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Summary

We consider linear mathematical models for elastic plates and beams. To be
specific, we consider the Euler-Bernoulli, Rayleigh and Timoshenko theories
for beams and the Kirchhoff and Reissner-Mindlin theories for plates.

The theories mentioned above refer to the partial differential equations that
model a beam or plate. The contact with other objects also need to be
modelled. The equations that result are referred to as “interface conditions”.

We consider three problems concerning interface conditions for plates and
beams: A vertical slender structure on a resilient seating, the built in end of
a beam and a plate-beam system.

The vertical structure may be modelled as a vertically mounted beam. How-
ever, the dynamics of the seating must be included in the model and this
increases the complexity of a finite element analysis considerably. We show
that the interface conditions and additional equations can be accommodated
in the variational form and that the finite element method yields excellent
results.

Although the Timoshenko model is considered to be better than the Euler-
Bernoulli model, some authors do not agree that it is an improvement for
the case of a cantilever beam. In a modal analysis of a two-dimensional
beam model, we show that the Timoshenko model is not only better, but it
provides good results when the beam is so short that one is reluctant to use
beam theory at all.

In applications, structures consisting of linked systems of beams and plates
are encountered. We consider a rectangular plate connected to two beams.
Combining the Reissner-Mindlin plate model and the Timoshenko beam
model can be seen as a first step towards a better model while still avoiding
the complexity of a fully three-dimensional model. However, the modelling of
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the plate-beam system is more complex than in the case of the classical the-
ory and the mathematical analysis and numerical analysis present additional
difficulties.

A weak variational form is derived for all the model problems. This is neces-
sary to apply general existence and uniqueness results. It is also necessary to
apply general convergence results and derive error bounds. The setting for
the weak variational forms are product spaces. This is due to the complex
nature of the model problems.
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Chapter 1

Modelling interface conditions

1.1 Introduction

In this thesis our concern is mathematical models for elastic plates and
beams. In real life all objects are three-dimensional. Due to the propor-
tions of a body, it is sometimes justifiable to consider a one-dimensional or
two-dimensional model. These models are referred to as beam and plate
models respectively.

We restrict our attention to linear models or linear theories for plates and
beams. To be specific, we consider the Euler-Bernoulli, Rayleigh and Timo-
shenko theories for beams and the Kirchhoff and Reissner-Mindlin theories
for plates.

The theories mentioned above refer to the partial differential equations that
model a beam or plate. The contact − or lack thereof − with other objects
also need to be modelled. The equations that result are usually referred
to as boundary conditions, but we prefer the more inclusive term “interface
conditions”.

We consider three problems concerning interface conditions for plates and
beams. In this section we present a brief introduction. A detailed discussion
will be given in Section 1.5 after a review of the general theory.

The relevant aspects of beam theory and plate theory are presented in Sec-
tions 1.2 and 1.3 and a two-dimensional beam model in Section 1.4. We write
all the problems in dimensionless form to facilitate numerical experiments.

1
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2 CHAPTER 1. MODELLING INTERFACE CONDITIONS

The model problems to be investigated are presented in Chapter 2.

1.1.1 A vertical slender structure on a resilient seating

Unwanted vibrations often occur in mechanical structures. The following
design problem is described in [N1]:

“Because of their inherent low damping, free-standing welded steel struc-
tures are prone to oscillate in the wind. This may cause the chimney to
fail due to metal fatigue. One method of artificially increasing the dam-
ping is to mount the chimney on a resilient foundation incorporating
bearing pads made of a high-damping material.”

The structure may be modelled as a vertically mounted beam, i.e. a con-
tinuum model is used. Engineers often refer to continuum models as dis-
tributed parameter system (DPS) models.

In [N2], Newland discusses efforts to compute natural frequencies using DPS
models. The results compared poorly with experimental results. Newland
pointed out that the models needed to be improved to include the influence of
the resilient seating. According to Newland, this increases the complexity of
a finite element analysis considerably. As an alternative he proposed lumped
parameter system models (LPS).

LPS models are useful for the analysis of vibrating systems when one is
primarily interested in the lower order modes (see [CZ]). However, the ac-
curacy is questionable and the theoretical tools for error estimation are not
available. We considered it worthwhile to investigate beam models and to
compare results.

Our initial objective was to match Newland’s results using beam models. In
doing so, we demonstrated the flexibility of DPS models in conjunction with
the finite element method. We used the Euler-Bernoulli and Rayleigh models
for the slender structure since they correspond to Newland’s models.

Modelling the behaviour of the resilient seating and foundation leads to a
hybrid system. We constructed four mathematical models to match those of
Newland and showed that the interface conditions and additional equations
can be accommodated in the variational form. Consequently the finite ele-
ment method can be used. Using a small number of elements, our results
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1.1. INTRODUCTION 3

compared well with those of Newland (see [N1], [N2] and [LVV]). The nu-
merical results published in [LVV] show clearly the advantage of the finite
element method.

In this thesis we investigate aspects not considered in [LVV]. First we use
the Timoshenko theory to construct mathematical models and compare the
results. We also consider theoretical aspects such as existence and uniqueness
of solutions and convergence of finite element method approximations.

1.1.2 Boundary conditions for the clamped end of a
beam

The Euler-Bernoulli beam is a popular model for the transverse vibration of
a beam which is still used. Although the Timoshenko model is considered to
be better (see e.g. [Fu], [I], [N1], [T] and [Wa]), some authors, for instance
Duva and Simmonds ([DS]), do not agree that the Timoshenko model is an
unqualified improvement. According to [DS], the corrections predicted by
the Timoshenko model are in some cases erroneous. The authors claim that
for the first eigenfrequency of the cantilever beam, the Timoshenko model
provides a correction in the wrong direction and that this is due to “effects
at the built in end”.

Careful consideration of a clamped end of a beam leads to the conclusion that
the boundary conditions for the two models are not compatible. This fact
was pointed out in [V3] and an alternative boundary condition was proposed.
However, the modified boundary condition worsened the disparities between
the two models, i.e. the differences between the natural frequencies were
larger. It became clear that further investigation was necessary and in this
investigation two-dimensional effects must be taken into account. In order
to do this, we consider two-dimensional models for a cantilever beam.

1.1.3 Plate-beam systems

In applications, structures consisting of linked systems of beams and plates
are encountered. The reader is referred to [LLS] where a large variety of
applications can be found.

We consider a rectangular plate connected to two beams. This problem was
also considered in [ZVGV1], [ZVGV3] and [Ziet] using classical plate theory
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4 CHAPTER 1. MODELLING INTERFACE CONDITIONS

and the Euler-Bernoulli beam theory.

Combining the Reissner-Mindlin plate model and the Timoshenko beam
model can be seen as a first step towards a better model while still avoiding
the “complications” of a fully three-dimensional model.

1.2 Beam theory

In this section we consider the transverse motion of a beam. We restrict our
attention to a beam that is straight in its undeformed state. We assume that
it has a well defined axis of symmetry and that all the cross sections are
similar and have their centroids on the axis of symmetry.

The Euler-Bernoulli theory for a beam originated in the 18-th century. An
improvement was introduced by Rayleigh in the 19-th century. In 1921,
Timoshenko proposed his theory where shear is taken into account.

1.2.1 Equations of motion

Consider a beam as illustrated below. The x-axis is taken to coincide with the
line of centroids of the cross sections. We assume that the cross sections and
applied loads are symmetric with respect to the xy-plane and consequently
the motion of the beam is parallel to the xy-plane.

x

`

y

x = c

Consider a cross section at x = c. Denote the axial force, shear force and
moment by S(c, t), V (c, t) andM(c, t) respectively. We follow the convention

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLaabbuusscchhaaggnnee,,  AA    ((22000066))  



1.2. BEAM THEORY 5

that S, V and M denote the forces and moment exerted by the part of the
body for which x > c on the rest.

Suppose the beam has constant density ρ, length ` and cross sectional area A.
We consider a one-dimensional model and the reference configuration is the
interval [0, `]. The transverse displacement (deflection) of the cross section at
x ∈ [0, `] at time t is denoted by w(x, t). Assuming that plane cross sections
remain plane, the rotation of a cross section is denoted by φ(x, t). Assume
that the load P is in the transverse direction. The equations of motion are
then given by

ρA∂2tw = ∂xV + P, (1.2.1)

ρI∂2t φ = V + ∂xM + L, (1.2.2)

where I is the area moment of inertia (see [T, p 331-337] and [I, p 337]).

Remarks

1. The term ρI∂2t φ in Equation (1.2.2) is usually referred to as the rotary
inertia term.

2. Note the unusual term L present in Equation (1.2.2). This term repre-
sents a moment density term that will be used in some of the mathe-
matical models (see Sections 2.1 and 2.4).

1.2.2 The Timoshenko model

To determine the forces S and V and the moment M , the stresses are inte-
grated over a cross section. For more detail, see [Fu, Sec 7.7], [Co] and
[I, p 337-338].

In the linear theory, it is assumed that ∂xw is small. The following constitu-
tive equations for the moment M and the shear force V are used.

M = EI∂xφ, (1.2.3)

V = AGκ2
(
∂xw − φ

)
. (1.2.4)

In these equations, E and G are elastic constants (see Section 1.4) and
κ2 the shear coefficient or shear correction factor. We refer the reader to
[T, p 337-338], [Fu, p 323-324], [I, p 337-338] and [N1, p 392-395].
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6 CHAPTER 1. MODELLING INTERFACE CONDITIONS

Substituting the constitutive equations (1.2.3) and (1.2.4) into the equations
of motion (1.2.1) and (1.2.2), yield the well known Timoshenko model for
the free vibration of a beam.

ρA∂2tw = ∂x
(
AGκ2(∂xw − φ)

)
,

ρI∂2t φ = AGκ2
(
∂xw − φ

)
+ ∂x

(
EI∂xφ

)
+ L.

The partial differential equations above can be derived in different ways (see
[Fu, p 322-323] and [Co]).

The boundary conditions depend on the configuration and a number of vari-
ations are possible (see [I, p 335, 338] and [Fu, p 323-324]).

Note that we will not use the partial differential equations above. When con-
fronted by complex interface conditions, it is advisable to use the equations
of motion and constitutive equations (Equations (1.2.1) − (1.2.4)), rather
than the partial differential equations.

1.2.3 The Euler-Bernoulli and Rayleigh models

We consider first the Rayleigh model. It can be derived formally from the
Timoshenko model. Combining Equations (1.2.1) and (1.2.2), we find that

ρA∂2tw = ρI∂2t ∂xφ− ∂2xM + P − ∂xL.

For this model, it is assumed that a cross section remains perpendicular to
the neutral plane. This implies that ∂xw = φ, and the equation reduces to

ρA∂2tw = ρI∂2t ∂
2
xw − ∂2xM + P − ∂xL.

This is the equation of motion for the Rayleigh model. The constitutive
equation for the shear force V is now redundant and the constitutive equation
for the bending moment is

M = EI∂2xw.

As mentioned before, we do not use the partial differential equations, but we
present them for the purpose of comparison. The partial differential equation
for the Rayleigh model is

ρA∂2tw − ρI∂2t ∂
2
xw = −EI∂4xw + P − ∂xL.

The Euler-Bernoulli model is a special case of the Rayleigh model where
rotary inertia is ignored and the result is

ρA∂2tw = −EI∂4xw + P − ∂xL.
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1.2. BEAM THEORY 7

1.2.4 Dimensionless form

In this subsection we write the equations of motion and constitutive equations
in dimensionless form. Set

τ =
t

t0
, ξ =

x

`
, w∗(ξ, τ) =

w(x, t)

`
and φ∗(ξ, τ) = φ(x, t).

We introduce the dimensionless constants

α =
A`2

I
, β =

AGκ2`2

EI
and γ =

β

α
=
Gκ2

E
.

The constant γ depends on the elastic constants and the shear correction
factor κ2 that is determined by the shape of the cross section. The values of

κ2 range between
1

2
and 1 (see [Co] or [BSSS, p 173]). On the other hand,

for isotropic materials we assume that
G

E
=

1

2(1 + ν)
(see [My, p 174] or

[Fu, Sec 7.2]). Realistic values for γ range between
1

6
and

1

2
. Timoshenko

([T, p 342]) used
2

3
for κ2 and

G

E
=

3

8
.

The constant α is subject to significant variation. With r2 the radius of

gyration we have α =
A`2

I
=
`2

r2
.

The forces and moments in dimensionless form are

L∗(ξ, τ) =
L(x, t)

Gκ2A
, P ∗(ξ, τ) =

`P (x, t)

Gκ2A
,

V ∗(ξ, τ) =
V (x, t)

Gκ2A
and M∗(ξ, τ) =

M(x, t)

`Gκ2A
.

A convenient choice for t0 is

t0 = `

√
ρ

Gκ2
.

Returning to the original notation we present the equations of motion and
constitutive equations in dimensionless form.
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8 CHAPTER 1. MODELLING INTERFACE CONDITIONS

Timoshenko model

∂2tw = ∂xV + P, (1.2.5)
1

α
∂2t φ = V + ∂xM + L, (1.2.6)

M =
1

β
∂xφ, (1.2.7)

V = ∂xw − φ. (1.2.8)

Rayleigh model

∂2tw = ∂xV + P, (1.2.9)
1

α
∂2t ∂xw = V + ∂xM + L, (1.2.10)

M =
1

β
∂2xw. (1.2.11)

Euler-Bernoulli model

The Euler-Bernoulli model is obtained from the Rayleigh model by omitting

the rotary inertia term
1

α
∂2t ∂xw .

Remark

Note that the rotary inertia term is simply omitted. It is not correct to

reason that
1

α
≈ 0, since that would imply that

1

β
≈ 0.

Since the Euler-Bernoulli model is a special case of the Rayleigh model, we
will not refer to this model again in the theoretical discussions that follow. To
obtain results for the Euler-Bernoulli model, one uses the relevant equations
for the Rayleigh model with the modification mentioned above.
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1.3. PLATE THEORY 9

1.3 Plate theory

In his book Elastic Plates: Theory and Applications, Reissman presents an
interesting historical note (see [Rei]):

“The theory of plates has a colorful history. Classical plate theory was
initiated by Mlle. Sophie Germain (1776 – 1831) in direct response to
a prize offered by the French Academy (1811) for the explanation of
the nodal curves of a vibrating plate, as demonstrated (experimentally)
by E. Chladni (1756 – 1829) of Saxony. After two attempts, Mlle.
Germain received the prize in 1816 but only after Lagrange, a member
of the examination committee, corrected her initially submitted paper.
Subsequently, a controversy ensued about the appropriate, associated
boundary conditions, and this was settled approximately 34 years after
the correct partial differential equations were discovered. No less than
the authorities G. R. Kirchhoff (1824 – 1887) and Lord Kelvin (William
Thompson) (1824 – 1907) were responsible for this part of the theory.”

From 1945 to 1950 improvements to classical plate theory were made by
E. Reissner, H. Hencky, Y. S. Uflyand and R. D. Mindlin (see [Mi] for refer-
ences).

1.3.1 Equations of motion

We consider small transverse vibration of a thin plate with thickness h and
density ρ. The reference configuration for the plate is a domain Ω in the
plane.

The transverse displacement of x at time t is denoted by w(x, t). The angle
between a “material line” and a perpendicular to the plane is ψ(x, t) and
the angle between the projection of the material line in the plane and the
unit vector e1 is φ(x, t) (see [Rei, Sec 3.2, Sec 3.5]). For a linear model ψ is
approximated by

ψ = [ψ1 ψ2]
T = [ψ cosφ ψ sinφ]T .

Then the equations of motion (see [Mi] and [Rei, p 152]) are given by

ρh∂2tw = divQ+ q, (1.3.1)

ρI∂2tψ = divM −Q, (1.3.2)
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10 CHAPTER 1. MODELLING INTERFACE CONDITIONS

where I =
h3

12
is the length moment of inertia.

Q represents a force density, M =

[
M11 M12

M21 M22

]
a moment density and q

an external load on the plate.

1.3.2 The Reissner-Mindlin and Kirchhoff models

Constitutive equations

We restrict our attention to the linear theory. The following assumptions are
made for small curvature and small partial derivatives (see [Rei, p 61] and
[Mi]).

Q = κ2Gh(∇w +ψ), (1.3.3)

where G is the shear modulus and κ2 a correction factor.

M =
1

2
D

[
2
(
∂1ψ1 + ν∂2ψ2

)
(1− ν)

(
∂1ψ2 + ∂2ψ1

)

(1− ν)
(
∂1ψ2 + ∂2ψ1

)
2
(
∂2ψ2 + ν∂1ψ1

)
]
. (1.3.4)

D is a measure of stiffness for the plate and is given by

D =
EI

1− ν2
,

where E is Young’s modulus and ν Poisson’s ratio.

The correction factor κ2 is chosen in such a way that the solution of the
plate model compares well with the solution of the three-dimensional model.
The value of κ2 depends on Poisson’s ratio ν and ranges almost linearly from
0.76 to 0.91 if ν increases from 0 to 0.5 (see [Mi]). Also mentioned in this

reference is that Reissner used κ2 =
5

6
.

The equations of motion and the constitutive equations above are known as
the Reissner-Mindlin plate model.

The constitutive equations may be substituted into the equations of motion,
leading to a system of three partial differential equations (see [Rei, p 152]
and [Mi]). In our approach these partial differential equations are not used.

For classical plate theory, ψ is replaced by −∇w and the constitutive equa-
tion forQ is no longer necessary. This is sometimes referred to as theKirch-
hoff plate model.
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1.3. PLATE THEORY 11

1.3.3 Dimensionless forms

We introduce the dimensionless variables

τ =
t

t0
, ξ1 =

x1
`

and ξ2 =
x2
`
,

where ` is a suitable length and t0 must still be specified.

The dimensionless variables, with x = (x1, x2) and ξ = (ξ1, ξ2), are

w∗(ξ, τ) =

(
1

`

)
w(x, t), ψ∗(ξ, τ) = ψ(x, t),

Q∗(ξ, τ) =

(
1

`Gκ2

)
Q(x, t), M ∗(ξ, τ) =

(
1

`2Gκ2

)
M(x, t)

and q∗(ξ, τ) =

(
1

Gκ2

)
q(x, t).

The dimensionless constants that are used are given by

hp =
h

`
, Ip =

h3p
12

and βp =
`3Gκ2

EI
.

The constant hp denotes the dimensionless thickness of the plate and Ip the
dimensionless length moment of inertia.

We choose t0 = `

√
ρ

Gκ2
(for convenience) and use the original notation

for the corresponding dimensionless quantities. The equations of motion and
constitutive equations in dimensionless form are presented below.

Reissner-Mindlin plate model

hp ∂
2
tw = divQ+ q, (1.3.5)

Ip ∂
2
tψ = divM −Q, (1.3.6)

Q = hp
(
∇w +ψ

)
, (1.3.7)

M =
1

2βp(1− ν2)

[
2
(
∂1ψ1 + ν∂2ψ2

)
(1− ν)

(
∂1ψ2 + ∂2ψ1

)

(1− ν)
(
∂1ψ2 + ∂2ψ1

)
2
(
∂2ψ2 + ν∂1ψ1

)
]

(1.3.8)
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12 CHAPTER 1. MODELLING INTERFACE CONDITIONS

Classical plate model

hp ∂
2
tw = divQ+ q, (1.3.9)

Ip ∂
2
t

(
∇w

)
= Q− divM, (1.3.10)

M = − 1

βp(1− ν2)

[ (
∂21w + ν∂22

)
w (1− ν)∂1∂2w

(1− ν)∂1∂2w
(
∂22w + ν∂21

)
w

]
. (1.3.11)

Generally the rotary inertia term Ip∂
2
t

(
∇w

)
in Equation (1.3.10) is ignored.

1.4 Two-dimensional model for a beam

As mentioned in the introduction, we also consider a two-dimensional model
for a beam. To facilitate the discussion, we include a brief review of linear
elasticity.

1.4.1 Equation of motion

Consider an elastic body with density ρ. The displacement of a point x in
the reference configuration at time t is u(x, t) and the velocity is v = ∂tu.

From the conservation law for momentum, we have the equation of motion
(see [Fu, Sec 5.5, 5.7]) or [AF, p 125])

ρ∂2tu = divT +Q,

where T is the first Piola stress tensor and Q an external body force (density
force).

In the case of small local displacements, the infinitesimal theory of elas-
ticity or linear elasticity may be used. In this case the first Piola stress
tensor is approximated by the Cauchy stress tensor (which is symmetric). For
an explanation, see [AF, p 45-46, 122, 125]. Another explanation is given in
[Fu, Sec 7.1].

In the matrix representation of T the stress components are denoted by σij
and divT is a vector with components

[divT ]i = ∂1σi1 + ∂2σi2 + ∂3σi3 for i = 1, 2, 3.
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1.4. TWO-DIMENSIONAL MODEL FOR A BEAM 13

Simplifying assumptions

Now consider a beam as illustrated below. The x1-axis is taken to coincide
with the line of centroids of the cross sections. We assume that the cross
sections and applied loads are symmetric with respect to the x1x2-plane and
consequently the motion of the beam is parallel to the x1x2-plane.

x1

`

x2

For beam problems it is reasonable to assume that the body or beam is in a
state of plane stress. To be specific, we assume that σ3i = σi3 = 0. However,
this does not imply that the problem is two-dimensional since ∂3σij need not
be zero. This is an assumption that we make. The interpretation is that the
stresses are averages across the width of the beam. This approach is in line
with Cowper’s ([Co]) derivation of the Timoshenko model. It is reasonable to
assume that the two-dimensional model is more accurate than beam models
(but obviously less accurate than three-dimensional models).

Constitutive equations

The infinitesimal strain E is given by

eij =
1

2

(
∂iuj + ∂jui

)
.

(See [AF, p 25] or [Fu, p 155].)

Constitutive equations are required to express the relationship between the
stress T and the strain E . These depend on the elastic properties of the
material under consideration. An isotropic material exhibits no preferred
direction in its response to a given state of stress. For a homogeneous
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14 CHAPTER 1. MODELLING INTERFACE CONDITIONS

material the elastic properties are the same at all points of the reference
configuration.

We useHooke’s law for homogeneous isotropic materials ([Fu, Sec 9.1]
or [My, p 173, 182]) for the special case of plane stress.

σ11 =
E

1− ν2
(
e11 + νe22

)
,

σ22 =
E

1− ν2
(
e22 + νe11

)
,

σ12 = σ21 =
E

1 + ν
e12 ,

where E is Young’s modulus and ν Poisson’s ratio.

The constitutive equation in terms of the components of u follow as

σ11 =
E

1− ν2
(
∂1u1 + ν∂2u2

)
,

σ22 =
E

1− ν2
(
∂2u2 + ν∂1u1

)
,

σ12 = σ21 =
E

2(1 + ν)

(
∂1u2 + ∂2u1

)
.

Substitution of the constitutive equation into the equation of motion yields
a system of partial differential equations for the components of the displace-
ment. We will not make use of this system of partial differential equations.

1.4.2 Dimensionless form

The dimensionless variables and constants must be the same or compatible
with those in Section 1.2. Set

τ =
t

t0
, ξi =

xi
`

u∗(ξ, τ) =
1

`
u(x, t),

and σ∗ij(ξ, τ) =

(
1

Gκ2

)
σij(x, t).

Recall that t0 = `

√
ρ

Gκ2
and γ =

Gκ2

E
.

Returning to the original notation we present the equations of motion and
constitutive equations in dimensionless form. In the problems under con-
sideration Q = 0.
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1.5. INTERFACE CONDITIONS 15

Equation of motion

∂2tu = divT, where (1.4.1)

divT =



∂1σ11 + ∂2σ12
∂1σ21 + ∂2σ22

0


 .

Constitutive equations

σ11 =
1

γ(1− ν2)

(
∂1u1 + ν∂2u2

)
,

σ22 =
1

γ(1− ν2)

(
∂2u2 + ν∂1u1

)
, (1.4.2)

σ12 = σ21 =
1

2γ(1 + ν)

(
∂1u2 + ∂2u1

)
.

1.5 Interface conditions

It is now possible to provide more detail concerning the problems that we
investigate.

1.5.1 Vertical slender structure

The vertical slender structure (for example a chimney), is modelled as a
vertical beam with x = 0 at the ground level. The boundary conditions at
the top present no problem and we have that

M(1, t) = V (1, t) = 0.

For a built in beam the conventional boundary conditions at the bottom
are given by w(0, t) = ∂xw(0, t) = 0. However, the conventional boundary
conditions yielded poor results (as Newland mentioned in [N2]).

Modelling the behaviour of the resilient seating and foundation leads to a
complex hybrid system with interface conditions and additional equations.
This was done in [LVV] with satisfactory results – as mentioned before. In
this thesis we adapt the interface conditions for the Timoshenko theory.

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLaabbuusscchhaaggnnee,,  AA    ((22000066))  



16 CHAPTER 1. MODELLING INTERFACE CONDITIONS

1.5.2 Boundary conditions for the clamped end of a
beam

First we show that the boundary conditions used for the Euler-Bernoulli
and Timoshenko models are incompatible. Consider a beam in equilibrium
clamped at x = 0 and an external vertical force F at the endpoint x = 1.

w

x
1

F

The usual boundary conditions at x = 0 for an Euler-Bernoulli beam are

w(0) = w′(0) = 0 .

For a Timoshenko beam the boundary conditions at x = 0 are

w(0) = φ(0) = 0 .

When an external force F is applied at x = 1, the implication is that the
shear force throughout the beam is constant and equal to F , hence V (0) = F .
Since φ(0) = 0, it follows from the constitutive equation (1.2.8) that

w′(0) = V (0) = F .

However, for the Euler-Bernoulli and the Rayleigh models it is assumed that
w′(0) = 0. Clearly φ(0) and w′(0) can not both be zero.

The boundary condition w′(0) = 0 is realistic from a modelling perspec-
tive. This suggests that the boundary conditions at a built in end for the
Timoshenko theory deserves closer examination.

One possibility is the boundary condition proposed in [V3], which we con-
sider in this thesis. However, as mentioned in Section 1.1.2, this boundary
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1.5. INTERFACE CONDITIONS 17

condition creates larger disparities and it is logical to consider other possi-
bilities.

We consider the possibility that the constitutive equation (1.2.8) does not
reflect reality at the built in end. The quantity w′−φ represents the average
shear for a cross section. As x tends to zero, both w′ and φ become small, but

the shear force V remains constant. These facts suggests that
V

w′ − φ
is not

constant. The Timoshenko theory implies that a cross section remains plane
and that the shearing strain w′ − φ is constant on a cross section. In reality,
the strain is zero at both the bottom and the top of a horizontal beam. In
the Timoshenko theory, the quantity w′ − φ represents the average strain
of a cross section. It is possible that this is not realistic at the clamped end.

To investigate the difficulties mentioned, we consider a prismatic beam with
the simplifying assumptions mentioned in Section 1.4. Usually the boundary
condition for the “fixed end” is to set the displacement u = 0. This will
not do if the objective is to determine the strain at the clamped end, hence
we also consider configurations where part of the beam is embedded (see
Section 2.3).

Finally, there is another aspect that needs to be mentioned. The first two
or three eigenfrequencies of the Euler-Bernoulli and the Timoshenko models
for a cantilever beam differ very little, unless the beam is short (relative
to its thickness) – to be precise, when the parameter α is small. The first
eigenfrequency differs appreciably when the beam is so short that one is
reluctant to use beam theory at all. Comparisons are given in Section 7.1.

1.5.3 Plate-beam system

When a plate and a beam are connected, numerous aspects need to be con-
sidered. These aspects may be classified under geometrical constraints and
mechanical interaction. A Reissner-Mindlin-Timoshenko plate-beam system
is extremely complex due to the presence of five equations of motion. One
could say that the boundary conditions are partial differential equations
themselves.

Another complication is the fact that the angles ψ (for the plate) and φ
(for the beam) do not present a physically reality but convenient averages.
Consequently it is not clear what the geometrical constraints should be.
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18 CHAPTER 1. MODELLING INTERFACE CONDITIONS

Not only is the modelling for a Reissner-Mindlin-Timoshenko plate-beam
system more complex, but the mathematical analysis and numerical analysis
present additional difficulties. Finally, the numerical algorithms also present
nontrivial difficulties not present in the plate-beam system using classical
plate and beam theory.

In this thesis we consider a Reissner-Mindlin plate supported by two Timo-
shenko beams. The case where the plate is connected rigidly to the beam,
can be found in [LLS].

One expects that in some cases the Reissner-Mindlin-Timoshenko model will
compare well with the Kirchhoff-Euler-Bernoulli model that is investigated
in [ZVGV1], [ZVGV3] and [Ziet]. In Chapter 8 we present some results on
this comparison.
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Chapter 2

Model problems

2.1 Vertical slender structure

In this section we present DPS models that correspond to Newland’s LPS
models [N1, p 129-132] and [N2]. The slender structure (e.g. a steel chimney)
is modelled as a Euler-Bernoulli, a Rayleigh or a Timoshenko beam mounted
vertically and gravity is taken into account. (The reason for including gravity
in the model, is to match Newland’s models.)

From Section 1.2 we have the relevant equations of motion for the Rayleigh
and Timoshenko theories in dimensionless form. In this case we have free
vibration and therefore P = 0.

The relevant constitutive equations are also given in Section 1.2. The term
L = −S∂xw is a moment density (measured in Newton) due to gravity. The
axial force due to gravity is given by

S(x) = −ρAg(`− x).

With µ =
ρg`

Gκ2
and using the original notation, the dimensionless moment

density (see Section 1.2) is given by

L(x, t) = µ(1− x)∂xw(x, t).

19

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLaabbuusscchhaaggnnee,,  AA    ((22000066))  



20 CHAPTER 2. MODEL PROBLEMS

2.1.1 Simplistic Models

Initially we considered the Rayleigh theory as this corresponds to the New-
land models.

Boundary conditions at x = 0

There are a number of possibilities for the boundary conditions at x = 0.
Following Newland ([N1], [N2]), four models are considered in [LVV]. The
first two are rather simplistic. In Model 1, the foundation is completely rigid
and the boundary conditions at the base are given by

w(0, t) = ∂xw(0, t) = 0.

In the second model that corresponds to the model in [N1, p 133], the effect
of the resilient seating is taken into account. The foundation is modelled
to be elastic with damping. Hence the moment M(0, t) is determined by
the elasticity and damping of the foundation. In this case the boundary
conditions at the base for the Rayleigh model are given by

w(0, t) = 0,

M(0, t) = k ∂xw(0, t) + c ∂t∂xw(0, t),

where the constants k and c are nonnegative.

Our results for these models were compared to Newland’s results and was
published in [LVV]. Models 1 and 2 are not considered in this thesis.

2.1.2 The dynamics of the foundation block and
resilient seating

The mathematical models presented later in this Section as Problem VR 3
and Problem VR 4, were published in [LVV]. For these models the dynamics
of the resilient seating and foundation block is taken into account.

As our point of departure, we consider the physical model in [N2]. Figure 1
corresponds to Figure 2 in [N2].
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2.1. VERTICAL SLENDER STRUCTURE 21

Figure 1: Simplified sketch of the system

The springs and damping mechanisms in the sketch are schematic.

