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OPSOMMING

Dinamiese Oorblywende Lewe Skatting van Industri€le Toerusting
Gebaseer op Falingsintensiteit Verhoudings

Deur
Pieter-Jan Vlok

Promotor: Prof. S.J. Claasen
Philosophiae Doctor

Departement van Bedrvfs- en Sisteemingenieurswese
Fakulteit van Ingenieurswese, Bou-omgewing en Inligtingstegnologie

Universiteit van Pretoria

Daar is 'n wéreldwye strewe na optimering van instandhoudingsbesluitneming in n meer
mededingende vervaardigingsindustrie. Voorkomende instandhouding is dikwels die mees
georganiseerde en koste effektiewe strategie om te volg, maar 'n besluit moet steeds ge-
neem word oor die tydstip waarop die voorkomende instandhouding gedoen word. Gebruiks-
gebaseerde instandhoudingsbesluitneming is tot 'n groot mate geoptimeer deur statistiese
analise van falingsdata, terwyl voorspellende voorkomende instandhouding (toestandsmoni-
tering) geoptimeer word deur van meer gesofistikeerde tegnologie gebruik te maak. Baie min
werk is egter al gedoen om die voordele van hierdie twee denkwyses te kombineer. Hierdie
proefskrif het ontstaan na ‘n besef van die moontlike verbetering in instandhoudingspraktyvk
deur gebruiksgebaseerde instandhoudingsoptimeringstegnieke te kombineer met hoé tegnolo-

gie toestandsmonitering.

In hierdie proefskrif word 'n benadering ontwikkel waarmee oorblywende lewe van indus-
triéle toerusting dinamies geskat word deur statistiese falingsanalise en gesofistikeerde toes-
tandsmoniteringstegnieke te kombineer. Die benadering is gebaseer op falingsintensiteitver-
houdings wat bereken word uit historiese oorlewingstye en die dienooreenkomstige diagnos-
tiese inligting verkry uit toestandsmoniteringsresultate. Gekombineerde Proporsionele Inten-
siteitsmodelle (PIMe) vir nie-herstelbare en herstelbare stelsels, wat die meeste konvensionele
verbeterings op PIMe as spesiale gevalle bevat, asook numeriese metodes om die regressie ko-

effisiénte te bepaal, is ontwikkel.
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Saam met die oorblywende lewe skatting benadering, is 'n gebruikersvriendelike grafiese
metode waarmee oorblywende lewe skattings vertoon kan word, ontwikkel. Hierdie metode
is natuurlik selfs vir onervare data analiste maklik verstaanbaar. Die oorblywende lewe skat-
ting benadering is toegepas op 'n tipiese datastel verkry van 'n Suid-Afrikaanse industrie
en resultate is vergelyk met resultate verkry van 'n soortgelyke, bestaande instandhoud-
ingsbesluitnemingstegniek. Die vergelyking toon aan dat die benadering ontwikkel in hierdie
proefskrif relevant en prakties is en volgens sekere kriteria marginaal beter is as die genoemde

bestaande instandhoudingsbesluitnemingstegniek.

SLEUTELWOORDE: Qorblywende lewe, Proporsionele gevaar, Falingsintensiteit, Voorwaarde-
like gemiddelde
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SUMMARY

Dynamic Residual Life Estimation of Industrial Equipment based on
Failure Intensity Proportions

By
Pieter-Jan Vlok
Advisor: Prof. S.J. Claasen

Philosophiae Doctor

Department of Industrial and Systems Engineering
Faculty of Engineering, Built Environment and Information Technology

University of Pretoria

There is a world-wide drive to optimize maintenance decisions in an increasingly competitive
manufacturing industry. Preventive maintenance is often the most organized and cost efficient
strategy to follow, but a decision still has to be made on the optimal instant to perform
preventive maintenance. Use based preventive maintenance decisions have been optimized
through statistical analysis of failure data while predictive preventive maintenance (condition
monitoring) has been optimized by utilizing more sophisticated technology. Very little work
has however been done to combine the advantages of the two schools of thought. This
thesis originated from a realization of the potential improvement in maintenance practice by
combining use based preventive maintenance optimization techniques with high technology

condition monitoring.

