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Chapter 4
The nbest Particle Swarm Optimizer

A new PSO-based algorithm, nbest, is developed in this chapter, specifically to solve systems
of unconstrained equations. It represents a first attempt at developing a PSO based nicher.
The standard gbest PSO is adapted by redefining the fitness function in order to locate
multiple solutions in one run of the algorithm. The nbest algorithm also introduces the
concept of shrinking particle neighborhoods. Results are presented that show the new nbest

PSO algorithm to be a promising niching algorithm.

4.1 Introduction

Many problems in science and engineering (e.g. robotics and signal processing) require
solving systems of linear equations. When solving systems of equations (SEs) off-line
with numerical methods, the goal is to find an optimal solution, without considering a
time constraint. However, if such a problem needs to be solved in real-time (e.g. in a
dynamic process controller) under time constraints, existing numerical methods may not
scale well. Efficient numerical techniques have been developed to solve SEs, but they are
not universally applicable [78]. Some systems, consisting of large numbers of equations
and unknowns, can only be solved approximately by utilizing heuristic methods.

The concept of a SEs is formalized and a number of traditional algebraic approaches
to solving them are discussed in section 4.1.1. Section 4.1.2 describes neural network

based approaches to solving SEs, and section 4.2 investigates the necessary representation
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of SEs for solving them with the PSO algorithm. Section 4.3 introduces the nbest PSO
algorithm, and empirical results in section 4.4 show the algorithm to be effective. Section

4.5 concludes this chapter with a study of the neighborhood size parameter.

4.1.1 Systems of Equations

Optimization of systems of equations is an important task in academic and commercial
environments. Finding an optimal solution to a problem can very often be simplified to
solving of a set of equations describing such a problem. Such systems can be linear or
nonlinear. A general formulation of a system of m linear equations in n unknowns is

given as [26]:

anry + apTy + 0+ AT, = b
211 + Qo2%9 + -+ +  QopX = b2
e (4.1)
Ap1T1 + ApaZe + 0+ QppTn = bm
In systems of linear equations, no component variable (xy, ..., z, in system (4.1)) has a

degree higher than one or lower than zero. The system can be written as a single matrix
equation

Ax=b (4.2)

where both x and b represent column vectors, with i’ dimensions represented by z; and
b; respectively. If an n-dimensional vector s can be found such that As = b, then s is a
solution to the system represented in equation (4.1). The symbol A represents an m x n

matrix. A system, such as in (4.1), can be written as an augmented matriz

aipr a2 . Qip by
Q21 Q22 **° Q2p by

(4.3)
Am1 Q2 = Omp bn

Some of the techniques discussed below focus specifically on this formulation of SEs.
Variables in systems of nonlinear equations may have degrees greater than one, or
contain transcendental functions such as trigonometric or logarithmic functions. There-

fore, instead of multiplying a variable z,., where r and ¢ respectively represent rows and
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columns in the system, with a constant a,., x,. is first passed through a function f,..
In keeping with the format introduced in system (4.1), a system of non-linear equations

can be written as

aifii(z) +  anfia(ze) + +  ainfin(zn) = b
a1 for (1) +  axnfol(xs) + +  awfon(zn) = by (4.4)
amlfml (-'L'l) + am?fm?(xQ) + -0+ amnfmn(xn) = bm

The functions f,. may be any linear or nonlinear transformation, such as f(z) = =,
f(z) = 22, f(z) = In(z), f(z) = sin(5x) or f(x) = /z (subscripts were dropped for
improved readability). The right hand side of f,. generally consists of a single term.
Algebraic methods to solve systems of equations exist, ranging from relatively simple
approaches for small linear systems, to computationally expensive techniques for large,
non-linear systems. The following sections present an overview of a number of the simpler

numerical techniques.

