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Chapter 5

NichePSO, a Multi-Swarm

Optimizer

This chapter presents a PSO technique that solves multimodal optimization problems with
the concurrent optimization power of multiple swarms. The technique, NichePSO, extends
the inherent unimodal nature of the standard PSO approach by growing multiple swarms
from an initial particle population. The initial particle swarm is split into smaller swarms
as niches are detected. Upon termination of the algorithm, each subswarm represents one
of the potential solutions to the problem. Experimental results show that NichePSO can
successfully locate all optima on a set of test functions. The influence of control parameters,
including the relationship between the swarm size and the number of solutions (niches), as

well as the scalability of the algorithm is investigated.

5.1 Introduction

This chapter presents the niching particle swarm optimization algorithm, NichePSO.
NichePSO is aimed at locating multiple solutions to multimodal problems through the
use of multiple, independent subswarms. The nbest optimizer presented in the previous
chapter sports a drawback: It cannot properly maintain local optima. Overlap in nbest
particle neighborhoods forces the algorithm to always prefer solutions that have better

fitness. Consequently, when a local optimum occurs relatively close to another, better
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optimum, the definition of a neighborhood will always prefer better solutions. The
NichePSO algorithm overcomes this limitation through the use of multiple subswarms.
The use of subswarms, or subpopulations, as part of a population based optimization

algorithm, is not a new idea. It has been applied in the GA optimization field, both as a
- diversity improvement technique [6], and as
- a premature convergence avoidance technique [84].

For the purposes of this thesis, subpopulations/subswarms imply

A bona-fide segmentation of a large population of individuals/particles into
smaller groupings. Each subswarm can function as a stable, individual swarm

entity, evolving on its own, independent of individuals in other swarms.

The use of subswarms has been adopted early on in the development of the PSO. Lgvbjerg
et al introduced a diversity improvement technique that partitions a particle swarm
into a number of different subpopulations [60]. Each subpopulation is responsible for
maintaining its own best known, or gbest, solution. A crossover operator is used to share
information about global solutions (see section 2.4.3). The crossover operator may be

applied to particles from
- a single swarm, or
- particles originating from different swarms.

The algorithm selects particles on which crossover is to be performed randomly. Per-
forming crossover between particles from the same swarm leads to better solutions and
consequently faster convergence within a particular swarm. Crossover between particles
from different swarms facilitates inter-population communication that eventually leads
to a single global solution. Inter-swarm sharing of information is not conducive to the
formation of subpopulations around different potential solutions. All swarms will even-
tually gravitate towards a single solution. Performing crossover in the same swarm to
maintain a diverse ‘local’ record of good solutions reminds strongly of the goals of GA
crowding techniques. Crowding techniques replace individuals in a population with simi-

lar individuals in a next generation (see section 3.3.4). It should however be noted that
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the goal of the research presented by Lovbjerg et al was not to maintain multiple solu-
tions and to perform niching, but to improve the quality of a global solution. Typically,
this approach will be most useful in a deceptive problem domain, where particles may
become trapped in suboptimal solutions. By performing crossover on randomly selected
particles, particles fooled by a suboptimal solution can be moved closer to a better, or
global best, solution.

In the rest of this chapter, the NichePSO algorithm is presented and motivated. A
number of newly introduced niching parameters are analyzed and empirical results are

presented that motivate the validity of NichePSO as a niching technique.

5.2 The Niching Particle Swarm Optimization Algo-

rithm

The nbest optimizer was initially developed as a technique to find and maintain multiple
points of intersection in systems of equations (SEs). Based on the reformulation of the
fitness function presented in the previous chapter, points of intersection in a SEs will
always have equal, optimal fitness in a search space. When local optima, i.e. points
of suboptimal fitness exist, the nbest algorithm’s neighborhood definition will keep it
from locating these solutions. Although the neighborhood formulation introduces a bias
towards a local optimum in a search space in the velocity update equation, neighborhoods
for individual particles may still overlap. Consequently, if a suboptimal, local solution
exists close to a solution that may yield a higher fitness, the neighborhood update will
lead to an update, biased towards the better solution (see figure 5.1). NichePSO, through
the use of subswarms and two control parameters, ¢ and u, overcomes the shortcomings
of the nbest algorithm.

