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Chapter 3

Variational forms

3.1 Introduction

In this chapter we consider the variational and weak variational forms for
the problems under consideration. The variational form is used when we ap-
proximate solutions with the finite element method and the weak variational
form is necessary for theoretical considerations.

In this section we consider free vibrations of a Timoshenko cantilever beam
as an example. The equations of motion are then given by Equations (1.2.5)
and (1.2.6). For this model P = L = 0.

To find the variational form of this problem, multiply the two equations of
motion with functions v and 1 respectively and integrate.

A(afw(wat))v(fc)d:r = /O(GxV(I,t))v(x)dx7
/Oé(aﬁ(x,t))w(w)dw = /0 (@M(x,t))w(x)dwr/o V(z, t)(z)dz.
We use the notation

(f.9) = / f(2)g(x)dz

for convenience. (The fact that this is the inner product for £2(0,1), is not
relevant at this stage.)

39
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Use integration by parts to find that

(0w 8v) = (V0.0 + Ve,

(o0 0) = (M08 + (Vs 1),0) + M9l

Since V(1,t) = M(1,t) =0,

(afw(-,w,v) = —(V(-1),0") — V(0,t)0(0), (3.1.1)

(026(,0.0) = —(M(58),0) + (V1) 9) = M(O,)(0).  (3.1.2)

1
!
The test functions are defined as
7(0,1) = {v e C'(0,1) | v(0) = 0}.
We substitute the constitutive equations into the equations above to find the

variational form of the problem.

Variational form

Find w and ¢ such that for each ¢t > 0, w(-,t) € T(0,1), ¢(-,t) € T(0,1),

<8t2w(-,t),v> = —(Qw(-t) — ¢(-,1),) (3.1.3)
for each v € T(0,1),
L (BoC0.0) = =5 @00 0.0) + @) 6,00 (314)
for each ¢ € T(0,1).
Remark

The variational form can be used to compute approximations for the solutions
of the vibration problem as well as the eigenvalue problem. The variational
form can also be used to investigate the solvability of the problem. This is
done by showing that the results for a general linear vibration problem may
be applied to this specific problem.
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General linear vibration problem

Let H be a Hilbert space and u a function mapping the interval [0, 7] into H.
The derivatives of u are defined in the usual way (see Appendix 4). Every
linear vibration problem can be written in the form below for suitable bilinear
forms a, b and ¢ defined on H.

For each ¢t € (0,7),
c(u'(t),v) + a(u'(t),v) + bu(t),v) = (f(t),v),

for each v € V', where V is some subspace of H.

The existence theory for the general problem is discussed in Section 3.8 and
the theory of eigenvalue problems in Sections 3.9 and 3.10.

To apply the theory to the problem we are considering, the problem must
be written in the appropriate form and the necessary estimates derived. The
first step is to add Equations (3.1.3) and (3.1.4). We find that

(aRut0).0) + - (926(.0),0)
1

B _B (8z¢('7t)v¢/) - (8ﬂcw('7t) - Qb('?t)?U, B 77D>

Next we need a suitable Hilbert space and subspace to relate our problem to
the general vibration problem. We use the Sobolev space H'(0,1) discussed
in Appendix 1 to define suitable product spaces.

Product spaces

Consider the product spaces
X =L£%(0,1) x £2(0,1) and H'= H'(0,1) x H'(0,1).

Let V(0,1) be the closure of T'(0,1) in the Sobolev space H'(0,1) and let
V =V(0,1) x V(0,1). (Note that V is a subspace of the Hilbert space H'.)

Bilinear forms

For w and v in £2(0,1) x £2(0,1),

c(u,v) = (ug,v)+ o (ug, vg).
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For w and v in H'(0,1) x H'(0,1),
1
5

Note that both b and ¢ are symmetric.

b(u,v) = = (uy,vy) + (U] — ug, v} — v2).

Weak variational form

Find u such that for each t > 0, u(t) € V and

c(u”"(t),v) = —b(u(t),v) for each v e V.

Estimates

For the product spaces X and H'!, we may use the obvious inner products
and as a consequence we have the respective norms

ullo2 = V/lJurl* + [Juz|[?
and lulliz = y/llwl + [Jullf.

However, other equivalent norms are more convenient.

Theorem 1
Assume that o > 1. Then

(a) ullgy < aclu,u) < aflullf, foreach wueX.

() Il < [[ul, < 68b(u.u) < 126 [ul}2, for cach u € V.

Proof

(a) The proof is trivial.

(b) For u € V', we have that u; and us are in V(0,1). Since V(0,1) is the
closure of T(0,1) in H'(0,1), it follows from Theorem 1 Appendix 2
that

luall < lwill - and [lug|| < [lusll
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Therefore
ull§o < MUt P 4+ usl® < flull?, -

This proves the first inequality.
We use |[u}]| < ||uf — ugl| + |Juz|| and (a + b)* < 2a® + 2b? to find
lull® < 2fluy — ual|* + 2]|uz ||
It follows that
[l + [ * < 2l — ual|* + 3lluz]l* < 38 b(u, u).

The second inequality follows from the inequality above and the in-

equalities
lusll < flaall - and [lus || < flus]]
The last inequality is trivial since ||u] — uol[? < 2[|u)||* + 2||uz||?*. O
Conclusion

The bilinear form ¢ is an inner product for the space X and b is an inner
product for the space V. Theorem 1 shows that for the space X, the norm
associated with ¢ is equivalent to || - ||o2 . Similarly, for the space V', the norm
associated with b is equivalent to || - |12 -

Notation

lullx = Ve(u,u) and  ully = /b(u,u) .

We call the space X with inner product ¢ the inertia space and the space
V' with inner product b the energy space.

Theorem 2

Assume that a > 1. The inertia space X is a separable Hilbert space and V'
is a dense subset of X.



University of Pretoria etd — Labuschagne, A (2006)

44 CHAPTER 3. VARIATIONAL FORMS

Proof

From Theorem 2 Appendix 1 it follows that £2(0,1) x £2(0,1) is separable.
Furthermore, || - ||x and || - ||o.2 are equivalent norms in X and it follows that
X is separable.

T(0,1) is dense in £%(0,1), since C§°(0,1) is dense in £%(0,1) (Theorem 3
Appendix 1). Clearly V = V(0,1) x V(0,1) is dense in £2(0,1) x £2(0,1)
and hence V' is dense in X. O

Remark

The assumption that a > 1 is not necessary and the result is true for a > 0.
However, in applications « is large compared to one.

Theorem 3

The embedding of the space V into X is compact.

Proof

The embedding of H*(0, 1) into £2(0, 1) is compact (Theorem 7 Appendix 1).
Consequently the embedding of H'! into £2(0,1) x £2(0,1) is compact. The
result follows since the relevant norms are equivalent. O

The assumptions in Sections 3.8, 3.9 and 3.10 are valid for the cantilever Ti-
moshenko beam and hence the theory can be applied to this model problem.

3.2 Vertical slender structure: Rayleigh
models

3.2.1 Variational forms

To obtain the variational form of Problems VR 3 and VR 4, Equation (2.1.1)
is multiplied by a function v and integration by parts (as in Section 3.1)
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yields
(ath(’ t)a Ul) = _(V<'7 t)> Ul) - V(07 t)U(O)
Multiply Equation (2.1.2) by v’ to find

(00 1),0) = (V- 1),0) + (DM 1)) + (L, 1), 01).
Adding the two equations we have
(O2w(-,t),v) + é (020, w(-,1),v") = (O, M(-,1),v") + (L(-,),v") — V(0,t)v(0).

Integration by parts on the first term on the right and substitution of Equa-
tion (2.1.3) yield

(awM('7t>7U/> = —(M(~,t),v”)—M(O,t)v’(())
_ —% (02w (-, 1), 0") — M(0, ) (0).

