
Appendix 1. Sobolev Spaces

The space L2(Ω)

Consider an open subset Ω of IRn. The space L2(Ω) consists of functions f
such that f 2 is Lebesgue integrable on Ω. The first result is well known.

Theorem 1

The space L2(Ω) is a Hilbert space with inner product

(f, g) =

∫

Ω

fg =

∫

Ω

fg dµ

where µ is the n-dimensional Lebesgue measure.

Theorem 2

The space L2(Ω) is separable (See [Ad, Th 2.15, p 28]).

Theorem 3

C∞
0 (Ω) is dense in L2(Ω) (See [Ad, Th 2.13, p 28]).
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170 APPENDIX 1

The one-dimensional case

Suppose Ω is a bounded open interval. The Sobolev spaces Hm(Ω) are
subspaces of functions in L2(Ω) with weak derivatives up to orderm in L2(Ω).

Definition

For f and g in Hm(Ω),

[f, g]m = (f (m), g(m)) for m = 0, 1, . . .

Form ≥ 1, the bilinear form [·, ·]m has all the properties of an inner product
except that there exist functions f 6= 0 such that [f, f ]m = 0.

Definition

For f in Hm(Ω),

|f |m =
√

[f, f ]m for m = 0, 1, . . .

The function | · |m is a semi-norm for m ≥ 1.

The two-dimensional case

Suppose Ω is a bounded open convex subset of IR2. The Sobolev spaces
Hm(Ω) are subspaces of functions in L2(Ω) with weak partial derivatives up
to order m in L2(Ω).

Remark

It is not necessary to require that Ω be convex, but it is sufficient for our
purpose. In the theory it is usually assumed that Ω is star shaped or has the
cone property.
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Definition

For f and g in Hm(Ω),

[f, g]m =
∑

i+j=m

(∂i1∂
j
2f, ∂

i
1∂

j
2g) for m = 0, 1, . . .

For m ≥ 1 the bilinear form [·, ·]m has all the properties of an inner product
except that there exist functions f 6= 0 such that [f, f ]m = 0.

Definition

For f in Hm(Ω),

|f |m =
√

[f, f ]m for m = 0, 1, . . .

The function | · |m is a semi-norm for m ≥ 1.

The boundary

Recall that a curve is called smooth if its parametrization has a continuous
derivative. The boundary of Ω is called piecewise smooth if it consists of
a finite number of smooth curves.

For a vector valued function r such that ri ∈ C1[a, b] for i = 1, 2, the range
C of r defines a smooth curve in the plane.

Suppose that C is a part of the boundary of Ω. A function f is Lebesgue
integrable on C if f ◦r

√
(r′1)

2 + (r′2)
2 is Lebesgue integrable on the interval

[a, b].

A function f is in L2(C) if f 2 is Lebesgue integrable over C. The inner
product for L2(C) is defined by

(f, g)C =

∫

C

fg ds =

∫ b

a

(f ◦ r) (g ◦ r)
√

(r′1)
2 + (r′2)

2 .

When necessary, we use the notation (f, g)Ω and (f, g)Γ to avoid confusion.
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Sobolev spaces of vector valued functions

Definition

u ∈ L2(Ω)2 if ui ∈ L2(Ω) for i = 1, 2.

u ∈ L2(Γ)2 if ui ∈ L2(Γ) for i = 1, 2.

u ∈ HkΩ)2 if ui ∈ Hk(Ω) for i = 1, 2.

[u, v]m,2 = [u1, v1]m + [u2, v2]m for u ∈ L2(Ω)2 and v ∈ L2(Ω)2 .

|u|m,2 =
√

[u, u]m,2 for u ∈ L2(Ω)2 .

The function | · |m,2 is a semi-norm for m ≥ 1.

When we need to distinguish between domains, we will use superscripts Ω
and Γ in the cases of a double subscript, e.g. ‖ · ‖Ωm,2 and ‖ · ‖Γm,2 .

General definitions and results

Suppose Ω is a bounded open interval or a bounded open convex subset
of IR2.

Notation

H0(Ω) = L2(Ω) and H0(Ω)2 = L2(Ω)2.

