
Chapter 1

Modelling interface conditions

1.1 Introduction

In this thesis our concern is mathematical models for elastic plates and
beams. In real life all objects are three-dimensional. Due to the propor-
tions of a body, it is sometimes justifiable to consider a one-dimensional or
two-dimensional model. These models are referred to as beam and plate
models respectively.

We restrict our attention to linear models or linear theories for plates and
beams. To be specific, we consider the Euler-Bernoulli, Rayleigh and Timo-
shenko theories for beams and the Kirchhoff and Reissner-Mindlin theories
for plates.

The theories mentioned above refer to the partial differential equations that
model a beam or plate. The contact − or lack thereof − with other objects
also need to be modelled. The equations that result are usually referred
to as boundary conditions, but we prefer the more inclusive term “interface
conditions”.

We consider three problems concerning interface conditions for plates and
beams. In this section we present a brief introduction. A detailed discussion
will be given in Section 1.5 after a review of the general theory.

The relevant aspects of beam theory and plate theory are presented in Sec-
tions 1.2 and 1.3 and a two-dimensional beam model in Section 1.4. We write
all the problems in dimensionless form to facilitate numerical experiments.

1
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2 CHAPTER 1. MODELLING INTERFACE CONDITIONS

The model problems to be investigated are presented in Chapter 2.

1.1.1 A vertical slender structure on a resilient seating

Unwanted vibrations often occur in mechanical structures. The following
design problem is described in [N1]:

“Because of their inherent low damping, free-standing welded steel struc-
tures are prone to oscillate in the wind. This may cause the chimney to
fail due to metal fatigue. One method of artificially increasing the dam-
ping is to mount the chimney on a resilient foundation incorporating
bearing pads made of a high-damping material.”

The structure may be modelled as a vertically mounted beam, i.e. a con-
tinuum model is used. Engineers often refer to continuum models as dis-
tributed parameter system (DPS) models.

In [N2], Newland discusses efforts to compute natural frequencies using DPS
models. The results compared poorly with experimental results. Newland
pointed out that the models needed to be improved to include the influence of
the resilient seating. According to Newland, this increases the complexity of
a finite element analysis considerably. As an alternative he proposed lumped
parameter system models (LPS).

LPS models are useful for the analysis of vibrating systems when one is
primarily interested in the lower order modes (see [CZ]). However, the ac-
curacy is questionable and the theoretical tools for error estimation are not
available. We considered it worthwhile to investigate beam models and to
compare results.

Our initial objective was to match Newland’s results using beam models. In
doing so, we demonstrated the flexibility of DPS models in conjunction with
the finite element method. We used the Euler-Bernoulli and Rayleigh models
for the slender structure since they correspond to Newland’s models.

Modelling the behaviour of the resilient seating and foundation leads to a
hybrid system. We constructed four mathematical models to match those of
Newland and showed that the interface conditions and additional equations
can be accommodated in the variational form. Consequently the finite ele-
ment method can be used. Using a small number of elements, our results
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1.1. INTRODUCTION 3

compared well with those of Newland (see [N1], [N2] and [LVV]). The nu-
merical results published in [LVV] show clearly the advantage of the finite
element method.

In this thesis we investigate aspects not considered in [LVV]. First we use
the Timoshenko theory to construct mathematical models and compare the
results. We also consider theoretical aspects such as existence and uniqueness
of solutions and convergence of finite element method approximations.

1.1.2 Boundary conditions for the clamped end of a
beam

The Euler-Bernoulli beam is a popular model for the transverse vibration of
a beam which is still used. Although the Timoshenko model is considered to
be better (see e.g. [Fu], [I], [N1], [T] and [Wa]), some authors, for instance
Duva and Simmonds ([DS]), do not agree that the Timoshenko model is an
unqualified improvement. According to [DS], the corrections predicted by
the Timoshenko model are in some cases erroneous. The authors claim that
for the first eigenfrequency of the cantilever beam, the Timoshenko model
provides a correction in the wrong direction and that this is due to “effects
at the built in end”.

Careful consideration of a clamped end of a beam leads to the conclusion that
the boundary conditions for the two models are not compatible. This fact
was pointed out in [V3] and an alternative boundary condition was proposed.
However, the modified boundary condition worsened the disparities between
the two models, i.e. the differences between the natural frequencies were
larger. It became clear that further investigation was necessary and in this
investigation two-dimensional effects must be taken into account. In order
to do this, we consider two-dimensional models for a cantilever beam.

1.1.3 Plate-beam systems

In applications, structures consisting of linked systems of beams and plates
are encountered. The reader is referred to [LLS] where a large variety of
applications can be found.

We consider a rectangular plate connected to two beams. This problem was
also considered in [ZVGV1], [ZVGV3] and [Ziet] using classical plate theory
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4 CHAPTER 1. MODELLING INTERFACE CONDITIONS

and the Euler-Bernoulli beam theory.

Combining the Reissner-Mindlin plate model and the Timoshenko beam
model can be seen as a first step towards a better model while still avoiding
the “complications” of a fully three-dimensional model.

1.2 Beam theory

In this section we consider the transverse motion of a beam. We restrict our
attention to a beam that is straight in its undeformed state. We assume that
it has a well defined axis of symmetry and that all the cross sections are
similar and have their centroids on the axis of symmetry.

The Euler-Bernoulli theory for a beam originated in the 18-th century. An
improvement was introduced by Rayleigh in the 19-th century. In 1921,
Timoshenko proposed his theory where shear is taken into account.

1.2.1 Equations of motion

Consider a beam as illustrated below. The x-axis is taken to coincide with the
line of centroids of the cross sections. We assume that the cross sections and
applied loads are symmetric with respect to the xy-plane and consequently
the motion of the beam is parallel to the xy-plane.

x

`

y

x = c

Consider a cross section at x = c. Denote the axial force, shear force and
moment by S(c, t), V (c, t) andM(c, t) respectively. We follow the convention

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLaabbuusscchhaaggnnee,,  AA    ((22000066))  



1.2. BEAM THEORY 5

that S, V and M denote the forces and moment exerted by the part of the
body for which x > c on the rest.