From Equation (2.1.4) we have

(L(-,t),v") = M/o (1 — z)0,w(z, t)v'(x)d.

Combining the results above, we obtain a general variational form.

(GFw(,1),0) + @20 (,0,) = = (Bhul-,1).v")

—HL/O (1 — 2)0pw(z, t)v'(x)dz — V(0,t)v(0) — M(0,t)v'(0). (3.2.1)

The variational form of each model depends on how we treat the terms con-
taining V(0,¢) and M(0,¢). In all the models the solution w must satisfy
Equation (3.2.1) for all test functions v.

For Problems VR 3 and VR 4 there are no restrictions on the space of test
functions 7'(0,1). Consequently, there are no forced boundary conditions for
the solution w and it must satisfy Equation (3.2.1) for an arbitrary function
v e T(0,1) = C?0,1].

We define the the following bilinear forms.

calu,v) = (u,v)+ é (', 0") + mpu(0)v(0)

ba(u,v) = % (u",0") — u/o (1 —2)u' ()0 (z)dx

+Kru(0)v(0) + ku'(0)v'(0)
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Equations (3.2.1), (2.1.5) and (2.1.7) yield the following equation in terms of
the bilinear forms.

ca(OPw(-,t),v) = —ba(w(-,t),v) — Crdw(0,t)v(0) + kOr(t)v'(0)
—c(@t&rw(o,t) . ép(t)>v’(0) (3.2.2)

Together with Equation (2.1.6) given by

Ielp(t) = k(@xw(o,t) —9F<t)) +c<(9t8$w(0,t) —9F(t))
—kpOp(t) — cpbp(t), (2.1.6)

we find the variational form of the problem.

Variational form of Problem VR 3

) € T(0,1), Equation (3.2.2)

Find w and 0 such that for each t > 0, w(-,t
.1.6) holds. O

holds for each v € T'(0,1) and Equation (2

For Problem VR 4 we define the following bilinear forms.
]' / /
ca(u,v) = (u,v)+ - (u',v") + mpu(0)v(0),

balu) = %(u”,v”)— " /0 (1= 2 ()0 (2)dz

+Kppu(0)v(0) + kgau'(0)v'(0) .

Equations (3.2.1), (2.1.8) and (2.1.10) yield the following equation in terms
of the bilinear forms.
ca(Ofw(-1),v) = —ba(w(-1),v)+ KFBwF(t)U(O)
~Crp(Da0(0,1) = (1) )0(0)
—CBaA (@8 w(0,t) — 05(t) )v’(O
+kpafp(t)v'(0) (3.2.3)

Together with Equations (2.1.9), (2.1.11) and (2.1.12) which are given again
for convenience, we are able to formulate the variational form of Problem
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VR 4.
I505(t) = kpa (er(o, t) — eg(t)) ¥ cpa (@@w(o, t) — e‘B(t))
—kFB<93(t) —Op(t)) —CFB(éB(t) —ep(t)), (219)

mpip(t) = Krg (w(O, £) — wF(t)> + Cpp (@w((), £) — wp(t))
—Kpwp(t) — Cpiop(t), (2.1.11)

Iebp(l) = kep (03(75) - HF(t)) +cpg (93<t) - 9F(t)>
—/{ZFQF(t) — CFGF(t> (2112)

Variational form of Problem VR 4

Find w, 0, wr and 6 such that for each ¢t > 0, w(-,t) € T(0,1), Equation
(3.2.3) holds for each v € T'(0,1) and Equations (2.1.9), (2.1.11) and (2.1.12)
hold. O

The variational forms above are used for finite element approximations (see
Chapter 6).

3.2.2 Weak variational forms

For the analysis of the vibration problems we consider the weak variational
forms. We consider only Problem VR 4, since Problem VR 3 is similar to
Problem VR 4 but simpler.

For the weak variational form we redefine ¢4 and b4 in Subsection 3.2.1.

Bilinear forms

For w and v in H'(0,1),

calu,v) = (u,v) + é (u',v") + mpu(0)v(0).
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For w and v in H?(0,1),

With the new notation and setting v = vy, Equation (3.2.3) becomes

ca(@uw(t),v1) = ~ba(w(1),v1) = Kren(w(0,8) = wr(t) s (0)
~Crp(D10(0,8) = wp(t) )01 (0)

|
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(3.2.4)

Multiplying Equation (2.1.9) by an arbitrary real number v, and adding this
to Equation (3.2.4) results in

ca(Bfw(-,t),00) + Igp(t)vs = —ba(w(-,1),v1)
—KFB(w( )01(0)
—Crp (atw (t)) v1(0)

—k’BA<0wat ) — 05(1) ( (O)—vg)
—cBA(atax (0,1) — p(t )) (vg(o> . v2>
ke (05(t) = 05 (1) )02

—crB (93 )u2 (3.2.5)

Define a function y with values in £2(0,1) by y(t) = w(-, ).

For the definition of the derivatives y/(t) and y”(t), see Appendix 4. In this
subsection, we will use the notation y(t) and §j(t) instead of 3/(t) and y"(t)
to distinguish between time and spatial derivatives.

Finally we need the trace operator v which is defined in Appendix 3. Here
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yu = u(0) for u € £2(0,1). With the new notation, Equation (3.2.5) becomes

calii(t),v1) + IOty = —ba(y(t), v1)

(
—kpaly [(y(t))'} - 93<t)> (vvi = vz)
[5®)] - 050)) (70 — )
S (COREONE
—crp <9B(t) - éF(t))v2 (3.2.6)

Remark

Note that d;w(0,t) is replaced by v(y(t)) and not d;(yy)(t). This is necessary
for the weak variational form of the problem. Fortunately, the choice is not
a problem. This fact is discussed at the end of the section.

Multiply Equation (2.1.11) by v3 and Equation (2.1.12) by v.

mpipt)vs = Krg (wB(t) . wp(t)>v3 + Cpp (wB(t) - u'zp(t))vg
—Kpwp(t)vg — Cpip(t)vs (3.2.7)

IFéF(t)’U4 = kFB <93(t) — QF(t)>’U4 + Ccrp (03(t) — 9}7‘(75))2]4
—kpep(t)’wl — CFéF(t)’U4 (328)
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Add Equations (3.2.6), (3.2.7) and (3.2.8) to find

CA(gj(t), Ul) + [BéB<t)U2 + mF’LbF<t)U3 -+ Ipﬁp(t)m

= —ba(y(t),n) — Krp (w( )~ wF(t)> (7”1 N ”3>
~Crg (7(3)@)) —wr(t) ) (7”1 N ”3>
~kpa (’V[(y(t))/] - 93( )> <'V“1 - U2)

(116

—prp(t)vg — prp(t) V3 — kFQF(t)U4 — CFéF(t)U4 . (329)

To formulate the weak form of the variational problem, the following product
spaces and bilinear forms are necessary.

Product spaces

Define the product spaces

X =HY0,1) x R* and V = H?*(0,1) x R®.

Bilinear forms

For w and v in H'(0,1),

c(u,v) = calur,v1) + Ipugvy + mpusvs + Ipugvy ,
a(u,v) = Cpp(yur — us) (yv1 — v3) + cpa(yu) — ug) (0] — v2)
+epp(ug — uyg)(ve — vg) + Crugvs + cpugvy .

For w and v in H?(0,1),

b(u,v) = ba(ur,v1) + Kpp (yu; — u3) (yv1 — v3)
+kpa(yuy — uz)(yv] — v2) + kpp(uz — ug)(vy — vy)
+Krusvs + kpugvy .
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Note that a, b and ¢ are all symmetric.

