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Chapter 6

A Comparative Analysis of Niching

Techniques

This chapter presents an empirical comparison between the newly introduced nbest and

NichePSO algorithms and two existing GA niching techniques.

6.1 Introduction

A plethora of evolutionary niching and speciation techniques are in existence. Chapter
2 presented a summary of some of the more well-known variations. All the presented
techniques can be categorized as being either sequential or parallel niching techniques.
Sequential niching locates niches in serialized runs of the same algorithm. Each run
of the algorithm that successfully locates a niche/solution, modifies the fitness function
to keep subsequent runs from unnecessarily duplicating search efforts. Parallel niching
implements measures to concurrently identify and maintain niches (see section 3.2 for a
more complete discussion). Both the nbest and NichePSO algorithms, introduced in the

previous chapters, are parallel niching techniques. The nbest algorithm uses
e spatial particle neighborhoods and
e an alternative formulation of the fitness function

to concurrently find and maintain niches, while NichePSO uses subswarms.
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The introduction of new algorithms in a research field necessitates a comparative
analysis to determine whether they offer an advantage, or can be considered as alter-
natives to existing techniques. Since no existing, unique niching techniques exist in the
PSO field, such a study would not be possible. The objective function stretching opti-
mizer introduced by Parsopoulos et al is consciously excluded here, for reasons set out
in section 3.4. Consequently, it seems appropriate to compare the new PSO techniques
to well-known GA based niching techniques. It should be noted that the goal of this
study was to develop new, unique PSO based solutions to niching problems. A number
of authors have undertaken studies where existing evolutionary optimization approaches
were re-factored for PSOs. As was found in chapter 3, this was not possible for GA
niching techniques. They cannot be directly mapped to the PSO, due to differences in
the behavior of the GA and PSO. These differences were analyzed in section 3.5. It
was therefore necessary to develop techniques specifically suited to the dynamics of the
PSO. In the rest of this chapter, a comparison is presented between PSO and GA based

niching techniques.

6.2 The Algorithms

In order to form a general base for comparison, the PSO niching algorithms are compared
to both a

e sequential, and a
e parallel GA niching technique.

As an example of sequential niching, Beasley et al's sequential niching (SN) technique,
described in section 3.3.3, is used. SN uses repeated runs of a normal generational genetic
algorithm to locate multiple solutions [4]. After each run of a simple GA, the fitness
function is adapted to reflect the position of the recently located solution. Subsequent
runs of the GA with the modified fitness function avoid areas in the search space where
solutions have already been found, forcing the optimizer to explore unknown sections of

the search space. SN has been criticized, the biggest concern being that the derating
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modifications made to the fitness function may conceal other optima [62]. Never the
less, SN is the only sequential GA niching technique.

As a parallel niching technique, deterministic crowding (DC), presented in section
3.3.5 is used. DC is a replacement strategy that maintains several sets of similar indi-
viduals over a number of generations [61]. DC’s custom selection policy only replaces
offspring in a next generation when they perform better (fitness-wise) than their parents.
A phenotypic similarity metric is used to quantify similarity between parents and off-
spring. As a parallel niching technique, DC is preferred over the more well-known fitness
sharing [32], as it does not directly modify the fitness evaluation, i.e. it is not an explicit

niching technique such as SN.

6.3 Experimental Setup

6.3.1 Test Problems

To test the different niching techniques, several functions presented in previous chapters
were used. The following systems of equations, because of their irregular spacing of

maxima, were used:

e System S3, defined in equation (4.15) on page 70, illustrated in figure 4.3.

e System S4, defined in equation (4.13) on page 68, illustrated in figure 4.2.

e System S5, defined in equation (4.21) on page 74, illustrated in figure 4.4(b).
The following multimodal functions, defined in chapter 5, are used (see page 95):

e Function F1, defined in equation (5.6), illustrated in figure 5.3(a).

Function F2, defined in equation (5.7), illustrated in figure 5.3(b).

Function F3, defined in equation (5.8), illustrated in figure 5.3(c).

Function F4, defined in equation (5.9), illustrated in figure 5.3(d).

