University of Pretoria etd - Brits, R (2002)

Chapter 2
Background and Literature Review

This chapter presents an overview of classical optimization, evolutionary computation and

recent developments in particle swarm optimization.

2.1 Introduction

Optimization is a paradigm present in nearly every aspect of life. It describes the drive to
constantly find improved ways of solving old and new problems. In the context of tech-
nological development and innovation, optimization describes the search for techniques
that make better use of available resources to solve problems. Scientific and engineering
applications regularly require algorithms to locate and fine-tune optimal solutions. Sol-
ving systems of equations, a comparatively simple task when only a few equations and
unknowns are involved, becomes notably more complex as a problem’s dimensionality
grows.

Real-world optimization applications can be realized as function optimization prob-
lems. Function optimization algorithms make assumptions about what a problem looks
like and are not universally applicable [11]. It is therefore justified to investigate alter-
native methods to solve these problems. More importantly, research should focus on
identifying efficient, robust and generally applicable algorithms.

This chapter presents an overview of the theory behind optimization. Section 2.2

defines optimization problems and establishes a common notation used throughout this



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND )

thesis. Evolutionary computation is discussed in section 2.3, with an overview of genetic
algorithms in section 2.4. Swarm intelligence is discussed in section 2.5, focusing in
particular on the particle swarm optimization algorithm. Principle differences between
evolutionary computing and swarm intelligence are touched on in section 2.6. Various
extensions and enhancements are presented in sections 2.7 and 2.8 respectively. Section

2.9 discusses a number of PSO application areas.

2.2 Function Optimization

Function optimization is concerned with finding an optimal solution to an objective, or
cost function, describing a problem. An objective function may additionally be con-
strained by a set of equality and/or inequality constraints. As an example, an objective
function may quantify the allocation of resources, such as distribution of chemicals in a
process control environment. The cost associated with the distribution of an individual
chemical, as well as its interaction with other chemicals, may act as constraints on the
interpretation of the optimal allocation within the process environment.

In this thesis, optimization of an objective function f(x) over a n-dimensional space,
Q is considered, where x € Q, and x = [x1, %9, -+, 7,|". € may either be a real-valued
space, such that €2 C R”, or a discrete space, where each component z; is taken from a
set of values, such as {0,1}.

“Minimizing the objective function f(x)” is formalized as finding a global minimizer
x*, subject to

f(x*) < f(x), Vxe€Q. (2.1)

If f(x*) < f(x) Vx € Q, then x* is considered to be a strict global minimizer. Equation
(2.1) defines an unconstrained minimization problem. If a global minimizer for a function
f(x) cannot be found, it is often acceptable to search for a local minimizer. A local

minimizer xj, satisfies
f(x3) < f(x), Yxe L, LCQ.

The search space limitation, L C €2, signifies that only L is searched. It is possible that

better solutions may exist in €2, but they are not considered.



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 6

In contrast with the unconstrained optimization problem defined in (2.1), a con-

strained minimization problem is defined as

minimizing f(x), x €
subject to  ¢;(x) <0, i=1,...,k
hi(x) =0, i=1,...,m.

Let g(x) < 0 represent the set of k inequality constraints, g(x); < 0. The same inter-
pretation applies to the set of m equality constraints, h(x) = 0. Minimization problems

can be converted into maximization problems by reversing the sign of f(x), i.e.

min f(x) = max(—f(x)) (2.2)

Likewise, any constraints can be adapted by reversing the sign. The rest of this thesis
considers minimization problems, with the assumption that maximization problems can
be converted to minimization problems using equation (2.2).

For optimization problems with multiple objectives, the objective function f(x) may
be extended to represent a set of w sub-objectives, optimized concurrently [14]. For such

an objective function, vector notation for f is preferred, i.e.

f(x) = {f(x1), f(x2), -, f(xw)}

The applied optimization method need not make any special provisions for such an
objective function. How f(x) is evaluated depends on the underlying problem. Objective
functions consisting of multiple sub-objectives are discussed in more detail in section
2.9.2. A minimization problem is considered to be unimodal when its objective function

f(x) has a single global minimum point x*. That is,
f(x*) < f(x), Vxe€Q.

Figure 2.1 gives an example of an unimodal objective function, with domain z € [—3, 3] C
R. Unlike a unimodal problem, which has a single minimum x*, a multimodal function
may have multiple minima. Minima may be local or global, relative to the objective

function. A local minimum xj is subject to

f(x3) < f(x), VxeL



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 7

Figure 2.1: f(z) = z?, a unimodal function.

where L C Q. For a function f(x), there may be more than one minimum. One of the

minima may be a global minimum x**, with

f(x™) < f(x)

for all local minima f(x}). Figure 2.2 depicts a multimodal function with two equal
minima, indicated by symbols P and (). Classical optimization techniques consider
only a single solution to an optimization problem f at any given time. Minimizing a
multimodal function such as in figure 2.2 presents a problem, since a single solution may
not always be the only acceptable solution. It is possible to solve multimodal problems
by repeatedly applying a technique that maintains a single solution to the same search
space. Such an approach is known as a sequential technique. A technique that locates
multiple solutions concurrently, is known as a parallel technique.

This thesis will focus on developing evolutionary techniques that solve unconstrained
optimization problems in continuous, real-valued spaces. Niching techniques are de-
veloped to solve both unimodal and multimodal optimization problems, with single or

multi—objective cost functions.



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 8

Figure 2.2: Function f(r) = z* — 22? with two equal minima, P and Q.

2.3 Evolutionary Computing

Evolution is a process through which individuals in a community strive to survive in
their environment. An individual’s survival depends on its ability to continually adapt
to make better use of the resources available in its environment and to co-exist with
other individuals. Several factors may influence how evolution in an environment takes

place. These factors include:

e Changes in an environment, such as the availability of resources required for sur-

vival.

e Interaction between individuals in a community of individuals residing in an envi-

ronment.
e Influences of other communities.

Evolutionary computing simulates the evolution process by representing candidate solu-
tions as a population of individuals within an environment and evolving them over time

[3]. To facilitate the evolutionary process, individuals are evaluated at regular intervals,



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 9

or generations, using a fitness function. A fitness function evaluates the quality of a
potential solution represented by an individual. Depending on the type of evolutionary
algorithm, a population of individuals is adapted using evolutionary operators and strate-
gies in an attempt to find an optimal solution. Evolutionary operators include mutation,
reproduction, selection and competition between individuals. The adapted individuals
represent a next generation. The process of creating a next generation can be repeated
until an acceptable solution is found, or until a maximum number of generational steps
have been taken.

Evolutionary operators manipulate individuals in an effort to produce better indivi-
duals. In an environment where resources are limited, individuals need to be genetically
superior to their siblings in order to survive. The characteristics of an individual, or
the candidate solution represented by it, can be interpreted in two different ways. An
individual’s genotype describes its genetic composition inherited from its parents. Ge-
netic information may initially be random, but over a number of generations it may
become ordered to represent experiences gained by its parents. Genetic information is
passed on to offspring. An individual’s phenotype is an expression of its behavior in an
environment. Mayr identified two such relationships, pleiotropy and polygeny [63].

Pleiotropy describes a situation where changes to genes may affect phenotypic beha-
vior in an unexpected way. Polygeny describes the interaction among genetic information
to produce a specific phenotypic trait. In order to adapt or change the phenotypic
behavior, all genetic information has to change.