NichePSO starts by uniformly distributing particles throughout the search space
of an optimization problem. The initial swarm of particles is referred to as the main
swarm. As particles traverse the search space, they invariably move towards positions
that have attractive fitness. A potential solution is identified by monitoring the change
in a particle’s fitness over a number of training iterations. When such a solution is

identified, a new subswarm is created by removing from the main swarm the particle
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Figure 5.1: f(x) = In(z)sin®(57x). Note that the function consists of multiple rising
peaks located close to each other. A particle close to peak A may be influenced to rather

move to peak B based on the influence of its neighborhood.

that detected the potential solution and creating a subswarm from it. The main swarm
thus shrinks as subswarms are grown from it. The algorithm is considered to have
converged when subswarms no longer improve on the solutions that they represent. The
NichePSO algorithm is summarized in figure 5.2.

In the following sections, each step of the algorithm is discussed in detail.

5.2.1 Initialization

The general location of potential solutions in a search space may not always be known in
advance. Therefore, it is a good policy to distribute particles uniformly throughout the
search space before learning commences. To ensure a uniform distribution, NichePSO
uses Faure-sequences to generate initial particle positions. An efficient way of calculating
Faure-sequences is given in [86]. Other pseudo-random uniform number generators, such

as Sobol-sequences [77], may also be used.
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1. Initialize the main particle swarm.

2. Train the main swarm particles using one iteration of the cognition only model.
3. Update the fitness of each main swarm particle.

4. For each subswarm:

(a) Train subswarm particles using one iteration of the GCPSO algorithm.
(b) Update each particle’s fitness.

(c) Update swarm radius
5. If possible, merge subswarms
6. Allow subswarms to absorb any particles from the main swarm that moved into it.

7. Search the main swarm for any particle that meets the partitioning criteria. If any

is found, create a new subswarm with this particle and its closest neighbor.

8. Repeat from 2 until stopping criteria are met.

Figure 5.2: NichePSO Algorithm
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5.2.2 Main Swarm Training

In the nbest algorithm, overlapping particle neighborhoods discourage convergence on
local optima, such as the ascending maxima shown in figure 5.1. To this end, NichePSO
uses a technique that frees a particle from the influence of a neighborhood or global best
term in the velocity update equation. When a particle considers only its own ‘history
and experiences’, in the form of a personal best, it can convergence on an optimum
that does not have global optimal fitness, as it is not drawn to a position in the search
space that has better fitness as a result of the traversal of another particle. This search
approach has been previously investigated by Kennedy [47]. It was given in equation

(2.20), repeated here for clarity:
Vi (t+1) = wui(t) + ciry ;i (8) (v (1) — i,3(2)) (5.1)

Kennedy referred to update equation (5.1) as the cognition only model, in recognition
of the fact that only a conscience factor, in the form of the personal best y;, is used
in the update. No social information, such as the global best solution in the gbest and
lbest algorithms, will influence position updates. This arrangement allows each particle

to perform a local search.

5.2.3 Identification of Niches

A fundamental question when searching for different niches, is how to identify them. The
niching algorithm proposed by Parsopoulos et al (see section 3.4) uses a threshold value
€, such that when a particle ’s fitness at a position x; becomes less than the threshold,
i.e. when
f(x;) <e

for a minimization problem, the particle is removed from the swarm and labelled as
a potential global solution. Immediately thereafter, the objective function’s landscape
is stretched to avoid additional and unnecessary exploration of this area surrounding
the discovered solution. If the isolated particle’s fitness is not close to a desired level,
the solution can be refined by searching the surrounding function landscape with the
addition of more particles. This approach proved to be effective when considering Par-

sopoulos et al’s results. The threshold parameter € is however subject to fine tuning,
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and locating good solutions depends strongly on the objective function’s landscape and
dimensionality.

To avoid the use of this tunable parameter, NichePSO uses a similar approach that
monitors changes in the fitness of a particle. If a particle’s fitness shows little change
over a number of iterations of the learning algorithm, a subswarm is created with the
particle and its closest topological neighbor. More formally, the standard deviation in
particle ¢’s fitness, o;, is tracked over a number of iterations, e,, where e, was set to 3
in the experiments conducted in section 5.3. When o; < §, a subswarm may be created
with particle 7 and its closest neighbor. To avoid problem dependence, o; is normalized
according to the range of the search space, commonly referred to as ,,;,, and ., in
PSO literature. This approach can find local minima, for which o; < ¢ holds. If local
minima are undesired, the fitness of a particle can be compared to a threshold to ensure
that the solution meets a minimum fitness criterion.

The ‘closest neighbor’ to particle ¢’s position x; is simply the particle ¢ with position
X., where

¢ = arg min Jx; - x;[}

with 1 < 1,5 < s, i # j and s is the size of the main swarm. Subswarms are optimized
independent from the main swarm, in the same search space. The following sections
present measures that are put into place to ensure that search efforts are not duplicated

on the same solutions.

