
Chapter 4

Interpolation

4.1 Hermite cubics

The well-known Hermite piecewise cubics (see [SF] or [Re]) are successfully
used as basis functions for the Galerkin approximation in beam problems.

The construction and properties of Hermite cubics are treated in detail in
the book of Strang and Fix ([SF, p 55-59]). Divide the interval [a, b] into n
subintervals by a partitioning

a = x0 < x1 < · · · < xn = b.

This yields n elements, Ωi = [xi−1, xi], each of length hi, for i = 1, 2, . . . , n.

For i = 0, 1, . . . , n, we have two piecewise cubics denoted by δ
(j)
i with j = 0

or j = 1 with the following properties:

1. For k = 0, 1, . . . , n, i = 0, 1, . . . , n and j = 0, 1, the restriction of
δ
(j)
k to any Ωi is either a cubic polynomial or zero.

2. δ
(j)
i ∈ C1[a, b] and D2δ

(j)
i is piecewise continuous with possible discon-

tinuities at the nodes.

3. δ
(0)
i (xi) = 1, Dδ

(0)
i (xi) = 0, δ

(1)
i (xi) = 0, Dδ

(1)
i (xi) = 1.

4. δ
(0)
i (xk) = 0, Dδ

(0)
i (xk) = 0, δ

(1)
i (xk) = 0, Dδ

(1)
i (xk) = 0 if k 6= i.

5. δ
(j)
i is zero on any element Ωk with k 6= i or i+ 1.
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88 CHAPTER 4. INTERPOLATION

We refer to these two types of functions as Type 1 (j = 0) or Type 2 (j = 1)

functions. Typical graphs of δ
(0)
i and δ

(1)
i are shown in Figures 1 and 2.

Figure 1: Type 1 Hermite piecewise cubic

a bxi−1 xi xi+1

1
δ
(0)
i

Figure 2: Type 2 Hermite piecewise cubic
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Remarks

1. The graphs in Figures 1 and 2 must be adapted for the functions δ
(0)
0 ,

δ
(0)
n , δ

(1)
0 and δ

(1)
n .

2. We will refer to the Hermite piecewise cubic functions as Hermite
cubics.

3. δ
(j)
i ∈ H2[a, b] ∀ i = 0, 1, . . . , n and j = 0, 1.

Cubic interpolation operator

For w ∈ H2(a, b), we define the cubic interpolation operator Πc as

Πcw =
1∑

j=0

n∑

i=0

(Djw)(xi) δ
(j)
i .

Note that Πc δ
(j)
i = δ

(j)
i for i = 0, 1, . . . , n and j = 0, 1.
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4.2. HERMITE BICUBIC FUNCTIONS 89

4.2 Hermite bicubic functions

The Hermite piecewise bicubic functions are constructed by using a product
of the Hermite piecewise cubic functions in Section 4.1, hence the name
bicubics. (For a fixed x or y, a piecewise bicubic reduces to a piecewise
cubic.) See [SF, p 88-89] for detail. It is also mentioned there that bicubics
rank amongst the best provided that rectangular elements are used.

The rectangle Ω̄ = [a, b]× [c, d] is divided in rs elements as follows. Partition
[a, b] and [c, d] by

a = x0 < x1 < · · · < xr = b and c = y0 < y1 < · · · < ys = d,

and set

hi = xi − xi−1 and kj = yj − yj−1.

This defines a grid on Ω̄ with the grid lines x = xi and y = yj. A general
element is given by

Ω̄ij = [xi−1, xi]× [yj−1, yj].

For i = 0, 1, . . . , r and j = 0, 1, . . . , s, we have four piecewise bicubics
denoted by δ

(k)
ij with k = 0, 1, 2, 3, with the following properties:

1. The restriction of δ
(k)
ij to any Ω̄IJ is either a bicubic polynomial or zero

for i and I = 0, 1, . . . , r, j and J = 0, 1, . . . , s and k = 0, 1, 2, 3.

2. δ
(k)
ij ∈ C1(Ω̄) and all second order partial derivatives are piecewise
continuous with possible discontinuities on the edges of the elements.

3. δ
(k)
ij (xi, yj) =

{
1 if k = 0
0 otherwise,

∂xδ
(k)
ij (xi, yj) =

{
1 if k = 1
0 otherwise,

∂yδ
(k)
ij (xi, yj) =

{
1 if k = 2
0 otherwise,

∂x∂yδ
(k)
ij (xi, yj) =

{
1 if k = 3
0 otherwise.