In this thesis an approach is developed to estimate residual life of industrial equipment dy-
namically by combining statistical failure analysis and sophisticated condition monitoring
technology. The approach is based on failure intensity proportions determined from historic
survival time information and corresponding diagnostic information such as condition mon-
itoring. Combined Proportional Intensity Models (PIMs) for non-repairable and repairable
systems, containing the majority of conventional PIM enhancements as special cases, with

numerical optimization techniques to solve for the regression coefficients, are derived.

In addition to the residual life estimation approach, a user-friendly graphical method with

which residual life estimates can be presented was also developed. This method is natural
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and easy to comprehend, even by inexperienced data analysts.

The residual life estimation approach is applied to a typical data set from a South African
industry and results are compared to those obtained from a similar, established maintenance
decision support tool. This comparison showed that the approach developed in this thesis
is relevant, practical and marginally better than the established decision support tool for

certain criteria.

KEYWORDS: Residual life, Proportional hazards, Failure intensity, Conditional expectation
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CHAPTER 1

PROBLEM STATEMENT

1.1 Introduction

Maintenance engineering is one of the fasted growing engineering disciplines in the world.
Industry has only started to realize the importance of maintenance in the early 1980°s and,
ever since, there was no turning back the rapid development in the theory of maintenance.
This theory is also more readily accepted by maintenance practitioners in industry as the
mindset with regards to maintenance changes and greater successes are achieved by formal

maintenance Prograuns.

As is the case with most engineering disciplines, there is a drive in the field of maintenance
engineering to optimize methodologies and practices. The maintenance fraternity has real-
ized that the use of formalized maintenance models and tactics alone are not necessarily the
optimal way to maintain equipment. One aspect of formal maintenance that needs optimiza-
tion is decision making in life-limiting maintenance strategies, i.e. preventive maintenance,

hecause of enormous losses industries are suffering due to a waste of residual life of equipment.

Preventive maintenance practitioners* have mostly reasoned along one of two schools of think-
ing. The first is to take action (replacement, repair or overhaul) based purely on an item’s
age as measured in time, miles, tons processed or any other convenient process parameter.
The second is to assess the condition of an item through diagnostic measurements, which
may include vibration monitoring, results of oil analysis, thermographic profiles, pressure,
temperature, ete. This second viewpoint is referred to as predictive maintenance. Coetzee

(1997) compiled a maintenance strategy tree that serves as a concise summary of possible

*Preventive maintenance, contrary to popular believe, is not necessarily the optimal maintenance strategy
{0 apply. Any strategy’s technical and economical feasibility should be determined before it is implemented.
A methodology such as Reliability Centered Maintenance (RCM) or Total Productive Maintenance (TPM)

should lead maintenance practitioners to the correct strategy.

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING 1
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maintenance strategies. See Figure 1.1,

Mumtenance
Stralegies

v r v

Design-out Preventive Corrective
Mantenance Muintenance Maintenance
" .
’ Use Based Predictive
Mamtenance Mamtenance
Scheduled | Scheduled Routine Opportumstic Condition
. e S Inspections
Overhaul | Replacement Services Maintenance Monitoring
v ¥ v
Component Block I Vibration il ,
. 3 I'hermography
Replacement Replacement | Monitoring Analysis o !

Figure 1.1: Maintenance Strategy Tree

Preventive maintenance is performed for one reason only: to prevent unexpected failure,
which is in most cases cousiderably more expensive than planned preventive action. Unex-
pected failures often involve costly secondary damage to equipment, production losses, late
delivery penalties, overtime labor costs and even loss of life. Preventive action is usually
inexpensive relative to corrective action because of the planned nature of this type of action

that eliminates many of the unwanted cost factors associated with unexpected failure.

[nn the case of use based maintenance. action is taken (by definition) only when an item has
reached a certain age ". The time at which action is taken should be chosen in such a way that
acceptably little residual life is wasted in the process but also such that the risk of unexpected
failure does not rise unacceptably high. Optimization of use based maintenance thus involves

a tradeoff between the waste of residual life and the risk of suffering an unexpected failure.

Predictive maintenance technologies, on the contrary, strive through continual * assessment of
an item’s condition to warn those concerned of an imminent failure shortly before occurrence
of failure. With advanced technology available at present, this seems to be a much more
elegant approach than use based action. Closer investigation reveals that this is not neces-

sarily true because, even with the advanced technology. there are still numerous unknowns

"Time will be used consistently to refer to an item’s age but it should be emphasized that any convenient

process parameter may be used

"The word continual may be replaced by continuous in some cases

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING 2
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that cannot be eliminated and a tradeoff has to be made again. In this case the tradeoff is
between the accuracy of the technology utilized to perform the condition assessment and the

risk of running info an unexpected failure.