Several different evolutionary computing approaches have been suggested, such as ge-
netic algorithms, genetic programs, evolutionary programming and evolutionary strate-
gies [3]. Niching techniques have been specifically investigated under the wing of genetic

algorithms. The next section presents a short introduction to genetic algorithms.

2.4 Genetic Algorithms

Optimization with genetic algorithms (GAs) is generally regarded to have been the first
evolutionary computing technique developed and applied [24]. The technique was in-

troduced in 1975 by Holland [36]. Since the focus of this thesis falls on particle swarm



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 10

Symbol | Meaning

g Generation index
Jmaz Maximum number of generations
C, Population of individuals in generation g

Cy,i Individual ¢ of population Cy
f(Cy;) | Fitness of individual i at generation g
fe Minimum fitness threshold

Table 2.1: GA symbols

optimization, the rest of this section presents only a general overview of GAs, to em-
phasize similarities and differences between the two paradigms. The interested reader is
referred to [31] for a more complete treatment.

A genetic algorithm performs optimization by evolving a genetic representation of a
problem. A population of individuals is evolved over a number of generations, using the

following algorithm (refer to table 2.1 for an explanation of symbols used):
1. Set g = 0.
2. Initialize chromosomes of the initial population C,.
3. Evaluate the fitness of each individual in the current population.

4. While not converged:

offspring and the previous population Cy_;.

Individuals may be initialized randomly or by using some technique relevant to the opti-

mization problem. A population is considered to have converged either after a maximum



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 11

number of new populations have been created (when g > gmaz), or when f(Cyp) < fy,
where 3 b € Cy|f(Cyp) < f(Cyi), Vi € Cy. The threshold f, represents a value that
can be used to determine when an individual represents an acceptable solution. The
representation of individuals, fitness functions and the GA evolutionary operators are

now discussed in more detail.

2.4.1 Representation of Individuals

The traditional GA represents individuals with fixed length bit-strings, although variable
length strings have also been used [32]. The significance of each individual bit varies

according to the problem domain being optimized:

- An individual bit may represent a single property of the candidate solution rep-
resented by an individual. Properties therefore have binary values, and can only
be present or absent. This scenario could occur in a process optimization prob-
lem where the presence or absence of chemical gases determine the outcome of a

manufacturing step.

- A bit string can be an encoding of a set of nominal values. In such a case, the
number of bits would be equal to the number of possible nominal values. The bit

string may represent only a single nominal value, or combinations thereof.

- Bits may encode numerical values. An individual’s genotype then has to be con-
verted to a phenotypic representation before it can be interpreted. A 15-bit binary
string representing a real-value between 0 and 1 may for example be decoded to

its phenotype p using the formula

TR
P=55 > 2. (2.3)
i=1
where b; represents the individual bits in a bit string b.

GAs have also been tested using real-valued representations of genetic information. In-
stead of using a bit-string, a vector of numerical values is optimized. Janikow and
Michalewicz reported superior results when comparing numerical representations with

binary representations on real-valued numerical optimization problems [45].



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 12

2.4.2 Fitness Functions

A fitness function maps an individual’s genotype to a scalar value that can be interpreted
to determine the quality of the candidate solution represented by the individual. Fitness
functions are not only used to determine the quality of individuals, but are also used
by crossover and mutation operators (discussed in section 2.4.3). Performing crossover
on individuals with similar fitness may accelerate convergence in a unimodal problem.
Mutation on individuals with poor fitness may lead to better solutions. These operators
depend on an accurate interpretation of a candidate solution by the fitness function. In
multi—objective optimization problems, the fitness function represents all the individual
objectives. When dealing with constrained optimization problems, the equality and

inequality constraints imposed on a search space need not be part of a fitness function.

2.4.3 Evolutionary Operators

Section 2.3 pointed out that evolutionary computing approaches utilize some form of
evolutionary operator to improve the quality of individuals in a population. This section
presents the following operators utilized by GAs: crossover (or recombination), selection

and mutation.

Crossover

The crossover operator operates on binary or numerical genotypic representations. It
produces offspring from two parent individuals by a recombination of their genetic ma-
terial. The recombination process exchanges sections of the parents’ genetic strings to
form two new strings, representing offspring. The process of determining which parts of
the genetic material to exchange, allows for the definition of several different crossover

techniques, of which the most popular are listed below:

One-point crossover: One-point crossover randomly selects a position ¢ in a string of

length [, where i € [1,1 — 1]. All positions after i are swapped.

Two-point crossover: Two-point crossover randomly selects two positions, 7; and is,

where 1,1 € [1,1 — 1], subject to i1 < is. All positions between i; and iy are



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 13

swapped.

Uniform crossover: The uniform crossover operator swaps all positions in the strings
of parents with a probability py.. If p,. = 0.5, positions are swapped with equal
probability.

Mutation

The mutation operator is applied with a probability p,,. It inverts bits in the binary
representation of the search space, or adds small random values to numerical chromo-
somes to extend the diversity of a population. The goal of this process is to allow for
the representation of chromosome values and consequently positions in the search space
that may not have been possible as a result of crossover/recombination operators. Un-
fortunately, if care is not taken, mutation may negatively affect highly fit individuals:

The mutation probability p,, is therefore set to a low value.

Selection Operators

The process of selection is concerned with creating a new population of individuals C,
from a previous population Cy ; and newly created offspring. Random selection of
individuals from these groups may lead to the loss of potentially good individuals and
the inclusion of individuals that contain inferior genetic material, that may slow down
the convergence process. Elitism introduces a selection rule that is biased towards highly
fit individuals. Before a new population is selected, all available individuals are ranked
based on their fitness and only the most fit subset of the population is carried over to the
next generation. Alternative selection schemes include tournament and roulette wheel

selection.

2.5 Particle Swarm Optimization

The particle swarm optimization (PSO) algorithm, originally introduced by Kennedy
and Eberhart [49], is modeled after the social behavior of birds in a flock. PSO is a pop-

ulation based search process where individuals, referred to as particles, are grouped into



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 14

a swarm. Each particle in the swarm represents a candidate solution to an optimization
problem. In a PSO system, each particle is “flown” through the multidimensional search
space, adjusting its position in search space according to its own experience and that of
neighboring particles. A particle therefore makes use of the best position encountered by
itself and that of its neighbors to position itself toward an optimal solution. The effect is
that particles “fly” toward a minimum, while still searching a wide area around the best
known solution. The performance of each particle (i.e. the “closeness” of a particle to
the global optimum) is measured using a predefined fitness function which encapsulates
the characteristics of the optimization problem.

Several authors have suggested diversity improvement and convergence acceleration
additions to the PSO. The algorithm’s convergence behavior has also been extensively
analyzed [13, 68, 69, 87]. The rest of this section presents a general mathematical
abstraction of the PSO algorithm to establish a uniform notation, followed by a discussion
of extensions to the algorithm.

Figure 2.3 summarizes the standard PSO algorithm. Each particle 7 in a swarm of

particles maintains the following information:

e X, : The particle’s current position in the search space;
e v, : [ts current velocity;

e y, : The personal best position discovered thus far.

In all cases, x; represents a position in an unconstrained, continuous, n-dimensional
search space, i.e. X = [x1, 29, -,z,]". The velocity vector v contains a velocity element
for each dimension of the search space, i.e. v = [v1, vy, -, v,]7. Different dimensions are
assumed to be independent [13, 87]. The personal best position associated with a particle
1 is the best position that the particle has visited thus far, i.e. a position that yielded
the highest fitness value for that particle. Again, f denotes the objective function, and
f(x;) the fitness of particle .

