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Chapter 3
Niching Techniques

Niching techniques maintain multiple solutions in multimodal domains, in contrast to existing
evolutionary and swarm intelligence optimization techniques that have been designed to only
locate single solutions. This chapter introduces well-known GA-based niching techniques.
The applicability of GA techniques to PSO is considered, and a number of niching applications

are presented.

3.1 Introduction

Particle swarm optimizers have proven to be useful in locating optimal solutions to opti-
mization problems. This fact is supported by almost all papers published in this research
field. The PSO technique’s effectiveness can be attributed to its efficient propagation
of information regarding a single, global solution. The original update equations for
velocity and position vectors were designed to lead all particles to the same solution [49].

When attempting to optimize multimodal functions, the situation is changed. In a
multimodal function, multiple positions in the function’s search space may have optimal
fitness. The global best solution found by a swarm of particles when using the gbest
or [best algorithms may not necessarily be the only possible solution. Any particle
that occupies a position close to a potential global solution, or even an acceptable local
optimum, that is not close to the swarm’s global best in the search space, will be forced

to move towards the global best position y. Alternatively, equally acceptable solutions
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that happened not to be close to the swarm’s current best at any given time, are ignored
in favor of a limited collective swarm consciousness. Consequently, portions of the search
space are effectively ignored in favor of a potentially limited view of the search space.

A number of evolutionary techniques have been suggested to locate multiple solutions
to multimodal problems. These algorithms have been almost exclusively explored using
GAs. In GA parlance, optimization techniques that locate multiple optima to multimodal
function optimization problems are known as niching, or speciation techniques.

For niching, both GAs and PSOs use a population of individuals that are partitioned
in some way to focus and locate different possible solutions in a single search space (note
that the term individual here applies both to individuals in GAs and particles in the
PSO algorithm). Each subgroup in a partitioned population or swarm, is known as a
species. The behavioral patterns of individuals competing for the use of a resource in a
subgroup and between elements in a subgroup, is known as speciation.

This chapter explores the evolutionary theory behind niching and speciation. Section
3.2 presents a theoretical base for niching, followed by a number of existing GA-based
niching techniques in section 3.3. Section 3.4 analyses a single known PSO attempt at
niching. The simple application of GA niching techniques to PSOs is discussed in section

3.5, and the chapter is concluded with a number of niching applications in section 3.6.

3.2 What is Niching?

In an environment where a large number of individuals compete for the use of available
resources, behavioral patterns emerge where individuals are organized into subgroups

based on their resource requirements. Horn defines niching as a

“form of cooperation around finite, limited resources, resulting in the lack
of competition between such areas, and causing the formation of species for
each niche” [37].

Niches are thus partitions of an environment, and species are partitions of a population
competing within the environment. Localization of competition is introduced by simply

sharing resources among individuals competing for it. The terms niche and species can
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be used interchangeably. As an example, a school of fish that live in a certain part of
the ocean compete with each other for access to a potentially limited food supply. Food
may not be available everywhere in their environment. Certain fish may learn to live in a
small area around a food source, while others may learn to roam their environment and
only feed when they require nourishment. If there was to be a single food source, it is a
reasonable expectation that all the fish would eventually exhibit similar behavior. They
would all be required to find food in the same place, and encounter the same resistance
from other fish.

The social interaction and adaptation of individuals competing in an environment
around multiple resources form the basis for the study of niching techniques with evolu-
tionary optimization algorithms. In the evolutionary optimization context, Horn defines
implicit niching as the sharing of resources, and explicit niching as the sharing of fitness
[37].

Niching methods can be categorized as either being sequential or parallel.

Sequential niching (or temporal niching) develops niches sequentially over time. The
approach can be summarized as searching for a possible solution until it is found,
then removing all references to it in the search space and repeating the search
until convergence criteria are met. Because of the removal of ‘confusing’ optima,

a technique that assumes a single global solution may be used.

Parallel niching forms and maintains several different niches simultaneously. The search
space is not modified. Parallel niching techniques thus not only depend on finding
a good measure to locate possible solutions, but also need to organize individuals in
a way that maintains their organization in the search space over time to populate

locations around solutions.

