are initialized to the normalized sum of the parents’ velocity vectors:

V= Y|
Z
C v+ vl
and
/ v+ vj
V. =
7 ||Vz |||| ]“

respectively. Performing breeding on a global scale may avoid stagnation on local op-
tima. Offspring particle positions are always initialized to a position within a hypercube
spanned by x; and x;. Personal best positions y; and y;- are initialized to x; and x;-

respectively.

Objective Function Stretching

Parsopoulos et al introduced the “stretched” PSO (SPSO) [71]. The SPSO performs
a transformation on the landscape of the original fitness (or objective) function, called
stretching. The technique is applied as follows: A particle swarm is trained using the
gbest algorithm. Once the PSO has identified a local minimum x* by comparing particle
fitnesses to a performance threshold value, the objective function is stretched so that
for each point x, where f(x) < f(x*), x is unaffected. All other points, such that
f(x) > f(x*) holds, are stretched so that x* becomes a local maximum. All particles
are then repositioned randomly. The fitness function f(x) is redefined to H(x), where

_ sign(f(x) — f(x")) +1)
H) = 66+ (G ) — Gxn))

and '
[x — x*||(sign(f (%) — f(x")) + 1)
2
Suggested parameter values are v; = 10000, v, = 1 and p = 107!, For a minimization

Gx)=f(x)+m

problem, the sign(-) function is defined as:

+1, x>0
sign(z) = 0, =0
-1, <0

where x is a scalar value. Parsopoulos et al reported promising results when applying
this technique to multimodal functions [71]. Objective function stretching is discussed

in more detail in section 3.4.
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Division of Labour

The ‘division of labour’ PSO (DoLPSO) attempts to improve the PSO algorithm’s con-
vergence around optima [91]. The DoLPSO method constantly monitors the activity of
all particles. When a particle has not improved its candidate solution over a number of
training iterations, it is re-assigned a different ‘task’, namely optimizing the best solution
that the swarm has found thus far. This task is referred to as the local search task. A

particle can therefore be performing one of two tasks:
Task 1: Exploring the search space using the gbest algorithm.
Task 2: The local search task.

When a particle ¢ starts to perform the local search task at iteration ¢, its position vector
is initialized to x;(t) = y(¢). Particle i’s velocity vector is also randomly re-initialized
and scaled to be no larger than the velocity of the global best particle, i.e. v; is initialized
so that v;; < v,;, j € [1,n] and ¢ is the index of the gbest particle. Engaging in the
local search task decreases swarm diversity, encouraging faster convergence. To facilitate
the decision process behind ‘division of labour’, the following parameters are associated

with a particle 4:
- X;: Particle state, i.e. which task is performed.
- #;: A response threshold.
- (;: A particle stimulus.

When X; = 0, particle i explores the search space (Task 1), and when X; = 1, it
performs the local search task (Task 2). Particle i’s state X; changes from Task 1 to
Task 2 with a probability P per time step

14

The parameter ¢ controls the steepness of the response function T' (the term ¢! thus
represents the stimulus (; raised to the power £). The stimulus (; represents the number

of iterations since the last improvement to f(x;). Therefore, when i’s fitness does not
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improve over time, (; will increase. When i’s fitness does improve over time, (; will remain
zero and X; = 0. Vesterstrgm et al reported improved convergence when comparing
DoLPSO to GAs, the traditional PSO and simulated annealing [91].

Multi-Phase Generalization

Al-Kazemi and Mohan suggested a ‘multi-phase’ extension to the PSO [1]. This tech-
nique varies the optimization goal of each particle over time, effectively forcing it to

change its trajectory. The velocity update in equation (2.9) is redefined to be
’Uz',j(t + 1) = CyUj 4 (t) + ngj (t) + Cy i 5 (t) (214)

The parameters c,, ¢, and ¢, may assume different values, that are determined by a
particle’s associated group and phase. Groups and phases segment a swarm into sub-
swarms that pursue different goals. The following parameter values were suggested for

two groups, each with two phases [1]:
Phase 1, group 1: ¢, =1, ¢, =1, ¢, = —1
Phase 1, group 2: ¢, =1, ¢y = —1, ¢, =1
Phase 2, group 1: ¢, =1, ¢y = —1, ¢, =1
Phase 2, group 2: ¢, =1, ¢, =1, ¢, = —1

Particles in phase 1, group 1 move towards y, while particles in group 2 move away
from y towards x. In phase 2, the roles are reversed. (It is not clear why the explicit
specification of ¢, was necessary, as it does not affect the optimization process.) The
number of phases and groups is a user tunable parameter and must be known before
the algorithm starts. A group of particles that are in the same phase all have identical
goals. Changing phase is controlled by a phase change frequency (PCF). PCF indicates
a number of evolutionary iterations of the PSO algorithm. Al-Kazemi and Mohan also
proposed that a PCF free version of the algorithm would initiate a phase change when a
pre-determined number of iterations yielded no improvement. The algorithm randomly
re-initializes particle velocities to avoid converging on sub-optimal solutions after a pre-

determined number of iterations, called the wvelocity change variable (VC). In quite a
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departure from the original PSO, the multi-phase generalization uses a hill-climbing
approach that only updates particle positions if a calculated new position presents an
improvement. A particle will therefore always occupy an optimal position relative to its
own history. This explains why a personal best position is not taken into consideration
in equation (2.14).

Tested on both discrete and continuous problems, the multi-phase PSO outperformed

the standard PSO, GAs and evolutionary programs [1].

The Guaranteed Convergence Particle Swarm Optimizer

It is decidedly difficult to determine proper values for parameters such as ¢y, ¢y and
w without a theoretical basis. Some authors have attempted to determine acceptable
values empirically, such as in [8]. Recently, extensive analysis of particle trajectories
within the PSO was done independently by Van den Bergh [87] and Clerc et al [13] to
determine how to guarantee convergent swarm behavior. In the rest of this section, the
guaranteed convergence particle swarm optimizer (GCPSO) is presented, which resulted
from the analysis done in [87].

The gbest algorithm exhibits an unwanted property: when x; = y; = § (for any
particle ), the velocity update in equation (2.5) depends solely on the wv;(t) term.
When a particle approaches the global best solution, its velocity property also approaches
zero, which implies that eventually all particles will stop moving. This behavior does
not guarantee convergence to a global best solution, or even a local best, only to a
best position found thus far [87]. Van den Bergh and Engelbrecht introduced a new
algorithm, called the GCPSO, to pro-actively counter this behavior in a particle swarm
and to ensure convergence [90].

The GCPSO algorithm works as follows: Let 7 be the index of the global best particle.
The idea of GCPSO is then to update the position of particle 7 as

Trj (t + ].) = Q]' (t) + WU 4 (t) + p(t)(]_ — 27"2,]'). (215)
To achieve this, the velocity update of 7 is defined as

vt 4+ 1) = —x, (1) + 9;(t) + wuyr;(t) + p(t)(1 — 21y ). (2.16)
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In equation (2.16), the term —x, ‘resets’ the particle’s position to the global best position
y, wv, signifies a search direction, and p(¢)(1 — 2ry(¢))) adds a random search term to

the equation; p(0) is initialized to 1.0, with p(¢) defined as

2p(t)  if #successes > s,
p(t+1) =< 0.5p(t) if #failures > f. (2.17)
p(t) otherwise

A ‘failure’ occurs when f(y(t)) = f(y(t — 1)) and the counter variable # failures is
subsequently incremented (i.e. no apparent progress has been made). A success then
occurs when f(y(t)) # f(y(t —1)). The control threshold values f, and s. are adjusted
dynamically. That is,

st 4 1) = { se(t)+1 if #faz:lures(t +1)> f. (2.18)
Se(t) otherwise

Ftt1) = { fe(t)+1 if #suc‘cesses(t +1) > s, (2.19)
fe(t) otherwise

This arrangement ensures that it is harder to reach a success state when multiple fail-
ures have been encountered, and likewise, when the algorithm starts to exhibit overly
confident convergent behavior, it is forced to randomly search a smaller region of the
search space surrounding the global best position. Furthermore, the counter values are

adapted using the equations

#successes(t + 1) > #successes(t) = # failures(t +1) =0
# failures(t + 1) > # failures(t) = #successes(t +1) =0
The algorithm is repeated until p becomes sufficiently small, or until stopping criteria
are met. Stopping the algorithm when p reaches a lower bound is not advised, as it does
not necessarily indicate that all particles have converged — other particles may still be
exploring different parts of the search space.
Note that only the best particle in the swarm uses the modified updates in equations
(2.15) and (2.16), the rest of the swarm uses the normal velocity and position updates
defined in equations (2.9) and (2.10).
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2.7.2 Swarm Diversity Enhancements

This section discusses a number of PSO diversity enhancement techniques. Diversity
enhancement techniques attempt to ensure that the PSO algorithm explores as much of

a search space as possible.

Subpopulations

Lovbjerg et al’s subpopulation scheme [60] segments the particle swarm into a number
of independent particle populations. Each population maintains its own global best so-
lution, based on the experiences of all particles that are members of the swarm. Subpop-
ulations evolve independently, except when inter-population crossover takes place. (The
crossover operator was defined as part of Lgvbjerg et al’s breeding strategy discussed
in section 2.7.1). Performing inter-population breeding facilitates a form of formalized
social information exchange. Formal ‘contact’ between swarms ensures that all swarms
are aware of the global best solution located by all the subpopulations. This information
exchange may lead to faster convergence.

Parsopoulos and Vrahatis used a population based approach to solve multi—objective
optimization problems [75]. Their technique, VEPSO, was motivated by the VEGA
(Vector Evaluated Genetic Algorithm) approach introduced by Schaefer [79]. VEPSO
optimizes a multi—objective problem, consisting of two goals, i.e. the fitness function is
defined as f = {fi, fo}. Two independent swarms each optimize one of the objective
functions. Then, if swarm A optimizes function f; and swarm B optimizes function fs,
the gbest particle from A is used in the velocity update of particles in B, and vice versa.
This technique is reported to efficiently and accurately solve simple multi-objective op-

timization problems [75].

Particle Neighborhoods

A particle subpopulation is just a different way of defining a particle neighborhood.

Subpopulations

- maintain several concurrent particle swarms, each with its own global solution;

- may explicitly allow information exchange between subpopulations.
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Particle neighborhoods are more dynamic. Neighborhoods

- dynamically determine ‘global best’ solutions that depend on the subset of particles

that make up a local particle population at a certain point in time;
- may overlap, effectively implementing an implicit information exchange.

Kennedy tested a number of different particle neighborhood topologies [47]. His
experiments investigated the relationship between the effect of each particle’s personal
experience (or conscience factor) y, and the social exchange of information regarding a
global best solution y. Particle neighborhoods were defined based on indices, i.e. each
particle in the swarm was assigned an index and its visible neighborhood was determined
accordingly. For example, if a particle ¢ was only to consider its direct neighbors, it would
consider the particles with indices 7 — 1 and 7 + 1, respectively. Particle indices do not
assume positional similarity, i.e. particles 2, # — 1 and ¢ + 1 may occupy completely
different positions in the search space. Among others, Kennedy tested the cognition only
model. This model uses only a particle’s personal best position in the velocity update.

v; is then updated as
Vi (t+ 1) = wv(t) + errj (#) (e, (1) — 245(2)) (2.20)

Clearly, there is no sharing of social information, and each particle effectively performs
an individual search in its local area, based on its personal experience.

Suganthan tested a neighborhood operator that considers the spatial positions of
particles based on inter-particle distances [85]. Particle i is considered to be in particle

j’s neighborhood when

1xi — x|
d < g?
max
where d,, ., is the maximum inter-particle distance, £ = %, and t,,,, 1S the max-
maxr

imum number of training iterations. Suganthan’s approach initially favors small neigh-
borhoods, promoting diversity. As the number of iterations increases, neighborhood size
increases, until the model resembles the gbest algorithm when ¢t — ¢,,4,.

Kennedy proposed the social-stereotyping approach, a hybrid of index-based and

topological neighborhoods [48]. The approach defines a number of clusters, using a
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k-means clustering, on the personal best positions of all particles in a swarm. The
number of clusters calculated is specified before the algorithm commences. Each cluster

C therefore consists of a set of similar personal best positions. The centroid C is defined

=1 )y

yeC

as

with |C| the cardinality of C. For a particle i belonging to C, three new velocity update

equations were defined, based on the lbest update in equation (2.11):

vig(t+1) = vig(t) + e (8)(C(0) (1) — i (1)

Heara, ()(95(1) — wiy(1)) (2.21)
vig(E+ 1) = 0i(8) + err; (8) (yiy (1) — 7a;(2))

+eara, (H)(Clg) (1) — wiy(t) (2.22)

vij(t+1) = vi(t) +ery(0(C0) ;1) — 2i;5(t))

+eara; (1)(Clg) (1) — a4(1)) (2.23)

The terms C(i) and C(g) respectively indicate the centroids of the clusters to which
particles i and g belong, where y, € N;, and f(y,) < f(¥a), Vya € Ni. N; is defined as
in equation (2.7). Clusters and centroids are recalculated at every iteration of the PSO
algorithm. It therefore significantly increases the algorithm’s computational complexity.

Kennedy and Mendes further investigated assumptions made about the gbest and lbest
neighborhood architectures [51]. When considering neighborhood architectures from an
information flow perspective, an architecture such as lbest with a neighborhood width
of 1 very slowly propagates information about good solutions to other particles. On
the other hand, the gbest algorithm immediately shares good solutions with all other
particles. Kennedy and Mendes generated new architectures by varying the number of
neighbors that define a particle’s topological neighborhood and the ‘amount of cluster-
ing’. Clustering occurs when the neighbors of a node are also neighbors of each other. It
was found that the so-called von Neumann architecture had consistent, favorable perfor-
mance. Where the gbest-neighborhood considers the complete swarm as a neighborhood,
the von Neumann architecture can be visualized as a two-dimensional lattice, where each

node’s neighborhood consists of its direct neighbors: below, above and to the sides.
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Self-Organized Criticality

Lovbjerg and Krink investigated the application of self-organized criticality (SOC) prin-
ciples to diversity enhancement in the PSO [59]. Self-organized criticality describes a
state transition in a complex system that occurs as a result of the behavior of a multi-
tude of parameters affecting and controlling the system. No specific parameter can be
identified as a controlling influence in the behavior of the system. In a physical substance
such as water, a critical point occurs when it changes state from a solid to a liquid. The
substance’s temperature can be identified as the controlling parameter when analyzing
the state-transition. When sand falls onto a surface, it forms a pile. As more sand slowly
falls onto the pile, it may cause small avalanches that carries sand from the top of the
pile to the bottom of the pile. In model systems the slope of the pile is independent of
the rate at which sand falls. The slope is known as the critical slope.

The SOC PSO extends the definition of a particle ¢, to include a critical value Cj.
C; is also denoted as the criticality of the particle, and is initialized to C; = 0. When
particles occur in topologically similar positions in the search space, it can be said that
the swarm is less diverse. The SOC PSO increases the criticality C; of two particles when
they are closer than a certain threshold value fsoc to each other. To keep criticality
from building up, the C; of a particle is reduced by a percentage value psoc during
each iteration of the algorithm. When a particle i’'s C; becomes larger than a threshold
Chuax, all the particles in its neighborhood’s criticality values are incremented by one,
and 7 is relocated to a different position in the search space. The particle i’s criticality
is re-initialized as C; = C; — Cyax. Relocation of a particle effectively avoids the
over-population of certain regions of the search space and promotes swarm diversity. A

particle 7 may be relocated in one of the following ways:

e The position vector x; is randomly re-initialized within the search space, and y; =

X;.

e Particle ¢ retains its personal best memory. Its current position vector is adapted
in the direction indicated by its current velocity vector. A magnitude of Cy 4 is
added to C;.

The traditional linearly decreasing inertia weight was also adapted to be a function of
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C; for particle 7. The inertia weight of particle 7, w;, is set to

Particles in densely populated regions of the search space would therefore be more volatile
than particles in sparsely populated regions as they would be more likely to influence
each other.

Lgvbjerg and Krink reported much improved results when comparing the SOC PSO
to the gbest algorithm. Their relocation schemes do indeed help to improve swarm

diversity, and the SOC inertia weight w; leads to faster convergence.

PSO with Spatial Extension

Krink et al suggested the spatial extension particle swarm optimizer, SEPSO [55]. The
spatial extension (SE) attempts to keep particles from clustering around potential so-
lutions, thus improving swarm diversity and avoiding premature convergence. When a
good solution is located by a swarm, particles tend to cluster around this solution, as
dictated by the gbest velocity update equation. To avoid overcrowding on the y position,
a radius r is associated with each particle, that allows the algorithm to discern when two

particles collide. Krink et al investigated three possible responses when particles collide:

1. Particles are bounced away from the collision in a random direction, retaining their

original speed.
2. Particle interaction mimic realistic, physical collisions.

3. ‘Velocity line bouncing’, that maintains the direction of the velocity vector, but

scales the speed of the particle.

The result of the above collision steps is that premature convergence is avoided. A much
more diverse swarm is maintained, ensuring that more efficient exploration of the search
space takes place.

Experimental results show that SEPSO perform markedly better than both a real-
valued GA and the gbest algorithm [55].
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2.8 Modifications to the PSO

A number of modifications to the PSO have been suggested that cannot be directly
classified as a diversity improvement or convergence acceleration technique. This section

presents a number of these techniques.

2.8.1 The Binary PSO

The basic PSO algorithm assumes a continuous, real-valued search space, where position
vectors may take on any value within an allowed range. This representation is however
not directly usable when optimizing a problem where the solution is represented as a bit
string. Kennedy and Eberhart proposed a binary version of the PSO to cater for this
need [50].

In the binary PSO, elements of position vectors may only take on values in the set
{0,1}. Velocity vectors remain real-valued. A particle position element xz;; is then

updated using the following rule:

a:iyj(t+ 1) = {

where 7; ;(t) ~ U(0,1) and o(v; ;(t)) is defined as

1
o(vis(t) = 1+ e i)
The standard velocity update equation is used as in equation (2.9). Kennedy and Spears
compared the binary PSO to a number of different GAs [52]. They found that the binary
PSO performed exceptionally well when compared to GAs, and its performance did not

suffer on high-dimensional problems.

2.8.2 Cooperative Swarms

Van den Bergh and Engelbrecht developed cooperative particle swarms to train neural
networks [87, 88, 89]. In cooperative optimization, the problem representation vector x
is segmented into sub-vectors, and each set of sub-vectors is optimized concurrently. For

example, a 4-dimensional problem would be represented by a vector x = [z, 29, 3, T4].
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If x can then be segmented into two sub-vectors x' = [z, xs] and x” = [z3, 4] according
to some problem specific rule, the sets of x’ and x” vectors are optimized independently.
This technique is very similar to the Cooperative Coevolutionary Genetic Algorithm
(CCGA) by Potter [76]. Potter’s technique optimizes each parameter in a n-dimensional
problem independently, by segmenting the problem into n different populations. A
complete representation of the objective vector is attained by selecting an element from
each of the n populations.

Cooperative swarms have been applied to function optimization [87] as well as the

training of neural networks (see section 2.9.1 on page 35).

2.8.3 Dynamic Systems

Several authors have investigated the behavior and applicability of particle swarms to

dynamic, or changing environments.

Dynamic Goals

Carlisle and Dozier investigated the performance of PSO in a situation where the optimal
goal position is a function that changes over time [7]. The goal position moves on a
straight line over time, with variable velocity. To avoid stagnation on personal best
positions y that may have been detected in earlier iterations of the algorithm, personal
best positions are periodically re-initialized to each particle’s position vector in the search
space, Xx. The update is referred to as resetting a particle.

They found that if changes in the optimal goal position are small, the swarm suc-
cessfully detects these changes and updates the personal best position y; accordingly. If
changes in the goal position exceed the maximum velocity of the swarm, the swarm will
never be able to ‘keep up’ with the goal position. They also found that if large changes
in the goal function position trigger the resetting of particle positions, the swarm can
more effectively track the changing goal. ‘Large changes’ were detected by evaluating
the fitness of a random point in the search space. The fitness of the selected position
changes proportionally to changes in the goal position.

In a further work, Carlisle and Dozier improved their original results by making the

following changes [9]:
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- A constriction factor approach was used for velocity vector updates, instead of an

inertia weight.