Graphing

Graphing is a visual approach to solving SEs. It works by simply plotting each equation
in a system, such as those described in systems (4.1) or (4.4). Solution(s) can be found
at positions where curves in the system intersect. Graphing’s accuracy unfortunately
depends on the practitioners ability to correctly draw equation graphs manually. Graph-
ing nonlinear functions, such as transcendental functions and functions in variables of a
degree higher than one, is a difficult task. If solutions are represented by fractions, accu-
racy will be lost because a user would be forced to guess an appropriate value. Systems
of a dimension higher than three can not be easily graphed and visualized in the human
brain. Typically, graphing a solution to a multidimensional problem entails elaborate
decomposition of the sets of equations into different dimensions. Each decomposed graph
will then be subject to the problems mentioned above. The use of graphing to solve SEs

is an option if an accurate graphing package is available.
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Substitution

The substitution technique, which is applicable to both linear and nonlinear SEs, finds
solutions by rewriting individual equations in terms of other equations in the system.
This technique is particularly useful for solving simple linear systems. The following
example explains this technique.

Consider a simple linear system of equations:

A 2z + 3y = 6

4.5
B: 2z + y = (45)

The system can be solved by rewriting equation B in system (4.5) as
C.z =5 — y

and substituting it in A, resulting in

D: 26—-y) + 3y = 6
= 10-2y + 3y = 6
= y = —4

The calculated y value is then substituted into equation A, allowing a solution for x to

be found, i.e.

E: 2z + 3(—4) = 6
= 2z — 12
= 2 = 18
= T = 9
x =9 and y = —4 then represents the system’s only solution.

Gauss-Jordan Elimination

A linear system can be quickly solved by rewriting it in a matrix format, such as in
equation (4.3), and manipulating its coefficients a,. by column and row operators. This
process can be demonstrated by rewriting system (4.5) in matrix notation, i.e.

2 3|6
[11 5] (46
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System (4.6) can be simplified and solved by applying row operators as follows:

0 1
5 0

3

—4
3

Ry — 2R,

4.7
P in (47)

where R; and R, designate the top and bottom rows in the (4.6) respectively. Matrix
(4.7) can be further simplified to

01
10

The process used to write SEs as matrices can be reversed to rewrite (4.8) as a SEs,

—4
9

Ry

3R, (4.8)

yielding
y = —4
= 9,

which is the solution to the system.

Cramer’s Rule

Cramer’s Rule uses matrix determinants to solve systems of linear equations. The rule
states that for a linear system Ax = b, where A is an n x n invertible matrix, each

element of x can be calculated as

det(Bk)
T —
det(A)
where £ = 1,...,n. The matrix B, can be obtained from the coefficient matrix A

by substituting the k£ column of A by b. This process is fast for small matrices, but

becomes progressively more complex as more replacements are necessary for By. Keeping
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with the matrix example in equation (4.6),  and y can respectively be solved for:

6 3
T = 5 1 = 615 = =9 = 9
2-3 —1
2 3
11
2 6
y = 1 5 = 10-6 = A4 = —4
2 3 2-3 -1
11

Matrix Inverses

If an inverse for a matrix A exists, a solution for the system Ax = b is
x = A" 'b. (4.9)

The theory behind finding inverses of matrices is vast and is therefore not discussed here.

The interested reader is referred to [26] for a thorough treatment. Using the formula in

-1 3
equation (4.9) and the inverse of equation (4.6), - ] , system (4.5) can be solved
by calculating
x = AL b
© -1 3] [6
= —
[ Y ] | L =2 [ 5 ]
[ 6+15 |
= =
6 — 10

Nonlinear Techniques

Of the above techniques, Gauss-Jordan Elimination, Cramer’s Rule and Matriz Inverses

apply only to linear systems of equations, subject to the determinant of the coefficient
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matrix A not being zero, if it exists. Nonlinear sets of equations are harder to solve.
Techniques such as the above that appear relatively simple to apply, can no longer be

used. More elaborate numerical techniques exist. These include [78]:

e Newton’s method

Broyden’s method

Line searching

Bisection

The Secant method

e Steepest Descent

The above techniques find only approximate solutions and cannot guarantee that a com-
plete set of solutions have been found. The efficiency of techniques such as Newton’s
method, Broyden’s method, the Secant method and steepest descent also depend on the
initial positions of the respective searching processes. A starting position far from a
solution may lead to an extended search that may never converge. The type of system

to be solved will determine the technique used — no technique is universally applicable.