Both use based maintenance and predictive maintenance procedures have been optimized
individually but very little work has been done to combine the advantages of the two schools
of thought to produce an optimal solution. In this thesis, an methodology will be developed
to merge the advantages of the two approaches into one approach that can be used as an

authoritative decision making tool.

1.2 Conventional use based maintenance optimization

Lawrence (1999) studied mathematical use based optimization techniques in maintenance

and concluded that most models address one of three questions,

(i) How often should a component be replaced?
(i) How many spare parts should be kept in stock?

(ii1) How should maintenance tasks be scheduled?

This section (and thesis) addresses point (i).

Many authors agree that the only scientific way to optimize use based maintenance strate-
gies is through statistical analysis of event data. In this section, conventional optimization
techniques are discussed, i.e. optimization through statistical models without covariates ¥ or
discontinuities. This field is poorly understood by maintenance practitioners, mainly because
of the confusing terminology found in the literature. It is thus very important to define clear
notation before any further discussion on optimization of used based maintenance through

statistical modeling.

1.2.1 Terminology

The terminology of Ascher and Feingold (1984) will be used in this thesis. Ascher and
Feingold’s book was specifically written with the objective to clear some of the confusion
in the field of statistical failure analysis. First of all it is important to distingnish between

different types of items:

i 5 5
‘Covariates are often also referred to as explanatory variables.

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING 3
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After

Part. An item that is never disassembled and is discarded after first failure Y.

Socket. A space that, at any given time, holds a part of a given type.

System. A collection of two or more sockets with their associated parts that is inter-
connected to perform a specific function(s).

Non-repairable system. A system that is discarded the first time it ceases to perform
satisfactory, i.e. after first failure.

Repawrable system. A system that, after failure, can be restored to perform all of its

function by any method other than complete replacement of the system.

a system is repaired it could be in one of the following states:

As good as new (GAN).

As bad as old (BAO).

Better than old but worse than new (BOWN).
Worse than old (WO).

The GAN and BAO assumptions are by definition the backbone of conventional statistical

failure data analysis. Models with covariates or discontinuities are required to model BOWN

or WO situations.

It is also very important to define appropriate time scales to measure life times of itemns. See

Figure 1.2 for an example sample path of a failure process.

i Y e %

-— -

= X - X, ale X >
0 & @&

s ;

i - T,

i - .

| T,

boee -

]

H t

:q\ —

Figure 1.2: Example sample path of a failure process (Dots denote failures)

In Figure 1.2, X;, i = 1,2, 3..., refers to the interarrival time between the (i —1)* failure and

i*h failure. X; is a random variable (RV) with X = 0. This is referred to as local time and is

YAn item has lailed when it no longer performs according to certain preset standards. This does not

necessarily imply complete destruction.
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convenient to use when analyzing non-repairable systems. The real variable x; measures the
time elapsed since the most recent failure. 7}, i = 1.2. 3. ..., measures time from 0 to the i*®
failure time. 7} is also called the arrival time to the i*" failure and is mostly used to analyze

repairable systems. This time scale is referred to as global time.

Clearly, T} = X1 4 Xo+ ...+ Xj. From this, a RV N(t) can be defined as the maximum value
of k for which T}, < ¢, i.e. N(t) is the number of failures that occur during (0. t]l. N(t),t > 0is
the integer valued counting process that includes information on both the number of failures

in (0,t], N(t), and the instants of occurrence, 171,75, ....

Another important concept used in survival data modeling is that of the backward recurrence
time, B(t). It is defined as the time from the arbitrary time ¢ to the immediately preceding
failure, i.e. B(t) = t — Ty(. Similarly, is the forward recurrence time. W(t), defined as
W(t) = Ty — t-

1.2.2 Selecting an appropriate model type

The process of selecting the correct model type for a particular data set is totally ignored
in many applications of statistical failure analysis theory. Ascher and Feingold (1984) have

constructed an outline of this process based on fundamental statistics. See Figure 1.3.

Some comments will be made on Figure 1.3:

(i) Chronologically ordered X;'s. It is extremely important to keep data in chronological
order when starting with the process of deciding on the model type. Very often. failure
data is reordered by magnitude which makes the process appear to follow, for example,
an exponential distribution according to Ascher and Hansen (1998).