Definition

The inner product for Hm(Ω) is defined by

(f, g)m =
m∑

k=0

[f, g]k for m = 0, 1, . . .
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Definition

The norm for Hm(Ω) is defined by

‖f‖m =
√

(f, g)m for m = 0, 1, . . .

Definition

The inner product for Hm(Ω)2 is defined by

(f, g)m,2 =
m∑

k=0

[f, g]k,2 for m = 0, 1, . . .

Definition

The norm for Hm(Ω)2 is defined by

‖f‖m,2 =
√

(f, g)m,2 for m = 0, 1, . . .

Theorem 4

The space Hm(Ω) is complete (See [Ad, Th 3.2, p 45]).

Theorem 5

Cm(Ω̄) is dense in Hm(Ω) with respect to the norm of Hm(Ω).
(See [OR, Th 2.10, p 53].)

Theorem 6

The space Hm(Ω) is separable (See [Ad, Th 3.5, p 47]).
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Theorem 7 (Rellich)

For m any nonnegative integer, the embedding of Hm+1(Ω) into Hm(Ω) is
compact (See [Ad, Th 6.2, p 144]).

Notation

∂α = ∂α1
1 ∂

α2
2 . . . ∂αn

n , where

|α| = α1 + α2 · · ·αn

and |α| denotes the order of the derivative.

Theorem 8 (Sobolev’s lemma)

Let m be any nonnegative integer. If u ∈ Hp(Ω) where p > n/2, then
u ∈ Cm(Ω̄) and

‖∂αu‖sup ≤ ‖u‖p for |α| ≤ m.

(See [OR, Th 3.10, p 80].)

Remarks

1. Theorems 4 to 8 are also true for vector valued functions. The proofs
are all trivial.

2. When we need to distinguish between different domains, say Ω and Γ,
they will appear as superscripts, for instance ‖ · ‖Ωk and (f, g)Γm,2 .
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Appendix 2. Inequalities

The one-dimensional case

Proposition 1

Consider any u ∈ C1[0, 1]. For any two points x and y in [0, 1],

|u(x)| ≤ ‖u′‖+ |u(y)|.

Proof

Assuming that x > y (without loss of generality), we have

u(x) =

∫ x

y

u′ + u(y).

But |
∫ x

y
f | ≤ ‖f‖ for any f ∈ L2(0, 1). This follows from the Cauchy-

Schwartz inequality
(∫ x

y

fg

)2
≤
(∫ x

y

f 2
)(∫ x

y

g2
)

by choosing g = 1. The rest is obvious.

Theorem 1

For any u ∈ C1[0, 1] with a zero in [0, 1] we have

‖u‖ ≤ ‖u′‖.

175
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Proof

Suppose u(y) = 0, then |u(x)| ≤ ‖u′‖ by Proposition 1.

Hence ‖u‖sup ≤ ‖u′‖ . The rest is obvious since ‖u‖ ≤ ‖u‖sup .

Proposition 2

For any u ∈ C1[0, 1], |u(0)| ≤
√
2 ‖u‖1 .

Proof

Let g(x) = 1− x and v = gu and consider the fact that

u(0) = v(0) = −
∫ 1

0

v′ + v(1) .

Since v(1) = 0,

|u(0)| =
∣∣∣∣
∫ 1

0

(u′g + ug′)

∣∣∣∣ ≤ ‖u
′‖‖g‖+ ‖u‖‖g′‖ ≤ ‖u′‖+ ‖u‖.

Using the inequality (a+ b)2 ≤ 2a2 + 2b2, it follows that

|u(0)|2 ≤ 2‖u′‖2 + 2‖u‖2 .

The two-dimensional case

Suppose Ω is a bounded open convex subset of IR2 with a piecewise smooth
boundary. The following result is referred to as the Poincare-Friedrichs ine-
quality or Friedrichs’s inequality or Poincare’s inequality.

Theorem 2

Suppose Σ is a part of the boundary of Ω with nonzero length. Denote the
set

{u ∈ C1(Ω̄)
∣∣u = 0 on Σ}
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by F (Ω). There exists a constant cF such that, for each u ∈ F (Ω),

‖u‖ ≤ cF |u|1.

