CHAPTER 4: MODEL PREDICTIVE CONTROL.

4.1. INTRODUCTION.

Model Predictive Control (MPC) possesses many attributes which makes it a successful

approach to industrial control design:

- Simplicity: The basic ideas of MPC do not require complex mathematics and are
‘Intuitive’.

- Richness: All of the basic MPC components can be tailored to the details of the
problem in hand.

- Practicality: It is often the resolution of problems such as satisfying control- or output
constraints, which determines the utility of a controller.

- Demonstrability: It works, as shown by many real applications in industry where MPC

is routinely and profitably employed [20].

At present MPC is the most widely used multivariable control algorithm in the chemical
process industry and in other areas [21]. While MPC is suitable for almost any kind of
problem, it displays its main strength when applied to problems with:

- A large number of manipulated and controlled variables.

Constraints imposed on both the manipulated and controlled variables.

Changing control objectives and/or equipment (sensor/actuator) failure.

Time delays.

The furnace model used for simulation purposes [13] consists of 17 states and 7 inputs
(manipulated variables (MVs) and disturbances). Constraints exist on the controlled
variables (CVs) of the EAF due to physical constraints and control objectives, and the
MVs have limited ranges. MPC will therefore be used as the automatic control strategy to

be compared to manual control as is currently used.

The remainder of this chapter will provide the theoretical background on MPC controller

design and implementation.
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4.2. BACKGROUND.

A conceptual diagram illustrating the principles of an MPC controller is shown in
Figure 4.1 [20]. The heart of the controller is a model M(6), parameterised by a set 0,
which is used to predict the future behaviour of the plant. The prediction has two main
components: The free response (f;), being the expected behaviour of the output assuming
zero future control actions, and the forced response (f;), being the additional component of
the output response due to the ‘candidate’ set of future controls (u). For a linear system,

the total prediction can be calculated as f, + f..

The reference sequence (r) is the target values the output should attain. The future system
errors can then be calculated as e = r — (f, + f), where f,, f; and r are vectors of the

appropriate dimensions.

An optimiser, having a user defined objective function J(e,u), is used to calculate the best
set of future control actions by minimising the objective function, J(e,u). The optimisation

1s subject to constraints on the MVs and CVs.
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Figure 4.1. Basic Structure of MPC.

Electrical and Electronic Engineering 38



Chapter 4 Model Predictive Control

What makes MPC a closed loop control law is the use of the receding horizon approach.
This implies that only the first of the set of control actions, u, is transmitted to the plant,
after which the complete optimisation and prediction procedure is repeated, using the

current plant output.

Another principle employed by MPC, is the use of horizons. The prediction horizon, P,
specifies the number of future plant outputs to be calculated, using the model, M, the past
control actions and the computed future control actions. The control horizon, C, specifies
the number of future control actions to be calculated, in order to minimise the objective
function, J(e,u), subject to the plant constraints. The future controls, u, will thus be a
vector of dimension n x C, for n the number of manipulated variables. Only the first
control actions (n x 1) will however be implemented, after which a new control sequence

will be calculated.

The vectors f;, f,, and e will be vectors of dimension m x P, for m the number of plant
outputs. The reference trajectory, r, has the dimension m x t, for t the total time for which
the controller is implemented. For the calculation of e, a portion of r with dimension m x P

is used to allow matrix manipulation.

The objective function, J(e,u), uses a quadratic cost function, as shown In

Equation 4.1 [20], subject to the constraints specified in Equations 4.2 — 4.4.

P C
J = w,(r(t+ )= 3+ j|0) + D A Mu(t+ j-1)° (4.1)
j=N1 =l
= : 4.2
ymin = y(t F -] | f) = ymax ( )
u_ . <u(t+j-1)<u,_, (4.3)
Au, <Au(t+j-1)<Au,, (4.4)
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In Equation 4.1, § generally represents the future predictions of the system outputs, and
r — ¥ thus represents the predicted future errors, €& Au represents a differential control
action. A differential value for u is preferred to an absolute value, as high frequency
changes in u (Au) tend to wear out actuators and might potentially cause instability.
Constant high actuator values (u) however have no disadvantages to the actuators or
stability, although it might influence plant operational cost (e.g. high feed rates) that need

to be accounted for elsewhere.

y; and A; represents weights applied to the MVs and CVs. Weights applied to the outputs,
1, are used mainly to assign different priorities to different CVs. This is useful in ensuring
that a CV that is much more critical than another enjoys the appropriate priority. For CVs
with large differences in ranges, appropriate weights will ensure that relatively large
deviations from variables with small nominal values enjoy a larger priority than relatively

small deviations from variables with large nominal values.

Weights applied to variations in the MVs, A, are used mainly for move suppression to
prevent oscillatory behaviour. Increasing A; will prevent oscillation of the MVs, but large
values of A; tend to slow down response times. Increasing A; thus trades system error

minimisation against control signal variance [22].

In Equation 4.1, the differential manipulated variables are summed from 1 to C, the control
horizon. The controlled variables are summed from N1 to P, the prediction horizon. For
systems with dead time or inverse responses, the value of N1 is usually chosen large
enough to prevent the inverse response, or unaffected response due to dead time, from
being included in the cost function [22]. In the absence of dead time or inverse responses

N1 =1.
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4.3. DESIGN STRATEGY.