Function F5, defined in equation (5.10), illustrated in figure 5.4.
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6.3.2 Parameter Settings

For each of the nbest, NichePSO, SN and DC algorithms, 30 simulations were performed
on each of the test problems outlined in section 6.3.1. The following sections describe

GA and PSO parameter settings respectively.

GA Setup

For all experiments, populations consisting of 20 individuals were used. For Beasley et

al’s SN algorithm, the following settings, as used in [4], were chosen:

Parameter ‘ Value
Pe 0.9
Dm 0.01

where p. and p,, signify the probability of whether the crossover and mutation operators
are applied. A single-point crossover operator was used. As selection operator, stochastic
universal sampling (SUS) is used, as suggested in [62]. One-dimensional problems used
a 30-bit chromosome representation. For two-dimensional problems, two chromosomes
of 15-bits each were used. The halting window approach described in [4], was used to
terminate the algorithm. The approach monitors the average fitness of a population
at each generation. If the average fitness has not improved on the fitness reported
h generations earlier, the algorithm is terminated. For all runs of the SN algorithm, a
halting window of h = 20 was used. Apart from this control setting, a maximum number
of 2000 iterations was allowed. To determine the niche radius (see section 3.3.3), the
method suggested by Beasley et al was used (originally suggested by Deb [20]). For a

d-dimensional problem with [ optima, the niche radius r was calculated as

Vid
r = —
2><\d/Z

This technique assumes that fitness function parameters are normalized to [0,1]. An

(6.1)

exponential derating function G,
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was used (given in section 3.3.3, repeated here for clarity); x is an individual’s phenotypic

representation, x* represents the best individual located using a particular generation’s

phenotype, and || - || is the Euclidean distance defined in each problem’s search space.
Mahfoud’s DC uses an internal selection scheme (see section 3.3.5). Crossover and

mutation probabilities were set at

Parameter ‘ Value
De 1.0
Pm 0.01

since the DC algorithm favors a very lower mutation probability and a high crossover
probability [61]. DC also used a halting window-based termination criterion of h = 20,

and a maximum number of generations of g,,., = 2000.

PSO Setup

For all experiments, swarms consisting of 20 particles were used. A halting window ap-
proach, similar to that presented above was implemented, assuming that for NichePSO,
the halting window conditions were applied to all swarms, and the main swarm was
empty. The inertia weight was linearly scaled from 0.7 to 0.1, over a maximum of 2000
iterations of the respective algorithms. Coefficients ¢; and ¢y were both set to 1.2. These
parameter settings allow particles to gradually decrease the magnitude of velocity and
position updates, at the same time ensuring that they follow convergent trajectories [87].

Further parameters were as given in table 5.1.

6.4 Results and Discussion

Tables 6.1 and 6.2 quantify the performance of the tested niching techniques. In both
tables, entries marked with a ‘*’ indicate that experiments on the relevant test problem
and algorithm combination were not carried out. Marked entries apply specifically to the
situation where the nbest algorithm was used to find multiple solutions to problems with
optima of varying fitness. If only fitness is considered on problems such as function F2

and F4 (see figures 5.7 and 5.9), topological neighborhoods of particles overlap. Particles
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are therefore drawn to solutions with better fitness, and only converge on solutions with

optimal fitness.

6.4.1 Computational Cost

Table 6.1 compares the computational cost of each of the niching techniques in terms
of the number of fitness function evaluations required to converge. Note that in values
reported in the format a+b, a refers to a mean calculated over all simulations, and b refers
to the standard deviation calculated over the same values. The given results represent
the actual number of fitness function evaluations that took place — distance calculations
at each iteration of the respective algorithms were not factored in. This fact brings an
interesting point forward: DC does not compare each individual in the population to
every other population member at each generation of the algorithm: Offspring are only
compared to their parents. The net effect of this is that DC requires a consistently higher
number of fitness function evaluations. The following comments can be made based on

the results shown in table 6.1:

e SN required fewer evaluations on the systems of equations in problems S3, S4 and
S5.

e Although SN generally required a low number of fitness function evaluations, it
should be taken into consideration that the basis of the SN algorithm necessitates
the calculation of a derated fitness at each generation, that becomes more complex

as the number of generations increases.

e DC consistently required more fitness function evaluations than the other algo-

rithms.

e When comparing nbest and NichePSO, it is clear that NichePSO required a sub-
stantially smaller number of fitness function evaluations. In addition to its quota
of fitness function evaluations, nbest also required the calculation of a matrix rep-

resenting inter-particle distances, at each iteration of the algorithm.

e Both nbest and NichePSO consistently require less than the average number of

fitness function evaluations to converge.