Suppose the beam has constant density ρ, length ` and cross sectional area A.
We consider a one-dimensional model and the reference configuration is the
interval [0, `]. The transverse displacement (deflection) of the cross section at
x ∈ [0, `] at time t is denoted by w(x, t). Assuming that plane cross sections
remain plane, the rotation of a cross section is denoted by φ(x, t). Assume
that the load P is in the transverse direction. The equations of motion are
then given by

ρA∂2tw = ∂xV + P, (1.2.1)

ρI∂2t φ = V + ∂xM + L, (1.2.2)

where I is the area moment of inertia (see [T, p 331-337] and [I, p 337]).

Remarks

1. The term ρI∂2t φ in Equation (1.2.2) is usually referred to as the rotary
inertia term.

2. Note the unusual term L present in Equation (1.2.2). This term repre-
sents a moment density term that will be used in some of the mathe-
matical models (see Sections 2.1 and 2.4).

1.2.2 The Timoshenko model

To determine the forces S and V and the moment M , the stresses are inte-
grated over a cross section. For more detail, see [Fu, Sec 7.7], [Co] and
[I, p 337-338].

In the linear theory, it is assumed that ∂xw is small. The following constitu-
tive equations for the moment M and the shear force V are used.

M = EI∂xφ, (1.2.3)

V = AGκ2
(
∂xw − φ

)
. (1.2.4)

In these equations, E and G are elastic constants (see Section 1.4) and
κ2 the shear coefficient or shear correction factor. We refer the reader to
[T, p 337-338], [Fu, p 323-324], [I, p 337-338] and [N1, p 392-395].
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6 CHAPTER 1. MODELLING INTERFACE CONDITIONS

Substituting the constitutive equations (1.2.3) and (1.2.4) into the equations
of motion (1.2.1) and (1.2.2), yield the well known Timoshenko model for
the free vibration of a beam.

ρA∂2tw = ∂x
(
AGκ2(∂xw − φ)

)
,

ρI∂2t φ = AGκ2
(
∂xw − φ

)
+ ∂x

(
EI∂xφ

)
+ L.

The partial differential equations above can be derived in different ways (see
[Fu, p 322-323] and [Co]).

The boundary conditions depend on the configuration and a number of vari-
ations are possible (see [I, p 335, 338] and [Fu, p 323-324]).

Note that we will not use the partial differential equations above. When con-
fronted by complex interface conditions, it is advisable to use the equations
of motion and constitutive equations (Equations (1.2.1) − (1.2.4)), rather
than the partial differential equations.

1.2.3 The Euler-Bernoulli and Rayleigh models

We consider first the Rayleigh model. It can be derived formally from the
Timoshenko model. Combining Equations (1.2.1) and (1.2.2), we find that

ρA∂2tw = ρI∂2t ∂xφ− ∂2xM + P − ∂xL.

For this model, it is assumed that a cross section remains perpendicular to
the neutral plane. This implies that ∂xw = φ, and the equation reduces to

ρA∂2tw = ρI∂2t ∂
2
xw − ∂2xM + P − ∂xL.

This is the equation of motion for the Rayleigh model. The constitutive
equation for the shear force V is now redundant and the constitutive equation
for the bending moment is

M = EI∂2xw.

As mentioned before, we do not use the partial differential equations, but we
present them for the purpose of comparison. The partial differential equation
for the Rayleigh model is

ρA∂2tw − ρI∂2t ∂
2
xw = −EI∂4xw + P − ∂xL.

The Euler-Bernoulli model is a special case of the Rayleigh model where
rotary inertia is ignored and the result is

ρA∂2tw = −EI∂4xw + P − ∂xL.
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1.2. BEAM THEORY 7

1.2.4 Dimensionless form

In this subsection we write the equations of motion and constitutive equations
in dimensionless form. Set

τ =
t

t0
, ξ =

x

`
, w∗(ξ, τ) =

w(x, t)

`
and φ∗(ξ, τ) = φ(x, t).

We introduce the dimensionless constants

α =
A`2

I
, β =

AGκ2`2

EI
and γ =

β

α
=
Gκ2

E
.

The constant γ depends on the elastic constants and the shear correction
factor κ2 that is determined by the shape of the cross section. The values of

κ2 range between
1

2
and 1 (see [Co] or [BSSS, p 173]). On the other hand,

for isotropic materials we assume that
G

E
=

1

2(1 + ν)
(see [My, p 174] or

[Fu, Sec 7.2]). Realistic values for γ range between
1

6
and

1

2
. Timoshenko

([T, p 342]) used
2

3
for κ2 and

G

E
=

3

8
.

The constant α is subject to significant variation. With r2 the radius of

gyration we have α =
A`2

I
=
`2

r2
.

The forces and moments in dimensionless form are

L∗(ξ, τ) =
L(x, t)

Gκ2A
, P ∗(ξ, τ) =

`P (x, t)

Gκ2A
,

V ∗(ξ, τ) =
V (x, t)

Gκ2A
and M∗(ξ, τ) =

M(x, t)

`Gκ2A
.

A convenient choice for t0 is

t0 = `

√
ρ

Gκ2
.

Returning to the original notation we present the equations of motion and
constitutive equations in dimensionless form.
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8 CHAPTER 1. MODELLING INTERFACE CONDITIONS

Timoshenko model

∂2tw = ∂xV + P, (1.2.5)
1

α
∂2t φ = V + ∂xM + L, (1.2.6)

M =
1

β
∂xφ, (1.2.7)

V = ∂xw − φ. (1.2.8)

Rayleigh model

∂2tw = ∂xV + P, (1.2.9)
1

α
∂2t ∂xw = V + ∂xM + L, (1.2.10)

M =
1

β
∂2xw. (1.2.11)

Euler-Bernoulli model

The Euler-Bernoulli model is obtained from the Rayleigh model by omitting

the rotary inertia term
1

α
∂2t ∂xw .

Remark

Note that the rotary inertia term is simply omitted. It is not correct to

reason that
1

α
≈ 0, since that would imply that

1

β
≈ 0.

Since the Euler-Bernoulli model is a special case of the Rayleigh model, we
will not refer to this model again in the theoretical discussions that follow. To
obtain results for the Euler-Bernoulli model, one uses the relevant equations
for the Rayleigh model with the modification mentioned above.
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1.3. PLATE THEORY 9

1.3 Plate theory

In his book Elastic Plates: Theory and Applications, Reissman presents an
interesting historical note (see [Rei]):

“The theory of plates has a colorful history. Classical plate theory was
initiated by Mlle. Sophie Germain (1776 – 1831) in direct response to
a prize offered by the French Academy (1811) for the explanation of
the nodal curves of a vibrating plate, as demonstrated (experimentally)
by E. Chladni (1756 – 1829) of Saxony. After two attempts, Mlle.
Germain received the prize in 1816 but only after Lagrange, a member
of the examination committee, corrected her initially submitted paper.
Subsequently, a controversy ensued about the appropriate, associated
boundary conditions, and this was settled approximately 34 years after
the correct partial differential equations were discovered. No less than
the authorities G. R. Kirchhoff (1824 – 1887) and Lord Kelvin (William
Thompson) (1824 – 1907) were responsible for this part of the theory.”