Particle positions may be initialized randomly within the search space. Some prob-
lems, such as the niching applications discussed later, benefit from the use of uniform
initial particle positions. Particle velocities are initialized to be within the value range

[—VUmaz, Umaz|. The significance of v,,4, is discussed later in this section.



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 15

1. Initialize all particles in the swarm to random positions within the search space.
2. Initialize velocity vectors.

3. Initialize particle personal best positions to be equal to the current positions of the

particles.
4. Repeat until converged:
(a) Update the fitness of each particle i using the fitness function f and the
particle’s current position.
(b) Update each particle’s personal best position
(c) Update the global best particle position
(d) Update each particle’s velocity.
)

(e) Update each particle’s position.

Figure 2.3: The general PSO algorithm

The personal best of a particle at a time step t is updated as:

yi(t) if f(xi(t+1)) = f(yi(t))

(2.4)
xi(t+1) if f(x;(t+1)) < f(yi(t)

yilt+1) = {
Two main approaches to PSO exist, namely lbest and gbest, where the difference is in
the neighborhood topology used to exchange experience among particles. For the gbest
model, the best particle is determined from the entire swarm, and all other particles
flock towards this particle. If the position of the best particle is denoted by the vector
y, then

y(t) = arg féliiéls fyi(t)) (2.5)

where s is the total number of particles in the swarm. For the [best model, a swarm is
divided into overlapping neighborhoods of particles. For each neighborhood Nj, a best
particle position is designated by y;. This best particle is referred to as the neighborhood



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 16

best particle, defined as

N =A{yizi(t),yi_111 (1), - yi—1(t), yi(t), (2.6)
Yit1(t), s Yig-1(t), yira(t) } (2.7)
yit+1) € N; | f(3;(t +1)) = min{f(y;)},Vy: € N; (2.8)

Neighborhoods are usually determined using particles indices, although topological neigh-
borhoods have also been used [47, 48, 51, 85]. The gbest PSO is a special case of lbest
with [ = s, where [ is the number of particles per neighborhood, and s is the total
number of particles in the swarm; that is, the neighborhood is the entire swarm. For
each iteration of a gbest PSO, the j*-dimension of particle i’s velocity vector, v;, and

its position vector, x;, is updated as follows:

vij(t+1) = vi(t) + e (O (Y () — 2i(t)) +
Cara, (1) (95 () — i5(t)) (2.9)

where ¢; and ¢, are acceleration constants and 7 j(t),72,(t) ~ U(0, 1). For each iteration

of the lbest PSO, the velocity update for particle 7 is defined to be

vig(t+1) = wi(t) + eir; () (yig(t) — iy (t) +
Co12,i(8) (9,3 (1) — i 5 (1)) (2.11)

Upper and lower bounds are specified on v; to avoid too rapid movement of particles in

the search space; that is, v; ; is clamped to the range [—vmaz, Vmaaz)-

2.6 Evolutionary Computing vs. Swarm Intelligence

Sections 2.4 and 2.5 presented genetic algorithms and particle swarm optimization re-
spectively. The GA is an evolutionary computing (EC) technique, while PSO is classified
as a swarm intelligence (SI) approach. This section outlines similarities and fundamental
differences between EC and SI.

Behavioral similarities between EC and SI can be categorized based on the following

points:



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 17

e A group of agents, be it a population of individuals or swarm of particles, explore

a search space.

e Bach individual or particle represents a candidate solution to an optimization pro-

blem.
e A fitness function is used to evaluate the quality of a candidate solution.

Regardless of their similarities, EC and SI are motivated by radically different beha-
vioral models. The following points elucidate the conceptual differences between the two

paradigms:

e SI uses the behavior of a swarm of particles in a search space to optimize a prob-
lem. Particles may be simple, but their collective behavior in a swarm solves
complex problems. The behavior of the swarm as a whole and individual particles

is therefore tightly coupled.

e Individuals in EC algorithms, such as GAs, each perform an independent explo-
ration of a search space. Behavioral similarity is maintained through generational

recombination operators.

e SI coordinates movement of particles in a search space through social interaction.
Social interaction shares information between particles about potential solutions.
Particles in SI thus exert a direct influence on each other, i.e. a particle’s candidate
solution is not just as a result of the particle’s exploration of the search space, but

it is also determined by solutions found by other particles.

e The movement of particles in PSO is influenced by a conscience factor, known as a
‘personal best’, as well as the social component mentioned above. SI thus retains
a memory of previous experience. EC retains no knowledge of favorable solutions
and have no direct improvement strategy biased towards possible solutions (EC
retains possible solutions only through recombination operators and fitness rank-

based selection schemes).

From the above it follows that the collective efforts of a set of agents in a search space
clearly differentiates the methodologies behind SI from EC.



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 18

2.7 Extensions to the PSO

Section 2.5 presented the standard PSO algorithm. Numerous authors have proposed
extensions to improve on the original algorithm. The proposed extensions attempt to

satisty the following requirements:

e More effective traversal of a search space, whilst ensuring that search efforts are

not duplicated.

e Accelerated convergence, without disregarding potential global solutions in multi-

modal domains.

Evolutionary techniques that have been successfully applied to evolutionary algorithms
and GAs, have also been successfully adapted to the PSO. This section looks into these
methods. Section 2.7.1 investigates convergence acceleration techniques that allow the
PSO to more efficiently locate solutions. Diversity improvements techniques are then

discussed in section 2.7.2.

2.7.1 Convergence Acceleration Techniques

Convergence acceleration (CA) techniques use different methods to help the PSO algo-

rithm solve optimization problems faster. CA techniques
- directly affect particle trajectories around solutions in a search space, and

- attempt to more effectively share information about previously discovered solu-

tions.

The rest of this section reviews a number of well-known and more recent CA techniques.

Inertia Weight

The use of the inertia weight w was introduced by Shi and Eberhart [80] and was not
present in the original paper by Kennedy and Eberhart [49]. The inertia weight controls



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 19

the influence of a particle’s previous velocity, resulting in a memory effect. The velocity

update equation (equation (2.9)) is redefined to be

vt +1) = wvi (t) + e () (i () — 2i5(t)) +
cara,j(t) (4 (t) — i (1)) (2.12)

Decreasing w from a relatively large value to a small value over time results in a rapid
initial exploration of the search space, that gradually becomes more focussed. Small
w-values result in small adaptations to particle positions, effectively yielding a local
search. When w = 1, equation (2.12) is equivalent to the original PSO velocity update in
equation (2.9). Van den Bergh investigated the effect of w on the convergence properties
of the PSO [87]. It was found that there exists a strong relationship between w and the
acceleration coefficients, ¢; and ¢y, namely that the relationship between w, ¢; and ¢y
may be expressed as

w > %(cl +c9) —1 (2.13)

Parameter settings that satisfy the relationship in equation (2.13) lead to convergent
particle trajectories. The interested reader is referred to [87] for a thorough treatment
of the subject.

Shi and Eberhart suggested using a fuzzy controller to adapt the inertia weight [81,
82]. Their controller adapts w depending on the global best solution’s distance from an
optimum, found by evaluating f(y). On unimodal functions, the fuzzy controller PSO
exhibited favorable performance when compared to a PSO using a linearly decreasing

inertia weight [81].