4. δ
(k)
ij (xI , yJ) = 0, ∂xδ

(k)
ij (xI , yJ) = 0, ∂yδ

(k)
ij (xI , yJ) = 0 and

∂x∂yδ
(k)
ij (xI , yJ) = 0 if (i, j) 6= (I, J).
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90 CHAPTER 4. INTERPOLATION

5. δ
(k)
ij is zero on any element ΩIJ not adjacent to Ωij .

We refer to these four types of functions as Type 1 (k = 0), Type 2 (k = 1),
Type 3 (k = 2) and Type 4 (k = 3) functions.

Remarks

1. As mentioned, for a fixed x or y, a piecewise bicubic reduces to a piece-
wise cubic. This compatibility is needed for the plate-beam problems.

2. δ
(k)
ij ∈ H2(Ω) ∀ i = 0, 1, . . . , r, j = 0, 1, . . . , s and k = 0, 1, 2, 3.

We use the following notation for the partial derivatives that play a role in
construction of the bicubics.

∂(k)w =





w for k = 0
∂xw for k = 1
∂yw for k = 2
∂x∂yw for k = 3

Bicubic interpolation operator

For w ∈ H4(Ω), we define the bicubic interpolation operator Πb as

Πbw =
3∑

k=0

r∑

i=0

s∑

j=0

(∂(k)w)(xi, yj) δ
(k)
ij .

Note that Πb δ
(k)
ij = δ

(k)
ij for i = 0, 1, . . . , r, j = 0, 1, . . . , s and k = 0, 1, 2, 3.

4.3 Standard estimates for the interpolation

error

Standard interpolation estimates can be found in, for instance, [SF], [OR]
and [OC]. The following two parameters for an interpolation operator are
used in the interpolation estimates:
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STANDARD ESTIMATE INTERPOLATION ERROR 91

r(Π) is the highest degree of polynomials left invariant by Π.

s(Π) is the highest order derivative used in the definition of Π.

We will use Ĉ to denote a generic constant which depends on the constants
in Sobolev’s lemma and the constants in the Bramble-Hilbert lemma.

Theorems 1 and 2 below are formulated as a special case of a general result.
This result may be found in [SF, p 144], [OC, p 76] and [OR, p 279].

4.3.1 One-dimensional domain

We consider a one-dimensional domain Ω = (a, b). Here | · |k denotes the
seminorm of order k, i.e.

|u|k = ‖u(k)‖ .
(See Appendix 1.)

Theorem 1

Suppose s(Π)+1 ≤ k ≤ r(Π)+1. Then there exists a constant Ĉ such that,
for all u ∈ Hk(Ω),

‖u− Πu‖m ≤ Ĉhk−m|u|k, m = 0, 1, . . . , k.

Corollary

Consider the Hermite piecewise cubic functions and the interpolation opera-
tor Πc.

a) If 2 ≤ k ≤ 4, there exists a constant Ĉ such that, for all u ∈ Hk(I),

‖u− Πcu‖m ≤ Ĉhk−m|u|k, m = 0, 1, . . . , k.

b) If k > 4, there exists a constant Ĉ such that, for all u ∈ Hk(I),

‖u− Πcu‖m ≤ Ĉh4−m|u|4, m = 0, 1, . . . , 4.
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92 CHAPTER 4. INTERPOLATION

Proof

r(Πc) = 3 and s(Πc) = 1.

a) The result follows directly from Theorem 1.

b) If k > 4, Hk(0, 1) ⊂ H4(0, 1). The result follows from Theorem 1.

4.3.2 Two-dimensional domain

For a two-dimensional convex domain Ω, | · |k denotes the seminorm of order
k and

|u|2k =
∑

i+j=k

‖∂i1∂j2u‖2.

(See Appendix 1.)

In the following theorem, h = maxhe, where he is the diameter of the element
Ωe.

Theorem 2

Suppose s(Π)+2 ≤ k ≤ r(Π)+1. Then there exists a constant Ĉ such that,
for u ∈ Hk(Ω),

‖u− Πu‖m ≤ Ĉhk−m|u|k, m = 0, 1, . . . , k.