We are now ready to formulate the weak variational form of Problem VR 4 in
terms of the defined bilinear forms. The table below shows the relationship
between the components of u and the variables in Equation (3.2.9).

uy (t) Us Us Uy
w(-,t) | 0p(t) | wr(t) | Op(t)

Weak variational form of Problem VR 4
Find w such that for each t > 0, u(t) € V' and

c(u"(t),v) = =b(u(t),v) — a(u'(t),v) for each v € V. O

The existence theorem for problems of this type is presented in Section 3.8.
If the initial conditions are chosen properly, u; € CQ((O, T); HY(0, 1)) and
we find for example that (5(t)) = d, (y/(t)) and d; [yy(t)] = vy(t).

The inertia space X

The bilinear form ¢ is an inner product for the space X and consequently we
may define a norm for u € X by

lullx = ve(u, u) .

The space X with norm || - ||x is called the inertia space.

Theorem 1

The inertia space X is a separable Hilbert space and V' is a dense subset of X.

Proof

The proof is similar to the proof of Theorem 2 in Section 3.1. O
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It is obvious that the inner products of H?(0, 1) and IR? can be used to define
an inner product for the space V. We will show that the symmetric bilinear
form b is also an inner product for V' which is convenient for the theory.

Remark

In the following theorems, we assume throughout that the inequalities below
hold for the physical constants.

1> 2/Lﬁ, kpa > 4,u, krpp > SM and kp > 8u

These assumptions are physically realistic, as can be seen in Section 6.5.

Theorem 2

There exists a constant K. such that
[ull% < Ko b(u,u)

for each u € V.

Proof

In the proof we use the elementary inequalities
)| < [l = yll + llyll and (a+b)* < 2(a® +b7)

and the fact that
[Jua|| < [l || + [yual.

(See Theorem 3 Appendix 3.)
This implies that

2ljurll* + 2(yu1)®
2lui|I* + 2(yuy)*.

IA A

Therefore
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With

and [|ull%

it follows that

IAIAIA

2(yuy — ug)? + 2u3,
2(y1y — ug)? + 4(ugy — ug)? + 4ud
(ug — ug)® + uj

2 2 2
ca(uy,ur) + Igus + mpus + Irug,

93

lale < Ko (Il + (= wa)® + (un = ws)® + (uz — ) + 3 + )

where

1
Kc—max{2(2—|—m3)+mp, 8(2—|——> +2[B+[F}
(%

From the fact that

/0 (1 - 2) (uy (2)) e < || %,

and using the inequality for (yu})? above, it follows that

1

ba(ur,u) = ] / (1 - ) (u (x))*da

v

\%

g
1
ﬁ

Therefore

Zlluil* =

- 2u> 2 = o (4, = ) + 8 (2 — )? + 8

N||U1||2

1
bus) = (5= 20) 1P+ K = w)” + (b = 40) O, = )’

+ (kpp — 8u) (uz — U4)2 + Kpui + (kp — 8p) u?
> K (Hu 12+ (yuy — us)® + (v, — ug)” + (ug — ug)® + u? + ui)

where

1
Ky = min {E —2u, Kpp, K, kpa — 4, krpp — 8u, kp — 8#} .

K.
With K. = T it follows that

b
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Remark

If b(u,u) = 0, it follows from Theorem 2 that u = 0.

The energy space V

The bilinear form b is an inner product for the space V and for u € V we
define
[ully = v/b(u, u) .

The space V' with the norm || - ||y is called the energy space.

Theorem 3

There exists a constant K, such that for any v € V and v € V,

|a(u, )] < Kual[ullv[|vflv-

Proof

We can prove that

ja(u, v)| < Va(u,u) Va(v,v)

in a similar way as the proof for the Cauchy-Schwartz inequality.

From the proof in Theorem 2 it follows that a constant K, > 0 exists such
that

buu) = Ky (12 + (v — )+ (vt = 1) + (uz = wa)? + 1 + o}

> K, ((fyul — u3)2 + (yuf — ug)2 + (ug — U4)2 + u§ + ui) .
Furthermore

la(u,uw)] = Cpp(yu; — U3)2 + cga (yuy — uz)2 +crp (ug — u4)2
+C’Fu§ + cFui

< K, ((’yul — u3)2 + (yuy — uQ)2 + (ug — ’LL4)2 +ul + ui)
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where
K, =max{Cpp, Cr, cpa, cpp, Cp}.

K
H ith Ky = —,
ence, wi b X,

la(u, w)] < Ko bu,u) = Kyallully.

Consequently

jau,v)| < Valu,u)y/a(v,v) < Kullullv[v]v.

3.3 Vertical slender structure: Timoshenko
models

3.3.1 Variational forms

The variational forms are found by multiplying Equation (2.1.13) with a
test function v and Equation (2.1.14) with a test function ¢ and applying
integration by parts. This results in

(afw(7t)7v) = _(V("t)7vl) - V(O,t)l](()),
1 /
Substituting the constitutive equations (2.1.15), (2.1.16) and (2.1.17) into
the equations above, we find that

(FFw(-,t),v) = —(0uw(-,t) — (-, 1),0") — V(0,£)v(0), (3.3.1)

L
s

+u/0 (1 —2)0,w(x, t)(x)de — M(0,t)(0). (3.3.2)

(afgzﬁ(, t)7 ¢) = (axqs(’ t)? ¢,) + (azw(" t) - ¢(7 t)a ¢)

1
«

First consider Problem VT 3. Equations (3.3.1) and (2.1.18) result in

(OFw(-,t),v) + mpdfw(0,)v(0) = —(dw(-,t) — (-, 1),v") — Kpw(0,t)v(0)
—Cropw(0,t)v(0). (3.3.3)
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Equations (3.3.2) and (2.1.20) result in
1
&)

+u/01 (1 —z)0,w(z,t)(x) do
1 (6(0,£) — 0 () £(0)
—c(9,(0,1) — 0 (t))1(0) (3.3.4)
Equation (2.1.19) is presented again for convenience.
Ibr(t) = k(0(0,6) = 0p(t)) +c(00(0,1) — Ir (1))
—kpbp(t) — crbp(t). (2.1.19)

(8162¢(7t)7¢) - (ax¢('7t)7¢/) + (aa:w(vt) - ﬁb(at)ﬂ/})

1
«

As for the Rayleigh models, there are no forced boundary condtions on the
test functions. Therefore, for both variational forms of Problems VT 3 and
VT 4, both v and ¢ are in T(0,1) = C*[0, 1].

Variational form of Problem VT 3

Find w, ¢ and 0 such that for each t > 0, w(-,t) € T(0,1), ¢(-,t) € T'(0,1)
and 0p(t) € IR and Equations (3.3.3) and (3.3.4) hold for each v € T'(0,1)
and ¢ € T(0, 1) respectively and Equation (2.1.19) holds. O

Now consider Problem VT 4. Equations (3.3.1) and (2.1.21) result in
(fw(-,t),v) + mp Ofw(0,t)v(0) = —(dpw(-,t) — ¢(-,1),0)

~Kpp (w(0,6) = wp(t) )v(0)

—Crp (@w((), £) — wp(t)>v(0). (3.3.5)

Equations (3.3.2) and (2.1.23) result in
1
B

—i—u/o (1 —2)0,w(z,t)(x) dz
~kna(6(0,) = (1) ):(0)
—cpa (at(p(o, £) — QB(t)>w(0). (3.3.6)

(R0 0),8) = —% (B0(,0). ) + (Dl 1) — 6(.0), )
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There are three additional equations in the system, presented again for con-
venience.