- Instead of monitoring the fitness of a randomly selected position in the search
space, the fitness of a particular particle is compared to that of the same position
in the search space at an earlier iteration. A significant difference triggers a reset

of particle positions.

The suggested changes showed to be a definite improvement.
Eberhart and Shi also tested PSO performance on dynamic goals [23]. A randomized
inertia weight, of the form
w=0.54+0.5xr(t)

where r(t) ~ U(0.1), was used. Eberhart and Shi obtained improved results when
comparing PSO performance to that of evolutionary strategies (ES) and evolutionary
programs (EP). As pointed out in [87], it would seem that Carlisle and Dozier’s resetting
mechanism may not be necessary.

Hu and Eberhart introduced a ‘changed-gbest-value’ method to detect changes to the
goal position [39]. This technique interprets changes to the fitness of y as a change to
the objective function f. If f changes, the current y would no longer be optimal and
needs to be re-evaluated. Hu and Eberhart also introduced the ‘fixed-gbest-value’ method
[40]. This technique detects whether the best solution in a swarm y stagnates on the
same position over a number of training iterations. The algorithm’s implementation also
monitors a second global best solution y’. The second global best solution y’ has better
fitness than all other particles, except the global best y. In summary, the algorithm can

detect changes in the dynamic environment in the following ways:
- Re-evaluating y will indicate a change in the quality of the candidate solution.
- Monitor y and y’ for changes over a pre-determined number of iterations.

Once a change in the environment has been detected, the algorithm may respond in the

following ways:

- No action may be taken.
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- Randomize the position vectors of 10% of the particle population, while resetting

the remaining particles.
- Randomly initialize y, and reset the remaining particles.
- Randomly initialize y.
- Reset all particles, while leaving y unchanged.

- Randomize the position vectors of 50% of the particles, and reset the remaining

particles.
- Randomize the position vectors of all particles.

The above techniques were evaluated on a single test function and needs to be further

investigated before any general conclusions can be drawn on their effectiveness [40].

Noisy Functions

Parsopoulos and Vrahatis evaluated the performance of the PSO on noisy functions [73].
A noisy function can be simulated by redefining an objective function f on the parameter
x to be:

f7(x) = fx)(1+n) (2.24)
where n ~ N(0,0?). Parsopoulos and Vrahatis tested objective functions by adding
Gaussian noise, such as in equation (2.24), and by rotating the axes of the problem
space through random angles. They found that noise did not seriously impair the PSOs

ability to locate global optima, but as o? becomes larger, performance becomes worse
[73].

2.9 Applications of the PSO

This section describes a number of application areas where the PSO approach was used
to solve specific problems. The form of the algorithm itself was not changed, only the
basic definition of particle representation to suit the problem described. This section

presents only a sample of the applications mentioned in available literature.
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2.9.1 Training of Neural Networks

Supervised neural network training has been widely researched and several techniques
such as gradient descent (GD) and scaled conjugent gradient (SCG) have been developed

to train them [24, 67]. A neural network can be defined in the following way:

A neural network is basically a realization of a non-linear mapping from R!
to RE,
Fyy : RN — RX

where I and K are respectively the dimension of the input and target (desired
output) space. The function Fny is usually a complex function of a set of

nonlinear functions, one for each neuron in the network.

Neural networks consist of layers of neurons. Each neuron consists of a transfer function
that processes a number of inputs from a previous layer in a neural network, or external
inputs. A neuron’s output may serve as an input to a next layer. Successive layers in a
network are connected through a set of weight values that effectively define the network.
When a neural network learns to approximate a function or to classify a dataset, the
network’s set of weights are adapted to improve its performance. For more information
on how GD and SCG learn weights, the interested reader is referred to [24]. Several
authors have used the PSO algorithm to both train neural network weights, and learn
characteristics of the transfer functions that define a network’s neurons.

In the first paper on the PSO algorithm, Kennedy and Eberhart reported positive
results when using PSO to train feed-forward networks [49]. They tested their neural
networks on the XOR problem, as well as the well-known Fisher iris data (available
from [5]). They informally remarked that networks trained with the PSO had slightly
better generalization.

Eberhart and Hu used PSO to train a neural network in the medical environment
[21]. The goal of the network was to distinguish between patients suffering from tremors.
Tremors are a medical condition that describe uncontrollable limb movement. Apart from
learning neural network weights, Eberhart and Hu used the PSO algorithm to learn the

slopes of the sigmoidal transfer functions employed in the neural network’s neurons. To
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clarify, if the sigmoid function employed is given by

fsig(®) = Hlﬁ
the parameter A\ was learned with the network weights.

Van den Bergh used the cooperative PSO described in section 2.8.2 to train feed-
forward neural networks with summation units [88] and product units [89], respectively.
Ismail and Engelbrecht found that the PSO outperformed traditional neural network
training techniques when training networks with product units [25, 44].

Mendes et al empirically studied the performance of customized particle neighbor-
hoods when compared to a back-propagation neural network and evolutionary program-

ming learning techniques [64]. Particle neighborhoods were considered as graph struc-

tures. The following configurations were considered:
e Square: Each particle’s neighborhood consists of exactly four other particles.

e Pyramid: Particle neighborhoods are set up such that the visualized topology

resembles a three-dimensional wire frame.

e 4 Clusters: Four subgraphs consisting of five particles each were formed. FEach
subgraph had two direct connections to its two closest neighbors and a single

connection to the remaining subgraphs.

Mendes et al found that PSO based approaches performed better than back-propagation
based methods for problems with multiple local minima. Specifically, the Square and
4 Clusters configurations outperformed all other techniques on classification problems.
Conradie et al recently presented the Adaptive Neural Swarming (ANS) approach
[16]. ANS was developed to alleviate suboptimal performance of existing neurocontrollers
in dynamic process environments. Conradie et al demonstrated that existing linear
process controllers lack the ability to maintain an optimal operating point, due to the
nonlinear nature of process environments. An operating point indicates a combination
of parameter values, such as temperature and pressure, that may offer an economically
acceptable performance level. Neural networks can be trained to mimic the function

of neurocontrollers to maintain an operating point [18]. The ANS technique uses PSO
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as a local optimization algorithm training a reinforcement neurocontroller architecture.
Reinforcement neural learning uses information from a learned problem space to gauge
how effective a learning process is. In the ANS PSO algorithm, each particle represents
a candidate neurocontroller, which is a slightly altered replica of an existing controller.
Conradie et al found that the utilization of PSO as optimization techniques yield much
improved performance, to the extent that ANS offers a viable neurocontroller alternative
[16].

2.9.2 Multi—-Objective Optimization

Recently, particle swarms have been applied to multi-objective optimization (MOO)
problems. Performing MOO with evolutionary algorithms is a vast research field and a
complete discussion of the subject is beyond the scope of this thesis. This section presents
a general formulation of MOO problems, and discusses the proposed PSO techniques to
solve them.

Formulation of MOO problems

MOO techniques attempt to find a global optimum x* = [z}, x5, ... ,x;‘L]T that will:

- Satisfy m inequality constraints:

g(x)>0 i=1,2,...,m

- Satisfy p equality constraints:

hi(x*)=0 i=1,2,...,p

e Optimize a k-dimensional vector function:

F(x) = [fi(x), fox7), .o, fu(x)]

Different objective functions may have optimal solutions in locations that conflict with
each other. The objective of MOO is to find a solution vector x* that is acceptable in

terms of f(-) and represents optimal values for x* [14].
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The solution x* is Pareto optimal if there exists no other solutions in the search space

that would improve the quality of one of x*’s components, without a deterioration in

any other component. To better understand this concept, let x, = [Ty1,Zp2,.- ., Tyn]
and X, = [Ty1, Tu2,- - -, Tun) be two vectors. Vector x, dominates x,, if and only if
Ty < x; fori=1,...,n, and

Ty < X,,; for at least one 1.

x* is considered to be Pareto optimal if no other position in the search space dominates
it.
The rest of this section presents PSO based approaches to solving multi—objective

optimization problems.

MOPSO

The multiple objective particle swarm optimization (MOPSO) algorithm, introduced
by Coello Coello and Lechuga [15], uses an approach motivated by the Pareto Archive
Evolution Strategy (PAES) [54]. As described above, the goal of MOO techniques is to
locate non-dominated solutions in the search space. MOPSO maintains a global reposi-
tory of ‘flight experience’ where each particle is allowed to save located non-dominated
solutions after each algorithm iteration. Before learning starts, MOPSO segments the
problem space into a set of hypercubes, H. The velocity update equation for a particle

1 1s redefined to be

vij(t+1) = wv (t) + () (Y (t) — 2i(t)) +
7o, () (Hp;(t) — 2i5())

where Hy, ; represents the j* dimension of a randomly selected particle in hypercube Hy,.
The position repository maintains a set of favorable positions within the search space.
The position repository is re-evaluated after each iteration of the algorithm. Dominated
solutions in the repository may be replaced by better, non-dominated solutions. A limit
is placed on the size of the position repository, so a heuristic is put in place to determine
which particle position will have preference over others. The technique is simple: A

position that exists in an area of the search space that is less populated will be given
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preference over a solution occupying a position in a more densely populated region. This
scheme has the added advantage of promoting swarm diversity. MOPSO performed
similar to existing GA-based MOO techniques [15].

Weighted Aggregation and Populations

The weighted aggregation approach is a simple technique to deal with MO problems.
The technique uses a linear combination of objective functions to formulate an objective
function vector describing the problem. More formally, the objective function is defined

f(x) = sz‘fi(x)

Although it is not required, it is usually assumed that Zle w; = 1.
Three different weight aggregation techniques to solve MO problems were imple-
mented by Parsopoulos and Vrahatis using the PSO [75]:

Conventional Weighted Aggregation (CWA): CWA uses a set of fixed weights. The

technique can only locate a single Pareto Optimum per algorithm run [46].

Bang-Bang Weighted Aggregation (BWA): BWA oscillates the weights associated with
each of the objective functions. For a two objective function, weights are calculated

wi(t) = sign(sin(27t/1)), ws(t) = 1.0 — wq(¢)

The symbol ¢ represents the index of the current iteration, and 1 a weight change

frequency.

Dynamic Weighted Aggregation (DWA): To introduce a more gradual change to weight

values, the DWA approach defines, for a two objective problem, weights as
wy(t) = |sin(27t /)], wa(t) = 1.0 — wy(t).
This update forces movement on the Pareto front.

Parsopoulos and Vrahatis also introduced a technique based on the VEGA algorithm

[79] that was discussed in section 2.7.2.
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Dynamic Neighborhoods

Hu and Eberhart introduced three new techniques to solve multi-objective problems
with the PSO approach [38]:

e A single objective is optimized while other objectives are kept constant. The tech-
nique was labelled as one-dimensional optimization by its authors. For example,
in a two objectives problem, with objective functions f; and f,, fo may be kept
constant while optimizing f;. Hu and Eberhart suggests keeping a ‘simple’ objec-
tive function constant, while optimizing a ‘difficult’ function. This approach is an

unmotivated heuristic, and may not be generally applicable.

e Dynamic particle neighborhoods are used to locate multiple Pareto fronts. The
technique is similar to the dynamic neighborhoods utilized in chapter 4, but was
developed independently. At each velocity update step, the neighborhood term y;
in a [best velocity update for a particle ¢ is replaced with a neighborhood position
calculated as the best position among m neighbors. Neighbors are determined

based on their proximity to . Hu and Eberhart used m = 2 in their experiments.

e A particle’s personal best position y is only updated if the improved position

considered dominates the existing personal best, i.e. for particle ¢

x;(t+1) if x;(t + 1) dominates y;(t)

yi(t+1) = {

vi(?) otherwise.

This update limitation is similar to the hill-climbing update step taken by the
multi-phase PSO [1].

Through visual inspection (i.e. plotting particle positions), Hu and Eberhart found that
the above techniques extend the capabilities of the PSO to solving multi—objective opti-

mization problems [38].

2.10 Conclusion

In this section, several different evolutionary computing and swarm intelligence tech-

niques were discussed. Each of these techniques were originally based on the observed
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behavior of some element of nature. Evolutionary computing is based on the process of
evolution, and attempts to mimic it. Swarm intelligence techniques exploit the emergent
collective intelligence of swarms of seemingly unintelligent particles, such as is present
in the behavior of a flock of birds flying in formation.

In particular, section 2.4 reviewed simple genetic algorithms, and section 2.5 pre-
sented particle swarm optimizers. Numerous extensions and improvements to the PSO
were presented in sections 2.7 and 2.8. Most notably, the GCPSO, which plays an im-
portant role in the NichePSO algorithm, was introduced in section 2.7.1. The chapter
was concluded by a discussion of some of the applications of the PSO. Numerous other

applications, where the PSO can be applied without any modifications exist, such as:

Optimization of hydraulic equations [56].

Min-max optimization [58, 83].

Integer programming [57].

Memetic neuro-evolution, for nonlinear process controllers [17].

The above list is by no means exhaustive. In the next chapter, niching techniques are

reviewed, followed by modifications to the standard PSO to enable it to perform niching.
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Chapter 3
Niching Techniques

Niching techniques maintain multiple solutions in multimodal domains, in contrast to existing
evolutionary and swarm intelligence optimization techniques that have been designed to only
locate single solutions. This chapter introduces well-known GA-based niching techniques.
The applicability of GA techniques to PSO is considered, and a number of niching applications

are presented.

3.1 Introduction

Particle swarm optimizers have proven to be useful in locating optimal solutions to opti-
mization problems. This fact is supported by almost all papers published in this research
field. The PSO technique’s effectiveness can be attributed to its efficient propagation
of information regarding a single, global solution. The original update equations for
velocity and position vectors were designed to lead all particles to the same solution [49].

When attempting to optimize multimodal functions, the situation is changed. In a
multimodal function, multiple positions in the function’s search space may have optimal
fitness. The global best solution found by a swarm of particles when using the gbest
or [best algorithms may not necessarily be the only possible solution. Any particle
that occupies a position close to a potential global solution, or even an acceptable local
optimum, that is not close to the swarm’s global best in the search space, will be forced

to move towards the global best position y. Alternatively, equally acceptable solutions

42
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that happened not to be close to the swarm’s current best at any given time, are ignored
in favor of a limited collective swarm consciousness. Consequently, portions of the search
space are effectively ignored in favor of a potentially limited view of the search space.

A number of evolutionary techniques have been suggested to locate multiple solutions
to multimodal problems. These algorithms have been almost exclusively explored using
GAs. In GA parlance, optimization techniques that locate multiple optima to multimodal
function optimization problems are known as niching, or speciation techniques.

For niching, both GAs and PSOs use a population of individuals that are partitioned
in some way to focus and locate different possible solutions in a single search space (note
that the term individual here applies both to individuals in GAs and particles in the
PSO algorithm). Each subgroup in a partitioned population or swarm, is known as a
species. The behavioral patterns of individuals competing for the use of a resource in a
subgroup and between elements in a subgroup, is known as speciation.

This chapter explores the evolutionary theory behind niching and speciation. Section
3.2 presents a theoretical base for niching, followed by a number of existing GA-based
niching techniques in section 3.3. Section 3.4 analyses a single known PSO attempt at
niching. The simple application of GA niching techniques to PSOs is discussed in section

3.5, and the chapter is concluded with a number of niching applications in section 3.6.

3.2 What is Niching?

In an environment where a large number of individuals compete for the use of available
resources, behavioral patterns emerge where individuals are organized into subgroups

based on their resource requirements. Horn defines niching as a

“form of cooperation around finite, limited resources, resulting in the lack
of competition between such areas, and causing the formation of species for
each niche” [37].

Niches are thus partitions of an environment, and species are partitions of a population
competing within the environment. Localization of competition is introduced by simply

sharing resources among individuals competing for it. The terms niche and species can
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be used interchangeably. As an example, a school of fish that live in a certain part of
the ocean compete with each other for access to a potentially limited food supply. Food
may not be available everywhere in their environment. Certain fish may learn to live in a
small area around a food source, while others may learn to roam their environment and
only feed when they require nourishment. If there was to be a single food source, it is a
reasonable expectation that all the fish would eventually exhibit similar behavior. They
would all be required to find food in the same place, and encounter the same resistance
from other fish.

The social interaction and adaptation of individuals competing in an environment
around multiple resources form the basis for the study of niching techniques with evolu-
tionary optimization algorithms. In the evolutionary optimization context, Horn defines
implicit niching as the sharing of resources, and explicit niching as the sharing of fitness
[37].

Niching methods can be categorized as either being sequential or parallel.

Sequential niching (or temporal niching) develops niches sequentially over time. The
approach can be summarized as searching for a possible solution until it is found,
then removing all references to it in the search space and repeating the search
until convergence criteria are met. Because of the removal of ‘confusing’ optima,

a technique that assumes a single global solution may be used.

Parallel niching forms and maintains several different niches simultaneously. The search
space is not modified. Parallel niching techniques thus not only depend on finding
a good measure to locate possible solutions, but also need to organize individuals in
a way that maintains their organization in the search space over time to populate

locations around solutions.

Regardless of the way in which niches are located (i.e. in parallel or sequentially), the
distribution of individuals can be formalized in a number of ways, according to their

speciation behavior [61]:

Sympatric speciation occurs when individuals form species that coexist in the same
search space, but evolve to exploit different resources (or more formally, different

ecological niches). For example, different kinds of fish feed of different food sources
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in the same environment. Cannibalism is explicitly excluded here, although it may
be an interesting measure to consider. It may act as a deterrent in overpopulated

niches.

Allopatric speciation differentiates individuals based on spatial isolation in a search
space. No interspecies communication takes place, and subspecies can develop
only through deviation from the available ‘genetic’ information. Such an event
could be triggered by mutation. Here, different fish species would effectively live
and play around their food sources, and not be concerned with other species living

in different areas.

Parapatric speciation allows new species to form as a result of segregated species sharing
a common border. Communication between the initial species may not have been
encouraged or intended. As an example, new fish species may evolve based on
the interaction of a small percentage of different schools of fish. The new species
may have different food requirements and may eventually upset the environment’s
stability.

The PSO nichers presented in this thesis can be classified as using an allopatric speciation
approach. Allopatric speciation will therefore be a more prevalent issue of discussion, as
it defines the goals of multimodal function optimization.

The next section discusses existing niching techniques that have been introduced in

the genetic algorithm and particle swarm optimization fields.

3.3 Genetic Algorithm based Niching Techniques

This section presents a number of well known niching algorithms, originally studied
using GAs. GA niching is based on research originally done to maintain diverse popu-
lations. Unless indicated, each of the techniques described next assumes that a normal

generational evolutionary optimization process takes place, as discussed in section 2.4.
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3.3.1 Fitness Sharing

Fitness sharing is one of the earliest GA niching techniques. It was originally introduced
as a population diversity maintenance technique [32]. It is a parallel, explicit niching
approach. The algorithm regards each niche as a finite resource, and shares this resource
among all individuals in the niche. Individuals are encouraged to populate a particular
area of the search space by adapting their fitness based on the number of other individuals

that populate the same area. The fitness f; of individual u is adapted to its shared fitness:

1 fz
fi = 723' Sh(duy) (3.1)

A common sharing function is:

h(d) 1- (d/ashare)a if d < Oshare
s —
0 otherwise.

The symbol d,,, represents a distance calculated between individual u and individual v.
The distance measure implemented can be genotypic or phenotypic, depending on the
optimization problem at hand. If the sharing function finds that d,,, is less than ogpepe,
it returns a value in the range [0, 1] that increases as d,,,, decreases. Therefore, the more
similar v and v, the lower their individual fitnesses will become. The fitness sharing
approach assumes that the number of niches can be estimated, i.e. the approximate
number of niches must be known prior to the application of the algorithm. It is also
assumed that niches occur at least a minimum distance 20,4 from each other. The
above assumptions cannot always be made: The number of niches will not always be

estimatable, nor would the distance between them.

3.3.2 Dynamic Niche Sharing

Miller and Shaw introduced dynamic niche sharing as a computationally less expensive

version of fitness sharing [66]. The same assumptions are made as with fitness sharing:
- Niches must occur at a minimum distance of 20,4, from each other,

- and the number of optima must be known.
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During the evolution of a population with the dynamic niche sharing technique, individ-
uals will invariably start to form subspecies and populate niches. Dynamic niche sharing
attempts to classify individuals in a population as belonging to one of the emerging
niches, or to a non-niche category. Fitness calculation for individuals belonging to the
non-niche category is done with the same equation that is used in the original fitness
sharing technique, namely equation (3.1), in section 3.3.1. The fitness of individuals
found to belong to one of the developing niches is diluted by dividing it by the size of the
developing niche. Dynamically finding niches is a simple process of iterating through the
population of individuals and constructing a set of non-overlapping areas in the search
space. Dynamic sharing is computationally less expensive than ‘normal’ sharing. Miller
and Shaw presented results showing that dynamic sharing has improved performance

when compared to fitness sharing [66].