Corollary

Consider the piecewise Hermite bicubic functions and the interpolation ope-
rator Πb. For k ≥ 4, there exists a constant Ĉ such that, for all u ∈ Hk(I)

‖u− Πbu‖m ≤ Ĉh4−m|u|4, m = 0, 1, . . . , 4.

Proof

r(Πb) = 3 and s(Πb) = 2. If k > 4, Hk(0, 1) ⊂ H4(0, 1) and the result follows
from Theorem 2.
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STANDARD ESTIMATE INTERPOLATION ERROR 93

Remark

The constant Ĉ depends on the ratio length versus width for the elements.
Care should be taken that these ratios remain within specific bounds.

4.3.3 Vector-valued functions

Definition

For u = 〈u1, u2〉 ∈ Hk(Ω)2, we define

ΠB u = 〈Πb u1, Πb u2〉 .

The seminorm of order k for Hk(Ω)2 is denoted by | · |k,2 and

|u|2k,2 = |u1|2k + |u2|2k .

(See Appendix 1.)

Theorem 3

There exists a constant Ĉ such that, for all u ∈ Hk(Ω)2 with k ≥ 4,

‖u− ΠB u‖m,2 ≤ Ĉh4−m|u|4,2 , m = 0, 1, . . . . 4 .

Proof

The proof follows directly from the definition of the interpolation operator
ΠB, the norm and seminorm on the product space and the corollary in Sub-
section 4.3.2.

‖u− ΠB u‖2m,2 = ‖u1 − Πb u1‖2m + ‖u2 − Πb u2‖2m
≤

[
Ĉh4−m |u1|4

]2
+
[
Ĉh4−m |u2|4

]2

=
[
Ĉh4−m|u|4,2

]2
.
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94 CHAPTER 4. INTERPOLATION

Corollary

There exists a constant Ĉ such that, for all u ∈ Hk(Ω)2 ∩ V with k ≥ 4,

‖u− ΠB u‖V ≤ Ĉh3|u|4,2 .

Proof

The norms ‖ · ‖1,2 and ‖ · ‖V are equivalent (Theorem 4 Sec 3.5).

4.4 Interpolation estimates for the one-

dimensional hybrid models

Consider Problem VT 4 (Section 3.3). Let Ω = (a, b) and define Hk as
Hk = Hk(Ω) × Hk(Ω) × IR3. An interpolation operator on the product
spaces Hk can now be defined.

Definition

Πu = 〈Πc u1, Πc u2, u3, u4, u5〉 for u ∈ Hk .

An inner product for Hk is defined by

(
u, v

)
Hk =

(
u1, v1

)
k
+
(
u2, v2

)
k
+ u3v3 + u4v4 + u5v5 .

The corresponding norm is

‖u‖Hk =
√(

u, u
)
Hk .

A seminorm for Hk is defined by

|u|k,Hk =
√
|u1|2k + |u2|2k ,

with | · |k the seminorm in Hk(Ω).
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ESTIMATES FOR ONE-DIMENSIONAL MODELS 95

Theorem

Consider the piecewise Hermite cubic functions and the interpolation opera-
tor Π.

a) If 2 ≤ k ≤ 4, there exists a constant Ĉ such that, for all u ∈ Hk ,

‖u− Πu‖m,Hk ≤ Ĉhk−m|u|k,Hk , m = 0, 1, . . . . k.

b) If k > 4, there exists a constant Ĉ such that, for all u ∈ Hk ,

‖u− Πu‖m,Hk ≤ Ĉhk−m|u|4,Hk , m = 0, 1, . . . . 4.

Proof

In this proof, we use the result in Subsection 4.3.1.

‖u− Πu‖2m,Hk = ‖〈u1 − Πc u1 , u2 − Πc u2 , 0 , 0 , 0〉‖2m,Hk

=
∑̀

j=1

‖uj − Πc uj‖2m

≤





2∑

j=1

[
Ĉhk−m |uj|k

]2
if 2 ≤ k ≤ 4,

2∑

j=1

[
Ĉh4−m |uj|4

]2
if k > 4,

=





[
Ĉhk−m

∣∣u
∣∣
k

]2
if 2 ≤ k ≤ 4,

[
Ĉh4−m

∣∣u
∣∣
4

]2
if k > 4.