From 1945 to 1950 improvements to classical plate theory were made by
E. Reissner, H. Hencky, Y. S. Uflyand and R. D. Mindlin (see [Mi] for refer-
ences).

1.3.1 Equations of motion

We consider small transverse vibration of a thin plate with thickness h and
density ρ. The reference configuration for the plate is a domain Ω in the
plane.

The transverse displacement of x at time t is denoted by w(x, t). The angle
between a “material line” and a perpendicular to the plane is ψ(x, t) and
the angle between the projection of the material line in the plane and the
unit vector e1 is φ(x, t) (see [Rei, Sec 3.2, Sec 3.5]). For a linear model ψ is
approximated by

ψ = [ψ1 ψ2]
T = [ψ cosφ ψ sinφ]T .

Then the equations of motion (see [Mi] and [Rei, p 152]) are given by

ρh∂2tw = divQ+ q, (1.3.1)

ρI∂2tψ = divM −Q, (1.3.2)
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10 CHAPTER 1. MODELLING INTERFACE CONDITIONS

where I =
h3

12
is the length moment of inertia.

Q represents a force density, M =

[
M11 M12

M21 M22

]
a moment density and q

an external load on the plate.

1.3.2 The Reissner-Mindlin and Kirchhoff models

Constitutive equations

We restrict our attention to the linear theory. The following assumptions are
made for small curvature and small partial derivatives (see [Rei, p 61] and
[Mi]).

Q = κ2Gh(∇w +ψ), (1.3.3)

where G is the shear modulus and κ2 a correction factor.

M =
1

2
D

[
2
(
∂1ψ1 + ν∂2ψ2

)
(1− ν)

(
∂1ψ2 + ∂2ψ1

)

(1− ν)
(
∂1ψ2 + ∂2ψ1

)
2
(
∂2ψ2 + ν∂1ψ1

)
]
. (1.3.4)

D is a measure of stiffness for the plate and is given by

D =
EI

1− ν2
,

where E is Young’s modulus and ν Poisson’s ratio.

The correction factor κ2 is chosen in such a way that the solution of the
plate model compares well with the solution of the three-dimensional model.
The value of κ2 depends on Poisson’s ratio ν and ranges almost linearly from
0.76 to 0.91 if ν increases from 0 to 0.5 (see [Mi]). Also mentioned in this

reference is that Reissner used κ2 =
5

6
.

The equations of motion and the constitutive equations above are known as
the Reissner-Mindlin plate model.

The constitutive equations may be substituted into the equations of motion,
leading to a system of three partial differential equations (see [Rei, p 152]
and [Mi]). In our approach these partial differential equations are not used.

For classical plate theory, ψ is replaced by −∇w and the constitutive equa-
tion forQ is no longer necessary. This is sometimes referred to as theKirch-
hoff plate model.
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1.3. PLATE THEORY 11

1.3.3 Dimensionless forms

We introduce the dimensionless variables

τ =
t

t0
, ξ1 =

x1
`

and ξ2 =
x2
`
,

where ` is a suitable length and t0 must still be specified.

The dimensionless variables, with x = (x1, x2) and ξ = (ξ1, ξ2), are

w∗(ξ, τ) =

(
1

`

)
w(x, t), ψ∗(ξ, τ) = ψ(x, t),

Q∗(ξ, τ) =

(
1

`Gκ2

)
Q(x, t), M ∗(ξ, τ) =

(
1

`2Gκ2

)
M(x, t)

and q∗(ξ, τ) =

(
1

Gκ2

)
q(x, t).

The dimensionless constants that are used are given by

hp =
h

`
, Ip =

h3p
12

and βp =
`3Gκ2

EI
.

The constant hp denotes the dimensionless thickness of the plate and Ip the
dimensionless length moment of inertia.

We choose t0 = `

√
ρ

Gκ2
(for convenience) and use the original notation

for the corresponding dimensionless quantities. The equations of motion and
constitutive equations in dimensionless form are presented below.

Reissner-Mindlin plate model

hp ∂
2
tw = divQ+ q, (1.3.5)

Ip ∂
2
tψ = divM −Q, (1.3.6)

Q = hp
(
∇w +ψ

)
, (1.3.7)

M =
1

2βp(1− ν2)

[
2
(
∂1ψ1 + ν∂2ψ2

)
(1− ν)

(
∂1ψ2 + ∂2ψ1

)

(1− ν)
(
∂1ψ2 + ∂2ψ1

)
2
(
∂2ψ2 + ν∂1ψ1

)
]

(1.3.8)
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12 CHAPTER 1. MODELLING INTERFACE CONDITIONS

Classical plate model

hp ∂
2
tw = divQ+ q, (1.3.9)

Ip ∂
2
t

(
∇w

)
= Q− divM, (1.3.10)

M = − 1

βp(1− ν2)

[ (
∂21w + ν∂22

)
w (1− ν)∂1∂2w

(1− ν)∂1∂2w
(
∂22w + ν∂21

)
w

]
. (1.3.11)

Generally the rotary inertia term Ip∂
2
t

(
∇w

)
in Equation (1.3.10) is ignored.

1.4 Two-dimensional model for a beam

As mentioned in the introduction, we also consider a two-dimensional model
for a beam. To facilitate the discussion, we include a brief review of linear
elasticity.

1.4.1 Equation of motion

Consider an elastic body with density ρ. The displacement of a point x in
the reference configuration at time t is u(x, t) and the velocity is v = ∂tu.

From the conservation law for momentum, we have the equation of motion
(see [Fu, Sec 5.5, 5.7]) or [AF, p 125])

ρ∂2tu = divT +Q,

where T is the first Piola stress tensor and Q an external body force (density
force).

In the case of small local displacements, the infinitesimal theory of elas-
ticity or linear elasticity may be used. In this case the first Piola stress
tensor is approximated by the Cauchy stress tensor (which is symmetric). For
an explanation, see [AF, p 45-46, 122, 125]. Another explanation is given in
[Fu, Sec 7.1].