3.3.3 Sequential Niching

Sequential niching (SN) is a simple algorithm introduced by Beasley et al [4]. SN identi-
fies multiple solutions by adapting an optimization problem’s objective function’s fitness
landscape through the application of a derating function at a position where a potential
solution was found [4]. A derating function is designed to lower the fitness appeal of
previously located solutions. By repeated applications of the algorithm to an objective
function’s fitness landscape, all confusing local and global optima are removed. Sample

derating functions, for a point x and a previous maximum x* include:

i\
(M) if ||x —x*|| <r

G1(x,x") = r
1 otherwise
and flc—x* ]
logm "X e o
e v if [|lx —x*| <r
G x) e — x|
1 otherwise

where r is the radius of the derating function’s effect. In G, o determines whether
the derating function is concave (o > 1) or convex (o < 1). For @« = 1, Gy is a linear
function. For G5, m determines ‘concavity’. Note that lim, ,olog(z) = —oo, hence m

must always be great than 0. Smaller values for m result in a more concave derating
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function. The fitness function f(x) is then redefined to be
Mt+1(X) = Mt(X) X G(X, St)

where M,(x) = f(x) and s; is the best individual found during run ¢ of the algorithm.

G can be any derating function, such as GG; and G,.

3.3.4 Crowding

Crowding, or the crowding factor model, as introduced by De Jong [19], was originally
devised as a diversity preservation technique. Crowding was inspired by a naturally
occurring phenomenon in ecologies, namely competition amongst similar individuals for
limited resources. Similar individuals compete to occupy the same ecological niche, while
dissimilar individuals do not compete, as they do not occupy the same ecological niche.
When a niche has reached its carrying capacity (i.e. being occupied by the maximum
number of individuals that can exist within it) older individuals are replaced by newer
(younger) individuals. The carrying capacity of the niche does not change, so population
size remains constant.

For a genetic algorithm, crowding is performed as follows: It is assumed that a
population of GA individuals evolve over several generational steps. At each step, the
crowding algorithm selects only a portion of the current generation to reproduce. The
selection strategy is fitness proportionate, i.e. more fit individuals are more likely to
be chosen. After the selected individuals have reproduced, individuals in the current
population are replaced by their offspring. For each offspring, a random sample is taken
from the current generation, and the most similar individual is replaced by the offspring
individual. To cover a complete search space, the initial position of individuals should
be well distributed, as the algorithm is unlikely to evaluate any part of the search space

that is not within the first generation.

3.3.5 Deterministic Crowding

Deterministic crowding (DC) is based on De Jong’s crowding technique (see section

3.3.4), but uses the following improvements as suggested by Mahfoud [61]:
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- Mahfoud found that phenotypic similarity metrics (such as Euclidean distance)
were preferred to similarity metrics based on genotypes (e.g. Hamming distance).
Phenotypic metrics embody domain specific knowledge that is most useful in mul-
timodal optimization, as several different spatial positions can contain equally op-
timal solutions. Not only is the quality of potential solutions important, but also

their proximity to each other.

- It was shown that there exists a high probability that the most similar individuals
to offspring are their parents. The replacement strategy initially proposed by De
Jong was changed to compare an offspring only to its parents and not to a random

sampling of the population.

- De Jong’s crowding used a traditional proportional method. Individuals are se-
lected for reproduction based on their fitness. Mahfoud suggested selecting indi-
viduals randomly, and only replacing parents with their offspring if the offspring

performs better.

Since the DC algorithm is used in later chapters, it is presented in figure (3.1) (algo-
rithm pseudo-code taken from [61], symbols as defined in table 2.1). Note the d(-) is a
phenotypic distance function.

Probabilistic crowding, described as an “offspring of deterministic crowding,” was
introduced by Mengshoel et al [65]. It is based on Mahfoud’s deterministic crowding,
but employs a probabilistic replacement strategy.

Where the original crowding and DC techniques replaced an individual u with v if v
was more fit than u, probabilistic crowding uses the following rule: If individuals u and

v are competing against each other, the probability of u winning and replacing v is given

b
’ __h
Tt T,

where f, is the fitness of individual u. The core of the algorithm is therefore to use a

Du

probabilistic tournament replacement strategy. Experimental results have shown it to
be both fast and effective.
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Repeat for g generations:
1. Do n/2 times:

a) Select 2 parents, p; and py, randomly from Cj.

(
(b) Cross p; and p,, yielding ¢; and ¢s.

)
)
(c) Apply mutation/other operators, yielding ¢, and c,.
(d) TF [d(p1, 1) + d(p2, ¢3)] < [d(pr, ¢3) + d(p2, 1))
o If f(c;) > f(p1) replace p; with ¢;
o If f(c,) > f(py) replace p, with c,
ELSE
o If f(c,) > f(p1) replace p; with c,

e If f(c,) > f(p2) replace p, with ¢

Figure 3.1: Deterministic Crowding Algorithm

3.3.6 Restricted Tournament Selection

Restricted Tournament Selection (RTS), introduced by Harik [35], is similar to DC, but
promotes local competition.

In RTS, the selection process is adapted in the following way:

Two individuals, v and v are randomly selected from the pool of individuals in the

current generation.

Crossover and mutation operators are performed, yielding two new individuals, »* and

*

V.

The remainder of the current population is searched for individuals that are the most

similar to v* and v*, and when found, are designated by s, and s,.

u* then competes against s, for a position in the next generation. The same happens

with v* and s,.
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Harik presented results in [35] proving that RTS successfully locates solutions to multi-

modal problems.

3.3.7 Coevolutionary Shared Niching

Goldberg and Wang introduced coevolutionary shared niching (CSN) [33]. CSN locates
niches by co-evolving two different populations of individuals in the same search space,
in parallel. Let the two parallel populations be designated by A and B, respectively.
Population A can be thought of as a normal population of candidate solutions, and it
evolves as a normal population of individuals. Individuals in population B are scattered
throughout the search space. Each individual in population A associates with itself a
member of B that lies the closest to it using a genotypic metric. The fitness calculation of
the i*" individual in population A, A;, is then adapted to f'(A;) = ’]ﬁj), where f(-) is the
fitness function; |B,| designates the cardinality of the set of individuals associated with

individual By, and b is the index of the closest individual in population B to individual 7
in population A. The fitness of individuals in population B is simply the average fitness
of all the individuals associated with it in population A, multiplied by B;. Goldberg and
Wang also developed the imprint CSN technique, that allows for the transfer of good
performing individuals from the A to the B population.

CSN overcomes the limitation imposed by fixed inter-niche distances assumed in the
original fitness sharing algorithm [32] and its derivate, dynamic fitness sharing [66]. The
concept of a niche radius is replaced by the association made between individuals from

the different populations.

3.3.8 Dynamic Niche Clustering

Dynamic Niche Clustering (DNC) is a fitness sharing based, cluster driven niching tech-
nique [28, 29]. It is distinguished from all other niching techniques by the fact that it
supports ‘fuzzy’ clusters, i.e. clusters may overlap. This property allows the algorithm
to distinguish between different peaks in a multimodal function that may lie extremely
close together. In most other niching techniques, a more general inter-niche radius (such

as the ogpere parameter in fitness sharing) would prohibit this.
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The algorithm works by constructing a nicheset, which is a list of niches in a pop-
ulation. The nicheset persists over multiple generations. Initially, each individual in
a population is regarded to be in its own niche. Similar niches are identified using
Euclidean distance and merged. The population of individuals is then evolved over a
pre-determined number of generational steps. Before selection takes place, the following

process occurs:

e The midpoint of each niche in the nicheset is updated, using the formula

Z?:u1(xi — Wdu) - fi

where mzid,, is the midpoint of niche u, initially set to be equal to the position of

mud, = mid, +

the individual from which it was constructed, as described above. n, is the niche
count, or the number of individuals in the niche, f; is the fitness of individual 7 in

niche u and x; is the location of individual 7.

e A list of inter-niche distances is calculated and sorted. Niches are then merged

using a technique described in [29].

e Similar niches are merged. Each niche is associated with a minimum and maximum
niche radius. If the midpoints of two niches lie within the minimum radii of each

other, they are merged.

e If any niche has a population size greater than 10% of the total population, random
checks are done on the niche population to ensure that all individuals are focusing
on the same optima. If this is not the case, such a niche may be split into sub-

niches, which will be optimized individually in further generational steps.

Using the above technique, Gan and Warwick also suggested a niche linkage extension

to model niches of arbitrary shape [30].

3.4 PSO Niching Techniques

While research on GA niching techniques is abundant, niching with PSOs have thus

far received little research attention. This section overviews a niching variation of the
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objective function stretching optimization technique, as discussed in section 3.4. This
approach is, to the author’s knowledge, the only existing approach applicable to PSO

niching.

Objective Function Stretching for Locating Multiple Global Minima

Objective function stretching, introduced in section 2.7.1, was applied as a sequential
niching technique by Parsopoulos and Vrahatis [72]. The technique is partially repeated
here for completeness and discussed in more detail to clarify its niching ability.

The stretching technique adapts the landscape of an optimization problem’s fitness
function to remove local minima. When a local solution is detected during the evolution-
ary learning process, the stretching operator is applied to remove the detected solution
from the fitness landscape. Subsequent iterations of the PSO algorithm can then focus
on locating solutions in other parts of the search space, assured that the detected local
optima will not again lead to premature convergence.

The niching variation of the stretching technique detects potential solutions by com-
paring candidate solutions to a threshold value e. Parsopoulos and Vrahatis suggest
values such as 0.01 and 0.001 [72]. (Note that it was implicitly assumed that optimiza-
tion problems were of low dimension. Their test results were only given on one and
two-dimensional problems. Higher dimensional problems will most likely require larger
values.) When a potential solution x* is detected with this technique, the particle at
x* is isolated from the rest of the swarm. The stretching operator is then applied at
x*, marking this position and its vicinity as undesirable by increasing the fitness. The
“application of the stretching functions” means that the fitness calculation of remaining
particles are adapted. If the position vector of the detected solution is given by x*, the

fitness calculation, f(x), for all remaining particle positions x, is redefined to be H(x),

where:
sign(f(x) — f(x*)) +1)
Hx) = GO) 20 o (G x) = Go) (3:2)
and _ .
G(X) — f(X) + " ||X — X ||(81gn(f(x) - f(X )) + 1) (33)

2
The interpretation of the sign function is the same as in section 2.7.1. The transforma-

tion represented by G(x) in equation (3.3) removes all local minima located above the
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Figure 3.2: Function Fi(r) = 1.0 — sin®(57z) with 5 minima of equal fitness.

detected solution x*. The transformation in equation (3.2) assigns higher objective func-
tion values to positions close to x*. The objective function landscape below x* remains
unchanged. Local optima with worse fitness than at position x* is thus removed from
the search space.

Van den Bergh investigated the efficacy of objective function stretching as global
optimization technique. It was found that the technique may alter the search space
by introducing false minima [87]. This observation in part warrants a more thorough
investigation of the applicability of stretching as a niching technique. The alteration of
the search space by the stretching operator for niching purposes is discussed next.

In this thesis the objective function stretching technique was applied to locate all the
minima of the function

Fy(z) = 1.0 — sin®(57z) (3.4)

in the domain = € [0,1] (see figure (3.2)). The objective function f is defined to be
f(z) = Fy(z). A PSO was trained on the objective function f, with parameter settings
v =10% v = 1.0, » = 10"'% and € = 105, When a minimum was detected at a particle
position x when f(z) < ¢, the particle was isolated and the fitness function redefined to

f(z) = H(z). When z ~ 0.9, the fitness function landscape was altered, as is shown in
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Figure 3.3: The modified objective function landscape, after the stretching functions

were applied.

figure (3.3). The effect of the respective transformation functions, H(z) and G(z) can
be pertinently seen. The effect of G(x), i.e. removing all minima above the position
indicated by x, clearly lifts out the positions of the remaining minima. H(x) ensures
that the fitness landscape around the potential solution x is marked as undesirable. The

following problems are however introduced:

e If multiple acceptable minima are located close to each other, the effect of G(x)
may cause these alternative solutions never to be detected. The steep fitness func-
tion slope, regardless of the ‘trenches’ on remaining minima (see below), will keep
particles from traversing towards this area of the search space. Also, if x is removed
from the swarm, y will be redefined to a different location that would be likely to

discourage movement towards the position of x.

e The adaptation of f(z) to remove all potential minima above z, introduces ‘trenches’
in the fitness function around remaining solutions. Although this transformation
makes detecting these remaining minima visually simple, the optimization pro-

cess is less likely to detect them. If e = 1075, as was given above, a solution
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will be detected around x =~ 0.9 when any particle has a position in the range
[0.89999,0.90001]. The width of the ‘trench’ around 0.9 is then 0.00002. The
probability of the evolutionary search process locating this position can then be
calculated by dividing the width of the trench by the total width of the search
space. This yields an extremely small probability of locating the minima under

consideration and other minima.

e The transformation of f(z) with the given values for 7, v and p, introduced a
new local minimum at x ~ 0.6. Because of the small likelihood of locating the
actual minima, the optimization process is more likely to regard this position as a

minimum. Tuning parameters v, v and g may remove the introduced minimum.

The above issues question the usability of objective function stretching as an effective
niching technique. The results reported by Parsopoulos and Vrahatis in [72] could not
be replicated.

3.5 Application of GA Niching Techniques to PSO

Given the wealth of GA based niching techniques, a natural step would be to consider
the adaptation of these techniques to particle swarm optimizers. This section discusses
this possibility.

By default, the PSO algorithm uses a phenotypic similarity metric in the form of
a fitness function. In unimodal optimization, this approach is acceptable, since the as-
sumption can be made that when two particles exhibit similar fitness, they are definitely
approaching the same solution. The particles will also occupy similar positions in the
search space. In multimodal optimization, the fitness function is still crucial in the as-
sessment of the quality of solutions found by particles, but it is not capable of giving
an indication of particle similarity, based on phenotypic behavior. Niches with similar
fitness may occur in different positions in the search space. A metric such as Euclidean
distance can give an acceptable indication of particle similarity, but it is not capable of
doing this while considering particle quality.

GA inspired crowding techniques promote the formation of niches by maintaining sets

of similar individuals. Similarity between individuals in different generations is a result
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of the replacement strategy used. By maintaining individuals that are similar, multiple
niche locations can be identified and maintained over several generations. Maintaining
particles around a potential solution in the PSO algorithm is done quite differently. Par-
ticles are not linked over different generations or iterations of the algorithm in the same
way. With PSOs, this explicit maintenance of locations around a potential solution is
largely taken over by the cognition memory of its personal best solution. The PSO algo-
rithm’s rapid global search nature is achieved by the propagation of knowledge regarding
global good solutions and each particle’s ability to remember its personal best solution.
Sharing information about a single solution focuses all search efforts on the best solution
found by the swarm at any given time during the optimization process.

Removing the global best information yields particles that perform a local search,
biased by the best solution found by each. This type of particle is somewhat similar
to individuals in GA populations. All GA techniques that depend on the independent
nature of individuals, as described above, cannot simply be applied to PSOs. Attempting
to remove all references to global information effectively truncates the value of the PSO
search to that of a random search evolutionary program.

Because of this fact, two new niching techniques, suited specifically to the nature of

the PSO, are presented in the next chapters.

3.6 Application of Niching Techniques to Real-World

Problems

Several areas, where the location of multiple solutions in a search space are beneficial, can
be identified. This section gives a short overview of a number of well-known techniques.

Carroll investigated the application of a multitude of different GA techniques to the
optimization of chemical oxygen-iodine lasers [10]. Chemical lasers are produced through
a series of chemical reactions between gases. In particular, Carroll compared Goldberg’s
sharing technique [32] with a non-sharing GA. He found that sharing helped to more
rapidly find an optimal power input. The interested reader is referred to [10] for a more
in-depth treatment of this particular application.

Hwang and Cho successfully applied the fitness sharing technique to evolve diverse
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circuit architectures [43]. Fitness sharing allowed them to design an embedded device
that dynamically reconfigures its circuit architecture when necessary. The system can
generate multiple architectures concurrently.

Kim and Cho used deterministic crowding (see section 3.3.5) to evolve a checkers
player [53]. Their system evolved a neural network to play the game. They found
that by selecting multiple neural networks from different optimal solutions found by the
different niches identified by DC, game-play was improved.

To evaluate the effectiveness of the proposed PSO based niching techniques, mul-
timodal function optimization problems are considered, as well as solving systems of

unconstrained equations with multiple solutions.

3.7 Conclusion

Niching is an optimization technique inspired by natural evolution. Niching algorithms
allow traditionally unimodal optimization techniques, such as GAs and PSOs, to be
extended to locate multiple solutions in a search space. This chapter reviewed well-known
GA-based niching techniques, as well as more recent attempts, including a PSO based
algorithm. The possibility of extending GA niching techniques to PSOs was investigated.
It was found that the techniques inspired by the generational model of GAs are not
easily extended to the particle swarm model. The PSO model is based on a set of
different assumptions and particles in a swarm are more free to traverse the search
space, than individuals in a GA population. Finally, a number of existing real-world
niching applications were presented.

In the next chapters, niching algorithms, designed to make use of the specifics of the

PSO model, are presented.
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Chapter 4
The nbest Particle Swarm Optimizer

A new PSO-based algorithm, nbest, is developed in this chapter, specifically to solve systems
of unconstrained equations. It represents a first attempt at developing a PSO based nicher.
The standard gbest PSO is adapted by redefining the fitness function in order to locate
multiple solutions in one run of the algorithm. The nbest algorithm also introduces the
concept of shrinking particle neighborhoods. Results are presented that show the new nbest

PSO algorithm to be a promising niching algorithm.

4.1 Introduction

Many problems in science and engineering (e.g. robotics and signal processing) require
solving systems of linear equations. When solving systems of equations (SEs) off-line
with numerical methods, the goal is to find an optimal solution, without considering a
time constraint. However, if such a problem needs to be solved in real-time (e.g. in a
dynamic process controller) under time constraints, existing numerical methods may not
scale well. Efficient numerical techniques have been developed to solve SEs, but they are
not universally applicable [78]. Some systems, consisting of large numbers of equations
and unknowns, can only be solved approximately by utilizing heuristic methods.

The concept of a SEs is formalized and a number of traditional algebraic approaches
to solving them are discussed in section 4.1.1. Section 4.1.2 describes neural network

based approaches to solving SEs, and section 4.2 investigates the necessary representation

29
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of SEs for solving them with the PSO algorithm. Section 4.3 introduces the nbest PSO
algorithm, and empirical results in section 4.4 show the algorithm to be effective. Section

4.5 concludes this chapter with a study of the neighborhood size parameter.

4.1.1 Systems of Equations

Optimization of systems of equations is an important task in academic and commercial
environments. Finding an optimal solution to a problem can very often be simplified to
solving of a set of equations describing such a problem. Such systems can be linear or
nonlinear. A general formulation of a system of m linear equations in n unknowns is

given as [26]:

anry + apTy + 0+ AT, = b
211 + Qo2%9 + -+ +  QopX = b2
e (4.1)
Ap1T1 + ApaZe + 0+ QppTn = bm
In systems of linear equations, no component variable (xy, ..., z, in system (4.1)) has a

degree higher than one or lower than zero. The system can be written as a single matrix
equation

Ax=b (4.2)

where both x and b represent column vectors, with i’ dimensions represented by z; and
b; respectively. If an n-dimensional vector s can be found such that As = b, then s is a
solution to the system represented in equation (4.1). The symbol A represents an m x n

matrix. A system, such as in (4.1), can be written as an augmented matriz

aipr a2 . Qip by
Q21 Q22 **° Q2p by

(4.3)
Am1 Q2 = Omp bn

Some of the techniques discussed below focus specifically on this formulation of SEs.
Variables in systems of nonlinear equations may have degrees greater than one, or
contain transcendental functions such as trigonometric or logarithmic functions. There-

fore, instead of multiplying a variable z,., where r and ¢ respectively represent rows and
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columns in the system, with a constant a,., x,. is first passed through a function f,..
In keeping with the format introduced in system (4.1), a system of non-linear equations

can be written as

aifii(z) +  anfia(ze) + +  ainfin(zn) = b
a1 for (1) +  axnfol(xs) + +  awfon(zn) = by (4.4)
amlfml (-'L'l) + am?fm?(xQ) + -0+ amnfmn(xn) = bm

The functions f,. may be any linear or nonlinear transformation, such as f(z) = =,
f(z) = 22, f(z) = In(z), f(z) = sin(5x) or f(x) = /z (subscripts were dropped for
improved readability). The right hand side of f,. generally consists of a single term.
Algebraic methods to solve systems of equations exist, ranging from relatively simple
approaches for small linear systems, to computationally expensive techniques for large,
non-linear systems. The following sections present an overview of a number of the simpler

numerical techniques.