A

B

F

A: Vertical slender structure
B: Resilient seating
F: Foundation block

Figure 2: Displacements, angles of rotation, moments and forces

Convention: Moments and forces are denoted by the action of right on left.
For instance, MFB denotes the moment exerted by B on F.

F B

A

+

VF
[KF , CF ]

VFB
[KF B , CF B ]

VBA
[KBA, CBA]

wF (t) wB(t)

w(x, t)

x

x = 0

+

MF
[kF , cF ]

MFB

[kF B , cF B ]θF θB
θA

MBA
[kBA, cBA]
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22 CHAPTER 2. MODEL PROBLEMS

To formulate the boundary conditions at the base, it is necessary to consider
the equations of motion for the resilient seating and foundation block. Both
are modelled as rigid bodies connected to linear elastic springs and linear
damping mechanisms.

Equations of motion

mF ẅF = VFB − VF ,

mBẅB = VBA − VFB,

IF θ̈F = MFB −MF ,

IB θ̈B = MBA −MFB.

Constitutive equations

VF = KFwF + CF ẇF ,

VFB = KFB(wB − wF ) + CFB(ẇB − ẇF ),

MF = kF θF + cF θ̇F ,

MFB = kFB(θB − θF ) + cFB(θ̇B − θ̇F ).

The reader must take note of the use of upper case and lower case letters for
the constants.

Interface conditions

Let θA(t) denote the rotation of the end point of the vertical structure.

MBA(t) = kBA

(
θA(t)− θB(t)

)
+ cBA

(
θ̇A(t)− θ̇B(t)

)
,

MBA(t) = M(0, t),

VBA(t) = V (0, t),

wB(t) = w(0, t),

θB(t) 6= θA(t) (in general).

We make the following assumptions for θA(t):

• θA(t) = ∂xw(0, t) for the Rayleigh models and

• θA(t) = φ(0, t) for the Timoshenko models.
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2.1. VERTICAL SLENDER STRUCTURE 23

Dimensionless constants

The dimensionless constants for the foundation block and the resilient seating
are

m∗ =
m

`ρA
, and I∗ =

I

`3ρA
.

The different elastic and damping constants are

K∗ =
K`

AGκ2
, k∗ =

k

AGκ2`
, C∗ =

C`

AGκ2t0
and c∗ =

c

AGκ2t0`
.

The following equalities hold for the the scaling factors of m and I:

`ρA =
t20AGκ

2

`
and `3ρA = t20AGκ

2`2

All the constants in the equations of motion for the foundation block and
resilient seating and the equations for the interface conditions, must be re-
placed by the corresponding dimensionless constants.

The diagrams and equations in this subsection are from [LVV].

2.1.3 Rayleigh models

The Rayleigh theory applied to Models 3 and 4 yields the same equations of
motion, constitutive equations and boundary conditions at the top.

Equations of motion

∂2tw = ∂xV, (2.1.1)
1

α
∂2t ∂xw = V + ∂xM + L, (2.1.2)

Constitutive equations

M =
1

β
∂2xw, (2.1.3)

L(x, t) = µ(1− x) ∂xw(x, t). (2.1.4)

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLaabbuusscchhaaggnnee,,  AA    ((22000066))  



24 CHAPTER 2. MODEL PROBLEMS

Boundary conditions at x = 1

M(1, t) = V (1, t) = 0.

The interface conditions for these two problems differ. We will refer to the
two problems as Problem VR 3 and Problem VR 4 (corresponding to models
3 and 4 in [LVV]).

Problem VR 3

Equations of motion: (2.1.1) and (2.1.2).

Constitutive equations: (2.1.3) and (2.1.4).

Boundary conditions at x = 1: M(1, t) = V (1, t) = 0.

The motion of B is neglected and B is considered to be rigidly connected to
the foundation block F and this case corresponds to Model 2 in [N2]. The
conditions are

wF (t) = wB(t) = w(0, t), θF = θB, VFB(t) = VBA(t) = V (0, t)

and MFB(t) =MBA(t) =M(0, t).

The constant kBA is replaced by k and cBA by c.

The interface conditions and the equations of motion of the foundation block
and resilient seating reduce to the following three equations:

mF∂
2
tw(0, t) = V (0, t)−KFw(0, t)− CF∂tw(0, t), (2.1.5)

IF θ̈F (t) = k
(
∂xw(0, t)− θF (t)

)
+ c
(
∂t∂xw(0, t)− θ̇F (t)

)

−kF θF (t)− cF θ̇F (t), (2.1.6)

M(0, t) = k
(
∂xw(0, t)− θF (t)

)
+ c
(
∂t∂xw(0, t)− θ̇F (t)

)
. (2.1.7)

Problem VR 4

Equations of motion: (2.1.1) and (2.1.2).
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2.1. VERTICAL SLENDER STRUCTURE 25

Constitutive equations: (2.1.3) and (2.1.4).

Boundary conditions at x = 1: M(1, t) = V (1, t) = 0.

In Model 4, the interface conditions and the equations of motion of the
foundation block and resilient seating follow directly from the discussion in
Section 2.1.2.

The following five equations formulate the interface conditions.

mB∂
2
tw(0, t) = V (0, t)−KFB

(
w(0, t)− wF (t)

)

−CFB

(
∂tw(0, t)− ẇF (t)

)
, (2.1.8)

IB θ̈B(t) = kBA

(
∂xw(0, t)− θB(t)

)
+ cBA

(
∂t∂xw(0, t)− θ̇B(t)

)

−kFB

(
θB(t)− θF (t)

)
− cFB

(
θ̇B(t)− θ̇F (t)

)
, (2.1.9)

M(0, t) = kBA

(
∂xw(0, t)− θB(t)

)

+cBA

(
∂t∂xw(0, t)− θ̇B(t)

)
, (2.1.10)

mF ẅF (t) = KFB

(
w(0, t)− wF (t)

)
+ CFB

(
∂tw(0, t)− ẇF (t)

)

−KFwF (t)− CF ẇF (t), (2.1.11)

IF θ̈F (t) = kFB

(
θB(t)− θF (t)

)
+ cFB

(
θ̇B(t)− θ̇F (t)

)

−kF θF (t)− cF θ̇F (t). (2.1.12)

Remarks

1. The stiffness and damping in the mounting are modelled to be due to
linear springs and linear dashpots. The limitations of these assumptions
are discussed in [N2].

2. Problems VR 3 and VR 4 are from [LVV].
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2.1.4 Timoshenko models

As mentioned before, results for Model 3 and Model 4 using the Rayleigh
and Euler-Bernoulli theory were published in [LVV]. In this thesis our main
objective is to use the Timoshenko beam theory in the models and compare
the results to the results where the Rayleigh theory is used. We refer to these
problems as Problem VT 3 and Problem VT 4.

The equations of motion, constitutive equations and the boundary conditions
at the top are the same for both problems.

Equations of motion

∂2tw = ∂xV, (2.1.13)
1

α
∂2t φ = ∂xM + V + L. (2.1.14)

Constitutive equations

M =
1

β
∂xφ, (2.1.15)

V = ∂xw − φ, (2.1.16)

L(x, t) = µ(1− x)∂xw(x, t). (2.1.17)

Boundary conditions at x = 1

M(1, t) = V (1, t) = 0.

Modifications on some of the interface conditions are necessary for the Timo-
shenko theory and we state the full set of interface conditions. Note that the
first and last interface condition differ from those for the Rayleigh theory.
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Interface conditions

MBA(t) = kBA

(
φ(0, t)− θB(t)

)
+ cBA

(
∂tφ(0, t)− θ̇B(t)

)
,

MBA(t) = M(0, t),

VBA(t) = V (0, t),

wB(t) = w(0, t),

θB(t) 6= φ(0, t) (in general).

Problem VT 3

Equations of motion: (2.1.13) and (2.1.14).

Constitutive equations: (2.1.15), (2.1.16) and (2.1.17).

Boundary conditions at x = 1: M(1, t) = V (1, t) = 0.

As in the Rayleigh models, the motion of B is neglected and B is considered
to be rigidly connected to F . Hence

wF (t) = wB(t) = w(0, t), θF = θB, VFB(t) = VBA(t) = V (0, t)

and MFB(t) =MBA(t) =M(0, t).

The constant kBA is replaced by k and cBA by c.

The interface conditions and the equations of motion of the foundation block
and resilient seating reduce to the following three equations:

mF∂
2
tw(0, t) = V (0, t)−KFw(0, t)− CF∂tw(0, t), (2.1.18)

IF θ̈F (t) = k
(
φ(0, t)− θF (t)

)
+ c
(
∂tφ(0, t)− θ̇F (t)

)

−kF θF (t)− cF θ̇F (t), (2.1.19)

M(0, t) = k
(
φ(0, t)− θF (t)

)
+ c
(
∂tφ(0, t)− θ̇F (t)

)
. (2.1.20)

Problem VT 4

Equations of motion: (2.1.13) and (2.1.14).
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28 CHAPTER 2. MODEL PROBLEMS

Constitutive equations: (2.1.15), (2.1.16) and (2.1.17).

Boundary conditions at x = 1: M(1, t) = V (1, t) = 0.

The interface conditions are given by

mB∂
2
tw(0, t) = V (0, t)−KFB

(
w(0, t)− wF (t)

)

−CFB

(
∂tw(0, t)− ẇF (t)

)
, (2.1.21)

IB θ̈B(t) = kBA

(
φ(0, t)− θB(t)

)
+ cBA

(
∂tφ(0, t)− θ̇B(t)

)

−kFB

(
θB(t)− θF (t)

)
− cFB

(
θ̇B(t)− θ̇F (t)

)
, (2.1.22)

M(0, t) = kBA

(
φ(0, t)− θB(t)

)
+ cBA

(
∂tφ(0, t)− θ̇B(t)

)
, (2.1.23)

mF ẅF (t) = KFB

(
w(0, t)− wF (t)

)
+ CFB

(
∂tw(0, t)− ẇF (t)

)

−KFwF (t)− CF ẇF (t), (2.1.24)

IF θ̈F (t) = kFB

(
θB(t)− θF (t)

)
+ cFB

(
θ̇B(t)− θ̇F (t)

)

−kF θF (t)− cF θ̇F (t). (2.1.25)

2.2 The cantilever beam

In Chapter 7 we compare the natural frequencies of the Euler-Bernoulli and
Timoshenko models for the free vibration of a cantilever beam. For reference
purposes we state the equations of motion, constitutive equations and the
standard boundary conditions.
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Timoshenko theory

∂2tw = ∂xV,
1

α
∂2t φ = V + ∂xM,

M =
1

β
∂xφ,

V = ∂xw − φ,

M(1, t) = V (1, t) = 0,

w(0, t) = φ(0, t) = 0.

Euler-Bernoulli theory

∂2tw = ∂xV,

0 = V + ∂xM,

M =
1

β
∂2xw,

M(1, t) = V (1, t) = 0,

w(0, t) = ∂xw(0, t) = 0.

A modification of the boundary conditions for the Timoshenko model (sug-
gested in [V3]) is

[
c11 c12
c21 c22

] [
V (0, t)
M(0, t)

]
=

[
w(0, t)
φ(0, t)

]
.

The standard boundary conditions for the Timoshenko model is a special
case of the modified boundary conditions, where

c11 = c12 = c21 = c22 = 0.

2.3 Two-dimensional model for a cantilever

beam

We consider a prismatic beam built in at one end. In Section 1.4 a two-
dimensional model is proposed. The equation of motion and the constitutive
equation are given by Equations (1.4.1) and (1.4.2).
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It is not obvious how to model the built in end of a cantilever beam. Therefore
we consider different configurations and discuss them briefly. A detailed
discussion is given in Section 7.2.1.

Rigidly attached beam

We consider a rigidly attached beam as in Figure 1. For this case the reference
configuration Ω is the rectangle given by

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ h

and the beam is attached at x1 = 0.

Figure 1: Rigidly attached beam

x1
0 1

x2

h

Σ0

Σ1

Σ1

Γ

Built in beam

In this case we consider a beam that is built in at x1 = 0 as in Figure 2. The
reference configuration Ω is the rectangle given by

−a ≤ x1 ≤ 1, 0 ≤ x2 ≤ h.
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Figure 2: Built in beam

x1

x2

1
0−a

h Σ1

Σ1

Γ

Σ0

Σ0

Σ0

To apply the theory, it is preferable to formulate the model problems for a
general domain. Let Ω be an open convex subset in the plane. The boundary
of Ω consists of smooth curves, Σ1, Σ2, . . . , Σm and Γ.

Boundary conditions

The traction t = Tn is specified on Γ and on Σi we have Tn · u = 0 for
each i, with the additional restriction that u1 = 0 on at least one of the sets
Σi and u2 = 0 on at least one of the sets Σj.

Equilibrium problem

For the equilibrium problem a transverse force is applied at Γ. However, for
the boundary value problem it is necessary to prescribe the traction on Γ.

Problem CTD 1

divT = 0 in Ω,

Tn · u = 0 on Σ,

Tn = t on Γ,

with the constitutive equation given by Equation (1.4.2).
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Free vibration

Problem CTD 2

∂2tu = divT in Ω,

Tn · u = 0 on Σ,

Tn = 0 on Γ,

with the constitutive equation given by Equation (1.4.2).

Remark

The condition Tn ·u = 0 represents a number of possibilities, e. g. u = 0 or
Tn = 0 or various different combinations. The different configurations are
given in Chapter 7.

2.4 A plate-beam system

Consider small transverse vibration of a thin rectangular plate supported by
identical beams at two opposing sides and rigidly supported at the remaining
sides. The beams are supported at their endpoints. Assume furthermore the
case of free vibration, i.e. q = 0. The displacement for the system is measured
with respect to the equilibrium state. (Due to gravity, the equilibrium state
is not the same as the undeformed state.) It is assumed that the plate
remains in contact with the beams and supporting structure at all times.
This mathematical model is considered in [V4].

The reference configuration for the plate is the rectangle Ω, where 0 ≤ x1 ≤ 1
and 0 ≤ x2 ≤ a. The plate is rigidly supported at x1 = 0 and x1 = 1. These
sections of the boundary of Ω are denoted by Σ0 and Σ1 respectively. The
plate is supported by beams at x2 = 0 and x2 = a and these sections are de-
noted by Γ0 and Γ1 respectively. Figure 1 depicts the reference configuration.
The shaded areas represent the beams.
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Figure 1: Reference configuration of the plate-beam system.

x2

x1
0 1

a

Ω

Γ1

Γ0

Σ0 Σ1

Notation

To avoid confusion, we adapt (if necessary) the symbols used for quantities
related to the beams by using the subscript “b”.

2.4.1 The Reissner-Mindlin-Timoshenko model

For the mathematical model we use the Reissner-Mindlin plate theory and
the Timoshenko beam theory. On the rectangle Ω, the equations of motion
(1.3.1) and (1.3.2) are satisfied and on Γ0 and Γ1, the two sets of equations of
motion are given by (1.2.1) and (1.2.2). In Equation (1.2.2), L represents a
moment density transmitted from the plate to the beam and P a force desity
transmitted from the plate to the beam.

Boundary conditions on Σ0 and Σ1

On these sections of the boundary, the conventional homogeneous boundary
conditions for a rigidly supported plate are used, i.e.

w = 0, ψ2 = 0 and Mn · n = 0, (2.4.1)

where n is the unit exterior normal (see [Rei, p 66]). The third condition
reduces to M11 = 0.
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Interface conditions on Γ0 and Γ1

On Γ0 and Γ1 the interaction between the plate and the beams is considered.
The interface conditions are given in [V4] for a general case. For this special
case they reduce to

wb(x1, t) = w(x1, 0, t) on Γ0 , wb(x1, t) = w(x1, a, t) on Γ1 , (2.4.2)

φb(x1, t) = −ψ1(x1, 0, t) on Γ0 , φb(x1, t) = −ψ1(x1, a, t) on Γ1 . (2.4.3)

The interface conditions for the force densities and moment densities on Γ0
and Γ1 are given by

Q · n = −P, (2.4.4)

Mn · τ = L, (2.4.5)

Mn · n = 0, (2.4.6)

where τ is the unit tangent oriented in such a way that Ω is on the left hand
side of τ . For a detailed explanation of the moments Mn · n and Mn · τ ,
see [Rei, p 66].

Remarks

1. Note the difference in sign convention for measuring the angles ψ and
φb in the plate and beam models.

2. Care should be taken to also incorporate the difference between sign
conventions for moments in the plate and beam models. The beam
equations for Γ1 is derived for a beam oriented from left to right. When
applying the interface condition (2.4.5) on Γ1, the moment L has to be
replaced by −L.

Conditions at the endpoints of Γ0 and Γ1

At the endpoints of Γ0 and Γ1 we have the obvious boundary conditions for
the beams, namely

wb = 0 and Mb = 0. (2.4.7)
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Dimensionless form

The dimensionless form for the plate model has been derived in Section 1.3.3.
For the beam equations it has to be recalculated using the scaling of the plate
model and

τ =
t

t0
and ξ1 =

x1
`
.

Also set

w∗
b =

(
1

`

)
wb , φ∗b = φb ,

P ∗ =

(
1

`Gκ2

)
P, V ∗ =

(
1

`2Gκ2

)
V,

M∗
b =

(
1

`3Gκ2

)
Mb and L∗ =

(
1

`2Gκ2

)
L.

Note that the parameters of the plate are used for the scaling. Choosing

t0 = `

√
ρ

Gκ2
as in Section 1.3.3 and using the original notation for the cor-

responding dimensionless quantities, the dimensionless beam model is given
by

η1 ∂
2
twb = ∂1V + P, (2.4.8)

η1 ∂
2
t φb = αb (∂1Mb + V + L), (2.4.9)

V = η2 (∂1wb − φb), (2.4.10)

βbMb = η2 ∂1φb. (2.4.11)

The dimensionless constants αb and βb are as in Section 1.2.4, i.e.

αb =
Ab`

2

Ib
, βb =

AbGbκ
2
b`
2

EbIb
.

The two additional dimensionless constants η1 and η2 express ratios for the
material properties and the geometrical properties of the plate and the beams:

η1 =

(
ρb
ρ

)(
Ab

`2

)
and η2 =

(
Gb

G

)(
κ2b
κ2

)(
Ab

`2

)
.

The interface conditions remain unchanged.

The mathematical model

The vibration problem for the plate-beam system is given by the following
equations.
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Problem RMT

Equations of motion for the plate: (1.3.5) and (1.3.6) on Ω.

Constitutive equations for the plate: (1.3.7) and (1.3.8) on Ω.

Equations of motion for the beams: (2.4.8) and (2.4.9) on Γ0 and Γ1 .

Constitutive equations for the beams: (2.4.10) and (2.4.11) on Γ0 and Γ1 .

Interface conditions: (2.4.2) to (2.4.6) on Γ0 and Γ1 .

Boundary conditions: (2.4.1) on Σ0 and Σ1 .

Endpoint conditions: (2.4.7) at the endpoints of Γ0 and Γ1 .

2.4.2 Other models

A simplified model is obtained if the Kirchhoff plate model (with rotary
inertia) and the Rayleigh beam model is used. Formally, this model problem
can be derived from Problem RMT. We consider the model problems referred
to for the purpose of comparison. It should be noted that the scaling for the
dimensionless form differs from the scaling used in [ZVGV3] and [Ziet].

In this case the vibration problem for the plate-beam system is given by the
following equations.

Problem KR

Equations of motion for the plate: (1.3.9) and (1.3.10) on Ω.

Constitutive equation for the plate: (1.3.11) on Ω.

Equations of motion for the beams:

η1∂
2
twb = ∂1V + P on Γ0 and Γ1 ,

η1∂
2
t ∂xwb = αb(∂1Mb + V + L) on Γ0 and Γ1 .

Constitutive equation for the beams:

βbMb = η2∂
2
1wb on Γ0 and Γ1 .
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Interface conditions: (2.4.2) to (2.4.6) on Γ0 and Γ1 .

Boundary conditions: (2.4.1) on Σ0 and Σ1 .

Endpoint conditions: (2.4.7) at the endpoints of Γ0 and Γ1 .

Problem KEB

An even simpler model is obtained if rotary inertia is ignored in the plate
and the beams.
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Chapter 3

Variational forms

3.1 Introduction

In this chapter we consider the variational and weak variational forms for
the problems under consideration. The variational form is used when we ap-
proximate solutions with the finite element method and the weak variational
form is necessary for theoretical considerations.

In this section we consider free vibrations of a Timoshenko cantilever beam
as an example. The equations of motion are then given by Equations (1.2.5)
and (1.2.6). For this model P = L = 0.

To find the variational form of this problem, multiply the two equations of
motion with functions v and ψ respectively and integrate.

∫ 1

0

(
∂2tw(x, t)

)
v(x)dx =

∫ 1

0

(
∂xV (x, t)

)
v(x)dx,

∫ 1

0

1

α

(
∂2t φ(x, t)

)
ψ(x)dx =

∫ 1

0

(
∂xM(x, t)

)
ψ(x)dx+

∫ 1

0

V (x, t)ψ(x)dx.

We use the notation

(f, g) =

∫ 1

0

f(x)g(x)dx

for convenience. (The fact that this is the inner product for L2(0, 1), is not
relevant at this stage.)

39
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Use integration by parts to find that

(
∂2tw(·, t), v

)
= −(V (·, t), v′) + [V (·, t)v]10,

1

α

(
∂2t φ(·, t), ψ

)
= −(M(·, t), ψ′) + (V (·, t), ψ) + [M(·, t)ψ]10.

Since V (1, t) =M(1, t) = 0,

(
∂2tw(·, t), v

)
= −(V (·, t), v′)− V (0, t)v(0), (3.1.1)

1

α

(
∂2t φ(·, t), ψ

)
= −(M(·, t), ψ′) + (V (·, t), ψ)−M(0, t)ψ(0). (3.1.2)

The test functions are defined as

T (0, 1) =
{
v ∈ C1(0, 1)

∣∣ v(0) = 0
}
.

We substitute the constitutive equations into the equations above to find the
variational form of the problem.

Variational form

Find w and φ such that for each t > 0, w(·, t) ∈ T (0, 1), φ(·, t) ∈ T (0, 1),
(
∂2tw(·, t), v

)
= −(∂xw(·, t)− φ(·, t), v′) (3.1.3)

for each v ∈ T (0, 1),
1

α

(
∂2t φ(·, t), ψ

)
= − 1

β
(∂xφ(·, t), ψ′) + (∂xw(·, t)− φ(·, t), ψ) (3.1.4)

for each ψ ∈ T (0, 1).

Remark

The variational form can be used to compute approximations for the solutions
of the vibration problem as well as the eigenvalue problem. The variational
form can also be used to investigate the solvability of the problem. This is
done by showing that the results for a general linear vibration problem may
be applied to this specific problem.
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General linear vibration problem

Let H be a Hilbert space and u a function mapping the interval [0, T ] into H.
The derivatives of u are defined in the usual way (see Appendix 4). Every
linear vibration problem can be written in the form below for suitable bilinear
forms a, b and c defined on H.

For each t ∈ (0, T ),

c
(
u′′(t), v

)
+ a

(
u′(t), v

)
+ b
(
u(t), v

)
=
(
f(t), v

)
,

for each v ∈ V , where V is some subspace of H.

The existence theory for the general problem is discussed in Section 3.8 and
the theory of eigenvalue problems in Sections 3.9 and 3.10.

To apply the theory to the problem we are considering, the problem must
be written in the appropriate form and the necessary estimates derived. The
first step is to add Equations (3.1.3) and (3.1.4). We find that

(
∂2tw(·, t), v

)
+

1

α

(
∂2t φ(·, t), ψ

)

= − 1

β
(∂xφ(·, t), ψ′)− (∂xw(·, t)− φ(·, t), v′ − ψ).

Next we need a suitable Hilbert space and subspace to relate our problem to
the general vibration problem. We use the Sobolev space H1(0, 1) discussed
in Appendix 1 to define suitable product spaces.

Product spaces

Consider the product spaces

X = L2(0, 1)× L2(0, 1) and H1 = H1(0, 1)×H1(0, 1).

Let V (0, 1) be the closure of T (0, 1) in the Sobolev space H1(0, 1) and let
V = V (0, 1)× V (0, 1). (Note that V is a subspace of the Hilbert space H 1.)

Bilinear forms

For u and v in L2(0, 1)× L2(0, 1),

c(u, v) = (u1, v1) +
1

α
(u2, v2).
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For u and v in H1(0, 1)×H1(0, 1),

b(u, v) =
1

β
(u′2, v

′
2) + (u′1 − u2, v

′
1 − v2).

Note that both b and c are symmetric.

Weak variational form

Find u such that for each t > 0, u(t) ∈ V and

c(u′′(t), v) = −b(u(t), v) for each v ∈ V.

Estimates

For the product spaces X and H1, we may use the obvious inner products
and as a consequence we have the respective norms

‖u‖0,2 =
√
‖u1‖2 + ‖u2‖2

and ‖u‖1,2 =
√
‖u1‖21 + ‖u2‖21.

However, other equivalent norms are more convenient.

Theorem 1

Assume that α ≥ 1. Then

(a) ‖u‖20,2 ≤ α c(u, u) ≤ α ‖u‖20,2 for each u ∈ X.

(b) ‖u‖20,2 ≤ ‖u‖21,2 ≤ 6β b(u, u) ≤ 12β ‖u‖21,2 for each u ∈ V .

Proof

(a) The proof is trivial.

(b) For u ∈ V , we have that u1 and u2 are in V (0, 1). Since V (0, 1) is the
closure of T (0, 1) in H1(0, 1), it follows from Theorem 1 Appendix 2
that

‖u1‖ ≤ ‖u′1‖ and ‖u2‖ ≤ ‖u′2‖
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Therefore

‖u‖20,2 ≤ ‖u′1‖2 + ‖u′2‖2 ≤ ‖u‖21,2 .

This proves the first inequality.

We use ‖u′1‖ ≤ ‖u′1 − u2‖+ ‖u2‖ and (a+ b)2 ≤ 2a2 + 2b2 to find

‖u′1‖2 ≤ 2‖u′1 − u2‖2 + 2‖u2‖2 .

It follows that

‖u′1‖2 + ‖u′2‖2 ≤ 2‖u′1 − u2‖2 + 3‖u′2‖2 ≤ 3β b(u, u).

The second inequality follows from the inequality above and the in-
equalities

‖u1‖ ≤ ‖u′1‖ and ‖u2‖ ≤ ‖u′2‖.

The last inequality is trivial since ‖u′1 − u2‖2 ≤ 2‖u′1‖2 + 2‖u2‖2 .

Conclusion

The bilinear form c is an inner product for the space X and b is an inner
product for the space V . Theorem 1 shows that for the space X, the norm
associated with c is equivalent to ‖·‖0,2 . Similarly, for the space V , the norm
associated with b is equivalent to ‖ · ‖1,2 .

Notation

‖u‖X =
√
c(u, u) and ‖u‖V =

√
b(u, u) .

We call the space X with inner product c the inertia space and the space
V with inner product b the energy space.

Theorem 2

Assume that α ≥ 1. The inertia space X is a separable Hilbert space and V
is a dense subset of X.
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Proof

From Theorem 2 Appendix 1 it follows that L2(0, 1)× L2(0, 1) is separable.
Furthermore, ‖ · ‖X and ‖ · ‖0,2 are equivalent norms in X and it follows that
X is separable.

T (0, 1) is dense in L2(0, 1), since C∞
0 (0, 1) is dense in L2(0, 1) (Theorem 3

Appendix 1). Clearly V = V (0, 1) × V (0, 1) is dense in L2(0, 1) × L2(0, 1)
and hence V is dense in X.

Remark

The assumption that α ≥ 1 is not necessary and the result is true for α > 0.
However, in applications α is large compared to one.

Theorem 3

The embedding of the space V into X is compact.

Proof

The embedding of H1(0, 1) into L2(0, 1) is compact (Theorem 7 Appendix 1).
Consequently the embedding of H1 into L2(0, 1)× L2(0, 1) is compact. The
result follows since the relevant norms are equivalent.

The assumptions in Sections 3.8, 3.9 and 3.10 are valid for the cantilever Ti-
moshenko beam and hence the theory can be applied to this model problem.

3.2 Vertical slender structure: Rayleigh

models

3.2.1 Variational forms

To obtain the variational form of Problems VR 3 and VR 4, Equation (2.1.1)
is multiplied by a function v and integration by parts (as in Section 3.1)
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yields
(∂2tw(·, t), v′) = −(V (·, t), v′)− V (0, t)v(0).

Multiply Equation (2.1.2) by v′ to find

1

α
(∂2t ∂xw(·, t), v′) = (V (·, t), v′) + (∂xM(·, t), v′) + (L(·, t), v′).

Adding the two equations we have

(∂2tw(·, t), v)+
1

α
(∂2t ∂xw(·, t), v′) = (∂xM(·, t), v′)+ (L(·, t), v′)−V (0, t)v(0).

Integration by parts on the first term on the right and substitution of Equa-
tion (2.1.3) yield

(∂xM(·, t), v′) = −(M(·, t), v′′)−M(0, t)v′(0)

= − 1

β
(∂2xw(·, t), v′′)−M(0, t)v′(0).

From Equation (2.1.4) we have

(L(·, t), v′) = µ

∫ 1

0

(1− x)∂xw(x, t)v
′(x)dx.

Combining the results above, we obtain a general variational form.

(∂2tw(·, t), v) +
1

α
(∂2t ∂xw(·, t), v′) = −

1

β
(∂2xw(·, t), v′′)

+µ

∫ 1

0

(1− x)∂xw(x, t)v
′(x)dx− V (0, t)v(0)−M(0, t)v′(0). (3.2.1)

The variational form of each model depends on how we treat the terms con-
taining V (0, t) and M(0, t). In all the models the solution w must satisfy
Equation (3.2.1) for all test functions v.

For Problems VR 3 and VR 4 there are no restrictions on the space of test
functions T (0, 1). Consequently, there are no forced boundary conditions for
the solution w and it must satisfy Equation (3.2.1) for an arbitrary function
v ∈ T (0, 1) = C2[0, 1].

We define the the following bilinear forms.

cA(u, v) = (u, v) +
1

α
(u′, v′) +mF u(0)v(0)

bA(u, v) =
1

β
(u′′, v′′)− µ

∫ 1

0

(1− x)u′(x)v′(x)dx

+KFu(0)v(0) + ku′(0)v′(0)
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Equations (3.2.1), (2.1.5) and (2.1.7) yield the following equation in terms of
the bilinear forms.

cA(∂
2
tw(·, t), v) = −bA(w(·, t), v)− CF∂tw(0, t)v(0) + kθF (t)v

′(0)

−c
(
∂t∂xw(0, t)− θ̇F (t)

)
v′(0) (3.2.2)

Together with Equation (2.1.6) given by

IF θ̈F (t) = k
(
∂xw(0, t)− θF (t)

)
+ c
(
∂t∂xw(0, t)− θ̇F (t)

)

−kF θF (t)− cF θ̇F (t), (2.1.6)

we find the variational form of the problem.

Variational form of Problem VR 3

Find w and θF such that for each t > 0, w(·, t) ∈ T (0, 1), Equation (3.2.2)
holds for each v ∈ T (0, 1) and Equation (2.1.6) holds.