In the matrix representation of T the stress components are denoted by σij
and divT is a vector with components

[divT ]i = ∂1σi1 + ∂2σi2 + ∂3σi3 for i = 1, 2, 3.
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1.4. TWO-DIMENSIONAL MODEL FOR A BEAM 13

Simplifying assumptions

Now consider a beam as illustrated below. The x1-axis is taken to coincide
with the line of centroids of the cross sections. We assume that the cross
sections and applied loads are symmetric with respect to the x1x2-plane and
consequently the motion of the beam is parallel to the x1x2-plane.

x1

`

x2

For beam problems it is reasonable to assume that the body or beam is in a
state of plane stress. To be specific, we assume that σ3i = σi3 = 0. However,
this does not imply that the problem is two-dimensional since ∂3σij need not
be zero. This is an assumption that we make. The interpretation is that the
stresses are averages across the width of the beam. This approach is in line
with Cowper’s ([Co]) derivation of the Timoshenko model. It is reasonable to
assume that the two-dimensional model is more accurate than beam models
(but obviously less accurate than three-dimensional models).

Constitutive equations

The infinitesimal strain E is given by

eij =
1

2

(
∂iuj + ∂jui

)
.

(See [AF, p 25] or [Fu, p 155].)

Constitutive equations are required to express the relationship between the
stress T and the strain E . These depend on the elastic properties of the
material under consideration. An isotropic material exhibits no preferred
direction in its response to a given state of stress. For a homogeneous
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14 CHAPTER 1. MODELLING INTERFACE CONDITIONS

material the elastic properties are the same at all points of the reference
configuration.

We useHooke’s law for homogeneous isotropic materials ([Fu, Sec 9.1]
or [My, p 173, 182]) for the special case of plane stress.

σ11 =
E

1− ν2
(
e11 + νe22

)
,

σ22 =
E

1− ν2
(
e22 + νe11

)
,

σ12 = σ21 =
E

1 + ν
e12 ,

where E is Young’s modulus and ν Poisson’s ratio.

The constitutive equation in terms of the components of u follow as

σ11 =
E

1− ν2
(
∂1u1 + ν∂2u2

)
,

σ22 =
E

1− ν2
(
∂2u2 + ν∂1u1

)
,

σ12 = σ21 =
E

2(1 + ν)

(
∂1u2 + ∂2u1

)
.

Substitution of the constitutive equation into the equation of motion yields
a system of partial differential equations for the components of the displace-
ment. We will not make use of this system of partial differential equations.

1.4.2 Dimensionless form

The dimensionless variables and constants must be the same or compatible
with those in Section 1.2. Set

τ =
t

t0
, ξi =

xi
`

u∗(ξ, τ) =
1

`
u(x, t),

and σ∗ij(ξ, τ) =

(
1

Gκ2

)
σij(x, t).

Recall that t0 = `

√
ρ

Gκ2
and γ =

Gκ2

E
.

Returning to the original notation we present the equations of motion and
constitutive equations in dimensionless form. In the problems under con-
sideration Q = 0.
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1.5. INTERFACE CONDITIONS 15

Equation of motion

∂2tu = divT, where (1.4.1)

divT =



∂1σ11 + ∂2σ12
∂1σ21 + ∂2σ22

0


 .

Constitutive equations

σ11 =
1

γ(1− ν2)

(
∂1u1 + ν∂2u2

)
,

σ22 =
1

γ(1− ν2)

(
∂2u2 + ν∂1u1

)
, (1.4.2)

σ12 = σ21 =
1

2γ(1 + ν)

(
∂1u2 + ∂2u1

)
.

1.5 Interface conditions

It is now possible to provide more detail concerning the problems that we
investigate.

1.5.1 Vertical slender structure

The vertical slender structure (for example a chimney), is modelled as a
vertical beam with x = 0 at the ground level. The boundary conditions at
the top present no problem and we have that

M(1, t) = V (1, t) = 0.

For a built in beam the conventional boundary conditions at the bottom
are given by w(0, t) = ∂xw(0, t) = 0. However, the conventional boundary
conditions yielded poor results (as Newland mentioned in [N2]).

Modelling the behaviour of the resilient seating and foundation leads to a
complex hybrid system with interface conditions and additional equations.
This was done in [LVV] with satisfactory results – as mentioned before. In
this thesis we adapt the interface conditions for the Timoshenko theory.
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16 CHAPTER 1. MODELLING INTERFACE CONDITIONS

1.5.2 Boundary conditions for the clamped end of a
beam

First we show that the boundary conditions used for the Euler-Bernoulli
and Timoshenko models are incompatible. Consider a beam in equilibrium
clamped at x = 0 and an external vertical force F at the endpoint x = 1.

w

x
1

F

The usual boundary conditions at x = 0 for an Euler-Bernoulli beam are

w(0) = w′(0) = 0 .

For a Timoshenko beam the boundary conditions at x = 0 are

w(0) = φ(0) = 0 .

When an external force F is applied at x = 1, the implication is that the
shear force throughout the beam is constant and equal to F , hence V (0) = F .
Since φ(0) = 0, it follows from the constitutive equation (1.2.8) that

w′(0) = V (0) = F .

However, for the Euler-Bernoulli and the Rayleigh models it is assumed that
w′(0) = 0. Clearly φ(0) and w′(0) can not both be zero.

The boundary condition w′(0) = 0 is realistic from a modelling perspec-
tive. This suggests that the boundary conditions at a built in end for the
Timoshenko theory deserves closer examination.

One possibility is the boundary condition proposed in [V3], which we con-
sider in this thesis. However, as mentioned in Section 1.1.2, this boundary
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1.5. INTERFACE CONDITIONS 17

condition creates larger disparities and it is logical to consider other possi-
bilities.

We consider the possibility that the constitutive equation (1.2.8) does not
reflect reality at the built in end. The quantity w′−φ represents the average
shear for a cross section. As x tends to zero, both w′ and φ become small, but

the shear force V remains constant. These facts suggests that
V

w′ − φ
is not

constant. The Timoshenko theory implies that a cross section remains plane
and that the shearing strain w′ − φ is constant on a cross section. In reality,
the strain is zero at both the bottom and the top of a horizontal beam. In
the Timoshenko theory, the quantity w′ − φ represents the average strain
of a cross section. It is possible that this is not realistic at the clamped end.