Problem SN DC nbest NichePSO Average
S3 1840.73 £ 86.43 | 15087.67 4+ 4197.35 || 8493.00 £ 413.27 | 2554.47 + 228.22 | 6993.97
S4 1193.47 £ 96.30 | 17554.33 4+ 4656.96 || 6934.12 £ 542.33 | 3965.50 + 353.26 || 7411.86
S5 1926.60 + 95.21 | 13816.00 4 4224.50 || 7018.87 + 670.09 | 2704.20 + 134.76 | 6366.42
F1 4102.07 £ 576.58 | 14647.33 = 4612.15 || 4769.00 4+ 44.90 | 2371.86 £ 109.41 6472.57
F2 3504.80 4+ 463.20 | 13052.33 4+ 2506.65 * 2934.00 4 475.44 || 6497.04
F3 4140.97 + 553.93 | 13930.00 + 3284.38 || 4789.00 £ 51.35 | 2403.73 £ 194.94 || 6315.93
F4 3464.07 + 286.97 | 13929.33 4+ 2996.15 * 2820.03 +517.09 | 6737.81
F5 3423.33 & 402.13 | 14295.67 £ 3407.82 || 5007.67 £ 562.14 | 2151.47 + 200.42 || 6219.54

Average 2949.51 14539.10 6168.61 2738.16

Table 6.1: Average number of fitness function evaluations required to converge for each niching algorithm. Entries

marked with a ‘“*’ indicate that experiments were not carried out for the relevant problem and algorithm.
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e Overall, NichePSO required the least number of fitness function evaluations to

converge.

6.4.2 Performance Consistency

Table 6.2 expresses as percentages the performance consistency of the tested niching
techniques. ‘Performance consistency’ reflects each of the algorithm’s ability to consis-
tently locate all solutions to each of the optimization problems. All the tested techniques
sufficiently maintained solutions sets. The following conclusions can be drawn from the

results reported in table 6.2:

e Results for the SN algorithm compares well to that reported in [4]. The algorithm
did however not perform as well on systems of equations, and generally performed

worse than the average.

e Regardless of its higher computational requirement, DC did not generally yield

superior performance.

e Although still better than SN, NichePSO performed equal to or worse than the

average performance on the systems of equations in problems S3, S4 and S5.

e The nbest algorithm appears to have exhibited the most consistent performance

over all the test problems (keeping in mind that it was not applied to F2 and F4).

6.5 Conclusion

This chapter presented an empirical comparison between the performances of the newly
introduced PSO niching algorithms, and two well-known GA based techniques. Section
6.2 gave a brief overview of the algorithms. The test functions presented in section 6.3.1
were all well-known functions that have been used in this thesis and other literature for
evaluating the effectiveness of niching techniques. Section 6.4 analyzed the experimental
results obtained. It was established that both nbest and NichePSO are successful nich-
ing algorithms, and their performance, both in terms of computational complexity and

performance consistency compare well to existing niching techniques.



Problem | Sequential Niching | Deterministic Crowding || nbest | NichePSO | Average
S3 76% 93% 100% 87% 89.00%
S4 66% 100% 100% 80% 86.50%
S5 83% 87% 100% 90% 90.00%
F1 100% 100% 93% 100% 98.25%
F2 83% 93% * 93% 89.67%
F3 100% 90% 93% 100% 95.75%
F4 93% 90% * 93% 92.00%
F5 86% 90% 100% 100% 94.00%

Average 85.88% 92.86% 97.67% 92.88%

Table 6.2: The consistency with which each of the techniques managed to locate a complete set of solutions for
each of the test problems. Entries marked with a ‘*’ indicate that experiments were not carried out for the relevant

problem and algorithm.
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