5.2.4 Absorption of Particles into a Subswarm

When a particle is still a member of the main swarm, it has no knowledge of subswarms
that may have been created during the execution of the NichePSO learning algorithm.
It is therefore quite likely that a particle may venture into an area of the search space
that is being independently optimized by a subswarm. Such particles are merged with

the corresponding subswarm, based on the following suppositions:

e Inclusion of a particle that traverses the search space of an existing subswarm may
expand the diversity of the subswarm, thereby more rapidly leading to solutions
with better fitness.
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e An individual particle moving towards a solution on which a subswarm is working,
will make much slower progress than what would have been the case had social
information been available to ensure that position updates move towards the par-

ticle’s known favorable solution.

To facilitate merging, particles are absorbed into a subswarm when they move ‘into’ the

subswarm. That is, a particle ¢ will be absorbed into a subswarm S; when
|Ixi = ¥s;]| < R (5.2)
where R; signifies the radius of subswarm S;, and is defined as
Rj = max {[|ys; — xs;,[|} (5.3)

Xs;, represents all particles in S; subject to i # g, ¥, represents the global best particle
in S;. Generally, subswarms have small radii, due to the homogeneous nature of the
positions represented by their particles. Therefore, when a particle i moves into the
hyper-sphere defined by a subswarm’s global best particle and radius, it is unlikely that
it would move away from the possible solution maintained by the subswarm. If the
absorption step was absent from the algorithm, ¢ will first have to be considered for a
subswarm and successfully made part of one, before it can merge with S;. If no other
particles occur in the same portion of the search space, a subswarm containing 7 will
never be created, and the potential solution it represents will never be considered. If
1 is merged with a particle in a similar situation, but that occurs in a vastly different

position in the search space, the algorithm’s convergence would be impaired.

5.2.5 Merging Subswarms

A subswarm is created by removing a particle that represents an acceptable candidate
solution from the main swarm, as well as a particle that lies closest to it in the search
space, and to group these into a subswarm. From this rule, it follows that particles
in subswarms all represent similar solutions. This can lead to subswarms with radii
that are very small, and even radii approximating zero. Consequently, when a particle

approaches a potential solution, it may not necessarily be absorbed into a subswarm that
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is already optimizing the particular solution. If the particle has an acceptable fitness,
another subswarm will be created on its position in the search space. If two solutions are
very similar, a single subswarm will be created to optimize both solutions. Eventually,
only one of these solutions will be found. This introduces a dilemma, as multiple swarms
will attempt to optimize the same solution. To alleviate this, subswarms may be merged
when the hyper-space defined by their particle positions and radii intersect in the search
space. When swarms are merged, the newly created swarm benefits from the extensive
social information present in the parent swarms. Accordingly, superfluous local traversal

of the search space is avoided. Formally, two subswarms S;; and S intersect, when
||y5j1 - ijz“ < (Rﬂ + RJQ) (54)

When R; = 0 holds for subswarm S;, all particles in S; represent the same candidate
solution. If this condition holds for both swarms under consideration, equation (5.4) fails
to detect the presence of multiple subswarms in the same niche. Consequently, when
two swarms, S;; and Sj» do not satisfy equation (5.4), because R;; = Rjs = 0', they can
be merged when

||ij1 - ijZH < pu (55)

As with 6, ¢ can be an appreciably small number, such as 1073, to ensure that two
swarms are sufficiently similar. To avoid having to tune p over the range of the search
space under consideration, ||ys,, — ¥s,,|| is normalized to the interval [0, 1]. S;; and Sj,
are merged by creating a new subswarm consisting of all S;; and Sj,’s particles. The
influence of different values of y, and an upper bound on it, are discussed in section
5.4.1.

5.2.6 The GCPSO Algorithm

The GCPSO algorithm was presented and discussed in section 2.7.1. The subswarm
creation technique presented in section 5.2.5 always yields swarms that initially consist

of two particles. Training such a small swarm with the gbest algorithm, especially when

1Since position updates in PSO is a stochastic process, it is practically safer to consider the situation

where Rj; ~ 0 and Rj» =~ 0.
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its particles are topologically highly similar, may lead to swarm stagnation, forcing the
subswarm to convergence on a suboptimal solution. GCPSO puts measures in place
that ensure that a swarm does not stagnate. For a definition of what is meant by swarm
stagnation, as well as a rigorous analysis of why GCPSO is necessary, the reader is

referred to section 5.4.3.