To investigate the difficulties mentioned, we consider a prismatic beam with
the simplifying assumptions mentioned in Section 1.4. Usually the boundary
condition for the “fixed end” is to set the displacement u = 0. This will
not do if the objective is to determine the strain at the clamped end, hence
we also consider configurations where part of the beam is embedded (see
Section 2.3).

Finally, there is another aspect that needs to be mentioned. The first two
or three eigenfrequencies of the Euler-Bernoulli and the Timoshenko models
for a cantilever beam differ very little, unless the beam is short (relative
to its thickness) – to be precise, when the parameter α is small. The first
eigenfrequency differs appreciably when the beam is so short that one is
reluctant to use beam theory at all. Comparisons are given in Section 7.1.

1.5.3 Plate-beam system

When a plate and a beam are connected, numerous aspects need to be con-
sidered. These aspects may be classified under geometrical constraints and
mechanical interaction. A Reissner-Mindlin-Timoshenko plate-beam system
is extremely complex due to the presence of five equations of motion. One
could say that the boundary conditions are partial differential equations
themselves.

Another complication is the fact that the angles ψ (for the plate) and φ
(for the beam) do not present a physically reality but convenient averages.
Consequently it is not clear what the geometrical constraints should be.
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18 CHAPTER 1. MODELLING INTERFACE CONDITIONS

Not only is the modelling for a Reissner-Mindlin-Timoshenko plate-beam
system more complex, but the mathematical analysis and numerical analysis
present additional difficulties. Finally, the numerical algorithms also present
nontrivial difficulties not present in the plate-beam system using classical
plate and beam theory.

In this thesis we consider a Reissner-Mindlin plate supported by two Timo-
shenko beams. The case where the plate is connected rigidly to the beam,
can be found in [LLS].

One expects that in some cases the Reissner-Mindlin-Timoshenko model will
compare well with the Kirchhoff-Euler-Bernoulli model that is investigated
in [ZVGV1], [ZVGV3] and [Ziet]. In Chapter 8 we present some results on
this comparison.
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Chapter 2

Model problems

2.1 Vertical slender structure

In this section we present DPS models that correspond to Newland’s LPS
models [N1, p 129-132] and [N2]. The slender structure (e.g. a steel chimney)
is modelled as a Euler-Bernoulli, a Rayleigh or a Timoshenko beam mounted
vertically and gravity is taken into account. (The reason for including gravity
in the model, is to match Newland’s models.)

From Section 1.2 we have the relevant equations of motion for the Rayleigh
and Timoshenko theories in dimensionless form. In this case we have free
vibration and therefore P = 0.

The relevant constitutive equations are also given in Section 1.2. The term
L = −S∂xw is a moment density (measured in Newton) due to gravity. The
axial force due to gravity is given by

S(x) = −ρAg(`− x).

With µ =
ρg`

Gκ2
and using the original notation, the dimensionless moment

density (see Section 1.2) is given by

L(x, t) = µ(1− x)∂xw(x, t).

19
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20 CHAPTER 2. MODEL PROBLEMS

2.1.1 Simplistic Models

Initially we considered the Rayleigh theory as this corresponds to the New-
land models.

Boundary conditions at x = 0

There are a number of possibilities for the boundary conditions at x = 0.
Following Newland ([N1], [N2]), four models are considered in [LVV]. The
first two are rather simplistic. In Model 1, the foundation is completely rigid
and the boundary conditions at the base are given by

w(0, t) = ∂xw(0, t) = 0.

In the second model that corresponds to the model in [N1, p 133], the effect
of the resilient seating is taken into account. The foundation is modelled
to be elastic with damping. Hence the moment M(0, t) is determined by
the elasticity and damping of the foundation. In this case the boundary
conditions at the base for the Rayleigh model are given by

w(0, t) = 0,

M(0, t) = k ∂xw(0, t) + c ∂t∂xw(0, t),

where the constants k and c are nonnegative.

Our results for these models were compared to Newland’s results and was
published in [LVV]. Models 1 and 2 are not considered in this thesis.

2.1.2 The dynamics of the foundation block and
resilient seating

The mathematical models presented later in this Section as Problem VR 3
and Problem VR 4, were published in [LVV]. For these models the dynamics
of the resilient seating and foundation block is taken into account.

As our point of departure, we consider the physical model in [N2]. Figure 1
corresponds to Figure 2 in [N2].
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2.1. VERTICAL SLENDER STRUCTURE 21

Figure 1: Simplified sketch of the system

The springs and damping mechanisms in the sketch are schematic.

A

B

F

A: Vertical slender structure
B: Resilient seating
F: Foundation block

Figure 2: Displacements, angles of rotation, moments and forces

Convention: Moments and forces are denoted by the action of right on left.
For instance, MFB denotes the moment exerted by B on F.

F B

A

+

VF
[KF , CF ]

VFB
[KF B , CF B ]

VBA
[KBA, CBA]

wF (t) wB(t)

w(x, t)

x

x = 0

+

MF
[kF , cF ]

MFB

[kF B , cF B ]θF θB
θA

MBA
[kBA, cBA]
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22 CHAPTER 2. MODEL PROBLEMS

To formulate the boundary conditions at the base, it is necessary to consider
the equations of motion for the resilient seating and foundation block. Both
are modelled as rigid bodies connected to linear elastic springs and linear
damping mechanisms.

Equations of motion

mF ẅF = VFB − VF ,

mBẅB = VBA − VFB,

IF θ̈F = MFB −MF ,

IB θ̈B = MBA −MFB.

Constitutive equations

VF = KFwF + CF ẇF ,

VFB = KFB(wB − wF ) + CFB(ẇB − ẇF ),

MF = kF θF + cF θ̇F ,

MFB = kFB(θB − θF ) + cFB(θ̇B − θ̇F ).

The reader must take note of the use of upper case and lower case letters for
the constants.

Interface conditions

Let θA(t) denote the rotation of the end point of the vertical structure.

MBA(t) = kBA

(
θA(t)− θB(t)

)
+ cBA

(
θ̇A(t)− θ̇B(t)

)
,

MBA(t) = M(0, t),

VBA(t) = V (0, t),

wB(t) = w(0, t),

θB(t) 6= θA(t) (in general).

We make the following assumptions for θA(t):

• θA(t) = ∂xw(0, t) for the Rayleigh models and

• θA(t) = φ(0, t) for the Timoshenko models.
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2.1. VERTICAL SLENDER STRUCTURE 23

Dimensionless constants

The dimensionless constants for the foundation block and the resilient seating
are

m∗ =
m

`ρA
, and I∗ =

I

`3ρA
.