Constriction Factor

The term v,,,4, is used to limit the maximum velocity that a particle can achieve. Particles
with a very high velocity have distinctly divergent behavior, as their position updates
are erratic, and do not focus on a solution. Clerc and Kennedy showed that v,,,, is not

necessary if an alternative velocity update equation is used, namely [13]

vij(t+1) = x[i(t) + e (0) (i () — i () + coray (8) (45 (8) — 2i4(2))]



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 20

where

2
pe e
with ¢ = ¢; + ¢ and ¢ > 4. The parameter x ‘constricts’ rapid growth of the velocity
vector that may lead to non-convergent particle trajectories. Clerc preceded the deriva-
tion of this model by an analysis obtained by rewriting equations (2.12) and (2.10) as
difference equations, and performing an eigenvector analysis. Eberhart and Shi found
that the use of the constriction factor approach in conjunction with velocity clamping

leads to improved performance [22].

Evolutionary Computing Generational Operators

Angeline used an evolutionary computing selection rule to improve interaction between
particles in the particle swarm [2]. Before velocity updates take place for individual
particles, each particle is assigned a performance score based on a comparison to a
randomly selected subset of the particle swarm. A particle scores a mark for each of the
other particles in the subset that have worse fitness than itself. Particles are then ranked
according to this score. The position vectors of the top half of the swarm are copied
onto that of the bottom half. The personal best positions of the bottom half remain
unchanged. The selection process thus resets ‘poor performers’ to locations within the
search space that have yielded better results.

Lovbjerg et al used a breeding operator and particle subpopulations to achieve faster
convergence (subpopulations are discussed in section 2.7.2) [60]. To identify breeding
particles, each particle in the swarm is assigned a breeding probability, p,. Note that
particle fitness does not influence the assignment of p,: any particle can be chosen for
breeding. All particles marked for breeding are then randomly paired off until the set
of marked particles is empty. New particle positions are calculated using an arithmetic
crossover operator. The offspring of ‘parent’ particles ¢ and j occur, at time step ¢t + 1,
at positions

X, (t+1) = pxi(t + 1) + (1 — p)x;(t + 1)

and

x’j(t +1) =px;(t+ 1)+ (1 —p)xi(t + 1).



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 21

Velocity vectors are initialized to the normalized sum of the parents’ velocity vectors:

V= Y|
Z
C v+ vl
and
/ v+ vj
V. =
7 ||Vz |||| ]“

respectively. Performing breeding on a global scale may avoid stagnation on local op-
tima. Offspring particle positions are always initialized to a position within a hypercube
spanned by x; and x;. Personal best positions y; and y;- are initialized to x; and x;-

respectively.

Objective Function Stretching

Parsopoulos et al introduced the “stretched” PSO (SPSO) [71]. The SPSO performs
a transformation on the landscape of the original fitness (or objective) function, called
stretching. The technique is applied as follows: A particle swarm is trained using the
gbest algorithm. Once the PSO has identified a local minimum x* by comparing particle
fitnesses to a performance threshold value, the objective function is stretched so that
for each point x, where f(x) < f(x*), x is unaffected. All other points, such that
f(x) > f(x*) holds, are stretched so that x* becomes a local maximum. All particles
are then repositioned randomly. The fitness function f(x) is redefined to H(x), where

_ sign(f(x) — f(x")) +1)
H) = 66+ (G ) — Gxn))

and '
[x — x*||(sign(f (%) — f(x")) + 1)
2
Suggested parameter values are v; = 10000, v, = 1 and p = 107!, For a minimization

Gx)=f(x)+m

problem, the sign(-) function is defined as:

+1, x>0
sign(z) = 0, =0
-1, <0

where x is a scalar value. Parsopoulos et al reported promising results when applying
this technique to multimodal functions [71]. Objective function stretching is discussed

in more detail in section 3.4.



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 22

Division of Labour

The ‘division of labour’ PSO (DoLPSO) attempts to improve the PSO algorithm’s con-
vergence around optima [91]. The DoLPSO method constantly monitors the activity of
all particles. When a particle has not improved its candidate solution over a number of
training iterations, it is re-assigned a different ‘task’, namely optimizing the best solution
that the swarm has found thus far. This task is referred to as the local search task. A

particle can therefore be performing one of two tasks:
Task 1: Exploring the search space using the gbest algorithm.
Task 2: The local search task.

When a particle ¢ starts to perform the local search task at iteration ¢, its position vector
is initialized to x;(t) = y(¢). Particle i’s velocity vector is also randomly re-initialized
and scaled to be no larger than the velocity of the global best particle, i.e. v; is initialized
so that v;; < v,;, j € [1,n] and ¢ is the index of the gbest particle. Engaging in the
local search task decreases swarm diversity, encouraging faster convergence. To facilitate
the decision process behind ‘division of labour’, the following parameters are associated

with a particle 4:
- X;: Particle state, i.e. which task is performed.
- #;: A response threshold.
- (;: A particle stimulus.

When X; = 0, particle i explores the search space (Task 1), and when X; = 1, it
performs the local search task (Task 2). Particle i’s state X; changes from Task 1 to
Task 2 with a probability P per time step

14

The parameter ¢ controls the steepness of the response function T' (the term ¢! thus
represents the stimulus (; raised to the power £). The stimulus (; represents the number

of iterations since the last improvement to f(x;). Therefore, when i’s fitness does not



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 23

improve over time, (; will increase. When i’s fitness does improve over time, (; will remain
zero and X; = 0. Vesterstrgm et al reported improved convergence when comparing
DoLPSO to GAs, the traditional PSO and simulated annealing [91].

Multi-Phase Generalization

Al-Kazemi and Mohan suggested a ‘multi-phase’ extension to the PSO [1]. This tech-
nique varies the optimization goal of each particle over time, effectively forcing it to

change its trajectory. The velocity update in equation (2.9) is redefined to be
’Uz',j(t + 1) = CyUj 4 (t) + ngj (t) + Cy i 5 (t) (214)

The parameters c,, ¢, and ¢, may assume different values, that are determined by a
particle’s associated group and phase. Groups and phases segment a swarm into sub-
swarms that pursue different goals. The following parameter values were suggested for

two groups, each with two phases [1]:
Phase 1, group 1: ¢, =1, ¢, =1, ¢, = —1
Phase 1, group 2: ¢, =1, ¢y = —1, ¢, =1
Phase 2, group 1: ¢, =1, ¢y = —1, ¢, =1
Phase 2, group 2: ¢, =1, ¢, =1, ¢, = —1

Particles in phase 1, group 1 move towards y, while particles in group 2 move away
from y towards x. In phase 2, the roles are reversed. (It is not clear why the explicit
specification of ¢, was necessary, as it does not affect the optimization process.) The
number of phases and groups is a user tunable parameter and must be known before
the algorithm starts. A group of particles that are in the same phase all have identical
goals. Changing phase is controlled by a phase change frequency (PCF). PCF indicates
a number of evolutionary iterations of the PSO algorithm. Al-Kazemi and Mohan also
proposed that a PCF free version of the algorithm would initiate a phase change when a
pre-determined number of iterations yielded no improvement. The algorithm randomly
re-initializes particle velocities to avoid converging on sub-optimal solutions after a pre-

determined number of iterations, called the wvelocity change variable (VC). In quite a



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 24

departure from the original PSO, the multi-phase generalization uses a hill-climbing
approach that only updates particle positions if a calculated new position presents an
improvement. A particle will therefore always occupy an optimal position relative to its
own history. This explains why a personal best position is not taken into consideration
in equation (2.14).