Graphing

Graphing is a visual approach to solving SEs. It works by simply plotting each equation
in a system, such as those described in systems (4.1) or (4.4). Solution(s) can be found
at positions where curves in the system intersect. Graphing’s accuracy unfortunately
depends on the practitioners ability to correctly draw equation graphs manually. Graph-
ing nonlinear functions, such as transcendental functions and functions in variables of a
degree higher than one, is a difficult task. If solutions are represented by fractions, accu-
racy will be lost because a user would be forced to guess an appropriate value. Systems
of a dimension higher than three can not be easily graphed and visualized in the human
brain. Typically, graphing a solution to a multidimensional problem entails elaborate
decomposition of the sets of equations into different dimensions. Each decomposed graph
will then be subject to the problems mentioned above. The use of graphing to solve SEs

is an option if an accurate graphing package is available.
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Substitution

The substitution technique, which is applicable to both linear and nonlinear SEs, finds
solutions by rewriting individual equations in terms of other equations in the system.
This technique is particularly useful for solving simple linear systems. The following
example explains this technique.

Consider a simple linear system of equations:

A 2z + 3y = 6

4.5
B: 2z + y = (45)

The system can be solved by rewriting equation B in system (4.5) as
C.z =5 — y

and substituting it in A, resulting in

D: 26—-y) + 3y = 6
= 10-2y + 3y = 6
= y = —4

The calculated y value is then substituted into equation A, allowing a solution for x to

be found, i.e.

E: 2z + 3(—4) = 6
= 2z — 12
= 2 = 18
= T = 9
x =9 and y = —4 then represents the system’s only solution.

Gauss-Jordan Elimination

A linear system can be quickly solved by rewriting it in a matrix format, such as in
equation (4.3), and manipulating its coefficients a,. by column and row operators. This
process can be demonstrated by rewriting system (4.5) in matrix notation, i.e.

2 3|6
[11 5] (46
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System (4.6) can be simplified and solved by applying row operators as follows:

0 1
5 0

3

—4
3

Ry — 2R,

4.7
P in (47)

where R; and R, designate the top and bottom rows in the (4.6) respectively. Matrix
(4.7) can be further simplified to

01
10

The process used to write SEs as matrices can be reversed to rewrite (4.8) as a SEs,

—4
9

Ry

3R, (4.8)

yielding
y = —4
= 9,

which is the solution to the system.

Cramer’s Rule

Cramer’s Rule uses matrix determinants to solve systems of linear equations. The rule
states that for a linear system Ax = b, where A is an n x n invertible matrix, each

element of x can be calculated as

det(Bk)
T —
det(A)
where £ = 1,...,n. The matrix B, can be obtained from the coefficient matrix A

by substituting the k£ column of A by b. This process is fast for small matrices, but

becomes progressively more complex as more replacements are necessary for By. Keeping
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with the matrix example in equation (4.6),  and y can respectively be solved for:

6 3
T = 5 1 = 615 = =9 = 9
2-3 —1
2 3
11
2 6
y = 1 5 = 10-6 = A4 = —4
2 3 2-3 -1
11

Matrix Inverses

If an inverse for a matrix A exists, a solution for the system Ax = b is
x = A" 'b. (4.9)

The theory behind finding inverses of matrices is vast and is therefore not discussed here.

The interested reader is referred to [26] for a thorough treatment. Using the formula in

-1 3
equation (4.9) and the inverse of equation (4.6), - ] , system (4.5) can be solved
by calculating
x = AL b
© -1 3] [6
= —
[ Y ] | L =2 [ 5 ]
[ 6+15 |
= =
6 — 10

Nonlinear Techniques

Of the above techniques, Gauss-Jordan Elimination, Cramer’s Rule and Matriz Inverses

apply only to linear systems of equations, subject to the determinant of the coefficient
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matrix A not being zero, if it exists. Nonlinear sets of equations are harder to solve.
Techniques such as the above that appear relatively simple to apply, can no longer be

used. More elaborate numerical techniques exist. These include [78]:

e Newton’s method

Broyden’s method

Line searching

Bisection

The Secant method

e Steepest Descent

The above techniques find only approximate solutions and cannot guarantee that a com-
plete set of solutions have been found. The efficiency of techniques such as Newton’s
method, Broyden’s method, the Secant method and steepest descent also depend on the
initial positions of the respective searching processes. A starting position far from a
solution may lead to an extended search that may never converge. The type of system

to be solved will determine the technique used — no technique is universally applicable.

4.1.2 Solving Linear Systems with Neural Networks

A number of authors have investigated the possibilities of using neural networks to solve
systems of equations, with varying results.
Cichocki and Unbehauen implemented neural networks in circuit architectures to

solve systems of linear equations [12]. Their work was motivated by the following:

e The inversion of large matrices is a time consuming process (see section 4.1.1). If
traditional numerical approaches are utilized, the calculation of an inverted matrix

in a time-critical online system may still be too slow.

e Developing simple artificial neural network models to solve a simple linear pro-

gramming problem could lead to a better understanding of the problem under
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consideration. The consequent development of new solution techniques could lead

to improved, general methods [12].

To accommodate noise in real environments, the basic formulation of systems of linear

equations in equation (4.2) was restated as
Ax=Db"+1=byu

where b’ represents real world observations made, r represents measurement errors and
byrue represents actual values for b that may be unknown. A neural network, embedded
in a circuit architecture, then learns as its outputs the solution vector x. Their results
showed that neural networks can successfully and very efficiently learn solution to SEs.
Gabrys and Bargiela implemented Cichocki and Unbehauen’s approach in a water control
system [27].

Huang and Chi designed neural network architectures based on the dimensions of a

SE described in equation (4.2) [42]. Equation (4.2) is rewritten as
Aw ~ b

where w = [wy, ws, .. ., wn]T represents the weight values of a feed-forward neural net-

work. The coefficient matrix A is written as a set of row vectors,

a
a2
A= . where a; = [ail, a;2, ... am] .

an

Using this reformulation, equation (4.2) is rewritten as

where x = [z1, %9, . .. xn]T. A neural network is then trained by providing sample x values
to approximate b through the adaptation of w under the imposed constraints defined
in equation (4.10). The interested reader is referred to [42] for a detailed analysis of the

above technique'.

'Huang and Chi also introduced a similar neural network based approach to find roots of polynomials
[41].
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Figure 4.1: System S1, a simple system of two linear equations.

4.2 PSO and Solving SEs

This section extends the discussion of systems of equations, but considers it from a
particle swarm optimization perspective. Solving SEs is restated as an optimization
problem, and shortcomings of traditional PSO unimodal optimization approaches, lbest
and gbest, are identified.

Similar to the neural network based approach introduced by Cichocki and Unbehauen
[12], when using PSO to solve SEs, the goal is to find the solution vector x in the system
Ax = b. In a swarm of particles, each particle represents a candidate solution for
each parameter in a system of equations, in this case x. As an example, system (4.11)
represents a simple system of linear equations with a single solution at the coordinates

(1,1), as shown in figure 4.1:

2y = v — 3
949 = 3xr + 1

S1: (4.11)
When attempting to solve system (4.11) with PSO, the goal is to find values for the
unknowns (z,y). Each particle therefore represents a set of candidate values for z and y.
To ascertain the quality of a (z,y) pair, the fitness function is based on the formulation

of the SEs in equation (4.11).
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Figure 4.2: System S4, with multiple solutions.

A particle’s fitness is determined by how close it is to the known solution of a SEs.
The fitness function for S1 can then be defined as

fsi(@,y) = |fsia(@, ) + [ fsr2(z,y)] (4.12)

where

fori(z,y) = = + 2y — 3 =0

fsi2(z,y) = 3z — 4y + 1 =
The objective is then to minimize fg1(x,y). The lower the error represented by fs1(z,y),
the closer a swarm of particles is to the optimal solution of the system. Experimental
results presented later shows that both gbest and [best have no problem to locate the
optimal solution (see table 4.2 on page 77). However, keep in mind that this optimization
problem defines a single, clear goal. No local optima exist in system S1’s search space,
which explains the success of lbest and gbest in locating the single optimum.

When a SEs has multiple solutions, the optimization process becomes more complex.
Consider the following system of equations, illustrated in figure 4.2:
y = =°
y = 2x + 2

S4: (4.13)

The fitness function fg4(z,y) is defined as

fsa(@,y) = |fsan(z,y)| + | fsa2(z,y)|
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where

f54,1(x7y) = 12

fsap(z,y) = 22 + 2

The curves in system S4 intersect at two distinct positions in the search space. Both
these points return equal, minimal fitness values. Attempts to find all solutions to this
system with ‘traditional’ PSO optimization approaches, such as gbest and lbest, fail.

Both gbest and lbest implicitly assume either that the search contains but a single
optimal solution, or that the goal of the search process is to locate only one solution.
This behavior is expected of the gbest algorithm, as the position update equation (see
equation (2.9) on page 16) is designed to force all particles to move to a single global
position in the search space, that defines the best position located by the swarm at any
given time step. The swarm’s global best position can represent only one of the possible
solutions. At first glance, it is expected that the lbest PSO will obtain more than one
solution due to the formation of particle neighborhoods; that is, each neighborhood best
will represent a solution. This is however not the case, since [best propagates information
about optimal positions through overlapping neighborhoods. That is, a particle is a
member of multiple neighborhoods. This configuration leads to the convergence of all
neighborhood best particles onto a single solution. The location of particles within a
particular search space has no effect on the formation of neighborhoods: Neighborhoods
are determined based on the particle indices only.

Given that existing standard PSO approaches clearly are not suited to the location of
multiple solutions within a single search space, new techniques need to be proposed. The
next section presents a new, computationally inexpensive approach to locate multiple

optima, without alteration of the search space.

4.3 The nbest PSO

This section proposes modifications to the standard particle swarm optimizer that en-
ables it to locate multiple solutions in a search space. First, the fitness function is

extended to reward a particle when it is close to any of the possible solutions in a sys-
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tem of equations®. A new approach to determine neighborhood best particles is then

introduced. These modifications are specifically aimed at solving systems of equations.

4.3.1 ‘Intelligent’ Fitness Function

A fitness function quantifies the quality of a potential solution [24]. The fitness function
formulation given in equation (4.12) is adequate for simple systems, such as S1 and S4.

In general, for a system of m equations, this approach can be written as

foa) =) felxi). (4.14)

k=1
fr(x;) represents each one of the m equations, where each equation is algebraically

rewritten to be equal to zero. The fitness formulation in equation (4.14) assumes that:
e All equations intersect at a single, unique position, or that

e the fitness of a system can be determined directly from its set of equations (i.e. the
number of equations is less than or equal to the number of unknowns in a linear

system).

This formulation does not accurately report fitness when dealing with nonlinear systems
where the number of intersection points, or solutions, depend on the number of equations
and unknowns. When dealing with situations where there are more equations than
unknowns, solving a SEs is expanded to finding all points of intersection, of all equations
making up the SEs, rather than searching for points where all the equations intersect.
The goal of solving a SEs with a swarm intelligence approach is to locate all these points
of intersection.

As an example, consider system S3, as illustrated in figure 4.3:

y = 2z — 3
S3: y = -3z — 1 (4.15)
y = —xo + 1

System S3 has three solutions. For all solutions to be located, the fitness function should

2Although the design of this technique was motivated by the particular need to solve SEs, given

sufficient prior knowledge of a search space, it is extendable to other problems.
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Figure 4.3: System S3: A system of linear equations with 3 solutions.

consider a particle’s relative distance to each of the possible solutions. The assumption
above that all the equations in the system intersect, no longer holds. A solution to the
system may be found at any position where only a subset of the equations in the set of
equations intersect. The ‘shortest route’ to convergence for a particle would then be to
adapt its candidate solution towards the actual solution that it lies closest to.

Thus, to evaluate the fitness of a particle ¢ for system S3, the fitness function is
redefined to

fape(xi) = min{ fap.ac(xi), fea,pe(X:), fe,ca(xi)} (4.16)

where

fap,ac(x;) is the fitness of particle x; with respect to equations y = 2z — 3 and y =
-3z +1,

fBa,Bc(x;) is the fitness of particle x; with respect to equations y = —3z + 1 and

y=—x+1, and

fep,ca(x;) is the fitness of particle x; with respect to equations y = —z + 1 and

y =2z — 3.

This formulation of the fitness function implicitly assumes that all the lines in the

system of equations actually intersect. However, to develop a general fitness function
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formulation, this assumption cannot be made. When two lines do not intersect, (e.g.
parallel lines or asymptotes) the result obtained when evaluating the fitness function, will
be an indication of the distance between lines. If there are no intersections between lines
in a SEs and therefore no solutions, particles will eventually settle on locations where
lines in the system are the closest to each other, thereby still minimizing the fitness
function. The fitness formulation in equation (4.16) can thus be generally applied.

The proposed reformulation of the fitness function rewards a particle for being close
to one of a set of possible solutions. A general formulation of this fitness for a particle

position x;, for a system of m equations is

f(xi) = rgin{fn(xi)}

The symbol x represents an element of the set of possible intersections between the m
equations that define a SEs. If < 1,7 > represents the intersection between equations ¢

and 7, then the set of possible intersections, I', is defined as

F={<L,1>...,<1lm><2,1>...,<2m>....,<m,1>...<m,m>}
(4.17)
and k € T'. k represents a single element in ' and {k} # I'. < 1,m > represents
equations 1 and m in the SE rewritten to be equal to zero. The sets of intersecting
equations represented in equation (4.17) assumes that a maximum of two of the m lines
will actually intersect. Also, it is trivial that a solution to a SE does not exist where an
equation represents a locus that intersects with itself. Entries such as (1,1) and (m,m)
are therefore to be ignored. If more than 2 lines do intersect in a SEs, the representation
in equation (4.17) can be expanded to accommodate it, e.g. if three equations, e;, e,
and e3 intersect, the above notation would represent it as < ey, e, €3 >.
This section presented a reformulation of the fitness function for a SEs. This refor-
mulation allows the PSO to effectively locate multiple solutions in a search space. Next,
the concept of a topological neighborhood is introduced to take advantage of the spatial

positions of particles in a search space.
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4.3.2 Topological Neighborhoods

The definition of the lbest PSO ensures that the algorithm spreads information about
good solutions to all particles in a swarm. Standard lbest bases its neighborhood defini-
tion on particle indices, where each particle is assigned an unique index number that does
not change over the course of the optimization process. Spatial positions therefore do
not play a role when determining a particle neighborhood. This model is well-suited to
unimodal optimization problems. It allows efficient sharing of a set of diverse potential
solutions, while avoiding premature convergence [49]. A number of authors investigated
techniques that redefine the neighborhood of a particle, to ensure eventual convergence
on a global optimum in a search space. See section 2.7.2 for a discussion of these tech-
niques. When searching for multiple solutions, neighborhood modifications, as well as
gbest, are still biased towards finding a single optimum solution in the search space.

The diversity improvement techniques in section 2.7.2 all endeavor to spread infor-
mation about good solutions to all particles in the swarm. When searching for multiple
solutions, it is beneficial to restrict the sharing of social information based on a particle’s
proximity to a potential solution. Thus, instead of moving towards a global best solution
located by the complete swarm, a particle would be better served to move towards a so-
lution close to it in the search space. This can be achieved by defining a local, topological
particle neighborhood.

To this end, the nbest PSO introduces a neighborhood best position. For a particle
i, the neighborhood best y; is defined as the center of mass of the positions of all the
particles in the topological neighborhood of i. Practically, the topological neighborhood is
defined as the k closest particles to ¢, where the closest particles are found by calculating
the Euclidean distance between x; and all other particles in the swarm. Formally, for
each particle define the set B;, where B; consists of the k closest particles to ¢ at any

given time step t; y; is then
k
. 1
5= 1) B, (419
h=1
where By, is the current position of the h** particle in neighborhood B; of particle i at

time ¢; k is a user defined parameter. The set of particles in a neighborhood are all

weighted equally.
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The velocity update equation is similar to that used in the lbest PSO, but the neigh-
borhood influence y; is calculated as shown in equation (4.18). The update for v; ;(t+1)

is defined as

vij(t+1) = vii(t) +eiry () (yii(t) — 2ig(t) +
Cara,j(t) (§ii(t) — i (1)) (4.19)

From equations (4.18) and (4.19), it follows that if the neighborhood size k is very
large, i.e. approaching the swarm size, nbest approximates an algorithm similar to gbest,
where all particles move towards a single globally defined location. The goal position ¥y
will, however, represent an average particle position in the search space, conveying no
information about a possible good result. In section 4.5 a study of the influence of the

parameter k is presented.

4.4 Experimental Results and Discussion

This section presents empirical results obtained from the application of gbest, lbest and
nbest to solve systems of unconstrained linear and nonlinear equations. Constrained opti-
mization with the PSO, in the form of multi-objective problems, have been investigated
by a number of authors [15, 38, 74, 75]. Paquet used PSO to solve the constrained
optimization problem associated with training support vector machines [70].

In addition to the systems defined previously, the following systems of equations are

considered:
S2:y = €
y = —2x+2 (4.20)
Sb:y = cosxlnx
y = tanx (4.21)

S6: y = sinx
r = tany (4.22)

Figure 4.4 illustrates each of these systems.
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Figure 4.4: Additional Test Systems of Equations
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For each set of equations, 30 simulation runs were done for each of the [best, gbest
and nbest algorithms. For each simulation, the inertia weight w was linearly scaled from
0.7 to 0.1 over 2000 iterations, with ¢; = 2.0 and ¢, = 2.0 kept constant.

These parameter settings require the velocity values to be clamped to the range
[—VUmaz, Umaz) in order to ensure convergence [87]. The use of a linearly decreasing inertia
weight promotes exploration during the earlier iterations, resulting in a thorough search
of the solution space.

Table 4.1 specifies settings for v,,42, Tmin and Tp,e., where ,,;, and x,,,, defines
the domain of each of the problems, while v,,,, is the largest velocity value that will
be allowed for any dimension. These limits were chosen since all solutions are within

the defined ranges. Table 4.2 summarizes the number of exact solutions found by gbest,

System | Zin | Tz = Vmaz
S1 -10.0 10.0
S2 -10.0 10.0
S3 -10.0 10.0
S4 -10.0 10.0
S5 0.1 10.0
S6 -2.0 2.0

Table 4.1: Z,in, Tmae and vy,., parameter values for nbest experiments

[best and nbest for each of the SEs. Regardless of the actual number of solutions, both
the gbest and [best algorithms always converged to a single solution, even when multiple
solutions exist. This behavior of gbest is expected since all particles home in onto one
particle, namely the global best particle of the swarm. For the [best algorithm, the same
happens due to the fact that neighborhoods overlap, as explained in section 4.3.2.

The nbest algorithm succeeded in finding all the solutions for all problems except for
problem S6, shown in figure 4.4(c). For S6, none of the algorithms succeeded in locating
a specific solution. In this case, a large number of points exist with fitness values very
close to zero. All experiments converged to good approximate solutions close to zero (as
indicated in table 4.3), and within the range [—7/2,7/2]. Table 4.3 lists the average
fitness of the best particle for each of the three algorithms. For the nbest algorithm, the
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Problem

gbest

lbest

nbest

Actual #Solutions

S1

S2

S3

S4

S5

S6

¥ | === =

¥ | === =

1
1
3
2
3
*

* | W | I N|W ||

Table 4.2: Solutions found by nbest, gbest and lbest

4.5 An Analysis of the Neighborhood Size £

Problem | gbest lbest nbest

S1 6.29E-06 | 6.80E-06 | 4.52E-06
S2 6.63E-06 | 7.17E-06 | 6.60E-02
S3 7.30E-06 | 6.73E-06 | 7.08E-04
S4 8.02E-06 | 6.90E-06 | 8.60E-04
S5 7.35E-02 | 6.73E-06 | 7.15E-04
S6 2.93E-05 | 2.91E-02 | 5.13E-06

Table 4.3: nbest Results: Mean Best Fitness

77

Existing diversity improvement techniques that modify a particle’s neighborhood, share

information on a global scale within a search space, ensuring that particles converge

onto a single solution. The goal of nbest is not to increase a particle’s neighborhood size

over time to the complete swarm. Doing so defeats the goals of niching and speciation.