5.2.7 Stopping Criteria

When each individual subswarm has located a solution and stably maintained it for a
number of training iterations, the NichePSO may be considered to have converged. The

following stopping criteria are implemented:

e Fach swarm must converge on a unique solution. Typically, a subswarm is con-
sidered to have converged when its global best solution’s fitness is either above
or below a threshold value, depending on whether the fitness function describes a
maximization or minimization problem. Fitness threshold criteria cannot however
detect acceptable solutions in a multimodal fitness function where local and global
maxima exist. Local maxima are never considered to be acceptable solutions, as
their fitness do not necessarily adhere to possibly strict threshold values. Any
algorithm that therefore depends solely on threshold values will fail to converge.
Therefore, the change in particle positions are tracked over a number of iterations.
If discernible change occurs in their positions, such as may be detected by consid-
ering their variance over a small number of training iterations, the subswarm may

be considered to have converged.

e The algorithm is stopped after a maximum number of training iterations.

5.3 Experimental Results

This section presents experimental results obtained on a set of well-known multimodal
functions. These functions have been extensively used in the testing of a number of
GA niching techniques [4, 32, 37, 61]. Test functions are defined in section 5.3.1, and

experimental results and a discussion thereof follows in section 5.3.2.
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5.3.1 Test Functions

NichePSO is tested on a number of multimodal functions, where the goal is to identify all
optima. These functions were originally introduced by Goldberg and Richardson to test
fitness sharing [32] and have also been used by Beasley et al to evaluate their sequential

niching algorithm [4]. Figure 5.3 illustrates functions F1 to F4, defined as:

Fl(r) = sin®(57x) (5.6)
F2(z) — (a?log(m(%‘)z) x sin® (5mz) (5.7)
F3(z) = sin®(5r(x¥* —0.05)) (5.8)
Fa(z) (e—ﬂog(?)X(’”o‘T%iS)Q) x sin® (57 (%4 — 0.05)) (5.9)

Functions F'1 and F'3 both have 5 maxima with a function value of 1.0. In F'1, maxima
are evenly spaced, while in /'3 maxima are unevenly spaced. In F'2 and F'4, local and
global peaks exist at the same x-positions as in F'1 and F'3, but their fitness magnitudes
decrease exponentially. Functions F'1 to F'4 are investigated in the range x € [0, 1]. For

each of the functions, maxima occur at the following = positions:

F1| 01| 03] 05| 07| 09
F21 01| 03] 05| 07| 09
F310.080.25|0.45| 0.68 | 0.93
F410.080.25|0.45] 0.68 | 0.93

Function F'5, the modified Himmelblau function (see figure 5.4), is defined as
F5(x,y) =200 — (2> +y — 11)> — (z + y* = 7)° (5.10)

F5 has 4 equal maxima with F5(z,y) = 200. Maxima are located at (—2.81,3.13),
(3.0,2.0), (3.58, —1.85) and (—3.78, —3.28).

5.3.2 Results

For each of the 5 test functions, 30 simulations were done with the NichePSO algorithm

with ¢; = ¢ = 1.2. The inertia weight w was scaled linearly from 0.7 to 0.1 over a
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Figure 5.3: NichePSO Test Functions
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Figure 5.4: The Himmelblau function

maximum of 2000 iterations of the NichePSO algorithm. A single NichePSO iteration is
defined as performing steps 2 to 8 in figure 5.2 once. A gradually decreasing inertia weight
lets particles make slower velocity and position updates, at the same time ensuring that
they follow convergent trajectories [87]. Table 5.1 reports NichePSO parameter settings,
as well as limits on the search space ranges of each test function. |S| denotes the initial
number of particles in the main swarm before any niche subswarms were created; y is the
subswarm merging threshold, and ¢ is the subswarm creation threshold. For functions
F'1 to F'4, a particle consists simply of a potential x value. For function F'5, a particle

represents an (x,y) position. NichePSO is evaluated according to
e Accuracy: Thus how close the discovered optima are to the actual solutions; and

e Success consistency: The proportion of the experiments that found all optima.