Tested on both discrete and continuous problems, the multi-phase PSO outperformed

the standard PSO, GAs and evolutionary programs [1].

The Guaranteed Convergence Particle Swarm Optimizer

It is decidedly difficult to determine proper values for parameters such as ¢y, ¢y and
w without a theoretical basis. Some authors have attempted to determine acceptable
values empirically, such as in [8]. Recently, extensive analysis of particle trajectories
within the PSO was done independently by Van den Bergh [87] and Clerc et al [13] to
determine how to guarantee convergent swarm behavior. In the rest of this section, the
guaranteed convergence particle swarm optimizer (GCPSO) is presented, which resulted
from the analysis done in [87].

The gbest algorithm exhibits an unwanted property: when x; = y; = § (for any
particle ), the velocity update in equation (2.5) depends solely on the wv;(t) term.
When a particle approaches the global best solution, its velocity property also approaches
zero, which implies that eventually all particles will stop moving. This behavior does
not guarantee convergence to a global best solution, or even a local best, only to a
best position found thus far [87]. Van den Bergh and Engelbrecht introduced a new
algorithm, called the GCPSO, to pro-actively counter this behavior in a particle swarm
and to ensure convergence [90].

The GCPSO algorithm works as follows: Let 7 be the index of the global best particle.
The idea of GCPSO is then to update the position of particle 7 as

Trj (t + ].) = Q]' (t) + WU 4 (t) + p(t)(]_ — 27"2,]'). (215)
To achieve this, the velocity update of 7 is defined as

vt 4+ 1) = —x, (1) + 9;(t) + wuyr;(t) + p(t)(1 — 21y ). (2.16)



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 25

In equation (2.16), the term —x, ‘resets’ the particle’s position to the global best position
y, wv, signifies a search direction, and p(¢)(1 — 2ry(¢))) adds a random search term to

the equation; p(0) is initialized to 1.0, with p(¢) defined as

2p(t)  if #successes > s,
p(t+1) =< 0.5p(t) if #failures > f. (2.17)
p(t) otherwise

A ‘failure’ occurs when f(y(t)) = f(y(t — 1)) and the counter variable # failures is
subsequently incremented (i.e. no apparent progress has been made). A success then
occurs when f(y(t)) # f(y(t —1)). The control threshold values f, and s. are adjusted
dynamically. That is,

st 4 1) = { se(t)+1 if #faz:lures(t +1)> f. (2.18)
Se(t) otherwise

Ftt1) = { fe(t)+1 if #suc‘cesses(t +1) > s, (2.19)
fe(t) otherwise

This arrangement ensures that it is harder to reach a success state when multiple fail-
ures have been encountered, and likewise, when the algorithm starts to exhibit overly
confident convergent behavior, it is forced to randomly search a smaller region of the
search space surrounding the global best position. Furthermore, the counter values are

adapted using the equations

#successes(t + 1) > #successes(t) = # failures(t +1) =0
# failures(t + 1) > # failures(t) = #successes(t +1) =0
The algorithm is repeated until p becomes sufficiently small, or until stopping criteria
are met. Stopping the algorithm when p reaches a lower bound is not advised, as it does
not necessarily indicate that all particles have converged — other particles may still be
exploring different parts of the search space.
Note that only the best particle in the swarm uses the modified updates in equations
(2.15) and (2.16), the rest of the swarm uses the normal velocity and position updates
defined in equations (2.9) and (2.10).



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 26

2.7.2 Swarm Diversity Enhancements

This section discusses a number of PSO diversity enhancement techniques. Diversity
enhancement techniques attempt to ensure that the PSO algorithm explores as much of

a search space as possible.

Subpopulations

Lovbjerg et al’s subpopulation scheme [60] segments the particle swarm into a number
of independent particle populations. Each population maintains its own global best so-
lution, based on the experiences of all particles that are members of the swarm. Subpop-
ulations evolve independently, except when inter-population crossover takes place. (The
crossover operator was defined as part of Lgvbjerg et al’s breeding strategy discussed
in section 2.7.1). Performing inter-population breeding facilitates a form of formalized
social information exchange. Formal ‘contact’ between swarms ensures that all swarms
are aware of the global best solution located by all the subpopulations. This information
exchange may lead to faster convergence.

Parsopoulos and Vrahatis used a population based approach to solve multi—objective
optimization problems [75]. Their technique, VEPSO, was motivated by the VEGA
(Vector Evaluated Genetic Algorithm) approach introduced by Schaefer [79]. VEPSO
optimizes a multi—objective problem, consisting of two goals, i.e. the fitness function is
defined as f = {fi, fo}. Two independent swarms each optimize one of the objective
functions. Then, if swarm A optimizes function f; and swarm B optimizes function fs,
the gbest particle from A is used in the velocity update of particles in B, and vice versa.
This technique is reported to efficiently and accurately solve simple multi-objective op-

timization problems [75].

Particle Neighborhoods

A particle subpopulation is just a different way of defining a particle neighborhood.

Subpopulations

- maintain several concurrent particle swarms, each with its own global solution;

- may explicitly allow information exchange between subpopulations.



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 27

Particle neighborhoods are more dynamic. Neighborhoods

- dynamically determine ‘global best’ solutions that depend on the subset of particles

that make up a local particle population at a certain point in time;
- may overlap, effectively implementing an implicit information exchange.

Kennedy tested a number of different particle neighborhood topologies [47]. His
experiments investigated the relationship between the effect of each particle’s personal
experience (or conscience factor) y, and the social exchange of information regarding a
global best solution y. Particle neighborhoods were defined based on indices, i.e. each
particle in the swarm was assigned an index and its visible neighborhood was determined
accordingly. For example, if a particle ¢ was only to consider its direct neighbors, it would
consider the particles with indices 7 — 1 and 7 + 1, respectively. Particle indices do not
assume positional similarity, i.e. particles 2, # — 1 and ¢ + 1 may occupy completely
different positions in the search space. Among others, Kennedy tested the cognition only
model. This model uses only a particle’s personal best position in the velocity update.

v; is then updated as
Vi (t+ 1) = wv(t) + errj (#) (e, (1) — 245(2)) (2.20)

Clearly, there is no sharing of social information, and each particle effectively performs
an individual search in its local area, based on its personal experience.

Suganthan tested a neighborhood operator that considers the spatial positions of
particles based on inter-particle distances [85]. Particle i is considered to be in particle

j’s neighborhood when

1xi — x|
d < g?
max
where d,, ., is the maximum inter-particle distance, £ = %, and t,,,, 1S the max-
maxr

imum number of training iterations. Suganthan’s approach initially favors small neigh-
borhoods, promoting diversity. As the number of iterations increases, neighborhood size
increases, until the model resembles the gbest algorithm when ¢t — ¢,,4,.