For Problem VR 4 we define the following bilinear forms.

cA(u, v) = (u, v) +
1

α
(u′, v′) +mB u(0)v(0) ,

bA(u, v) =
1

β
(u′′, v′′)− µ

∫ 1

0

(1− x)u′(x)v′(x)dx

+KFBu(0)v(0) + kBAu
′(0)v′(0) .

Equations (3.2.1), (2.1.8) and (2.1.10) yield the following equation in terms
of the bilinear forms.

cA(∂
2
tw(·, t), v) = −bA(w(·, t), v) +KFBwF (t)v(0)

−CFB

(
∂tw(0, t)− ẇF (t)

)
v(0)

−cBA

(
∂t∂xw(0, t)− θ̇B(t)

)
v′(0)

+kBAθB(t)v
′(0) (3.2.3)

Together with Equations (2.1.9), (2.1.11) and (2.1.12) which are given again
for convenience, we are able to formulate the variational form of Problem
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VR 4.

IB θ̈B(t) = kBA

(
∂xw(0, t)− θB(t)

)
+ cBA

(
∂t∂xw(0, t)− θ̇B(t)

)

−kFB

(
θB(t)− θF (t)

)
− cFB

(
θ̇B(t)− θ̇F (t)

)
, (2.1.9)

mF ẅF (t) = KFB

(
w(0, t)− wF (t)

)
+ CFB

(
∂tw(0, t)− ẇF (t)

)

−KFwF (t)− CF ẇF (t), (2.1.11)

IF θ̈F (t) = kFB

(
θB(t)− θF (t)

)
+ cFB

(
θ̇B(t)− θ̇F (t)

)

−kF θF (t)− cF θ̇F (t). (2.1.12)

Variational form of Problem VR 4

Find w, θB, wF and θF such that for each t > 0, w(·, t) ∈ T (0, 1), Equation
(3.2.3) holds for each v ∈ T (0, 1) and Equations (2.1.9), (2.1.11) and (2.1.12)
hold.

The variational forms above are used for finite element approximations (see
Chapter 6).

3.2.2 Weak variational forms

For the analysis of the vibration problems we consider the weak variational
forms. We consider only Problem VR 4, since Problem VR 3 is similar to
Problem VR 4 but simpler.

For the weak variational form we redefine cA and bA in Subsection 3.2.1.

Bilinear forms

For u and v in H1(0, 1),

cA(u, v) = (u, v) +
1

α
(u′, v′) +mBu(0)v(0).
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For u and v in H2(0, 1),

bA(u, v) =
1

β
(u′′, v′′)− µ

∫ 1

0

(1− x)u′(x)v′(x) dx.

With the new notation and setting v = v1, Equation (3.2.3) becomes

cA(∂
2
tw(·, t), v1) = −bA(w(·, t), v1)−KFB

(
w(0, t)− wF (t)

)
v1(0)

−CFB

(
∂tw(0, t)− ẇF (t)

)
v1(0)

−kBA

(
∂xw(0, t)− θB(t)

)
v′1(0)

−cBA

(
∂t∂xw(0, t)− θ̇B(t)

)
v′1(0). (3.2.4)

Multiplying Equation (2.1.9) by an arbitrary real number v2 and adding this
to Equation (3.2.4) results in

cA(∂
2
tw(·, t), v1) + IB θ̈B(t)v2 = −bA(w(·, t), v1)

−KFB

(
w(0, t)− wF (t)

)
v1(0)

−CFB

(
∂tw(0, t)− ẇF (t)

)
v1(0)

−kBA

(
∂xw(0, t)− θB(t)

)(
v′1(0)− v2

)

−cBA

(
∂t∂xw(0, t)− θ̇B(t)

)(
v′1(0)− v2

)

−kFB

(
θB(t)− θF (t)

)
v2

−cFB

(
θ̇B(t)− θ̇F (t)

)
v2. (3.2.5)

Define a function y with values in L2(0, 1) by y(t) = w(·, t).

For the definition of the derivatives y′(t) and y′′(t), see Appendix 4. In this
subsection, we will use the notation ẏ(t) and ÿ(t) instead of y ′(t) and y′′(t)
to distinguish between time and spatial derivatives.

Finally we need the trace operator γ which is defined in Appendix 3. Here
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γu = u(0) for u ∈ L2(0, 1). With the new notation, Equation (3.2.5) becomes

cA(ÿ(t), v1) + IB θ̈B(t)v2 = −bA(y(t), v1)
−KFB

(
γy(t)− wF (t)

)
γv1

−CFB

(
γ
(
ẏ(t)

)
− ẇF (t)

)
γv1

−kBA

(
γ
[(
y(t)

)′]− θB(t)
)(
γv′1 − v2

)

−cBA

(
γ
[(
ẏ(t)

)′]− θ̇B(t)
)(
γv′1 − v2

)

−kFB

(
θB(t)− θF (t)

)
v2

−cFB

(
θ̇B(t)− θ̇F (t)

)
v2 (3.2.6)

Remark

Note that ∂tw(0, t) is replaced by γ
(
ẏ(t)

)
and not dt(γy)(t). This is necessary

for the weak variational form of the problem. Fortunately, the choice is not
a problem. This fact is discussed at the end of the section.

Multiply Equation (2.1.11) by v3 and Equation (2.1.12) by v4.

mF ẅF (t)v3 = KFB

(
wB(t)− wF (t)

)
v3 + CFB

(
ẇB(t)− ẇF (t)

)
v3

−KFwF (t)v3 − CF ẇF (t)v3 (3.2.7)

IF θ̈F (t)v4 = kFB

(
θB(t)− θF (t)

)
v4 + cFB

(
θ̇B(t)− θ̇F (t)

)
v4

−kF θF (t)v4 − cF θ̇F (t)v4 (3.2.8)
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Add Equations (3.2.6), (3.2.7) and (3.2.8) to find

cA(ÿ(t), v1) + IB θ̈B(t)v2 +mF ẅF (t)v3 + IF θ̈F (t)v4

= −bA(y(t), v1)−KFB

(
γy(t)− wF (t)

)(
γv1 − v3

)

−CFB

(
γ
(
ẏ(t)

)
− ẇF (t)

)(
γv1 − v3

)

−kBA

(
γ[
(
y(t)

)′
]− θB(t)

)(
γv′1 − v2

)

−cBA

(
γ[
(
ẏ(t)

)′
]− θ̇B(t)

)(
γv′1 − v2

)

−kFB

(
θB(t)− θF (t)

)(
v2 − v4

)

−cFB

(
θ̇B(t)− θ̇F (t)

)(
v2 − v4

)

−KFwF (t)v3 − CF ẇF (t)v3 − kF θF (t)v4 − cF θ̇F (t)v4 . (3.2.9)

To formulate the weak form of the variational problem, the following product
spaces and bilinear forms are necessary.

Product spaces

Define the product spaces

X = H1(0, 1)× IR3 and V = H2(0, 1)× IR3.

Bilinear forms

For u and v in H1(0, 1),

c(u, v) = cA(u1, v1) + IBu2v2 +mFu3v3 + IFu4v4 ,

a(u, v) = CFB (γu1 − u3) (γv1 − v3) + cBA(γu
′
1 − u2)(γv

′
1 − v2)

+cFB(u2 − u4)(v2 − v4) + CFu3v3 + cFu4v4 .

For u and v in H2(0, 1),

b(u, v) = bA(u1, v1) +KFB (γu1 − u3) (γv1 − v3)

+kBA(γu
′
1 − u2)(γv

′
1 − v2) + kFB(u2 − u4)(v2 − v4)

+KFu3v3 + kFu4v4 .
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Note that a, b and c are all symmetric.

We are now ready to formulate the weak variational form of Problem VR 4 in
terms of the defined bilinear forms. The table below shows the relationship
between the components of u and the variables in Equation (3.2.9).

u1(t) u2 u3 u4
w(·, t) θB(t) wF (t) θF (t)

Weak variational form of Problem VR 4

Find u such that for each t > 0, u(t) ∈ V and

c(u′′(t), v) = −b(u(t), v)− a(u′(t), v) for each v ∈ V.

The existence theorem for problems of this type is presented in Section 3.8.
If the initial conditions are chosen properly, u1 ∈ C2

(
(0, T ); H1(0, 1)

)
and

we find for example that (ẏ(t))′ = dt (y
′(t)) and dt [γy(t)] = γẏ(t).

The inertia space X

The bilinear form c is an inner product for the space X and consequently we
may define a norm for u ∈ X by

‖u‖X =
√
c(u, u) .

The space X with norm ‖ · ‖X is called the inertia space.

Theorem 1

The inertia space X is a separable Hilbert space and V is a dense subset of X.

Proof

The proof is similar to the proof of Theorem 2 in Section 3.1.
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It is obvious that the inner products of H2(0, 1) and IR3 can be used to define
an inner product for the space V . We will show that the symmetric bilinear
form b is also an inner product for V which is convenient for the theory.

Remark

In the following theorems, we assume throughout that the inequalities below
hold for the physical constants.

1 > 2µβ, kBA > 4µ, kFB > 8µ and kF > 8µ.

These assumptions are physically realistic, as can be seen in Section 6.5.

Theorem 2

There exists a constant Kbc such that

‖u‖2X ≤ Kbc b(u, u)

for each u ∈ V .

Proof

In the proof we use the elementary inequalities

‖x‖ ≤ ‖x− y‖+ ‖y‖ and (a+ b)2 ≤ 2(a2 + b2)

and the fact that
‖u1‖ ≤ ‖u′1‖+ |γu1|.

(See Theorem 3 Appendix 3.)

This implies that

‖u1‖2 ≤ 2‖u′1‖2 + 2(γu1)
2

and ‖u′1‖2 ≤ 2‖u′′1‖2 + 2(γu′1)
2.

Therefore

cA(u1, u1) ≤ 2

(
2 +

1

α

)(
‖u′′1‖2 + (γu′1)

2
)
+ (2 +mB) (γu1)

2.
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With

(γu1)
2 ≤ 2(γu1 − u3)

2 + 2u23,

(γu′1)
2 ≤ 2(γu′1 − u2)

2 + 4(u2 − u4)
2 + 4u24

u22 ≤ (u2 − u4)
2 + u24

and ‖u‖2X = cA(u1, u1) + IBu
2
2 +mFu

2
3 + IFu

2
4,

it follows that

‖u‖2X ≤ Kc

(
‖u′′1‖2 + (γu′1 − u2)

2 + (γu1 − u3)
2 + (u2 − u4)

2 + u23 + u24

)

where

Kc = max

{
2 (2 +mB) +mF , 8

(
2 +

1

α

)
+ 2IB + IF

}
.

From the fact that
∫ 1

0

(1− x)
(
u′1(x)

)2
dx ≤ ‖u′1‖2,

and using the inequality for (γu′1)
2 above, it follows that

bA(u1, u1) =
1

β
‖u′′1‖2 − µ

∫ 1

0

(1− x)
(
u′1(x)

)2
dx

≥ 1

β
‖u′′1‖2 − µ‖u′1‖2

≥
(
1

β
− 2µ

)
‖u′′1‖2 − µ

(
4 (γu′1 − u2)

2
+ 8 (u2 − u4)

2 + 8u24

)

Therefore

b(u, u) ≥
(
1

β
− 2µ

)
‖u′′1‖2 +KFB

(
γu1 − u3

)2
+ (kBA − 4µ) (γu′1 − u2)

2

+(kFB − 8µ) (u2 − u4)
2 +KFu

2
3 + (kF − 8µ) u24

≥ Kb

(
‖u′′1‖2 + (γu1 − u3)

2 + (γu′1 − u2)
2
+ (u2 − u4)

2 + u23 + u24

)

where

Kb = min

{
1

β
− 2µ, KFB, KF , kBA − 4µ, kFB − 8µ, kF − 8µ

}
.

With Kbc =
Kc

Kb

, it follows that

Kbc b(u, u) ≥ ‖u‖2X .
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Remark

If b(u, u) = 0, it follows from Theorem 2 that u = 0.

The energy space V

The bilinear form b is an inner product for the space V and for u ∈ V we
define

‖u‖V =
√
b(u, u) .

The space V with the norm ‖ · ‖V is called the energy space.

Theorem 3

There exists a constant Kba such that for any u ∈ V and v ∈ V ,

|a(u, v)| ≤ Kba‖u‖V ‖v‖V .

Proof

We can prove that

|a(u, v)| ≤
√
a(u, u)

√
a(v, v)

in a similar way as the proof for the Cauchy-Schwartz inequality.

From the proof in Theorem 2 it follows that a constant Kb > 0 exists such
that

b(u, u) ≥ Kb

(
‖u′′1‖2 + (γu1 − u3)

2 + (γu′1 − u2)
2
+ (u2 − u4)

2 + u23 + u24

)

≥ Kb

(
(γu1 − u3)

2 + (γu′1 − u2)
2
+ (u2 − u4)

2 + u23 + u24

)
.

Furthermore

|a(u, u)| = CFB (γu1 − u3)
2 + cBA (γu′1 − u2)

2
+ cFB (u2 − u4)

2

+CFu
2
3 + cFu

2
4

≤ Ka

(
(γu1 − u3)

2 + (γu′1 − u2)
2
+ (u2 − u4)

2 + u23 + u24

)
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where

Ka = max
{
CFB, CF , cBA, cFB, cF

}
.

Hence, with Kba =
Ka

Kb

,

|a(u, u)| ≤ Kba b(u, u) = Kba‖u‖2V .

Consequently

|a(u, v)| ≤
√
a(u, u)

√
a(v, v) ≤ Kba‖u‖V ‖v‖V .

3.3 Vertical slender structure: Timoshenko

models

3.3.1 Variational forms

The variational forms are found by multiplying Equation (2.1.13) with a
test function v and Equation (2.1.14) with a test function ψ and applying
integration by parts. This results in

(
∂2tw(·, t), v

)
= −

(
V (·, t), v′

)
− V (0, t)v(0),

1

α

(
∂2t φ(·, t), ψ

)
= −

(
M(·, t), ψ′

)
+
(
V (·, t), ψ

)
+
(
L(·, t), ψ

)
−M(0, t)ψ(0)

Substituting the constitutive equations (2.1.15), (2.1.16) and (2.1.17) into
the equations above, we find that

(
∂2tw(·, t), v

)
= −

(
∂xw(·, t)− φ(·, t), v′

)
− V (0, t)v(0), (3.3.1)

1

α

(
∂2t φ(·, t), ψ

)
= − 1

β

(
∂xφ(·, t), ψ′

)
+
(
∂xw(·, t)− φ(·, t), ψ

)

+µ

∫ 1

0

(1− x)∂xw(x, t)ψ(x)dx−M(0, t)ψ(0). (3.3.2)

First consider Problem VT 3. Equations (3.3.1) and (2.1.18) result in

(
∂2tw(·, t), v

)
+mF∂

2
tw(0, t)v(0) = −

(
∂xw(·, t)− φ(·, t), v′

)
−KFw(0, t)v(0)

−CF∂tw(0, t)v(0). (3.3.3)
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Equations (3.3.2) and (2.1.20) result in

1

α

(
∂2t φ(·, t), ψ

)
= − 1

β

(
∂xφ(·, t), ψ′

)
+
(
∂xw(·, t)− φ(·, t), ψ

)

+µ

∫ 1

0

(1− x)∂xw(x, t)ψ(x) dx

−k
(
φ(0, t)− θF (t)

)
ψ(0)

−c
(
∂tφ(0, t)− θ̇F (t)

)
ψ(0) (3.3.4)

Equation (2.1.19) is presented again for convenience.

IF θ̈F (t) = k
(
φ(0, t)− θF (t)

)
+ c
(
∂tφ(0, t)− θ̇F (t)

)

−kF θF (t)− cF θ̇F (t). (2.1.19)

As for the Rayleigh models, there are no forced boundary condtions on the
test functions. Therefore, for both variational forms of Problems VT 3 and
VT 4, both v and ψ are in T (0, 1) = C1[0, 1].

Variational form of Problem VT 3

Find w, φ and θF such that for each t > 0, w(·, t) ∈ T (0, 1), φ(·, t) ∈ T (0, 1)
and θF (t) ∈ IR and Equations (3.3.3) and (3.3.4) hold for each v ∈ T (0, 1)
and ψ ∈ T (0, 1) respectively and Equation (2.1.19) holds.

Now consider Problem VT 4. Equations (3.3.1) and (2.1.21) result in
(
∂2tw(·, t), v

)
+mB ∂

2
tw(0, t)v(0) = −

(
∂xw(·, t)− φ(·, t), v′

)

−KFB

(
w(0, t)− wF (t)

)
v(0)

−CFB

(
∂tw(0, t)− ẇF (t)

)
v(0). (3.3.5)

Equations (3.3.2) and (2.1.23) result in

1

α
(∂2t φ(·, t), ψ) = − 1

β
(∂xφ(·, t), ψ′) + (∂xw(·, t)− φ(·, t), ψ)

+µ

∫ 1

0

(1− x)∂xw(x, t)ψ(x) dx

−kBA

(
φ(0, t)− θB(t)

)
ψ(0)

−cBA

(
∂tφ(0, t)− θ̇B(t)

)
ψ(0). (3.3.6)
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There are three additional equations in the system, presented again for con-
venience.

IB θ̈B(t) = kBA

(
φ(0, t)− θB(t)

)
+ cBA

(
∂tφ(0, t)− θ̇B(t)

)

−kFB

(
θB(t)− θF (t)

)
− cFB

(
θ̇B(t)− θ̇F (t)

)
, (2.1.22)

mF ẅF (t) = KFB

(
w(0, t)− wF (t)

)
+ CFB

(
∂tw(0, t)− ẇF (t)

)

−KFwF (t)− CF ẇF (t), (2.1.24)

IF θ̈F (t) = kFB

(
θB(t)− θF (t)

)
+ cFB

(
θ̇B(t)− θ̇F (t)

)

−kF θF (t)− cF θ̇F (t). (2.1.25)

Variational form of Problem VT 4

Find w, φ, θB, wF and θF such that for each t > 0, w(·, t) ∈ T (0, 1),
φ(·, t) ∈ T (0, 1) and Equations (3.3.5) and (3.3.6) hold for each v ∈ T (0, 1)
and ψ ∈ T (0, 1) respectively and Equations (2.1.22), (2.1.24) and (2.1.25)
hold.

The variational forms of the problems above are used for computational pur-
poses (see Chapter 6), but for theoretical purposes we consider the weak
variational form.

3.3.2 Weak variational forms

Problems VT 3 and VT 4 are similar and we consider only Problem VT 4.
We omit the “gravity” term for a reason to be given later.

First we add Equations (3.3.5) and (3.3.6) to find

(
∂2tw(·, t), v

)
+

1

α

(
∂2t φ(·, t), ψ

)
+mB ∂

2
tw(0, t)v(0)

= − 1

β

(
∂xφ(·, t), ψ′

)
− (∂xw(·, t)− φ(·, t), v′ − ψ)

−KFB

(
w(0, t)− wF (t)

)
v(0)− CFB

(
∂tw(0, t)− ẇF (t)

)
v(0)

−kBA

(
φ(0, t)− θB(t)

)
ψ(0)− cBA

(
∂tφ(0, t)− θ̇B(t)

)
ψ(0). (3.3.7)
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Next we introduce “time derivatives” and the trace operator γ as in Sec-
tion 3.2.2.

Define a function y with values y(t) = 〈w(·, t), φ(·, t)〉 in L2(0, 1) × L2(0, 1).
Furthermore, set v = v1 and ψ = v2. Equation (3.3.7) then becomes

(ÿ1(t), v1) +
1

α

(
ÿ2(t), v2) +mBγ

(
ÿ1(t)

)
γv1

= − 1

β

(
(y2(t))

′, v′2
)
−
(
(y1(t))

′ − y2(t), v
′
1 − v2

)

−KFB

(
γ
(
y1(t)

)
− wF (t)

)
γv1 − CFB

(
γ
(
ẏ1(t)

)
− ẇF (t)

)
γv1

−kBA

(
γ
(
y2(t)

)
− θB(t)

)
γv2 − cBA

(
γ
(
ẏ2(t)

)
− θ̇B(t)

)
γv2. (3.3.8)

Bilinear forms

For u = 〈u1, u2〉 and v = 〈v1, v2〉 in H1(0, 1)×H1(0, 1),

cA(u, v) = (u1, v1) +
1

α
(u2, v2) +mBγu1γv1,

bA(u, v) =
1

β
(u′2, v

′
2) + (u′1 − u2, v

′
1 − v2).

Write Equation (3.3.8) in terms of the bilinear forms:

cA(ÿ(t), v) = −bA(y(t), v)−KFB

(
γ
(
y1(t)

)
− wF (t)

)
γv1

−CFB

(
γ
(
ẏ1(t)

)
− ẇF (t)

)
γv1

−kBA

(
γ
(
y2(t)

)
− θB(t)

)
γv2

−cBA

(
γ
(
ẏ2(t)

)
− θ̇B(t)

)
γv2 (3.3.9)

for any v ∈ H1(0, 1)×H1(0, 1).

Multiply Equations (2.1.22), (2.1.24) and (2.1.25) with v3, v4 and v5 respec-
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tively to find

IB θ̈B(t)v3 =
[
kBA

(
γ
(
y2(t)

)
− θB(t)

)
+ cBA

(
γ
(
ẏ2(t)

)
− θ̇B(t)

)

−kFB

(
θB(t)− θF (t)

)
− cFB

(
θ̇B(t)− θ̇F (t)

)]
v3 (3.3.10)

mF ẅF (t)v4 =
[
KFB

(
wB(t)− wF (t)

)
+ CFB

(
ẇB(t)− ẇF (t)

)

−KFwF (t)− CF ẇF (t)] v4 (3.3.11)

IF θ̈F (t)v5 =
[
kFB

(
θB(t)− θF (t)

)
+ cFB

(
θ̇B(t)− θ̇F (t)

)

−kF θF (t)− cF θ̇F (t)
]
v5 (3.3.12)

Adding Equations (3.3.9), (3.3.10), (3.3.11) and (3.3.12) results in

cA(ÿ(t), v) + IB θ̈B(t)v3 +mF ẅF (t)v4 + IF θ̈F (t)v5

= −bA(y(t), v)−KFB

(
γ
(
y1(t)

)
− wF (t)

)(
γv1 − v4

)

−CFB

(
γ
(
ẏ1(t)

)
− ẇF (t)

)(
γv1 − v4

)

−kBA

(
γ
(
y2(t)

)
− θB(t)

)(
γv2 − v3

)

−cBA

(
γ
(
ẏ2(t)

)
− θ̇B(t)

)(
γv2 − v3

)

−kFB

(
θB(t)− θF (t)

)(
v3 − v5

)

−cFB

(
θ̇B(t)− θ̇F (t)

)(
v3 − v5

)

−KFwF (t)v4 − CF ẇF (t)v4

−kF θF (t)v5 − cF θ̇F (t)v5. (3.3.13)

To formulate the weak form of the variational problem, the following product
spaces and bilinear forms are necessary.

Product spaces

X = L2(0, 1)× L2(0, 1)× IR3 and V = H1(0, 1)×H1(0, 1)× IR3 .
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Bilinear forms

For u and v in X,

cA(u, v) = (u1, v1) +
1

α
(u2, v2) +mBγu1γv1 ,

c(u, v) = cA(u, v) + IBu3v3 +mFu4v4 + IFu5v5 ,

a(u, v) = CFB(γu1 − u4)(γv1 − v4) + cBA(γu2 − u3)(γv2 − v3)

+cFB(u3 − u5)(v3 − v5) + CFu4v4 + cFu5v5 .

For u and v in V,

bA(u, v) =
1

β
(u′2, v

′
2) + (u′1 − u2, v

′
1 − v2) ,

b(u, v) = bA(u, v) +KFB(γu1 − u4)(γv1 − v4) + kBA(γu2 − u3)(γv2 − v3)

+kFB(u3 − u5)(v3 − v5) +KFu4v4 + kFu5v5 .

The relationship between the variables u1 to u5 and the variables in Problem
VT 4 is shown in the next table.

u1(t) u2 u3 u4 u5
w(·, t) φ(·, t) θB(t) wF (t) θF (t)

Weak variational form of Problem VT 4

Find u such that for each t > 0, u(t) ∈ V and

c(u′′(t), v) = −b(u(t), v)− a(u′(t), v) for each v ∈ V.

Remark

Inclusion of the “gravity”-term in the definition of bA will result in an un-
symmetrical form. Consequently the bilinear form b will be unsymmetrical
and symmetry is crucial in the theory – see Section 3.8.
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The inertia space X

Note that c is an inner product for this space and consequently we may define
a norm for u ∈ X by

‖u‖X =
√
c(u, u) .

The space X with norm ‖ · ‖X is the inertia space.

Theorem 1

The inertia space X is a separable Hilbert space and V is a dense subset
of X.

Proof

The proof is similar to the proof of Theorem 2 in Section 3.1.

We will show that the bilinear form b is an inner product for the space V .

Theorem 2

There exists a constant Kbc such that

‖u‖2X ≤ Kbc b(u, u)

for each u ∈ V .

Proof

As before we use the elementary inequalities

‖x‖ ≤ ‖x− y‖+ ‖y‖ and (a+ b)2 ≤ 2(a2 + b2).

It follows from Theorem 3 Appendix 3 that

‖ui‖ ≤ ‖u′i‖+ |γui| for i = 1, 2.
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Together with ‖u′1‖2 ≤ 2‖u′1 − u2‖2 + 2‖u2‖2, we find that

‖u1‖2 +
1

α
‖u2‖2 ≤ 4‖u′1 − u2‖2 +

(
8 +

2

α

)(
‖u′2‖2 + (γu2)

2
)
+ 2 (γu1)

2 .

Furthermore,

(γui)
2 ≤ 2(γui − uj)

2 + 2u2j , u23 ≤ 2(u3 − u5)
2 + 2u25

and

c(u, u) = ‖u1‖2 +
1

α
‖u2‖2 +mB (γu1)

2 + IBu
2
3 +mFu

2
4 + IFu

2
5 .

It follows that

c(u, u) ≤ Kc

{
‖u′1 − u2‖2 + ‖u′2‖2 + (γu1 − u4)

2 + (γu2 − u3)
2

+(u3 − u5)
2 + u24 + u25

}

with

Kc = max

{
4 + 2mB +mF , IF + 2IB + 32 +

8

α

}
.

b(u, u) =
1

β
‖u′2‖2 + ‖u′1 − u2‖2 +KFB (γu1 − u4)

2 + kBA (γu2 − u3)
2

+kFB (u3 − u5)
2 +KFu

2
4 + kFu

2
5

≥ Kb

{
‖u′2‖2 + ‖u′1 − u2‖2 + (γu1 − u4)

2 + (γu2 − u3)
2

+(u3 − u5)
2 + u24 + u25

}

with

Kb = min

{
1

β
, KFB, KF , kFB, kF , kBA

}
.

Let Kbc =
Kc

Kb

, then c(u, u) ≤ Kbc b(u, u) and the result follows.

The energy space V

For u ∈ V we define
‖u‖V =

√
b(u, u) .

The space V with the norm ‖ · ‖V is called the energy space.
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Theorem 3

For any u ∈ V and v ∈ V ,

|a(u, v)| ≤ ‖u‖V ‖v‖V .

Proof

This proof is similar to the proof of Theorem 3 Section 3.2.

3.4 The cantilever beam

The variational form of the cantilever Timoshenko beam is derived in Sec-
tion 3.1. Recall that our main concern is the choice of boundary conditions
at the clamped end. Returning to Equations (3.1.1) and (3.1.2), we are now
ready to comment on this choice.

Choosing test functions v and ψ such that v(0) = ψ(0) = 0, the terms
V (0, t)v(0) and M(0, t)ψ(0) vanish. Therefore the boundary conditions
w(0, t) = φ(0, t) = 0 is a convenient choice from a variational point of view.
Note that w(0, t) = 0 is realistic as far as modelling is concerned, but not
φ(0, t) = 0 (see Section 1.5.2).

The following alternative boundary conditions may be considered (see Sec-
tion 2.2). [

V (0, t)
M(0, t)

]
=

[
d11 d12
d21 d22

] [
w(0)
φ(0)

]

Note that D = C−1.

We now have no restriction on the test functions and the energy space
V = H1(0, 1)×H(0, 1). The bilinear form b must be redefined and

b(u, v) =
1

β
(u′2, v

′
2) + (u′1 − u2, v

′
1 − v2) +

[
γu1 γu2

]
D
[
γv1 γv2

]T
.

The matrix D must be nonnegative for the bilinear form b to be an inner
product. For a discussion of the results, see Chapter 7.
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3.5 Two-dimensional model for the cantilever

beam

3.5.1 Variational forms

Consider the equation of motion (1.4.1). Multiply both sides by an arbitrary
vector valued function φ and integrate over the reference configuration Ω.

∫∫

Ω

(∂2tu) · φ dA =

∫∫

Ω

(divT ) · φ dA.

If T is symmetric, div (Tφ) = (divT ) · φ+ tr (TΦ), where

Φ =

[
∂1φ1 ∂2φ1
∂1φ2 ∂2φ2

]
.

Application of the divergence theorem and the symmetry of T yield
∫∫

Ω

div (Tφ) dA =

∫

∂Ω

Tφ · n ds =
∫

∂Ω

Tn · φ ds.

Combining the results above, we have the Green formula
∫∫

Ω

(divT ) · φ dA = −
∫∫

Ω

tr (TΦ) dA+

∫

∂Ω

Tn · φ ds.

Consequently,
∫∫

Ω

(∂2tu) · φ dA = −
∫∫

Ω

tr (TΦ) dA+

∫

∂Ω

Tn · φ ds (3.5.1)

for any vector field φ that is sufficiently smooth.

The bilinear form b(u,φ) is defined by

b(u,φ) =

∫∫

Ω

tr (TΦ) dA.

If Hooke’s law, Equation (1.4.2), is substituted into the definition of the
bilinear form, we obtain

b(u,φ) =

∫∫

Ω

(
σ11∂1φ1 + σ12∂1φ2 + σ21∂2φ1 + σ22∂2φ2

)
dA

=
1

γ(1−ν2)

∫∫

Ω

(
∂1u1∂1φ1+∂2u2∂2φ2+ν(∂1u1∂2φ2+∂2u2∂1φ1)

)
dA

+
1

2γ(1 + ν)

∫∫

Ω

(
∂1u2 + ∂2u1

)(
∂1φ2 + ∂2φ1

)
dA.
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To define the space of test functions T (Ω) for Problems CTD 1 and CTD 2,
take note that the boundary of Ω consists of the the two parts Σ and Γ. The
test functions must satisfy the forced boundary conditions on Σ, i.e. φ1 and
φ2 must be zero when it is required that u1 and u2 are zero. All that matters
at this stage is that Tn · φ = 0 on Σ.

Consequently ∫

∂Ω

Tn · φ ds =
∫

Γ

Tn · φ ds

for each φ ∈ T .

For the equilibrium problem the traction is prescribed on Γ.

Variational form of Problem CTD 1

Given the traction t on Γ, find u ∈ T (Ω) such that

b(u,φ) =

∫

Γ

t · φ ds

for each φ ∈ T (Ω).

In the second problem we consider free vibration and there is no traction
on Γ.