University of Pretoria etd - Brits, R (2002)

CHAPTER 5. NICHEPSO, A MULTI-SWARM OPTIMIZER 98
Function ) 1 IS| | Zmin | Tmaz = Vmaz
F1 0.0001 | 0.001 | 30 | 0.0 1.0
F2 0.0001 | 0.001 | 30 | 0.0 1.0
F3 0.0001 | 0.001 | 30 | 0.0 1.0
F4 0.0001 | 0.001 | 30 | 0.0 1.0
F5 0.0001 | 0.01 | 20 | -5.0 5.0

Table 5.1: NichePSO Parameter Settings

The parameter values for § and p presented in table 5.1 have been experimentally found
to be effective.

Table 5.2 reports the mean and standard deviation in fitness of all particles in all
subswarms. Fitness here is simply defined as the function value f(z) for each of the
test problems. Only global optima are considered (suboptimal solutions in F'2 and F4
are not taken into account). %Converged signifies the percentage of experiments that
successfully located all the maxima. NichePSO successfully located all global maxima
of all the functions tested. For functions F2 and F'4, NichePSO located the global
maximum in all cases, but did not find all local maxima for all simulations. This explains
the relatively large difference in fitness between functions F'1 and F'3, and functions F'2
and F'4.

Table 5.2: Performance Results

NichePSO
Function | Fitness | Deviation | % Converged
F1 7.68E —05 | 2.20E — 04 100%
F2 9.12F — 02 | 6.43F — 02 93%
F3 5.95F — 06 | 4.86E — 05 100%
F4 8.07TFE — 02 | 6.68F — 02 93%
F5 4.78F — 06 | 1.03E — 05 100%
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5.4 Analysis

Unimodal optimization techniques, such as the standard PSO and GAs, fail to locate
multiple solutions to multimodal problems because of their inherent unimodal optimiza-
tion nature. These algorithms need to be extended to facilitate niching and speciation
abstractions. NichePSO is no exception — although the essence of the original PSO is
retained, a number of extensions were made. The motivations and reasoning behind
these extensions are presented, justified and investigated in this section. The following

issues are considered:
e The algorithm’s sensitivity to the niching parameters, p and 6,
e the performance of GCPSO compared to gbest, and

e the relationship between the initial swarm size and the number of solutions in a

multimodal fitness function.

Finally, the scalability of NichePSO on highly multimodal functions are considered.

5.4.1 Sensitivity to Changes in p

Each subswarm created by the NichePSO algorithm can be seen as a hyper-sphere in the
search space. The hyper-sphere’s radius is determined by the Euclidean distance between
the swarm’s global best position and the particle in the swarm that lies furthest from it.
Two subswarms are merged when the two conceptual hyper-spheres that they represent
overlap. When all particles in a swarm have converged on a single solution, a swarm will

have an effective radius of zero. In such a situation, equation (5.4) fails to allow similar

Solutions involved | Distance between solutions
|A — BJ| 0.714
|IB —C|| 0.622
IIC — D 0.675
|A — D 0.493

Table 5.3: Normalized Inter-solution Distances for Function F'5
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swarms to be merged. Therefore, the use of the p parameter was introduced in equation
(5.5), to allow virtually identical swarms to be merged when they occupy positions
that are approximately similar. Large values of i allow swarms that settle on different
solutions, to merge. If two swarms that correctly represent different solutions are merged,
the newly created swarm eventually converges on only one of the possible solutions,
because of the subswarm optimization technique: The GCPSO algorithm searches for a
single solution.

Figures 5.5(a), 5.5(b) and 5.5(c) illustrate the effect that different p values have on
the convergence capabilities of NichePSO, tested on function F'5. Each particle in the
swarm is represented by a ‘e’. The position of each solution is indicated by a ‘+’, and
labelled by a letter of the alphabet.

The ‘goodness’ of a particle’s position can be determined by its proximity to the
indicated solutions. Table 5.3 presents the normalized distances between the known
solutions for function F'5. The symbols correspond to those used in figures 5.5(a), 5.5(b)
and 5.5(c). For p = 0.5, the NichePSO algorithm did not find all maxima for function
F5 (see figure 5.5(a)). From table 5.3, the normalized distance between solutions A
and D is 0.493. Swarms that represent solutions A and D were therefore merged, as
their inter-niche solution distance was less than the threshold value p. For p-values less
than 0.5, the algorithm successfully located all solutions (see for example figure 5.5(b)).
For extremely small p-values, NichePSO still successfully located all solutions, but not
all swarms that were positioned on the same solutions were merged (see solution D in
figure 5.5(c)). Swarms congregated around the solutions, but due to the ‘strict’ merging
threshold, they could only be merged when virtually identical.

Figures 5.6(a) and 5.6(b) plot the mean number of solutions found by NichePSO
for F'5, F'1 and F'3 respectively, for different p values. For both functions F'1 and F'3,
NichePSO located all solutions when p < 0.1 (see figure 5.6(b)).