Kennedy proposed the social-stereotyping approach, a hybrid of index-based and

topological neighborhoods [48]. The approach defines a number of clusters, using a



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 28

k-means clustering, on the personal best positions of all particles in a swarm. The
number of clusters calculated is specified before the algorithm commences. Each cluster

C therefore consists of a set of similar personal best positions. The centroid C is defined

=1 )y

yeC

as

with |C| the cardinality of C. For a particle i belonging to C, three new velocity update

equations were defined, based on the lbest update in equation (2.11):

vig(t+1) = vig(t) + e (8)(C(0) (1) — i (1)

Heara, ()(95(1) — wiy(1)) (2.21)
vig(E+ 1) = 0i(8) + err; (8) (yiy (1) — 7a;(2))

+eara, (H)(Clg) (1) — wiy(t) (2.22)

vij(t+1) = vi(t) +ery(0(C0) ;1) — 2i;5(t))

+eara; (1)(Clg) (1) — a4(1)) (2.23)

The terms C(i) and C(g) respectively indicate the centroids of the clusters to which
particles i and g belong, where y, € N;, and f(y,) < f(¥a), Vya € Ni. N; is defined as
in equation (2.7). Clusters and centroids are recalculated at every iteration of the PSO
algorithm. It therefore significantly increases the algorithm’s computational complexity.

Kennedy and Mendes further investigated assumptions made about the gbest and lbest
neighborhood architectures [51]. When considering neighborhood architectures from an
information flow perspective, an architecture such as lbest with a neighborhood width
of 1 very slowly propagates information about good solutions to other particles. On
the other hand, the gbest algorithm immediately shares good solutions with all other
particles. Kennedy and Mendes generated new architectures by varying the number of
neighbors that define a particle’s topological neighborhood and the ‘amount of cluster-
ing’. Clustering occurs when the neighbors of a node are also neighbors of each other. It
was found that the so-called von Neumann architecture had consistent, favorable perfor-
mance. Where the gbest-neighborhood considers the complete swarm as a neighborhood,
the von Neumann architecture can be visualized as a two-dimensional lattice, where each

node’s neighborhood consists of its direct neighbors: below, above and to the sides.



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 29

Self-Organized Criticality

Lovbjerg and Krink investigated the application of self-organized criticality (SOC) prin-
ciples to diversity enhancement in the PSO [59]. Self-organized criticality describes a
state transition in a complex system that occurs as a result of the behavior of a multi-
tude of parameters affecting and controlling the system. No specific parameter can be
identified as a controlling influence in the behavior of the system. In a physical substance
such as water, a critical point occurs when it changes state from a solid to a liquid. The
substance’s temperature can be identified as the controlling parameter when analyzing
the state-transition. When sand falls onto a surface, it forms a pile. As more sand slowly
falls onto the pile, it may cause small avalanches that carries sand from the top of the
pile to the bottom of the pile. In model systems the slope of the pile is independent of
the rate at which sand falls. The slope is known as the critical slope.

The SOC PSO extends the definition of a particle ¢, to include a critical value Cj.
C; is also denoted as the criticality of the particle, and is initialized to C; = 0. When
particles occur in topologically similar positions in the search space, it can be said that
the swarm is less diverse. The SOC PSO increases the criticality C; of two particles when
they are closer than a certain threshold value fsoc to each other. To keep criticality
from building up, the C; of a particle is reduced by a percentage value psoc during
each iteration of the algorithm. When a particle i’'s C; becomes larger than a threshold
Chuax, all the particles in its neighborhood’s criticality values are incremented by one,
and 7 is relocated to a different position in the search space. The particle i’s criticality
is re-initialized as C; = C; — Cyax. Relocation of a particle effectively avoids the
over-population of certain regions of the search space and promotes swarm diversity. A

particle 7 may be relocated in one of the following ways:

e The position vector x; is randomly re-initialized within the search space, and y; =

X;.

e Particle ¢ retains its personal best memory. Its current position vector is adapted
in the direction indicated by its current velocity vector. A magnitude of Cy 4 is
added to C;.

The traditional linearly decreasing inertia weight was also adapted to be a function of



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 30

C; for particle 7. The inertia weight of particle 7, w;, is set to

Particles in densely populated regions of the search space would therefore be more volatile
than particles in sparsely populated regions as they would be more likely to influence
each other.

Lgvbjerg and Krink reported much improved results when comparing the SOC PSO
to the gbest algorithm. Their relocation schemes do indeed help to improve swarm

diversity, and the SOC inertia weight w; leads to faster convergence.

PSO with Spatial Extension

Krink et al suggested the spatial extension particle swarm optimizer, SEPSO [55]. The
spatial extension (SE) attempts to keep particles from clustering around potential so-
lutions, thus improving swarm diversity and avoiding premature convergence. When a
good solution is located by a swarm, particles tend to cluster around this solution, as
dictated by the gbest velocity update equation. To avoid overcrowding on the y position,
a radius r is associated with each particle, that allows the algorithm to discern when two

particles collide. Krink et al investigated three possible responses when particles collide:

1. Particles are bounced away from the collision in a random direction, retaining their

original speed.
2. Particle interaction mimic realistic, physical collisions.

3. ‘Velocity line bouncing’, that maintains the direction of the velocity vector, but

scales the speed of the particle.

The result of the above collision steps is that premature convergence is avoided. A much
more diverse swarm is maintained, ensuring that more efficient exploration of the search
space takes place.

Experimental results show that SEPSO perform markedly better than both a real-
valued GA and the gbest algorithm [55].



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 31

2.8 Modifications to the PSO

A number of modifications to the PSO have been suggested that cannot be directly
classified as a diversity improvement or convergence acceleration technique. This section

presents a number of these techniques.

2.8.1 The Binary PSO

The basic PSO algorithm assumes a continuous, real-valued search space, where position
vectors may take on any value within an allowed range. This representation is however
not directly usable when optimizing a problem where the solution is represented as a bit
string. Kennedy and Eberhart proposed a binary version of the PSO to cater for this
need [50].

In the binary PSO, elements of position vectors may only take on values in the set
{0,1}. Velocity vectors remain real-valued. A particle position element xz;; is then

updated using the following rule:

a:iyj(t+ 1) = {

where 7; ;(t) ~ U(0,1) and o(v; ;(t)) is defined as

1
o(vis(t) = 1+ e i)
The standard velocity update equation is used as in equation (2.9). Kennedy and Spears
compared the binary PSO to a number of different GAs [52]. They found that the binary
PSO performed exceptionally well when compared to GAs, and its performance did not

suffer on high-dimensional problems.

2.8.2 Cooperative Swarms

Van den Bergh and Engelbrecht developed cooperative particle swarms to train neural
networks [87, 88, 89]. In cooperative optimization, the problem representation vector x
is segmented into sub-vectors, and each set of sub-vectors is optimized concurrently. For

example, a 4-dimensional problem would be represented by a vector x = [z, 29, 3, T4].



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 32

If x can then be segmented into two sub-vectors x' = [z, xs] and x” = [z3, 4] according
to some problem specific rule, the sets of x’ and x” vectors are optimized independently.
This technique is very similar to the Cooperative Coevolutionary Genetic Algorithm
(CCGA) by Potter [76]. Potter’s technique optimizes each parameter in a n-dimensional
problem independently, by segmenting the problem into n different populations. A
complete representation of the objective vector is attained by selecting an element from
each of the n populations.

Cooperative swarms have been applied to function optimization [87] as well as the

training of neural networks (see section 2.9.1 on page 35).

2.8.3 Dynamic Systems

Several authors have investigated the behavior and applicability of particle swarms to

dynamic, or changing environments.