Variational form of Problem CTD 2

Find u such that for t > 0, u(·, t) ∈ T (Ω) and
∫∫

Ω

∂2tu · φ dA = −b(u,φ)

for each φ ∈ T (Ω).

Remark

Our main concern is to study the natural frequencies and modes. The rele-
vant eigenvalue problems are considered in Section 3.9 and Chapter 7.
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3.5.2 Weak variational forms

For the theory it is necessary to place some restrictions on the sets Ω and Γ.
These assumptions are listed below and more detail is given in Appendix 1.

1. The set Ω is open, bounded and convex.

2. The boundary of Ω consists of a finite number of smooth curves.

3. The set Γ is a smooth part of the boundary of Ω.

Remark

In our application, Ω is a rectangle and Γ one of the sides.

The function spaces L2(Ω)2, L2(Γ)2, Hk(Ω)2 and Hk(Γ)2 are relevant for the
theory. The detail and notation are discussed in Appendix 1.

The trace operator γ is now a mapping of a function “onto its value” on Γ.
The definition is given in Appendix 3.

We follow the same line of reasoning for the weak formulation as before. Let
V be the closure of T (Ω) in H1(Ω)2. We may consider the following weak
variational form of Problem CTD 1. Given t ∈ L2(Γ)2, find u ∈ V such that

b(u, v) = (t, γv) Γ0,2 for each v ∈ V.

However, to apply the theory we consider another form. We define a func-
tional f corresponding to the traction on Γ. Given t ∈ L2(Γ)2, let

f(v) = (t, γv) Γ0,2 for each v ∈ V,

This leads to the following form.

Weak variational form of Problem CTD 1

Given f in the dual of V , find u ∈ V such that

b(u, v) = f(v) for each v ∈ V.
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Weak variational form of Problem CTD 2

Find u such that for each t > 0, u(t) ∈ V and

c(u′′(t), v) = −b(u(t), v) for each v ∈ V,
where c(· , ·) = (· , ·) is the inner product of L2(Ω)2.

Theorem 1

There exists a constant K such that

|f(v)| ≤ K ‖γv‖Ω1,2 for each v ∈ V.

Proof

It follows from Theorem 4 Appendix 3 that

‖γv‖Γ0,2 ≤ KΓ ‖v‖Ω1,2 for each v ∈ H1(Ω)2.

Consequently,

|f(v)| ≤ ‖t‖Γ0,2 ‖γv‖Γ0,2 ≤ KΓ ‖t‖Γ0,2 ‖v‖Ω1,2.

Theorem 2 (Poincare-Friedrichs)

There exists a constant cF such that,

‖u‖0,2 ≤ cF |u|1,2 for each u ∈ V.

Proof

The inequality holds for each u ∈ T (Ω) (see the corollary to Theorem 2
Appendix 2). Clearly the same is true for u ∈ V .

Theorem 3 (Korn)

There exists a constant cK such that,

|u|21,2 ≤ cK b(u, u) for each u ∈ H1(Ω)2.
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Proof

[Br, p 288-289]

Theorem 4

There exists a constant c1 such that,

‖u‖1,2 ≤ c1
√
b(u, u) for each u ∈ V.

Proof

Combine Korn’s inequality with the Poincare-Friedrichs inequality.

The energy space V

For u ∈ V we define
‖u‖V =

√
b(u, u) .

The space V with norm ‖·‖V is called the energy space. Due to Theorem 4
the norms ‖ · ‖V and ‖ · ‖1,2 are equivalent on V .

Theorem 5

The space L2(Ω)2 is a separable Hilbert space and V is a dense subset of L2(Ω)2.

Proof

The space L2(Ω)2 is a separable Hilbert space and C∞
0 (Ω)2 is a dense subset

of L2(Ω)2 (from Theorems 2 and 3 Appendix 1). Since C∞
0 (Ω)2 ⊂ V , the

result follows.

Theorem 6

The embedding of the space V into L2(Ω)2 is compact.
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Proof

The embedding of the space H1(Ω)2 into L2(Ω)2 is compact (from Theorem
7 Appendix 1). The result follows from the equivalence of the norms ‖ · ‖V
and ‖ · ‖1,2 .

Theorem 7

For any t ∈ L2(Γ)2, there exists a unique u ∈ V such that

b(u, v) = (t, v)Γ0,2 for each v ∈ V.

Proof

See Section 3.7.

3.6 Plate-beam system

3.6.1 Variational form of problem RMT

For any function v,
∫∫

Ω

(divQ)v dA = −
∫∫

Ω

Q · ∇v dA+

∫

∂Ω

(Q · n)v ds. (3.6.1)

For any vector valued function φ = [φ1 φ2]
T , using the Green formula from

Section 3.5, we have
∫∫

Ω

divM · φ dA = −
∫∫

Ω

tr(MΦ) dA+

∫

∂Ω

Mn · φ ds, (3.6.2)

where Φ =

[
∂1φ1 ∂2φ1
∂1φ2 ∂2φ2

]
and “tr” denotes the trace of the matrix.

Test functions

Choose two spaces of test functions T1(Ω) and T2(Ω), with

T1(Ω) =
{
v ∈ C1(Ω̄)

∣∣ v = 0 on Σ̄0 and Σ̄1
}
,
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T2(Ω) =
{
φ = [φ1 φ2]

T
∣∣ φ1, φ2 ∈ C1(Ω̄), φ2 = 0 on Σ̄0 and Σ̄1

}
.

Combining Equation (1.3.5) (first equation of motion for the plate) with
Equation (3.6.1) yield

hp

∫∫

Ω

∂2twv dA+

∫∫

Ω

Q · ∇v dA−
∫

∂Ω

(Q · n)v ds = 0 (3.6.3)

for each v ∈ T1(Ω).

It follows from Equation (2.4.8) (first equation of motion for the beams),
using integration by parts, that

η1

∫ 1

0

∂2twb0v0 dx+

∫ 1

0

V0∂xv0 dx =

∫ 1

0

P0v0 dx (3.6.4)

for each v0 in C
1[0, 1] with v0(0) = v0(1) = 0 and

η1

∫ 1

0

∂2twb1v1 dx+

∫ 1

0

V1∂xv1 dx =

∫ 1

0

P1v1 dx (3.6.5)

for each v1 in C1[0, 1] with v1(0) = v1(1) = 0. The subscripts “0” and “1”
are used to distinguish between quantities associated with the two different
beams.

To accommodate Equation (2.4.2) (interface condition for wb0 and wb1),
choose v0(x1) = v(x1, 0) and v1(x1) = v(x1, a), where a denotes the dimen-
sionless width of the plate.

The fact that v = 0 on Σ̄0 and Σ̄1 and that Q · n = −P on both Γ0 and
Γ1 (interface condition (2.4.4)), result in some cancellations when adding
Equations (3.6.3), (3.6.4) and (3.6.5). We have

∫

∂Ω

(Q · n)v ds =

∫

Γ0

(Q0 · n)v ds−
∫

Γ1

(Q1 · n)v ds

= −
∫

Γ0

P0v ds−
∫

Γ1

P1v ds

= −
[∫ 1

0

P0v dx1

]

x2=0

−
[∫ 1

0

P1v dx1

]

x2=a

for each v ∈ T1(Ω).
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From Equation (2.4.2) (interface condition), the remaining integrals on Γ0
and Γ1 can be expressed in terms of w. Therefore,

hp

∫∫

Ω

∂2twv dA + η1

[∫ 1

0

∂2twv dx1

]

x2=0

+ η1

[∫ 1

0

∂2twv dx1

]

x2=a

+

∫∫

Ω

Q · ∇v dA +

[∫ 1

0

V0∂1v dx1

]

x2=0

+

[∫ 1

0

V1∂1v dx1

]

x2=a

= 0

for each v ∈ T1(Ω).

Equations (1.3.7) (constitutive equation for Q) and (2.4.10) (constitutive
equations for V0 and V1) are expressed in terms of w and ψ1 (found from the
interface conditions (2.4.2) and (2.4.3)). They are used to obtain the final
form of this variational equation. This leads to

hp

∫∫

Ω

∂2twv dA + η1

[∫ 1

0

∂2twv dx1

]

x2=0

+ η1

[∫ 1

0

∂2twv dx1

]

x2=a

+hp

∫∫

Ω

(∇w +ψ) · ∇v dA

+ η2

[∫ 1

0

(∂1w + ψ1)∂1v dx1

]

x2=0

+ η2

[∫ 1

0

(∂1w + ψ1)∂1v dx1

]

x2=a

= 0 (3.6.6)

for each v ∈ T1(Ω).

A similar calculation is performed for the remaining equations of motion.
Combining Equation (1.3.6) (second equation of motion for the plate) with
the Green formula (3.6.2) yields

Ip

∫∫

Ω

∂2tψ · φ dA +

∫∫

Ω

tr(MΦ) dA −
∫

∂Ω

Mn · φ ds

+

∫∫

Ω

Q · φ dA = 0 (3.6.7)

for each φ ∈ T2(Ω).

It follows from Equation (2.4.9) (second equation of motion for the beams)
and using integration by parts, that

η1
αb

∫ 1

0

∂2t φb0χ0 dx +

∫ 1

0

Mb0∂xχ0 dx −
∫ 1

0

(V0 + L0)χ0 dx = 0 (3.6.8)
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for each χ0 ∈ C1[0, 1] and

η1
αb

∫ 1

0

∂2t φb1χ1 dx +

∫ 1

0

Mb1∂xχ1 dx −
∫ 1

0

(V1 + L1)χ1 dx = 0 (3.6.9)

for each χ1 ∈ C1[0, 1]. (Mb0 andMb1 are zero at the endpoints of the beams.)

The functions χ0 and χ1 in Equations (3.6.8) and (3.6.9) must satisfy the
conditions χ0(x1) = −φ1(x1, 0) and χ1(x1) = −φ1(x1, a) in order to accom-
modate the interface condition (2.4.3) for φb0 and φb1.

Hence Equation (3.6.8) becomes

η1
αb

[∫ 1

0

∂2t ψ1φ1 dx1

]

x2=0

−
[∫ 1

0

Mb0∂1φ1 dx1

]

x2=0

+

[∫ 1

0

(V0 + L0)φ1 dx1

]

x2=0

= 0 (3.6.10)

for each φ ∈ T2(Ω), and Equation (3.6.9) becomes

η1
αb

[∫ 1

0

∂2t ψ1φ1 dx1

]

x2=a

−
[∫ 1

0

Mb1∂1φ1 dx1

]

x2=a

+

[∫ 1

0

(V1 + L1)φ1 dx1

]

x2=a

= 0 (3.6.11)

for each φ ∈ T2(Ω).

As before, adding Equations (3.6.7), (3.6.10) and (3.6.11), some cancellation
of terms occur. Note that φ = (φ · n)n+ (φ · τ )τ and consequently,

∫

∂Ω

Mn · φ ds =
∫

∂Ω

(
(φ · n)Mn · n+ (φ · τ )Mn · τ

)
.ds

The natural boundary condition on Ω is Mn · n = 0.

From the definition of the test functions, φ2 = 0 on Σ̄0 and Σ̄1 and therefore
φ · τ = 0 on Σ0 and Σ1.

On Γ0 and Γ1 the interface conditions (2.4.5) and (2.4.6) are used. It follows
that

∫

∂Ω

Mn · φ ds =

∫

Γ0

L0φ1 ds +

∫

Γ1

(−L1)(−φ1) ds

=

[∫ 1

0

L0φ1 dx1

]

x2=0

+

[∫ 1

0

L1φ1 dx1

]

x2=a

.
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Consequently,

Ip

∫∫

Ω

∂2tψ · φ dA +

∫∫

Ω

tr(MΦ) dA +

∫∫

Ω

Q · φ dA

+
η1
αb

[∫ 1

0

∂2t ψ1φ1 dx1

]

x2=0

+
η1
αb

[∫ 1

0

∂2t ψ1φ1 dx1

]

x2=a

−
[∫ 1

0

Mb0∂1φ1 dx1

]

x2=0

−
[∫ 1

0

Mb1∂1φ1 dx1

]

x2=a

+

[∫ 1

0

V0φ1 dx1

]

x2=0

+

[∫ 1

0

V1φ1 dx1

]

x2=a

= 0

for each φ ∈ T2(Ω).

Equations (1.3.7) and (1.3.8) are the constitutive equations for Q and M
for the plate. These equations are expressed in terms of w and ψ1 (using
the interface conditions (2.4.2)). Similarly, Equation (2.4.10) (constitutive
equations for V1 and V2) and Equation (2.4.11) (constitutive equations for
Mb0 and Mb1) are expressed in terms of w and ψ1. They are used to obtain
the final form the second variational equation.

We define a bilinear form bB by

bB(ψ,φ) =

∫∫

Ω

tr(MΦ) dA

=
1

βp(1−ν2)

∫∫

Ω

(
(∂1ψ1+ν∂2ψ2)∂1φ1+(∂2ψ2+ν∂1ψ1)∂2φ2

)
dA

+
1

2βp(1+ν)

∫∫

Ω

(∂1ψ2+∂2ψ1)(∂1φ2+∂2φ1) dA.

for each ψ, φ in H1(Ω)2.
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Finally, the second variational equation is given by

Ip

∫∫

Ω

∂2tψ · φ dA + bB(ψ,φ) + hp

∫∫

Ω

(∇w + ψ) · φ dA

+
η1
αb

[∫ 1

0

∂2t ψ1φ1 dx1

]

x2=0

+
η1
αb

[∫ 1

0

∂2t ψ1φ1 dx1

]

x2=a

+
η2
βb

[∫ 1

0

∂1ψ1∂1φ1 dx1

]

x2=0

+
η2
βb

[∫ 1

0

∂1ψ1∂1φ1 dx1

]

x2=a

+ η2

[∫ 1

0

(∂1w + ψ1)φ1 dx1

]

x2=0

+ η2

[∫ 1

0

(∂1w + ψ1)φ1 dx1

]

x2=a

= 0 (3.6.12)

for each φ ∈ T2(Ω).

Variational form of Problem RMT

Find w and ψ such that, for t > 0, w(·, t) ∈ T1(Ω), ψ(·, t) ∈ T2(Ω) and Equa-
tions (3.6.6) and (3.6.12) hold for each v ∈ T1(Ω) and each φ ∈ T2(Ω).

The variational form above is used for computational purposes (see Chap-
ter 8), but for theoretical purposes we consider the weak form of the varia-
tional problem.

3.6.2 Variational form of Problems KR and KEB

The variational form of Problem KR can be obtained by setting ψ = −∇w
and choosing φ = −∇v in Equations (3.6.6) and (3.6.12). In this case the
test functions are defined by

T (Ω) =
{
v ∈ C2(Ω̄)

∣∣ v = 0 on Σ̄0 and Σ̄1.
}

The variational equations reduce to

hp

∫∫

Ω

∂2twv dA + η1

[∫ 1

0

∂2twv dx1

]

x2=0

+ η1

[∫ 1

0

∂2twv dx1

]

x2=a

= 0 (3.6.13)
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and

Ip

∫∫

Ω

∂2t (∇w) · ∇v dA + bB(∇w,∇v)

+
η1
αb

[∫ 1

0

∂2t ∂1wv dx1

]

x2=0

+
η1
αb

[∫ 1

0

∂2t ∂1wv dx1

]

x2=a

+
η2
βb

[∫ 1

0

∂21w∂
2
1v dx1

]

x2=0

+
η2
βb

[∫ 1

0

∂21w∂
2
1v dx1

]

x2=a

= 0 (3.6.14)

for each v ∈ T (Ω).

Redefine the bilinear form bB in Equation (3.6.14) by

bB(w, v) =
1

βp(1− ν2)

∫∫

Ω

(
(∂21w + ν∂22w)∂

2
1v + (∂22w + ν∂21w)∂

2
2v
)
dA

+
2

βp(1 + ν)

∫∫

Ω

∂1∂2w∂1∂2v dA.

for each w, v in H2(Ω).

For Problem KR the variational form is reduced to a single equation by
adding Equations (3.6.13) and (3.6.14).

Variational form of Problem KR

Find w such that, for t > 0, w(., t) ∈ T (Ω),

hp

∫∫

Ω

∂2twv dA + Ip

∫∫

Ω

∂2t (∇w) · ∇v dA

+ η1

[∫ 1

0

∂2twv dx1

]

x2=0

+ η1

[∫ 1

0

∂2twv dx1

]

x2=a

+
η1
αb

[∫ 1

0

∂2t (∂1w)v dx1

]

x2=0

+
η1
αb

[∫ 1

0

∂2t (∂1w)v dx1

]

x2=a

+ bB(w, v) +
η2
βb

[∫ 1

0

∂21w∂
2
1v dx1

]

x2=0

+
η2
βb

[∫ 1

0

∂21w∂
2
1v dx1

]

x2=a

= 0 (3.6.15)

for each v in T (Ω).
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Variational form of Problem KEB

The variational form of the case where rotary inertia is ignored, is obtained

by ignoring the terms containing Ip and
η1
αb

in Equation (3.6.15).

3.6.3 Weak variational form of Problem RMT

For I = (0, 1), the space T (I) is defined as

T (I) =
{
v ∈ C1(Ī)

∣∣ v(0) = v(1) = 0
}
.

The trace operators γ0 and γ1 are defined in Appendix 3. At this stage we
are dealing with smooth functions and γ0 and γ1 simply map a function onto
its value at the boundary. Therefore

γ0v = v(· , 0) and γ1v = v(· , a).

In order to formulate the weak variational form of Problem RMT, we start
by rewriting Equations (3.6.6) and (3.6.12) in terms of inner products. The
notation is explained in Appendix 1.

hp

(
∂2tw(·, t) , v

)
Ω
+ η1

(
γ0(∂

2
tw(·, t)) , γ0v

)
I
+ η1

(
γ1(∂

2
tw(·, t)) , γ1v

)
I

+hp

(
∇w(·, t) +ψ(·, t) , ∇v

)Ω
0,2

+ η2

(
γ0(∂1w(·, t) + ψ1(·, t)) , γ0(∂1v)

)
I

+ η2

(
γ1(∂1w(·, t) + ψ1(·, t)) , γ1(∂1v)

)
I
= 0. (3.6.16)

Ip

(
∂2tψ(·, t) , φ

)Ω
0,2

+ bB(ψ(·, t),φ) + hp

(
∇w(·, t) +ψ(·, t) , φ

)Ω
0,2

+
η1
αb

(
γ0(∂

2
t ψ1(·, t)) , γ0φ1

)
I
+

η1
αb

(
γ1(∂

2
t ψ1(·, t)) , γ1φ1

)
I

+
η2
βb

(
γ0(∂1ψ1(·, t)) , γ0(∂1φ1)

)
I
+
η2
βb

(
γ1(∂1ψ1(·, t)) , γ1(∂1φ1)

)
I

+ η2

(
γ0(∂1w(·, t) + ψ1(·, t)) , γ0φ1

)
I

+ η2

(
γ1(∂1w(·, t) + ψ1(·, t)) , γ1φ1

)
I
= 0. (3.6.17)

The next step is to define product spaces.
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Product spaces

X = L2(Ω)× L2(Ω)2 ×
4

n=1
L2(I) ,

H1 = H1(Ω)×H1(Ω)2 ×
4

n=1
H1(Ω)

S = T1(Ω)× T2(Ω)
2 ×

2

n=1

(
T (I)× C1(Ī)

)

T =
{
v ∈ S

∣∣ γ0v1 = v3, γ1v1 = v5, γ0 (v2 · e1) = −v4, γ1 (v2 · e1) = −v6
}

The following table explains the relationship between the functions used in
Equations (3.6.16) and (3.6.17) and Equations (3.6.18) and (3.6.19) to follow.
Note that for v ∈ C1(Ω̄) and i = 0, 1, γi (∂1v) = (γiv)

′ – the derivative with
respect to the variable x1.

u1(t) w(·, t) v1 v
u2(t) ψ(·, t) v2 φ

u3(t) γ0
(
w(·, t)

)
= γ0u1(t) v3 γ0v = γ0v1

u4(t) −γ0ψ1(·, t) = −γ0(u2(t) · e1) v4 −γ0φ1 = −γ0(v2 · e1)
u5(t) γ1

(
w(·, t)

)
= γ1u1(t) v5 γ1v = γ1v1

u6(t) −γ1ψ1(·, t) = −γ1(u2(t) · e1) v6 −γ1φ1 = −γ1(v2 · e1)

In the new notation, Equations (3.6.16) and (3.6.17) become

hp

(
ü1(t) , v1

)
Ω
+ η1

(
ü3(t) , v3

)
I
+ η1

(
ü5(t) , v5

)
I

+hp

(
∇u1(t) + u2(t) , ∇v1

)Ω
0,2

+ η2

(
u′3(t)− u4(t) , v

′
3

)
I

+ η2

(
u′5(t)− u6(t) , v

′
5

)
I
= 0 (3.6.18)

and Ip

(
ü2(t) , v2

)Ω
0,2

+ bB(u2(t), v2) + hp

(
∇u1(t) + u2(t) , v2

)Ω
0,2

+
η1
αb

(
− ü4(t) , −v4

)
I
+

η1
αb

(
− ü6(t) , −v6

)
I

+
η2
βb

(
− u′4(t) , −v′4

)
I
+
η2
βb

(
− u′6(t) , −v′6

)
I

+ η2

(
u′3(t)− u4(t) , −v4

)
I
+ η2

(
u′5(t)− u6(t) , −v6

)
I

= 0 (3.6.19)
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Bilinear forms

For u and v in T , define

c(u, v) = hp(u1, v1)Ω + IP (u2, v2)
Ω
0,2 + η1(u3, v3)I

+
η1
αb

(u4, v4)I + η1(u5, v5)I +
η1
αb

η1(u6, v6)I ,

bΓ(u, v) = η2

(
u′3 − u4, v

′
3 − v4

)
I
+ η2

(
u′5 − u6, v

′
5 − v6

)
I

+
η2
βb

(u′4, v
′
4)I +

η2
βb

(u′6, v
′
6)I ,

bΩ(u, v) = bB(u2, v2) + hp

(
∇u1 + u2,∇v1 + v2

)Ω
0,2
,

b(u, v) = bΩ(u, v) + bΓ(u, v) .

By adding Equations (3.6.18) and (3.6.19), we arrive at the following varia-
tional problem.

Find u(t) ∈ T such that c(ü(t), v) = −b(u(t), v) for each v ∈ T .

We are now ready to consider the weak variational form. We define V as the
closure of T in H1. Note that all the bilinear forms are defined for elements
of V , except for bΓ. For u and v in V , define

bΓ(u, v) = lim
n→∞

bΓ(un, vn) ,

with {un} and {vn} sequences in T such that un → u and vn → v.

As a consequence, the bilinear forms b and bΓ are now defined on V .

Weak variational form of Problem RMT

Find u ∈ C1([0,∞), V ) ∩ C2((0,∞), X) such that for each t > 0, u′(t) ∈ V ,
u′′(t) ∈ X and

c(u′′(t), v) = −b(u(t), v) for each v ∈ V.
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Inertia space

The space X with the norm induced by the inner product c is the inertia
space.

Energy space

The closure of T in H1 is denoted by V . A norm on V is defined by
‖u‖V =

√
b(u, u) and is called the energy norm. The space V with norm

‖ · ‖V called the energy space.

Theorem 1

The inertia space X is a separable Hilbert space and V is dense in X.

Proof

Appendix 5.

Theorem 2

There exist constants c1 and c2 such that

‖u‖X ≤ c1‖u‖H1 ≤ c2‖u‖V
for each u ∈ V .

Proof

Appendix 5.

3.7 Equilibrium problems

In the rest of Chapter 3, X and V denote spaces with the following properties:
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X is a Hilbert space with inner product c and norm ‖ · ‖X ;

V is a Hilbert space with inner product b and norm ‖ · ‖V ;

V is a subspace of X.

Theorem (Riesz)

For any f in the dual of V , there exists a unique u ∈ V such that

b(u, v) = f(v) for each v ∈ V.

Corollary

Suppose ‖u‖X ≤ ‖u‖V for each u ∈ V . For any f ∈ X, there exists a unique
u ∈ V such that

b(u, v) = c(f, v) for each v ∈ V.

Proof

Let g(v) = c(f, v) for each v ∈ V , then |g(v)| ≤ ‖f‖X‖v‖V proving that g is
in the dual of V . Applying the theorem yields the desired result.

Application

The theorem above yields the existence of a weak solution for Problem CTD 1.

Proof of Theorem 7 Section 3.5

The result follows from the theorem above and Theorem 1 Section 3.5. Recall
that f(v) = (t, γv)Γ0,2 .
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3.8 Vibration problems

In this section we consider the general linear vibration problem. Consider the
Hilbert spaces X and V introduced in Section 3.7. Consider also a bilinear
form a defined on V .

For any Banach space Y the spaces Ck
(
[0,∞), Y

)
and Ck

(
(0,∞), Y

)
are

defined in Appendix 4.

Problem D

Find u ∈ C1
(
[0,∞), V

)
∩ C2

(
(0,∞), X

)
such that for each t > 0,

c
(
u′′(t), v

)
+ a

(
u′(t), v

)
+ b
(
u(t), v

)
= 0 for each v ∈ V,

u(0) = u0 , u′(0) = u1 .

Theorem

Suppose

(a) V is dense in X,

(b) ‖u‖X ≤ K‖u‖V for each u ∈ V ,

(c) the bilinear form a is symmetric, nonnegative and |a(u, v)| ≤ C‖u‖V ‖v‖V
for each u and v in V ,

(d) u0 ∈ V , u1 ∈ V and for some y ∈ X,

b(u0, v) + a(u1, v) = c(y, v) for each v ∈ V.

Then Problem D has a unique solution.

Proof

See [VV].
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Remark

It is possible to define linear operatorsM , C and K and arrive at an abstract
differential equation Mu′′ + Cu′ + Ku = 0. It is then possible to prove an
equivalent existence result, see e.g. [Sho, p 131].

Applications

For Problems VR 4, VT 4, CTD 2 and RMT the first three conditions in the
Theorem are met. This is proven in each section where the weak variational
forms of the problems are discussed.

3.9 Modal analysis

In this section we consider the modal analysis of the general linear vibration
problem. Consider the Hilbert spaces X and V introduced in Section 3.7.
Consider also a bilinear form a defined on V .

The fact that a solution of the (general) vibration problem exists is not
enough. To determine the response of a system to excitation, knowledge of
the vibration spectrum is required. We need to know whether the solution
may be written as the superposition of modes.

First consider the case of no damping, i.e. a = 0. For the modal analysis of
the system, a function ũ(x, t) = T (t)u(x) is considered as a possible solution.
This requires consideration of the following eigenvalue problem.

Problem E1

Find a complex number λ and u ∈ V such that

b(u, v) = λc(u, v) for each v ∈ V.
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Natural frequencies and modes

The function Tn satisfies T ′′
n = −λnT and hence the natural angular fre-

quencies are equal to ωn =
√
λn . The formal solution of Problem D (general

vibration problem) is given by

u(t) =
∞∑

n=1

(An sinωnt+Bn sinωnt) en,

where each en is an eigenvector. For the series above to converge, a necessary
condition is that it must be possible to write the the initial values u0 and u1
as a series using the sequence of eigenvectors. This implies that the existence
of a complete orthonormal sequence of eigenvectors is required. We present
two well-known results, slightly modified.

Theorem 1

(a) The eigenvalues are (real and) positive.

(b) The eigenfunctions are orthogonal in the inertia space X with respect
to the inner product c.

Proof

The bilinear forms on both sides of the equation are inner products. Conse-
quently, the eigenvalues must be real and positive. Furthermore, for different
eigenvalues λ and µ it follows that λc(u, v) = b(u, v) = µc(u, v). Therefore
that (λ− µ)c(u, v) = 0 and consequently c(u, v) = 0.

Theorem 2

Suppose the embedding of V into X is compact.

(a) The set of eigenvalues can be ordered as a sequence {λn} converging
to ∞ as n→∞.

(b) The set of eigenvectors can be ordered as a sequence and this sequence
is complete (or total) in X.
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Proof

For each f ∈ X, there exists a unique u ∈ V such that

b(u, v) = c(f, v) for each v ∈ V
by the corollary in Section 3.7. (The embedding of V into X is bounded.)
Define a mapping K by u = Kf , then

b(Kf, v) = c(f, v) for each v ∈ V.
The mapping K is defined on X and it is clearly linear. Note that

b(u, v) = λc(u, v) for each v ∈ V
if and only if λKu = u or Ku = λ−1u.

The operator K is symmetric due to the fact that b and c are symmetric.
The inequality

‖Kf‖2V ≤ ‖f‖X‖Kf‖X ≤ kbc‖f‖X‖Kf‖V
implies that K is a bounded operator from the inertia space X into the
energy space V . If a set A is bounded in the inertia space, then the set KA
is bounded in the energy space and consequently pre-compact in the inertia
space (due to the compactness of the embedding). Therefore the operator K
is compact.

Both conclusions of the theorem now follow from the theory of compact
symmetric linear operators on a separable Hilbert space, see e.g. [Ze, p 232].

Modal damping

We now consider the case where the bilinear form a is not zero but we assume
that

a = k1c+ k2b.

Consider a function ũ(x, t) = T (t)u(x) as a possible solution. The eigenvalue
problem is the same as for the undamped case but

T ′′c(u, v) + T ′
(
k1c(u, v) + k2b(u, v)

)
+ Tb(u, v) = 0.

This leads to the following ordinary differential equation

T ′′ + (k1 + k2λ)T
′ + λT = 0.

Again it is possible to present the solution in series form.
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3.10 Nonmodal damping

In this section we consider the the general linear vibration problem (Sec-
tion 3.8) with nonmodal damping, i.e.

a 6= k1c+ k2b.

Nonmodal damping is often a consequence of boundary damping. It also
features in hybrid systems such as the models for the vertical structure pre-
sented in Section 2.1. Computation of the natural frequencies leads to a
quadratic eigenvalue problem with complex eigenvalues and eigenvectors (see
Chapter 6).

The quadratic eigenvalue problem

Consider the Hilbert spaces X and V introduced in Section 3.8 and the
general linear vibration problem, Problem D. In general, consideration of a
solution of the form eλtu leads to a quadratic eigenvalue problem.

λ2c(u, v) + λa(u, v) + b(u, v) = 0 for each v ∈ V.
This problem is a generalization of the eigenvalue problems in Chapter 6.

It is clear that imaginary eigenvalues and eigenvectors are possible and X is
a real Hilbert space. However, we may consider the space X to be embed-
ded in complex space X̃. This can be done in a rigorous manner, see e.g.
[Sch, p 154]. Elements of X̃ are of the form x = x1+ix2, where x1 and x2 are

in X. We also have a subspace Ṽ with elements of the form x = x1+ ix2 ∈ Ṽ
where x1 and x2 are in V .

The bilinear forms a, b and c must be extended to X̃ and Ṽ . Consider for
example the bilinear form c:

c̃(x, y) = c(x1, y1) + ic(x2, y1)− ic(x1, y2) + c(x2, y2).

It is easily checked that the bilinear form c̃ is an inner product for X̃ and
that X̃ is a separable Hilbert space. Similarly, we find that Ṽ is a Hilbert
space with inner product b̃. Furthermore, Ṽ is dense in X̃ and the relevant
estimates remain valid. We have for example

c̃(x, x) = c(x1, x1) + c(x2, x2)

≤ Kbc

(
b(x1, x1) + b(x2, x2)

)

= Kbc b̃(x, x).
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We now return to the original notation and consider the quadratic eigen-
value problem.