Proof

See e.g. [Br, p 30].

Corollary

Suppose Σ1 and Σ2 are parts of the boundary of Ω with nonzero length.
Denote the set

{u ∈ C1(Ω̄)2
∣∣u1 = 0 on Σ1 and u2 = 0 on Σ2}

by F (Ω)2. There exists a constant cF such that for each u ∈ F (Ω)2,

‖u‖0,2 ≤ cF |u|1,2 .

Note that Σ1 and Σ2 may overlap and even be equal.

Theorem 3 (Korn’s inequality)

Suppose bB is the bilinear form for the Reissner-Mindlin plate. There exists
a constant cΩ such that

|u|21,2 ≤ cΩ bB(u, u)

for each u ∈ V .

Proof

See e.g. [Br, p 288-289].
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Appendix 3. Trace

The one-dimensional case

Recall that for each u ∈ H1(0, 1), there exists a sequence {un} ⊂ C1[0, 1]
such that ‖un − u‖1 → 0 as n→∞.

Theorem 1

For each u ∈ H1(0, 1), there exists a unique real number γu with the follo-
wing property: For each sequence {un} ⊂ C1[0, 1] such that ‖un − u‖1 → 0
as n→∞, we have

lim
n→∞

un(0) = γu.

Proof

Due to Proposition 2 in Appendix 2, lim
n→∞

un(0) exists for each sequence

{un} ⊂ C1[0, 1] such that ‖un − u‖1 → 0 as n → ∞. Also due to this
proposition, the limit is independent of the choice of the sequence {un}.

Theorem 2

The mapping γ is linear and bounded. In fact,

|γu| ≤
√
2 ‖u‖1 .

179
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Proof

The linearity follows from the properties of limits and the estimate from
Proposition 2 in Appendix 2 by considering the limits.

Remark

The mapping γ is a bounded linear functional.

Theorem 3

For any u ∈ H1(0, 1),
‖u‖ ≤ ‖u′‖+ |γu|.

Proof

Consider any u ∈ C1[0, 1]. Proposition 1 in Appendix 2 implies that

‖u‖sup ≤ ‖u′‖+ |u(0)|.

Consequently,
‖u‖ ≤ ‖u′‖+ |γu|.

The same inequality holds for each u ∈ H1(0, 1) since C1[0, 1] is dense in
H1(0, 1).

The two-dimensional case

Definition (Trace operator γ)

For u ∈ C(Ω̄), the function γu is the restriction of the function u to Γ.

Theorem 4

The trace operator γ can be extended to a bounded linear operator mapping
H1(Ω) onto L2(Γ) and ‖γu‖Γ ≤ K‖u‖Ω1 .
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Proof

This result is a special case of results in [OR, p 141-142].

Definition

For u ∈ H1(Ω)2, we define γu by

γu = 〈γu1, γu2〉.

Theorem 5

Suppose Ω is the open rectangle 0 < x1 < 1, 0 < x2 < a. Γ is the side where
x2 = 0 and γ0u = u(·, 0). Then there exists a constant K such that

‖u‖Ω ≤ K|u|Ω1 +K‖γ0u‖Γ

for all u ∈ H1(Ω).

Proof

Proposition 1 Appendix 2 implies that for each x2 ∈ [0, a],

|u(x)|2 ≤ 2a2
∫ a

0

[
∂2u(x1, ·)

]2
+ 2
[
u(x1, 0)

]2
.

Therefore
∫ a

0

[
u(x1, ·)

]2 ≤ 2a2
∫ a

0

[
∂2u(x1, ·)

]2
+ 2
[
u(x1, 0)

]2
.

Integration with respect to x1 yields

‖u‖2Ω ≤ 2a2‖∂2u‖2Ω + 2‖γ0u‖2Γ .

The result follows.
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Appendix 4. The spaces Ck(J ; Y )

Consider J = (a, b) or J = [a, b). Let Y be any Banach space and consider a
function u with values in Y . Let t be any interior point of J .

