Complexes of thiophene derivatives as potential metallomesogens

by

Mary Solly Thomas

A thesis submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Chemistry

in the Faculty of Natural & Agricultural Science

University of Pretoria

Pretoria

April 2006

Supervisor: Prof. Simon Lotz

Co-Supervisor: Dr. Marilé Landman

Declaration

I declare that the thesis that I submit for the degree of Doctor of Philosophy in Chemistry at the University of Pretoria has not previously been submitted by me for degree purposes at any other university, and all the sources that were used or quoted have been indicated and acknowledged.

Signature.....

Date.....

Mary Solly Thomas

Contributions of the following collaborators and institutes are acknowledged:

(i) Mr David Liles for data collection, structure determination and discussions regarding the single crystal X-ray diffraction studies

(ii) The Department of Chemistry, Katholieke Universiteit Leuven, Belgium for Polarizing Optical Microscopy (POM) measurements and much needed discussions(iii) Dr Liezel van der Merwe, University of South Africa (UNISA) for DSC and

TGA measurements

(iv) Dr Tommie van der Merwe, University of the Witwatersrand for recording the mass spectra

Summary

Complexes of thiophene derivatives as potential metallomesogens

Candidate:	Mary Solly Thomas
Supervisor:	Prof Simon Lotz
Co-Supervisor:	Dr. Marilé Landman
Department:	Chemistry
Degree:	Doctor of Philosophy

This study involves the synthesis and structural characterization of new metal complexes of thiophene derivatives that have (potential) liquid crystalline properties. Thiophene has been selected because of its stability and versatility in lending itself to synthetic modification and hence forms links in chain structures for rod-like metallomesogens. Thiophene, when compared with 1,4-disubstituted benzene units, can change considerably the polarity, polarizability and also the geometry of the compounds, altering the types of mesophases, phase transition temperatures, dielectric constants and other properties of mesogens.

The reactions of a series of 5-alkyl-2-thiophenedithiocarboxylates with nickel(II) chloride formed two types of complexes, blue mononuclear nickel(II) complexes with two terminal dithiocarboxylate ligands, $[Ni(S_2CTR)_2]$ (T = 2,5-disubstituted thiophene) and violet mononuclear nickel(II) complexes with perthio- and dithiocarboxylate ligands, $[Ni(S_3CTR)(S_2CTR)]$ (R = alkyl groups). The blue monomers are preferred for the shorter alkyl chains (C₄ and C₆), and the violet compounds for the longer chain lengths (C₈, C₁₂ and C₁₆) in the alkylthiophene complexes. In addition to the above series, $[Ni(S_2CTCH_3)_2]$, was prepared in a one-pot reaction and it was possible to isolate both the blue and violet products. The

thermal properties of the complexes were studied by using differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). Nickel complexes of the violet type with longer alkyl chains showed liquid crystalline properties.

Zinc(II) complexes analogous to nickel(II) complexes prepared similarly. A crystal structure determination of one of those complexes revealed the fusion of two monomers to give a dimeric structure with bridging sulfur atoms, $[Zn_2(\mu - S_2CTR)_2(S_2CTR)_2]$. Although an irregular melting pattern was observed, the complexes did not show any liquid crystalline properties.

In an attempt to extend the study towards organometallic compounds, complexes of the type $[Re(CO)_4(S_2CTR)]$ or $[Re(CO)_4(S_2CTTR)]$ (T = 2,5-disubstituted thiophene, TT = 2,5-disubstituted bithiophene; R = H, CH₃, C₁₄H₂₉) were synthesized and characterized by IR and NMR spectroscopy. Further characterization of $[Re(CO)_4(S_2CTTH)]$ by single crystal X-ray diffraction confirmed the molecular structure of the complexes. These compounds showed sharp single melting points.

Fischer-type carbene complexes of manganese(I) with octahedral coordination of the type [MnMeCp(CO)₂{C(OEtTR)}] or [MnMeCp(CO)₂{C(OEtTTR)}] (R = H, C₆H₁₃, C₁₂H₂₅, C₁₆H₃₃) were synthesized and characterized by IR, NMR and mass spectrometry. Thermal properties of the complexes were studied by using thermogravimetric analysis (TGA). All the organometallic rhenium(I) and Fischer-type carbene complexes of manganese(I) showed weight loss upon heating due to decomposition. Therefore it can be assumed that these complexes are not suitable as liquid crystals.

Acknowledgements

I would like to express my sincere gratitude and appreciation to:

Professor Simon Lotz, my supervisor and Dr. Marilé Landman, co-supervisor for suggesting the problem and for their continuous guidance and support throughout the study.