Problem QE

Find a complex number λ and u ∈ V such that

λ2c(u, v) + λa(u, v) + b(u, v) = 0 for each v ∈ V.

To apply the theory on convergence, we need an alternative formulation.

Non selfadjoint eigenvalue problem

The quadratic eigenvalue problem is equivalent to a conventional abstract
eigenvalue problem in a product space. Let H = V ×X and

(x, y)H = b(x1, y1) + c(x2, y2) for x, y ∈ H.

It is easy to see that (·, ·)H is an inner product for H and that H is
complete.

Problem E2

Find a complex number λ and x ∈ H such that

x2 = λx1

b(x1, v) + a(x2, v) = −λc(x2, v) for each v ∈ V.

If λ is an eigenvalue and u an eigenvector of Problem QE, then λ is an
eigenvalue and 〈u, λu〉 an eigenvector of Problem E2. Conversely, if λ is an
eigenvalue and x an eigenvector of Problem E2, then λ is an eigenvalue and
x1 an eigenvector of Problem QE.

If the sequence of eigenvectors is complete in the complex Hilbert space X,
the solution of Problem D can be written in series form. The abstract form
of the quadratic eigenvalue problem is considered in Section 5.4. It is of the
same type as the abstract form of the eigenvalue problem for a Timoshenko
beam with boundary damping considered in a recent paper [Shu]. Shubov
proved that the sequence of eigenvectors is complete but it should be noted
that the problems are not the same.
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Chapter 4

Interpolation

4.1 Hermite cubics

The well-known Hermite piecewise cubics (see [SF] or [Re]) are successfully
used as basis functions for the Galerkin approximation in beam problems.

The construction and properties of Hermite cubics are treated in detail in
the book of Strang and Fix ([SF, p 55-59]). Divide the interval [a, b] into n
subintervals by a partitioning

a = x0 < x1 < · · · < xn = b.

This yields n elements, Ωi = [xi−1, xi], each of length hi, for i = 1, 2, . . . , n.

For i = 0, 1, . . . , n, we have two piecewise cubics denoted by δ
(j)
i with j = 0

or j = 1 with the following properties:

1. For k = 0, 1, . . . , n, i = 0, 1, . . . , n and j = 0, 1, the restriction of
δ
(j)
k to any Ωi is either a cubic polynomial or zero.

2. δ
(j)
i ∈ C1[a, b] and D2δ

(j)
i is piecewise continuous with possible discon-

tinuities at the nodes.

3. δ
(0)
i (xi) = 1, Dδ

(0)
i (xi) = 0, δ

(1)
i (xi) = 0, Dδ

(1)
i (xi) = 1.

4. δ
(0)
i (xk) = 0, Dδ

(0)
i (xk) = 0, δ

(1)
i (xk) = 0, Dδ

(1)
i (xk) = 0 if k 6= i.

5. δ
(j)
i is zero on any element Ωk with k 6= i or i+ 1.

87
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We refer to these two types of functions as Type 1 (j = 0) or Type 2 (j = 1)

functions. Typical graphs of δ
(0)
i and δ

(1)
i are shown in Figures 1 and 2.

Figure 1: Type 1 Hermite piecewise cubic

a bxi−1 xi xi+1

1
δ
(0)
i

Figure 2: Type 2 Hermite piecewise cubic

a bxi−1 xi xi+1

0.2

−0.2

δ
(1)
i

Remarks

1. The graphs in Figures 1 and 2 must be adapted for the functions δ
(0)
0 ,

δ
(0)
n , δ

(1)
0 and δ

(1)
n .

2. We will refer to the Hermite piecewise cubic functions as Hermite
cubics.

3. δ
(j)
i ∈ H2[a, b] ∀ i = 0, 1, . . . , n and j = 0, 1.

Cubic interpolation operator

For w ∈ H2(a, b), we define the cubic interpolation operator Πc as

Πcw =
1∑

j=0

n∑

i=0

(Djw)(xi) δ
(j)
i .

Note that Πc δ
(j)
i = δ

(j)
i for i = 0, 1, . . . , n and j = 0, 1.
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4.2 Hermite bicubic functions

The Hermite piecewise bicubic functions are constructed by using a product
of the Hermite piecewise cubic functions in Section 4.1, hence the name
bicubics. (For a fixed x or y, a piecewise bicubic reduces to a piecewise
cubic.) See [SF, p 88-89] for detail. It is also mentioned there that bicubics
rank amongst the best provided that rectangular elements are used.

The rectangle Ω̄ = [a, b]× [c, d] is divided in rs elements as follows. Partition
[a, b] and [c, d] by

a = x0 < x1 < · · · < xr = b and c = y0 < y1 < · · · < ys = d,

and set

hi = xi − xi−1 and kj = yj − yj−1.

This defines a grid on Ω̄ with the grid lines x = xi and y = yj. A general
element is given by

Ω̄ij = [xi−1, xi]× [yj−1, yj].

For i = 0, 1, . . . , r and j = 0, 1, . . . , s, we have four piecewise bicubics
denoted by δ

(k)
ij with k = 0, 1, 2, 3, with the following properties:

1. The restriction of δ
(k)
ij to any Ω̄IJ is either a bicubic polynomial or zero

for i and I = 0, 1, . . . , r, j and J = 0, 1, . . . , s and k = 0, 1, 2, 3.

2. δ
(k)
ij ∈ C1(Ω̄) and all second order partial derivatives are piecewise
continuous with possible discontinuities on the edges of the elements.

3. δ
(k)
ij (xi, yj) =

{
1 if k = 0
0 otherwise,

∂xδ
(k)
ij (xi, yj) =

{
1 if k = 1
0 otherwise,

∂yδ
(k)
ij (xi, yj) =

{
1 if k = 2
0 otherwise,

∂x∂yδ
(k)
ij (xi, yj) =

{
1 if k = 3
0 otherwise.

4. δ
(k)
ij (xI , yJ) = 0, ∂xδ

(k)
ij (xI , yJ) = 0, ∂yδ

(k)
ij (xI , yJ) = 0 and

∂x∂yδ
(k)
ij (xI , yJ) = 0 if (i, j) 6= (I, J).
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5. δ
(k)
ij is zero on any element ΩIJ not adjacent to Ωij .

We refer to these four types of functions as Type 1 (k = 0), Type 2 (k = 1),
Type 3 (k = 2) and Type 4 (k = 3) functions.

Remarks

1. As mentioned, for a fixed x or y, a piecewise bicubic reduces to a piece-
wise cubic. This compatibility is needed for the plate-beam problems.

2. δ
(k)
ij ∈ H2(Ω) ∀ i = 0, 1, . . . , r, j = 0, 1, . . . , s and k = 0, 1, 2, 3.

We use the following notation for the partial derivatives that play a role in
construction of the bicubics.

∂(k)w =





w for k = 0
∂xw for k = 1
∂yw for k = 2
∂x∂yw for k = 3

Bicubic interpolation operator

For w ∈ H4(Ω), we define the bicubic interpolation operator Πb as

Πbw =
3∑

k=0

r∑

i=0

s∑

j=0

(∂(k)w)(xi, yj) δ
(k)
ij .

Note that Πb δ
(k)
ij = δ

(k)
ij for i = 0, 1, . . . , r, j = 0, 1, . . . , s and k = 0, 1, 2, 3.

4.3 Standard estimates for the interpolation

error

Standard interpolation estimates can be found in, for instance, [SF], [OR]
and [OC]. The following two parameters for an interpolation operator are
used in the interpolation estimates:
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r(Π) is the highest degree of polynomials left invariant by Π.

s(Π) is the highest order derivative used in the definition of Π.

We will use Ĉ to denote a generic constant which depends on the constants
in Sobolev’s lemma and the constants in the Bramble-Hilbert lemma.

Theorems 1 and 2 below are formulated as a special case of a general result.
This result may be found in [SF, p 144], [OC, p 76] and [OR, p 279].

4.3.1 One-dimensional domain

We consider a one-dimensional domain Ω = (a, b). Here | · |k denotes the
seminorm of order k, i.e.

|u|k = ‖u(k)‖ .
(See Appendix 1.)

Theorem 1

Suppose s(Π)+1 ≤ k ≤ r(Π)+1. Then there exists a constant Ĉ such that,
for all u ∈ Hk(Ω),

‖u− Πu‖m ≤ Ĉhk−m|u|k, m = 0, 1, . . . , k.

Corollary

Consider the Hermite piecewise cubic functions and the interpolation opera-
tor Πc.

a) If 2 ≤ k ≤ 4, there exists a constant Ĉ such that, for all u ∈ Hk(I),

‖u− Πcu‖m ≤ Ĉhk−m|u|k, m = 0, 1, . . . , k.

b) If k > 4, there exists a constant Ĉ such that, for all u ∈ Hk(I),

‖u− Πcu‖m ≤ Ĉh4−m|u|4, m = 0, 1, . . . , 4.
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Proof

r(Πc) = 3 and s(Πc) = 1.

a) The result follows directly from Theorem 1.

b) If k > 4, Hk(0, 1) ⊂ H4(0, 1). The result follows from Theorem 1.

4.3.2 Two-dimensional domain

For a two-dimensional convex domain Ω, | · |k denotes the seminorm of order
k and

|u|2k =
∑

i+j=k

‖∂i1∂j2u‖2.

(See Appendix 1.)

In the following theorem, h = maxhe, where he is the diameter of the element
Ωe.

Theorem 2

Suppose s(Π)+2 ≤ k ≤ r(Π)+1. Then there exists a constant Ĉ such that,
for u ∈ Hk(Ω),

‖u− Πu‖m ≤ Ĉhk−m|u|k, m = 0, 1, . . . , k.

Corollary

Consider the piecewise Hermite bicubic functions and the interpolation ope-
rator Πb. For k ≥ 4, there exists a constant Ĉ such that, for all u ∈ Hk(I)

‖u− Πbu‖m ≤ Ĉh4−m|u|4, m = 0, 1, . . . , 4.

Proof

r(Πb) = 3 and s(Πb) = 2. If k > 4, Hk(0, 1) ⊂ H4(0, 1) and the result follows
from Theorem 2.
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Remark

The constant Ĉ depends on the ratio length versus width for the elements.
Care should be taken that these ratios remain within specific bounds.

4.3.3 Vector-valued functions

Definition

For u = 〈u1, u2〉 ∈ Hk(Ω)2, we define

ΠB u = 〈Πb u1, Πb u2〉 .

The seminorm of order k for Hk(Ω)2 is denoted by | · |k,2 and

|u|2k,2 = |u1|2k + |u2|2k .

(See Appendix 1.)

Theorem 3

There exists a constant Ĉ such that, for all u ∈ Hk(Ω)2 with k ≥ 4,

‖u− ΠB u‖m,2 ≤ Ĉh4−m|u|4,2 , m = 0, 1, . . . . 4 .

Proof

The proof follows directly from the definition of the interpolation operator
ΠB, the norm and seminorm on the product space and the corollary in Sub-
section 4.3.2.

‖u− ΠB u‖2m,2 = ‖u1 − Πb u1‖2m + ‖u2 − Πb u2‖2m
≤

[
Ĉh4−m |u1|4

]2
+
[
Ĉh4−m |u2|4

]2

=
[
Ĉh4−m|u|4,2

]2
.
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Corollary

There exists a constant Ĉ such that, for all u ∈ Hk(Ω)2 ∩ V with k ≥ 4,

‖u− ΠB u‖V ≤ Ĉh3|u|4,2 .

Proof

The norms ‖ · ‖1,2 and ‖ · ‖V are equivalent (Theorem 4 Sec 3.5).

4.4 Interpolation estimates for the one-

dimensional hybrid models

Consider Problem VT 4 (Section 3.3). Let Ω = (a, b) and define Hk as
Hk = Hk(Ω) × Hk(Ω) × IR3. An interpolation operator on the product
spaces Hk can now be defined.

Definition

Πu = 〈Πc u1, Πc u2, u3, u4, u5〉 for u ∈ Hk .

An inner product for Hk is defined by

(
u, v

)
Hk =

(
u1, v1

)
k
+
(
u2, v2

)
k
+ u3v3 + u4v4 + u5v5 .

The corresponding norm is

‖u‖Hk =
√(

u, u
)
Hk .

A seminorm for Hk is defined by

|u|k,Hk =
√
|u1|2k + |u2|2k ,

with | · |k the seminorm in Hk(Ω).
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Theorem

Consider the piecewise Hermite cubic functions and the interpolation opera-
tor Π.

a) If 2 ≤ k ≤ 4, there exists a constant Ĉ such that, for all u ∈ Hk ,

‖u− Πu‖m,Hk ≤ Ĉhk−m|u|k,Hk , m = 0, 1, . . . . k.

b) If k > 4, there exists a constant Ĉ such that, for all u ∈ Hk ,

‖u− Πu‖m,Hk ≤ Ĉhk−m|u|4,Hk , m = 0, 1, . . . . 4.

Proof

In this proof, we use the result in Subsection 4.3.1.

‖u− Πu‖2m,Hk = ‖〈u1 − Πc u1 , u2 − Πc u2 , 0 , 0 , 0〉‖2m,Hk

=
∑̀

j=1

‖uj − Πc uj‖2m

≤





2∑

j=1

[
Ĉhk−m |uj|k

]2
if 2 ≤ k ≤ 4,

2∑

j=1

[
Ĉh4−m |uj|4

]2
if k > 4,

=





[
Ĉhk−m

∣∣u
∣∣
k

]2
if 2 ≤ k ≤ 4,

[
Ĉh4−m

∣∣u
∣∣
4

]2
if k > 4.

Remark

It is easy to see that similar results can be found for the product spaces
Hk(Ω)×Hk(Ω)× IR, Hk(Ω)× IR3 and Hk(Ω)× IR.
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Corollary 1 (Problems VR 3 and VR 4)

a) If 2 ≤ k ≤ 4, there exists a constant Ĉ such that, for all u ∈ Hk ∩ V ,

‖u− Πcu‖V ≤ Ĉhk−2|u|k,Hk .

b) If k > 4, there exists a constant Ĉ such that, for all u ∈ Hk ∩ V ,

‖u− Πcu‖V ≤ Ĉh2|u|4,Hk .

Proof

The results follow from the theorem, the fact that V ⊂ H2 and the equiva-
lence of the energy norm ‖ · ‖V and the H2–norm.

Corollary 2 (Problems VT 3 and VT 4)

a) If 2 ≤ k ≤ 4, there exists a constant Ĉ such that, for all u ∈ Hk ∩ V ,

‖u− Πcu‖V ≤ Ĉhk−1|u|k,Hk .

b) If k > 4, there exists a constant Ĉ such that, for all u ∈ Hk ∩ V ,

‖u− Πcu‖V ≤ Ĉh3|u|4,Hk .

Proof

The energy norm ‖ · ‖V and the H1–norm are equivalent.

4.5 Interpolation estimates for the plate-beam

system

We consider an interval I = (a, b) and a rectangle Ω = (a, b)× (c, d). Define

Hk = Hk(Ω)×Hk(Ω)2 ×
4

n=1
H1(Ω) .

The other relevant product spaces are defined in Section 3.6.

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLaabbuusscchhaaggnnee,,  AA    ((22000066))  



ESTIMATES FOR PLATE-BEAM SYSTEM 97

Definition

For u ∈ Hk we define the interpolation operator

Πu = 〈Πb u1, ΠB u2, Πc u3, Πc u4, Πc u5, Πc u6〉 .

An inner product for Hk is defined by

(
u, v

)
Hk = (u1, v1)

Ω
k + (u2, v2)

Ω
k,2 +

6∑

j=3

(
uj, vj

)I
k
,

The corresponding norm is given by

‖u‖Hk =
√(

u, u
)
Hk

and the seminorm | · |Hk of order k is defined by

|u|2Hk =
(
|u1|Ωk

)2
+
(
|u2|Ωk,2

)2
+

6∑

j=3

(
|uj|Ik

)2

Theorem

Consider the interpolation operator Π defined above. For k ≥ 4, there exists
a constant Ĉ such that, for all u ∈ Hk,

‖u− Πu‖Hm ≤ Ĉh4−m|u|H4 , m = 0, 1, . . . . 4.

Proof

We use the results in Section 4.3.

‖u− Πu‖2Hm =
(
‖u1 − Πb u1‖Ωm

)2
+
(
‖u2 − ΠB u2‖Ωm,2

)2
+

6∑

j=3

(
‖uj − Πb uj‖Im

)2

≤
(
Ĉ1h

4−m|u1|Ωm
)2

+
(
Ĉ2h

4−m|u2|Ωm,2

)2
+

6∑

j=3

(
Ĉjh

4−m|uj|Im
)2

≤
(
Ĉh4−m

)2 [ (
|u1|Ωm

)2
+
(
|u2|Ωm,2

)2
+

6∑

j=3

(
|uj|Im

)2 ]

=
[
Ĉh4−m|u|H4

]2
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Corollary

For k ≥ 4, there exists a constant Ĉ such that, for all u ∈ V ∩Hk,

‖u− Πu‖V ≤ Ĉh3|u|H4 .

Proof

The norms ‖ · ‖H1 and ‖ · ‖V are equivalent (Theorem 2 Section 3.6).
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Chapter 5

Approximation

5.1 Projections

For the spaces Hk and V as defined Sections 4.3, 4.4 and 4.5, we have the
situation that for all our model problems a finite dimensional subspace Sh of
V is constructed in such a way that the forced boundary conditions are met.
At this stage an estimate for the interpolation error u− Πu is available.

All the convergence results in this chapter are based on projection methods.

Definition (Projection Ph)

For each x ∈ V , we define Phx to be the unique element of Sh such that

b(x− Phx, v) = 0 for all v ∈ Sh.

It is well known and easy to prove that

b(x− Phx, v) = 0 for all v ∈ Sh

if and only if

‖x− Phx‖V ≤ ‖x− v‖V for all v ∈ Sh .

Since Sh is a finite dimensional subspace of the space V , the projection exists.
This is a result from linear algebra (see e.g. [Ap, Chapter 15]). The result is
also true for an infinite dimensional subspace (see e.g. [Kr, Sec 3.3]).

99
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We display for convenience the elementary yet important properties of the
projection Ph.

‖x− Phx‖V ≤ ‖x− v‖V for all v ∈ Sh,

‖Phx− v‖V ≤ ‖x− v‖V for all v ∈ Sh,

and ‖Phx‖V ≤ ‖x‖V .

5.1.1 One-dimensional models

For the one-dimensional models, we consider only eigenvalue problems. The
solutions of the differential equations are in C∞(Ω̄) and hence in H4(Ω).
This implies that the eigenvectors of the weak problem are in the product
space H4 .

Theorem 1

Suppose the energy norm is equivalent to the norm of Hm on V . Then there
exists a constant Ĉ such that, for any u ∈ H4 ∩ V ,

(a) ‖Phu− u‖V ≤ Ĉ h4−m |u|4,H4 and ‖Πu− Phu‖V ≤ Ĉ h4−m |u|4,H4 .

(b) ‖Phu− u‖X ≤ Ĉ h2(4−m) |u|4,H4 .

Remark

Problems VRE 3, VRE 4, VTE 3 and VTE 4 are defined in Section 6.2. For
Problems VRE 3 and VRE 4 we have that m = 2 and for Problems VTE 3
and VTE 4 we have m = 1.

Proof

(a) It follows from the properties of the projection operator Ph that

‖Phu− u‖V ≤ ‖Πu− u‖V and ‖Πu− Phu‖V ≤ ‖Πu− u‖V .

The estimates are found from Corollaries 1 and 2 in Section 4.4.

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLaabbuusscchhaaggnnee,,  AA    ((22000066))  



5.1. PROJECTIONS 101

(b) Set ep = u− Phu. As b defines an inner product on V, it follows from
Riesz’s theorem that there exists a unique u ∈ V such that

b(u, v) = c(ep , v) for all v ∈ V. (5.1.1)

Regularity results yield that u ∈ H4∩V and that there exists a cb such
that

‖u‖4 ≤ cb‖ep‖X . (5.1.2)

Since Ph is a projection,

b(ep, v) = 0 for all v ∈ S. (5.1.3)

Let v = ep in Equation (5.1.1) and v = Phu in Equation (5.1.3). This
yields

‖ep‖2X = b(u− Phu, ep) ≤ ‖u− Phu‖V ‖ep‖V .
From part (a) of the Theorem, it follows that

‖ep‖2X ≤ Ĉ h2 |u|4,H4 ‖ep‖V .
We conclude from Inequality (5.1.2) that

‖ep‖X ≤ cb Ĉh
4−m‖ep‖V .

The result now follows from part (a) of the Theorem.

Remark

The proof of part (b) of the Theorem is known as the Aubin-Nitsche trick
([Au] and [N]. This version is from the book of Strang and Fix ([SF, p 166]).

5.1.2 Two-dimensional models

The first result concerns Problems CTD 1 and CTD 2.

Theorem 2

There exists a constant Ĉ such that, for any u ∈ H4(Ω)2 ∩ V ,

(a) ‖Phu− u‖V ≤ Ĉ h3 |u|4,2 and ‖ΠBu− Phu‖V ≤ Ĉ h3 |u|4,2 .

(b) ‖Phu− u‖X ≤ Ĉ h6 |u|4,2 .
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Proof

The proof is similar to the proof of Theorem 1.

The next result applies to Problems RMT and KEB.

Theorem 3

Suppose the energy norm is equivalent to the norm of Hm on V . Then there
exists a constant Ĉ such that, for any u ∈ H4 ∩ V ,

(a) ‖Phu− u‖V ≤ Ĉ h4−m |u|4 and ‖Πu− Phu‖V ≤ Ĉ h4−m |u|4 .

(b) ‖Phu− u‖X ≤ Ĉ h2(4−m) |u|4 .

Proof

The proof is similar to the proof of Theorem 1.

For the two-dimensional problems, regularity can not be guaranteed, i.e. a
solution may be in the space V but not in H4. The following theorem is
applicable in the case that u is not an element of one of the H4-spaces as
defined above.

Theorem 4

For any ε > 0 and any u ∈ V , there exists a δ > 0, such that

‖u− Phu‖V < ε if h < δ.

Proof

For any u ∈ V there exists a w ∈ H4 ∩ V such that ‖u− w‖V ≤ ε. Then

‖Phu− u‖V ≤ ‖u− w‖V + ‖w − Phw‖V + ‖Phw − Phu‖V
≤ ε+ Ĉ h2 |w|4 + ε

< 3ε for h sufficiently small.

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLaabbuusscchhaaggnnee,,  AA    ((22000066))  



5.2. EQUILIBRIUM PROBLEMS 103

5.2 Equilibrium problems

We consider the convergence of the Galerkin approximation of Problem
CTD 1 to the solution of Problem CTD 1.

Assume that uh ∈ Sh is the solution of

b(uh, v) = f(v) for all v ∈ Sh (5.2.1)

and that u ∈ V is the solution of

b(u, v) = f(v) for all v ∈ V. (5.2.2)

Theorem

(a) If u ∈ V , then ‖u− uh‖V −→ 0 as h −→ 0.

(b) If u ∈ H4 ∩ V , then

‖u− uh‖V ≤ Ĉ h3 |u|4,2 and ‖u− uh‖X ≤ Ĉ h6 |u|4,2 .

Proof

Subtracting Equation (5.2.1) from Equation (5.2.2), we find that

b(u− uh, v) = 0 for all v ∈ Sh .

Hence uh = Phu. Therefore ‖u− uh‖V = ‖u− Phu‖V and the result follows
from Theorem 4 Section 5.1.

5.3 Symmetrical eigenvalue problems

We consider the eigenvalue problem E1 in Section 3.9. The seminorm | · |4
used in this paragraph is general and used for a unified formulation of the
theory. When applying the theory to Problem CDT 2, this seminorm is
substituted by | · |4,2 and for Problem RMT by | · |4,H4 . A similar situation
holds for the use of H4 .

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLaabbuusscchhaaggnnee,,  AA    ((22000066))  



104 CHAPTER 5. APPROXIMATION

Regularity assumption

The eigenvectors are in H4 and there exists a constant Cb depending on the
bilinear forms b and c, such that for each eigenvector y,

|y|k ≤ Cb λ ‖y‖X .

The Rayleigh quotient can be used to order the sequence of eigenvalues.
Assume the eigenvalues are ordered as

λ1 ≤ λ2 ≤ λ3 ≤ . . .

Consider the eigenvalues λ1 , λ2 , . . . , λm for some m with the corresponding
normalized eigenvectors y1 , y2 , . . . , ym. Assume furthermore that λj 6= λm
if j > m (λi = λj is possible for i ≤ m and j ≤ m).

Corresponding to this situation, we have the eigenvalues λh1 , λ
h
2 , . . . , λ

h
m

(also ordered) and the corresponding eigenvectors yh1 , y
h
2 , . . . , y

h
m in Sh. In

the case of a multiple eigenvalue, the eigenvector is not uniquely determined.
The following three theorems are from [SF]. In [ZVGV2] and [Ziet] it was
shown that the results are applicable in the general abstract case.

Theorem 1

λhi ≥ λi for each i.

Theorem 2

(a) λhm −→ λm as h −→ 0.

(b) If the regularity assumption holds, then λhm − λm ≤ Ĉ Cb λ
2
m h

2(4−m) .

We assume that the sequence of eigenvector approximations
{
yhj
}
is norma-

lized.

Theorem 3

Suppose that the dimension of the eigenspace Em corresponding to λm is r.
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(a) Let ε > 0. For h sufficiently small, there exists a y ∈ Em with ‖y‖ = 1
such that

‖y − yhm−r+j‖ ≤ ε

for j = 1, 2, . . . , r.

(b) Suppose Problem E1 satisfies the regularity assumption. If h is suffi-
ciently small, there exists a y ∈ Em with ‖y‖ = 1 such that

‖y − yhm−r+j‖V ≤ Ĉ Cb λm h
4−m

for j = 1, 2, . . . , r.

5.4 Non selfadjoint eigenvalue problem

In this section we consider Problem E2 formulated in Section 3.10.

5.4.1 Abstract eigenvalue problem

Following [VV], we introduce a linear operator Λ onH with the property that
the eigenvalues of Λ are the reciprocals of the eigenvalues of Problem E2 and
the eigenvectors are the same.

Recall that X and V are complex Hilbert spaces with V dense in X. Also,
H is the product space V ×X with inner product

(x, y)H = b(x1, y1) + c(x2, y2).

Theorem 1

Suppose

(a) V is dense in X,

(b) ‖u‖X ≤ K‖u‖V for each u ∈ V ,

(c) the bilinear form a is symmetric, nonnegative and |a(u, v)| ≤ C‖u‖V ‖v‖V
for each u and v in V .
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Then, for each y ∈ H, there exists a unique x ∈ H such that

x2 = y1

b(x1, v) + a(x2, v) = −c(y2, v) for each v ∈ V.

Proof

Appendix 5.

Definition Operator (Λ)

Λy = x if

x2 = y1

b(x1, v) + a(x2, v) = −c(y2, v) for each v ∈ V.

It is easy to see that Λ is linear.

Theorem 2

Λ is bounded.

Proof

Appendix 5.

Theorem 3

λ is an eigenvalue and x an eigenvector of Problem E2 if and only if λΛx = x.

Proof

Simply substitute y = λx in the definition of Λ.
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Theorem

Λ is invertible and its range is dense in H.

Proof

See [VV].

Remark

We may define a linear operator T = Λ−1. It is clear that T is a closed linear
operator with domain D(T ) which is dense in H. As a consequence one may
study the eigenvalue problem Tx = λx. This problem is equivalent to the
problem considered in [Shu].

5.4.2 Galerkin approximation

Consider a finite dimensional subspace Sh of the complex Hilbert space V .
The following problem yields the approximations for the quadratic eigenvalue
problem QE.

Problem QED

Find a complex number λh and uh ∈ Sh such that

λ2hc(u
h, v) + λha(u

h, v) + b(uh, v) = 0 for each v ∈ Sh.

This is the type of problem solved in Chapter 6.

Definition (Subspace Hh)

Hh = Sh × Sh.
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Problem E2D

Find a complex number λh and xh ∈ Hh such that

xh2 = λhxh1
b(xh1 , v) + a(xh2 , v) = −λhc(xh2 , v) for each v ∈ Sh .

If λh is an eigenvalue and uh an eigenvector of Problem QED, then λh is
an eigenvalue and 〈uh, λuh〉 an eigenvector of Problem E2D. Conversely, if
λh is an eigenvalue and xh an eigenvector of Problem E2D, then λh is an
eigenvalue and xh1 an eigenvector of Problem QED.

Projection

Recall the projection P h defined in Section 4.1. Without changing the nota-
tion, we define a projection for the complex space V by P hx = P hx1+ iP

hx2.
It is clear that we still have the following properties.

b(x− P hx, v) = 0 for each v ∈ Sh ,

‖x− P hx‖V ≤ ‖x− v‖V for each v ∈ Sh .

5.4.3 Operator approximations

Let y ∈ H and consider the problem to find uh ∈ Sh such that

b(uh, v) + a(y1, v) = −c(y2, v) for each v ∈ Sh.

It is clear that a unique solution exists (see Theorem 1).

Definition (Operator Λh)

Λhy = x if x1 ∈ Sh and

x2 = y1,

b(x1, v) + a(y1, v) = −c(y2, v) for each v ∈ Sh .

It is easy to see that Λh is linear.
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Theorem 5

Λh is bounded and the restriction of Λh to Sh × Sh is a bijection.

Proof

The same as the proof of Theorem 2.

Theorem 6

λh is an eigenvalue and xh an eigenvector of Problem E2D if and only if
λhΛhxh = xh.

Proof

Simply substitute y = λxh in the definition of Λh.

Remark

It is clear that Λh has a zero eigenvalue since N(Λh) =
(
Sh × Sh

)⊥
.

Notation

δh(x) = inf
{
‖x1 − v‖V

∣∣ v ∈ Sh
}
.

Remark

In general, δh(x)→ 0 as h→ 0 for each x ∈ H.

Theorem 7

If Λy = x, then
‖Λhy − Λy‖H ≤ δh(x).
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Proof

If Λhy = xh, then

b(x1 − xh1 , v) = 0 for each v ∈ Sh.

5.4.4 Convergence

Consider a sequence of operators Λn = Λhn where hn → 0.

Notation

Let λ be an isolated eigenvalue of Λ, P the spectral projection and M = PH
the invariant subspace associated with λ. Assume that dimM = m < ∞.
There exists a ρ > 0 such that λ is the only eigenvalue in Bρ(λ). Mn denotes
the invariant subspace of Λn associated with the m eigenvalues (counting
multiplicity) contained in Bρ(λ).

Theorem 8

Suppose that {Λn} is a strongly stable approximation of Λ in Bρ(λ). Then,
for n sufficiently large, Λn has m eigenvalues in Bρ(λ), counting their multi-
plicities. All these eigenvalues converge to λ as n −→∞.

Proof

See [Ch, p 234].