Definition (Derivative)

Suppose there exists a v ∈ Y such that

lim
h→0

∥∥h−1
(
u(t+ h)− u(t)

)
− v

∥∥
Y
= 0,

then v is the derivative of u at t. We write u′(t) for the derivative.

It is obvious how to adapt the definition for the case t = a. The derivative
(function) u′ and the second order derivative u′′ are defined in the usual way.

Notation

Ck
(
[0,∞);Y

)
and Ck

(
(0,∞

)
;Y )

183
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Appendix 5. Proofs

All the results and proofs are from [V4] and presented here for completeness.

Plate-beam system

Proposition 1

There exists a constant KT such that

‖w‖2 + ‖φ‖2 ≤ KT

(
‖φ′‖2 + ‖w′ − φ‖2

)

for each (w, φ) ∈ T (0, 1)× C1[0, 1]

Proof

Suppose it is not true. Then there exists a sequence {(wn, φn)} such that

‖wn‖2 + ‖φn‖2 = 1,

while
‖φ′n‖2 + ‖w′

n − φn‖2 → 0 as n→∞.

• We prove first that for n sufficiently large, φn does not have a zero.

Suppose φn does have a zero. Then ‖φn‖ ≤ ‖φ′n‖. We also have ‖wn‖ ≤ ‖w′
n‖

since wn(0) = 0. Consequently

‖wn‖ ≤ ‖w′
n‖ ≤ ‖w′

n − φn‖+ ‖φn‖ ≤ ‖w′
n − φn‖+ ‖φ′n‖.

This implies that

‖wn‖+ ‖φn‖ ≤ ‖w′
n − φn‖+ ‖φ′n‖ for each n.

185
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This is a contradiction.

• We now show that ‖φn‖ > 1/2 for n sufficiently large.

If it is not true, then

‖wn‖ ≤ ‖w′
n‖ ≤ ‖w′

n − φn‖+ ‖φn‖ ≤ 1/4 + 1/2 < 3/4

for n sufficiently large. Consequently

‖wn‖2 + ‖φn‖2 < 9/16 + 1/4 = 13/16 < 1.

This is a contradiction.

• Next we show that
∫ 1
0
φn > 1/10 for n sufficiently large.

We may assume without loss of generality that φn > 0. Writing φ for φn, we
have

φmax − φmin ≤ ‖φ′‖ ≤ 1/20 and φmax ≤ 21/20

for n sufficiently large. Consequently

φ2min =

∫ 1

0

φ2min =

∫ 1

0

[φ2min − φ2] +

∫ 1

0

φ2

=

∫ 1

0

φ2 −
∫ 1

0

[φ2 − φ2min] ≥ 1/4− 1/10 > 1/10.

Therefore ∫ 1

0

φ ≥
∫ 1

0

φmin > 1/10.

•
∫ 1
0
w′
n > 0 for n sufficiently large.

∣∣∣
∫ 1

0

w′
n −

∫ 1

0

φn

∣∣∣ ≤
∫ 1

0

|w′
n − φn| ≤ ‖w′ − φ‖ ≤ 1/20.

• Finally we obtain a contradiction.

Since
∫ 1
0
w′
n > 0 and wn(0) = 0, we have wn(1) > 0 which is a contradic-

tion.
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Corollary

There exists a constant K such that

‖w‖21 + ‖φ‖21 ≤ K
(
‖φ′‖2 + ‖w′ − φ‖2

)
.

Proposition 2

‖w‖2Ω +
(
‖ψ‖Ω0,2

)2 ≤ K
(
‖∇w +ψ‖Ω0,2

)2
+K

(
|ψ|Ω1,2

)2
+K‖γ0ψ1‖2I

for each (w,ψ) ∈ T1(Ω)× T2(Ω).

Proof

Since ψ2 is zero on a part of the boundary, we may use the Friedrichs ine-
quality ‖ψ2‖Ω ≤ cF |ψ2|Ω1 . We also use

‖ψ1‖Ω ≤ c1|ψ1|Ω1 + c1‖γψ1‖I

(see Theorem 5 Appendix 3). Combining the two inequalities, we have

(
‖ψ‖Ω0,2

)2 ≤ c2
(
|ψ|Ω1,2

)2
+ c2‖γψ1‖2I .