The main tuning parameters are the control and prediction horizons (C and P) and the
weights applied to the manipulated and controlled variables (i and ). Their functions will

be discussed in turn.

The prediction horizon determines the number of predictions that are used in the
optimisation calculations. Increasing the prediction horizon results in more conservative
control action that has a stabilising effect, but it also increases the computational
effort [23]. The predictions are furthermore just as good as the model used. A very large
prediction horizon would thus be recommended only for a very good model and if

feedback is limited.

The control horizon determines the number of future control actions that are calculated in
the optimisation step to minimise the predicted errors. A large value for the control
horizon, C, relative to the prediction horizon, P, tends to yield excessive control actions. A
smaller value for C leads to a robust controller that is relatively insensitive to model

errors [23]. Computational effort is also reduced by decreasing C.

A number of choices for the horizons have been suggested for the particular EAF model,
all using a controller with a sampling interval of 1 s. Bekker [13] suggested using C = 2
and P = 6. This choice was based on defined criteria that had to be met and a trade-off
between minimising computational effort and system error. Viljoen [10] continued on
Bekker’s research and controlled a different set of variables using additional manipulated
variables. The control horizon was selected as C = 2 and the integral square error (ISE)
between the setpoints and simulated plant outputs were determined for P between 5 and 8.
It was found that P = 6 yielded the lowest ISE, as was also suggested by Bekker [13].
Oosthuizen [24] used a normalised ISE as criteria to determine the most suitable choices of
C and P. A choice of C = 3 and P = 8 minimised the normalised ISE and was used

effectively in simulations.
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The choices of the three authors mentioned, all suggest that C should be relatively small
compared to P (approximately 3 times smaller). Oosthuizen [24] also showed that no
improvement is obtained by increasing P beyond 8, and that performance actually degrades
due to modelling inaccuracies. Soeterboek suggested the following choices for N;, C and
P, for a system with dead time, d, a system order of na, a 5% settling time of t;, a
bandwidth of ®}, and a sampling time, T = 27/ [25]:

-Ny=d+1

= C:HA

P = integer (ty/T;) for a well-damped system.

P = integer (20s/my) for a badly-damped system.

The computational effort is however not considered by Soeterboek, and might be an
important consideration in the determination of C and P. The suggestions of
Soeterboek [25] as well as the techniques described in [10, 13, 24] will be used to

determine the most suitable horizons.

The other tuning parameters are the weights applied to the controlled and manipulated
variables (p and A). A typical initial choice is p = L, the identity matrix of appropriate
dimension and A = fI, for f a tuning parameter, typically chosen as small as possible [25].
Variations in all the manipulated variables are penalised proportional to f. Increasing f
thus causes less vigorous control [23]. The disadvantage of this approach is that all the
manipulated variables and deviations of the controlled variables from the setpoints are
penalised in equal proportions. This selection of p and A as discussed above would thus
only be useful if the priorities of the controlled variables and the ranges of the manipulated
variables are equal. Bekker [13] performed some trial and error tuning on p and A until the
desired response was obtained. Qosthuizen [24] selected initial weights based on the
ranges of the manipulated variables and the maximum errors of the controlled variables.
Viljoen [10] introduced dynamic weighting that changes as the variable changes. In all
three cases a lot of trial and error tuning had to be performed to get the required system
response. None of these simulation studies [10, 13, 24] however took economic

considerations (which complicates the weighting process further) into account.
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Becerra et al. [26] presented three structures typically used to optimise plant performance

economically, as illustrated in Figure 4.2.

Scheme A Scheme B Scheme C
Steady state Multi-objective MPC with
optimiser MPC setpoint
‘ A . Cost oncost |
| ¥ | function .

T ‘ Plant A
LTPC | Plant |

| A
Plant | Plant

Figure 4.2. Implementation of MPC with economic objectives.

The scheme most commonly employed is Scheme A, where an upper level steady state
optimiser provides setpoints for controlled variables and/or targets for manipulated
variables to be used in the MPC algorithm. Scheme A has the disadvantage that plant
operation is optimised only at steady state values, and no dynamic optimisation is possible.
Schemes B and C addresses this problem to a certain extent, but have the disadvantage that

some trade-offs need to be made between the functional and economic objectives.

This disadvantage can be avoided by implementing an MPC controller with only economic
objectives. Instead of combining functional and economic objectives as suggested by
Scheme B, the cost contributions of the MVs and CVs as discussed in Chapter 3 can be
used to translate all functional objectives into economic objectives, prior to controller
design. Minimisation of the MPC objective function would thus minimise plant operating

cost, subject to the accuracy of the economic model.

The design and implementation of an economically and functionally efficient controller
will be discussed in Chapter 5, using the structure of Scheme B and utilising the suggested

tuning parameters as discussed in this chapter.
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4.4. CONCLUSION.

MPC provides all the functionality needed to optimise the operation of a multivariable
process such as the EAF used for the simulation study. MPC’s capability to handle
constraints makes it a very attractive option to control industrial processes. The weights
that are applied to controlled variables makes it possible to assign priorities, not only based
on physical considerations, but also based on financial considerations. MPC is thus not
only useful in optimising plant operation functionally, but also provides the functionality to

optimise processes economically.
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