Rather, neighborhoods should stably maintain multiple solutions within a search space.

The influence that a particle neighborhood has in the nbest algorithm is controlled by

the neighborhood size parameter, k. A neighborhood’s size controls the proportion of

social information ‘communicated’ by the swarm to a particular particle. To this end,

this section investigates the niching capabilities of nbest for different £ values.
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Configuration | Kijitiar | kfina
D1 1 1
D2 5 5
D3 |S| |S|
D4 |S| 1
D5 5) 1

Table 4.4: Different experimental configurations of the neighborhood size parameter k

Table 4.4 describes a number of different parameter configurations used to analyze
the influence of k. Configurations D1, D2 and D3 keep the value of k constant for each
simulation, while D4 and D5 linearly scales k from kjyitiar t0 kfina over the maximum
number of allowed iterations of the algorithm. These configurations are compared on
two different optimization problems. The first problem is a SEs with a single solution,
for which the traditional gbest and [best algorithms will encounter no difficulties to locate
the only global solution. The second test system has multiple solutions, and cannot be
solved with gbest and [best. The systems are defined in equations (4.11) and (4.15), and
are illustrated in figures 4.1 and 4.3 respectively.

The influence of k is demonstrated by running the nbest algorithm with the different
k values as set out in table 4.4 on the functions above. Fitness functions are defined as
described in section 4.3.1. For each SEs, ¢; = ¢o = 1.4 and w is linearly scaled from 0.7
to 0.1 over 2000 iterations of the nbest algorithm. Initial particle positions are selected
randomly within the range [—10, 10]?.

Figure 4.5 shows the initial particle positions that were used for each problem type.
The value of k is linearly scaled over the iterations of the PSO algorithm: the value of

k at time step ¢ is determined using the formula:

tma.x

tm X 3
k, = ’V a . (k‘mitial - k'final) + kfinal-‘

where ¢, is the maximum time step and Kjpiriqr and kying is defined as in table 4.4.

Next, the effects of the different k values are considered individually:

D1 When the neighborhood size is kept constant at k& = 1 for 2000 iterations of the

nbest algorithm, virtually no learning progress is made. For both S1 and S3,
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Figure 4.5: Initial particle positions for analysis of neighborhood size
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Figure 4.6: D1: Particle position after 2000 iterations, with £ = 1 kept constant
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Figure 4.7: D3: Particle position after 2000 iterations, with k = | S| kept constant

further simulations where nbest was left to run for 20000 iterations with £ = 1
also did not converge on the possible solutions. Figure 4.6 shows that particle
positions still appear to be random, with only lazy movement towards possible
optima. Since nbest uses spatial neighborhoods to calculate velocity and position
updates, conceptually, when particle a finds particle b to be its closest neighbor,
it is quite possible, although not necessarily guaranteed, that b will choose a as
its closest neighbor. It is entirely possible that there exists a situation where a
third particle ¢ is close to b, such that ||x, — x.|| < |[Xs — Xp||- In such a case,
without the influence of any other particles and the lack of guidance such as is
present in the gbest and [best algorithms, particles a and b will be attracted to
each other. Because of the limited social exchange, this arrangement will lead to
the slow pursuit of the best position found between the two particles at any given
iteration, possibly leading the particles to stagnate on a suboptimal position in the

search space.

D2 and D3 Figures 4.7 and 4.8 show particle positions when testing the algorithm
with £ = |S| and k = 5, respectively. In both cases, particles generally converge

on the possible solutions. Constant neighborhoods where & > 1 allows greater
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Figure 4.8: D2: Particle position after 2000 iterations, with k = 5 kept constant

social interaction between a particle and its neighborhood, facilitating improved
information exchange. The tendency of particles to settle on lines in a SEs is
explained by the fact that any position on a line relatively close to a solution will
have a low, and therefore attractive fitness value. An increased amount of social
information is shared among particles — the extent of social interconnection remains
constant throughout all iterations of the learning algorithm. Note that “extent of
interconnection” simply refers to the size of a particle’s neighborhood. The closest
neighbors of every particle are recalculated after every velocity and position update,
and the set of particles initially associated with a specific particle can change over
time. If several optima occur in topologically close positions, configurations D2
and D3 will have difficulty to converge as a particle’s neighborhood will be situated
around several different solutions. Since neighborhoods of different particles can

overlap, particles will not exhibit convergent behavior.

D4 and D5 Configurations D4 and D5 linearly scale the neighborhood size over time.
These configurations ensure that a large degree of social information exchange takes
place during the initial iterations of the algorithm. The social influence decreases
over time until communication takes place with a single neighbor only. During the

final iterations of the algorithm, the neighborhood size is the same for any particle,
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Figure 4.9: D4: Particle position after 2000 iterations, with k linearly scaled between
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Figure 4.11: Linearly decreasing neighborhood sizes. Note that k is always a discrete

value, explaining the stepwise decrease.

regardless of the initial size. Figure 4.11 shows how the neighborhood size decreases
with iteration number. The greater efficiency of decreasing neighborhoods can be
attributed to the decreasing influence of a spatial neighborhood on a particle over
time. When a particle starts to move towards a particular solution or niche, its
shrinking neighborhood will force it to move to a local solution, rather than to a

global solution that is determined by the social experiences of the complete swarm.

Of the approaches tested in this section, linearly scaling the neighborhood size k over
time yielded the most favorable results. Further simulations, where the neighborhood
size was decreased exponentially over time, also yielded favorable results, but simulations
did not converge as well when linear scaling was used. In this context, convergence refers
to the algorithm’s ability to locate and maintain multiple solutions concurrently, i.e. all
particles have positions close to, or at the exact location of the solution. It seems that
the initial rapid decrease in the size of the spatial neighborhood resulting in a small (i.e.
a neighborhood where k& = 1) neighborhood is less effective. The same social structure
as with D1 and D2 occurs. Decreasing the particle neighborhood is virtually the exact
opposite of Suganthan’s growing particle neighborhood operator [85]. It is also noted
that keeping k£ constant leads to some convergence only when k£ > 1. If this constraint

does not hold, particles perform only a rudimentary local search, and do not exhibit any
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convergent behavior.

4.6 Conclusion

This chapter presented the neighborhood particle swarm optimizer, nbest. It was shown
that the social information exchange which forms the basis of the standard Ibest and
gbest algorithms keeps it from finding multiple solutions in a search space. The nbest
PSO redefined particle neighborhoods to use spatial information to guide particles to
a solution that it lies closest to. nbest was experimentally shown to be an effective
niching technique. The influence of the neighborhood size parameter, k was investigated
in section 4.5.

The next chapter presents the NichePSO optimizer, an algorithm that uses multiple

subswarms to do niching.
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Chapter 5

NichePSO, a Multi-Swarm

Optimizer

This chapter presents a PSO technique that solves multimodal optimization problems with
the concurrent optimization power of multiple swarms. The technique, NichePSO, extends
the inherent unimodal nature of the standard PSO approach by growing multiple swarms
from an initial particle population. The initial particle swarm is split into smaller swarms
as niches are detected. Upon termination of the algorithm, each subswarm represents one
of the potential solutions to the problem. Experimental results show that NichePSO can
successfully locate all optima on a set of test functions. The influence of control parameters,
including the relationship between the swarm size and the number of solutions (niches), as

well as the scalability of the algorithm is investigated.

5.1 Introduction

This chapter presents the niching particle swarm optimization algorithm, NichePSO.
NichePSO is aimed at locating multiple solutions to multimodal problems through the
use of multiple, independent subswarms. The nbest optimizer presented in the previous
chapter sports a drawback: It cannot properly maintain local optima. Overlap in nbest
particle neighborhoods forces the algorithm to always prefer solutions that have better

fitness. Consequently, when a local optimum occurs relatively close to another, better
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optimum, the definition of a neighborhood will always prefer better solutions. The
NichePSO algorithm overcomes this limitation through the use of multiple subswarms.
The use of subswarms, or subpopulations, as part of a population based optimization

algorithm, is not a new idea. It has been applied in the GA optimization field, both as a
- diversity improvement technique [6], and as
- a premature convergence avoidance technique [84].

For the purposes of this thesis, subpopulations/subswarms imply

A bona-fide segmentation of a large population of individuals/particles into
smaller groupings. Each subswarm can function as a stable, individual swarm

entity, evolving on its own, independent of individuals in other swarms.

The use of subswarms has been adopted early on in the development of the PSO. Lgvbjerg
et al introduced a diversity improvement technique that partitions a particle swarm
into a number of different subpopulations [60]. Each subpopulation is responsible for
maintaining its own best known, or gbest, solution. A crossover operator is used to share
information about global solutions (see section 2.4.3). The crossover operator may be

applied to particles from
- a single swarm, or
- particles originating from different swarms.

The algorithm selects particles on which crossover is to be performed randomly. Per-
forming crossover between particles from the same swarm leads to better solutions and
consequently faster convergence within a particular swarm. Crossover between particles
from different swarms facilitates inter-population communication that eventually leads
to a single global solution. Inter-swarm sharing of information is not conducive to the
formation of subpopulations around different potential solutions. All swarms will even-
tually gravitate towards a single solution. Performing crossover in the same swarm to
maintain a diverse ‘local’ record of good solutions reminds strongly of the goals of GA
crowding techniques. Crowding techniques replace individuals in a population with simi-

lar individuals in a next generation (see section 3.3.4). It should however be noted that
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the goal of the research presented by Lovbjerg et al was not to maintain multiple solu-
tions and to perform niching, but to improve the quality of a global solution. Typically,
this approach will be most useful in a deceptive problem domain, where particles may
become trapped in suboptimal solutions. By performing crossover on randomly selected
particles, particles fooled by a suboptimal solution can be moved closer to a better, or
global best, solution.

In the rest of this chapter, the NichePSO algorithm is presented and motivated. A
number of newly introduced niching parameters are analyzed and empirical results are

presented that motivate the validity of NichePSO as a niching technique.

5.2 The Niching Particle Swarm Optimization Algo-

rithm

The nbest optimizer was initially developed as a technique to find and maintain multiple
points of intersection in systems of equations (SEs). Based on the reformulation of the
fitness function presented in the previous chapter, points of intersection in a SEs will
always have equal, optimal fitness in a search space. When local optima, i.e. points
of suboptimal fitness exist, the nbest algorithm’s neighborhood definition will keep it
from locating these solutions. Although the neighborhood formulation introduces a bias
towards a local optimum in a search space in the velocity update equation, neighborhoods
for individual particles may still overlap. Consequently, if a suboptimal, local solution
exists close to a solution that may yield a higher fitness, the neighborhood update will
lead to an update, biased towards the better solution (see figure 5.1). NichePSO, through
the use of subswarms and two control parameters, ¢ and u, overcomes the shortcomings
of the nbest algorithm.

NichePSO starts by uniformly distributing particles throughout the search space
of an optimization problem. The initial swarm of particles is referred to as the main
swarm. As particles traverse the search space, they invariably move towards positions
that have attractive fitness. A potential solution is identified by monitoring the change
in a particle’s fitness over a number of training iterations. When such a solution is

identified, a new subswarm is created by removing from the main swarm the particle
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Figure 5.1: f(x) = In(z)sin®(57x). Note that the function consists of multiple rising
peaks located close to each other. A particle close to peak A may be influenced to rather

move to peak B based on the influence of its neighborhood.

that detected the potential solution and creating a subswarm from it. The main swarm
thus shrinks as subswarms are grown from it. The algorithm is considered to have
converged when subswarms no longer improve on the solutions that they represent. The
NichePSO algorithm is summarized in figure 5.2.

In the following sections, each step of the algorithm is discussed in detail.

5.2.1 Initialization

The general location of potential solutions in a search space may not always be known in
advance. Therefore, it is a good policy to distribute particles uniformly throughout the
search space before learning commences. To ensure a uniform distribution, NichePSO
uses Faure-sequences to generate initial particle positions. An efficient way of calculating
Faure-sequences is given in [86]. Other pseudo-random uniform number generators, such

as Sobol-sequences [77], may also be used.
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1. Initialize the main particle swarm.

2. Train the main swarm particles using one iteration of the cognition only model.
3. Update the fitness of each main swarm particle.

4. For each subswarm:

(a) Train subswarm particles using one iteration of the GCPSO algorithm.
(b) Update each particle’s fitness.

(c) Update swarm radius
5. If possible, merge subswarms
6. Allow subswarms to absorb any particles from the main swarm that moved into it.

7. Search the main swarm for any particle that meets the partitioning criteria. If any

is found, create a new subswarm with this particle and its closest neighbor.

8. Repeat from 2 until stopping criteria are met.

Figure 5.2: NichePSO Algorithm
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5.2.2 Main Swarm Training

In the nbest algorithm, overlapping particle neighborhoods discourage convergence on
local optima, such as the ascending maxima shown in figure 5.1. To this end, NichePSO
uses a technique that frees a particle from the influence of a neighborhood or global best
term in the velocity update equation. When a particle considers only its own ‘history
and experiences’, in the form of a personal best, it can convergence on an optimum
that does not have global optimal fitness, as it is not drawn to a position in the search
space that has better fitness as a result of the traversal of another particle. This search
approach has been previously investigated by Kennedy [47]. It was given in equation

(2.20), repeated here for clarity:
Vi (t+1) = wui(t) + ciry ;i (8) (v (1) — i,3(2)) (5.1)

Kennedy referred to update equation (5.1) as the cognition only model, in recognition
of the fact that only a conscience factor, in the form of the personal best y;, is used
in the update. No social information, such as the global best solution in the gbest and
lbest algorithms, will influence position updates. This arrangement allows each particle

to perform a local search.

5.2.3 Identification of Niches

A fundamental question when searching for different niches, is how to identify them. The
niching algorithm proposed by Parsopoulos et al (see section 3.4) uses a threshold value
€, such that when a particle ’s fitness at a position x; becomes less than the threshold,
i.e. when
f(x;) <e

for a minimization problem, the particle is removed from the swarm and labelled as
a potential global solution. Immediately thereafter, the objective function’s landscape
is stretched to avoid additional and unnecessary exploration of this area surrounding
the discovered solution. If the isolated particle’s fitness is not close to a desired level,
the solution can be refined by searching the surrounding function landscape with the
addition of more particles. This approach proved to be effective when considering Par-

sopoulos et al’s results. The threshold parameter € is however subject to fine tuning,
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and locating good solutions depends strongly on the objective function’s landscape and
dimensionality.

To avoid the use of this tunable parameter, NichePSO uses a similar approach that
monitors changes in the fitness of a particle. If a particle’s fitness shows little change
over a number of iterations of the learning algorithm, a subswarm is created with the
particle and its closest topological neighbor. More formally, the standard deviation in
particle ¢’s fitness, o;, is tracked over a number of iterations, e,, where e, was set to 3
in the experiments conducted in section 5.3. When o; < §, a subswarm may be created
with particle 7 and its closest neighbor. To avoid problem dependence, o; is normalized
according to the range of the search space, commonly referred to as ,,;,, and ., in
PSO literature. This approach can find local minima, for which o; < ¢ holds. If local
minima are undesired, the fitness of a particle can be compared to a threshold to ensure
that the solution meets a minimum fitness criterion.

The ‘closest neighbor’ to particle ¢’s position x; is simply the particle ¢ with position
X., where

¢ = arg min Jx; - x;[}

with 1 < 1,5 < s, i # j and s is the size of the main swarm. Subswarms are optimized
independent from the main swarm, in the same search space. The following sections
present measures that are put into place to ensure that search efforts are not duplicated

on the same solutions.

5.2.4 Absorption of Particles into a Subswarm

When a particle is still a member of the main swarm, it has no knowledge of subswarms
that may have been created during the execution of the NichePSO learning algorithm.
It is therefore quite likely that a particle may venture into an area of the search space
that is being independently optimized by a subswarm. Such particles are merged with

the corresponding subswarm, based on the following suppositions:

e Inclusion of a particle that traverses the search space of an existing subswarm may
expand the diversity of the subswarm, thereby more rapidly leading to solutions
with better fitness.



University of Pretoria etd - Brits, R (2002)
CHAPTER 5. NICHEPSO, A MULTI-SWARM OPTIMIZER 92

e An individual particle moving towards a solution on which a subswarm is working,
will make much slower progress than what would have been the case had social
information been available to ensure that position updates move towards the par-

ticle’s known favorable solution.

To facilitate merging, particles are absorbed into a subswarm when they move ‘into’ the

subswarm. That is, a particle ¢ will be absorbed into a subswarm S; when
|Ixi = ¥s;]| < R (5.2)
where R; signifies the radius of subswarm S;, and is defined as
Rj = max {[|ys; — xs;,[|} (5.3)

Xs;, represents all particles in S; subject to i # g, ¥, represents the global best particle
in S;. Generally, subswarms have small radii, due to the homogeneous nature of the
positions represented by their particles. Therefore, when a particle i moves into the
hyper-sphere defined by a subswarm’s global best particle and radius, it is unlikely that
it would move away from the possible solution maintained by the subswarm. If the
absorption step was absent from the algorithm, ¢ will first have to be considered for a
subswarm and successfully made part of one, before it can merge with S;. If no other
particles occur in the same portion of the search space, a subswarm containing 7 will
never be created, and the potential solution it represents will never be considered. If
1 is merged with a particle in a similar situation, but that occurs in a vastly different

position in the search space, the algorithm’s convergence would be impaired.

5.2.5 Merging Subswarms

A subswarm is created by removing a particle that represents an acceptable candidate
solution from the main swarm, as well as a particle that lies closest to it in the search
space, and to group these into a subswarm. From this rule, it follows that particles
in subswarms all represent similar solutions. This can lead to subswarms with radii
that are very small, and even radii approximating zero. Consequently, when a particle

approaches a potential solution, it may not necessarily be absorbed into a subswarm that
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is already optimizing the particular solution. If the particle has an acceptable fitness,
another subswarm will be created on its position in the search space. If two solutions are
very similar, a single subswarm will be created to optimize both solutions. Eventually,
only one of these solutions will be found. This introduces a dilemma, as multiple swarms
will attempt to optimize the same solution. To alleviate this, subswarms may be merged
when the hyper-space defined by their particle positions and radii intersect in the search
space. When swarms are merged, the newly created swarm benefits from the extensive
social information present in the parent swarms. Accordingly, superfluous local traversal

of the search space is avoided. Formally, two subswarms S;; and S intersect, when
||y5j1 - ijz“ < (Rﬂ + RJQ) (54)

When R; = 0 holds for subswarm S;, all particles in S; represent the same candidate
solution. If this condition holds for both swarms under consideration, equation (5.4) fails
to detect the presence of multiple subswarms in the same niche. Consequently, when
two swarms, S;; and Sj» do not satisfy equation (5.4), because R;; = Rjs = 0', they can
be merged when

||ij1 - ijZH < pu (55)

As with 6, ¢ can be an appreciably small number, such as 1073, to ensure that two
swarms are sufficiently similar. To avoid having to tune p over the range of the search
space under consideration, ||ys,, — ¥s,,|| is normalized to the interval [0, 1]. S;; and Sj,
are merged by creating a new subswarm consisting of all S;; and Sj,’s particles. The
influence of different values of y, and an upper bound on it, are discussed in section
5.4.1.

5.2.6 The GCPSO Algorithm

The GCPSO algorithm was presented and discussed in section 2.7.1. The subswarm
creation technique presented in section 5.2.5 always yields swarms that initially consist

of two particles. Training such a small swarm with the gbest algorithm, especially when

1Since position updates in PSO is a stochastic process, it is practically safer to consider the situation

where Rj; ~ 0 and Rj» =~ 0.
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its particles are topologically highly similar, may lead to swarm stagnation, forcing the
subswarm to convergence on a suboptimal solution. GCPSO puts measures in place
that ensure that a swarm does not stagnate. For a definition of what is meant by swarm
stagnation, as well as a rigorous analysis of why GCPSO is necessary, the reader is

referred to section 5.4.3.