Remark

It is easy to see that similar results can be found for the product spaces
Hk(Ω)×Hk(Ω)× IR, Hk(Ω)× IR3 and Hk(Ω)× IR.
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96 CHAPTER 4. INTERPOLATION

Corollary 1 (Problems VR 3 and VR 4)

a) If 2 ≤ k ≤ 4, there exists a constant Ĉ such that, for all u ∈ Hk ∩ V ,

‖u− Πcu‖V ≤ Ĉhk−2|u|k,Hk .

b) If k > 4, there exists a constant Ĉ such that, for all u ∈ Hk ∩ V ,

‖u− Πcu‖V ≤ Ĉh2|u|4,Hk .

Proof

The results follow from the theorem, the fact that V ⊂ H2 and the equiva-
lence of the energy norm ‖ · ‖V and the H2–norm.

Corollary 2 (Problems VT 3 and VT 4)

a) If 2 ≤ k ≤ 4, there exists a constant Ĉ such that, for all u ∈ Hk ∩ V ,

‖u− Πcu‖V ≤ Ĉhk−1|u|k,Hk .

b) If k > 4, there exists a constant Ĉ such that, for all u ∈ Hk ∩ V ,

‖u− Πcu‖V ≤ Ĉh3|u|4,Hk .

Proof

The energy norm ‖ · ‖V and the H1–norm are equivalent.

4.5 Interpolation estimates for the plate-beam

system

We consider an interval I = (a, b) and a rectangle Ω = (a, b)× (c, d). Define

Hk = Hk(Ω)×Hk(Ω)2 ×
4

n=1
H1(Ω) .

The other relevant product spaces are defined in Section 3.6.
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ESTIMATES FOR PLATE-BEAM SYSTEM 97

Definition

For u ∈ Hk we define the interpolation operator

Πu = 〈Πb u1, ΠB u2, Πc u3, Πc u4, Πc u5, Πc u6〉 .

An inner product for Hk is defined by

(
u, v

)
Hk = (u1, v1)

Ω
k + (u2, v2)

Ω
k,2 +

6∑

j=3

(
uj, vj

)I
k
,

The corresponding norm is given by

‖u‖Hk =
√(

u, u
)
Hk

and the seminorm | · |Hk of order k is defined by

|u|2Hk =
(
|u1|Ωk

)2
+
(
|u2|Ωk,2

)2
+

6∑

j=3

(
|uj|Ik

)2

Theorem

Consider the interpolation operator Π defined above. For k ≥ 4, there exists
a constant Ĉ such that, for all u ∈ Hk,

‖u− Πu‖Hm ≤ Ĉh4−m|u|H4 , m = 0, 1, . . . . 4.

Proof

We use the results in Section 4.3.

‖u− Πu‖2Hm =
(
‖u1 − Πb u1‖Ωm

)2
+
(
‖u2 − ΠB u2‖Ωm,2

)2
+

6∑

j=3

(
‖uj − Πb uj‖Im

)2

≤
(
Ĉ1h

4−m|u1|Ωm
)2

+
(
Ĉ2h

4−m|u2|Ωm,2

)2
+

6∑

j=3

(
Ĉjh

4−m|uj|Im
)2

≤
(
Ĉh4−m

)2 [ (
|u1|Ωm

)2
+
(
|u2|Ωm,2

)2
+

6∑

j=3

(
|uj|Im

)2 ]

=
[
Ĉh4−m|u|H4

]2

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLaabbuusscchhaaggnnee,,  AA    ((22000066))  



98 CHAPTER 4. INTERPOLATION

Corollary

For k ≥ 4, there exists a constant Ĉ such that, for all u ∈ V ∩Hk,

‖u− Πu‖V ≤ Ĉh3|u|H4 .

Proof

The norms ‖ · ‖H1 and ‖ · ‖V are equivalent (Theorem 2 Section 3.6).
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Chapter 5

Approximation

5.1 Projections

For the spaces Hk and V as defined Sections 4.3, 4.4 and 4.5, we have the
situation that for all our model problems a finite dimensional subspace Sh of
V is constructed in such a way that the forced boundary conditions are met.
At this stage an estimate for the interpolation error u− Πu is available.

All the convergence results in this chapter are based on projection methods.

Definition (Projection Ph)

For each x ∈ V , we define Phx to be the unique element of Sh such that

b(x− Phx, v) = 0 for all v ∈ Sh.

It is well known and easy to prove that

b(x− Phx, v) = 0 for all v ∈ Sh

if and only if

‖x− Phx‖V ≤ ‖x− v‖V for all v ∈ Sh .