Igfp(t) = kpa (¢(0,t) — 93@)) + CBa <3t¢(0>t) - 93@))

kg (93(t) - eF(t)) - (ég(t) - éF(t)), (2.1.22)
mpip(t) = Kpp (w(O, £ — wp(t)> + COrp <c9tw(0, £) — wpos))
—Kpwp(t) — Cpiop(t), (2.1.24)
Iebp(t) = kep (eB(t) _ HF(t)) Yerp (éB(t) _ 9F(t)>
—kpOp(t) — cpbp(t). (2.1.25)

Variational form of Problem VT 4

Find w, ¢, 0p, wr and Op such that for each t > 0, w(-,t) € T(0,1),
o(-,t) € T(0,1) and Equations (3.3.5) and (3.3.6) hold for each v € T'(0,1)
and ¢ € T'(0,1) respectively and Equations (2.1.22), (2.1.24) and (2.1.25)
hold. O

The variational forms of the problems above are used for computational pur-
poses (see Chapter 6), but for theoretical purposes we consider the weak
variational form.

3.3.2 Weak variational forms

Problems VT 3 and VT 4 are similar and we consider only Problem VT 4.
We omit the “gravity” term for a reason to be given later.

First we add Equations (3.3.5) and (3.3.6) to find

(02 (-1),0) +  (B20(-1),) + m 3Fu(0,1)u(0)
= =5 (00, 0.0") = (Quu,t) = 900" = )

Kep <w(0, £) — wp(t)>v(0) — Orp <8tw(0, £) — wF(t)>v(O)
—kBA<q§(O, t) — HB(t)>w(0) —¢pa (8t¢(0, ) — éB(t))¢<0). (3.3.7)
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Next we introduce “time derivatives” and the trace operator v as in Sec-
tion 3.2.2.

Define a function y with values y(t) = (w(-, 1), $(- £)) in £2(0,1) x L2(0, 1).
Furthermore, set v = v; and ¥ = vs. Equation (3.3.7) then becomes

(i2(t), v2) + mpy (i () o1

((2(1),v5) = (12 (1)) = 9a(t), 0] — v2)

—Kpp (7 (1 (1)) — wF(t)>7v1 —Cra (v(yl (1) — wp(t)>7v1
k(7 ((0) — 05(0)) 702 — ena(7 (D) — ()02 (3.38)

Bilinear forms

For u = (uj,us) and v = (vy,v9) in HY0,1) x H'(0,1),

1
ca(u,v) = (ug,v) + o (u2,v2) +mpyuryvs,

ba(u,v) = = (ug, v) + (uy = ug, v} — va).

g

Write Equation (3.3.8) in terms of the bilinear forms:

ealf(®),v) = ~baly(t),v) = Krn (v(1(0) = wr(t))yor
—Crp (7(1'/1 (t) — wp(t)>wl
~kpa (Y (1(8) — O5(1))y0s
—epa(1(5(0) — I(t) ) 702 (3.3.9)

for any v € H'(0,1) x H'(0,1).

Multiply Equations (2.1.22), (2.1.24) and (2.1.25) with v3, v4 and vs respec-
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tively to find

IBéB(t)U:i = [/fBA <7(y2(t)) - 93@)) +CBA (7(?)2(75)) - 93(75))
—%m{mﬂt—ep )—cm{mg —éﬂoﬂvg (3.3.10)

mpiptlos = [Kpp(ws(t) = wp(t)) + Crp (in(t) — s (t))
—Krwp(t) — CFwF(t)] Uy (3.3.11)
Ip0p(tvs = |:k5FB< B(t) (t)> +crB (93 — Op(t ))
—@%t—@%wh5 (3.3.12)

Adding Equations (3.3.9), (3.3.10), (3.3.11) and (3.3.12) results in

ca(ij(t),v) + Ig0g(t)vs + mpiop(t)vy + Ipfp(t)vs
= —baly(®),v) = Krn(v(1n(®) = wr(®) (vor - v)

—k’FQF(t

~—

vs — cpbp(t)vs. (3.3.13)

To formulate the weak form of the variational problem, the following product
spaces and bilinear forms are necessary.

Product spaces

X =L£%0,1) x £2(0,1) x R* and V = H'(0,1) x H'(0,1) x IR®.
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Bilinear forms

For u and v in X,

1
ca(u,v) = (ur,vr)+ o (ug,v2) + mpyuiyvs ,
c(u,v) = calu,v) + Iguzvs + mpugvy + Ipusvs
a(u,v) = Crpp(yur —ug)(yv1 — v4) + cpa(yuz — uz)(yv2 — v3)

+epp(ug — us)(vg — vs) + Crugvy + cpusvs .

For v and v in V,

1
bA(u,v) = 3 (U/Q,Ué) + (ull - u27v,1 - U2) )

B
b(u,v) = ba(u,v)+ Kpp(yu; — ug)(yv1 — v4) + kpa(yug — ug)(yve — v3)
+kpp(us — us)(vs — vs) + Kpugvg + kpusvs .

The relationship between the variables u; to us and the variables in Problem
VT 4 is shown in the next table.

uq(t) Us Us Uy Us

w(-,t) | ¢(-,t) | 0p(t) | wr(t) | Or(t)

Weak variational form of Problem VT 4

Find u such that for each t > 0, u(t) € V and

c(u’(t),v) = =b(u(t),v) — a(u'(t),v) for each v € V.

Remark

Inclusion of the “gravity”-term in the definition of b, will result in an un-
symmetrical form. Consequently the bilinear form b will be unsymmetrical
and symmetry is crucial in the theory — see Section 3.8.
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The inertia space X

Note that ¢ is an inner product for this space and consequently we may define

a norm for u € X by
lullx = ve(u, u) -

The space X with norm || - || x is the inertia space.

Theorem 1

The inertia space X is a separable Hilbert space and V' is a dense subset
of X.

Proof
The proof is similar to the proof of Theorem 2 in Section 3.1. O

We will show that the bilinear form b is an inner product for the space V.

Theorem 2
There exists a constant K. such that
[ull% < Kie b(u, u)

for each u € V.

Proof

As before we use the elementary inequalities
lzll < llz = yll + llyll and  (a+b)* < 2(a® + 7).
It follows from Theorem 3 Appendix 3 that

lwll < llwil| + [ywi|  fori=1, 2.
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Together with |lu}]|? < 2||u} — uz||* + 2||uz||?, we find that

ol + Sl < b =l + (842 ) (1P + (un)*) + 2 ),
Furthermore,
(yu:)? < 2(yu; —uy)? + Qu?, uz < 2(uz — us)? + 2ul
and
) = Nl + ol + s (qua)? + T+ mpad + T
It follows that
clwu) < Ko lluh = wall® + Jhll? + (= i) + (e = w)?

+ (U3 — ’LL5)2 + Ui +U§}

with
Kc:max{4+2m3+mp, IF+2[B+32+§}.
b(u,u) = % [ubl|* + [l = wsll® + Kpp (yur — wa)” + kpa (yuz — ug)*
tkpp (ug — us)” + Kpu2 + kpu?
> Kbl + 1) — wall® + (= i) + (s — )?

+ (s — us)” + uf +u2 |

with
Kb—min{%, Krp, Kg, kpp, kp, k:BA}.

Let K. = %, then c(u,u) < Kp.b(u,u) and the result follows. O

The energy space V

For ©w € V we define
ullv = v/b(u,u) .

The space V' with the norm || - ||y is called the energy space.
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Theorem 3

For any u € V and v € V,

|a(u, v)| < lullv]vllv-

Proof

This proof is similar to the proof of Theorem 3 Section 3.2. O

3.4 The cantilever beam

The variational form of the cantilever Timoshenko beam is derived in Sec-
tion 3.1. Recall that our main concern is the choice of boundary conditions
at the clamped end. Returning to Equations (3.1.1) and (3.1.2), we are now
ready to comment on this choice.