5.2.7 Stopping Criteria

When each individual subswarm has located a solution and stably maintained it for a
number of training iterations, the NichePSO may be considered to have converged. The

following stopping criteria are implemented:

e Fach swarm must converge on a unique solution. Typically, a subswarm is con-
sidered to have converged when its global best solution’s fitness is either above
or below a threshold value, depending on whether the fitness function describes a
maximization or minimization problem. Fitness threshold criteria cannot however
detect acceptable solutions in a multimodal fitness function where local and global
maxima exist. Local maxima are never considered to be acceptable solutions, as
their fitness do not necessarily adhere to possibly strict threshold values. Any
algorithm that therefore depends solely on threshold values will fail to converge.
Therefore, the change in particle positions are tracked over a number of iterations.
If discernible change occurs in their positions, such as may be detected by consid-
ering their variance over a small number of training iterations, the subswarm may

be considered to have converged.

e The algorithm is stopped after a maximum number of training iterations.

5.3 Experimental Results

This section presents experimental results obtained on a set of well-known multimodal
functions. These functions have been extensively used in the testing of a number of
GA niching techniques [4, 32, 37, 61]. Test functions are defined in section 5.3.1, and

experimental results and a discussion thereof follows in section 5.3.2.
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5.3.1 Test Functions

NichePSO is tested on a number of multimodal functions, where the goal is to identify all
optima. These functions were originally introduced by Goldberg and Richardson to test
fitness sharing [32] and have also been used by Beasley et al to evaluate their sequential

niching algorithm [4]. Figure 5.3 illustrates functions F1 to F4, defined as:

Fl(r) = sin®(57x) (5.6)
F2(z) — (a?log(m(%‘)z) x sin® (5mz) (5.7)
F3(z) = sin®(5r(x¥* —0.05)) (5.8)
Fa(z) (e—ﬂog(?)X(’”o‘T%iS)Q) x sin® (57 (%4 — 0.05)) (5.9)

Functions F'1 and F'3 both have 5 maxima with a function value of 1.0. In F'1, maxima
are evenly spaced, while in /'3 maxima are unevenly spaced. In F'2 and F'4, local and
global peaks exist at the same x-positions as in F'1 and F'3, but their fitness magnitudes
decrease exponentially. Functions F'1 to F'4 are investigated in the range x € [0, 1]. For

each of the functions, maxima occur at the following = positions:

F1| 01| 03] 05| 07| 09
F21 01| 03] 05| 07| 09
F310.080.25|0.45| 0.68 | 0.93
F410.080.25|0.45] 0.68 | 0.93

Function F'5, the modified Himmelblau function (see figure 5.4), is defined as
F5(x,y) =200 — (2> +y — 11)> — (z + y* = 7)° (5.10)

F5 has 4 equal maxima with F5(z,y) = 200. Maxima are located at (—2.81,3.13),
(3.0,2.0), (3.58, —1.85) and (—3.78, —3.28).

5.3.2 Results

For each of the 5 test functions, 30 simulations were done with the NichePSO algorithm

with ¢; = ¢ = 1.2. The inertia weight w was scaled linearly from 0.7 to 0.1 over a
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Figure 5.3: NichePSO Test Functions
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Figure 5.4: The Himmelblau function

maximum of 2000 iterations of the NichePSO algorithm. A single NichePSO iteration is
defined as performing steps 2 to 8 in figure 5.2 once. A gradually decreasing inertia weight
lets particles make slower velocity and position updates, at the same time ensuring that
they follow convergent trajectories [87]. Table 5.1 reports NichePSO parameter settings,
as well as limits on the search space ranges of each test function. |S| denotes the initial
number of particles in the main swarm before any niche subswarms were created; y is the
subswarm merging threshold, and ¢ is the subswarm creation threshold. For functions
F'1 to F'4, a particle consists simply of a potential x value. For function F'5, a particle

represents an (x,y) position. NichePSO is evaluated according to
e Accuracy: Thus how close the discovered optima are to the actual solutions; and

e Success consistency: The proportion of the experiments that found all optima.
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Function ) 1 IS| | Zmin | Tmaz = Vmaz
F1 0.0001 | 0.001 | 30 | 0.0 1.0
F2 0.0001 | 0.001 | 30 | 0.0 1.0
F3 0.0001 | 0.001 | 30 | 0.0 1.0
F4 0.0001 | 0.001 | 30 | 0.0 1.0
F5 0.0001 | 0.01 | 20 | -5.0 5.0

Table 5.1: NichePSO Parameter Settings

The parameter values for § and p presented in table 5.1 have been experimentally found
to be effective.

Table 5.2 reports the mean and standard deviation in fitness of all particles in all
subswarms. Fitness here is simply defined as the function value f(z) for each of the
test problems. Only global optima are considered (suboptimal solutions in F'2 and F4
are not taken into account). %Converged signifies the percentage of experiments that
successfully located all the maxima. NichePSO successfully located all global maxima
of all the functions tested. For functions F2 and F'4, NichePSO located the global
maximum in all cases, but did not find all local maxima for all simulations. This explains
the relatively large difference in fitness between functions F'1 and F'3, and functions F'2
and F'4.

Table 5.2: Performance Results

NichePSO
Function | Fitness | Deviation | % Converged
F1 7.68E —05 | 2.20E — 04 100%
F2 9.12F — 02 | 6.43F — 02 93%
F3 5.95F — 06 | 4.86E — 05 100%
F4 8.07TFE — 02 | 6.68F — 02 93%
F5 4.78F — 06 | 1.03E — 05 100%




University of Pretoria etd - Brits, R (2002)
CHAPTER 5. NICHEPSO, A MULTI-SWARM OPTIMIZER 99

5.4 Analysis

Unimodal optimization techniques, such as the standard PSO and GAs, fail to locate
multiple solutions to multimodal problems because of their inherent unimodal optimiza-
tion nature. These algorithms need to be extended to facilitate niching and speciation
abstractions. NichePSO is no exception — although the essence of the original PSO is
retained, a number of extensions were made. The motivations and reasoning behind
these extensions are presented, justified and investigated in this section. The following

issues are considered:
e The algorithm’s sensitivity to the niching parameters, p and 6,
e the performance of GCPSO compared to gbest, and

e the relationship between the initial swarm size and the number of solutions in a

multimodal fitness function.

Finally, the scalability of NichePSO on highly multimodal functions are considered.

5.4.1 Sensitivity to Changes in p

Each subswarm created by the NichePSO algorithm can be seen as a hyper-sphere in the
search space. The hyper-sphere’s radius is determined by the Euclidean distance between
the swarm’s global best position and the particle in the swarm that lies furthest from it.
Two subswarms are merged when the two conceptual hyper-spheres that they represent
overlap. When all particles in a swarm have converged on a single solution, a swarm will

have an effective radius of zero. In such a situation, equation (5.4) fails to allow similar

Solutions involved | Distance between solutions
|A — BJ| 0.714
|IB —C|| 0.622
IIC — D 0.675
|A — D 0.493

Table 5.3: Normalized Inter-solution Distances for Function F'5
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swarms to be merged. Therefore, the use of the p parameter was introduced in equation
(5.5), to allow virtually identical swarms to be merged when they occupy positions
that are approximately similar. Large values of i allow swarms that settle on different
solutions, to merge. If two swarms that correctly represent different solutions are merged,
the newly created swarm eventually converges on only one of the possible solutions,
because of the subswarm optimization technique: The GCPSO algorithm searches for a
single solution.

Figures 5.5(a), 5.5(b) and 5.5(c) illustrate the effect that different p values have on
the convergence capabilities of NichePSO, tested on function F'5. Each particle in the
swarm is represented by a ‘e’. The position of each solution is indicated by a ‘+’, and
labelled by a letter of the alphabet.

The ‘goodness’ of a particle’s position can be determined by its proximity to the
indicated solutions. Table 5.3 presents the normalized distances between the known
solutions for function F'5. The symbols correspond to those used in figures 5.5(a), 5.5(b)
and 5.5(c). For p = 0.5, the NichePSO algorithm did not find all maxima for function
F5 (see figure 5.5(a)). From table 5.3, the normalized distance between solutions A
and D is 0.493. Swarms that represent solutions A and D were therefore merged, as
their inter-niche solution distance was less than the threshold value p. For p-values less
than 0.5, the algorithm successfully located all solutions (see for example figure 5.5(b)).
For extremely small p-values, NichePSO still successfully located all solutions, but not
all swarms that were positioned on the same solutions were merged (see solution D in
figure 5.5(c)). Swarms congregated around the solutions, but due to the ‘strict’ merging
threshold, they could only be merged when virtually identical.

Figures 5.6(a) and 5.6(b) plot the mean number of solutions found by NichePSO
for F'5, F'1 and F'3 respectively, for different p values. For both functions F'1 and F'3,
NichePSO located all solutions when p < 0.1 (see figure 5.6(b)).

From figure 5.6, an upper bound on p can be derived: p should not be greater than
the lowest inter-niche distance. The upper bound is similar to the assumptions made
about the inter-niche distance, 204, in Goldberg’s fitness sharing technique [32], and

the niche radius r in Beasley et al’s sequential niching technique [4].
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Figure 5.6: Number of solutions vs. p for functions F1 and F3

5.4.2 Sensitivity to Changes in J

To identify new potential solutions, the NichePSO algorithm monitors changes in the
particles of the main swarm. If any particle in the main swarm exhibits very little change
in its position over a number of iterations of the algorithm, the particle has approached
an optimum position. The optimum may be a local or global optimum. An effective
measure to detect small changes in a particle i’s position is to monitor the standard
deviation o; in particle ¢’s fitness over a number of training iterations, e,. When particle
¢’s variance in fitness becomes less than a threshold value d, a new subswarm is created
using particle 7 and its closest neighbor. A particle exhibits this behavior only when it is
approaching a solution and has a low velocity, or when it is oscillating around a potential
solution.

Different 0 values were tested for functions F'1, F'3 and F'5. Figure 5.7 plots the
mean number of fitness function evaluations over 30 simulations for each test function
against different ¢ settings. The number of fitness function evaluations are considered
to illustrate that some ¢ values increase the time required for the algorithm to converge.

A simulation was considered to have converged when all its subswarms had a fitness
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less than 10~*. For relatively large § values (§ > 0.1), NichePSO initially easily created
subswarms with any particle that remotely exhibited stagnating behavior. In this con-
text, ‘stagnating behavior’ indicates that a particle slowed down, and that it occupied
similar positions in the search space over consecutive algorithm iterations. For small ¢
values (0 < 0.1), particles were required to be more stationary before being considered
for a subswarm. A different interpretation is that particles had to be very sure of a
solution, before a subswarm was created. As indicated in figure 5.7, smaller § values
effected a slight increase in the number of fitness function evaluations required before
the algorithm converged. From figure 5.7 only broad general trends can be seen. Each
function appears to have an optimal § value. For the test functions, these values are
reported in table 5.4.

Figure 5.7 illustrates that NichePSO is not dependent on a finely tuned §. Fervent
subswarm creation with a ‘high’ § value will be negated by the merging of similar swarms.
Very small § values (§ < 0.01) leads to a minor performance penalty, but when compared
to NichePSO’s performance on higher ¢ values, the cost is low. Without exception,

NichePSO successfully located all solutions to the test functions for all o values used.

5.4.3 The Subswarm Optimization Technique

The NichePSO algorithm uses the GCPSO technique (refer to section 2.7.1) as subswarm
optimization technique. This section compares two implementations of NichePSO: one
using gbest and the other using GCPSO.

When considering the particle position update given in equation (2.12), it is clear
that when, for a particle 4, its position x;(¢) at time step ¢ becomes close to its personal

best position y;(¢) and the global best position y(¢), the velocity update for the next

Test Function | Optimal ¢
F1 0.01
F3 0.1
F'5 0.2

Table 5.4: Optimal 0 values
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Figure 5.7: Mean number of fitness function evaluations required for different § values

iteration of the algorithm, v;(¢ + 1) depends only on previous velocity values and the
inertia weight w. A small v;(¢ + 1) dictates negligible change in a particle’s position.
The particle will therefore stagnate on its current position; y(¢) does not necessarily
represent an optimum, but only the best solution found thus far by all particles in the
search space. When a particle swarm consists of only two particles, as is frequently
the case when subswarms are created with NichePSO, it may occur that these swarms
stagnate almost immediately. The situation can be symbolically explained as follows:
With two particles, p and ¢, in a newly created subswarm, one of these particles, say
p, immediately represents the global best position of the swarm. It also holds that the
personal best position y, of p is equal to the swarm’s global best. This is an obvious
assumption when considering that the global best position is identified as a personal
best position of one of the particles in the swarm. With x, =y, = ¥, particle p’s initial

velocity update is then effectively reduced to
vp(t+1) = wvy(t) (5.11)

Particle p’s initial traversal of the search space therefore solely depends on its velocity
vector v,(0) and the value of the inertia weight w. When a subswarm is created, each
particle in the new swarm not only retains its position vector, as this was the basis for
its selection, but also its velocity vector. This ensures that the particle continues on
its path to a local optimum. If the particle was already close to a potential solution,

the magnitude of its velocity vector would be a value close to zero. Particle p will
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therefore not easily move around in search space. Particle ¢ was chosen to be the second
particle in the subswarm, because it was the closest particle to p when the subswarm
was created. This implies, as stated above, that y, will always be considered over y,
for the swarm’s initial global position, and consequently, that x, will move towards x,.

When y, =y, =y, the following conditions will occur:
® X, X X,, and
e v, and v, will approach zero.

Under these circumstances, no further learning takes place, and exploration of the search
space is minimal. Again, it should be noted that the assumption that y represents
a global solution, cannot be made. To detect and avoid the described situation, the
GCPSO algorithm was used. GCPSO uses adapted velocity and position update equa-
tions for the global best particle in a swarm (in this case particle p), that allows efficient
local traversal of the search space. GCPSO avoids stagnation by moving the global best
particle, until an optimum has been located.

Table 5.5 presents experimental results that compare the performance of GCPSO
with gbest as subswarm optimization technique. The %Convergence column expresses
an average success rate for finding all solutions of a test function over 30 simulations.
It is clear that GCPSO was better suited towards maintaining niches than gbest. Ex-
perimental results obtained showed that for all functions, when using gbest, it frequently
occurred that subswarms were formed that consisted of only two particles. Such swarms
quickly stagnated on suboptimal locations. When a subswarm did not move, the prob-
ability that a particle in the main swarm would pass over it and be absorbed into the
subswarm, was severely reduced. A subswarm consisting of only two particles that have
stagnated on a suboptimal solution, is of no use. Results reported in table 5.5 ignored
two particle swarms and reports only whether an experiment did manage to locate the
actual solutions.

When several local and global optima exist in close proximity to each other in a
function, GCPSO tends to be biased towards the global optima. This behavior is dictated
by equations (2.16) and (2.15). GCPSO’s addition of a random factor to the swarm’s

best particle position may place the particle closer to a global solution, hence forcing the
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Table 5.5: % Convergence of experiments for GCPSO and gbest

Test Problem | % Convergence: GCPSO | % Convergence: gbest
F1 100% 76%
2 93% 66%
F3 100% 83%
F4 93% 86%
F5 100% 86%

subswarm to move towards the global solution that may already be well-represented by
other subswarms. gbest does not exhibit this behavior, since the best particle’s position

is not modified.

5.4.4 Relationship between |S| and the Number of Solutions

This section investigates the relationship between the swarm size |S| and the number of
optima, a, in a multimodal function.

Figures 5.8 and 5.9 present experimental results that compare the number of solutions
found and the number of fitness function evaluations required for different swarm sizes.

Reported results are means over 30 simulations for functions F'1, F'3 and F'5. Trivially,

0 L L P S L L L 1
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Swarm Size

Figure 5.8: Relationship between different swarm sizes and the number of solutions

located.
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Figure 5.9: The mean number of fitness function evaluations required for different swarm

sizes.

NichePSO failed to locate all solutions when |S| < a. When |S| < 2a, NichePSO also did
not locate all the solutions. Since the subswarm creation technique needed two particles
to create a subswarm, intuitively, 2a would have been expected to be a sufficient swarm
size. This was however not the case. This situation can be clarified when considering
the distribution of particles, and the fact that velocity vectors were initialized randomly.
No ‘directional-bias’ is introduced by forcing velocity vectors to lead a particle into a
specific direction, towards a solution. If possible solutions are not known in advance, this
would not be possible. A particle could therefore be initialized close to a solution, but
an initial velocity value may cause it to move away from the possible solution towards
another solution, where it could eventually settle. For function F'1, when |S| > 25,
NichePSO successfully located and stably maintained all solutions. For all the tested
functions, a swarm of size |S| > a® managed to locate all solutions. It serves to confirm
the suspected relationship between the number of solutions in a multi-modal problem
and the swarm size. The relationship |S| > a? prescribes acceptable swarm sizes for the
test problems considered in this section. Results in section 5.4.5 show it is however not a
general condition. Equation (5.15) in section 5.4.5 presents a more general formulation
of the relationship between the number of solutions and swarm size.

Figure 5.9 shows the mean number of fitness function evaluations required for the

different swarm sizes used above. As expected, the number of fitness function evaluations
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steadily increases as the swarm size grows. The trend illustrates that the use of larger
swarms does not necessarily benefit the optimization process:

e Convergence speed is not improved.

e Smaller swarms, subject to the condition identified above, yield the same results

with lower complexity.

5.4.5 Scalability of NichePSO

The results obtained in section 5.3 showed NichePSO to effectively solve multimodal
optimization problems. This section presents empirical results that investigate the scal-
ability on NichePSO to massively multimodal domains. NichePSO was tested on the

following two multimodal functions:

1 n ) n 7
f(x) = (m;x> - (gcos <Z>> +1 (5.12)

= [#7 — 10cos (2m;) + 10] (5.13)

i=1

Griewank function:

Rastrigin function:

These functions are massively multimodal. Both contain a single global minimum at the
origin of the n-dimensional real-valued space in which they are defined. For each of the
functions, the number of minima increase exponentially, as can be seen from the one and
two dimensional plots given in figures 5.10 and 5.11. Figures 5.10(b) and 5.11(b) are
drawn inverted to more clearly illustrate the multimodal nature of the function surfaces.
The goal of the experiments were to ascertain whether increased dimensionality and large
numbers of optima degraded the performance of NichePSO.

For each of the test functions, 10 experiments were performed with the NichePSO
algorithm. Initial swarms sizes used were as listed in tables 5.6 and 5.7. For all experi-
ments, the inertia weight w was scaled linearly from 0.7 to 0.1 over a maximum of 2000

training iterations. The acceleration coefficients were set to ¢; = ¢ = 1.2. NichePSO
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Figure 5.10: Griewank function
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Dimensions (n) | Number of solutions (a) | Swarm Size (|S|) | % Accuracy

1 5 20 100.00%
2 25 100 100.00%
3 625 2500 94.75%

Table 5.6: Performance on the Griewank function

Dimensions (n) | Number of solutions (a) | Swarm Size (|S|) | % Accuracy

1 3 9 100.00%
2 9 36 100.00%
3 27 108 97.45%
4 81 324 97.08%
Y 243 972 92.00%

Table 5.7: Performance on the Rastrigin function

parameters were set as ;4 = 0.001 and § = 0.1. The Griewank function was investigated
in the range [—28,28]", and the Rastrigin function in the range [—3,3]".  Tables 5.6
and 5.7 present performance results of NichePSO on the two test functions.

The following observations can be made:

e Given the sharp increase in the number of optima, NichePSO gave consistent per-
formance, with slight degradation as the number of dimensions increased. It should
be taken into account that a linear increase in the number of dimensions is coupled

with an ezponential increase in the number of solutions.

e Using the exponential relationship |S| = a? suggested in section 5.4.4, is computa-
tionally very expensive. As an example, the 5-dimensional Rastrigin function with
243 solutions would require a swarm of 59,049 particles! As shown in tables 5.6
and 5.7, the relationship between the number of solutions (a) and the swarm size
(|S]) was kept at

|S| = 4a (5.14)

This relationship is computationally more tractable. It also shows that |S| = a?

does not represent a lower bound on the relationship between swarm size and num-
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ber of solutions. Consequently, the relationship between swarm size and number

of solutions would more likely be expressed as
|S| =c-al (5.15)

where ¢ is a constant, and 1 < ¢ < 2. Further experimentation would be required

to empirically estimate ideal values for ¢ and gq.