The different elastic and damping constants are

K∗ =
K`

AGκ2
, k∗ =

k

AGκ2`
, C∗ =

C`

AGκ2t0
and c∗ =

c

AGκ2t0`
.

The following equalities hold for the the scaling factors of m and I:

`ρA =
t20AGκ

2

`
and `3ρA = t20AGκ

2`2

All the constants in the equations of motion for the foundation block and
resilient seating and the equations for the interface conditions, must be re-
placed by the corresponding dimensionless constants.

The diagrams and equations in this subsection are from [LVV].

2.1.3 Rayleigh models

The Rayleigh theory applied to Models 3 and 4 yields the same equations of
motion, constitutive equations and boundary conditions at the top.

Equations of motion

∂2tw = ∂xV, (2.1.1)
1

α
∂2t ∂xw = V + ∂xM + L, (2.1.2)

Constitutive equations

M =
1

β
∂2xw, (2.1.3)

L(x, t) = µ(1− x) ∂xw(x, t). (2.1.4)
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24 CHAPTER 2. MODEL PROBLEMS

Boundary conditions at x = 1

M(1, t) = V (1, t) = 0.

The interface conditions for these two problems differ. We will refer to the
two problems as Problem VR 3 and Problem VR 4 (corresponding to models
3 and 4 in [LVV]).

Problem VR 3

Equations of motion: (2.1.1) and (2.1.2).

Constitutive equations: (2.1.3) and (2.1.4).

Boundary conditions at x = 1: M(1, t) = V (1, t) = 0.

The motion of B is neglected and B is considered to be rigidly connected to
the foundation block F and this case corresponds to Model 2 in [N2]. The
conditions are

wF (t) = wB(t) = w(0, t), θF = θB, VFB(t) = VBA(t) = V (0, t)

and MFB(t) =MBA(t) =M(0, t).

The constant kBA is replaced by k and cBA by c.

The interface conditions and the equations of motion of the foundation block
and resilient seating reduce to the following three equations:

mF∂
2
tw(0, t) = V (0, t)−KFw(0, t)− CF∂tw(0, t), (2.1.5)

IF θ̈F (t) = k
(
∂xw(0, t)− θF (t)

)
+ c
(
∂t∂xw(0, t)− θ̇F (t)

)

−kF θF (t)− cF θ̇F (t), (2.1.6)

M(0, t) = k
(
∂xw(0, t)− θF (t)

)
+ c
(
∂t∂xw(0, t)− θ̇F (t)

)
. (2.1.7)

Problem VR 4

Equations of motion: (2.1.1) and (2.1.2).
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2.1. VERTICAL SLENDER STRUCTURE 25

Constitutive equations: (2.1.3) and (2.1.4).

Boundary conditions at x = 1: M(1, t) = V (1, t) = 0.

In Model 4, the interface conditions and the equations of motion of the
foundation block and resilient seating follow directly from the discussion in
Section 2.1.2.

The following five equations formulate the interface conditions.

mB∂
2
tw(0, t) = V (0, t)−KFB

(
w(0, t)− wF (t)

)

−CFB

(
∂tw(0, t)− ẇF (t)

)
, (2.1.8)

IB θ̈B(t) = kBA

(
∂xw(0, t)− θB(t)

)
+ cBA

(
∂t∂xw(0, t)− θ̇B(t)

)

−kFB

(
θB(t)− θF (t)

)
− cFB

(
θ̇B(t)− θ̇F (t)

)
, (2.1.9)

M(0, t) = kBA

(
∂xw(0, t)− θB(t)

)

+cBA

(
∂t∂xw(0, t)− θ̇B(t)

)
, (2.1.10)

mF ẅF (t) = KFB

(
w(0, t)− wF (t)

)
+ CFB

(
∂tw(0, t)− ẇF (t)

)

−KFwF (t)− CF ẇF (t), (2.1.11)

IF θ̈F (t) = kFB

(
θB(t)− θF (t)

)
+ cFB

(
θ̇B(t)− θ̇F (t)

)

−kF θF (t)− cF θ̇F (t). (2.1.12)

Remarks

1. The stiffness and damping in the mounting are modelled to be due to
linear springs and linear dashpots. The limitations of these assumptions
are discussed in [N2].

2. Problems VR 3 and VR 4 are from [LVV].
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26 CHAPTER 2. MODEL PROBLEMS

2.1.4 Timoshenko models

As mentioned before, results for Model 3 and Model 4 using the Rayleigh
and Euler-Bernoulli theory were published in [LVV]. In this thesis our main
objective is to use the Timoshenko beam theory in the models and compare
the results to the results where the Rayleigh theory is used. We refer to these
problems as Problem VT 3 and Problem VT 4.

The equations of motion, constitutive equations and the boundary conditions
at the top are the same for both problems.

Equations of motion

∂2tw = ∂xV, (2.1.13)
1

α
∂2t φ = ∂xM + V + L. (2.1.14)

Constitutive equations

M =
1

β
∂xφ, (2.1.15)

V = ∂xw − φ, (2.1.16)

L(x, t) = µ(1− x)∂xw(x, t). (2.1.17)

Boundary conditions at x = 1

M(1, t) = V (1, t) = 0.

Modifications on some of the interface conditions are necessary for the Timo-
shenko theory and we state the full set of interface conditions. Note that the
first and last interface condition differ from those for the Rayleigh theory.
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2.1. VERTICAL SLENDER STRUCTURE 27

Interface conditions

MBA(t) = kBA

(
φ(0, t)− θB(t)

)
+ cBA

(
∂tφ(0, t)− θ̇B(t)

)
,

MBA(t) = M(0, t),

VBA(t) = V (0, t),

wB(t) = w(0, t),

θB(t) 6= φ(0, t) (in general).

Problem VT 3

Equations of motion: (2.1.13) and (2.1.14).

Constitutive equations: (2.1.15), (2.1.16) and (2.1.17).

Boundary conditions at x = 1: M(1, t) = V (1, t) = 0.

As in the Rayleigh models, the motion of B is neglected and B is considered
to be rigidly connected to F . Hence

wF (t) = wB(t) = w(0, t), θF = θB, VFB(t) = VBA(t) = V (0, t)

and MFB(t) =MBA(t) =M(0, t).