Definition (Gap between subspaces)

P is an orthogonal projection on M ,

Q is an orthogonal projection on Mn,

α = sup
{
‖x−Qx‖H

∣∣ x ∈M ; ‖x‖H = 1
}
,
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β = sup
{
‖x− Px‖H

∣∣ x ∈Mn; ‖x‖H = 1
}
,

Θ(M,Mn) = max {α, β}

Remark

If M and Mn are one-dimensional (as is mostly the case in our applications),
then Θ(M,Mn) = sin θ where θ is the angle between M and Mn.

Theorem 9

If Λn is an approximation of Λ and strongly stable on Bρ(λ), then
Θ(M,Mn) −→ 0 as n→∞.

Proof

[Ch, p 235-236].

5.4.5 Application

We apply the theory to the one-dimensional hybrid models in Sections 3.2
and 3.3. Consider for example Problem VTE 4 with weak variational form
in Section 3.3.2. In this case, the quadratic eigenvalue problem Problem QE
and its equivalent form Problem E2 involves ordinary differential equations.
Any eigenvector for Problem QE is in C∞[0, 1] × C∞[0, 1] × IR3. The error
bounds for the projection P h in Section 5.1 are valid. Also, the operator Λ
associated with Problem E2 is compact.

Convergence

Theorem 10

For µ ∈ Bρ(λ), µ 6= 0 and µ 6= λ, µI−Λn is a strongly stable approximation
for µI − Λ.
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Proof

Since (µI − Λ)−1 exists and µI − Λn converges pointwise to µI − Λ, it fol-
lows that (µI − Λn)

−1 converges pointwise to (µI − Λ)−1. But Λn converges
compactly to Λ ([Ch, p 122]). Consequently, µI − Λn is a strongly sta-
ble approximation of µI − Λ for µ 6= 0 (Lemma 5.24 and Theorem 5.26
([Ch, p 247-248])). Finally, Proposition 5.27 ([Ch, p 248-249]) implies the
result.

Remark

Theorems 8 and 9 may now be applied.

Error bounds

The theory in [Ch, Sec 6.2] on projection methods, is applicable to our situ-
ation.

Notation

λ̂n =
1

m

m∑

j=1

λj, where λj ∈ Bδ(λ).

δn(x) = δh(x) where h = hn and Hn = Hhn .

δ (M,Hn) = sup
{
δn(x)

∣∣ x ∈M ; ‖x‖H = 1
}
.

Theorem 11

Consider Problem E2 for the system in Problem VTE 4. Then

∣∣∣λ− λ̂n

∣∣∣ ≤ Kδ (M,Hn) ,

Θ(M,Mn) ≤ Kδ (M,Hn) .
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Proof

See Lemmas 6.9 and 6.10 in [Ch, p 284].

Theorem 12

There exists a constant Cλ such that δ (M,Hn) ≤ Cλhn .

Proof

Note that for each u ∈ H, we have (Theorem 1, Section 5.1)

δn(u) ≤ Ĉ hn |u|2 .

But,

−u′′1 + u′2 = λu1,

−1

γ
u′′2 − αu′1 + αu2 = λu2 .

Consequently,
|u|2 ≤ Kλ‖u‖V ≤ Kλ‖u‖H

for some constant Kλ.

Consequently, there exists a constant Cλ such that

δ(M,Hn) ≤ Cλ Ĉ hn .
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Chapter 6

Vertical slender structure

6.1 Introduction

Newland claims in [N2] that the inclusion of a resilient seating increases the
complexity of a finite element analysis. However, in the way that we model
the resilient seating, the application of the finite element method doesn’t
become more complicated. It involves only the introduction of some extra
variables. The effect is, that in comparison with the models for a rigid base,
the inertia, bending and damping matrices slightly increase in size and the
entries of the mentioned matrices change at only a few entries.

We show in this chapter how to implement the finite element method for
approximating the eigenvalues for Problems VR 4 and VT 4. Results are
compared to results in [LVV].

We also study the effect of the “gravity”-term described in Chapter 2 by
Equations (2.1.4) and (2.1.17), i.e. the constitutive equation

L(x, t) = µ(1− x)∂xw(x, t).

115
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6.2 The eigenvalue problem

6.2.1 The Rayleigh model

For the modal analysis of the system, w̃(x, t) = eλtw(x) is considered as a
possible solution. For the two different models under consideration (models 3
and 4), the additional variables are handled in a similar way as for w, as can
be seen below. This requires consideration of the corresponding eigenvalue
problems.

For Problem VR 3, we consider θ̃F (t) = eλtθF as a possible solution.

Variational form for Problem VRE 3

Find w and θF such that w ∈ T (0, 1),

λ2cA(w, v) + bA(w, v) + λCFw(0)v(0)− kθFv
′(0)

+λc
(
w′(0)− θF

)
v′(0) = 0 (6.2.1)

holds for each v ∈ T (0, 1) and

λ2IF θF − k
(
w′(0)− θF

)
− λc

(
w′(0)− θF

)

+kF θF + λcF θF = 0. (6.2.2)

For Problem VR 4 consider the following possible solutions.

w̃F (t) = eλtwF , θ̃B(t) = eλtθB and θ̃F (t) = eλtθF .

Variational form for Problem VRE 4

Find w, wF , θB and θF such that w ∈ T (0, 1),

λ2cA(w, v) + bA(w, v)−KFBwFv(0) + λCFB

(
w(0)− wF

)
v(0)

+λcBA

(
w′(0)− θB

)
v′(0)− kBAθBv

′(0) = 0 (6.2.3)
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holds for each v ∈ T (0, 1) and

λ2IBθB − kBA

(
w′(0)− θB

)
− λcBA

(
w′(0)− θB

)

+kFB

(
θB − θF

)
+ λcFB

(
θB − θF

)
= 0, (6.2.4)

λ2mFwF −KFB

(
w(0)− wF

)
− λCFB

(
w(0)− wF

)

+KFwF + λCFwF = 0, (6.2.5)

λ2IF θF − kFB

(
θB − θF

)
− λcFB

(
θB − θF

)

+kF θF + λcF θF = 0. (6.2.6)

Remark

Note that the bilinear forms used in the formulation above, are the bilinear
forms defined for the variational form and not the weak variational form.

6.2.2 The Timoshenko model

Here we consider w̃(x, t) = eλtw(x) and φ̃(x, t) = eλtφ(x) as possible solu-
tions and follow the same approach as in the Rayleigh models to formulate
Problems VTE 3 and VTE 4.

We consider θ̃F (t) = eλtθF as a possible solution for Problem VT 3.

Problem VTE 3

Find w, φ and θF such that w ∈ T (0, 1) and φ ∈ T (0, 1),

λ2(w, v) + λ2mFw(0)v(0) + (w′ − φ, v′) +KFw(0)v(0)

+λCFw(0)v(0) = 0 (6.2.7)

holds for each v ∈ T (0, 1),
λ2

α
(φ, ψ) +

1

β
(φ′, ψ′)− (w′ − φ, ψ)− µ

∫ 1

0

(1− x)w′(x)ψ(x) dx

+k
(
φ(0)− θF

)
ψ(0) + λc

(
φ(0)− θF

)
ψ(0) = 0, (6.2.8)
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holds for each ψ ∈ T (0, 1) and

λ2IF θF − k
(
φ(0)− θF

)
− λc

(
φ(0)− θF

)

+kF θF + λcF θF = 0. (6.2.9)

For Problem VT 4, consider the following possible solutions.

w̃F (t) = eλtwF , θ̃B(t) = eλtθB and θ̃F (t) = eλtθF .

Variational form for Problem VTE 4

Find w, φ, wF , θB and θF such that w ∈ T (0, 1) and φ ∈ T (0, 1),

λ2(w, v) + λ2mBw(0)v(0) + (w′ − φ, v′) +KFB

(
w(0)− wF

)
v(0)

+λCFB

(
w(0)− wF

)
v(0) = 0 (6.2.10)

holds for each v ∈ T (0, 1),

λ2

α
(φ, ψ) +

1

β
(φ′, ψ′)− (w′ − φ, ψ)− µ

∫ 1

0

(1− x)w′(x)ψ(x) dx

+kBA

(
φ(0)− θB

)
ψ(0) + λcBA

(
φ(0)− θB

)
ψ(0) = 0 (6.2.11)

holds for each ψ ∈ T (0, 1) and

λ2IBθB − kBA

(
φ(0)− θB

)
− λcBA

(
φ(0)− θB

)

+kFB

(
θB − θF

)
+ λcFB

(
θB − θF

)
= 0, (6.2.12)

λ2mFwF −KFB

(
w(0)− wF

)
− λCFB

(
w(0)− wF

)

+KFwF + λCFwF = 0, (6.2.13)

λ2IF θF − kFB

(
θB − θF

)
− λcFB

(
θB − θF

)

+kF θF + λcF θF = 0. (6.2.14)
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6.3 Galerkin approximations for the eigenva-

lue problem

6.3.1 Rayleigh models

The interval [0, 1] is divided in n subintervals of the same length. The appro-
ximate solution is denoted by wh and written in terms of cubic basis functions
δj as

wh(x) =
2n+2∑

j=1

δj(x)wj .

For Problem VRE 3, substitute wh into the variational form given by Equa-
tions (6.2.1) and (6.2.2) and take v = δi for i = 1, 2, . . . , 2n+2. This results
in the following eigenvalue problem, with θF as an additional unknown.

Galerkin approximation for Problem VRE 3

λ2
2n+2∑

j=1

cA(δj, δi)wj +
2n+2∑

j=1

bA(δj, δi)wj + λCFw1δi(0)− k θF δ
′
i(0)

+λc
(
wn+2 − θF

)
δ′i(0) = 0, (6.3.1)

λ2IF θF − k
(
wn+2 − θF

)
− λc

(
wn+2 − θF

)

+kF θF + λcF θF = 0. (6.3.2)

Equations (6.3.1) and (6.3.2) describe an eigenvalue problem for which the
relevant matrices are (2n+ 3)× (2n+ 3) matrices.

The explicit appearance of w1 and wn+2 in these equations are due to the
fact that δi(0) = 0 unless i = 1 and δ′i(0) = 0 unless i = n+ 2.

The same procedure is followed as for Problem VRE 3, using Equations
(6.2.3) – (6.2.6). This yields a (2n+ 5)× (2n+ 5) eigenvalue problem, with
θB, wF and θF as three extra unknowns.
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Galerkin approximation for Problem VRE 4

λ2
2n+2∑

j=1

cA(δj, δi)wj +
2n+2∑

j=1

bA(δj, δi)wj −KFBwF δi(0)

+λCFB

(
w1 − wF

)
δi(0) + λcBA

(
wn+2 − θB

)
δ′i(0)

−kBAθBδ
′
i(0) = 0, (6.3.3)

λ2IBθB − kBA

(
wn+2 − θB

)
− λcBA

(
wn+2 − θB

)

+kFB

(
θB − θF

)
+ λcFB

(
θB − θF

)
= 0, (6.3.4)

λ2mFwF −KFB

(
w1 − wF

)
− λCFB

(
w1 − wF

)

+KFwF + λCFwF = 0, (6.3.5)

λ2IF θF − kFB

(
θB − θF

)
− λcFB

(
θB − θF

)

+kF θF + λcF θF = 0. (6.3.6)

6.3.2 Timoshenko models

The interval [0, 1] is divided in n subintervals of the same length. The ap-
proximate solutions are denoted by wh and φh. Written in terms of the basis
functions we have

wh(x) =
2n+2∑

j=1

δj(x)wj and φh(x) =
2n+2∑

j=1

δj(x)φj .

Following the same line of reasoning as in the Rayleigh models, we substitute
wh and φh into the variational form equations, Equations (6.2.7) − (6.2.9).
Furthermore, we let v = δi and ψ = δi for i = 1, 2, . . . , 2n + 2. This
yields the following (4n+ 5)× (4n+ 5) eigenvalue problem.
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Galerkin approximation for Problem VTE 3

λ2
2n+2∑

j=1

(δj, δi)wj + λ2mFw1δi(0) +
2n+2∑

j=1

(δ′j, δ
′
i)wj

−
2n+2∑

j=1

(δj, δ
′
i)φj +KFw1δi(0) + λCFw1δi(0) = 0, (6.3.7)

λ2

α

2n+2∑

j=1

(δj, δi)φj +
1

β

2n+2∑

j=1

(δ′j, δ
′
i)φj −

2n+2∑

j=1

(δ′j, δi)wj

+
2n+2∑

j=1

(δj, δi)φj − µ
2n+2∑

j=1

(∫ 1

0

(1− x)δ′j(x)δi(x) dx
)
wj

+k
(
φ1 − θF

)
δi(0) + λc

(
φ1 − θF

)
δi(0) = 0, (6.3.8)

λ2IF θF − k
(
φ1 − θF

)
− λc

(
φ1 − θF

)
+ kF θF + λcF θF = 0. (6.3.9)
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Substituting wh and φh into the variational form (6.2.10) − (6.2.14) and
taking v = δi and ψ = δi for i = 1, 2, . . . , 2n+2, the following eigenvalue
problem is found.

Galerkin approximation for Problem VTE 4

λ2
2n+2∑

j=1

(δj, δi)wj + λ2mBw1δi(0) +
2n+2∑

j=1

(δ′j, δ
′
i)wj −

2n+2∑

j=1

(δj, δ
′
i)φj

+KFB

(
w1 − wF

)
δi(0) + λCFB

(
w1 − wF

)
δi(0) = 0, (6.3.10)

λ2

α

2n+2∑

j=1

(δj, δi)φj +
1

β

2n+2∑

j=1

(δ′j, δ
′
i)φj −

2n+2∑

j=1

(δ′j, δi)wj +
2n+2∑

j=1

(δj, δi)φj

−µ
2n+2∑

j=1

(∫ 1

0

(1− x)δ′j(x)δi(x) dx
)
wj + kBA

(
φ1 − θB

)
δi(0)

+λcBA

(
φ1 − θB

)
δi(0) = 0, (6.3.11)

λ2IBθB − kBA

(
φ1 − θB

)
− λcBA

(
φ1 − θB

)

+kFB

(
θB − θF

)
+ λcFB

(
θB − θF

)
= 0, (6.3.12)

λ2mFwF −KFB

(
w1 − wF

)
− λCFB

(
w1 − wF

)

+KFwF + λCFwF = 0, (6.3.13)

λ2IF θF − kFB

(
θB − θF

)
− λcFB

(
θB − θF

)

+kF θF + λcF θF = 0. (6.3.14)

Equations (6.3.10) − (6.3.14) form a (4n + 7) × (4n + 7) system of linear
equations.
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6.4 Matrix form of the semi-discrete problem

All four eigenvalue problems result in a quadratic eigenvalue problem of the
form (

λ2M+ λD +K
)
w = 0.

The inertia matrixM, the bending matrix K and the matrix D due to dam-
ping are found from the variational forms for the problems. The construction
of the matrices is described below.

6.4.1 The Rayleigh models

Define the (2n+ 2)× (2n+ 2) matrices M and K by

Mij = cA(δj, δi) and Kij = bA(δj, δi) .

Problem VRE 3

Let θF = w2n+3 and define

w = [w1 w2 · · · w2n+2 w2n+3] T

where “T” denotes the transpose of a matrix.

Let O be the 1× (2n+ 2) zero matrix and V a 1× (2n+ 2) matrix with all
zero entries except for V1,n+2 = −k. Then

M =

[
M OT

O IF

]
and K =

[
K V T

V (k + kF )

]
.

Define the matrix D(1) as the (n+1)× (n+1) matrix with zeros everywhere

except for entry (1, 1), for which D
(1)
11 = CF .

Define D(2) as the (n + 2) × (n + 2) matrix with zero entries except for

D
(2)
11 = c, D

(2)
1,n+2 = D

(2)
n+2,1 = −c and D

(2)
n+2,n+2 = c+ cF .

Let O be the zero matrix of size (n+ 2)× (n+ 1). Then

D =

[
D(1) OT

O D(2)

]
.
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Problem VRE 4

Let θB = w2n+3, wF = w2n+4, θF = w2n+5 and define

w = [w1 w2 · · · w2n+4 w2n+5] T .

O is the zero 3× (2n+ 2) matrix and K (1) a 3× (2n+ 2) matrix with zeros

entries except for K
(1)
1,n+2 = −kBA and K

(1)
21 = −KFB.

The following matrices are defined for the damping matrix:

A (2n+ 2)× (2n+ 2) matrix D(1) and a 3× (2n+ 2) matrix D(2) with zero
entries except for the following values:

D
(1)
11 = CFB, D

(1)
n+2,n+2 = cBA, D

(2)
1,n+2 = −cBA and D

(2)
21 = −CFB .

Let

M (1) =



IB 0
0 mF 0
0 0 IF


 , K(2) =




(kBA + kFB) 0 −kFB

0 (KFB +KF ) 0
−kFB 0 (kFB + kF )




and D(3) =




(cBA + cFB) 0 −cFB

0 (CFB + CF ) 0
−cFB 0 (cFB + cF )


 .

Then

M =

[
M OT

O M (1)

]
, K =

[
K

(
K(1)

)T
K(1) K(2)

]
and D =

[
D(1)

(
D(2)

)T
D(2) D(3)

]
.

6.4.2 The Timoshenko models

The ij-th entry for the (2n + 2) × (2n + 2) matrices K, L, M and P are
defined by

Kij = (δ′j, δ
′
i), Lij = (δj, δ

′
i), Mij = (δj, δi) and

Pij =

∫ 1

0

(1− x)δ′j(x)δi(x) dx.
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Problem VTE 3

Define

w = [w1 w2 · · · w2n+2] T and φ = [φ1 φ2 · · · φ2n+2] T .

Define z in terms of the unknowns w, φ and wF such that

z = [w φ wF ]
T .

The matricesM, K andD are all partitioned in the same way and we describe
the partitioning for M:

M =



M11 M12 M13

M21 M22 M23

M31 M32 M33


 ,

where M11, M12, M21, and M22 are all (2n+ 2)× (2n+ 2) matrices.

M31, M32, (M13)
T and (M23)

T are all 1× (2n+ 2) matrices andM33 is
a 1× 1 matrix.

Denoting the entries for the partitioned matrices with superscripts in brackets,
we find the following results.

M(11)
11 =M11 +mF and M(ij)

11 =Mij otherwise,

M22 =
1

α
M and M33 = IF .

All the other partitioned matrices in M are zero matrices.

K(11)11 = K11 +KF and K(ij)11 = Kij otherwise,

K12 = −L and K21 = −(LT + µP ),

K(11)22 =
1

β
K11 +M11 + k and K(ij)22 =

1

β
Kij +Mij otherwise,

K(11)32 = −k and K(1j)32 = 0 otherwise,

K23 = KT
32 and K33 = k + kF .

All the other partitioned matrices in K are zero matrices.

D(11)11 = CF and D(ij)11 = 0 otherwise,
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D(11)22 = c and D(ij)22 = 0 otherwise,

D(11)32 = −c and D(1j)32 = 0 otherwise,

D23 = (D32)T and D(11)33 = c+ cF .

All the other partitioned matrices in D are zero matrices.

Problem VTE 4

We define w and φ as the 4n+ 7 column vector z

z = [w φ θB wF θF ]
T .

The matricesM, K and D are partitioned in the same way and a description
for the matrix M follows.

M =



M11 M12 M13

M21 M22 M23

M31 M32 M33


 ,

where M11, M12, M21, and M22 are all (2n+ 2)× (2n+ 2) matrices.

M31, M32, (M13)
T and (M23)

T are all 3× (2n+ 2) matrices andM33 is
a 3× 3 matrix.

We have that

M(11)
11 =M11 +mB and M(ij)

11 =Mij otherwise,

M22 =
1

α
M and M33 =



IB 0 0
0 mF 0
0 0 IF


 .

All the other partitioned matrices in M are zero matrices.

K(11)11 = K11 +KFB and K(ij)11 = Kij otherwise,

K12 = −L and K21 = −(LT + µP ) ,

K(11)22 =
1

β
K11 +M11 + kBA and K(ij)22 =

1

β
Kij +Mij otherwise,

K(21)31 = −KFB and K(ij)31 = 0 otherwise,
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K(11)32 = −kBA and K(ij)32 = 0 otherwise,

K13 = KT
31 and K23 = KT

32.

K33 =




(kBA + kFB) 0 −kFB

0 (KFB +KF ) 0
−kFB 0 (kFB + kF )


 .

All the other partitioned matrices in K are zero matrices.

D(11)11 = CFB and D(ij)11 = 0 otherwise,

D(11)22 = cBA and D(ij)22 = 0 otherwise,

D(21)31 = −CFB and D(ij)31 = 0 otherwise,

D(11)32 = −cBA and D(ij)32 = 0 otherwise,

D13 = DT
31 and D23 = DT

32,

D33 =




(cBA + cFB) 0 −cFB

0 (CFB + CF ) 0
−cFB 0 (cFB + cF )


 .

6.5 Numerical results

In [LVV], the Rayleigh and Euler-Bernoulli models were used to find the
first four frequencies for the Newland chimney. The first two models were
discussed in detail in [LVV] and will not be discussed here. The contribution
due to gravity was approximated in [LVV], whereas we use the exact value

for the integral

∫ 1

0

(1 − x)∂xw(x, t)dx in the finite element approximation.

The effect of the approximation of the above mentioned integral to the exact
value is minimal. We found that results differ with less than 1%.

Approximations for the eigenvalue problems VRE 3, VRE 4, VTE 3 and
VTE 4 are found with the finite element method. MATLAB codes were
written for calculating theM, D and K matrices for these problems and the
standard MATLAB routines were used for solving the quadratic eigenvalue
problems.
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6.5.1 Physical constants

For the purpose of comparing our results with those of Newland, the values
for the physical constants that we use are displayed in Table 1.

The results are found for a typical steel chimney of height ` = 42m, mass
21 000 kg, diameter D = 2.25m and wall thickness t = 6.8mm. Young’s
modulus E is taken as E = 2.1 × 1011 and ρA = 500. Approximations for

I and A are used, with I ≈ πD3t

8
and A ≈ πDt. We choose

G

E
=

3

8
and

κ2 =
2

3
.

Table 1: Constants

Model 3 Model 4
(Physical) (Dimensionless) (Physical) (Dimensionless)

mB 500 2.3810× 10−2

mF 3× 105 1.4286× 101 3× 105 1.4286× 101

IB 300 8.0985× 10−6

IF 1.5× 106 4.0492× 10−2 1.5× 106 4.0492× 10−2

KFB 1× 1010 1.6644× 102

KF 2× 1010 3.3287× 102 2× 1010 3.3287× 102

CFB 1× 107 8.9026× 100

CF 1× 107 8.9026× 100 1× 107 8.9026× 100

kFB 1× 1010 9.4352× 10−2

kF 6× 1010 5.6611× 10−1 6× 1010 5.6611× 10−1

cFB 2× 107 1.0094× 10−2

cF 2× 107 1.0094× 10−2 2× 107 1.0094× 10−2

kBA 2× 109 1.8870× 10−2

cBA 1× 106 5.0468× 10−4

We find that µ = 8.1637× 10−5 and β = 6.9689× 102.

For Problems VRE 3 and VRE 4, the constants must satisfy the inequalities

1 > 2µβ, kBA > 4µ, kFB > 8µ and kF > 8µ

in order to assure a unique solution (see Section 3.2). It is clear that these
conditions are met with our choice of constants.
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6.5.2 Convergence

The convergence of the first four eigenvalues is established empirically by
increasing the number of elements. Note that the eigenvalues are complex.
We consider the imaginary part of the eigenvalues. Convergence on the real
parts of the eigenvalues is also established, but not displayed.

Experiments on the convergence of the eigenvalues were done for the cases
µ = 0 and µ 6= 0. Results for for the case that µ = 0 for Problems VRE 4 and
VTE 4 are given in Tables 2 and 3 respectively. The other cases yield similar
results. The eigenvalues occur in complex conjugate pairs and we only list
the imaginary parts. From the tables we see that the displayed eigenvalues
are accurate to 5 significant digits.

Table 2: Imaginary parts of the eigenvalues
Problem VRE 4 (µ = 0)

j Im
(
λ
(j)
1

)
Im
(
λ
(j)
2

)
Im
(
λ
(j)
3

)
Im
(
λ
(j)
4

)

10 6.063598992319 39.20328150732 111.2984099726 200.5292536731
20 6.063595477419 39.20234445416 111.2772664612 200.5237167363
40 6.063595255872 39.20228511054 111.2759080178 200.5233527121
80 6.063595480677 39.20228147057 111.2758225750 200.5233296975
160 6.063597520788 39.20228156442 111.2758174750 200.5233097736

Table 3: Imaginary parts of the eigenvalues
Problem VTE 4 (µ = 0)

j Im
(
λ
(j)
1

)
Im
(
λ
(j)
2

)
Im
(
λ
(j)
3

)
Im
(
λ
(j)
4

)

10 6.048681000262 38.57139344125 107.1242256458 199.6387452859
20 6.048680557234 38.57127388156 107.1215429222 199.6359153764
40 6.048680548363 38.57127156531 107.1214873202 199.6358505940
80 6.048680543847 38.57127152495 107.1214863566 199.6358494317
160 6.048680553394 38.57127152813 107.1214863407 199.6358494379

6.5.3 Effect of gravity, rotary inertia and shear

Recall that the inclusion of gravity in Problems VRE 3 and VRE 4 yield
symmetrical bilinear forms, which is desirable from a theoretical point of
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view (see Section 3.2.) However, gravity is excluded in the formulation of
Problems VTE 3 and VTE 4, since inclusion results in a non-symmetric
bilinear form b. The existence and uniqueness of the solution in this case has
not been proved (see Section 3.3). Adapting Problems VTE 3 and VTE 4
to include gravity, “solutions” for the Timoshenko models with gravity are
simulated. This is done to compare results to Problems VRE 3 and VRE 4
with the gravity term included and omitted. A comparison on the imaginary
part of the eigenvalues for all these cases are displayed in Table 4. We list
only the positive values for the imaginary part (since the eigenvalues occur
in complex conjugate pairs).

Table 4: Effect of gravity

Euler-Bernoulli Rayleigh Timoshenko
µ = 0 µ 6= 0 µ = 0 µ 6= 0 µ = 0 µ 6= 0

Im(λ1) 6.0680 6.0584 6.0636 6.0540 6.0487 6.0418
Im(λ2) 39.408 39.407 39.202 39.201 38.571 38.592
Im(λ3) 112.70 112.70 111.28 111.28 107.12 107.14
Im(λ4) 200.72 200.72 200.52 200.52 199.64 199.64

Denoting the eigenvalues by λEB
k , λRk and λTk for k = 1, 2, 3 and 4, we

observe that
Im
(
λEB
k

)
> Im

(
λRkc
)
> Im

(
λTkc
)
,

which is to be expected.

The effect of rotary inertia is negligible (Rayleigh model versus Euler-Bernoulli
model). The maximum relative error for comparable eigenvalues is less than
1%. The effect of shear, although slightly larger than the effect of rotary
inertia, is also negligible (Timoshenko model versus Euler-Bernoulli model).

Comparing results for the three models with respect to the gravity term,
shows that the influence of gravity is minimal. The maximum relative error
(with respect to the case µ = 0) for all three models is less than 0.2% and
this occurs for the first eigenvalue.

6.5.4 Conclusion

From the results we see that the effect of rotary inertia, shear and gravity is
minimal.
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We conclude that using more complex models for calculating eigenvalues is
not justified. Implementation of the finite element method is more complex
for the models that include the above mentioned factors. It is therefore suf-
ficient to use the Euler-Bernoulli model for finding the first four eigenvalues.

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLaabbuusscchhaaggnnee,,  AA    ((22000066))  



Chapter 7

Cantilever beam

7.1 Scope of the investigation

As indicated in Section 1.5, we are concerned with the Euler-Bernoulli and
Timoshenko models for a cantilever beam. In this section we provide more
detail.

Eigenvalues

We start with a comparison of eigenvalues for the two models. Depending
on the parameter α, a number of small eigenvalues do not differ significantly.
For a beam with square cross sectional area h× h,

α = 12

(
`

h

)2

and a value of α = 1200 represents a beam of length to height ratio 10 : 1,
whereas α = 300 is associated with a beam of length to height ratio 5 : 1.

The first four eigenvalues for α = 4800, α = 1200 and α = 300 are presented
in Table 1.

133
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Table 1: Comparison of eigenvalues

α = 4800

Euler-Bernoulli Timoshenko

λ1 1.030× 10−2 1.025× 10−2

λ2 4.046× 10−1 3.914× 10−1

λ3 3.172× 100 2.937× 100

λ4 1.218× 101 1.062× 101

α = 1200

Euler-Bernoulli Timoshenko

λ1 3.214× 10−2 3.164× 10−2

λ2 1.262× 100 1.136× 100

λ3 9.897× 100 7.862× 100

λ4 3.800× 101 2.587× 101

α = 300

Euler-Bernoulli Timoshenko

λ1 1.286× 10−1 1.209× 10−1

λ2 5.049× 100 3.507× 100

λ3 3.959× 101 1.987× 101

λ4 1.520× 102 5.477× 101

The first three eigenvalues differ slightly for the case α = 4800. It is doubtful
if this is of practical importance. If α = 1200, the first eigenvalues are close.
For α = 300, the first eigenvalue differs significantly and the others differ
dramatically. However, one may question the applicability of beam theory
in this case.

The two-dimensional model for a cantilever beam should be closer to reality
than a one-dimensional model. In Section 7.7 we compute the eigenvalues
and corresponding eigenfunctions for the two-dimensional beam and compare
the results to those of the Timoshenko and Euler-Bernoulli models. We
also consider the case α = 300 to determine whether beam theory is still
applicable.

Alternative boundary condition

Consider the alternative boundary conditions in Section 2.2. Results for this
model will differ little from those obtained with the conventional boundary
conditions if cij ≈ 0, i.e. dij large. (Recall that D = C−1.)
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The weak variational form for the cantilever Timoshenko beam is presented
in Section 3.1. The bilinear form b for the alternative boundary condition is
presented in Section 3.4. If λ1 is the smallest eigenvalue, then

λ1 = R(v) = min
{
b(v, v)

∣∣ ‖v‖X = 1
}

where R is the Rayleigh quotient. Since

b(v, v) =
1

β
‖v′2‖2 + ‖v′1 − v2‖2 + [γv1 γv2] D [γv1 γv2]

T ,

the eigenvalue λ1 increases as the elements dij ofD increase. This implies that
the first eigenvalue is always less than the first eigenvalue for the conventional
boundary conditions. This is why the alternative model will amplify the
difference between the two models. It serves no purpose to investigate the
alternative boundary condition any further and more can be achieved by
consideration of two-dimensional or three-dimensional models.

Equilibrium problem

Since the shear stress is a multiple of the shear strain and we are interested in
qualitative results, it is irrelevant whether we consider the stress distribution
or the strain distribution. Our main concern is the shear at the built in end.
We use solutions of the equilibrium problem, Problem CTD 1, to determine
the shear strain in the two-dimensional cantilever beam.

The solution of Problem CTD 1 also yields the deflection and we compare
the results to the deflection for the Euler-Bernoulli and Timoshenko models.