(i) Trend testing. A munber of techniques exist to recognize trends in data. Graphical
techniques include (a) plotting cumulative failure times versus cumulative time on linear
paper (Nelson (1982)); (b) estimating the average rate of occurrence of failure (ROCOF,
see Section A.3) in successive time periods; and (¢) Duane plots as introduced by Duane

(1964).

Mathematical tests generally suitable to identify trends in data include De Laplace
(1773) (commonly referred to as Laplace’s test), Bartholomew (1955), Cox (1955),
Bartholomew (1956a). Bartholomew (1956b), Bates (1955), Boswell (1966), Cox and
Lewis (1966), Boswell and Brunk (1969), Lorden and Eisenberger (1973) and Saw
(1975). More recent examples are Bain, Engelhardt, and Wright (1985). Lawless and
Thiagarajah (1996), Martz and Kvam (1996) and Vaurio (1999). Laplace’s test is re-
garded as the most reliable test and is used most often because it produces useful results

even for small samples and its result is easily interpreted. Laplace’s test is discussed in

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING
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Chronologically ‘
ordered X's

: Yes ;
(’1[‘61‘[(1? > Non-stationary models

No

X/'s identically distributed but not
necessarily dependent

|
i Yes Branching Poisson
Dependence??
/, Process
No

\ =
Renewal Process ‘| ——»  Special case; HPP
S —
Distributions

Figure 1.3: Statistical failure analysis of successive interarrival times of a system. (Adapted
from Ascher and Feingold (1984)).

(i)

Section A.l.

Non-stationary models. Non-stationary models should be used to model data with a
definite trend. The Non-homogeneous Poisson Process (NHPP) is used extensively for
this purpose. Countless examples of the application of the NHPP are found in the
literature, including Kumar and Westberg (1996b), Vineyard, Amoako-Gyampah, and
Meredith (1999), Rhodes, Halloran, and Longini (1996), Percy, Kobbacy, and Ascher
(1998). Newby (1993) and Lawless (1987). The NHPP is defined and described in
Section A.3.3. Although the NHPP is used most often to model repairable systems’
failure behaviour, there are also some other fundamentally different non-stationary
models suitable for this application. See for example Cozzolino (1968), Singpurwalla
(1978) and McWilliams (1979). These approaches were never very popular and are

seldom cited in the literature.
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(iv)

(vi)

(vii)

(viii)

Differential equations are also suitable to model non-stationary point processes in spe-
cial cases. Schafer, Sallee, and Torrez (1975) have summarized a few differential equa-
tion models for repairable systems. Another approach occasionally used to model re-
pairable systems’ failure behaviour is time series models such as the Auto Regressive
(AR) model (see Chatfield (1980)) and the Box-Jenkins Auto Regressive Integrated
Moving Average (ARIMA) model (see Wals and Bendell (1987)). The Box-Jenkins
model has been used on a few occasions to model software reliability. See for example
Burtschy, Albeanu, Boros, Popentiu, and Nicola (1997) and Chatterjee, Misra, and
Alam (1997).

Testing for dependence. Although testing for dependence of interarrival times are of
extreme importance in reliability modeling, it is almost always ignored. Two reasons
for this are (1) the need for large sample sizes; and (2) the complexity of interpreting
dependency tests. Cox and Lewis (1966) propose a very natural technique to test for
dependency by simply calculating the sample correlation coefficient of lag j, i.e. ¢;.
Thus, the correlation between X; and X;i; is calculated for ¢ = 1,2,....,m — j and
1 < i+ 7 < m where m is the total number of observed events.

Branching Poisson Process (BPP). The BPP is described in Section A.3.4. “The BPP
potentially has wide applicability to reliability problems™ according to Ascher and Fein-
gold (1984). However, no practical application of the BPP was found in the literature.
This could be because of large data set requirements and that the reliability fraternity
still has not accepted and understood a model like the NHPP.

Renewal Process. A renewal process describes an item that, after a failure, is simply
replaced by a new item with the same characteristics, so that the life distribution of the
item is enough to deduce all the properties of the item. Although it is very important
to recognize renewal situations, it is seldom realistic for true life gystems. Parts or
non-repairable systems do, however, sometimes behave according to renewal processes.
Some notes on renewal theory are presented in Section A.2.1.