Choosing test functions v and ¥ such that v(0) = ¥(0) = 0, the terms
V(0,t)v(0) and M(0,¢)1(0) vanish. Therefore the boundary conditions

w(0,t) = ¢(0,t) = 0 is a convenient choice from a variational point of view.
Note that w(0,t) = 0 is realistic as far as modelling is concerned, but not

#(0,t) = 0 (see Section 1.5.2).

The following alternative boundary conditions may be considered (see Sec-
tion 2.2).
|i V(O,t) :| _ |id11 d12 1 |:UJ(O> ‘|
M(0,t) doy  daa ¢(0)

We now have no restriction on the test functions and the energy space
V = H'0,1) x H(0,1). The bilinear form b must be redefined and

Note that D = C~1.

1 T
blu,v) = E (uh, vy) + (u) — ug, v} —v2) + [ yur Yuz } D [ U1 Y2 ]
The matrix D must be nonnegative for the bilinear form b to be an inner
product. For a discussion of the results, see Chapter 7.
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3.5 Two-dimensional model for the cantilever
beam

3.5.1 Variational forms

Consider the equation of motion (1.4.1). Multiply both sides by an arbitrary
vector valued function ¢ and integrate over the reference configuration 2.

//Q(ﬁfu)~¢d14://Q(divT)-¢dA.

If T'is symmetric, div (T'¢p) = (divT) - ¢ + tr (T'P), where

o {a@l aml}
s 0o |

Application of the divergence theorem and the symmetry of 1" yield

//Qdiv(Tgb)dA:/HQTq’)-nds:/an-gbds.

Combining the results above, we have the Green formula

//Q(divT)-d)dA:—//Qtr(TCI))dAJr/an-q’)ds.

Consequently,

//Q(a,?u).qbdA:—//Qtr(Tcp)dA+/an.¢ds (3.5.1)

for any vector field ¢ that is sufficiently smooth.
The bilinear form b(u, ¢) is defined by

b(u, ) = / /Q tr (T®) dA.

If Hooke’s law, Equation (1.4.2), is substituted into the definition of the
bilinear form, we obtain

b(u, @) = //Q (0110101 4 0120102 + 021021 + 02202¢2) dA

1
T A=) // (01110161 +DsusOoo+1(DyurDado+ Doz 1)) dA
- Q
1

+ m //Q (81U2 + 821&1) <61¢2 + 82¢1) dA.
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To define the space of test functions 7'(€2) for Problems CTD 1 and CTD 2,
take note that the boundary of €2 consists of the the two parts ¥ and I'. The
test functions must satisfy the forced boundary conditions on ¥, i.e. ¢; and
¢o must be zero when it is required that u; and us are zero. All that matters
at this stage is that Tn - ¢ = 0 on X.

Consequently

/ Tn-¢ds:/Tn~¢ds
00 r
for each ¢ € T.

For the equilibrium problem the traction is prescribed on I'.
Variational form of Problem CTD 1
Given the traction t on I', find w € T'(Q2) such that
u.g) = [ ¢ dds
r

for each ¢ € T'(12). O

In the second problem we consider free vibration and there is no traction
on I

Variational form of Problem CTD 2
Find w such that for ¢t > 0, w(-,t) € T'(2) and

// O*u - pdA = —b(u, @)
Q
for each ¢ € T(Q). O

Remark

Our main concern is to study the natural frequencies and modes. The rele-
vant eigenvalue problems are considered in Section 3.9 and Chapter 7.
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3.5.2 Weak variational forms

For the theory it is necessary to place some restrictions on the sets 2 and T'.
These assumptions are listed below and more detail is given in Appendix 1.

1. The set €2 is open, bounded and convex.
2. The boundary of ) consists of a finite number of smooth curves.

3. The set I' is a smooth part of the boundary of €2.

Remark

In our application, €2 is a rectangle and I" one of the sides.

The function spaces £2(Q)?, £2(T")?, H*(Q)? and H*(I")? are relevant for the
theory. The detail and notation are discussed in Appendix 1.

The trace operator v is now a mapping of a function “onto its value” on T
The definition is given in Appendix 3.

We follow the same line of reasoning for the weak formulation as before. Let
V be the closure of T(2) in H'(Q)%. We may consider the following weak
variational form of Problem CTD 1. Given ¢t € £L3(T")?, find u € V such that

b(u,v) = (t,yv) g, foreach v e V.

However, to apply the theory we consider another form. We define a func-
tional f corresponding to the traction on I'. Given t € £L2(T")?, let

fw) = (t,yv) 4, foreachv eV,
This leads to the following form.

Weak variational form of Problem CTD 1

Given f in the dual of V| find v € V such that

b(u,v) = f(v) for each v € V.
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Weak variational form of Problem CTD 2

Find w such that for each t > 0, u(t) € V and
c(u”"(t),v) = —b(u(t),v) for each v €V,
where ¢(-, -) = (-, ) is the inner product of £2(£2)2.

Theorem 1

There exists a constant K such that

|f(v)| < K |[yol|$y  for each v € V.

Proof

It follows from Theorem 4 Appendix 3 that
572 < Kr ||v||51]2 for each v € H' ()%

v
Consequently,

[f@)] < lltlloz Ivvllse < Krelltlos [v]2s-

Theorem 2 (Poincare-Friedrichs)

There exists a constant c¢p such that,

llullo2 < cpluli2 for each u € V.

Proof

The inequality holds for each u € T(2) (see the corollary to Theorem 2
Appendix 2). Clearly the same is true for v € V.

Theorem 3 (Korn)

There exists a constant cx such that,

|u|f2 < cx blu,u) for each u € H'(Q)?.
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Proof

[Br, p 288-289]

Theorem 4
There exists a constant ¢; such that,

llull12 < e1v/b(u,u) for each u € V.
Proof

Combine Korn’s inequality with the Poincare-Friedrichs inequality.

The energy space V
For u € V we define

[ullv = vblu, w).

The space V with norm || - ||y is called the energy space. Due to Theorem 4
the norms || - ||y and || - |12 are equivalent on V.

Theorem 5

The space £%(€)? is a separable Hilbert space and V' is a dense subset of £2(£2)2.

Proof

The space £2(2)? is a separable Hilbert space and C§°(€2)? is a dense subset
of £%(Q)? (from Theorems 2 and 3 Appendix 1). Since C§°(Q)? C V, the
result follows.

Theorem 6

The embedding of the space V into £2(2)? is compact.
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Proof

The embedding of the space H'(€)? into £2(2)? is compact (from Theorem
7 Appendix 1). The result follows from the equivalence of the norms || - ||y
and || - |12

Theorem 7

For any ¢t € £L2(T")?, there exists a unique u € V such that
b(u,v) = (75,1))572 for each v € V.

Proof

See Section 3.7.

3.6 Plate-beam system

3.6.1 Variational form of problem RMT

For any function v,

divQudA = — [[ Q - VvdA+ [ (Q -n)vds. (3.6.1)
Q Q oN

For any vector valued function ¢ = [¢; ¢»]7, using the Green formula from
Section 3.5, we have

//QdivM.cﬁdA— —//Qtr(m) aA+ [ Mnogds (362)

where ® = 0191 Orn and “tr” denotes the trace of the matrix.
0192 Oapy

Test functions

Choose two spaces of test functions 77(€2) and T(£2), with
T1<Q) = {U S CI(Q) ‘ v=0o0n 20 and 21} s
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To(Q) = {& =[¢1 92" | ¢1,02 € CH(Q), ¢ =00n %y and £, } .

Combining Equation (1.3.5) (first equation of motion for the plate) with
Equation (3.6.1) yield

hp/[)ﬁfwvdA—i—//QQ'VvdA— 6Q(Q'n)vd8:0 (3.6.3)

for each v € T1(2).