Regardless of the way in which niches are located (i.e. in parallel or sequentially), the
distribution of individuals can be formalized in a number of ways, according to their

speciation behavior [61]:

Sympatric speciation occurs when individuals form species that coexist in the same
search space, but evolve to exploit different resources (or more formally, different

ecological niches). For example, different kinds of fish feed of different food sources
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in the same environment. Cannibalism is explicitly excluded here, although it may
be an interesting measure to consider. It may act as a deterrent in overpopulated

niches.

Allopatric speciation differentiates individuals based on spatial isolation in a search
space. No interspecies communication takes place, and subspecies can develop
only through deviation from the available ‘genetic’ information. Such an event
could be triggered by mutation. Here, different fish species would effectively live
and play around their food sources, and not be concerned with other species living

in different areas.

Parapatric speciation allows new species to form as a result of segregated species sharing
a common border. Communication between the initial species may not have been
encouraged or intended. As an example, new fish species may evolve based on
the interaction of a small percentage of different schools of fish. The new species
may have different food requirements and may eventually upset the environment’s
stability.

The PSO nichers presented in this thesis can be classified as using an allopatric speciation
approach. Allopatric speciation will therefore be a more prevalent issue of discussion, as
it defines the goals of multimodal function optimization.

The next section discusses existing niching techniques that have been introduced in

the genetic algorithm and particle swarm optimization fields.

3.3 Genetic Algorithm based Niching Techniques

This section presents a number of well known niching algorithms, originally studied
using GAs. GA niching is based on research originally done to maintain diverse popu-
lations. Unless indicated, each of the techniques described next assumes that a normal

generational evolutionary optimization process takes place, as discussed in section 2.4.
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3.3.1 Fitness Sharing

Fitness sharing is one of the earliest GA niching techniques. It was originally introduced
as a population diversity maintenance technique [32]. It is a parallel, explicit niching
approach. The algorithm regards each niche as a finite resource, and shares this resource
among all individuals in the niche. Individuals are encouraged to populate a particular
area of the search space by adapting their fitness based on the number of other individuals

that populate the same area. The fitness f; of individual u is adapted to its shared fitness:

1 fz
fi = 723' Sh(duy) (3.1)

A common sharing function is:

h(d) 1- (d/ashare)a if d < Oshare
s —
0 otherwise.

The symbol d,,, represents a distance calculated between individual u and individual v.
The distance measure implemented can be genotypic or phenotypic, depending on the
optimization problem at hand. If the sharing function finds that d,,, is less than ogpepe,
it returns a value in the range [0, 1] that increases as d,,,, decreases. Therefore, the more
similar v and v, the lower their individual fitnesses will become. The fitness sharing
approach assumes that the number of niches can be estimated, i.e. the approximate
number of niches must be known prior to the application of the algorithm. It is also
assumed that niches occur at least a minimum distance 20,4 from each other. The
above assumptions cannot always be made: The number of niches will not always be

estimatable, nor would the distance between them.

3.3.2 Dynamic Niche Sharing

Miller and Shaw introduced dynamic niche sharing as a computationally less expensive

version of fitness sharing [66]. The same assumptions are made as with fitness sharing:
- Niches must occur at a minimum distance of 20,4, from each other,

- and the number of optima must be known.
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During the evolution of a population with the dynamic niche sharing technique, individ-
uals will invariably start to form subspecies and populate niches. Dynamic niche sharing
attempts to classify individuals in a population as belonging to one of the emerging
niches, or to a non-niche category. Fitness calculation for individuals belonging to the
non-niche category is done with the same equation that is used in the original fitness
sharing technique, namely equation (3.1), in section 3.3.1. The fitness of individuals
found to belong to one of the developing niches is diluted by dividing it by the size of the
developing niche. Dynamically finding niches is a simple process of iterating through the
population of individuals and constructing a set of non-overlapping areas in the search
space. Dynamic sharing is computationally less expensive than ‘normal’ sharing. Miller
and Shaw presented results showing that dynamic sharing has improved performance

when compared to fitness sharing [66].