Since Sh is a finite dimensional subspace of the space V , the projection exists.
This is a result from linear algebra (see e.g. [Ap, Chapter 15]). The result is
also true for an infinite dimensional subspace (see e.g. [Kr, Sec 3.3]).

99
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100 CHAPTER 5. APPROXIMATION

We display for convenience the elementary yet important properties of the
projection Ph.

‖x− Phx‖V ≤ ‖x− v‖V for all v ∈ Sh,

‖Phx− v‖V ≤ ‖x− v‖V for all v ∈ Sh,

and ‖Phx‖V ≤ ‖x‖V .

5.1.1 One-dimensional models

For the one-dimensional models, we consider only eigenvalue problems. The
solutions of the differential equations are in C∞(Ω̄) and hence in H4(Ω).
This implies that the eigenvectors of the weak problem are in the product
space H4 .

Theorem 1

Suppose the energy norm is equivalent to the norm of Hm on V . Then there
exists a constant Ĉ such that, for any u ∈ H4 ∩ V ,

(a) ‖Phu− u‖V ≤ Ĉ h4−m |u|4,H4 and ‖Πu− Phu‖V ≤ Ĉ h4−m |u|4,H4 .

(b) ‖Phu− u‖X ≤ Ĉ h2(4−m) |u|4,H4 .

Remark

Problems VRE 3, VRE 4, VTE 3 and VTE 4 are defined in Section 6.2. For
Problems VRE 3 and VRE 4 we have that m = 2 and for Problems VTE 3
and VTE 4 we have m = 1.

Proof

(a) It follows from the properties of the projection operator Ph that

‖Phu− u‖V ≤ ‖Πu− u‖V and ‖Πu− Phu‖V ≤ ‖Πu− u‖V .

The estimates are found from Corollaries 1 and 2 in Section 4.4.
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5.1. PROJECTIONS 101

(b) Set ep = u− Phu. As b defines an inner product on V, it follows from
Riesz’s theorem that there exists a unique u ∈ V such that

b(u, v) = c(ep , v) for all v ∈ V. (5.1.1)

Regularity results yield that u ∈ H4∩V and that there exists a cb such
that

‖u‖4 ≤ cb‖ep‖X . (5.1.2)

Since Ph is a projection,

b(ep, v) = 0 for all v ∈ S. (5.1.3)

Let v = ep in Equation (5.1.1) and v = Phu in Equation (5.1.3). This
yields

‖ep‖2X = b(u− Phu, ep) ≤ ‖u− Phu‖V ‖ep‖V .
From part (a) of the Theorem, it follows that

‖ep‖2X ≤ Ĉ h2 |u|4,H4 ‖ep‖V .
We conclude from Inequality (5.1.2) that

‖ep‖X ≤ cb Ĉh
4−m‖ep‖V .

The result now follows from part (a) of the Theorem.

Remark

The proof of part (b) of the Theorem is known as the Aubin-Nitsche trick
([Au] and [N]. This version is from the book of Strang and Fix ([SF, p 166]).

5.1.2 Two-dimensional models

The first result concerns Problems CTD 1 and CTD 2.

Theorem 2

There exists a constant Ĉ such that, for any u ∈ H4(Ω)2 ∩ V ,

(a) ‖Phu− u‖V ≤ Ĉ h3 |u|4,2 and ‖ΠBu− Phu‖V ≤ Ĉ h3 |u|4,2 .

(b) ‖Phu− u‖X ≤ Ĉ h6 |u|4,2 .
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Proof

The proof is similar to the proof of Theorem 1.

The next result applies to Problems RMT and KEB.

Theorem 3

Suppose the energy norm is equivalent to the norm of Hm on V . Then there
exists a constant Ĉ such that, for any u ∈ H4 ∩ V ,

(a) ‖Phu− u‖V ≤ Ĉ h4−m |u|4 and ‖Πu− Phu‖V ≤ Ĉ h4−m |u|4 .

(b) ‖Phu− u‖X ≤ Ĉ h2(4−m) |u|4 .

Proof

The proof is similar to the proof of Theorem 1.

For the two-dimensional problems, regularity can not be guaranteed, i.e. a
solution may be in the space V but not in H4. The following theorem is
applicable in the case that u is not an element of one of the H4-spaces as
defined above.