Homogeneous Poisson Process (HPP). The details regarding the HPP are discussed in
Section A.3.2. It is given as a special case of a renewal process in Figure 1.3 because
it is numerically equivalent to the FOM of a renewal processes being represented by
an exponential distribution. Other than this property, there is no relationship between
the HPP and a renewal process.

Distributions. Distributions typically used to model renewal processes are presented as

part of the discussion on renewal theory in Section A.2.2.

The outline in Figure 1.3 can be seen as a road map to the correct model-type and should

always be used in failure data analysis. Guidelines for the appropriate selection of regression

models are presented in by Kumar and Westberg (1996b) and are considered in Chapter 2,

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING

=1

UNIVERSITY OF PRETORIA



University of Pretoria etd — Vlok, P-J (2006)

CHAPTER 1: PROBLEM STATEMENT

1.2.3 Statistical models in conventional failure time data analysis

In conventional failure time data analysis it is either assumed that an item is totally renewed
after maintenance (GAN), i.e. perfect maintenance was done I or that the item is in the same
condition after maintenance as it was shortly before failure (BAO), i.e. minimal repair was
done. The GAN property is modeled by zeroing an item’s Force of Mortality (FOM) after
renewal while the BAO assumption is represented by equating an item’s intensity shortly

before and shortly after failure. These concepts are introduced in the sections to follow.

1.2.3.1 Renewal models

Suppose the interarrival times of a system follow a distribution fx (z) with cumulative distri-
bution Fy (). Fx(x) is referred to as the unreliability function since it gives the probability
of failure up to a certain age x, i.e. Fx(x) = Pr[X < x|. Similarly, the reliability function,
Rx(z), is defined as Ry(z) = Pr[X > z] or Rx(x) = 1 — Fx(z), lLe. the probability of
survival up to age x. From this it is possible to define the force of mortality (FOM) or hazard
rate of an item that gives the probability of failure within a short time, provided that the

item survived up to that time, i.e. hx(z) = Prlz < X < r+dz|X > z|. The FOM can also

be expressed as,

Ix(x)
1 — Fyl(x)

hx(x)= (1.1)

The FOM is further known as the full intensity or conditional intensity of the failure process
of a non-repairable system. These concepts are defined in detail in Section 2.2. The FOM is
often erroneously described as a conditional probability density function. The FOM is clearly

not a conditional PDF because,
Ry (z) = e o hx(r)dr (1.2)

and since Ry (oc) = 0 it implies that,

lim / hx(r)dr = o (1.3)

F—20 J0

For an increasing FOM, an item has an increasing probability to fail as time progresses and
nse based preventive renewal will be a definite option to consider, although cost will be the
decisive factor. Preventive renewal will usually only be used if the total cost of a failure
is considerably higher than the total cost of preventive actions. If equation (1.1) yields a
constant risk, the component is said to have a random shock failure pattern because the

risk of failure of the component remains the same throughout the item’s life. Corrective

IThis could imply complete replacement.
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renewal will be the first option to consider for this case, i.e. a Repair Only On Failure
(ROOF) strategy. A ROOF strategy will also most probably be used for a component with
a decreasing FOM, since the probability of component failure becomes less as time increases.
It should be kept in mind, however, that condition monitoring could be used for any shape of
the FOM. The GAN assumption implies that the FOM is zeroed after every failure. Figure

1.4 illustrates this concept.

FOM

N

— X, X— X, x;

X
¥

Figure 1.4: Illustration of the GAN assumption

Because of the assumption that interarrival times are part of an underlying distribution, only
independent and identically distributed data sets can be used in renewal theory. This require-
ment is often totally ignored in the literature. In cases where the IID assumption holds, the
Weibull distribution is usnally most suitable to describe the data set because of its flexibility.
Other distributions favored by analysts include the exponential, log-normal, log-logistic and

normal distributions. Section A.2.2 gives more information about these distributions.