4.1.2 Solving Linear Systems with Neural Networks

A number of authors have investigated the possibilities of using neural networks to solve
systems of equations, with varying results.
Cichocki and Unbehauen implemented neural networks in circuit architectures to

solve systems of linear equations [12]. Their work was motivated by the following:

e The inversion of large matrices is a time consuming process (see section 4.1.1). If
traditional numerical approaches are utilized, the calculation of an inverted matrix

in a time-critical online system may still be too slow.

e Developing simple artificial neural network models to solve a simple linear pro-

gramming problem could lead to a better understanding of the problem under
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consideration. The consequent development of new solution techniques could lead

to improved, general methods [12].

To accommodate noise in real environments, the basic formulation of systems of linear

equations in equation (4.2) was restated as
Ax=Db"+1=byu

where b’ represents real world observations made, r represents measurement errors and
byrue represents actual values for b that may be unknown. A neural network, embedded
in a circuit architecture, then learns as its outputs the solution vector x. Their results
showed that neural networks can successfully and very efficiently learn solution to SEs.
Gabrys and Bargiela implemented Cichocki and Unbehauen’s approach in a water control
system [27].

Huang and Chi designed neural network architectures based on the dimensions of a

SE described in equation (4.2) [42]. Equation (4.2) is rewritten as
Aw ~ b

where w = [wy, ws, .. ., wn]T represents the weight values of a feed-forward neural net-

work. The coefficient matrix A is written as a set of row vectors,

a
a2
A= . where a; = [ail, a;2, ... am] .

an

Using this reformulation, equation (4.2) is rewritten as

where x = [z1, %9, . .. xn]T. A neural network is then trained by providing sample x values
to approximate b through the adaptation of w under the imposed constraints defined
in equation (4.10). The interested reader is referred to [42] for a detailed analysis of the

above technique'.

'Huang and Chi also introduced a similar neural network based approach to find roots of polynomials
[41].



University of Pretoria etd - Brits, R (2002)
CHAPTER 4. THE NBEST PSO 67

Figure 4.1: System S1, a simple system of two linear equations.

4.2 PSO and Solving SEs

This section extends the discussion of systems of equations, but considers it from a
particle swarm optimization perspective. Solving SEs is restated as an optimization
problem, and shortcomings of traditional PSO unimodal optimization approaches, lbest
and gbest, are identified.

Similar to the neural network based approach introduced by Cichocki and Unbehauen
[12], when using PSO to solve SEs, the goal is to find the solution vector x in the system
Ax = b. In a swarm of particles, each particle represents a candidate solution for
each parameter in a system of equations, in this case x. As an example, system (4.11)
represents a simple system of linear equations with a single solution at the coordinates

(1,1), as shown in figure 4.1:

2y = v — 3
949 = 3xr + 1

S1: (4.11)
When attempting to solve system (4.11) with PSO, the goal is to find values for the
unknowns (z,y). Each particle therefore represents a set of candidate values for z and y.
To ascertain the quality of a (z,y) pair, the fitness function is based on the formulation

of the SEs in equation (4.11).
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Figure 4.2: System S4, with multiple solutions.

A particle’s fitness is determined by how close it is to the known solution of a SEs.
The fitness function for S1 can then be defined as

fsi(@,y) = |fsia(@, ) + [ fsr2(z,y)] (4.12)

where

fori(z,y) = = + 2y — 3 =0

fsi2(z,y) = 3z — 4y + 1 =
The objective is then to minimize fg1(x,y). The lower the error represented by fs1(z,y),
the closer a swarm of particles is to the optimal solution of the system. Experimental
results presented later shows that both gbest and [best have no problem to locate the
optimal solution (see table 4.2 on page 77). However, keep in mind that this optimization
problem defines a single, clear goal. No local optima exist in system S1’s search space,
which explains the success of lbest and gbest in locating the single optimum.