3.3.3 Sequential Niching

Sequential niching (SN) is a simple algorithm introduced by Beasley et al [4]. SN identi-
fies multiple solutions by adapting an optimization problem’s objective function’s fitness
landscape through the application of a derating function at a position where a potential
solution was found [4]. A derating function is designed to lower the fitness appeal of
previously located solutions. By repeated applications of the algorithm to an objective
function’s fitness landscape, all confusing local and global optima are removed. Sample

derating functions, for a point x and a previous maximum x* include:

i\
(M) if ||x —x*|| <r

G1(x,x") = r
1 otherwise
and flc—x* ]
logm "X e o
e v if [|lx —x*| <r
G x) e — x|
1 otherwise

where r is the radius of the derating function’s effect. In G, o determines whether
the derating function is concave (o > 1) or convex (o < 1). For @« = 1, Gy is a linear
function. For G5, m determines ‘concavity’. Note that lim, ,olog(z) = —oo, hence m

must always be great than 0. Smaller values for m result in a more concave derating
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function. The fitness function f(x) is then redefined to be
Mt+1(X) = Mt(X) X G(X, St)

where M,(x) = f(x) and s; is the best individual found during run ¢ of the algorithm.

G can be any derating function, such as GG; and G,.

3.3.4 Crowding

Crowding, or the crowding factor model, as introduced by De Jong [19], was originally
devised as a diversity preservation technique. Crowding was inspired by a naturally
occurring phenomenon in ecologies, namely competition amongst similar individuals for
limited resources. Similar individuals compete to occupy the same ecological niche, while
dissimilar individuals do not compete, as they do not occupy the same ecological niche.
When a niche has reached its carrying capacity (i.e. being occupied by the maximum
number of individuals that can exist within it) older individuals are replaced by newer
(younger) individuals. The carrying capacity of the niche does not change, so population
size remains constant.

For a genetic algorithm, crowding is performed as follows: It is assumed that a
population of GA individuals evolve over several generational steps. At each step, the
crowding algorithm selects only a portion of the current generation to reproduce. The
selection strategy is fitness proportionate, i.e. more fit individuals are more likely to
be chosen. After the selected individuals have reproduced, individuals in the current
population are replaced by their offspring. For each offspring, a random sample is taken
from the current generation, and the most similar individual is replaced by the offspring
individual. To cover a complete search space, the initial position of individuals should
be well distributed, as the algorithm is unlikely to evaluate any part of the search space

that is not within the first generation.

3.3.5 Deterministic Crowding

Deterministic crowding (DC) is based on De Jong’s crowding technique (see section

3.3.4), but uses the following improvements as suggested by Mahfoud [61]:
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- Mahfoud found that phenotypic similarity metrics (such as Euclidean distance)
were preferred to similarity metrics based on genotypes (e.g. Hamming distance).
Phenotypic metrics embody domain specific knowledge that is most useful in mul-
timodal optimization, as several different spatial positions can contain equally op-
timal solutions. Not only is the quality of potential solutions important, but also

their proximity to each other.

- It was shown that there exists a high probability that the most similar individuals
to offspring are their parents. The replacement strategy initially proposed by De
Jong was changed to compare an offspring only to its parents and not to a random

sampling of the population.

- De Jong’s crowding used a traditional proportional method. Individuals are se-
lected for reproduction based on their fitness. Mahfoud suggested selecting indi-
viduals randomly, and only replacing parents with their offspring if the offspring

performs better.

Since the DC algorithm is used in later chapters, it is presented in figure (3.1) (algo-
rithm pseudo-code taken from [61], symbols as defined in table 2.1). Note the d(-) is a
phenotypic distance function.

Probabilistic crowding, described as an “offspring of deterministic crowding,” was
introduced by Mengshoel et al [65]. It is based on Mahfoud’s deterministic crowding,
but employs a probabilistic replacement strategy.

Where the original crowding and DC techniques replaced an individual u with v if v
was more fit than u, probabilistic crowding uses the following rule: If individuals u and

v are competing against each other, the probability of u winning and replacing v is given

b
’ __h
Tt T,

where f, is the fitness of individual u. The core of the algorithm is therefore to use a

Du

probabilistic tournament replacement strategy. Experimental results have shown it to
be both fast and effective.
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Repeat for g generations:
1. Do n/2 times:

a) Select 2 parents, p; and py, randomly from Cj.

(
(b) Cross p; and p,, yielding ¢; and ¢s.

)
)
(c) Apply mutation/other operators, yielding ¢, and c,.
(d) TF [d(p1, 1) + d(p2, ¢3)] < [d(pr, ¢3) + d(p2, 1))
o If f(c;) > f(p1) replace p; with ¢;
o If f(c,) > f(py) replace p, with c,
ELSE
o If f(c,) > f(p1) replace p; with c,

e If f(c,) > f(p2) replace p, with ¢

Figure 3.1: Deterministic Crowding Algorithm

3.3.6 Restricted Tournament Selection

Restricted Tournament Selection (RTS), introduced by Harik [35], is similar to DC, but
promotes local competition.