It follows from Equation (2.4.8) (first equation of motion for the beams),
using integration by parts, that

1 1 1
771/ 8t2wbov0dx+/ Voﬁxvodm:/ Pyvg dx (3.6.4)
0

0 0

for each vy in C[0, 1] with v(0) = vo(1) = 0 and

1 1 1
771/ 8fwb1v1 dx+/ Vlﬁxvldac:/ Pivy dx (3.6.5)
0

0 0

for each vy in C'[0,1] with v1(0) = v1(1) = 0. The subscripts “0” and “1”
are used to distinguish between quantities associated with the two different
beams.

To accommodate Equation (2.4.2) (interface condition for wyy and wy),
choose vg(x1) = v(x1,0) and vy(x;) = v(x1,a), where a denotes the dimen-
sionless width of the plate.

The fact that v = 0 on ¥, and ¥; and that Q - n = —P on both I'y and
[’y (interface condition (2.4.4)), result in some cancellations when adding
Equations (3.6.3), (3.6.4) and (3.6.5). We have

/m(Q-’n)vds = /FO(QO'n)UdS_/Fl(Ql'")UdS
= —/FOPOvdS—/FlPlvds
_ _Uolpovdxlh_o - Uolpwdle_a

for each v € Ty ().
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From Equation (2.4.2) (interface condition), the remaining integrals on I’y
and I['; can be expressed in terms of w. Therefore,

1 1
h, // OPwvdA + [/ OFwv dxl} + m [/ OPwv dxl}
Q 0 29=0 0 To=a

1 1
+/ Q VvdA + {/ Voo dxl] + [/ V1o da:‘ll
Q 0 x9=0 0 Tro=a

=0
for each v € T1(Q).

Equations (1.3.7) (constitutive equation for Q) and (2.4.10) (constitutive
equations for Vy and V;) are expressed in terms of w and 1, (found from the
interface conditions (2.4.2) and (2.4.3)). They are used to obtain the final
form of this variational equation. This leads to

1 1
h, // OtwvdA + m [/ 2w dxl] + m [/ OFwv d:cll
Q 0 xo=0 0 Tro=a

—f—hp/ (Vw + 1) - VodA
Q

1 1
+ 12 {/ (01w +1P1)Orv dl’1] + [/ (Oyw + 1) O da:l]
0 z9=0 0 To=a
=0 (3.6.6)
for each v € T1(Q).

A similar calculation is performed for the remaining equations of motion.
Combining Equation (1.3.6) (second equation of motion for the plate) with
the Green formula (3.6.2) yields

// OPap - ¢dA+// tr(M®)dA — Mn ¢ ds

+/QQ.¢dA:0 (3.6.7)

for each ¢ € T(2).

It follows from Equation (2.4.9) (second equation of motion for the beams)
and using integration by parts, that

1 1 1
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for each yo € C'[0,1] and

1 1 1
b Jo 0 0

for each x; € C[0,1]. (Mo and My, are zero at the endpoints of the beams.)

The functions yo and x; in Equations (3.6.8) and (3.6.9) must satisfy the
conditions xo(z1) = —¢1(x1,0) and xi1(z1) = —¢1(x1, a) in order to accom-
modate the interface condition (2.4.3) for ¢y and ¢p;.

Hence Equation (3.6.8) becomes

1 1
n {/ 83¢1¢1 d$1:| - [/ M1 dﬂé’l]
ap | Jo 22=0 0 z2=0

1 o
0 xro=0

for each ¢ € T5(Q2), and Equation (3.6.9) becomes

1 1
ﬂ{ / 8Ew1¢1dx1} - [ / Mblamsldxl]
(87 0 To=a 0 Tro=a

for each ¢ € To(02).

As before, adding Equations (3.6.7), (3.6.10) and (3.6.11), some cancellation
of terms occur. Note that ¢ = (¢ - n)n + (¢ - 7)7 and consequently,

Mn-¢)ds:/

., <(¢-n)Mn-n—|— (¢)-T)Mn-7') .ds

o0N

The natural boundary condition on €2 is Mn -n = 0.

From the definition of the test functions, ¢ = 0 on ¥, and ¥, and therefore
¢ -7 =0o0nX;and ;.

On I'y and I'y the interface conditions (2.4.5) and (2.4.6) are used. It follows
that

Mn-pds — /L0¢1d3+/(—L1)(—¢1)ds
To

IR}

1 1
= [/ Lopy dxl} + [/ Loy dml} .
0 22=0 0 T2=a

9}
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Consequently,

Ip//gﬁfz,b-qbdAJr//ﬂtr(M@)dAJr/QQ-qbdA
+% { / 1 824y d:pl} + { / 1 021 dxl}
b LJo 22=0 @ [Jo z2=a

1 1
Mboaﬂbl dﬁ?l] - {/ Mb131¢1 dxl]
0 xo=0 0 To=a

1 1
+ {/0 Voo d5171L2_0 + {/0 Vigr dlL’lLFa
=0

for each ¢ € T5(Q2).

Equations (1.3.7) and (1.3.8) are the constitutive equations for @ and M
for the plate. These equations are expressed in terms of w and v; (using
the interface conditions (2.4.2)). Similarly, Equation (2.4.10) (constitutive
equations for V; and V5) and Equation (2.4.11) (constitutive equations for
My and My;) are expressed in terms of w and ;. They are used to obtain
the final form the second variational equation.

We define a bilinear form bg by

bp(,¢) = //Qtr(Mcb)dA
— 11 ,/2 / (31@/11+1/52¢2)81¢1+(82¢2+y31¢1)32¢2> dA

2@) 1+ // (D119 40211 ) (D1 pa+Dap1) dA

for each v, ¢ in H'(Q)2.
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Finally, the second variational equation is given by

L [[ ot oda s baw.g) by [[ (Vo 0 g

m [ [ m [ [
+— [/ at2¢1¢1 dxl] + — [/ af¢1¢1 dﬂﬁl]
Qp 0 29=0 Qp 0 zo=a

1 1
+ 2 {/ 10191 dx1:| + 2 {/ 10191 dil?1}
Bb 0 £9=0 ﬁb 0 To=a

1 1
+ 12 {/ (Orw + 1)1 d$1:| + M2 [/ (01w + 1)y dxl]
0 29=0 0

= Tro=a

-0 (3.6.12)

for each ¢ € T»(92).

Variational form of Problem RMT

Find w and 4 such that, for t > 0, w(-,t) € T1(2), (-, t) € T5(2) and Equa-
tions (3.6.6) and (3.6.12) hold for each v € T1(Q2) and each ¢ € TH(€2). O

The variational form above is used for computational purposes (see Chap-
ter 8), but for theoretical purposes we consider the weak form of the varia-
tional problem.

3.6.2 Variational form of Problems KR and KEB

The variational form of Problem KR can be obtained by setting ¥ = —Vw
and choosing ¢ = —Vv in Equations (3.6.6) and (3.6.12). In this case the
test functions are defined by

T(Q)={veC*’(Q)|v=0on %, and .}

The variational equations reduce to
1
+ m [/ OPwv da:l]
=0 0 To=a

1
hy // OfwvdA + m {/ Ofwo dxl]
Q 0 o=

—0 (3.6.13)



University of Pretoria etd — Labuschagne, A (2006)

3.6. PLATE-BEAM SYSTEM 75

and

I, / / 0} (Vw) - VudA + bg(Vw, Vo)
Q

m [ [ m [ [
+ 1 [/ 838111)1) da:l] + 4 [/ 83(9111)1) dml]
Qp z9=0 Qp 0 To=a

0
n [ [ n [ [
—i—ﬁ [/ Pwdtv d:cl} + é {/ Owdiv da:l]
0 z9=0 0 To=a

b
~ 0 (3.6.14)
for each v € T'(2).