1.2.3.2 Models for repairable systems

For repairable systems it is assumed that the intensity of the failure process is equal shortly
before and shortly after failure. To continue the discussion it is necessary to introduce the
concept of intensity (also known as full intensity or conditional intensity) briefly at this point.
This is done in detail in Section 2.2. The intensity of a counting process is generally defined
as:

. Pr{N(t+ At) — N(t) > 1|H;}

((t) = lim
At—0 At

(1.4)

where N (1) is the observed number of failures in (0, J’] and H; is the history up to, but not
including, time ¢. Thus, «(t)At is, for a small At, the approximate probability of an event in

[t,t + At), given the process history.
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In conventional repairable systems modeling it is assumed that processes are orderly, i.e.
simultaneous failures cannot occur, and also stationary, which implies ¢(t) = v(t), where v(t)
is the so called Rate of OCcurrence of Failure (ROCOF), given by

d . _
u(t) = — E{N(t)} (1.5)

The above mentioned simplifications make the NHPP a very suitable candidate for modeling
the ROCOF ™ of repairable systems. The following forms are encountered most frequently:
(1) p1 = exp(I' + Tt) (log-lincar) and (2) p2 = wFt7~! (power-law) or even a constant
ROCOF. A few authors that used these models are Balakrishnan (1995). Shin, Lim, and
Lie (1996). Hokstad (1997), Jensen (1990), Ledoux and Rubino (1977), Kobbacy, Percy, and
Fawzi (1994) and Hasser, Dietrich, and Szidarovszky (1995). Figure 1.5 illustrates the BAO

assumption for an item.

ROCOF

w

k3

v S N
s
W

Tr.—>

Figure 1.5: Illustration of the BAO assumption

Even though the BAO assumption is much more realistic than the GAN assumption, it could
still be a very limited approach according to Ascher and Feingold (1984), since in practice

the highest probability of failure is often directly after maintenance.

1.2.4 Conventional replacement /repair cost optimization models

Conventional cost optimization models strives to minimize long term operational cost of
equipment by using the statistical models mentioned above. This optimum is often referred
to as the minimum Life Cycle Cost (LCC) of an item. The term LCC could be somewhat
confusing in this context since it is commonly used in capital replacement studies where the
total cost of ownership is taken into account, including operation and maintenance cost, the

time value of money. depreciation, etc. To be consistent with the majority of literature in

““The ROCOF ol an NHPP is referred to as the peril rate and is denoted by p(t).
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this field, the term LCC will also be used in this document even though only operational
costs are considered. In this section, some examples of different approaches are presented to

explain the concept.

1.2.4.1 Optimization models for renewal situations

Here, the risk of wasting residual life is balanced with the risk of suffering an expensive
unexpected failure in terms of cost. At the point of balance, the LCC per unit time will be
a minimum. The costs involved are €, the cost of preventive replacement (or renewal) and

C'y, the cost of unexpected failure.

The principle of these models is fairly simple to understand. Suppose a component is always
replaced at time X, or at failure time X, whichever comes first. The total cycle cost is then
given by CpRx (X)) + Cy[l — Rx(Xp)]. If it is assumed that it takes a time units to perform
preventive action and b time units to perform corrective maintenance, the expected duration
of the component’s life is (X, +a)Rx(X,)+(X +D)[1- Rx(X,)]. Division yields the following

relation for component cost per unit time (if the replacement rule is followed):

CpRx(Xp) + Cy[1 = Rx(X,)]

Cr'{}fp) = e i R X ; -
X+ ) Bx(X,) + (7 2 fx(@)de + b)[1 — Ry (X,)]

(1.6)

The minimum cost is found where dC'(X,)/dr = 0. (See Jardine (1973) for details). For
example, suppose a data set is described by a Weibull distribution with 8 = 2.5 and 5 = 200.
Also, assume €}, = R 5 000 (with @ = 2h) and Cy = R 20 000 (with b = 8h), then equation
(1.6) will yield the graph in Figure 1.6. This graph shows that there is a clear optimum at

around 111 days, i.e. R 77 per unit time .

Using the same methodology as above, a relation can be derived to optimize availability
instead of cost. It is also possible to calculate the optimum preventive replacement frequency

for component-blocks rather than for single components.