5.5 Conclusion

Swarm intelligence algorithms such as particle swarm optimizers, present a real and
viable alternative to existing numerical optimization techniques. Population based opti-
mization techniques can rapidly search large and convoluted search spaces and less likely
to be sensitive to suboptimal solutions. The standard gbest and lbest PSO approaches
share information about a best solution found by the swarm or a neighborhood of par-
ticles. Sharing this information introduces a bias in the swarm’s search, forcing it to
converge on a single solution. When the influence of a current best solution is removed,
each particle traverses the search space individually, using no expierential knowledge of
its peers.

With NichePSO, a subswarm is created when a possible solution is detected at a
particle’s location. The subswarm is then responsible for traversing the search space in
the vicinity of the potential solution to find an optimal location. This pseudo-memetic
approach is called NichePSO. Experimental results obtained on a set of multimodal
functions showed that NichePSO successfully located and maintained multiple optimal
solutions. Several parameter optimization issues, related to NichePSO, were addressed.
Suggestions were made as to potential values for tunable parameters. A scalability study
carried out on highly multimodal functions, commonly used in the study of PSO algo-
rithms, were used to demonstrate that NichePSO scales acceptably on high dimensional

problems.
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Chapter 6

A Comparative Analysis of Niching

Techniques

This chapter presents an empirical comparison between the newly introduced nbest and

NichePSO algorithms and two existing GA niching techniques.

6.1 Introduction

A plethora of evolutionary niching and speciation techniques are in existence. Chapter
2 presented a summary of some of the more well-known variations. All the presented
techniques can be categorized as being either sequential or parallel niching techniques.
Sequential niching locates niches in serialized runs of the same algorithm. Each run
of the algorithm that successfully locates a niche/solution, modifies the fitness function
to keep subsequent runs from unnecessarily duplicating search efforts. Parallel niching
implements measures to concurrently identify and maintain niches (see section 3.2 for a
more complete discussion). Both the nbest and NichePSO algorithms, introduced in the

previous chapters, are parallel niching techniques. The nbest algorithm uses
e spatial particle neighborhoods and
e an alternative formulation of the fitness function

to concurrently find and maintain niches, while NichePSO uses subswarms.
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The introduction of new algorithms in a research field necessitates a comparative
analysis to determine whether they offer an advantage, or can be considered as alter-
natives to existing techniques. Since no existing, unique niching techniques exist in the
PSO field, such a study would not be possible. The objective function stretching opti-
mizer introduced by Parsopoulos et al is consciously excluded here, for reasons set out
in section 3.4. Consequently, it seems appropriate to compare the new PSO techniques
to well-known GA based niching techniques. It should be noted that the goal of this
study was to develop new, unique PSO based solutions to niching problems. A number
of authors have undertaken studies where existing evolutionary optimization approaches
were re-factored for PSOs. As was found in chapter 3, this was not possible for GA
niching techniques. They cannot be directly mapped to the PSO, due to differences in
the behavior of the GA and PSO. These differences were analyzed in section 3.5. It
was therefore necessary to develop techniques specifically suited to the dynamics of the
PSO. In the rest of this chapter, a comparison is presented between PSO and GA based

niching techniques.

6.2 The Algorithms

In order to form a general base for comparison, the PSO niching algorithms are compared
to both a

e sequential, and a
e parallel GA niching technique.

As an example of sequential niching, Beasley et al's sequential niching (SN) technique,
described in section 3.3.3, is used. SN uses repeated runs of a normal generational genetic
algorithm to locate multiple solutions [4]. After each run of a simple GA, the fitness
function is adapted to reflect the position of the recently located solution. Subsequent
runs of the GA with the modified fitness function avoid areas in the search space where
solutions have already been found, forcing the optimizer to explore unknown sections of

the search space. SN has been criticized, the biggest concern being that the derating
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modifications made to the fitness function may conceal other optima [62]. Never the
less, SN is the only sequential GA niching technique.

As a parallel niching technique, deterministic crowding (DC), presented in section
3.3.5 is used. DC is a replacement strategy that maintains several sets of similar indi-
viduals over a number of generations [61]. DC’s custom selection policy only replaces
offspring in a next generation when they perform better (fitness-wise) than their parents.
A phenotypic similarity metric is used to quantify similarity between parents and off-
spring. As a parallel niching technique, DC is preferred over the more well-known fitness
sharing [32], as it does not directly modify the fitness evaluation, i.e. it is not an explicit

niching technique such as SN.

6.3 Experimental Setup

6.3.1 Test Problems

To test the different niching techniques, several functions presented in previous chapters
were used. The following systems of equations, because of their irregular spacing of

maxima, were used:

e System S3, defined in equation (4.15) on page 70, illustrated in figure 4.3.

e System S4, defined in equation (4.13) on page 68, illustrated in figure 4.2.

e System S5, defined in equation (4.21) on page 74, illustrated in figure 4.4(b).
The following multimodal functions, defined in chapter 5, are used (see page 95):

e Function F1, defined in equation (5.6), illustrated in figure 5.3(a).

Function F2, defined in equation (5.7), illustrated in figure 5.3(b).

Function F3, defined in equation (5.8), illustrated in figure 5.3(c).

Function F4, defined in equation (5.9), illustrated in figure 5.3(d).

Function F5, defined in equation (5.10), illustrated in figure 5.4.
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6.3.2 Parameter Settings

For each of the nbest, NichePSO, SN and DC algorithms, 30 simulations were performed
on each of the test problems outlined in section 6.3.1. The following sections describe

GA and PSO parameter settings respectively.

GA Setup

For all experiments, populations consisting of 20 individuals were used. For Beasley et

al’s SN algorithm, the following settings, as used in [4], were chosen:

Parameter ‘ Value
Pe 0.9
Dm 0.01

where p. and p,, signify the probability of whether the crossover and mutation operators
are applied. A single-point crossover operator was used. As selection operator, stochastic
universal sampling (SUS) is used, as suggested in [62]. One-dimensional problems used
a 30-bit chromosome representation. For two-dimensional problems, two chromosomes
of 15-bits each were used. The halting window approach described in [4], was used to
terminate the algorithm. The approach monitors the average fitness of a population
at each generation. If the average fitness has not improved on the fitness reported
h generations earlier, the algorithm is terminated. For all runs of the SN algorithm, a
halting window of h = 20 was used. Apart from this control setting, a maximum number
of 2000 iterations was allowed. To determine the niche radius (see section 3.3.3), the
method suggested by Beasley et al was used (originally suggested by Deb [20]). For a

d-dimensional problem with [ optima, the niche radius r was calculated as

Vid
r = —
2><\d/Z

This technique assumes that fitness function parameters are normalized to [0,1]. An

(6.1)

exponential derating function G,

_ ¥
Gulx, x*) = { e B i x| <
e ) -

1 otherwise
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was used (given in section 3.3.3, repeated here for clarity); x is an individual’s phenotypic

representation, x* represents the best individual located using a particular generation’s

phenotype, and || - || is the Euclidean distance defined in each problem’s search space.
Mahfoud’s DC uses an internal selection scheme (see section 3.3.5). Crossover and

mutation probabilities were set at

Parameter ‘ Value
De 1.0
Pm 0.01

since the DC algorithm favors a very lower mutation probability and a high crossover
probability [61]. DC also used a halting window-based termination criterion of h = 20,

and a maximum number of generations of g,,., = 2000.

PSO Setup

For all experiments, swarms consisting of 20 particles were used. A halting window ap-
proach, similar to that presented above was implemented, assuming that for NichePSO,
the halting window conditions were applied to all swarms, and the main swarm was
empty. The inertia weight was linearly scaled from 0.7 to 0.1, over a maximum of 2000
iterations of the respective algorithms. Coefficients ¢; and ¢y were both set to 1.2. These
parameter settings allow particles to gradually decrease the magnitude of velocity and
position updates, at the same time ensuring that they follow convergent trajectories [87].

Further parameters were as given in table 5.1.

6.4 Results and Discussion

Tables 6.1 and 6.2 quantify the performance of the tested niching techniques. In both
tables, entries marked with a ‘*’ indicate that experiments on the relevant test problem
and algorithm combination were not carried out. Marked entries apply specifically to the
situation where the nbest algorithm was used to find multiple solutions to problems with
optima of varying fitness. If only fitness is considered on problems such as function F2

and F4 (see figures 5.7 and 5.9), topological neighborhoods of particles overlap. Particles
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are therefore drawn to solutions with better fitness, and only converge on solutions with

optimal fitness.

6.4.1 Computational Cost

Table 6.1 compares the computational cost of each of the niching techniques in terms
of the number of fitness function evaluations required to converge. Note that in values
reported in the format a+b, a refers to a mean calculated over all simulations, and b refers
to the standard deviation calculated over the same values. The given results represent
the actual number of fitness function evaluations that took place — distance calculations
at each iteration of the respective algorithms were not factored in. This fact brings an
interesting point forward: DC does not compare each individual in the population to
every other population member at each generation of the algorithm: Offspring are only
compared to their parents. The net effect of this is that DC requires a consistently higher
number of fitness function evaluations. The following comments can be made based on

the results shown in table 6.1:

e SN required fewer evaluations on the systems of equations in problems S3, S4 and
S5.

e Although SN generally required a low number of fitness function evaluations, it
should be taken into consideration that the basis of the SN algorithm necessitates
the calculation of a derated fitness at each generation, that becomes more complex

as the number of generations increases.

e DC consistently required more fitness function evaluations than the other algo-

rithms.

e When comparing nbest and NichePSO, it is clear that NichePSO required a sub-
stantially smaller number of fitness function evaluations. In addition to its quota
of fitness function evaluations, nbest also required the calculation of a matrix rep-

resenting inter-particle distances, at each iteration of the algorithm.

e Both nbest and NichePSO consistently require less than the average number of

fitness function evaluations to converge.



Problem SN DC nbest NichePSO Average
S3 1840.73 £ 86.43 | 15087.67 4+ 4197.35 || 8493.00 £ 413.27 | 2554.47 + 228.22 | 6993.97
S4 1193.47 £ 96.30 | 17554.33 4+ 4656.96 || 6934.12 £ 542.33 | 3965.50 + 353.26 || 7411.86
S5 1926.60 + 95.21 | 13816.00 4 4224.50 || 7018.87 + 670.09 | 2704.20 + 134.76 | 6366.42
F1 4102.07 £ 576.58 | 14647.33 = 4612.15 || 4769.00 4+ 44.90 | 2371.86 £ 109.41 6472.57
F2 3504.80 4+ 463.20 | 13052.33 4+ 2506.65 * 2934.00 4 475.44 || 6497.04
F3 4140.97 + 553.93 | 13930.00 + 3284.38 || 4789.00 £ 51.35 | 2403.73 £ 194.94 || 6315.93
F4 3464.07 + 286.97 | 13929.33 4+ 2996.15 * 2820.03 +517.09 | 6737.81
F5 3423.33 & 402.13 | 14295.67 £ 3407.82 || 5007.67 £ 562.14 | 2151.47 + 200.42 || 6219.54

Average 2949.51 14539.10 6168.61 2738.16

Table 6.1: Average number of fitness function evaluations required to converge for each niching algorithm. Entries

marked with a ‘“*’ indicate that experiments were not carried out for the relevant problem and algorithm.
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e Overall, NichePSO required the least number of fitness function evaluations to

converge.

6.4.2 Performance Consistency

Table 6.2 expresses as percentages the performance consistency of the tested niching
techniques. ‘Performance consistency’ reflects each of the algorithm’s ability to consis-
tently locate all solutions to each of the optimization problems. All the tested techniques
sufficiently maintained solutions sets. The following conclusions can be drawn from the

results reported in table 6.2:

e Results for the SN algorithm compares well to that reported in [4]. The algorithm
did however not perform as well on systems of equations, and generally performed

worse than the average.

e Regardless of its higher computational requirement, DC did not generally yield

superior performance.

e Although still better than SN, NichePSO performed equal to or worse than the

average performance on the systems of equations in problems S3, S4 and S5.

e The nbest algorithm appears to have exhibited the most consistent performance

over all the test problems (keeping in mind that it was not applied to F2 and F4).

6.5 Conclusion

This chapter presented an empirical comparison between the performances of the newly
introduced PSO niching algorithms, and two well-known GA based techniques. Section
6.2 gave a brief overview of the algorithms. The test functions presented in section 6.3.1
were all well-known functions that have been used in this thesis and other literature for
evaluating the effectiveness of niching techniques. Section 6.4 analyzed the experimental
results obtained. It was established that both nbest and NichePSO are successful nich-
ing algorithms, and their performance, both in terms of computational complexity and

performance consistency compare well to existing niching techniques.



Problem | Sequential Niching | Deterministic Crowding || nbest | NichePSO | Average
S3 76% 93% 100% 87% 89.00%
S4 66% 100% 100% 80% 86.50%
S5 83% 87% 100% 90% 90.00%
F1 100% 100% 93% 100% 98.25%
F2 83% 93% * 93% 89.67%
F3 100% 90% 93% 100% 95.75%
F4 93% 90% * 93% 92.00%
F5 86% 90% 100% 100% 94.00%

Average 85.88% 92.86% 97.67% 92.88%

Table 6.2: The consistency with which each of the techniques managed to locate a complete set of solutions for
each of the test problems. Entries marked with a ‘*’ indicate that experiments were not carried out for the relevant

problem and algorithm.
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Chapter 7
Conclusion

This chapter briefly summarizes the findings and contributions of this thesis, followed by a

number of ideas for further research and analysis.

7.1 Summary

This study investigated the application of the unique properties of the PSO algorithm to
solve multimodal optimization problems. As a result, two new niching techniques were
developed. Chapter 3 presented an overview of existing GA-based niching techniques. It
was concluded that although it is not impossible to convert existing GA—based techniques
for use with the PSO, the genetic representation and generational replacement used by
GAs make it hard to directly implemented GA—based techniques on the PSO. Chapter 3
also tested the potential of an existing PSO global optimization algorithm, ‘Stretched’-
PSO (SPSO). It was found that the algorithm’s performance is impaired by modifications
made to the search space.

Chapter 4 introduced the nbest PSO niching algorithm, specifically to solve systems
of equations. The use of topological neighborhoods that promote local social interaction
among particles was found to be a promising extension to the PSO algorithm. Chapter 5
introduced NichePSO, a niching algorithm that uses multiple particle swarms to maintain
different solutions in a single search space. In Chapter 6, the performance of both nbest

and NichePSO was compared to two well-known GA niching techniques, deterministic
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crowding and sequential niching. 1t was found that both of the newly introduced PSO
niching algorithms were effective niching techniques, with performance comparable and

better than the GA-based techniques.

7.2 Future Research and Analysis

A number of areas can be identified where the research in this thesis can be applied, or

further investigated. These include the following:

nbest Neighborhood Formulation

The neighborhood formulation of the nbest algorithm showed to effectively find and
maintain areas where very similar equations overlap. This property can be used in
multi—objective optimization problems to locate and maintain Pareto fronts, as has been

recently done by [38] with a similar algorithm.

Application to Global Optimization

The goal of niching techniques is to maintain diverse solutions in a search space. It
remains to be seen whether this property of niching can be used to extend or enhance
existing PSO diversity improvement techniques in a way that has not yet been investi-
gated. Maintaining several solutions in different swarms and sharing information between
the different swarms, may lead to improved global optimization algorithms (such an ap-
proach would seem similar to the island GA [34], and PSO subswarm techniques, such

as work done by Lgvbjerg et al [60]).

Further Investigation of NichePSO

e Parameter Independence of NichePSO: The current NichePSO implementation
fails to correctly locate all solutions to a multimodal function if u is greater than
the inter-solution distance. The situation could be avoided by monitoring the ef-
fect of merging on swarm fitness. Ideally, swarm fitness should remain stable or

improve. If particles from different potential solutions are merged, swarm fitness
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will be erratic until the swarm settles on one solution. Swarms may of course not
settle at all, as several potential solutions would confuse it. Alternatively, a tech-
nique similar to that of Goldberg and Wang’s CSN could be utilized to remove this

parameter limitation [65].

e Swarm Sizes: In section 5.4.4 it was found that a?, where @ is the number of op-
tima in a multimodal function, was a conservative boundary as to the number of
particles required to locate all solutions. The accuracy of this estimate warrants
further investigation, specifically when applying NichePSO to multimodal func-
tions of higher dimensions. Functions of higher dimension exist in a much larger
search space. Alternative velocity vector initialization techniques could also be
investigated to see whether the number of particles required per solutions can be

reduced.

Ensemble Neural Networks

Section 2.9.1 investigated work presented by a number of authors where particle swarms
were used to train neural networks. Ensemble architectures train a number of neural
networks, either sequentially or in parallel on the same problem. Since the search space
of a neural network may be highly multimodal, the use of a niching technique may be
beneficial. The PSO has been shown to be an effective optimization technique for neural
network training, and it seems a natural step to exploit the nature of niching algorithms

and apply it to ensemble learning.

Development of Further Niching Techniques

The usefulness of existing PSO diversity improvement techniques as precursors to niching
need still be investigated. The crossover operator used by Lovbjerg et al [60] is triggered
by randomly assigning a crossover probability to particles. If this assignment is changed
to use a ranking scheme, only highly fit particles will be used for crossover. Although
crossover between highly fit particles in a multimodal domain is not at all beneficial, the
approach is similar to deterministic crowding [61].

Section 3.2 mentioned the notion of cannibalism within a species. When using an
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algorithm such as NichePSO to find multiple optima in a vastly multimodal function, a
potentially large number of particles must be used to ensure consistent results. The use
of a cannibalism operator, that removes particles where highly similar particles occur,

may serve to simplify the interpretation of results.

Application of Niching Algorithms to Dynamic Clustering

Data clustering sorts data records into groups based on their similarity. The k-means
algorithm is an example of a widely used algorithm. k-means however suffers from a
major drawback: The number of clusters must be known in advance. In complex data
sets, the number of clusters may not be known, or may be time dependent. For such
problems, clustering algorithms that dynamically determine the number of clusters are
needed. A cluster centroid represents a vector of the same dimension as data records in
a data set, positioned on a location within the hyper-space defined by the data. If each
particle in a swarm of particles represent a potential cluster centroid, centroids may be

located by finding positions in the search space subject to the following conditions:

e The variability among data records associated with each centroid must be mini-

mized.
e The variability among data centroids must be maximized.

Such a scheme could then dynamically determine the number of clusters in a dataset

through the use of a niching algorithm such as NichePSO.



University of Pretoria etd - Brits, R (2002)

Bibliography

1]

B. Al-Kazemi and C. K. Mohan. Multi-Phase Generalization of the Particle Swarm
Optimization Algorithm. In Proceedings of the IEEE World Congress on Evolution-
ary Computation, pages 489 — 494, Honolulu, Hawaii, 12 - 17 May 2002.

P. J. Angeline. Using Selection to Improve Particle Swarm Optimization. In Pro-
ceedings of the IEEE International Joint Conference on Neural Networks, pages 84
— 89, July 1999.

T. Back, D. B. Fogel, and T. Michalewicz, editors. Basic Algorithms and Operators,
volume 1 of Fvolutionary Computation. Institute of Physics Publishing, Bristol and
Philidelphia, 1999.

D. Beasley, D. R. Bull, and R. R. Martin. A Sequential Niching Technique for
Multimodal Function Optimization. FEvolutionary Computation, 1(2):101 — 125,
1993.

C. Blake, E. Keogh, and C. J. Merz. UCI Repository of Machine Learning Databases,
2002. University of California, Irvine, Department of Information and Computer

Sciences, http://www.ics.uci.edu/~MLRepository.html.

E. Cantu-Paz. A Summary of Research on Parallel Genetic Algorithms. Technical
report, Genetic Algorithm Lab, Urbana, University of Illinois, Illinois, July 1995.
[IiGAL Rep. 95007.

A. Carlisle and G. Dozier. Adapting Particle Swarm Optimization to Dynamic
Environments. In Proceedings of the IEEE International Conference on Artificial
Intelligence, pages 429 — 434, Las Vegas, USA, 2000.