In RTS, the selection process is adapted in the following way:

Two individuals, v and v are randomly selected from the pool of individuals in the

current generation.

Crossover and mutation operators are performed, yielding two new individuals, »* and

*

V.

The remainder of the current population is searched for individuals that are the most

similar to v* and v*, and when found, are designated by s, and s,.

u* then competes against s, for a position in the next generation. The same happens

with v* and s,.
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Harik presented results in [35] proving that RTS successfully locates solutions to multi-

modal problems.

3.3.7 Coevolutionary Shared Niching

Goldberg and Wang introduced coevolutionary shared niching (CSN) [33]. CSN locates
niches by co-evolving two different populations of individuals in the same search space,
in parallel. Let the two parallel populations be designated by A and B, respectively.
Population A can be thought of as a normal population of candidate solutions, and it
evolves as a normal population of individuals. Individuals in population B are scattered
throughout the search space. Each individual in population A associates with itself a
member of B that lies the closest to it using a genotypic metric. The fitness calculation of
the i*" individual in population A, A;, is then adapted to f'(A;) = ’]ﬁj), where f(-) is the
fitness function; |B,| designates the cardinality of the set of individuals associated with

individual By, and b is the index of the closest individual in population B to individual 7
in population A. The fitness of individuals in population B is simply the average fitness
of all the individuals associated with it in population A, multiplied by B;. Goldberg and
Wang also developed the imprint CSN technique, that allows for the transfer of good
performing individuals from the A to the B population.

CSN overcomes the limitation imposed by fixed inter-niche distances assumed in the
original fitness sharing algorithm [32] and its derivate, dynamic fitness sharing [66]. The
concept of a niche radius is replaced by the association made between individuals from

the different populations.

3.3.8 Dynamic Niche Clustering

Dynamic Niche Clustering (DNC) is a fitness sharing based, cluster driven niching tech-
nique [28, 29]. It is distinguished from all other niching techniques by the fact that it
supports ‘fuzzy’ clusters, i.e. clusters may overlap. This property allows the algorithm
to distinguish between different peaks in a multimodal function that may lie extremely
close together. In most other niching techniques, a more general inter-niche radius (such

as the ogpere parameter in fitness sharing) would prohibit this.
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The algorithm works by constructing a nicheset, which is a list of niches in a pop-
ulation. The nicheset persists over multiple generations. Initially, each individual in
a population is regarded to be in its own niche. Similar niches are identified using
Euclidean distance and merged. The population of individuals is then evolved over a
pre-determined number of generational steps. Before selection takes place, the following

process occurs:

e The midpoint of each niche in the nicheset is updated, using the formula

Z?:u1(xi — Wdu) - fi

where mzid,, is the midpoint of niche u, initially set to be equal to the position of

mud, = mid, +

the individual from which it was constructed, as described above. n, is the niche
count, or the number of individuals in the niche, f; is the fitness of individual 7 in

niche u and x; is the location of individual 7.

e A list of inter-niche distances is calculated and sorted. Niches are then merged

using a technique described in [29].

e Similar niches are merged. Each niche is associated with a minimum and maximum
niche radius. If the midpoints of two niches lie within the minimum radii of each

other, they are merged.

e If any niche has a population size greater than 10% of the total population, random
checks are done on the niche population to ensure that all individuals are focusing
on the same optima. If this is not the case, such a niche may be split into sub-

niches, which will be optimized individually in further generational steps.

Using the above technique, Gan and Warwick also suggested a niche linkage extension

to model niches of arbitrary shape [30].

3.4 PSO Niching Techniques

While research on GA niching techniques is abundant, niching with PSOs have thus

far received little research attention. This section overviews a niching variation of the
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objective function stretching optimization technique, as discussed in section 3.4. This
approach is, to the author’s knowledge, the only existing approach applicable to PSO

niching.

Objective Function Stretching for Locating Multiple Global Minima

Objective function stretching, introduced in section 2.7.1, was applied as a sequential
niching technique by Parsopoulos and Vrahatis [72]. The technique is partially repeated
here for completeness and discussed in more detail to clarify its niching ability.