When a SEs has multiple solutions, the optimization process becomes more complex.
Consider the following system of equations, illustrated in figure 4.2:
y = =°
y = 2x + 2

S4: (4.13)

The fitness function fg4(z,y) is defined as

fsa(@,y) = |fsan(z,y)| + | fsa2(z,y)|
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where

f54,1(x7y) = 12

fsap(z,y) = 22 + 2

The curves in system S4 intersect at two distinct positions in the search space. Both
these points return equal, minimal fitness values. Attempts to find all solutions to this
system with ‘traditional’ PSO optimization approaches, such as gbest and lbest, fail.

Both gbest and lbest implicitly assume either that the search contains but a single
optimal solution, or that the goal of the search process is to locate only one solution.
This behavior is expected of the gbest algorithm, as the position update equation (see
equation (2.9) on page 16) is designed to force all particles to move to a single global
position in the search space, that defines the best position located by the swarm at any
given time step. The swarm’s global best position can represent only one of the possible
solutions. At first glance, it is expected that the lbest PSO will obtain more than one
solution due to the formation of particle neighborhoods; that is, each neighborhood best
will represent a solution. This is however not the case, since [best propagates information
about optimal positions through overlapping neighborhoods. That is, a particle is a
member of multiple neighborhoods. This configuration leads to the convergence of all
neighborhood best particles onto a single solution. The location of particles within a
particular search space has no effect on the formation of neighborhoods: Neighborhoods
are determined based on the particle indices only.

Given that existing standard PSO approaches clearly are not suited to the location of
multiple solutions within a single search space, new techniques need to be proposed. The
next section presents a new, computationally inexpensive approach to locate multiple

optima, without alteration of the search space.

4.3 The nbest PSO

This section proposes modifications to the standard particle swarm optimizer that en-
ables it to locate multiple solutions in a search space. First, the fitness function is

extended to reward a particle when it is close to any of the possible solutions in a sys-
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tem of equations®. A new approach to determine neighborhood best particles is then

introduced. These modifications are specifically aimed at solving systems of equations.

4.3.1 ‘Intelligent’ Fitness Function

A fitness function quantifies the quality of a potential solution [24]. The fitness function
formulation given in equation (4.12) is adequate for simple systems, such as S1 and S4.

In general, for a system of m equations, this approach can be written as

foa) =) felxi). (4.14)

k=1
fr(x;) represents each one of the m equations, where each equation is algebraically

rewritten to be equal to zero. The fitness formulation in equation (4.14) assumes that:
e All equations intersect at a single, unique position, or that

e the fitness of a system can be determined directly from its set of equations (i.e. the
number of equations is less than or equal to the number of unknowns in a linear

system).

This formulation does not accurately report fitness when dealing with nonlinear systems
where the number of intersection points, or solutions, depend on the number of equations
and unknowns. When dealing with situations where there are more equations than
unknowns, solving a SEs is expanded to finding all points of intersection, of all equations
making up the SEs, rather than searching for points where all the equations intersect.
The goal of solving a SEs with a swarm intelligence approach is to locate all these points
of intersection.

As an example, consider system S3, as illustrated in figure 4.3:

y = 2z — 3
S3: y = -3z — 1 (4.15)
y = —xo + 1

System S3 has three solutions. For all solutions to be located, the fitness function should

2Although the design of this technique was motivated by the particular need to solve SEs, given

sufficient prior knowledge of a search space, it is extendable to other problems.
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Figure 4.3: System S3: A system of linear equations with 3 solutions.

consider a particle’s relative distance to each of the possible solutions. The assumption
above that all the equations in the system intersect, no longer holds. A solution to the
system may be found at any position where only a subset of the equations in the set of
equations intersect. The ‘shortest route’ to convergence for a particle would then be to
adapt its candidate solution towards the actual solution that it lies closest to.