Dynamic Goals

Carlisle and Dozier investigated the performance of PSO in a situation where the optimal
goal position is a function that changes over time [7]. The goal position moves on a
straight line over time, with variable velocity. To avoid stagnation on personal best
positions y that may have been detected in earlier iterations of the algorithm, personal
best positions are periodically re-initialized to each particle’s position vector in the search
space, Xx. The update is referred to as resetting a particle.

They found that if changes in the optimal goal position are small, the swarm suc-
cessfully detects these changes and updates the personal best position y; accordingly. If
changes in the goal position exceed the maximum velocity of the swarm, the swarm will
never be able to ‘keep up’ with the goal position. They also found that if large changes
in the goal function position trigger the resetting of particle positions, the swarm can
more effectively track the changing goal. ‘Large changes’ were detected by evaluating
the fitness of a random point in the search space. The fitness of the selected position
changes proportionally to changes in the goal position.

In a further work, Carlisle and Dozier improved their original results by making the

following changes [9]:



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 33

- A constriction factor approach was used for velocity vector updates, instead of an

inertia weight.

- Instead of monitoring the fitness of a randomly selected position in the search
space, the fitness of a particular particle is compared to that of the same position
in the search space at an earlier iteration. A significant difference triggers a reset

of particle positions.

The suggested changes showed to be a definite improvement.
Eberhart and Shi also tested PSO performance on dynamic goals [23]. A randomized
inertia weight, of the form
w=0.54+0.5xr(t)

where r(t) ~ U(0.1), was used. Eberhart and Shi obtained improved results when
comparing PSO performance to that of evolutionary strategies (ES) and evolutionary
programs (EP). As pointed out in [87], it would seem that Carlisle and Dozier’s resetting
mechanism may not be necessary.

Hu and Eberhart introduced a ‘changed-gbest-value’ method to detect changes to the
goal position [39]. This technique interprets changes to the fitness of y as a change to
the objective function f. If f changes, the current y would no longer be optimal and
needs to be re-evaluated. Hu and Eberhart also introduced the ‘fixed-gbest-value’ method
[40]. This technique detects whether the best solution in a swarm y stagnates on the
same position over a number of training iterations. The algorithm’s implementation also
monitors a second global best solution y’. The second global best solution y’ has better
fitness than all other particles, except the global best y. In summary, the algorithm can

detect changes in the dynamic environment in the following ways:
- Re-evaluating y will indicate a change in the quality of the candidate solution.
- Monitor y and y’ for changes over a pre-determined number of iterations.

Once a change in the environment has been detected, the algorithm may respond in the

following ways:

- No action may be taken.



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 34

- Randomize the position vectors of 10% of the particle population, while resetting

the remaining particles.
- Randomly initialize y, and reset the remaining particles.
- Randomly initialize y.
- Reset all particles, while leaving y unchanged.

- Randomize the position vectors of 50% of the particles, and reset the remaining

particles.
- Randomize the position vectors of all particles.

The above techniques were evaluated on a single test function and needs to be further

investigated before any general conclusions can be drawn on their effectiveness [40].

Noisy Functions

Parsopoulos and Vrahatis evaluated the performance of the PSO on noisy functions [73].
A noisy function can be simulated by redefining an objective function f on the parameter
x to be:

f7(x) = fx)(1+n) (2.24)
where n ~ N(0,0?). Parsopoulos and Vrahatis tested objective functions by adding
Gaussian noise, such as in equation (2.24), and by rotating the axes of the problem
space through random angles. They found that noise did not seriously impair the PSOs

ability to locate global optima, but as o? becomes larger, performance becomes worse
[73].

2.9 Applications of the PSO

This section describes a number of application areas where the PSO approach was used
to solve specific problems. The form of the algorithm itself was not changed, only the
basic definition of particle representation to suit the problem described. This section

presents only a sample of the applications mentioned in available literature.



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 35

2.9.1 Training of Neural Networks

Supervised neural network training has been widely researched and several techniques
such as gradient descent (GD) and scaled conjugent gradient (SCG) have been developed

to train them [24, 67]. A neural network can be defined in the following way:

A neural network is basically a realization of a non-linear mapping from R!
to RE,
Fyy : RN — RX

where I and K are respectively the dimension of the input and target (desired
output) space. The function Fny is usually a complex function of a set of

nonlinear functions, one for each neuron in the network.

Neural networks consist of layers of neurons. Each neuron consists of a transfer function
that processes a number of inputs from a previous layer in a neural network, or external
inputs. A neuron’s output may serve as an input to a next layer. Successive layers in a
network are connected through a set of weight values that effectively define the network.
When a neural network learns to approximate a function or to classify a dataset, the
network’s set of weights are adapted to improve its performance. For more information
on how GD and SCG learn weights, the interested reader is referred to [24]. Several
authors have used the PSO algorithm to both train neural network weights, and learn
characteristics of the transfer functions that define a network’s neurons.

In the first paper on the PSO algorithm, Kennedy and Eberhart reported positive
results when using PSO to train feed-forward networks [49]. They tested their neural
networks on the XOR problem, as well as the well-known Fisher iris data (available
from [5]). They informally remarked that networks trained with the PSO had slightly
better generalization.

Eberhart and Hu used PSO to train a neural network in the medical environment
[21]. The goal of the network was to distinguish between patients suffering from tremors.
Tremors are a medical condition that describe uncontrollable limb movement. Apart from
learning neural network weights, Eberhart and Hu used the PSO algorithm to learn the

slopes of the sigmoidal transfer functions employed in the neural network’s neurons. To



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 36

clarify, if the sigmoid function employed is given by

fsig(®) = Hlﬁ
the parameter A\ was learned with the network weights.

Van den Bergh used the cooperative PSO described in section 2.8.2 to train feed-
forward neural networks with summation units [88] and product units [89], respectively.
Ismail and Engelbrecht found that the PSO outperformed traditional neural network
training techniques when training networks with product units [25, 44].

Mendes et al empirically studied the performance of customized particle neighbor-
hoods when compared to a back-propagation neural network and evolutionary program-

ming learning techniques [64]. Particle neighborhoods were considered as graph struc-

tures. The following configurations were considered:
e Square: Each particle’s neighborhood consists of exactly four other particles.

e Pyramid: Particle neighborhoods are set up such that the visualized topology

resembles a three-dimensional wire frame.

e 4 Clusters: Four subgraphs consisting of five particles each were formed. FEach
subgraph had two direct connections to its two closest neighbors and a single

connection to the remaining subgraphs.

Mendes et al found that PSO based approaches performed better than back-propagation
based methods for problems with multiple local minima. Specifically, the Square and
4 Clusters configurations outperformed all other techniques on classification problems.
Conradie et al recently presented the Adaptive Neural Swarming (ANS) approach
[16]. ANS was developed to alleviate suboptimal performance of existing neurocontrollers
in dynamic process environments. Conradie et al demonstrated that existing linear
process controllers lack the ability to maintain an optimal operating point, due to the
nonlinear nature of process environments. An operating point indicates a combination
of parameter values, such as temperature and pressure, that may offer an economically
acceptable performance level. Neural networks can be trained to mimic the function

of neurocontrollers to maintain an operating point [18]. The ANS technique uses PSO



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 37

as a local optimization algorithm training a reinforcement neurocontroller architecture.
Reinforcement neural learning uses information from a learned problem space to gauge
how effective a learning process is. In the ANS PSO algorithm, each particle represents
a candidate neurocontroller, which is a slightly altered replica of an existing controller.
Conradie et al found that the utilization of PSO as optimization techniques yield much
improved performance, to the extent that ANS offers a viable neurocontroller alternative
[16].