From figure 5.6, an upper bound on p can be derived: p should not be greater than
the lowest inter-niche distance. The upper bound is similar to the assumptions made
about the inter-niche distance, 204, in Goldberg’s fitness sharing technique [32], and

the niche radius r in Beasley et al’s sequential niching technique [4].
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Figure 5.6: Number of solutions vs. p for functions F1 and F3

5.4.2 Sensitivity to Changes in J

To identify new potential solutions, the NichePSO algorithm monitors changes in the
particles of the main swarm. If any particle in the main swarm exhibits very little change
in its position over a number of iterations of the algorithm, the particle has approached
an optimum position. The optimum may be a local or global optimum. An effective
measure to detect small changes in a particle i’s position is to monitor the standard
deviation o; in particle ¢’s fitness over a number of training iterations, e,. When particle
¢’s variance in fitness becomes less than a threshold value d, a new subswarm is created
using particle 7 and its closest neighbor. A particle exhibits this behavior only when it is
approaching a solution and has a low velocity, or when it is oscillating around a potential
solution.

Different 0 values were tested for functions F'1, F'3 and F'5. Figure 5.7 plots the
mean number of fitness function evaluations over 30 simulations for each test function
against different ¢ settings. The number of fitness function evaluations are considered
to illustrate that some ¢ values increase the time required for the algorithm to converge.

A simulation was considered to have converged when all its subswarms had a fitness
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less than 10~*. For relatively large § values (§ > 0.1), NichePSO initially easily created
subswarms with any particle that remotely exhibited stagnating behavior. In this con-
text, ‘stagnating behavior’ indicates that a particle slowed down, and that it occupied
similar positions in the search space over consecutive algorithm iterations. For small ¢
values (0 < 0.1), particles were required to be more stationary before being considered
for a subswarm. A different interpretation is that particles had to be very sure of a
solution, before a subswarm was created. As indicated in figure 5.7, smaller § values
effected a slight increase in the number of fitness function evaluations required before
the algorithm converged. From figure 5.7 only broad general trends can be seen. Each
function appears to have an optimal § value. For the test functions, these values are
reported in table 5.4.

Figure 5.7 illustrates that NichePSO is not dependent on a finely tuned §. Fervent
subswarm creation with a ‘high’ § value will be negated by the merging of similar swarms.
Very small § values (§ < 0.01) leads to a minor performance penalty, but when compared
to NichePSO’s performance on higher ¢ values, the cost is low. Without exception,

NichePSO successfully located all solutions to the test functions for all o values used.

5.4.3 The Subswarm Optimization Technique

The NichePSO algorithm uses the GCPSO technique (refer to section 2.7.1) as subswarm
optimization technique. This section compares two implementations of NichePSO: one
using gbest and the other using GCPSO.

When considering the particle position update given in equation (2.12), it is clear
that when, for a particle 4, its position x;(¢) at time step ¢ becomes close to its personal

best position y;(¢) and the global best position y(¢), the velocity update for the next

Test Function | Optimal ¢
F1 0.01
F3 0.1
F'5 0.2

Table 5.4: Optimal 0 values
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Figure 5.7: Mean number of fitness function evaluations required for different § values

iteration of the algorithm, v;(¢ + 1) depends only on previous velocity values and the
inertia weight w. A small v;(¢ + 1) dictates negligible change in a particle’s position.
The particle will therefore stagnate on its current position; y(¢) does not necessarily
represent an optimum, but only the best solution found thus far by all particles in the
search space. When a particle swarm consists of only two particles, as is frequently
the case when subswarms are created with NichePSO, it may occur that these swarms
stagnate almost immediately. The situation can be symbolically explained as follows:
With two particles, p and ¢, in a newly created subswarm, one of these particles, say
p, immediately represents the global best position of the swarm. It also holds that the
personal best position y, of p is equal to the swarm’s global best. This is an obvious
assumption when considering that the global best position is identified as a personal
best position of one of the particles in the swarm. With x, =y, = ¥, particle p’s initial

velocity update is then effectively reduced to
vp(t+1) = wvy(t) (5.11)

Particle p’s initial traversal of the search space therefore solely depends on its velocity
vector v,(0) and the value of the inertia weight w. When a subswarm is created, each
particle in the new swarm not only retains its position vector, as this was the basis for
its selection, but also its velocity vector. This ensures that the particle continues on
its path to a local optimum. If the particle was already close to a potential solution,

the magnitude of its velocity vector would be a value close to zero. Particle p will
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therefore not easily move around in search space. Particle ¢ was chosen to be the second
particle in the subswarm, because it was the closest particle to p when the subswarm
was created. This implies, as stated above, that y, will always be considered over y,
for the swarm’s initial global position, and consequently, that x, will move towards x,.