Redefine the bilinear form bp in Equation (3.6.14) by

1
bg(w,v) = m //Q (((‘ﬁw + v3w) v + (O3w + V@%M)@%’U) dA

2
- A.
+6p<l T V) //{; 8182w818211d

for each w, v in H?(Q).

For Problem KR the variational form is reduced to a single equation by
adding Equations (3.6.13) and (3.6.14).

Variational form of Problem KR

Find w such that, for ¢t > 0, w(.,t) € T(Q),

hy // Ofwv dA + Ip//ﬁf(Vw) -VudA
. 1 . 1
+m [/ Q?wv dxl] + m [/ wav d:pl}
0 z2=0 0 To=a

m [ [ m [ [
+ = {/ O (01w)v dml} + & {/ O (O1w)v d:z:l}
ap 0 xo=0 Qy 0

= T2=a

1 1
+bp(w,v) + 2 {/ Ofwdtv dxl] + 2 [/ Ojwdiv dxl]
6 0 x2=0 65 0 To=a

b

— 0 (3.6.15)
for each v in T'(€2). O
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Variational form of Problem KEB

The variational form of the case where rotary inertia is ignored, is obtained
by ignoring the terms containing I, and UEE Equation (3.6.15).
ap

3.6.3 Weak variational form of Problem RMT

For I = (0,1), the space T'(I) is defined as
={ve ' (I)|v(0)=v(1)=0}.

The trace operators 79 and v; are defined in Appendix 3. At this stage we
are dealing with smooth functions and 7y and +; simply map a function onto
its value at the boundary. Therefore

Yov =0(-,0) and yv=0v(,a)

In order to formulate the weak variational form of Problem RMT, we start
by rewriting Equations (3.6.6) and (3.6.12) in terms of inner products. The
notation is explained in Appendix 1.

hy (SR (,8), v) + m (200w 0), 300) + m (@, 0), )
by (T )+ (1), w); + 1 (Y@, 8) + 1 (1)), 20(0r))

+ 12 (’Yl(alw(‘at) +1(:51)), 71(317)))] =0. (3.6.16)

Q

0,2

L(F(0). @), + ba((1.6) + hy(Vul0) + (1), 9)
m

+ o (0(0fa )%m) + 2 (0@ 0). o),

+Z—< Oa( 1)), (060 )|+ Z (@ (1) 1 (@ron))

1 (0@ (1) + (1) 30 )

+772(71 (Orw(-t) + (-, ))771%)[: 0. (3.6.17)

The next step is to define product spaces.
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Product spaces

X = I2(Q) x I2(Q)? x LA(I),

Hl

S =Ti() x TH(Q)?

r={

— H'(Q) x H'(Q) x H'(Q)

I X

(T(1) x (D))

veSs ‘ Yov1 = U3, Y1U1 = Vs, 7o (V2 - €1) = —va, 1 (v2 - €1) = —vg}

n=1

The following table explains the relationship between the functions used in
Equations (3.6.16) and (3.6.17) and Equations (3.6.18) and (3.6.19) to follow.
Note that for v € C1(Q) and i = 0, 1, ~; (01v) = ()’ — the derivative with
respect to the variable x;.

uq (t) w(-,t) U1 v

U2 (t) ¢(7 t) () d)

u3(t) Yo(w(-, 1)) = yous(t) U3 YoV = YoV1
ug(t) | =01, 1) = —y0(ua(t) - e1) | va | =001 = —0(v2 - €1)
us(t) 7 (w(-, 1) = nua(t) Us MV = Y101
ug(t) | —ni(t) = —y(ua(t) - €1) || ve | —7161 = —71(v2 - €1)

In the new notation, Equations (3.6.16) and (3.6.17) become

and

hp(ﬂl(t) vl) —|—771<U3 £, v m u5(t),v5)[
+h, (V 1(t) + ug(t > + 7 (u (1) — ug(t), vé)l
+n2(ug(t)—u6(t) 05)1 (3.6.18)

iia(t), U2>Z2 + bp(ua(t),v2) + hy (vul(t) +ua(t), UQ) ZQ

%\4
/N

+ Z—Z( — 1iy(t), —v4>1 + Z—;( — ug(t), _U6>I
Fa (s )+ 2 (), ),
e (uh(6) = wat), —vi) -+ e (uh(6) — wolt), —vs),

=0 (3.6.19)



University of Pretoria etd — Labuschagne, A (2006)

78 CHAPTER 3. VARIATIONAL FORMS

Bilinear forms
For v and v in T', define

c(u,v) = hy(us,v1)a + ]P(Uz,w)g,g + mi(us, v3)r

+E(U4,U4)I + mi(us,vs)r + m771(166,1)6)1,
p (873

br(u,v) = 7)2<U§,—U4,U§,—U4>I + 772<U%—U6avé—1’6>
m,, m, ,
—'I__ U 7U + - 7’U )
5b( 4 4)1 ﬁb( 6 6)1
Q

bo(u,v) = bp(ug,vy) + hp(Vul—i-uQ,Vvl—i-vQ)M,

I

b(u,v) = ba(u,v) + br(u,v).

By adding Equations (3.6.18) and (3.6.19), we arrive at the following varia-
tional problem.

Find u(t) € T such that c(i(t),v) = —b(u(t),v) for each v € T" .

We are now ready to consider the weak variational form. We define V' as the
closure of T in H'. Note that all the bilinear forms are defined for elements
of V, except for br. For v and v in V, define

br(u,v) = lm bp(uy,,v,),

n—oo

with {u,} and {v,} sequences in T" such that w, — v and v,, — v.

As a consequence, the bilinear forms b and br are now defined on V.

Weak variational form of Problem RMT

Find u € C([0,00),V) N C?((0,00), X) such that for each t > 0, u/(t) € V,
u”(t) € X and

c(u"(t),v) = =b(u(t),v) for each v € V.
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Inertia space

The space X with the norm induced by the inner product c is the inertia
space.

Energy space

The closure of T in H' is denoted by V. A norm on V is defined by
|lullvy = v/b(u,u) and is called the energy norm. The space V with norm
|| - [[v called the energy space.

Theorem 1

The inertia space X is a separable Hilbert space and V' is dense in X.

Proof

Appendix 5.

Theorem 2

There exist constants ¢; and ¢s such that
ullx < allullm < coflullv

for each u € V.
Proof

Appendix 5.

3.7 Equilibrium problems

In the rest of Chapter 3, X and V' denote spaces with the following properties:
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X is a Hilbert space with inner product ¢ and norm || - || x;
V' is a Hilbert space with inner product b and norm || - ||y;

V' is a subspace of X.

Theorem (Riesz)

For any f in the dual of V| there exists a unique u € V such that

b(u,v) = f(v) for each v € V.

Corollary

Suppose ||u||x < ||ul]y for each uw € V. For any f € X, there exists a unique
u € V such that

b(u,v) = c(f,v) foreachve V.
Proof

Let g(v) = ¢(f,v) for each v € V, then |g(v)| < || f]|x]||v|lv proving that g is
in the dual of V. Applying the theorem yields the desired result.

Application

The theorem above yields the existence of a weak solution for Problem CTD 1.

Proof of Theorem 7 Section 3.5

The result follows from the theorem above and Theorem 1 Section 3.5. Recall
that f(v) = (t,vv)g’z.



University of Pretoria etd — Labuschagne, A (2006)

3.8. VIBRATION PROBLEMS 81

3.8 Vibration problems

In this section we consider the general linear vibration problem. Consider the
Hilbert spaces X and V introduced in Section 3.7. Consider also a bilinear
form a defined on V.

For any Banach space Y the spaces C’k([O, oo),Y) and Ck((O,oo),Y) are
defined in Appendix 4.