Professor Koen Binnemans, Katholieke Universiteit Leuven, Belgium, for the opportunity to visit his lab, and for the measurements of the samples by polarizing optical microscope.

Katleen Lodewyckx and Rik Van Deun, Katholieke Universiteit Leuven, Belgium for providing me with the much needed insight into liquid crystals.

My colleagues at the Chemistry Department and at the Foundation Year program

(UNIFY) of the University of Limpopo for their support and encouragement.

My fellow student, Andrew Olivier for support and encouragement.

NRF, National research foundation for financial assistance to attend conferences.

Finally my husband Solly and children for continuous support and encouragement, especially Cynthia, my youngest daughter for helping mummy with some of the drawings and other computer applications.

Table of contents

Title page	i
Declaration	ii
Summary	iii
Acknowledgements	V
Table of contents	vi
List of Complexes	viii
List of Abbreviations	xii
List of Figures	xiv
List of Tables	xvii

Chapter 1

1
1
2
6
12
16
20
21
22
25

Chapter 2

Nickel(II) complexes with thiophene-containing ligands	31
2.1 Introduction	31
2.2 Results and discussion	35

2.3 Experimental section	65
2.4 Conclusion	69
References	71

Chapter 3

Zinc(II) complexes with thiophene-containing ligands	75
3.1 Introduction	75
3.2 Results and discussion	79
3.3 Experimental section	92
3.4 Conclusion	96
References	98

Chapter 4

Rhenium(I) complexes with thiophene-containing ligands	101
4.1 Introduction	101
4.2 Results and discussion	104
4.3 Experimental section	112
4.4 Conclusion	115
References	116

Chapter 5

Carbene complexes of Manganese(I) with thiophene-containing ligands	118
5.1 Introduction	118
5.2 Results and discussion	121
5.3 Experimental Section	131
5.4 Conclusion	132
References	133
Appendix 1	136
Appendix 2	144

List of Complexes

14b

15a

15b

16a

17b

18a

18b

List of Abbreviations

В	Benzene
Bu	butyl
CRT	cathode-ray tube
CAD	computer-aided drawing
Cr	crystal
Ср	cyclopentadienyl
DSC	differential scanning calorimetry
d	doublet
Et	ethyl
FAB	fast atom bombardment
Ι	isotropic liquid
IR	infrared spectroscopy
VS	very strong
S	strong
m	medium
W	weak
LCD	liquid crystal display
LMM	low molar mass
MS	mass spectrometry
Me	methyl
m	multiplet
Ν	nematic mesophase
N _D	discotic nematic mesophase
NMR	nuclear magnetic resonance
NLO	non-linear optical
n	director
POM	polarizing optical microscopy
ppm	parts per million

R	alkyl
RF	radio frequency
SmA	smectic A mesophase
SmC	smectic C mesophase
Т	thiophene
TT	bithiophene
TGA	thermogravimetric analysis
THF	tetrahydrofuran
TN	twisted nematic display
t	triplet
UV	ultraviolet
XRD	X-ray diffraction

List of Figures

1.1 Schematic melting behaviour of a liquid crystal	1
1.2 Example of a calamitic (rod-like) liquid crystal	3
1.3 Example of a discotic liquid crystal	3
1.4 Schematic representation of a nematic phase	4
1.5 Schematic representation of smectic A and smectic C phases	5
1.6 Discotic nematic and hexagonal columnar phases	6
1.7 Schematic representation of Polarising Optical Microscopy (POM)	7
1.8 Schlieren texture of a nematic phase	8
1.9 Texture of a smectic A phase	9
1.10 Texture of a discotic liquid crystal	9
1.11 DSC Thermogram of 4-nonyloxybenzoic acid	10
1.12 Molecules line up in (a) the grooved surface of the glass and	
(b) shows liquid crystal molecules in a twisted structural arrangement	13
1.13 Principle of twisted nematic Liquid crystal displays (LCDs)	14
1.14 Metal containing liquid crystals based on imidazolium salts	18
1.15 Tetracatenar mesogens	19
1.16 Structural properties of thiophene vs phenylene units	20
1.17 Target complexes with thiophene-containing ligands	23
2.1 ¹ H NMR spectrum in the thiophene region of $1 (1a \& 1b)$	38
2.2 Proposed structure of the blue compound, 1a , with atom numbering	39
2.3 Intermolecular interactions between the nickel and sulfur atoms in	
the solid state of the mononuclear nickel(II) complexes	40
2.4 Structure of dimeric nickel(II) complexes with bridging	
R-CS ₂ ligands	40
2.5 Mixture of geometrical isomers resulting from restricted rotation	42
2.6 Complex with thioether-thiol and thioketone-thiol ligands	43