Theorem 4

For any ε > 0 and any u ∈ V , there exists a δ > 0, such that

‖u− Phu‖V < ε if h < δ.

Proof

For any u ∈ V there exists a w ∈ H4 ∩ V such that ‖u− w‖V ≤ ε. Then

‖Phu− u‖V ≤ ‖u− w‖V + ‖w − Phw‖V + ‖Phw − Phu‖V
≤ ε+ Ĉ h2 |w|4 + ε

< 3ε for h sufficiently small.
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5.2 Equilibrium problems

We consider the convergence of the Galerkin approximation of Problem
CTD 1 to the solution of Problem CTD 1.

Assume that uh ∈ Sh is the solution of

b(uh, v) = f(v) for all v ∈ Sh (5.2.1)

and that u ∈ V is the solution of

b(u, v) = f(v) for all v ∈ V. (5.2.2)

Theorem

(a) If u ∈ V , then ‖u− uh‖V −→ 0 as h −→ 0.

(b) If u ∈ H4 ∩ V , then

‖u− uh‖V ≤ Ĉ h3 |u|4,2 and ‖u− uh‖X ≤ Ĉ h6 |u|4,2 .

Proof

Subtracting Equation (5.2.1) from Equation (5.2.2), we find that

b(u− uh, v) = 0 for all v ∈ Sh .

Hence uh = Phu. Therefore ‖u− uh‖V = ‖u− Phu‖V and the result follows
from Theorem 4 Section 5.1.

5.3 Symmetrical eigenvalue problems

We consider the eigenvalue problem E1 in Section 3.9. The seminorm | · |4
used in this paragraph is general and used for a unified formulation of the
theory. When applying the theory to Problem CDT 2, this seminorm is
substituted by | · |4,2 and for Problem RMT by | · |4,H4 . A similar situation
holds for the use of H4 .
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Regularity assumption

The eigenvectors are in H4 and there exists a constant Cb depending on the
bilinear forms b and c, such that for each eigenvector y,

|y|k ≤ Cb λ ‖y‖X .

The Rayleigh quotient can be used to order the sequence of eigenvalues.
Assume the eigenvalues are ordered as

λ1 ≤ λ2 ≤ λ3 ≤ . . .

Consider the eigenvalues λ1 , λ2 , . . . , λm for some m with the corresponding
normalized eigenvectors y1 , y2 , . . . , ym. Assume furthermore that λj 6= λm
if j > m (λi = λj is possible for i ≤ m and j ≤ m).

Corresponding to this situation, we have the eigenvalues λh1 , λ
h
2 , . . . , λ

h
m

(also ordered) and the corresponding eigenvectors yh1 , y
h
2 , . . . , y

h
m in Sh. In

the case of a multiple eigenvalue, the eigenvector is not uniquely determined.
The following three theorems are from [SF]. In [ZVGV2] and [Ziet] it was
shown that the results are applicable in the general abstract case.

Theorem 1

λhi ≥ λi for each i.

Theorem 2

(a) λhm −→ λm as h −→ 0.

(b) If the regularity assumption holds, then λhm − λm ≤ Ĉ Cb λ
2
m h

2(4−m) .

We assume that the sequence of eigenvector approximations
{
yhj
}
is norma-

lized.

Theorem 3

Suppose that the dimension of the eigenspace Em corresponding to λm is r.
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(a) Let ε > 0. For h sufficiently small, there exists a y ∈ Em with ‖y‖ = 1
such that

‖y − yhm−r+j‖ ≤ ε

for j = 1, 2, . . . , r.

(b) Suppose Problem E1 satisfies the regularity assumption. If h is suffi-
ciently small, there exists a y ∈ Em with ‖y‖ = 1 such that

‖y − yhm−r+j‖V ≤ Ĉ Cb λm h
4−m

for j = 1, 2, . . . , r.

5.4 Non selfadjoint eigenvalue problem

In this section we consider Problem E2 formulated in Section 3.10.

5.4.1 Abstract eigenvalue problem

Following [VV], we introduce a linear operator Λ onH with the property that
the eigenvalues of Λ are the reciprocals of the eigenvalues of Problem E2 and
the eigenvectors are the same.

Recall that X and V are complex Hilbert spaces with V dense in X. Also,
H is the product space V ×X with inner product

(x, y)H = b(x1, y1) + c(x2, y2).