126



University of Pretoria etd - Brits, R (2002)

BIBLIOGRAPHY 127

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

A. Carlisle and G. Dozier. An Off-The-Shelf PSO. In Proceedings of the Workshop on
PSO, Indianapolis, IN, USA, 2001. Purdue School of Engineering and Technology,
[UPUI.

A. Carlisle and G. Dozier. Tracking Changing Extrema with Particle Swarm Opti-
mizer. Technical report, Auburn University, Alabama, USA, 2001. Technical Report
CSSE01-08.

D. L. Carroll. Genetic Algorithms and Optimizing Chemical Oxygen-Iodine Lasers.
In R. Batra, C. Bert, A. Davis, R. Shapery, D Stewart, and F. Swinson, editors,
Developments in Theoretical and Applied Mechanics, volume XVIII, pages 411 —
424. School of Engineering, University of Alabama, 1996.

N. Christianini and J. Shawne-Taylor. An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge University Press, 2000.

A. Cichocki and R. Unbehauen. Neural Networks for Solving Systems of Linear
Equations and Related Problems. [EEE Transactions on Circuits and Systems—I:
Fundamental Theory and Applications, 39(2), February 1992.

M. Clerc and J. Kennedy. The Particle Swarm — Explosion, Stability and Conver-
gence in a Multidimensional Complex Space. IEEE Transactions on Evolutionary
Computation, 6(1):58 — 73, February 2002.

C. A. Coello Coello. An Updated Survey of Evolutionary Multiobjective Optimiza-
tion Techniques: State of the Art and Future Trends. In Proceedings of the IEEE
Congress on Fvolutionary Computation, pages 3 — 13, Washington, DC, July 1999.

C. A. Coello Coello and M. S. Lechuga. MOPSO: A Proposal for Multiple Objec-
tive Particle Swarm Optimization. In Proceedings of the IEEE World Congress on
Evolutionary Computation, pages 1051 — 1056, Honolulu, Hawaii, May 2002.

A. Conradie, R. Miikulainen, and C. Aldrich. Adaptive Control utilising Neural
Swarming. In Proceedings of the Genetic and Evolutionary Computation Conference,
New York, USA, 2002.



University of Pretoria etd - Brits, R (2002)

BIBLIOGRAPHY 128

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

A. Conradie, R. Miikulainen, and C. Aldrich. Intelligent Process Control utilising
Symbiotic Memetic Neuro-Evolution. In Proceedings of the IEEE World Congress
on Evolutionary Computation, pages 623 — 628, Honolulu, Hawaii, 12 - 17 May 2002.

A. Conradie, I. Nieuwoudt, and C. Aldrich. Nonlinear Neurocontroller Development
with Evolutionary Reinforcement Learning. In 9th National Meeting of SAIChe,
Secunda, South Africa, 2002.

K. A. de Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
PhD thesis, Department of Computer Science, University of Michigan, Ann Arbor,
Michigan, USA, 1975.

K. Deb. Genetic Algorithms in Multimodal Function Optimization. Master’s thesis,
Department of Engineering Mathematics, University of Alabama, 1989.

R. C. Eberhart and X. Hu. Human Tremor Analysis Using Particle Swarm Opti-
mization. In Proceedings of the IEEE World Congress on Evolutionary Computation,
pages 1927 — 1930, Washington DC, USA, July 1999.

R. C. Eberhart and Y. Shi. Comparing Inertia Weights and Constriction Factors in
Particle Swarm Optimization. In Proceedings of the IEEE Congress on Evolutionary
Computation, pages 84 — 89, San Diego, USA, 2000.

R. C. Eberhart and Y. Shi. Tracking and Optimizing Dynamic Systems with Particle
Swarms. In Proceedings of the IEEE Congress on Evolutionary Computation, pages
94 — 100, Seoul, Korea, 2001.

A. P. Engelbrecht. Computational Intelligence: An Introduction. Wiley and Sons,
October 2002.

A. P. Engelbrecht and A. Ismail. Training Product Unit Neural Networks. Stability
and Control: Theory and Applications, 2(1-2):59 — 74, 1999.

J. B. Fraleigh and R. A. Beauregard. Linear Algebra. Addison Wesley Publishing
Company, 3rd edition, 1995.



University of Pretoria etd - Brits, R (2002)

BIBLIOGRAPHY 129

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

[35]

B. Gabrys and A. Bargiela. Neural Simulation of Water Systems for Efficient State
Estimation. Proceedings of the Furopean Simulation Multiconference, pages 775 —
779, 1995.

J. Gan and K. Warwick. A Variable Radius Niche Technique for Speciation in
Genetic Algorithms. In Proceedings of the Genetic and Evolutionary Computation

Conference, pages 96 — 103. Morgan-Kaufmann, 2000.

J. Gan and K. Warwick. Dynamic Niche Clustering: A Fuzzy Variable Radius
Niching Technique for Multimodal Optimization in GAs. In Proceedings of the
IEEE Congress on Evolutionary Computation, volume I, pages 215 — 222, 2001.

J. Gan and K. Warwick. Modelling Niches of Arbitrary Shape in Genetic Algorithms
using Niche Linkage in the Dynamic Niche Clustering Framework. In Proceedings of

the IEEE World Congress on FEvolutionary Computation, pages 43 — 48, Honolulu,
Hawaii, 12 - 17 May 2002.

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison Wesley, Reading, MA, 1989.

D. E. Goldberg and J. Richardson. Genetic Algorithm with Sharing for Multimodal
Function Optimization. In Proceedings of the Second International Conference on
Genetic Algorithms, pages 41 — 49, 1987.

D. E. Goldberg and L.. Wang. Adaptive Niching via Coevolutionary Sharing. Tech-
nical report, Genetic Algorithm Lab, Urbana, University of Illinois, Illinois, August
1997. IIliIGAL Rep. 97007.

P. Grosso. Computer Simulations of Genetic Application: Parrallel Subcomponent
Interaction in a Multilocus Model. PhD thesis, University of Michigan, USA, 1985.

G. R. Harik. Finding Multimodal Solutions Using Restricted Tournament Selection.
Technical report, IlIliGAL, University of Illinois at Urbana-Champaign, Urbana,
[linois, 1995.



University of Pretoria etd - Brits, R (2002)

BIBLIOGRAPHY 130

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

J. Holland. Adapation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, Michigan, USA, 1975.

J. Horn. The nature of niching: Genetic algorithms and the evolution of optimal,
cooperative populations. PhD thesis, Urbana, University of Illinois, Illinois, Genetic
Algorithm Lab, 1997.

X. Hu and R. Eberhart. Multiobjective Optimization using Dynamic Neighbor-
hood Particle Swarm Optimization. In Proceedings of the IEEE World Congress on
Evolutionary Computation, pages 1677 — 1681, Honolulu, Hawaii, 12 - 17 May 2002.

X. Hu and R. C. Eberhart. Tracking Dynamic Systems with PSO: Where’s the
Cheese? In Proceedings of the Workshop on Particle Swarm Optimization, Purdue
School of Engineering and Technology, Indianapolis, USA, 2001.

X. Hu and R .C. Eberhart. Adaptive Particle Swarm Optimization: Detection and
Response to Dynamic Systems. In Proceedings of the IEEE World Congress on
Evolutionary Computation, pages 1666 — 1670, Honolulu, Hawaii, May 2002.

D. S. Huang and Z. Chi. Neural Networks with Problem Decomposition for Finding
Real Roots of Polynomials. In Proceedings of the IEEE International Joint Confer-
ence on Neural Networks, volume Addendum, pages 25 — 30, Washington DC, 15-19
July 2001.

D. S. Huang and Z. Chi. Solving Linear Simultaneous Equations by Constraining
Learning Neural Networks. In Proceedings of the IEEE International Joint Confer-
ence on Neural Networks, volume Addendum, pages 26 — 31, Washington DC, 15-19
July 2001.

K. Hwang and S. Cho. Evolving Diverse Hardwares Using Speciated Genetic Algo-
rithm. In Proceedings of the IEEE World Congress on Evolutionary Computation,
pages 437442, Honolulu, Hawaii, 12 - 17 May 2002.

A. Ismail and A. P. Engelbrecht. Training Product Units in Feedforward Neu-
ral Networks using Particle Swarm Optimization. Proceedings of the International

Conference on Artificial Intelligence, pages 36 — 40, 1999.



University of Pretoria etd - Brits, R (2002)

BIBLIOGRAPHY 131

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

C. Z. Janikow and Z. Michalewicz. An Experimental Comparison of Binary and
Floating Point Representations in Genetic Algorithms. In Proceedings of the 4th
International Conference on Genetic Algorithms, pages 31 — 36. Morgan Kaufmann,
San Diego, USA, 1991.

Y. Jin, T. Okabe, and B. Sendhoff. Dynamic Weighted Aggregation for Evolutionary
Multiobjective Optimization: Why Does It Work and How? In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO’2001), pages 1042 —
1049, San Francisco, USA, 2001.

J. Kennedy. Small Worlds and Mega-Minds: Effects of Neighborhood Topology on
Particle Swarm Performance. Proceedings of the IEEE Congress on Evolutionary
Computation, pages 1931 — 1938, July 1999.

J. Kennedy. Stereotyping: Improving Particle Swarm Performance with Cluster
Analysis. In Proceedings of the IEEE Congress on Fvolutionary Computation, pages
1507 — 1512, San Diego, USA, 2000.

J. Kennedy and R. C. Eberhart. Particle Swarm Optimization. In Proceedings of
the IEEE International Conference on Neural Networks, volume IV, pages 1942 —
1948, Perth, Australia, 1995.

J. Kennedy and R. C. Eberhart. A Discrete Binary Version of the Particle Swarm
Algorithm. In Proceedings of the Conference on Systems, Man and Cybernetics,
pages 4104 — 4109, 1997.

J. Kennedy and R. Mendes. Population Structure and Particle Swarm Performance.
In Proceedings of the IEEE World Congress on Evolutionary Computation, pages
1671 — 1676, Honolulu, Hawaii, May 2002.

J. Kennedy and W. M. Spears. Matching Algorithms to Problems: An Experimen-
tal Test of the Particle Swarm and some Genetic Algorithms on the Multimodal
Problem Generator. In Proceedings of the IEEE World Congress on Computational
Intelligence, pages 78 — 83, Achorage, Alaska, 1998.



University of Pretoria etd - Brits, R (2002)

BIBLIOGRAPHY 132

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

K. Kim and S. Cho. Evolving Speciated Checkers Players with Crowding Algorithm.
In Proceedings of the IEEE World Congress on Evolutionary Computation, pages
407 — 412, Honolulu, Hawaii, 12 - 17 May 2002.

J. D. Knowles and D. W. Corne. Approximating the Nondominated Front Using
the Pareto Archived Evolution Strategy. Evolutionary Computation, 8(2):149 — 172,
2000.

T. Krink, J. K. Vesterstrom, and J. Riget. Particle Swarm Optimization with Spatial
Particle Extension. In Proceedings of the IEEE World Congress on FEvolutionary
Computation, pages 1474 — 1479, Honolulu, Hawaii, 12 - 17 May 2002.

R. A. Krohling, H. Knidel, and Y. Shi. Solving Numerical Equations of Hydraulic
Problems Using Particle Swarm Optimization. In Proceedings of the IEEE World

Congress on Evolutionary Computation, pages 1688 — 1690, Honolulu, Hawaii, 12 -
17 May 2002.

E. C. Laskarski, K. E. Parsopoulos, and M. N. Vrahatis. Particle Swarm Opti-
mization for Integer Programming. In Proceedings of the IEEE World Congress on
Evolutionary Computation, pages 1582 — 1587, Honolulu, Hawaii, 12 - 17 May 2002.

E. C. Laskarski, K. E. Parsopoulos, and M. N. Vrahatis. Particle Swarm Opti-
mization for Minimax Problems. In Proceedings of the IEEE World Congress on
Evolutionary Computation, pages 1576 — 1581, Honolulu, Hawaii, 12 - 17 May 2002.

M. Lgvbjerg and T. Krink. Extending Particle Swarm Optimizers with Self-
Organized Criticality. In Proceedings of the IEEE World Congress on Evolutionary
Computation, pages 1588 — 1593, Honolulu, Hawaii, May 2002.

M. Lgvbjerg, T. K. Rasmussen, and T. Krink. Hybrid Particle Swarm Optimizer
with Breeding and Subpopulations. In Proceedings of the Genetic and Evolutionary
Computation Conference, volume 1, pages 469 — 476, San Fransisco, USA, July
2001.

S. W. Mahfoud. Niching Methods for Genetic Algorithms. PhD thesis, Genetic
Algorithm Lab, University of Illinois, Illinois, 1995. IIliGAL Rep. 95001.



University of Pretoria etd - Brits, R (2002)

BIBLIOGRAPHY 133

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

S.W. Mahfoud. A Comparison of Parallel and Sequential Niching Methods. In
Proceedings of the Sizth International Conference on Genetic Algorithms, pages 136
— 143, 1995.

E. Mayr. Animal Species and Evolution. Belknap, Cambridge, MA, 1963.

R. Mendes, P. Cortez, M. Rocha, and J. Neves. Particle Swarms for Feedforward
Neural Network Training. In Proceedings of the IEEE Joint Conference on Neural
Networks, pages 1895 — 1899, Honolulu, Hawaii, 12 — 17 May 2002.

0. J. Mengshoel and D. E. Goldberg. Probabilistic Crowding: Deterministic Crowd-
ing with Probabilistic Replacement. In Proceedings of the Genetic and Evolutionary
Computation Conference 1999, pages 409 — 416, San Fransisco, USA, Morgan Kauf-
mann, 1999.

B. L. Miller and M. J. Shaw. Genetic Algorithms with Dynamic Niche Sharing
for Multimodal Function Optimization. Technical report, Genetic Algorithm Lab,
Urbana, University of Illinois, Illinois, December 1995. IlliGAL Rep. 95010.

N. J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kaufmann Publish-
ers, Inc, 1998.

E. Ozcan and C. K. Mohan. Analysis of a Simple Particle Swarm Optimization
System. In Intelligent Engineering Systems Through Artificial Neural Networks,
volume 8, pages 253 — 258, 1998.

E. Ozcan and C. K. Mohan. Particle Swarm Optimization : Surfing the Waves.
In Proceedings of the International Congress on Evolutionary Computation, pages
1939 — 1944, Washington, USA, 1999.

U. Paquet. Training Support Vector Machines with Particle Swarms. Master’s
thesis, Department of Computer Science, University of Pretoria, Pretoria, South
Africa, 2002.

K. E. Parsopoulos, V. P. Plagianakos, G. D. Magoulas, and M. N. Vrahatis. Stretch-
ing Technique for Obtaining Global Minimizers Through Particle Swarm Optimiza-



University of Pretoria etd - Brits, R (2002)

BIBLIOGRAPHY 134

[72]

73]

[74]

[75]

[76]

[77]

78]

[79]

tion. In Proceedings of the Particle Swarm Optimization Workshop, pages 22 — 29,
Indianapolis, USA, 2001.

K. E. Parsopoulos and M. N. Vrahatis. Modification of the Particle Swarm Optimizer
for Locating all the Global Minima. In V. Kurkova, N.C. Steele, R. Neruda, and
M. Karny, editors, Artificial Neural Networks and Genetic Algorithms, pages 324 —
327. Springer, 2001.

K. E. Parsopoulos and M. N. Vrahatis. Particle Swarm Optimization in Noisy and
Continuously Changing Environments. In M. H. Hamza, editor, Artificial Intelli-
gence and Soft Computing, pages 289 — 294. TASTED/ACTA, Anaheim, USA, 2001.

K. E. Parsopoulos and M. N. Vrahatis. Particle Swarm Optimization Method for
Constrained Optimization. In P. Sincak, J. Vascak, V. Knasnicka, and J. Pospichal,

editors, Intelligent Technologies — Theory and Applications: New Trends in Intelli-
gent Technologies, volume 76, pages 214 — 220. IOS Press, 2002.

K. E. Parsopoulos and M. N. Vrahatis. Particle Swarm Optimization Method in
Multiobjective Problems. In Proceedings of the 2002 ACM Symposium on Applied
Computing (SAC 2002), pages 603 — 607, 2002.

M. A. Potter. The Design and Analysis of a Computational Model of Cooperative
Coevolution. PhD thesis, George Mason University, Fairfax, Virginia, USA, 1997.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press, second
edition, 1992.

W. C. Rheinboldt. Methods for Solving Systems of Nonlinear Equations. Society
for Industrial & Applied Mathematics, second edition, 1998.

J. D. Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms. pages 93 — 100, 1985.



University of Pretoria etd - Brits, R (2002)
BIBLIOGRAPHY 135

[80] Y. Shi and R. C. Eberhart. A Modified Particle Swarm Optimizer. In Proceed-
ings of the IEEE World Conference on Computational Intelligence, pages 69 — 73,
Anchorage, Alaska, May 1998.

[81] Y. Shi and R. C. Eberhart. Fuzzy Adaptive Particle Swarm Optimization. In
Proceedings of the 2001 Congress on Evolutionary Computation, pages 101 — 106,
Seoul, Korea, 27-30 May 2001.

[82] Y. Shi and R. C. Eberhart. Particle Swarm Optimization with Fuzzy Adaptive
Inertia Weight. In Proceedings of the Workshop on Particle Swarm Optimization,
Purdue School of Engineering and Technology, Indianapolis, USA, 2001.

[83] Y. Shi and R. A. Krohling. Co-evolutionary Particle Swarm Optimization to Solve
min-max Problems. In Proceedings of the IEEE World Congress on Evolutionary
Computation, pages 1682 — 1687, Honolulu, Hawaii, 12 - 17 May 2002.

[84] W. M. Spears. Simple Subpopulation Schemes. In Proceedings of the Evolutionary
Programming Conference, pages 296 — 307, 1994.

[85] P. N. Suganthan. Particle Swarm Optimizer with Neighborhood Operator. Proceed-
ings of the IEEE Congress on Evolutionary Computation, pages 1958 — 1961, July
1999.

[86] E. Thiémard. Economic Generation of Low-Discrepancy Sequences with a b-ary
Gray Code. Department of Mathematics, Ecole Polytechnique Fédérale de Lau-

sanne, Lausanne, Switzerland.

[87] F. van den Bergh. An Analysis of Particle Swarm Optimizers. PhD thesis, Depart-

ment of Computer Science, University of Pretoria, Pretoria, South Africa, 2002.

[88] F. van den Bergh and A. P. Engelbrecht. Cooperative Learning in Neural Networks
using Particle Swarm Optimizers. South African Computer Journal, 26:84 — 90,
November 2000.

[89] F. van den Bergh and A. P. Engelbrecht. Training Product Unit Networks using

Cooperative Particle Swarm Optimizers. In Proceedings of the IEEE International



University of Pretoria etd - Brits, R (2002)
BIBLIOGRAPHY 136

Joint Conference on Neural Networks, pages 126 — 132, Washington DC, USA, July
2001.

[90] F. van den Bergh and A. P. Engelbrecht. A New Locally Convergent Particle Swarm
Optimizer. Accepted for IEEE Conference on Systems, Man and Cybernetics, Oc-
tober 2002.

[91] J. S. Vesterstrom, J. Riqet, and T. Krink. Division of Labor in Particle Swarm
Optimization. In Proceedings of the IEEFE World World Congress on Evolutionary
Computation, pages 1570 — 1575, Honolulu, Hawaii, May 2002.



University of Pretoria etd - Brits, R (2002)

Appendix A
Derived Publications

This appendix lists all the papers that have been published, or are currently under review,

that were derived from work done in this thesis.

1. R. Brits, A.P. Engelbrecht and F. van den Bergh. Solving Systems of Unconstrained
Equations using Particle Swarm Optimization. IEEFE International Conference on

Systems, Man and Cybernetics, Hammamet, Tunisia, October 2002.

2. R. Brits, A.P. Engelbrecht and F. van den Bergh. A Niching Particle Swarm
Optimizer. Conference on Simulated Evolution and Learning, Singapore, November
2002.

3. R. Brits, A.P. Engelbrecht and F. van den Bergh. Particle Swarm Niching. Sub-

mitted to IEEE Transactions on Evolutionary Computation.

4. R. Brits, A.P. Engelbrecht and F. van den Bergh. Scalability of Niche PSO. Sub-
mitted to IEEE Swarm Intelligence Symposium 2003.

137