Many authors have made some minor refinements to the conventional optimization models
for components, often to adapt to data constraints. Overviews of these refined models can
be found in Sherif and Smith (1981). Aven and Dekker (1997), Aven and Bergman (1986),
Dekker (1995), Zijlstra (1981), Sherwin (1999), Van Noortwijk (2000) and Schibe (1995). A
noteworthy extension of these models, is the model of Ran and Rosenlund (1976) in which
the time value of money is taken into account. This model is obviously only useful in cases

where equipment is expected to survive for several years.
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Figure 1.6: LCC of an item renewed after X, time units or at failure (if X < X))

1.2.4.2 Optimization models for repairable systems

For repairable systems, a decision has to be made between minimal repair or complete re-
placement of a system when it has failed. The cost of minimal replacement, ('}, is expected
to be considerably less than that of system replacement, C'y. It is hence required to calculate
the number of minimal repairs that should be allowed before system replacement with the
objective to minimize the LCC. The optimal solution can be expressed in terms of the number
of minimal repairs, n, or as time, /. Ascher and Feingold (1984) showed that if the power-law
process. pz = k3t is used to model the ROCOF of a process modeled by an NHPP, the

optimal replacement time will be,

Ca L
I'=|——7r—— 147
[C’. (B-1) h} (1.7)
and the optimal number of minimal repairs before complete replacement is:
Cy
NS e 1.8
(‘] : {j - l) ( )

where [* and n* are the optimal solutions. Suppose 3 = 1.7 and & = 0.0015 with C7 = R500
and (5 = R8,000, then /™ =~ 288 at R 67 per unit time and n* = 22 at R 65 per unit time.
Figures 1.7 and 1.8 show these results graphically. The costs per unit time resulting from the

two policies above are often very similar except in situations where Cy = Cy (which is rare).
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Figure 1.7: LCC of a system minimally repaired up to I* time units

Several minor improvements to minimal repair /replacement policies have been proposed since
the introduction of conventional statistical failure analysis. For some early references see
Barlow and Hunter (1960), Ross (1969), Morimura (1970) and Park (1979). More recent
examples include Stadje and Zuckerman (1991), Yeh (1991), Lam and Yeh (1994). Hsu (1999),
Sheu (1999) and Lim and Park (1999).

1.2.5 Shortcomings of conventional approaches

Limitations of conventional approaches do not so much lie in the techniques themselves
but rather in the underlying assumptions. The renewal (GAN) assumption is probably the
most unrealistic of the two assumptions discussed above. Deterioration of a system may
influence the lifetimes of future components in certain sockets severely, even if components
are completely renewed /replaced. Renewal theory deals with an important data type however,
and certainly has its place in theory even though it is seldom practical. The minimal repair
(BAO) assumption is much more realistic than the GAN assumption but still not completely
practical. Human interference to improve the condition of a system is often the greatest cause

of maintenance - a fact that the BAO assumption does not take into account.

Many authors have proposed models with discontinuities to incorporate the BOWN or WO
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Figure 1.8: LCC of a system minimally repaired up to n failures

sitnations. These models are major improvements on the conventional approaches although
seldom utilized in practice, mainly because of complexity. Models with discontinuities are

discussed in Chapter 2.

The biggest shortcoming of models used for conventional failure time data analysis is their
inability to include concomitant information in analyses. Diagnostic information recorded
during lifetimes, such as Condition Monitoring (CM) results, is not included in models which
certainly limits the accuracy of predictions immensely. Regression models solves this problem
to a great extent because diagnostic information can be included in the form of covariates.

Regression models are described extensively in chapters to follow.

A further serious disadvantage of couventional approaches is the long term nature of replace-
ment/repair policies. Costs only converge to the statistical optimum after a few lifetimes and
the minimum LCC approach is often rejected due to the impatience of maintenance practi-
tioners. It is often also very difficult to estimate realistic values for Cp, Cy, Cy and C for
use in the policies outlined in the previous section. The LCC is further poorly understood in

industry and the optimum is commonly interpreted as a prediction of time to failure.
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1.3 Preventive maintenance optimization through Condition

Monitoring

Condition Monitoring has become increasingly popular in recent times. One reason for this
is the present affordability of specialized condition monitoring equipment and the perception
that advanced technology can solve all maintenance problems. A further reason is that
maintenance strategy setting methodologies, such as RCM, recommend an on-condition task
as default strategy, provided that the task is technically and economically feasible. (See
Nolan and Heap (1978) for details on RCM). These and other factors contribute to a (often

erroneous) drive towards condition monitoring in industry.

An item’s condition can be assessed much better at present than a few years ago with tech-
nology of the day incorporated into technigues such as vibration analysis, oil analysis and
thermography. This however does not imply that these techniques are perfect. A general in-
vestigation into fypical condition monitoring practices revealed several shortcomings, which

are discussed below.