Thus, to evaluate the fitness of a particle ¢ for system S3, the fitness function is
redefined to

fape(xi) = min{ fap.ac(xi), fea,pe(X:), fe,ca(xi)} (4.16)

where

fap,ac(x;) is the fitness of particle x; with respect to equations y = 2z — 3 and y =
-3z +1,

fBa,Bc(x;) is the fitness of particle x; with respect to equations y = —3z + 1 and

y=—x+1, and

fep,ca(x;) is the fitness of particle x; with respect to equations y = —z + 1 and

y =2z — 3.

This formulation of the fitness function implicitly assumes that all the lines in the

system of equations actually intersect. However, to develop a general fitness function
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formulation, this assumption cannot be made. When two lines do not intersect, (e.g.
parallel lines or asymptotes) the result obtained when evaluating the fitness function, will
be an indication of the distance between lines. If there are no intersections between lines
in a SEs and therefore no solutions, particles will eventually settle on locations where
lines in the system are the closest to each other, thereby still minimizing the fitness
function. The fitness formulation in equation (4.16) can thus be generally applied.

The proposed reformulation of the fitness function rewards a particle for being close
to one of a set of possible solutions. A general formulation of this fitness for a particle

position x;, for a system of m equations is

f(xi) = rgin{fn(xi)}

The symbol x represents an element of the set of possible intersections between the m
equations that define a SEs. If < 1,7 > represents the intersection between equations ¢

and 7, then the set of possible intersections, I', is defined as

F={<L,1>...,<1lm><2,1>...,<2m>....,<m,1>...<m,m>}
(4.17)
and k € T'. k represents a single element in ' and {k} # I'. < 1,m > represents
equations 1 and m in the SE rewritten to be equal to zero. The sets of intersecting
equations represented in equation (4.17) assumes that a maximum of two of the m lines
will actually intersect. Also, it is trivial that a solution to a SE does not exist where an
equation represents a locus that intersects with itself. Entries such as (1,1) and (m,m)
are therefore to be ignored. If more than 2 lines do intersect in a SEs, the representation
in equation (4.17) can be expanded to accommodate it, e.g. if three equations, e;, e,
and e3 intersect, the above notation would represent it as < ey, e, €3 >.
This section presented a reformulation of the fitness function for a SEs. This refor-
mulation allows the PSO to effectively locate multiple solutions in a search space. Next,
the concept of a topological neighborhood is introduced to take advantage of the spatial

positions of particles in a search space.



University of Pretoria etd - Brits, R (2002)
CHAPTER 4. THE NBEST PSO 73

4.3.2 Topological Neighborhoods

The definition of the lbest PSO ensures that the algorithm spreads information about
good solutions to all particles in a swarm. Standard lbest bases its neighborhood defini-
tion on particle indices, where each particle is assigned an unique index number that does
not change over the course of the optimization process. Spatial positions therefore do
not play a role when determining a particle neighborhood. This model is well-suited to
unimodal optimization problems. It allows efficient sharing of a set of diverse potential
solutions, while avoiding premature convergence [49]. A number of authors investigated
techniques that redefine the neighborhood of a particle, to ensure eventual convergence
on a global optimum in a search space. See section 2.7.2 for a discussion of these tech-
niques. When searching for multiple solutions, neighborhood modifications, as well as
gbest, are still biased towards finding a single optimum solution in the search space.

The diversity improvement techniques in section 2.7.2 all endeavor to spread infor-
mation about good solutions to all particles in the swarm. When searching for multiple
solutions, it is beneficial to restrict the sharing of social information based on a particle’s
proximity to a potential solution. Thus, instead of moving towards a global best solution
located by the complete swarm, a particle would be better served to move towards a so-
lution close to it in the search space. This can be achieved by defining a local, topological
particle neighborhood.