Theorem 1

Suppose

(a) V is dense in X,

(b) ‖u‖X ≤ K‖u‖V for each u ∈ V ,

(c) the bilinear form a is symmetric, nonnegative and |a(u, v)| ≤ C‖u‖V ‖v‖V
for each u and v in V .
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Then, for each y ∈ H, there exists a unique x ∈ H such that

x2 = y1

b(x1, v) + a(x2, v) = −c(y2, v) for each v ∈ V.

Proof

Appendix 5.

Definition Operator (Λ)

Λy = x if

x2 = y1

b(x1, v) + a(x2, v) = −c(y2, v) for each v ∈ V.

It is easy to see that Λ is linear.

Theorem 2

Λ is bounded.

Proof

Appendix 5.

Theorem 3

λ is an eigenvalue and x an eigenvector of Problem E2 if and only if λΛx = x.

Proof

Simply substitute y = λx in the definition of Λ.
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Theorem

Λ is invertible and its range is dense in H.

Proof

See [VV].

Remark

We may define a linear operator T = Λ−1. It is clear that T is a closed linear
operator with domain D(T ) which is dense in H. As a consequence one may
study the eigenvalue problem Tx = λx. This problem is equivalent to the
problem considered in [Shu].

5.4.2 Galerkin approximation

Consider a finite dimensional subspace Sh of the complex Hilbert space V .
The following problem yields the approximations for the quadratic eigenvalue
problem QE.

Problem QED

Find a complex number λh and uh ∈ Sh such that

λ2hc(u
h, v) + λha(u

h, v) + b(uh, v) = 0 for each v ∈ Sh.

This is the type of problem solved in Chapter 6.

Definition (Subspace Hh)

Hh = Sh × Sh.
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Problem E2D

Find a complex number λh and xh ∈ Hh such that

xh2 = λhxh1
b(xh1 , v) + a(xh2 , v) = −λhc(xh2 , v) for each v ∈ Sh .

If λh is an eigenvalue and uh an eigenvector of Problem QED, then λh is
an eigenvalue and 〈uh, λuh〉 an eigenvector of Problem E2D. Conversely, if
λh is an eigenvalue and xh an eigenvector of Problem E2D, then λh is an
eigenvalue and xh1 an eigenvector of Problem QED.

Projection

Recall the projection P h defined in Section 4.1. Without changing the nota-
tion, we define a projection for the complex space V by P hx = P hx1+ iP

hx2.
It is clear that we still have the following properties.

b(x− P hx, v) = 0 for each v ∈ Sh ,

‖x− P hx‖V ≤ ‖x− v‖V for each v ∈ Sh .

5.4.3 Operator approximations

Let y ∈ H and consider the problem to find uh ∈ Sh such that

b(uh, v) + a(y1, v) = −c(y2, v) for each v ∈ Sh.

It is clear that a unique solution exists (see Theorem 1).

Definition (Operator Λh)

Λhy = x if x1 ∈ Sh and

x2 = y1,

b(x1, v) + a(y1, v) = −c(y2, v) for each v ∈ Sh .

It is easy to see that Λh is linear.
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Theorem 5

Λh is bounded and the restriction of Λh to Sh × Sh is a bijection.

Proof

The same as the proof of Theorem 2.

Theorem 6

λh is an eigenvalue and xh an eigenvector of Problem E2D if and only if
λhΛhxh = xh.

Proof

Simply substitute y = λxh in the definition of Λh.

Remark

It is clear that Λh has a zero eigenvalue since N(Λh) =
(
Sh × Sh

)⊥
.

Notation

δh(x) = inf
{
‖x1 − v‖V

∣∣ v ∈ Sh
}
.

Remark

In general, δh(x)→ 0 as h→ 0 for each x ∈ H.

Theorem 7

If Λy = x, then
‖Λhy − Λy‖H ≤ δh(x).
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Proof

If Λhy = xh, then

b(x1 − xh1 , v) = 0 for each v ∈ Sh.

5.4.4 Convergence

Consider a sequence of operators Λn = Λhn where hn → 0.

Notation

Let λ be an isolated eigenvalue of Λ, P the spectral projection and M = PH
the invariant subspace associated with λ. Assume that dimM = m < ∞.
There exists a ρ > 0 such that λ is the only eigenvalue in Bρ(λ). Mn denotes
the invariant subspace of Λn associated with the m eigenvalues (counting
multiplicity) contained in Bρ(λ).