The constant kBA is replaced by k and cBA by c.

The interface conditions and the equations of motion of the foundation block
and resilient seating reduce to the following three equations:

mF∂
2
tw(0, t) = V (0, t)−KFw(0, t)− CF∂tw(0, t), (2.1.18)

IF θ̈F (t) = k
(
φ(0, t)− θF (t)

)
+ c
(
∂tφ(0, t)− θ̇F (t)

)

−kF θF (t)− cF θ̇F (t), (2.1.19)

M(0, t) = k
(
φ(0, t)− θF (t)

)
+ c
(
∂tφ(0, t)− θ̇F (t)

)
. (2.1.20)

Problem VT 4

Equations of motion: (2.1.13) and (2.1.14).
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28 CHAPTER 2. MODEL PROBLEMS

Constitutive equations: (2.1.15), (2.1.16) and (2.1.17).

Boundary conditions at x = 1: M(1, t) = V (1, t) = 0.

The interface conditions are given by

mB∂
2
tw(0, t) = V (0, t)−KFB

(
w(0, t)− wF (t)

)

−CFB

(
∂tw(0, t)− ẇF (t)

)
, (2.1.21)

IB θ̈B(t) = kBA

(
φ(0, t)− θB(t)

)
+ cBA

(
∂tφ(0, t)− θ̇B(t)

)

−kFB

(
θB(t)− θF (t)

)
− cFB

(
θ̇B(t)− θ̇F (t)

)
, (2.1.22)

M(0, t) = kBA

(
φ(0, t)− θB(t)

)
+ cBA

(
∂tφ(0, t)− θ̇B(t)

)
, (2.1.23)

mF ẅF (t) = KFB

(
w(0, t)− wF (t)

)
+ CFB

(
∂tw(0, t)− ẇF (t)

)

−KFwF (t)− CF ẇF (t), (2.1.24)

IF θ̈F (t) = kFB

(
θB(t)− θF (t)

)
+ cFB

(
θ̇B(t)− θ̇F (t)

)

−kF θF (t)− cF θ̇F (t). (2.1.25)

2.2 The cantilever beam

In Chapter 7 we compare the natural frequencies of the Euler-Bernoulli and
Timoshenko models for the free vibration of a cantilever beam. For reference
purposes we state the equations of motion, constitutive equations and the
standard boundary conditions.
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2.3. TWO-DIMENSIONAL MODEL FOR A CANTILEVER BEAM 29

Timoshenko theory

∂2tw = ∂xV,
1

α
∂2t φ = V + ∂xM,

M =
1

β
∂xφ,

V = ∂xw − φ,

M(1, t) = V (1, t) = 0,

w(0, t) = φ(0, t) = 0.

Euler-Bernoulli theory

∂2tw = ∂xV,

0 = V + ∂xM,

M =
1

β
∂2xw,

M(1, t) = V (1, t) = 0,

w(0, t) = ∂xw(0, t) = 0.

A modification of the boundary conditions for the Timoshenko model (sug-
gested in [V3]) is

[
c11 c12
c21 c22

] [
V (0, t)
M(0, t)

]
=

[
w(0, t)
φ(0, t)

]
.

The standard boundary conditions for the Timoshenko model is a special
case of the modified boundary conditions, where

c11 = c12 = c21 = c22 = 0.

2.3 Two-dimensional model for a cantilever

beam

We consider a prismatic beam built in at one end. In Section 1.4 a two-
dimensional model is proposed. The equation of motion and the constitutive
equation are given by Equations (1.4.1) and (1.4.2).

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLaabbuusscchhaaggnnee,,  AA    ((22000066))  



30 CHAPTER 2. MODEL PROBLEMS

It is not obvious how to model the built in end of a cantilever beam. Therefore
we consider different configurations and discuss them briefly. A detailed
discussion is given in Section 7.2.1.

Rigidly attached beam

We consider a rigidly attached beam as in Figure 1. For this case the reference
configuration Ω is the rectangle given by

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ h

and the beam is attached at x1 = 0.

Figure 1: Rigidly attached beam

x1
0 1

x2

h

Σ0

Σ1

Σ1

Γ

Built in beam

In this case we consider a beam that is built in at x1 = 0 as in Figure 2. The
reference configuration Ω is the rectangle given by

−a ≤ x1 ≤ 1, 0 ≤ x2 ≤ h.
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Figure 2: Built in beam

x1

x2

1
0−a

h Σ1

Σ1

Γ

Σ0

Σ0

Σ0

To apply the theory, it is preferable to formulate the model problems for a
general domain. Let Ω be an open convex subset in the plane. The boundary
of Ω consists of smooth curves, Σ1, Σ2, . . . , Σm and Γ.

Boundary conditions

The traction t = Tn is specified on Γ and on Σi we have Tn · u = 0 for
each i, with the additional restriction that u1 = 0 on at least one of the sets
Σi and u2 = 0 on at least one of the sets Σj.

Equilibrium problem

For the equilibrium problem a transverse force is applied at Γ. However, for
the boundary value problem it is necessary to prescribe the traction on Γ.

Problem CTD 1

divT = 0 in Ω,

Tn · u = 0 on Σ,

Tn = t on Γ,

with the constitutive equation given by Equation (1.4.2).
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Free vibration

Problem CTD 2

∂2tu = divT in Ω,

Tn · u = 0 on Σ,

Tn = 0 on Γ,

with the constitutive equation given by Equation (1.4.2).

Remark

The condition Tn ·u = 0 represents a number of possibilities, e. g. u = 0 or
Tn = 0 or various different combinations. The different configurations are
given in Chapter 7.

2.4 A plate-beam system

Consider small transverse vibration of a thin rectangular plate supported by
identical beams at two opposing sides and rigidly supported at the remaining
sides. The beams are supported at their endpoints. Assume furthermore the
case of free vibration, i.e. q = 0. The displacement for the system is measured
with respect to the equilibrium state. (Due to gravity, the equilibrium state
is not the same as the undeformed state.) It is assumed that the plate
remains in contact with the beams and supporting structure at all times.
This mathematical model is considered in [V4].