7.2 Boundary conditions and test functions

7.2.1 Boundary conditions

The boundary conditions given in Section 2.3 were of a general nature. In
this section we provide more detail. In an effort to model the built in end
of a beam, we consider three configurations, which are described below. The
first configuration is commonly used but it can not be used to investigate
shear at the cross section where we have the transition from clamped to free.
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Note that for all three configurations the boundary consists of parts Σ and
Γ, and that the boundary Σ is made up by the parts as shown below in
the description for the different configurations. For the equilibrium problem
and the eigenvalue problem, the conditions on Σ remain the same for both
Problems CTD 1 and CTD 2, and are listed in the tables. However, the
conditions on Γ differ for the two problems: For Problem CTD 1 the traction
t = te2 with t a positive function and Γ is stress free for Problem CTD 2.

Configuration 1: Fixed beam

For this problem we assume that the beam is fixed rigidly to the support
at x1 = 0. The reference configuration is the rectangle 0 ≤ x1 ≤ ` and
0 ≤ x2 ≤ h. In this case the displacements are zero on Σ0 and the two parts
of Σ1 are stress free.

Reference Configuration 1

x1
0 `

x2

h

Σ0

Σ1

Σ1

Γ

Boundary conditions for Configuration 1

Section Coordinates Conditions

Σ0 x1 = 0, 0 < x2 < h u1 = u2 = 0
0 < x1 < `, x2 = 0 Te2 = 0

Σ1 0 < x1 < `, x2 = h Te2 = 0
Te1 = te2 (Equilibrium problem)

Γ x1 = `, 0 < x2 < h
Te1 = 0 (Eigenvalue problem)

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLaabbuusscchhaaggnnee,,  AA    ((22000066))  



7.2. BOUNDARY CONDITIONS AND TEST FUNCTIONS 137

Configuration 2: Built in beam - case I

In this case we assume that a section of the beam is embedded in an inelastic
support as in the diagram below. The reference configuration is the rectangle
−a ≤ x1 ≤ ` and 0 ≤ x2 ≤ h. The boundary Σ1 is stress free.

Reference Configuration 2

x1

x2

`
0−a

h Σ1

Σ1

Γ

Σ0

Σ0

Σ0

Boundary conditions for Configuration 2

Section Coordinates Conditions

−a < x1 < 0, x2 = 0 u1 = u2 = 0
Σ0 −a < x1 < 0, x2 = h u1 = u2 = 0

x1 = −a, 0 < x2 < h u1 = u2 = 0
0 < x1 < `, x2 = 0 Te2 = 0

Σ1 0 < x1 < `, x2 = h Te2 = 0
Te1 = te2 (Equilibrium problem)

Γ x1 = `, 0 < x2 < h
Te1 = 0 (Eigenvalue problem)

Configuration 3: Built in beam - case II

In this case we still assume that a section of the beam is embedded in an
inelastic support. The forced boundary conditions in Configuration 2 are
mathematically convenient but not completely realistic, since “negative pres-
sures” on the beam are possible. To avoid this, we consider Configuration 3
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for Problem CTD 1. The reference configuration is the rectangle −a ≤ x1 ≤ `
and 0 ≤ x2 ≤ h, x2 being vertical. The results from Configuration 2 were
used to specify the boundary conditions for Configuration 3 to make them
more realistic.

Reference Configuration 3

x1

x2

`0
−a
2

−a

h

Σ03

Σ1

Σ1

Γ

Σ02

Σ04

Σ01

Σ05

Boundary conditions for Configuration 3

Section Coordinates Conditions

Σ01 −a
2
< x1 < 0, x2 = h u2 = 0 & σ12 = 0

Σ02 −a < x1 < −a
2
, x2 = h Te2 = 0

Σ03 x1 = −a, 0 < x2 < h u1 = 0 & σ12 = 0
Σ04 −a < x1 < −a

2
, x2 = 0 u2 = 0 & σ12 = 0

Σ05 −a
2
< x1 < 0, x2 = 0 Te2 = 0

0 < x1 < `, x2 = 0 Te2 = 0
Σ1 0 < x1 < `, x2 = h Te2 = 0
Γ x1 = `, 0 < x2 < h Te1 = 0

7.2.2 Test functions

The test functions must satisfy the forced boundary conditions as specified in
Section 2.3. A vector valued function φ is a test function if each component
φi ∈ C1(Ω̄) and φi = 0 on some part of Σ.

For the three Configurations the set of test functions are as follows.
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Configuration 1

T (Ω) =
{
φ ∈ C1(Ω̄)2

∣∣ φ = 0 on Σ0
}

Configuration 2

T (Ω) =
{
φ ∈ C1(Ω̄)2

∣∣ φ = 0 on Σ0
}

Configuration 3

T (Ω) =
{
φ ∈ C1(Ω̄)2

∣∣ φ1 = 0 on Σ03 and φ2 = 0 on Σ01 and Σ04
}

7.3 Galerkin approximation

We consider Problems CTD 1 and CTD 2 with the three configurations as
discussed in Section 7.2.1 but in a finite dimensional subspace of T (Ω).

Consider a set of basis functions

{δ1, δ2, . . . δp}

and set

uh =
[
uh1 uh2

]T
=

[
p∑

j=1

δju1j

p∑

j=1

δju2j

]T
.

The set with elements

[δ1 0]
T , [δ2 0]

T , . . . [δp 0]T ,

[0, δ1]
T , [0, δ2]

T , . . . [0, δp]
T

now is a basis for

Sh =





[
p∑

j=1

δju1j

p∑

j=1

δju2j

]T ∣∣∣ u1j and u2j ∈ IR
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7.3.1 Equilibrium problem

For the equilibrium problem we consider the case that a (dimensionless)
vertical force F is applied at x1 = 1. This leads to

t =

[
σ11
σ21

]
=

[
0
t

]
. (7.3.1)

Note that t is a function of x2 and F =

∫ h

0

t(x2) dx2. An obvious possibility

is to choose t constant, but it is important to realize that such a choice is
arbitrary and that it is advisable to consider other possibilities.

Galerkin approximation

The Galerkin approximation for the equilibrium problem is formulated.

Find uh ∈ Sh so that

b(uh,φ) =

∫

Γ

t · φ ds ∀ φ ∈ Sh.

To find the Galerkin approximation for the problem in variational form, we
substitute φ = [φ1, φ2]

T with

[ δ1 , 0 ]
T , [ δ2 , 0 ]

T , . . . [ δp , 0 ]
T ,

and

[ 0, δ1 ]
T , [ 0, δ2 ]

T , . . . [0, δp ]
T .

in the variational form.

For the remainder of this chapter, we use the notation

(
f, g
)
=

∫∫

Ω

fg ,

where Ω denotes the reference configuration.
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We obtain the following system of linear equations:
(
∂1u

h
1 + ν∂2u

h
2 , ∂1δi

)

γ(1− ν2)
+

(
∂1u

h
2 + ∂2u

h
1 , ∂2δi

)

2γ(1 + ν)
= 0

for i = 1, 2, . . . , p (7.3.2)

(
∂2u

h
2 + ν∂1u

h
1 , ∂2δi

)

γ(1− ν2)
+

(
∂1u

h
2 + ∂2u

h
1 , ∂1δi

)

2γ(1 + ν)
=

∫ h

0

t(x2)δi(1, x2)dx2,

for i = 1, 2, . . . , p (7.3.3)

7.3.2 The eigenvalue problem

Galerkin approximation

Find uh ∈ Sh so that

b(uh,φ) = λ

∫∫

Ω

uh · φ dA ∀ φ ∈ Sh .

Following the same procedure as in Section 7.3.1, we find the Galerkin ap-
proximation by solving the following system of linear equations:

(
∂1u

h
1 + ν∂2u

h
2 , ∂1δi

)

γ(1− ν2)
+

(
∂1u

h
2 + ∂2u

h
1 , ∂2δi

)

2γ(1 + ν)
= λ

(
u1, δi

)

for i = 1, 2, . . . , p (7.3.4)

(
∂2u

h
2 + ν∂1u

h
1 , ∂2δi

)

γ(1− ν2)
+

(
∂1u

h
2 + ∂2u

h
1 , ∂1δi

)

2γ(1 + ν)
= λ

(
u2, δi

)

for i = 1, 2, . . . , p (7.3.5)

7.4 Matrix formulation

We use the bicubic basis functions described in Section 4.2. We divide Ω
in rs rectangular elements, where r denotes the number of intervals on the
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x1-axis and s the number of elements on the x2-axis. The number of nodes
for this grid is N = (r + 1)(s + 1) and hence the number of bicubic basis
functions is 4N . Hence p = 4N in the description in Sections 7.3.1 and 7.3.2.

The approximate solution is denoted by uh and the components u1 and u2
are expressed as a linear combination of bicubic basis functions δj as

uhi (x) =
4N∑

j=1

δj(x)uij .

For the equilibrium problem we define a load vector c with the two compo-
nents c1 and c2. In this case c1 = 0 and the i-th component of c2 is

c2i =

∫ h

0

t(x2)δi(1, x2)dx2 .

The Galerkin approximations for both Problems CTD 1 and CTD 2 for
the different configurations can now be be written in matrix form. The
different configurations determine which of the coefficients u1j and u2j for
j = 1, 2, . . . 4N are zero.

For the equilibrium problem the matrix form is given by

Ku = c,

and for the eigenvalue problem the matrix form is

Ku = λMu.

The matrices K and M will differ for the different configurations.

7.4.1 Construction of the matrices K and M

To construct K and M, the following matrices are needed:

Kpq =
(
(∂pδj, ∂qδi)

)
4N×4N

where p = 1, 2 and q = 1, 2

and M =
(
(δj, δi)

)
4N×4N

Note that K12 = K21.
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Define the following matrices:

KΩ
11 = K11 +

(1− ν)

2
K22, KΩ

12 = νK21 +
(1− ν)

2
K12

KΩ
21 = νK12 +

(1− ν)

2
K21, KΩ

22 = K22 +
(1− ν)

2
K11

MΩ
11 =M, MΩ

12 = O, MΩ
21 = O, MΩ

22 =M

Define the 8N × 8N matrices

KΩ =

[
KΩ
11 KΩ

12

KΩ
21 KΩ

22

]
and MΩ =

[
MΩ
11 MΩ

12

MΩ
21 MΩ

22

]
.

Let ui = [ ui1 ui2 · · · ui,4N ]T for i = 1 and i = 2 and uΩ = [u1 u2 ]
T .

Define cΩ = [0 b ]T with 0 a 4N × 1 zero matrix.

The vector b is a 4N × 1 matrix that results from the line integral
∫
Γ
t ·φ ds.

The matrices K,M, u and c are found fromKΩ,MΩ, uΩ and cΩ respectively
by omitting appropriate rows and columns, according to the restrictions on
the test functions.

The test functions must satisfy the forced boundary conditions, and when we
use the bicubic basis functions, care must be taken that the “not so obvious”
basis functions are also omitted. As an example, consider Configuration 1 for
which u1 = u2 = 0 on Σ0. Then the tangential derivatives ∂2u1 = ∂2u2 = 0
on Σ0.

Remark

For the mixed derivatives equal to zero in Configuration 3, recall that σ21 = 0
and therefore ∂1u2 + ∂2u1=0.

7.5 Shear strain distribution

In this section we determine the shear strain profiles for a built in beam. For
the reason given earlier, we consider Problem CTD 1 with Configuration 3.
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To be more specific, we determine the shear strain distribution in the region
where there is a transition from contact to free surface.

A beam of length 1.1, width 0.1 and height h = 0.1 is considered. The built
in part of the beam has length a = 0.1. For experimental results, we used
the constants (see Section 1.2.4)

ν = 0.3 and κ2 =
5

6
.

In the initial numerical experiments, we computed the shear strain for the
entire beam with a constant stress t on the right hand side of the beam,
namely t(x2) = 0.001. Experiments show that to obtain accurate results,
refining the grid in the x2-direction is essential.

The stress distribution in the middle of the beam (for x1-values roughly
between 0.15 and 0.85), follows a “parabolic profile” which varies little. This
is in line with the theory ([Fu, Sec 7.7] and [My, Sec 9.2]). From these results
we find, with the given physical constants, an approximation for the stress
distribution

σ21(x1, x2) ≈ −6x22 + 0.6x2.

To obtain accurate results, the stress profile in the middle of the beam is
used as an input on a part of the original beam. We consider the part of
the beam of length 0.25. The first part of length 0.1 coincides with the built
in end of the original beam and the part of length 0.15 with the free part
closest to the built in end.

The results are interpreted graphically in Figure 1, where the stress profiles
are plotted at specified x1-values. In each graph, the vertical axis denotes
the x2-axis, whereas the horizontal axis is the σ21-axis for the specified x1-
value that is shown at the bottom of each graph. The scale on the axes stay
throughout the same for all the graphs, in order to compare stress profiles at
different x1-values. Each interval shown on the horizontal axis has a length
of 0.002 and the length of the interval shown on the vertical axis is 0.1.

For the profiles at x1 = 0.1 and x1 = 0.2, the values for σ21 have magni-
tudes that are quite large in magnitude close to x2 = 0.1. This explains the
arrowheads in these two graphs. It is clear that the shear stress distribu-
tion exhibits enormous variation in a small interval containing x1 = 0. We
conclude that the constitutive equation (1.2.8) is not valid in this interval.
(Recall the remarks in Section 1.2.2.) However, the phenomenon observed is
not sufficient to reject the Timoshenko model.
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Figure 1: Stress profiles at built in end

x1 = −0.04 x1 = −0.03 x1 = −0.02 x1 = −0.01

x1 = 0 x1 = 0.01

x1 = 0.02 x1 = 0.03
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7.6 Deflection

Although the main objective is to determine the stress distribution, it is
of interest to compare the deflection for the two-dimensional beam with a
one-dimensional model. We consider all three configurations. For both Con-
figurations 2 and 3 we consider a built in end of length 0.1 and the free part
of length 1. We take ν = 0.3, κ2 = 5/6 and α = 1200. The deflections at
x1 = 1 are displayed in Table 2 for the three configurations as well as for the
Timoshenko model and an accuracy of three significant digits are guaranteed
for all three configurations.

Table 2: Deflections

Configuration 1 1.29
Configuration 2 1.32
Configuration 3 1.53
Timoshenko 1.29

Graphs representing these results are shown in Figure 2. Since the deflections
for Configuration 1 and the Timoshenko model are the same when rounded
to three significant digits, only one graph is shown.

Figure 2: Deflection comparison
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1
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y

Configuration 1
Timoshenko
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The deflections of the neutral plane for Problem CTD 1 for Configurations
1 and 2 do not differ much from the deflection for the Timoshenko model,
but for Configuration 3 the deflection at the endpoint is almost 20 % higher
than for the Timoshenko model.

It is interesting that the Timoshenko model yields results that are so close
to those obtained for Configuration 1, which is a configuration mostly used
in the literature.

We are reluctant to draw any conclusion from the result. Clearly there is a
need for further research and more attention should be paid to the modelling
of the way the beam is built in or welded to a structure.

7.7 Eigenvalues and eigenfunctions

Eigenvalues

For the eigenvalue problem only the first two configurations are used as the
third configuration gives rise to a nonlinear problem. In Table 3, the first 8
eigenvalues are compared to the corresponding eigenvalues of the cantilever
Timoshenko beam and Euler-Bernoulli beam.

All the eigenvalues are given accurately to three significant digits and shown
in the next table.

Table 3: Eigenvalues (α = 1200)

Euler-Bernoulli Timoshenko Configuration 1 Configuration 2

χ1 = 3.21× 10−2 λ1 = 3.16× 10−2 µ1 = 3.17× 10−2 η1 = 3.06× 10−2

χ2 = 1.26× 100 λ2 = 1.14× 100 µ2 = 1.14× 100 η2 = 1.11× 100

χ3 = 9.90× 100 λ3 = 7.86× 100 µ3 = 7.72× 100 η3 = 7.31× 100

µ4 = 7.92× 100 η4 = 7.76× 100

χ4 = 3.80× 101 λ4 = 2.59× 101 µ5 = 2.62× 101 η5 = 2.57× 101

χ5 = 1.04× 102 λ5 = 5.99× 101 µ6 = 6.08× 101 η6 = 5.99× 101

µ7 = 6.93× 101 η7 = 6.57× 101

χ6 = 2.32× 102 λ6 = 1.13× 102 µ8 = 1.15× 102 η8 = 1.14× 102

The eigenvalues for the Timoshenko beam compare well with those for the
two-dimensional beam except for µ3, η3 µ7 and η7. It is notable that none of
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the eigenvalues for the Timoshenko model are related to them. To find an
explanation, we turn to the eigenfunctions.

Eigenfunctions

We used only Configuration 1 to approximate eigenfunctions for the two-
dimensional model. The mode shapes for the first five eigenvalues for the Ti-
moshenko model compare well with the mode shapes for the two-dimensional
models, where the comparison is made with the vertical displacements of the
neutral plane (x2 = 0.05). We present one example. In Figure 3 the mode
shape of the deflection of the Timoshenko model for λ3 = 7.86 is shown, as
well as the mode shape for Configuration 1 for µ4 = 7.92. These two mode
shapes are the same. It is clear that µ4 correspond to λ3.

Now, consider the mode shape for µ3 = 7.72. The vertical displacement of
the neutral plane turns out to be the zero function. We conclude that this
eigenvalue corresponds to a two-dimensional effect.

Figure 3: Mode shape comparison

Timoshenko model (λ3 = 7.86)

1
x1

u2

Configuration 1 (µ4 = 7.92)

1
x1

u2
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Two-dimensional effects

The two-dimensional effects become visible when the displacement of the
line x1 = 0.5 (in the reference configuration) is examined. The Timoshenko
model suggests straight lines when u1 is plotted versus x2 (at fixed x1-values).
The eigenvalue µ4 = 7.92 yields this result. We have a completely different
result for µ3 = 7.72. The values of u1 are almost constant (but not zero) and
the line remains vertical. This implies a horizontal shift and it is clear that
we have a two-dimensional effect that is not related to the one-dimensional
beam theory.

The results indicate that the Timoshenko model is remarkably accurate com-
pared to the two-dimensional model, provided that the application is one for
which beam theory is intended. However, comparison to a three-dimensional
model is preferable to establish the accuracy of the Timoshenko model. The
conclusion is that further research needs to be done.
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Chapter 8

Plate-beam system

8.1 Introduction

The differences between the Euler-Bernoulli, Rayleigh and Timoshenko beam
models can be investigated by comparing the natural frequencies predicted
by the different models. It is well known that in general, the shear correc-
tions introduced by the Timoshenko model are larger than the rotary inertia
corrections of the Rayleigh model. For the first (smallest) eigenvalue these
corrections are small, but for the higher eigenvalues they are of significance.
See Section 8.1.1 for a numerical example.

The same tendency is seen when we compare the eigenvalues for the classical
plate models, i.e. the Kirchhoff model with and without rotary inertia, with
those of the Reissner-Mindlin plate model. See Section 8.1.2 for a numerical
example.

8.1.1 Pinned-pinned beam

For a pinned-pinned beam the eigenvalues and eigenfunctions for the Euler-
Bernoulli model, the Rayleigh model and the Timoshenko model can be
obtained in closed form.

151
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Euler-Bernoulli model

The eigenvalues are

λ =
k4π4

βb
, k = 1, 2, . . . ,

with associated eigenfunctions

w(x) = sin kπx.

Rayleigh model

The eigenvalues are

λ =
k4π4

βb(1 + α−1
b k2π2)

, k = 1, 2, . . . ,

with associated eigenfunctions

w(x) = sin kπx.

Timoshenko model

The eigenvalues are the roots of

λ2 −
(
αb +

(
1 +

αb

βb

)
k2π2

)
λ+

αb

βb
k4π4 = 0 for k = 1, 2, . . .

For each k, two eigenvalues λk and λ∗k are obtained. If λ∗k denotes the larger
one of the two, it is known that λ∗k > αb for all k. In the numerical examples
the first few eigenvalues are considered and the λ∗k will not feature. The
associated eigenfunction pairs are

wk(x) = sin kπx, φk(x) =
k2π2 − λk

kπ
cos kπx and

w∗
k(x) = sin kπx, φ∗k(x) =

k2π2 − λ∗k
kπ

cos kπx.
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Comparison of eigenvalues

As an example we present some numerical results for a pinned-pinned beam
with a length to depth ratio of 20:1 and a square profile, i.e. αb = 4800. We
choose βb = 0.25. The percentage differences for the first five eigenvalues
are shown in Table 1, where λ

(EB)
i , λ

(R)
i and λ

(T )
i denote the i-th eigenvalue

for the Euler-Bernoulli, Rayleigh and Timoshenko models respectively. The
percentage differences are calculated with respect to the Euler-Bernoulli ei-
genvalues. Clearly, the shear corrections are larger than the corrections due
to rotary inertia and the corrections for larger eigenvalues are significant. For
a “shorter” beam (smaller αb) these corrections are even larger.

Table 1: Corrections for a pinned-pinned beam

Rotary inertia Shear

i
λ
(EB)
i −λ

(R)
i

λ
(EB)
i

λ
(EB)
i −λ

(T )
i

λ
(EB)
i

1 0.21 % 1.02%
2 0.82 % 3.93%
3 1.82 % 8.36%
4 3.19 % 13.85%
5 4.89 % 19.01%

8.1.2 Rigidly supported plate

For a plate supported rigidly on all four sides, the eigenvalues and eigen-
functions can be determined in closed form for all the different plate models,
i.e. the Kirchhoff model with and without rotary inertia and the Reissner-
Mindlin model.

Kirchhoff model without rotary inertia

The eigenvalues are

λ =
π4(n2 +m2)2

βp(1− ν2p)hp
, n = 1, 2, . . . and m = 1, 2, . . .
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with associated eigenfunctions

w(x1, x2) = sin(nπx1) sin(mπx2).

Kirchhoff model with rotary inertia

The eigenvalues are

λ =
π4(n2 +m2)2

βp(1− ν2p)(hp + Ipπ2(n2 +m2))
, n = 1, 2, . . . and m = 1, 2, . . .

with associated eigenfunctions

w(x1, x2) = sin(nπx1) sin(mπx2).

Reissner-Mindlin model

The eigenvalues are the solutions of the quadratic equation

rλ2 − (1 + (r + γ)f)λ+ γf 2 = 0.

In this equation

r =
h2p
12

and γ =
1

2βp(1− ν2p)hp
.

A sequence of values for f are used, each yielding two eigenvalues.

f = π2(n2 +m2) for n = 1, 2, . . . and m = 1, 2, . . . .

The associated eigenfunction pairs are of the form

w(x1, x2) = sin(nπx1) sin(mπx2),

ψ1(x1, x2) = Anm cos(nπx1) sin(mπx2),

ψ2(x1, x2) = Bnm sin(nπx1) cos(mπx2).

Since these formulae will not be used in our calculations, we do not display
the closed form expressions for Anm and Bnm.
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Comparison of eigenvalues

For the numerical calculations we use a square plate with dimensionless thick-
ness hp = 0.05, Poisson’s ratio νp = 0.3 and shear correction factor κ2p = 5/6.
The first six eigenvalues for the three different models are given in Table 2.
Note that due to the spatial symmetry of the problem, repeated eigenvalues
occur, e.g. Eigenvalues 2 and 3, and also, 5 and 6.

Table 2: Eigenvalues for rigidly supported plate

Kirchhoff without Kirchhoff with Reissner-
i rotary inertia rotary inertia Mindlin

1 0.2783 0.2772 0.2733
2 1.7394 1.7217 1.6643
3 1.7394 1.7217 1.6643
4 4.4530 4.3809 4.1540
5 6.9578 6.8176 6.3849
6 6.9578 6.8176 6.3849

The percentage differences for the first six eigenvalues are shown in Table 3,
where λ

(K)
i , λ

(KR)
i and λ

(RM)
i denote the i-th eigenvalue for the Kirchhoff

model without rotary inertia, the Kirchhoff model with rotary inertia and the
Reissner-Mindlin model respectively. The percentage differences are calcu-
lated with respect to the Kirchhoff eigenvalues. It is clear that the corrections
due to shear are larger than the corrections due to rotary inertia.

Table 3: Corrections for rigidly supported plate

Rotary inertia Shear

i
λ
(K)
i −λ

(KR)
i

λ
(K)
i

λ
(K)
i −λ

(RM)
i

λ
(K)
i

1 0.41 % 1.78 %
2 1.02 % 4.32 %
3 1.02 % 4.32 %
4 1.62 % 6.71 %
5 2.01 % 8.23 %
6 2.01 % 8.23 %
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8.1.3 Plate-beam system

In [ZVGV3] a plate-beam system consisting of the classical plate model and
the Euler-Bernoulli beam model is investigated. It is shown that introducing
rotary inertia into the model does not causes a significant change in the
eigenvalues. It is also shown that when the ratio db/hp is increased, the
eigenvalues of the plate-beam system tend to those of the rigidly supported
plate.

An initial aim is to compare the eigenvalues of the Reissner-Mindlin-Timoshenko
(RMT) plate-beam system with those of the Kirchhoff-Euler-Bernoulli (KEB)
plate-beam system. We will also consider the asymptotic behaviour of the ei-
genvalues of the RMT system when ratio db/hp is increased. Some interesting
phenomena present themselves and will be discussed in Section 8.5.5.

8.2 The eigenvalue problems

In this section the variational forms in Chapter 3 for the different plate-beam
systems are used to derive the associated eigenvalue problems.

8.2.1 Reissner-Mindlin-Timoshenko plate-beam system

As explained in Section 3.9, if w̃(x, t) = T (t)w(x) and ψ̃(x, t) = T (t)ψ(x)
is considered as a possible solution for Equations (3.6.6) and (3.6.12), the
following eigenvalue problem is obtained.

Problem RMT

λ

{
hp

∫∫

Ω

wv dA+ η1

[∫ 1

0

wv dx1

]

x2=0

+ η1

[∫ 1

0

wv dx1

]

x2=a

}

= hp

∫∫

Ω

(∇w +ψ) · ∇v dA+ η2

[∫ 1

0

(∂1w + ψ1)∂1v dx1

]

x2=0

+η2

[∫ 1

0

(∂1w + ψ1)∂1v dx1

]

x2=a

(8.2.1)

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLaabbuusscchhaaggnnee,,  AA    ((22000066))  



8.2. THE EIGENVALUE PROBLEMS 157

for all v in T1(Ω) and

λ

{
Ip

∫∫

Ω

ψ · φ dA+
η1
αb

[∫ 1

0

ψ1φ1 dx1

]

x2=0

+
η1
αb

[∫ 1

0

ψ1φ1 dx1

]

x2=a

}

= bB(ψ,φ) + hp

∫∫

Ω

(∇w +ψ) · φ dA

+
η2
βb

[∫ 1

0

∂1ψ1∂1φ1 dx1

]

x2=0

+
η2
βb

[∫ 1

0

∂1ψ1∂1φ1 dx1

]

x2=a

+η2

[∫ 1

0

(∂1w + ψ1)φ1 dx1

]

x2=0

+ η2

[∫ 1

0

(∂1w + ψ1)φ1 dx1

]

x2=a

(8.2.2)

for all φ in T2(Ω).

(T1(Ω), T2(Ω) and bB are defined in Section 3.6.1.)

8.2.2 Kirchhoff-Rayleigh plate-beam system

If w̃(x, t) = T (t)w(x) is considered as a possible solution for Equation
(3.6.15), the following eigenvalue problem is obtained.

Problem KR

λ

{
hp

∫∫

Ω

wv dA+ Ip

∫∫

Ω

(∇w) · ∇v dA
}

+λ

{
η1

[∫ 1

0

wv dx1

]

x2=0

+ η1

[∫ 1

0

wv dx1

]

x2=a

}

+λ

{
η1
αb

[∫ 1

0

(∂1w)v dx1

]

x2=0

+
η1
αb

[∫ 1

0

(∂1w)v dx1

]

x2=a

}

= bB(w, v) +
η2
βb

[∫ 1

0

∂21w∂
2
1v dx1

]

x2=0

+
η2
βb

[∫ 1

0

∂21w∂
2
1v dx1

]

x2=a

(8.2.3)

for all v ∈ T (Ω).

(T (Ω) and bB are defined in Section 3.6.2.)
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8.2.3 Kirchhoff-Euler-Bernoulli plate-beam system

The eigenvalue problem for the case where rotary inertia is ignored, is ob-
tained by ignoring the terms containing Ip and η1/αb in (8.2.3). We refer to
the corresponding problem as Problem KEB.

8.3 Galerkin approximations for the

eigenvalue problems

For all three eigenvalue problems we consider an approximate solution

wh(x) =
N∑

i=1

wiγi(x), ψh
1 (x) =

N∑

i=1

ψ1iγi(x) and ψh
2 (x) =

N∑

i=1

ψ2iγi(x)

in terms of the bicubic basis functions

γi, i = 1, 2, . . . N,

where the functions ψh
1 and ψh

2 are only applicable for Problem RMT.

As wh ∈ T1(Ω) and ψh = [ψh
1 ψ

h
2 ]

T ∈ T2(Ω), some of these coefficients will
be equal to zero.

8.3.1 Galerkin approximation for Problem RMT

Ifw = [w1 w2 . . . wN ]
T , ψ1 = [ψ11 ψ12 . . . ψ1N ]

T andψ2 = [ψ21 ψ22 . . . ψ2N ]
T ,

the Galerkin approximation for Problem RMT is given by three matrix equa-
tions. These equations are obtained by choosing v = γj in (8.2.1) and
φ = [γj 0]

T and φ = [0 γj]
T in (8.2.2). Recall that v ∈ T1(Ω) and φ ∈ T2(Ω)

and that only admissible basis functions should be used.

8.3.2 Galerkin approximation for Problem KEB

If w = [w1 w2 . . . wN ]
T , the Galerkin approximation for Problem KEB is

given by a matrix equation. This equation is obtained by choosing v = γj
in (8.2.3). Recall that v ∈ T (Ω) and that only admissible basis functions
should be used.
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8.4 Matrix formulation of Galerkin

approximations

The eigenvalue problem for both Problem RMT and KEB can be represented
in matrix notation as

Kz = λMz.

The following matrices are required for defining the matrices K and M for
the different eigenvalue problems.

IΩ12ij =

∫∫

Ω

∂1∂2γj∂1∂2γi dA ,

JΩ11ij =

∫∫

Ω

∂21γj∂
2
1γi dA , JΩ22ij =

∫∫

Ω

∂22γj∂
2
2γi dA , JΩ12ij =

∫∫

Ω

∂21γj∂
2
2γi dA ,

J0ij =

∫ 1

0

∂21γj(x1, 0)∂
2
1γi(x1, 0) dx1 , J1ij =

∫ 1

0

∂21γj(x1, a)∂
2
1γi(x1, a) dx1 ,

KΩ11
ij =

∫∫

Ω

∂1γj∂1γi dA , KΩ22
ij =

∫∫

Ω

∂2γj∂2γi dA , KΩ12
ij =

∫∫

Ω

∂1γj∂2γi dA ,

K0
ij =

∫ 1

0

∂1γj(x1, 0)∂1γi(x1, 0) dx1 , K1
ij =

∫ 1

0

∂1γj(x1, a)∂1γi(x1, a) dx1 ,

LΩ1ij =

∫∫

Ω

γj∂1γi dA , LΩ2ij =

∫∫

Ω

γj∂2γi dA ,

L0ij =

∫ 1

0

γj(x1, 0)∂1γi(x1, 0) dx1 , L1ij =

∫ 1

0

γj(x1, a)∂1γi(x1, a) dx1 ,

MΩ
ij =

∫∫

Ω

γjγi dA ,

M0
ij =

∫ 1

0

γj(x1, 0)γi(x1, 0) dx1 , M1
ij =

∫ 1

0

γj(x1, a)γi(x1, a) dx1.
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8.4.1 Construction of K and M for Problem RMT

We define the following matrices which are needed to construct K and M.