When y, =y, =y, the following conditions will occur:
® X, X X,, and
e v, and v, will approach zero.

Under these circumstances, no further learning takes place, and exploration of the search
space is minimal. Again, it should be noted that the assumption that y represents
a global solution, cannot be made. To detect and avoid the described situation, the
GCPSO algorithm was used. GCPSO uses adapted velocity and position update equa-
tions for the global best particle in a swarm (in this case particle p), that allows efficient
local traversal of the search space. GCPSO avoids stagnation by moving the global best
particle, until an optimum has been located.

Table 5.5 presents experimental results that compare the performance of GCPSO
with gbest as subswarm optimization technique. The %Convergence column expresses
an average success rate for finding all solutions of a test function over 30 simulations.
It is clear that GCPSO was better suited towards maintaining niches than gbest. Ex-
perimental results obtained showed that for all functions, when using gbest, it frequently
occurred that subswarms were formed that consisted of only two particles. Such swarms
quickly stagnated on suboptimal locations. When a subswarm did not move, the prob-
ability that a particle in the main swarm would pass over it and be absorbed into the
subswarm, was severely reduced. A subswarm consisting of only two particles that have
stagnated on a suboptimal solution, is of no use. Results reported in table 5.5 ignored
two particle swarms and reports only whether an experiment did manage to locate the
actual solutions.

When several local and global optima exist in close proximity to each other in a
function, GCPSO tends to be biased towards the global optima. This behavior is dictated
by equations (2.16) and (2.15). GCPSO’s addition of a random factor to the swarm’s

best particle position may place the particle closer to a global solution, hence forcing the



University of Pretoria etd - Brits, R (2002)
CHAPTER 5. NICHEPSO, A MULTI-SWARM OPTIMIZER 106

Table 5.5: % Convergence of experiments for GCPSO and gbest

Test Problem | % Convergence: GCPSO | % Convergence: gbest
F1 100% 76%
2 93% 66%
F3 100% 83%
F4 93% 86%
F5 100% 86%

subswarm to move towards the global solution that may already be well-represented by
other subswarms. gbest does not exhibit this behavior, since the best particle’s position

is not modified.

5.4.4 Relationship between |S| and the Number of Solutions

This section investigates the relationship between the swarm size |S| and the number of
optima, a, in a multimodal function.

Figures 5.8 and 5.9 present experimental results that compare the number of solutions
found and the number of fitness function evaluations required for different swarm sizes.

Reported results are means over 30 simulations for functions F'1, F'3 and F'5. Trivially,

0 L L P S L L L 1
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Swarm Size

Figure 5.8: Relationship between different swarm sizes and the number of solutions

located.
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Figure 5.9: The mean number of fitness function evaluations required for different swarm

sizes.

NichePSO failed to locate all solutions when |S| < a. When |S| < 2a, NichePSO also did
not locate all the solutions. Since the subswarm creation technique needed two particles
to create a subswarm, intuitively, 2a would have been expected to be a sufficient swarm
size. This was however not the case. This situation can be clarified when considering
the distribution of particles, and the fact that velocity vectors were initialized randomly.
No ‘directional-bias’ is introduced by forcing velocity vectors to lead a particle into a
specific direction, towards a solution. If possible solutions are not known in advance, this
would not be possible. A particle could therefore be initialized close to a solution, but
an initial velocity value may cause it to move away from the possible solution towards
another solution, where it could eventually settle. For function F'1, when |S| > 25,
NichePSO successfully located and stably maintained all solutions. For all the tested
functions, a swarm of size |S| > a® managed to locate all solutions. It serves to confirm
the suspected relationship between the number of solutions in a multi-modal problem
and the swarm size. The relationship |S| > a? prescribes acceptable swarm sizes for the
test problems considered in this section. Results in section 5.4.5 show it is however not a
general condition. Equation (5.15) in section 5.4.5 presents a more general formulation
of the relationship between the number of solutions and swarm size.

Figure 5.9 shows the mean number of fitness function evaluations required for the

different swarm sizes used above. As expected, the number of fitness function evaluations
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steadily increases as the swarm size grows. The trend illustrates that the use of larger
swarms does not necessarily benefit the optimization process:

e Convergence speed is not improved.

e Smaller swarms, subject to the condition identified above, yield the same results

with lower complexity.