The reference configuration for the plate is the rectangle Ω, where 0 ≤ x1 ≤ 1
and 0 ≤ x2 ≤ a. The plate is rigidly supported at x1 = 0 and x1 = 1. These
sections of the boundary of Ω are denoted by Σ0 and Σ1 respectively. The
plate is supported by beams at x2 = 0 and x2 = a and these sections are de-
noted by Γ0 and Γ1 respectively. Figure 1 depicts the reference configuration.
The shaded areas represent the beams.
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Figure 1: Reference configuration of the plate-beam system.

x2

x1
0 1

a

Ω

Γ1

Γ0

Σ0 Σ1

Notation

To avoid confusion, we adapt (if necessary) the symbols used for quantities
related to the beams by using the subscript “b”.

2.4.1 The Reissner-Mindlin-Timoshenko model

For the mathematical model we use the Reissner-Mindlin plate theory and
the Timoshenko beam theory. On the rectangle Ω, the equations of motion
(1.3.1) and (1.3.2) are satisfied and on Γ0 and Γ1, the two sets of equations of
motion are given by (1.2.1) and (1.2.2). In Equation (1.2.2), L represents a
moment density transmitted from the plate to the beam and P a force desity
transmitted from the plate to the beam.

Boundary conditions on Σ0 and Σ1

On these sections of the boundary, the conventional homogeneous boundary
conditions for a rigidly supported plate are used, i.e.

w = 0, ψ2 = 0 and Mn · n = 0, (2.4.1)

where n is the unit exterior normal (see [Rei, p 66]). The third condition
reduces to M11 = 0.

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLaabbuusscchhaaggnnee,,  AA    ((22000066))  



34 CHAPTER 2. MODEL PROBLEMS

Interface conditions on Γ0 and Γ1

On Γ0 and Γ1 the interaction between the plate and the beams is considered.
The interface conditions are given in [V4] for a general case. For this special
case they reduce to

wb(x1, t) = w(x1, 0, t) on Γ0 , wb(x1, t) = w(x1, a, t) on Γ1 , (2.4.2)

φb(x1, t) = −ψ1(x1, 0, t) on Γ0 , φb(x1, t) = −ψ1(x1, a, t) on Γ1 . (2.4.3)

The interface conditions for the force densities and moment densities on Γ0
and Γ1 are given by

Q · n = −P, (2.4.4)

Mn · τ = L, (2.4.5)

Mn · n = 0, (2.4.6)

where τ is the unit tangent oriented in such a way that Ω is on the left hand
side of τ . For a detailed explanation of the moments Mn · n and Mn · τ ,
see [Rei, p 66].

Remarks

1. Note the difference in sign convention for measuring the angles ψ and
φb in the plate and beam models.

2. Care should be taken to also incorporate the difference between sign
conventions for moments in the plate and beam models. The beam
equations for Γ1 is derived for a beam oriented from left to right. When
applying the interface condition (2.4.5) on Γ1, the moment L has to be
replaced by −L.

Conditions at the endpoints of Γ0 and Γ1

At the endpoints of Γ0 and Γ1 we have the obvious boundary conditions for
the beams, namely

wb = 0 and Mb = 0. (2.4.7)

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLaabbuusscchhaaggnnee,,  AA    ((22000066))  



2.4. A PLATE-BEAM SYSTEM 35

Dimensionless form

The dimensionless form for the plate model has been derived in Section 1.3.3.
For the beam equations it has to be recalculated using the scaling of the plate
model and

τ =
t

t0
and ξ1 =

x1
`
.

Also set

w∗
b =

(
1

`

)
wb , φ∗b = φb ,

P ∗ =

(
1

`Gκ2

)
P, V ∗ =

(
1

`2Gκ2

)
V,

M∗
b =

(
1

`3Gκ2

)
Mb and L∗ =

(
1

`2Gκ2

)
L.

Note that the parameters of the plate are used for the scaling. Choosing

t0 = `

√
ρ

Gκ2
as in Section 1.3.3 and using the original notation for the cor-

responding dimensionless quantities, the dimensionless beam model is given
by

η1 ∂
2
twb = ∂1V + P, (2.4.8)

η1 ∂
2
t φb = αb (∂1Mb + V + L), (2.4.9)

V = η2 (∂1wb − φb), (2.4.10)

βbMb = η2 ∂1φb. (2.4.11)

The dimensionless constants αb and βb are as in Section 1.2.4, i.e.

αb =
Ab`

2

Ib
, βb =

AbGbκ
2
b`
2

EbIb
.

The two additional dimensionless constants η1 and η2 express ratios for the
material properties and the geometrical properties of the plate and the beams:

η1 =

(
ρb
ρ

)(
Ab

`2

)
and η2 =

(
Gb

G

)(
κ2b
κ2

)(
Ab

`2

)
.

The interface conditions remain unchanged.

The mathematical model

The vibration problem for the plate-beam system is given by the following
equations.
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Problem RMT

Equations of motion for the plate: (1.3.5) and (1.3.6) on Ω.

Constitutive equations for the plate: (1.3.7) and (1.3.8) on Ω.

Equations of motion for the beams: (2.4.8) and (2.4.9) on Γ0 and Γ1 .

Constitutive equations for the beams: (2.4.10) and (2.4.11) on Γ0 and Γ1 .

Interface conditions: (2.4.2) to (2.4.6) on Γ0 and Γ1 .

Boundary conditions: (2.4.1) on Σ0 and Σ1 .

Endpoint conditions: (2.4.7) at the endpoints of Γ0 and Γ1 .

2.4.2 Other models

A simplified model is obtained if the Kirchhoff plate model (with rotary
inertia) and the Rayleigh beam model is used. Formally, this model problem
can be derived from Problem RMT. We consider the model problems referred
to for the purpose of comparison. It should be noted that the scaling for the
dimensionless form differs from the scaling used in [ZVGV3] and [Ziet].

In this case the vibration problem for the plate-beam system is given by the
following equations.

Problem KR

Equations of motion for the plate: (1.3.9) and (1.3.10) on Ω.

Constitutive equation for the plate: (1.3.11) on Ω.

Equations of motion for the beams:

η1∂
2
twb = ∂1V + P on Γ0 and Γ1 ,

η1∂
2
t ∂xwb = αb(∂1Mb + V + L) on Γ0 and Γ1 .

Constitutive equation for the beams:

βbMb = η2∂
2
1wb on Γ0 and Γ1 .
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Interface conditions: (2.4.2) to (2.4.6) on Γ0 and Γ1 .

Boundary conditions: (2.4.1) on Σ0 and Σ1 .

Endpoint conditions: (2.4.7) at the endpoints of Γ0 and Γ1 .

Problem KEB

An even simpler model is obtained if rotary inertia is ignored in the plate
and the beams.
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