2.9.2 Multi—-Objective Optimization

Recently, particle swarms have been applied to multi-objective optimization (MOO)
problems. Performing MOO with evolutionary algorithms is a vast research field and a
complete discussion of the subject is beyond the scope of this thesis. This section presents
a general formulation of MOO problems, and discusses the proposed PSO techniques to
solve them.

Formulation of MOO problems

MOO techniques attempt to find a global optimum x* = [z}, x5, ... ,x;‘L]T that will:

- Satisfy m inequality constraints:

g(x)>0 i=1,2,...,m

- Satisfy p equality constraints:

hi(x*)=0 i=1,2,...,p

e Optimize a k-dimensional vector function:

F(x) = [fi(x), fox7), .o, fu(x)]

Different objective functions may have optimal solutions in locations that conflict with
each other. The objective of MOO is to find a solution vector x* that is acceptable in

terms of f(-) and represents optimal values for x* [14].



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 38

The solution x* is Pareto optimal if there exists no other solutions in the search space

that would improve the quality of one of x*’s components, without a deterioration in

any other component. To better understand this concept, let x, = [Ty1,Zp2,.- ., Tyn]
and X, = [Ty1, Tu2,- - -, Tun) be two vectors. Vector x, dominates x,, if and only if
Ty < x; fori=1,...,n, and

Ty < X,,; for at least one 1.

x* is considered to be Pareto optimal if no other position in the search space dominates
it.
The rest of this section presents PSO based approaches to solving multi—objective

optimization problems.

MOPSO

The multiple objective particle swarm optimization (MOPSO) algorithm, introduced
by Coello Coello and Lechuga [15], uses an approach motivated by the Pareto Archive
Evolution Strategy (PAES) [54]. As described above, the goal of MOO techniques is to
locate non-dominated solutions in the search space. MOPSO maintains a global reposi-
tory of ‘flight experience’ where each particle is allowed to save located non-dominated
solutions after each algorithm iteration. Before learning starts, MOPSO segments the
problem space into a set of hypercubes, H. The velocity update equation for a particle

1 1s redefined to be

vij(t+1) = wv (t) + () (Y (t) — 2i(t)) +
7o, () (Hp;(t) — 2i5())

where Hy, ; represents the j* dimension of a randomly selected particle in hypercube Hy,.
The position repository maintains a set of favorable positions within the search space.
The position repository is re-evaluated after each iteration of the algorithm. Dominated
solutions in the repository may be replaced by better, non-dominated solutions. A limit
is placed on the size of the position repository, so a heuristic is put in place to determine
which particle position will have preference over others. The technique is simple: A

position that exists in an area of the search space that is less populated will be given



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 39

preference over a solution occupying a position in a more densely populated region. This
scheme has the added advantage of promoting swarm diversity. MOPSO performed
similar to existing GA-based MOO techniques [15].

Weighted Aggregation and Populations

The weighted aggregation approach is a simple technique to deal with MO problems.
The technique uses a linear combination of objective functions to formulate an objective
function vector describing the problem. More formally, the objective function is defined

f(x) = sz‘fi(x)

Although it is not required, it is usually assumed that Zle w; = 1.
Three different weight aggregation techniques to solve MO problems were imple-
mented by Parsopoulos and Vrahatis using the PSO [75]:

Conventional Weighted Aggregation (CWA): CWA uses a set of fixed weights. The

technique can only locate a single Pareto Optimum per algorithm run [46].

Bang-Bang Weighted Aggregation (BWA): BWA oscillates the weights associated with
each of the objective functions. For a two objective function, weights are calculated

wi(t) = sign(sin(27t/1)), ws(t) = 1.0 — wq(¢)

The symbol ¢ represents the index of the current iteration, and 1 a weight change

frequency.

Dynamic Weighted Aggregation (DWA): To introduce a more gradual change to weight

values, the DWA approach defines, for a two objective problem, weights as
wy(t) = |sin(27t /)], wa(t) = 1.0 — wy(t).
This update forces movement on the Pareto front.

Parsopoulos and Vrahatis also introduced a technique based on the VEGA algorithm

[79] that was discussed in section 2.7.2.



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 40

Dynamic Neighborhoods

Hu and Eberhart introduced three new techniques to solve multi-objective problems
with the PSO approach [38]:

e A single objective is optimized while other objectives are kept constant. The tech-
nique was labelled as one-dimensional optimization by its authors. For example,
in a two objectives problem, with objective functions f; and f,, fo may be kept
constant while optimizing f;. Hu and Eberhart suggests keeping a ‘simple’ objec-
tive function constant, while optimizing a ‘difficult’ function. This approach is an

unmotivated heuristic, and may not be generally applicable.

e Dynamic particle neighborhoods are used to locate multiple Pareto fronts. The
technique is similar to the dynamic neighborhoods utilized in chapter 4, but was
developed independently. At each velocity update step, the neighborhood term y;
in a [best velocity update for a particle ¢ is replaced with a neighborhood position
calculated as the best position among m neighbors. Neighbors are determined

based on their proximity to . Hu and Eberhart used m = 2 in their experiments.

e A particle’s personal best position y is only updated if the improved position

considered dominates the existing personal best, i.e. for particle ¢

x;(t+1) if x;(t + 1) dominates y;(t)

yi(t+1) = {

vi(?) otherwise.

This update limitation is similar to the hill-climbing update step taken by the
multi-phase PSO [1].

Through visual inspection (i.e. plotting particle positions), Hu and Eberhart found that
the above techniques extend the capabilities of the PSO to solving multi—objective opti-

mization problems [38].

2.10 Conclusion

In this section, several different evolutionary computing and swarm intelligence tech-

niques were discussed. Each of these techniques were originally based on the observed



University of Pretoria etd - Brits, R (2002)
CHAPTER 2. BACKGROUND 41

behavior of some element of nature. Evolutionary computing is based on the process of
evolution, and attempts to mimic it. Swarm intelligence techniques exploit the emergent
collective intelligence of swarms of seemingly unintelligent particles, such as is present
in the behavior of a flock of birds flying in formation.

In particular, section 2.4 reviewed simple genetic algorithms, and section 2.5 pre-
sented particle swarm optimizers. Numerous extensions and improvements to the PSO
were presented in sections 2.7 and 2.8. Most notably, the GCPSO, which plays an im-
portant role in the NichePSO algorithm, was introduced in section 2.7.1. The chapter
was concluded by a discussion of some of the applications of the PSO. Numerous other

applications, where the PSO can be applied without any modifications exist, such as:

Optimization of hydraulic equations [56].

Min-max optimization [58, 83].

Integer programming [57].

Memetic neuro-evolution, for nonlinear process controllers [17].

The above list is by no means exhaustive. In the next chapter, niching techniques are

reviewed, followed by modifications to the standard PSO to enable it to perform niching.



	00front
	01chapter1
	Chapter 2: Background and literature review
	2.1 Introduction
	2.2 Function optimization
	2.3 Evolutionary computing
	2.4 Genetic algorithms
	2.5 Particle swarm optimization
	2.6 Evolutionary computing vsswarm intelligence
	2.7 Extensions to the PSA
	2.8 Modifications to the PSO
	2.9 Applications of the PSO
	2.10 Conclusion
	03chapter3
	04chapter4
	05chapter5
	06chapter6
	07chapter7
	08references