2.7 Proposed structure of the violet compound 1b , with bridging	
CS ₂ -ligands	44
2.8 Proposed structure of the violet compound 1b , with bridging	
S-ligands	46
2.9 Proposed structure of 1b with mixed dithiocarboxylate and	
perthiocarboxylate ligands	49
2.10 Structures of nickel(II) dithiocarboxylate complexes	51
2.11 Mass spectrum of $[Ni(S_3CTC_8H_{17})(S_2CTC_8H_{17})]$ 3b	52
2.12 ¹ H NMR and ¹³ C NMR data (δ , ppm) for thiophene	53
2.13 Charge delocalization from the thiophene ring to the	
nickel(II) center	53
2.14 ¹ H NMR spectrum of $[Ni(S_3CTC_8H_{17})(S_2CTC_8H_{17})]$ 3b	55
2.15 ¹³ C NMR spectrum of $[Ni(S_3CTC_8H_{17})(S_2CTC_8H_{17})]$ 3b	56
2.16 UV spectra of 1a (blue) and 1b (violet)	57
2.17 DSC thermogram of $[Ni(S_3CTC_8H_{17})(S_2CTC_8H_{17})]$ 3b	61
2.18 Nematic phase of 3b at 105°C (200 x magnification)	62
2.19 The dependence of the transition temperatures of the complexes	
on the alkyl chain length	64
3.1 Tetrahedral $[Zn(S_2CPh)_2]$	75
3.2 Zinc complexes with porphyrin ligands	76
3.3 Zinc complexes with phthalocyanine and pyrazolyl ligands	77
3.4 Atomic numbering and structure of mononuclear 7	80
3.5 ¹ H NMR spectrum of $[Zn_2(\mu - S_2CTC_4H_9)_2(S_2CTC_4H_9)_2]$ 7	81
3.6 ¹³ C NMR spectrum of $[Zn_2(\mu-S_2CTC_4H_9)_2(S_2CTC_4H_9)_2]$ 7	82
3.7 An ORTEP + POV-Ray plot of the geometry of 8	85
3.8 A computer generated model of 8	86
3.9 View of molecule showing the distorted trigonal bipyramidal	86
3.10 Side-on view showing the step-rod assembly of atoms	86
3.11 Shows the packing of lamellar rods and calamitic features	88

3.12 DSC thermogram of 9	90
3.13 Dependence of the melting points of 7-11 on the chain length	91
4.1 Calamitic orthometalated liquid crystals	101
4.2 Orthometallated imine complexes of rhenium	102
4.3 Diazabutadiene and bipyridine complexes of rhenium	103
4.4 Luminescent rhenium(I) liquid crystals	103
4.5 ¹ H NMR spectrum of 13	106
4.6 Structure of complexes with atomic numbering scheme used	106
4.7 ¹³ C NMR spectrum of 14b	107
4.8 IR spectrum of 13	109
4.9 An ORTEP + POV-Ray plot of the geometry of 12	109
4.10 TGA spectrum of 12	111
5.1 Electron distribution and bonding in Fischer carbene complexes	119
5.2 Push-Pull Structure	120
5.3 Atomic numbering of 16a/b	122
5.4 ¹ H NMR spectrum of 17b	123
5.5 13 C NMR spectrum of 17b with an expanded view of the	
bithiophene region	124
5.6 ¹³ C NMR spectrum of 17b in the alkyl region	125
5.7 Mass spectrum of 18a	129
5.8 Important fragmentation of ions in mass spectra	130
5.9 TGA spectrum of 18a	131

List of Tables

1. Spectral data of 1-6 complexes	58
2.2. Transition temperatures of 1-5 complexes	63
2.3. The experimental data of 1-5 complexes	68
3.1. Spectral data of 7-11 complexes	83
3.2. Selected bond lengths of 8	88
3.3. Selected bond angles of 8	89
3.4. Melting points of 7-11 complexes	91
3.5. Experimental results of 7-11 complexes	96
4.1. Spectral data of 12-14 complexes	108
4.2. Selected bond lengths for 12	110
4.3. Selected bond angles for 12	111
4.4. Experimental results of 12-14 complexes	115
5.1. Spectral data for the thiophene complexes, 15a-18a	126
5.2. Spectral data for the bithiophene complexes, 15b-18b	127
5.3. Mass spectral data of 15a-18a and 15b-18b	129
5.4. Experimental results of 15a-18a and 15b-18b	132