Kw = hp
(
KΩ11 +KΩ22

)
+ η2

(
K0 +K1

)
,

L1 = hp L
Ω1 + η2

(
L0 + L1

)
,

L2 = hp L
Ω2 ,

K1 =
1

βp (1− ν2p)

(
KΩ11 +

1− νp
2

KΩ22
)
+
η2
βb

(
K0 +K1

)

+hpM
Ω + η2

(
M0 +M1

)
,

Kν =
1

βp (1− ν2p)

(
νp
(
KΩ12

)T
+

1− νp
2

KΩ12
)
,

K2 =
1

βp (1− ν2p)

(1− νp
2

KΩ11 +KΩ22
)
+ hpM

Ω ,

Mw = hpM
Ω + η1

(
M0 +M1

)
,

M1 = IpM
Ω +

η1
αb

(
M0 +M1

)
,

M2 = IpM
Ω .

We define the matrices KRMT and MRMT by

KRMT =



Kw L1 L2
LT
1 K1 Kν

LT
2 KT

ν K2


 and MRMT =



Mw 0 0
0 M1 0
0 0 M2


 .

The matrices K andM that are needed for Problem RMT are found from the
matrices above by omitting rows and columns according to the restrictions
on the test functions.
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8.4.2 Construction of K and M for Problem KEB

We define the matrices

KKEB =
1

βp(1− ν2p)

(
JΩ11 + JΩ22 + νp ( J

Ω12 + JΩ21 )
)

+
2

βp(1 + νp)
IΩ12 +

η2
βb

(
J0 + J1

)
,

MKEB = hpM
Ω + η1(M

0 +M1).

The matrices K and M that are needed for Problem KEB are constructed
from the matrices above by omitting rows and columns in accordance to the
restrictions on the test functions.

8.5 Numerical results

8.5.1 Parameters

For the numerical results we consider consider a square plate and beams
with a rectangular profile of thickness d and height 5d. The dimensionless
thickness db of the beams is denoted by db = d/`. For both the plate and
the beams, we choose Poisson’s ratio νp = νb = 0.3 and the shear correction
factors κ2p = κ2b = 5/6. We also assume that the plate and the beams are

made of the same isotropic material and therefore we use G =
E

2(1 + ν)
.

For this special case the dimensionless constants reduce to

η1 = 5d2b ,

η2 = 5

(
κ2b
κ2p

)
d2b ,

Ip =
h3p
12
,

1

αb

=
25d2b
12

,

1

βp
=

(1 + νp)h
3
p

6κ2p
,

1

βb
=

25(1 + νb)d
2
b

6κ2b
.
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In all the numerical experiments a square plate is considered (i.e. a = 1) and
the value of hp is fixed at hp = 0.05, while the value of db is varied to allow
for different values of the ratio db/hp.

8.5.2 Convergence

MATLAB programs have been written for calculating the eigenvalues of the
RMT and KEB plate-beam systems, using the finite element method. The
results of convergence tests are discussed briefly for Problem RMT. In this
case hp = db = 0.05.

In Table 4 the first ten eigenvalues of the RMT plate-beam system are listed
for a 2 × 2, 4 × 4, 8 × 8 and a 16 × 16 grid. The value λ

(k)
i denotes the

approximation for eigenvalue i when using a k ×k grid for the finite element
calculations. When the grid is refined, the eigenvalues form a decreasing
sequence, which is in line with the theory.

Table 4: Convergence

i λ
(2)
i λ

(4)
i λ

(8)
i λ

(16)
i

1 2.3517× 10−1 2.3412× 10−1 2.3401× 10−1 2.3400× 10−1

2 7.9829× 10−1 7.7665× 10−1 7.7474× 10−1 7.7443× 10−1

3 1.1934× 100 1.1822× 100 1.1790× 100 1.1785× 100

4 1.9352× 100 1.6459× 100 1.6408× 100 1.6406× 100

5 2.8759× 100 2.4348× 100 2.4271× 100 2.4266× 100

6 4.4995× 100 3.9430× 100 3.9317× 100 3.9311× 100

7 8.6576× 100 6.4642× 100 6.3653× 100 6.3615× 100

8 9.8681× 100 7.4870× 100 7.3860× 100 7.3816× 100

9 1.0396× 101 8.7615× 100 8.6805× 100 8.6743× 100

10 1.3119× 101 1.0499× 101 1.0391× 101 1.0386× 101

The relative errors for the first 10 eigenvalues are displayed in Table 5.
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Table 5: Convergence

i

∣∣∣∣∣
λ
(4)
i − λ

(2)
i

λ
(4)
i

∣∣∣∣∣

∣∣∣∣∣
λ
(8)
i − λ

(4)
i

λ
(8)
i

∣∣∣∣∣

∣∣∣∣∣
λ
(16)
i − λ

(8)
i

λ
(16)
i

∣∣∣∣∣
1 4.4676× 10−3 4.5354× 10−4 6.5675× 10−5

2 2.7862× 10−1 2.4688× 10−3 3.9173× 10−4

3 9.4811× 10−3 2.6543× 10−3 4.4116× 10−4

4 1.7577× 10−1 3.1193× 10−3 1.1919× 10−4

5 1.8115× 10−1 3.1752× 10−3 2.2742× 10−4

6 1.4113× 10−1 2.8553× 10−3 1.6457× 10−4

7 3.3931× 10−1 1.5547× 10−1 5.9373× 10−4

8 3.1804× 10−1 1.3668× 10−1 6.0509× 10−4

9 1.8660× 10−1 9.3339× 10−3 7.1587× 10−4

10 2.4949× 10−1 1.0448× 10−1 4.1081× 10−4

We find that the first six eigenvalues, which we will consider in the following
experiments, are accurate to three significant digits for a 16× 16 grid.

8.5.3 Comparison of Reissner-Mindlin-Timoshenko
system with Kirchhoff-Euler-Bernoulli system

In [ZVGV3], a numerical investigation of a similar plate-beam system is done
for a combination of the classical plate model and the Euler-Bernoulli beam
model. It was found that the inclusion of rotary inertia in the plate and
beam models had little effect on the eigenvalues.

We now compare the eigenvalues for the RMT system to those of the KEB
system for db/hp = 1 and show that the shear corrections on the higher
eigenvalues are of more significance than the corrections due to rotary inertia.
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Table 6: Eigenvalues for plate-beam system

i KEB RMT Shear correction

1 0.2413 0.2340 3.03 %
2 0.8765 0.7744 11.65 %
3 1.3715 1.1785 14.07 %
4 1.7197 1.6406 4.60 %
5 2.6642 2.4266 8.92 %
6 4.2835 3.9311 8.23 %

8.5.4 Comparison of Kirchhoff-Euler-Bernoulli system
with a rigidly supported Kirchhoff plate

[ZVGV3] contains a numerical experiment where the eigenvalues of the KEB
plate-beam system is compared to the eigenvalues of a rigidly supported
Kirchhoff plate, for different values of the ratio db/hp . The experiment is
repeated for the sake of completeness, as well as the fact that a different
time scaling is used in [ZVGV3]. The exact eigenvalues for the supported
Kirchhoff plate appear in the last column. From Table 7 it is clear that the
eigenvalues of the KEB plate-beam system tend to the eigenvalues of the
rigidly supported plate as the ratio db/hp is increased.

Table 7: Kirchhoff-Euler-Bernoulli

λi Plate-beam system hp = 0.05 λi
i db/hp = 1 db/hp = 2 db/hp = 4 db/hp = 8 Supported plate

1 0.2413 0.2760 0.2782 0.2783 0.2783
2 0.8765 1.6853 1.7368 1.7393 1.7394
3 1.3715 1.7383 1.7394 1.7395 1.7394
4 1.7197 4.4436 4.4525 4.4530 4.4530
5 2.6642 5.2472 6.9312 6.9574 6.9578
6 4.2835 6.1048 6.9587 6.9687 6.9578
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8.5.5 Comparison of Reissner-Mindlin-Timoshenko
system with a rigidly supported Reissner-Mindlin
plate

In Table 8 the eigenvalues of the Reissner-Mindlin-Timoshenko plate-beam
system are compared to the eigenvalues of a Reissner-Mindlin plate that is
rigidly supported on all four sides. The exact eigenvalues for the rigidly
supported plate is presented in the last column.

It is clear that, as expected, the eigenvalues of the Reissner-Mindlin-Timoshenko
plate-beam system tend to the eigenvalues of the rigidly supported Reissner-
Mindlin plate as the ratio db/hp is increased.

Table 8: Reissner-Mindlin-Timoshenko

λi Plate-beam system hp = 0.05 λi
i db/hp = 1 db/hp = 2 db/hp = 4 db/hp = 8 Supported plate

1 0.2340 0.2702 0.2730 0.2733 0.2733
2 0.7744 1.5695 1.6552 1.6627 1.6643
3 1.1785 1.6619 1.6639 1.6642 1.6643

3.0030
3.0030

4 1.6406 3.2510 4.1503 4.1532 4.1540
5 2.4266 3.5914 5.8931 6.3471 6.3849
6 3.9311 4.1320 6.3844 6.3849 6.3849

Two interesting phenomena in this table warrant some further comment. The
first is that the eigenvalues of the plate-beam system corresponding to the
the double eigenvalues of the supported plate remain further apart for the
RMT system than for the KEB system.

Secondly, for large values of the ratio db/hp, an “extra” pair of eigenvalues
appear for the Reissner-Mindlin-Timoshenko system. For db/hp = 8 in Ta-
ble 8, the double eigenvalue λ ≈ 3 does not correspond to an eigenvalue
of the supported plate. These eigenvalues did not appear in numerical ex-
perimentation with the Kirchhoff-Euler-Bernoulli system. The explanation
for these extra eigenvalues for the RMT system lies in the fact that “pure
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shear” modes exist for the RMT system under consideration. These modes
are discussed in the next section.

8.5.6 Pure shear modes

A fact that is often overlooked is that for certain configurations, “pure shear”
modes exist for the Timoshenko beam model and for the Reissner-Mindlin
plate model.

Timoshenko model

For a pinned-pinned Timoshenko beam it is easy to see that λ = αb is an
eigenvalue with the associated pair of eigenfunctions

w(x) = 0, φ(x) = 1.

Reissner-Mindlin-Timoshenko plate-beam system

Returning to the numerical results for the RMT plate-beam system in Ta-
ble 8, note that if db/hp = 8 and hp = 0.05, then db = 0.4 and hence αb = 3.
It seems likely that the pair of “extra eigenvalues” in Table 8 is a consequence
of the pure shear mode of the Timoshenko beam model. This conjecture is
supported by the graphs of the eigenfunction pairs of the system in Figure 1.

Remark

Note that as the height of the beam is 5db, it means that in this case, the
length to height ratio for the beam is 1 : 2. One would not expect the
Timoshenko beam model to yield realistic results and consequently the RMT
plate-beam system will also not be a reasonable model to use. Hence this
phenomenon is only of theoretical significance.
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Figure 8: Eigenfunctions for the RMT plate-beam system

(Note the differences in scaling.)
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Appendix 1. Sobolev Spaces

The space L2(Ω)

Consider an open subset Ω of IRn. The space L2(Ω) consists of functions f
such that f 2 is Lebesgue integrable on Ω. The first result is well known.

Theorem 1

The space L2(Ω) is a Hilbert space with inner product

(f, g) =

∫

Ω

fg =

∫

Ω

fg dµ

where µ is the n-dimensional Lebesgue measure.

Theorem 2

The space L2(Ω) is separable (See [Ad, Th 2.15, p 28]).

Theorem 3

C∞
0 (Ω) is dense in L2(Ω) (See [Ad, Th 2.13, p 28]).

169
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The one-dimensional case

Suppose Ω is a bounded open interval. The Sobolev spaces Hm(Ω) are
subspaces of functions in L2(Ω) with weak derivatives up to orderm in L2(Ω).

Definition

For f and g in Hm(Ω),

[f, g]m = (f (m), g(m)) for m = 0, 1, . . .

Form ≥ 1, the bilinear form [·, ·]m has all the properties of an inner product
except that there exist functions f 6= 0 such that [f, f ]m = 0.

Definition

For f in Hm(Ω),

|f |m =
√

[f, f ]m for m = 0, 1, . . .

The function | · |m is a semi-norm for m ≥ 1.

The two-dimensional case

Suppose Ω is a bounded open convex subset of IR2. The Sobolev spaces
Hm(Ω) are subspaces of functions in L2(Ω) with weak partial derivatives up
to order m in L2(Ω).

Remark

It is not necessary to require that Ω be convex, but it is sufficient for our
purpose. In the theory it is usually assumed that Ω is star shaped or has the
cone property.
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Definition

For f and g in Hm(Ω),

[f, g]m =
∑

i+j=m

(∂i1∂
j
2f, ∂

i
1∂

j
2g) for m = 0, 1, . . .

For m ≥ 1 the bilinear form [·, ·]m has all the properties of an inner product
except that there exist functions f 6= 0 such that [f, f ]m = 0.

Definition

For f in Hm(Ω),

|f |m =
√

[f, f ]m for m = 0, 1, . . .

The function | · |m is a semi-norm for m ≥ 1.

The boundary

Recall that a curve is called smooth if its parametrization has a continuous
derivative. The boundary of Ω is called piecewise smooth if it consists of
a finite number of smooth curves.

For a vector valued function r such that ri ∈ C1[a, b] for i = 1, 2, the range
C of r defines a smooth curve in the plane.

Suppose that C is a part of the boundary of Ω. A function f is Lebesgue
integrable on C if f ◦r

√
(r′1)

2 + (r′2)
2 is Lebesgue integrable on the interval

[a, b].

A function f is in L2(C) if f 2 is Lebesgue integrable over C. The inner
product for L2(C) is defined by

(f, g)C =

∫

C

fg ds =

∫ b

a

(f ◦ r) (g ◦ r)
√

(r′1)
2 + (r′2)

2 .

When necessary, we use the notation (f, g)Ω and (f, g)Γ to avoid confusion.
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Sobolev spaces of vector valued functions

Definition

u ∈ L2(Ω)2 if ui ∈ L2(Ω) for i = 1, 2.

u ∈ L2(Γ)2 if ui ∈ L2(Γ) for i = 1, 2.

u ∈ HkΩ)2 if ui ∈ Hk(Ω) for i = 1, 2.

[u, v]m,2 = [u1, v1]m + [u2, v2]m for u ∈ L2(Ω)2 and v ∈ L2(Ω)2 .

|u|m,2 =
√

[u, u]m,2 for u ∈ L2(Ω)2 .

The function | · |m,2 is a semi-norm for m ≥ 1.

When we need to distinguish between domains, we will use superscripts Ω
and Γ in the cases of a double subscript, e.g. ‖ · ‖Ωm,2 and ‖ · ‖Γm,2 .

General definitions and results

Suppose Ω is a bounded open interval or a bounded open convex subset
of IR2.

Notation

H0(Ω) = L2(Ω) and H0(Ω)2 = L2(Ω)2.

Definition

The inner product for Hm(Ω) is defined by

(f, g)m =
m∑

k=0

[f, g]k for m = 0, 1, . . .
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Definition

The norm for Hm(Ω) is defined by

‖f‖m =
√

(f, g)m for m = 0, 1, . . .

Definition

The inner product for Hm(Ω)2 is defined by

(f, g)m,2 =
m∑

k=0

[f, g]k,2 for m = 0, 1, . . .

Definition

The norm for Hm(Ω)2 is defined by

‖f‖m,2 =
√

(f, g)m,2 for m = 0, 1, . . .

Theorem 4

The space Hm(Ω) is complete (See [Ad, Th 3.2, p 45]).

Theorem 5

Cm(Ω̄) is dense in Hm(Ω) with respect to the norm of Hm(Ω).
(See [OR, Th 2.10, p 53].)

Theorem 6

The space Hm(Ω) is separable (See [Ad, Th 3.5, p 47]).
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Theorem 7 (Rellich)

For m any nonnegative integer, the embedding of Hm+1(Ω) into Hm(Ω) is
compact (See [Ad, Th 6.2, p 144]).

Notation

∂α = ∂α1
1 ∂

α2
2 . . . ∂αn

n , where

|α| = α1 + α2 · · ·αn

and |α| denotes the order of the derivative.

Theorem 8 (Sobolev’s lemma)

Let m be any nonnegative integer. If u ∈ Hp(Ω) where p > n/2, then
u ∈ Cm(Ω̄) and

‖∂αu‖sup ≤ ‖u‖p for |α| ≤ m.

(See [OR, Th 3.10, p 80].)

Remarks

1. Theorems 4 to 8 are also true for vector valued functions. The proofs
are all trivial.

2. When we need to distinguish between different domains, say Ω and Γ,
they will appear as superscripts, for instance ‖ · ‖Ωk and (f, g)Γm,2 .
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The one-dimensional case

Proposition 1

Consider any u ∈ C1[0, 1]. For any two points x and y in [0, 1],

|u(x)| ≤ ‖u′‖+ |u(y)|.

Proof

Assuming that x > y (without loss of generality), we have

u(x) =

∫ x

y

u′ + u(y).

But |
∫ x

y
f | ≤ ‖f‖ for any f ∈ L2(0, 1). This follows from the Cauchy-

Schwartz inequality
(∫ x

y

fg

)2
≤
(∫ x

y

f 2
)(∫ x

y

g2
)

by choosing g = 1. The rest is obvious.

Theorem 1

For any u ∈ C1[0, 1] with a zero in [0, 1] we have

‖u‖ ≤ ‖u′‖.

175
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Proof

Suppose u(y) = 0, then |u(x)| ≤ ‖u′‖ by Proposition 1.

Hence ‖u‖sup ≤ ‖u′‖ . The rest is obvious since ‖u‖ ≤ ‖u‖sup .

Proposition 2

For any u ∈ C1[0, 1], |u(0)| ≤
√
2 ‖u‖1 .

Proof

Let g(x) = 1− x and v = gu and consider the fact that

u(0) = v(0) = −
∫ 1

0

v′ + v(1) .

Since v(1) = 0,

|u(0)| =
∣∣∣∣
∫ 1

0

(u′g + ug′)

∣∣∣∣ ≤ ‖u
′‖‖g‖+ ‖u‖‖g′‖ ≤ ‖u′‖+ ‖u‖.

Using the inequality (a+ b)2 ≤ 2a2 + 2b2, it follows that

|u(0)|2 ≤ 2‖u′‖2 + 2‖u‖2 .

The two-dimensional case

Suppose Ω is a bounded open convex subset of IR2 with a piecewise smooth
boundary. The following result is referred to as the Poincare-Friedrichs ine-
quality or Friedrichs’s inequality or Poincare’s inequality.

Theorem 2

Suppose Σ is a part of the boundary of Ω with nonzero length. Denote the
set

{u ∈ C1(Ω̄)
∣∣u = 0 on Σ}
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by F (Ω). There exists a constant cF such that, for each u ∈ F (Ω),

‖u‖ ≤ cF |u|1.

Proof

See e.g. [Br, p 30].

Corollary

Suppose Σ1 and Σ2 are parts of the boundary of Ω with nonzero length.
Denote the set

{u ∈ C1(Ω̄)2
∣∣u1 = 0 on Σ1 and u2 = 0 on Σ2}

by F (Ω)2. There exists a constant cF such that for each u ∈ F (Ω)2,

‖u‖0,2 ≤ cF |u|1,2 .

Note that Σ1 and Σ2 may overlap and even be equal.

Theorem 3 (Korn’s inequality)

Suppose bB is the bilinear form for the Reissner-Mindlin plate. There exists
a constant cΩ such that

|u|21,2 ≤ cΩ bB(u, u)

for each u ∈ V .

Proof

See e.g. [Br, p 288-289].
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Appendix 3. Trace

The one-dimensional case

Recall that for each u ∈ H1(0, 1), there exists a sequence {un} ⊂ C1[0, 1]
such that ‖un − u‖1 → 0 as n→∞.

Theorem 1

For each u ∈ H1(0, 1), there exists a unique real number γu with the follo-
wing property: For each sequence {un} ⊂ C1[0, 1] such that ‖un − u‖1 → 0
as n→∞, we have

lim
n→∞

un(0) = γu.

Proof

Due to Proposition 2 in Appendix 2, lim
n→∞

un(0) exists for each sequence

{un} ⊂ C1[0, 1] such that ‖un − u‖1 → 0 as n → ∞. Also due to this
proposition, the limit is independent of the choice of the sequence {un}.

Theorem 2

The mapping γ is linear and bounded. In fact,

|γu| ≤
√
2 ‖u‖1 .

179
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Proof

The linearity follows from the properties of limits and the estimate from
Proposition 2 in Appendix 2 by considering the limits.

Remark

The mapping γ is a bounded linear functional.

Theorem 3

For any u ∈ H1(0, 1),
‖u‖ ≤ ‖u′‖+ |γu|.

Proof

Consider any u ∈ C1[0, 1]. Proposition 1 in Appendix 2 implies that

‖u‖sup ≤ ‖u′‖+ |u(0)|.

Consequently,
‖u‖ ≤ ‖u′‖+ |γu|.

The same inequality holds for each u ∈ H1(0, 1) since C1[0, 1] is dense in
H1(0, 1).

The two-dimensional case

Definition (Trace operator γ)

For u ∈ C(Ω̄), the function γu is the restriction of the function u to Γ.

Theorem 4

The trace operator γ can be extended to a bounded linear operator mapping
H1(Ω) onto L2(Γ) and ‖γu‖Γ ≤ K‖u‖Ω1 .
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Proof

This result is a special case of results in [OR, p 141-142].

Definition

For u ∈ H1(Ω)2, we define γu by

γu = 〈γu1, γu2〉.

Theorem 5

Suppose Ω is the open rectangle 0 < x1 < 1, 0 < x2 < a. Γ is the side where
x2 = 0 and γ0u = u(·, 0). Then there exists a constant K such that

‖u‖Ω ≤ K|u|Ω1 +K‖γ0u‖Γ

for all u ∈ H1(Ω).

Proof

Proposition 1 Appendix 2 implies that for each x2 ∈ [0, a],

|u(x)|2 ≤ 2a2
∫ a

0

[
∂2u(x1, ·)

]2
+ 2
[
u(x1, 0)

]2
.

Therefore
∫ a

0

[
u(x1, ·)

]2 ≤ 2a2
∫ a

0

[
∂2u(x1, ·)

]2
+ 2
[
u(x1, 0)

]2
.

Integration with respect to x1 yields

‖u‖2Ω ≤ 2a2‖∂2u‖2Ω + 2‖γ0u‖2Γ .

The result follows.
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Appendix 4. The spaces Ck(J ; Y )

Consider J = (a, b) or J = [a, b). Let Y be any Banach space and consider a
function u with values in Y . Let t be any interior point of J .

Definition (Derivative)

Suppose there exists a v ∈ Y such that

lim
h→0

∥∥h−1
(
u(t+ h)− u(t)

)
− v

∥∥
Y
= 0,

then v is the derivative of u at t. We write u′(t) for the derivative.

It is obvious how to adapt the definition for the case t = a. The derivative
(function) u′ and the second order derivative u′′ are defined in the usual way.

Notation

Ck
(
[0,∞);Y

)
and Ck

(
(0,∞

)
;Y )

183
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Appendix 5. Proofs

All the results and proofs are from [V4] and presented here for completeness.

Plate-beam system

Proposition 1

There exists a constant KT such that

‖w‖2 + ‖φ‖2 ≤ KT

(
‖φ′‖2 + ‖w′ − φ‖2

)

for each (w, φ) ∈ T (0, 1)× C1[0, 1]

Proof

Suppose it is not true. Then there exists a sequence {(wn, φn)} such that

‖wn‖2 + ‖φn‖2 = 1,

while
‖φ′n‖2 + ‖w′

n − φn‖2 → 0 as n→∞.

• We prove first that for n sufficiently large, φn does not have a zero.

Suppose φn does have a zero. Then ‖φn‖ ≤ ‖φ′n‖. We also have ‖wn‖ ≤ ‖w′
n‖

since wn(0) = 0. Consequently

‖wn‖ ≤ ‖w′
n‖ ≤ ‖w′

n − φn‖+ ‖φn‖ ≤ ‖w′
n − φn‖+ ‖φ′n‖.

This implies that

‖wn‖+ ‖φn‖ ≤ ‖w′
n − φn‖+ ‖φ′n‖ for each n.

185
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This is a contradiction.

• We now show that ‖φn‖ > 1/2 for n sufficiently large.

If it is not true, then

‖wn‖ ≤ ‖w′
n‖ ≤ ‖w′

n − φn‖+ ‖φn‖ ≤ 1/4 + 1/2 < 3/4

for n sufficiently large. Consequently

‖wn‖2 + ‖φn‖2 < 9/16 + 1/4 = 13/16 < 1.

This is a contradiction.

• Next we show that
∫ 1
0
φn > 1/10 for n sufficiently large.

We may assume without loss of generality that φn > 0. Writing φ for φn, we
have

φmax − φmin ≤ ‖φ′‖ ≤ 1/20 and φmax ≤ 21/20

for n sufficiently large. Consequently

φ2min =

∫ 1

0

φ2min =

∫ 1

0

[φ2min − φ2] +

∫ 1

0

φ2

=

∫ 1

0

φ2 −
∫ 1

0

[φ2 − φ2min] ≥ 1/4− 1/10 > 1/10.

Therefore ∫ 1

0

φ ≥
∫ 1

0

φmin > 1/10.

•
∫ 1
0
w′
n > 0 for n sufficiently large.

∣∣∣
∫ 1

0

w′
n −

∫ 1

0

φn

∣∣∣ ≤
∫ 1

0

|w′
n − φn| ≤ ‖w′ − φ‖ ≤ 1/20.

• Finally we obtain a contradiction.

Since
∫ 1
0
w′
n > 0 and wn(0) = 0, we have wn(1) > 0 which is a contradic-

tion.
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Corollary

There exists a constant K such that

‖w‖21 + ‖φ‖21 ≤ K
(
‖φ′‖2 + ‖w′ − φ‖2

)
.

Proposition 2

‖w‖2Ω +
(
‖ψ‖Ω0,2

)2 ≤ K
(
‖∇w +ψ‖Ω0,2

)2
+K

(
|ψ|Ω1,2

)2
+K‖γ0ψ1‖2I

for each (w,ψ) ∈ T1(Ω)× T2(Ω).

Proof

Since ψ2 is zero on a part of the boundary, we may use the Friedrichs ine-
quality ‖ψ2‖Ω ≤ cF |ψ2|Ω1 . We also use

‖ψ1‖Ω ≤ c1|ψ1|Ω1 + c1‖γψ1‖I

(see Theorem 5 Appendix 3). Combining the two inequalities, we have

(
‖ψ‖Ω0,2

)2 ≤ c2
(
|ψ|Ω1,2

)2
+ c2‖γψ1‖2I .

Since w is zero on a part of the boundary, ‖w‖Ω ≤ cF |w|Ω1 , using the
Friedrichs inequality. Therefore

‖w‖Ω ≤ cF |w|Ω1 = cF‖∇w‖Ω0,2 ≤ cF‖∇w +ψ‖Ω0,2 + cF‖ψ‖Ω0,2 .

Consequently

‖w‖2Ω +
(
‖ψ‖Ω0,2

)2 ≤ K
(
‖∇w +ψ‖Ω0,2

)2
+K

(
‖ψ‖Ω0,2

)2

≤ K
(
‖∇w +ψ‖Ω0,2

)2
+K

(
|ψ|Ω1,2

)2
+K‖γ0ψ1‖2I ,

where K is a generic constant depending on c1 and cF .

Corollary

(
‖w‖Ω1

)2
+
(
‖ψ‖Ω1,2

)2 ≤ K
(
‖∇w +ψ‖Ω0,2

)2
+K

(
|ψ|Ω1,2

)2
+K‖γ0ψ1‖2I .
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Theorem 1

The inertia space X is a separable Hilbert space and V is dense in X.

Proof

Since C∞
0 (Ω) is dense in L2(Ω), we have that T1(Ω) is dense in L2(Ω) and

T2(Ω) is dense in L2(Ω)2. Also T (I) is dense in L2(I). We conclude that the
space T is dense in the space X equipped with the inner product

(u, v)L2 = (u1, v1)Ω + (u2, v2)
Ω
0,2 +

6∑

j=3

(uj, vj)I .

The norms ‖u‖X and ‖u‖L2 , where

‖u‖2X = c(u, u) and ‖u‖2L2 = (u, u)L2 ,

are equivalent. Therefor T is a dense subset of X with respect to the inertia
norm and T ⊂ V ⊂ X.

Theorem 2 (Korn’s inequality)

bB(u2, u2) ≥ K|u2|21,2 for each u ∈ T.

Theorem 3

There exist constants c1 and c2 such that

‖u‖X ≤ c1‖u‖H1 ≤ c2‖u‖V

for each u ∈ T .

Proof

From the corollary to Proposition 1, we have

‖u3‖21 + ‖u4‖21 + ‖u5‖21 + ‖u6‖21 ≤ CΓbΓ(u, u).

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLaabbuusscchhaaggnnee,,  AA    ((22000066))  



APPENDIX 5 189

Rewrite the corollary to Proposition 2.

(
‖u1‖Ω1

)2
+
(
‖u2‖Ω1,2

)2 ≤ K
(
‖∇u1 + u2‖Ω0,2

)2
+K

(
|u2|Ω1,2

)2
+K‖γ0u21‖2I .

Combining the results, we have

‖u‖2H1 ≤ C
(
‖∇u1 + u2‖Ω0,2

)2
+ C

(
|u2|Ω1,2

)2
+ CbΓ(u, u) ,

using Proposition 1 again. Now use Korn’s inequality.

Nonmodal damping

Theorem 1

For each y ∈ H there exists a unique x ∈ H such that

x2 = y1

b(x1, v) + a(x2, v) = −c(y2, v) for each v ∈ V.

Proof

Let

g(v) = −a(y1, v)− c(y2, v) for each v ∈ V,

then g is clearly a linear functional on V . Furthermore

|g(v)| ≤ K‖y1‖V ‖v‖V + c‖y2‖X‖v‖X for each v ∈ V,

showing that g is bounded. The result follows from the well known theorem
of Riesz.

Theorem 2

Λ is bounded.
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Proof

Consider any y ∈ H and suppose x = Λy.

x2 = y1

b(x1, v) + a(x2, v) = −c(y2, v) for each v ∈ V.

It follows that

‖x2‖X ≤ K‖x2‖V = ‖y1‖V

and

‖x1‖2V = b(x1, x1)

≤ |a(x2, x1)|+ |c(y2, x1)|
≤ K‖x2‖V ‖x1‖V +K‖y2‖X ‖x1‖V

Consequently

‖x1‖V ≤ K‖y1‖V +K‖y2‖X ≤ K‖y‖H .
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