Problem D

Find u € C'([0,00),V) N C?((0,00), X) such that for each ¢t > 0,
c(u"(t),v) + a(u/(t),v) + b(u(t),v) =0 for cach v €V,

w(0) =ug, u'(0)=uy.

Theorem

Suppose

(a) V is dense in X,
(b) ||ul|x < K||u||y for each u € V,

(c) the bilinear form a is symmetric, nonnegative and |a(u, v)| < C||u||v||v||v
for each v and v in V,

(d) up € V, uy € V and for some y € X,

b(ug,v) + a(uy,v) = ¢(y,v) for each v € V.

Then Problem D has a unique solution.

Proof

See [VV].
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Remark

It is possible to define linear operators M, C' and K and arrive at an abstract
differential equation Mu” + Cu' + Ku = 0. It is then possible to prove an
equivalent existence result, see e.g. [Sho, p 131].

Applications

For Problems VR 4, VT 4, CTD 2 and RMT the first three conditions in the
Theorem are met. This is proven in each section where the weak variational
forms of the problems are discussed.

3.9 Modal analysis

In this section we consider the modal analysis of the general linear vibration
problem. Consider the Hilbert spaces X and V' introduced in Section 3.7.
Consider also a bilinear form a defined on V.

The fact that a solution of the (general) vibration problem exists is not
enough. To determine the response of a system to excitation, knowledge of
the vibration spectrum is required. We need to know whether the solution
may be written as the superposition of modes.

First consider the case of no damping, i.e. a = 0. For the modal analysis of
the system, a function u(x,t) = T'(t)u(x) is considered as a possible solution.
This requires consideration of the following eigenvalue problem.

Problem E1

Find a complex number A and u € V such that

b(u,v) = Ae(u,v) for each v € V.
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Natural frequencies and modes

The function 7, satisfies 7,/ = —\, T and hence the natural angular fre-
quencies are equal to w, = /A, . The formal solution of Problem D (general
vibration problem) is given by

u(t) = Z (A, sinwpt + By sinw,t) e,

n=1

where each e, is an eigenvector. For the series above to converge, a necessary
condition is that it must be possible to write the the initial values vy and w4
as a series using the sequence of eigenvectors. This implies that the existence
of a complete orthonormal sequence of eigenvectors is required. We present
two well-known results, slightly modified.

Theorem 1

(a) The eigenvalues are (real and) positive.

(b) The eigenfunctions are orthogonal in the inertia space X with respect
to the inner product c.

Proof

The bilinear forms on both sides of the equation are inner products. Conse-
quently, the eigenvalues must be real and positive. Furthermore, for different
eigenvalues A and p it follows that Ac(u,v) = b(u,v) = pc(u,v). Therefore
that (A — pu)c(u,v) = 0 and consequently c(u,v) = 0.

Theorem 2

Suppose the embedding of V' into X is compact.
(a) The set of eigenvalues can be ordered as a sequence {\,} converging
to oo as n — Q.

(b) The set of eigenvectors can be ordered as a sequence and this sequence
is complete (or total) in X.
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Proof

For each f € X, there exists a unique u € V such that
b(u,v) = c(f,v) foreachv eV

by the corollary in Section 3.7. (The embedding of V' into X is bounded.)
Define a mapping K by u = K f, then

b(Kf,v) =c(f,v) foreachveV.
The mapping K is defined on X and it is clearly linear. Note that

b(u,v) = Ac(u,v) foreachv eV

if and only if \Ku = u or Ku = A\~ 1u.

The operator K is symmetric due to the fact that b and ¢ are symmetric.
The inequality

IS < I NE fllx < Foll Fllx I fllv

implies that K is a bounded operator from the inertia space X into the
energy space V. If a set A is bounded in the inertia space, then the set KA
is bounded in the energy space and consequently pre-compact in the inertia
space (due to the compactness of the embedding). Therefore the operator K
is compact.

Both conclusions of the theorem now follow from the theory of compact
symmetric linear operators on a separable Hilbert space, see e.g. [Ze, p 232].

Modal damping

We now consider the case where the bilinear form a is not zero but we assume
that
a = klc + k?gb

Consider a function @(z,t) = T'(t)u(z) as a possible solution. The eigenvalue
problem is the same as for the undamped case but

T"c(u,v) + T" (krc(u, v) + kob(u, v)) + Th(u, v) = 0.
This leads to the following ordinary differential equation
T" + (k1 + k)T + XT = 0.

Again it is possible to present the solution in series form.
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3.10 Nonmodal damping

In this section we consider the the general linear vibration problem (Sec-
tion 3.8) with nonmodal damping, i.e.

a 7é k:lc + k‘gb

Nonmodal damping is often a consequence of boundary damping. It also
features in hybrid systems such as the models for the vertical structure pre-
sented in Section 2.1. Computation of the natural frequencies leads to a
quadratic eigenvalue problem with complex eigenvalues and eigenvectors (see
Chapter 6).

The quadratic eigenvalue problem

Consider the Hilbert spaces X and V introduced in Section 3.8 and the
general linear vibration problem, Problem D. In general, consideration of a
solution of the form e*u leads to a quadratic eigenvalue problem.

Ne(u,v) + Aa(u,v) + b(u,v) =0 for each v € V.

This problem is a generalization of the eigenvalue problems in Chapter 6.

It is clear that imaginary eigenvalues and eigenvectors are possible and X is
a real Hilbert space. However, we may consider the space X to be embed-
ded in complex space X. This can be done in a rigorous manner, see e.g.
[Sch, p 154]. Elements of X are of the form x = 1 +ixy, where z; and x4 are
in X. We also have a subspace V with elements of the form z = T +ixy € 1%
where x, and x5 are in V.

The bilinear forms a, b and ¢ must be extended to X and V. Consider for
example the bilinear form c:

é(z,y) = c(z1, 1) +ic(za, y1) —ic(z1, y2) + (22, yo).

It is easily checked that the bilinear form ¢ is an inner product for X and
that X is a separable Hilbert space. Similarly, we find that V' is a Hilbert
space with inner product b. Furthermore, V' is dense in X and the relevant
estimates remain valid. We have for example

c(x,x) = c(xy, o)+ c(x, 29)
< Kie (b(1, 1) + b(22, 2))

= Kpb(z, ).
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We now return to the original notation and consider the quadratic eigen-
value problem.

Problem QE

Find a complex number A and u € V such that
Ne(u,v) + Aa(u,v) + b(u,v) =0 for each v € V.

To apply the theory on convergence, we need an alternative formulation.

Non selfadjoint eigenvalue problem

The quadratic eigenvalue problem is equivalent to a conventional abstract
eigenvalue problem in a product space. Let H =V x X and

(2, ) g = b(w1,y1) + c(z2,12) for z,y e H.

It is easy to see that (-,-)y is an inner product for H and that H is
complete.

Problem E2

Find a complex number A\ and x € H such that

Ty = )\.731
b(zy,v) + a(xe,v) = —Ac(xg,v) for each v € V.

If X\ is an eigenvalue and u an eigenvector of Problem QE, then X is an
eigenvalue and (u, Au) an eigenvector of Problem E2. Conversely, if A is an
eigenvalue and x an eigenvector of Problem E2, then A is an eigenvalue and
x1 an eigenvector of Problem QE.

If the sequence of eigenvectors is complete in the complex Hilbert space X,
the solution of Problem D can be written in series form. The abstract form
of the quadratic eigenvalue problem is considered in Section 5.4. It is of the
same type as the abstract form of the eigenvalue problem for a Timoshenko
beam with boundary damping considered in a recent paper [Shu]. Shubov
proved that the sequence of eigenvectors is complete but it should be noted
that the problems are not the same.
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