To this end, the nbest PSO introduces a neighborhood best position. For a particle
i, the neighborhood best y; is defined as the center of mass of the positions of all the
particles in the topological neighborhood of i. Practically, the topological neighborhood is
defined as the k closest particles to ¢, where the closest particles are found by calculating
the Euclidean distance between x; and all other particles in the swarm. Formally, for
each particle define the set B;, where B; consists of the k closest particles to ¢ at any

given time step t; y; is then
k
. 1
5= 1) B, (419
h=1
where By, is the current position of the h** particle in neighborhood B; of particle i at

time ¢; k is a user defined parameter. The set of particles in a neighborhood are all

weighted equally.
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The velocity update equation is similar to that used in the lbest PSO, but the neigh-
borhood influence y; is calculated as shown in equation (4.18). The update for v; ;(t+1)

is defined as

vij(t+1) = vii(t) +eiry () (yii(t) — 2ig(t) +
Cara,j(t) (§ii(t) — i (1)) (4.19)

From equations (4.18) and (4.19), it follows that if the neighborhood size k is very
large, i.e. approaching the swarm size, nbest approximates an algorithm similar to gbest,
where all particles move towards a single globally defined location. The goal position ¥y
will, however, represent an average particle position in the search space, conveying no
information about a possible good result. In section 4.5 a study of the influence of the

parameter k is presented.

4.4 Experimental Results and Discussion

This section presents empirical results obtained from the application of gbest, lbest and
nbest to solve systems of unconstrained linear and nonlinear equations. Constrained opti-
mization with the PSO, in the form of multi-objective problems, have been investigated
by a number of authors [15, 38, 74, 75]. Paquet used PSO to solve the constrained
optimization problem associated with training support vector machines [70].

In addition to the systems defined previously, the following systems of equations are

considered:
S2:y = €
y = —2x+2 (4.20)
Sb:y = cosxlnx
y = tanx (4.21)

S6: y = sinx
r = tany (4.22)

Figure 4.4 illustrates each of these systems.
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Figure 4.4: Additional Test Systems of Equations
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For each set of equations, 30 simulation runs were done for each of the [best, gbest
and nbest algorithms. For each simulation, the inertia weight w was linearly scaled from
0.7 to 0.1 over 2000 iterations, with ¢; = 2.0 and ¢, = 2.0 kept constant.

These parameter settings require the velocity values to be clamped to the range
[—VUmaz, Umaz) in order to ensure convergence [87]. The use of a linearly decreasing inertia
weight promotes exploration during the earlier iterations, resulting in a thorough search
of the solution space.

Table 4.1 specifies settings for v,,42, Tmin and Tp,e., where ,,;, and x,,,, defines
the domain of each of the problems, while v,,,, is the largest velocity value that will
be allowed for any dimension. These limits were chosen since all solutions are within

the defined ranges. Table 4.2 summarizes the number of exact solutions found by gbest,

System | Zin | Tz = Vmaz
S1 -10.0 10.0
S2 -10.0 10.0
S3 -10.0 10.0
S4 -10.0 10.0
S5 0.1 10.0
S6 -2.0 2.0

Table 4.1: Z,in, Tmae and vy,., parameter values for nbest experiments

[best and nbest for each of the SEs. Regardless of the actual number of solutions, both
the gbest and [best algorithms always converged to a single solution, even when multiple
solutions exist. This behavior of gbest is expected since all particles home in onto one
particle, namely the global best particle of the swarm. For the [best algorithm, the same
happens due to the fact that neighborhoods overlap, as explained in section 4.3.2.

The nbest algorithm succeeded in finding all the solutions for all problems except for
problem S6, shown in figure 4.4(c). For S6, none of the algorithms succeeded in locating
a specific solution. In this case, a large number of points exist with fitness values very
close to zero. All experiments converged to good approximate solutions close to zero (as
indicated in table 4.3), and within the range [—7/2,7/2]. Table 4.3 lists the average
fitness of the best particle for each of the three algorithms. For the nbest algorithm, the
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Problem