Theorem 8

Suppose that {Λn} is a strongly stable approximation of Λ in Bρ(λ). Then,
for n sufficiently large, Λn has m eigenvalues in Bρ(λ), counting their multi-
plicities. All these eigenvalues converge to λ as n −→∞.

Proof

See [Ch, p 234].

Definition (Gap between subspaces)

P is an orthogonal projection on M ,

Q is an orthogonal projection on Mn,

α = sup
{
‖x−Qx‖H

∣∣ x ∈M ; ‖x‖H = 1
}
,
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β = sup
{
‖x− Px‖H

∣∣ x ∈Mn; ‖x‖H = 1
}
,

Θ(M,Mn) = max {α, β}

Remark

If M and Mn are one-dimensional (as is mostly the case in our applications),
then Θ(M,Mn) = sin θ where θ is the angle between M and Mn.

Theorem 9

If Λn is an approximation of Λ and strongly stable on Bρ(λ), then
Θ(M,Mn) −→ 0 as n→∞.

Proof

[Ch, p 235-236].

5.4.5 Application

We apply the theory to the one-dimensional hybrid models in Sections 3.2
and 3.3. Consider for example Problem VTE 4 with weak variational form
in Section 3.3.2. In this case, the quadratic eigenvalue problem Problem QE
and its equivalent form Problem E2 involves ordinary differential equations.
Any eigenvector for Problem QE is in C∞[0, 1] × C∞[0, 1] × IR3. The error
bounds for the projection P h in Section 5.1 are valid. Also, the operator Λ
associated with Problem E2 is compact.

Convergence

Theorem 10

For µ ∈ Bρ(λ), µ 6= 0 and µ 6= λ, µI−Λn is a strongly stable approximation
for µI − Λ.
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Proof

Since (µI − Λ)−1 exists and µI − Λn converges pointwise to µI − Λ, it fol-
lows that (µI − Λn)

−1 converges pointwise to (µI − Λ)−1. But Λn converges
compactly to Λ ([Ch, p 122]). Consequently, µI − Λn is a strongly sta-
ble approximation of µI − Λ for µ 6= 0 (Lemma 5.24 and Theorem 5.26
([Ch, p 247-248])). Finally, Proposition 5.27 ([Ch, p 248-249]) implies the
result.

Remark

Theorems 8 and 9 may now be applied.

Error bounds

The theory in [Ch, Sec 6.2] on projection methods, is applicable to our situ-
ation.

Notation

λ̂n =
1

m

m∑

j=1

λj, where λj ∈ Bδ(λ).

δn(x) = δh(x) where h = hn and Hn = Hhn .

δ (M,Hn) = sup
{
δn(x)

∣∣ x ∈M ; ‖x‖H = 1
}
.

Theorem 11

Consider Problem E2 for the system in Problem VTE 4. Then

∣∣∣λ− λ̂n

∣∣∣ ≤ Kδ (M,Hn) ,

Θ(M,Mn) ≤ Kδ (M,Hn) .
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Proof

See Lemmas 6.9 and 6.10 in [Ch, p 284].

Theorem 12

There exists a constant Cλ such that δ (M,Hn) ≤ Cλhn .

Proof

Note that for each u ∈ H, we have (Theorem 1, Section 5.1)

δn(u) ≤ Ĉ hn |u|2 .

But,

−u′′1 + u′2 = λu1,

−1

γ
u′′2 − αu′1 + αu2 = λu2 .

Consequently,
|u|2 ≤ Kλ‖u‖V ≤ Kλ‖u‖H

for some constant Kλ.

Consequently, there exists a constant Cλ such that

δ(M,Hn) ≤ Cλ Ĉ hn .

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLaabbuusscchhaaggnnee,,  AA    ((22000066))  


	Front
	Chapters 1-2
	Chapter 3
	CHAPTER 4
	4.1 Hermite cubics
	4.2 Hermite bicubic functions
	4.3 Standard estimates for the interpolationerror
	4.4 Interpolation estimates for the one-dimensional hybrid models
	4.5 Interpolation estimates for the plate-beamsystem

	CHAPTER 5
	5.1 Projections
	5.2 Equilibrium problems
	5.3 Symmetrical eigenvalue problems
	5.4 Non selfadjoint eigenvalue problem

	Chapters 6-7
	Chapter 8
	Back