The stretching technique adapts the landscape of an optimization problem’s fitness
function to remove local minima. When a local solution is detected during the evolution-
ary learning process, the stretching operator is applied to remove the detected solution
from the fitness landscape. Subsequent iterations of the PSO algorithm can then focus
on locating solutions in other parts of the search space, assured that the detected local
optima will not again lead to premature convergence.

The niching variation of the stretching technique detects potential solutions by com-
paring candidate solutions to a threshold value e. Parsopoulos and Vrahatis suggest
values such as 0.01 and 0.001 [72]. (Note that it was implicitly assumed that optimiza-
tion problems were of low dimension. Their test results were only given on one and
two-dimensional problems. Higher dimensional problems will most likely require larger
values.) When a potential solution x* is detected with this technique, the particle at
x* is isolated from the rest of the swarm. The stretching operator is then applied at
x*, marking this position and its vicinity as undesirable by increasing the fitness. The
“application of the stretching functions” means that the fitness calculation of remaining
particles are adapted. If the position vector of the detected solution is given by x*, the

fitness calculation, f(x), for all remaining particle positions x, is redefined to be H(x),

where:
sign(f(x) — f(x*)) +1)
Hx) = GO) 20 o (G x) = Go) (3:2)
and _ .
G(X) — f(X) + " ||X — X ||(81gn(f(x) - f(X )) + 1) (33)

2
The interpretation of the sign function is the same as in section 2.7.1. The transforma-

tion represented by G(x) in equation (3.3) removes all local minima located above the



University of Pretoria etd - Brits, R (2002)
CHAPTER 3. NICHING TECHNIQUES o4

0.9 ]

08 I i

0.7 - ,

0.6 - 1

05 1

f(x)

04 .

03 | i

02 1

0.1 1

Figure 3.2: Function Fi(r) = 1.0 — sin®(57z) with 5 minima of equal fitness.

detected solution x*. The transformation in equation (3.2) assigns higher objective func-
tion values to positions close to x*. The objective function landscape below x* remains
unchanged. Local optima with worse fitness than at position x* is thus removed from
the search space.

Van den Bergh investigated the efficacy of objective function stretching as global
optimization technique. It was found that the technique may alter the search space
by introducing false minima [87]. This observation in part warrants a more thorough
investigation of the applicability of stretching as a niching technique. The alteration of
the search space by the stretching operator for niching purposes is discussed next.

In this thesis the objective function stretching technique was applied to locate all the
minima of the function

Fy(z) = 1.0 — sin®(57z) (3.4)

in the domain = € [0,1] (see figure (3.2)). The objective function f is defined to be
f(z) = Fy(z). A PSO was trained on the objective function f, with parameter settings
v =10% v = 1.0, » = 10"'% and € = 105, When a minimum was detected at a particle
position x when f(z) < ¢, the particle was isolated and the fitness function redefined to

f(z) = H(z). When z ~ 0.9, the fitness function landscape was altered, as is shown in
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Figure 3.3: The modified objective function landscape, after the stretching functions

were applied.

figure (3.3). The effect of the respective transformation functions, H(z) and G(z) can
be pertinently seen. The effect of G(x), i.e. removing all minima above the position
indicated by x, clearly lifts out the positions of the remaining minima. H(x) ensures
that the fitness landscape around the potential solution x is marked as undesirable. The

following problems are however introduced:

e If multiple acceptable minima are located close to each other, the effect of G(x)
may cause these alternative solutions never to be detected. The steep fitness func-
tion slope, regardless of the ‘trenches’ on remaining minima (see below), will keep
particles from traversing towards this area of the search space. Also, if x is removed
from the swarm, y will be redefined to a different location that would be likely to

discourage movement towards the position of x.

e The adaptation of f(z) to remove all potential minima above z, introduces ‘trenches’
in the fitness function around remaining solutions. Although this transformation
makes detecting these remaining minima visually simple, the optimization pro-

cess is less likely to detect them. If e = 1075, as was given above, a solution
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will be detected around x =~ 0.9 when any particle has a position in the range
[0.89999,0.90001]. The width of the ‘trench’ around 0.9 is then 0.00002. The
probability of the evolutionary search process locating this position can then be
calculated by dividing the width of the trench by the total width of the search
space. This yields an extremely small probability of locating the minima under

consideration and other minima.

e The transformation of f(z) with the given values for 7, v and p, introduced a
new local minimum at x ~ 0.6. Because of the small likelihood of locating the
actual minima, the optimization process is more likely to regard this position as a

minimum. Tuning parameters v, v and g may remove the introduced minimum.