5.4.5 Scalability of NichePSO

The results obtained in section 5.3 showed NichePSO to effectively solve multimodal
optimization problems. This section presents empirical results that investigate the scal-
ability on NichePSO to massively multimodal domains. NichePSO was tested on the

following two multimodal functions:

1 n ) n 7
f(x) = (m;x> - (gcos <Z>> +1 (5.12)

= [#7 — 10cos (2m;) + 10] (5.13)

i=1

Griewank function:

Rastrigin function:

These functions are massively multimodal. Both contain a single global minimum at the
origin of the n-dimensional real-valued space in which they are defined. For each of the
functions, the number of minima increase exponentially, as can be seen from the one and
two dimensional plots given in figures 5.10 and 5.11. Figures 5.10(b) and 5.11(b) are
drawn inverted to more clearly illustrate the multimodal nature of the function surfaces.
The goal of the experiments were to ascertain whether increased dimensionality and large
numbers of optima degraded the performance of NichePSO.

For each of the test functions, 10 experiments were performed with the NichePSO
algorithm. Initial swarms sizes used were as listed in tables 5.6 and 5.7. For all experi-
ments, the inertia weight w was scaled linearly from 0.7 to 0.1 over a maximum of 2000

training iterations. The acceleration coefficients were set to ¢; = ¢ = 1.2. NichePSO
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Figure 5.10: Griewank function
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Dimensions (n) | Number of solutions (a) | Swarm Size (|S|) | % Accuracy

1 5 20 100.00%
2 25 100 100.00%
3 625 2500 94.75%

Table 5.6: Performance on the Griewank function

Dimensions (n) | Number of solutions (a) | Swarm Size (|S|) | % Accuracy

1 3 9 100.00%
2 9 36 100.00%
3 27 108 97.45%
4 81 324 97.08%
Y 243 972 92.00%

Table 5.7: Performance on the Rastrigin function

parameters were set as ;4 = 0.001 and § = 0.1. The Griewank function was investigated
in the range [—28,28]", and the Rastrigin function in the range [—3,3]".  Tables 5.6
and 5.7 present performance results of NichePSO on the two test functions.

The following observations can be made:

e Given the sharp increase in the number of optima, NichePSO gave consistent per-
formance, with slight degradation as the number of dimensions increased. It should
be taken into account that a linear increase in the number of dimensions is coupled

with an ezponential increase in the number of solutions.

e Using the exponential relationship |S| = a? suggested in section 5.4.4, is computa-
tionally very expensive. As an example, the 5-dimensional Rastrigin function with
243 solutions would require a swarm of 59,049 particles! As shown in tables 5.6
and 5.7, the relationship between the number of solutions (a) and the swarm size
(|S]) was kept at

|S| = 4a (5.14)

This relationship is computationally more tractable. It also shows that |S| = a?

does not represent a lower bound on the relationship between swarm size and num-
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ber of solutions. Consequently, the relationship between swarm size and number

of solutions would more likely be expressed as
|S| =c-al (5.15)

where ¢ is a constant, and 1 < ¢ < 2. Further experimentation would be required

to empirically estimate ideal values for ¢ and gq.

5.5 Conclusion

Swarm intelligence algorithms such as particle swarm optimizers, present a real and
viable alternative to existing numerical optimization techniques. Population based opti-
mization techniques can rapidly search large and convoluted search spaces and less likely
to be sensitive to suboptimal solutions. The standard gbest and lbest PSO approaches
share information about a best solution found by the swarm or a neighborhood of par-
ticles. Sharing this information introduces a bias in the swarm’s search, forcing it to
converge on a single solution. When the influence of a current best solution is removed,
each particle traverses the search space individually, using no expierential knowledge of
its peers.

With NichePSO, a subswarm is created when a possible solution is detected at a
particle’s location. The subswarm is then responsible for traversing the search space in
the vicinity of the potential solution to find an optimal location. This pseudo-memetic
approach is called NichePSO. Experimental results obtained on a set of multimodal
functions showed that NichePSO successfully located and maintained multiple optimal
solutions. Several parameter optimization issues, related to NichePSO, were addressed.
Suggestions were made as to potential values for tunable parameters. A scalability study
carried out on highly multimodal functions, commonly used in the study of PSO algo-
rithms, were used to demonstrate that NichePSO scales acceptably on high dimensional

problems.
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