gbest

lbest

nbest

Actual #Solutions

S1

S2

S3

S4

S5

S6

¥ | === =

¥ | === =

1
1
3
2
3
*

* | W | I N|W ||

Table 4.2: Solutions found by nbest, gbest and lbest

4.5 An Analysis of the Neighborhood Size £

Problem | gbest lbest nbest

S1 6.29E-06 | 6.80E-06 | 4.52E-06
S2 6.63E-06 | 7.17E-06 | 6.60E-02
S3 7.30E-06 | 6.73E-06 | 7.08E-04
S4 8.02E-06 | 6.90E-06 | 8.60E-04
S5 7.35E-02 | 6.73E-06 | 7.15E-04
S6 2.93E-05 | 2.91E-02 | 5.13E-06

Table 4.3: nbest Results: Mean Best Fitness

77

Existing diversity improvement techniques that modify a particle’s neighborhood, share

information on a global scale within a search space, ensuring that particles converge

onto a single solution. The goal of nbest is not to increase a particle’s neighborhood size

over time to the complete swarm. Doing so defeats the goals of niching and speciation.

Rather, neighborhoods should stably maintain multiple solutions within a search space.

The influence that a particle neighborhood has in the nbest algorithm is controlled by

the neighborhood size parameter, k. A neighborhood’s size controls the proportion of

social information ‘communicated’ by the swarm to a particular particle. To this end,

this section investigates the niching capabilities of nbest for different £ values.



University of Pretoria etd - Brits, R (2002)

CHAPTER 4. THE NBEST PSO 78
Configuration | Kijitiar | kfina
D1 1 1
D2 5 5
D3 |S| |S|
D4 |S| 1
D5 5) 1

Table 4.4: Different experimental configurations of the neighborhood size parameter k

Table 4.4 describes a number of different parameter configurations used to analyze
the influence of k. Configurations D1, D2 and D3 keep the value of k constant for each
simulation, while D4 and D5 linearly scales k from kjyitiar t0 kfina over the maximum
number of allowed iterations of the algorithm. These configurations are compared on
two different optimization problems. The first problem is a SEs with a single solution,
for which the traditional gbest and [best algorithms will encounter no difficulties to locate
the only global solution. The second test system has multiple solutions, and cannot be
solved with gbest and [best. The systems are defined in equations (4.11) and (4.15), and
are illustrated in figures 4.1 and 4.3 respectively.

The influence of k is demonstrated by running the nbest algorithm with the different
k values as set out in table 4.4 on the functions above. Fitness functions are defined as
described in section 4.3.1. For each SEs, ¢; = ¢o = 1.4 and w is linearly scaled from 0.7
to 0.1 over 2000 iterations of the nbest algorithm. Initial particle positions are selected
randomly within the range [—10, 10]?.

Figure 4.5 shows the initial particle positions that were used for each problem type.
The value of k is linearly scaled over the iterations of the PSO algorithm: the value of

k at time step ¢ is determined using the formula:

tma.x

tm X 3
k, = ’V a . (k‘mitial - k'final) + kfinal-‘

where ¢, is the maximum time step and Kjpiriqr and kying is defined as in table 4.4.

Next, the effects of the different k values are considered individually:

D1 When the neighborhood size is kept constant at k& = 1 for 2000 iterations of the

nbest algorithm, virtually no learning progress is made. For both S1 and S3,
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Figure 4.5: Initial particle positions for analysis of neighborhood size
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Figure 4.6: D1: Particle position after 2000 iterations, with £ = 1 kept constant
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Figure 4.7: D3: Particle position after 2000 iterations, with k = | S| kept constant

further simulations where nbest was left to run for 20000 iterations with £ = 1
also did not converge on the possible solutions. Figure 4.6 shows that particle
positions still appear to be random, with only lazy movement towards possible
optima. Since nbest uses spatial neighborhoods to calculate velocity and position
updates, conceptually, when particle a finds particle b to be its closest neighbor,
it is quite possible, although not necessarily guaranteed, that b will choose a as
its closest neighbor. It is entirely possible that there exists a situation where a
third particle ¢ is close to b, such that ||x, — x.|| < |[Xs — Xp||- In such a case,
without the influence of any other particles and the lack of guidance such as is
present in the gbest and [best algorithms, particles a and b will be attracted to
each other. Because of the limited social exchange, this arrangement will lead to
the slow pursuit of the best position found between the two particles at any given
iteration, possibly leading the particles to stagnate on a suboptimal position in the

search space.