Since w is zero on a part of the boundary, ‖w‖Ω ≤ cF |w|Ω1 , using the
Friedrichs inequality. Therefore

‖w‖Ω ≤ cF |w|Ω1 = cF‖∇w‖Ω0,2 ≤ cF‖∇w +ψ‖Ω0,2 + cF‖ψ‖Ω0,2 .

Consequently

‖w‖2Ω +
(
‖ψ‖Ω0,2

)2 ≤ K
(
‖∇w +ψ‖Ω0,2

)2
+K

(
‖ψ‖Ω0,2

)2

≤ K
(
‖∇w +ψ‖Ω0,2

)2
+K

(
|ψ|Ω1,2

)2
+K‖γ0ψ1‖2I ,

where K is a generic constant depending on c1 and cF .

Corollary

(
‖w‖Ω1

)2
+
(
‖ψ‖Ω1,2

)2 ≤ K
(
‖∇w +ψ‖Ω0,2

)2
+K

(
|ψ|Ω1,2

)2
+K‖γ0ψ1‖2I .
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Theorem 1

The inertia space X is a separable Hilbert space and V is dense in X.

Proof

Since C∞
0 (Ω) is dense in L2(Ω), we have that T1(Ω) is dense in L2(Ω) and

T2(Ω) is dense in L2(Ω)2. Also T (I) is dense in L2(I). We conclude that the
space T is dense in the space X equipped with the inner product

(u, v)L2 = (u1, v1)Ω + (u2, v2)
Ω
0,2 +

6∑

j=3

(uj, vj)I .

The norms ‖u‖X and ‖u‖L2 , where

‖u‖2X = c(u, u) and ‖u‖2L2 = (u, u)L2 ,

are equivalent. Therefor T is a dense subset of X with respect to the inertia
norm and T ⊂ V ⊂ X.

Theorem 2 (Korn’s inequality)

bB(u2, u2) ≥ K|u2|21,2 for each u ∈ T.

Theorem 3

There exist constants c1 and c2 such that

‖u‖X ≤ c1‖u‖H1 ≤ c2‖u‖V

for each u ∈ T .

Proof

From the corollary to Proposition 1, we have

‖u3‖21 + ‖u4‖21 + ‖u5‖21 + ‖u6‖21 ≤ CΓbΓ(u, u).
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Rewrite the corollary to Proposition 2.

(
‖u1‖Ω1

)2
+
(
‖u2‖Ω1,2

)2 ≤ K
(
‖∇u1 + u2‖Ω0,2

)2
+K

(
|u2|Ω1,2

)2
+K‖γ0u21‖2I .

Combining the results, we have

‖u‖2H1 ≤ C
(
‖∇u1 + u2‖Ω0,2

)2
+ C

(
|u2|Ω1,2

)2
+ CbΓ(u, u) ,

using Proposition 1 again. Now use Korn’s inequality.

Nonmodal damping

Theorem 1

For each y ∈ H there exists a unique x ∈ H such that

x2 = y1

b(x1, v) + a(x2, v) = −c(y2, v) for each v ∈ V.

Proof

Let

g(v) = −a(y1, v)− c(y2, v) for each v ∈ V,

then g is clearly a linear functional on V . Furthermore

|g(v)| ≤ K‖y1‖V ‖v‖V + c‖y2‖X‖v‖X for each v ∈ V,

showing that g is bounded. The result follows from the well known theorem
of Riesz.

Theorem 2

Λ is bounded.
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Proof

Consider any y ∈ H and suppose x = Λy.

x2 = y1

b(x1, v) + a(x2, v) = −c(y2, v) for each v ∈ V.

It follows that

‖x2‖X ≤ K‖x2‖V = ‖y1‖V

and

‖x1‖2V = b(x1, x1)

≤ |a(x2, x1)|+ |c(y2, x1)|
≤ K‖x2‖V ‖x1‖V +K‖y2‖X ‖x1‖V

Consequently

‖x1‖V ≤ K‖y1‖V +K‖y2‖X ≤ K‖y‖H .
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