The above issues question the usability of objective function stretching as an effective
niching technique. The results reported by Parsopoulos and Vrahatis in [72] could not
be replicated.

3.5 Application of GA Niching Techniques to PSO

Given the wealth of GA based niching techniques, a natural step would be to consider
the adaptation of these techniques to particle swarm optimizers. This section discusses
this possibility.

By default, the PSO algorithm uses a phenotypic similarity metric in the form of
a fitness function. In unimodal optimization, this approach is acceptable, since the as-
sumption can be made that when two particles exhibit similar fitness, they are definitely
approaching the same solution. The particles will also occupy similar positions in the
search space. In multimodal optimization, the fitness function is still crucial in the as-
sessment of the quality of solutions found by particles, but it is not capable of giving
an indication of particle similarity, based on phenotypic behavior. Niches with similar
fitness may occur in different positions in the search space. A metric such as Euclidean
distance can give an acceptable indication of particle similarity, but it is not capable of
doing this while considering particle quality.

GA inspired crowding techniques promote the formation of niches by maintaining sets

of similar individuals. Similarity between individuals in different generations is a result
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of the replacement strategy used. By maintaining individuals that are similar, multiple
niche locations can be identified and maintained over several generations. Maintaining
particles around a potential solution in the PSO algorithm is done quite differently. Par-
ticles are not linked over different generations or iterations of the algorithm in the same
way. With PSOs, this explicit maintenance of locations around a potential solution is
largely taken over by the cognition memory of its personal best solution. The PSO algo-
rithm’s rapid global search nature is achieved by the propagation of knowledge regarding
global good solutions and each particle’s ability to remember its personal best solution.
Sharing information about a single solution focuses all search efforts on the best solution
found by the swarm at any given time during the optimization process.

Removing the global best information yields particles that perform a local search,
biased by the best solution found by each. This type of particle is somewhat similar
to individuals in GA populations. All GA techniques that depend on the independent
nature of individuals, as described above, cannot simply be applied to PSOs. Attempting
to remove all references to global information effectively truncates the value of the PSO
search to that of a random search evolutionary program.

Because of this fact, two new niching techniques, suited specifically to the nature of

the PSO, are presented in the next chapters.

3.6 Application of Niching Techniques to Real-World

Problems

Several areas, where the location of multiple solutions in a search space are beneficial, can
be identified. This section gives a short overview of a number of well-known techniques.

Carroll investigated the application of a multitude of different GA techniques to the
optimization of chemical oxygen-iodine lasers [10]. Chemical lasers are produced through
a series of chemical reactions between gases. In particular, Carroll compared Goldberg’s
sharing technique [32] with a non-sharing GA. He found that sharing helped to more
rapidly find an optimal power input. The interested reader is referred to [10] for a more
in-depth treatment of this particular application.

Hwang and Cho successfully applied the fitness sharing technique to evolve diverse
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circuit architectures [43]. Fitness sharing allowed them to design an embedded device
that dynamically reconfigures its circuit architecture when necessary. The system can
generate multiple architectures concurrently.

Kim and Cho used deterministic crowding (see section 3.3.5) to evolve a checkers
player [53]. Their system evolved a neural network to play the game. They found
that by selecting multiple neural networks from different optimal solutions found by the
different niches identified by DC, game-play was improved.

To evaluate the effectiveness of the proposed PSO based niching techniques, mul-
timodal function optimization problems are considered, as well as solving systems of

unconstrained equations with multiple solutions.

3.7 Conclusion

Niching is an optimization technique inspired by natural evolution. Niching algorithms
allow traditionally unimodal optimization techniques, such as GAs and PSOs, to be
extended to locate multiple solutions in a search space. This chapter reviewed well-known
GA-based niching techniques, as well as more recent attempts, including a PSO based
algorithm. The possibility of extending GA niching techniques to PSOs was investigated.
It was found that the techniques inspired by the generational model of GAs are not
easily extended to the particle swarm model. The PSO model is based on a set of
different assumptions and particles in a swarm are more free to traverse the search
space, than individuals in a GA population. Finally, a number of existing real-world
niching applications were presented.

In the next chapters, niching algorithms, designed to make use of the specifics of the

PSO model, are presented.
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