D2 and D3 Figures 4.7 and 4.8 show particle positions when testing the algorithm
with £ = |S| and k = 5, respectively. In both cases, particles generally converge

on the possible solutions. Constant neighborhoods where & > 1 allows greater
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Figure 4.8: D2: Particle position after 2000 iterations, with k = 5 kept constant

social interaction between a particle and its neighborhood, facilitating improved
information exchange. The tendency of particles to settle on lines in a SEs is
explained by the fact that any position on a line relatively close to a solution will
have a low, and therefore attractive fitness value. An increased amount of social
information is shared among particles — the extent of social interconnection remains
constant throughout all iterations of the learning algorithm. Note that “extent of
interconnection” simply refers to the size of a particle’s neighborhood. The closest
neighbors of every particle are recalculated after every velocity and position update,
and the set of particles initially associated with a specific particle can change over
time. If several optima occur in topologically close positions, configurations D2
and D3 will have difficulty to converge as a particle’s neighborhood will be situated
around several different solutions. Since neighborhoods of different particles can

overlap, particles will not exhibit convergent behavior.

D4 and D5 Configurations D4 and D5 linearly scale the neighborhood size over time.
These configurations ensure that a large degree of social information exchange takes
place during the initial iterations of the algorithm. The social influence decreases
over time until communication takes place with a single neighbor only. During the

final iterations of the algorithm, the neighborhood size is the same for any particle,
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Figure 4.9: D4: Particle position after 2000 iterations, with k linearly scaled between

the swarm size and 1
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Figure 4.10: D5: Particle position after 2000 iterations, with & linearly scaled between
5and 1
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Figure 4.11: Linearly decreasing neighborhood sizes. Note that k is always a discrete

value, explaining the stepwise decrease.

regardless of the initial size. Figure 4.11 shows how the neighborhood size decreases
with iteration number. The greater efficiency of decreasing neighborhoods can be
attributed to the decreasing influence of a spatial neighborhood on a particle over
time. When a particle starts to move towards a particular solution or niche, its
shrinking neighborhood will force it to move to a local solution, rather than to a

global solution that is determined by the social experiences of the complete swarm.

Of the approaches tested in this section, linearly scaling the neighborhood size k over
time yielded the most favorable results. Further simulations, where the neighborhood
size was decreased exponentially over time, also yielded favorable results, but simulations
did not converge as well when linear scaling was used. In this context, convergence refers
to the algorithm’s ability to locate and maintain multiple solutions concurrently, i.e. all
particles have positions close to, or at the exact location of the solution. It seems that
the initial rapid decrease in the size of the spatial neighborhood resulting in a small (i.e.
a neighborhood where k& = 1) neighborhood is less effective. The same social structure
as with D1 and D2 occurs. Decreasing the particle neighborhood is virtually the exact
opposite of Suganthan’s growing particle neighborhood operator [85]. It is also noted
that keeping k£ constant leads to some convergence only when k£ > 1. If this constraint

does not hold, particles perform only a rudimentary local search, and do not exhibit any
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convergent behavior.

4.6 Conclusion

This chapter presented the neighborhood particle swarm optimizer, nbest. It was shown
that the social information exchange which forms the basis of the standard Ibest and
gbest algorithms keeps it from finding multiple solutions in a search space. The nbest
PSO redefined particle neighborhoods to use spatial information to guide particles to
a solution that it lies closest to. nbest was experimentally shown to be an effective
niching technique. The influence of the neighborhood size parameter, k was investigated
in section 4.5.

The next chapter presents the NichePSO optimizer, an algorithm that uses multiple

subswarms to do niching.
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