1.3.1 Alarm trigger setting

CM technigues assess an item’s condition in its present operating state and a maintenance
decision has to be made based on the observed diagnostic information. This implies than
limits have to be set for measured parameters and once one or more of the limits are ex-
ceeded (triggered), preventive action should take place. This may seem simple, but setting

appropriate benchmarks is no trivial procedure.

Original Equipment Manufacturers (OEM’s) often give guidelines as to what is acceptable
operating conditions for equipment in terms of temperature, vibration, oil debris, etc. These
guidelines usually form the basis of benchmarks although it is normally very conservative for
obvious reasons. Initial benchmarks can then only be optimized through a trial and error

approach that may be very expensive.

Many algorithms / techniques have been proposed by rescarchers in the various CM fields to
determine optimal benchmarks in a process to eliminate trial and error approaches. These
algorithms have one common underlying principle: to learn from observed diagnostic mea-
surements taken in the past and then estimate optimal benchmarks in a scientific manner for
a piece of equipment currently in operation. The most successful of these techniques is neural
networks. Neural networks have a large appeal to many researchers due to their great close-
ness to the structure of the brain. a characteristic not shared by other modeling techniques.
In an analogy to the brain, an entity made up of interconnected neurons, neural networks

are made up of interconnected processing elements called units, which respond in parallel to
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a set of input signals given to each. The unit is the equivalent of its brain counterpart, the

neurort.

A neural network consists of four main parts:

(i) Processing units, where each processing unit has a certain activation level at any point
in time.
(ii) Weighted interconnections between the various processing units whicl determine how
the activation of one unit leads to input for another unit.
(iii) An activation rule which acts on the set of input signals at a unit to produce a new
output signal, or activation.
(iv) Optionally. a learning rule that specifies how to adjust the weights for a given in-

put/output pair.

Time failure data with CM information can be used as processing units to estimate and teach
neural networks and additional data can then be used as inputs to predict future outputs.
Recent attempts to apply neural networks in the reliability modelling field include Shyur
and Luxhoj (1995), Rawicz and Girling (1994) and Lakey (1993). Neural networks have not
made much ground in the field of reliability because of its general complexity, large data set

requirements and its inability to eliminate insignificant observations.

Setting appropriate alarms for CM parameters is no easy task and CM techniques are seldom
optimal from implementation. This is a significant shortcoming in the field of condition

monitoring.

1.3.2 Significance of observed parameters

CM techniques use several parameters to assess an item’s condition. This may be a frequency
spectrum in vibration monitoring, a range of temperatures in thermography, the quantity of
various foreign elements in an oil sample, ete. In some instances different CM techniques are
combined to estimate equipment reliability. The reason for using more than one parameter is
because it is very seldom obvious which parameter is the best indicator of approaching failure
and no general technique exists in contemporary CM to isolate significant parameters. The
inability of CM techniques to isolate significant parameters is closely related to the alarm

trigger limit issues outlined in the previous section.
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1.3.3 Lack of commitment towards CM

In general, there is a lack of commitment towards condition monitoring in the South African
industry. In many cases, expensive CM equipment is used as the flagship of maintenance
departments although inspections are done very irregularly and not recorded properly. Often
the information supplied by CM is totally disregarded when a decision has to be made and
experience or intuition is relied on. Even if CM information is considered, the final decision

is frequently left to the discretion of technicians involved with the equipment.

It does not matter how technologically advanced CM is, if it is not practiced correctly,
meaningful results are impossible to obtain. This is a maintenance management issue that is

not directly addressed in this thesis.

1.4 Combining use based preventive maintenance optimizing

techniques with CM technology

From the discussions above it follows that nse based preventive maintenance optimization
techniques complement CM technology extremely well. A technique that combines these
strategies would have enormous potential. The solution lies in statistical regression models
since this type of model allows for concomitant information with time to event data - in
this context the concomitant information could be diagnostic information recorded by CM

techniques.

Several regression models have been applied in reliability to estimate the risk of failure of
an item and most of these models are diseussed in the next chapter. Only the Proportional
Hazards Model (PHM) is discussed in this section as an introduction to regression models, but
also because this is the only regression model for which a scientific preventive maintenance

decision model exist.

1.4.1 Proportional Hazards Modeling

The PHM was introduced by Cox (1972) and was considered to be a total revolution in sur-
vival analysis. This model was intended for the field of biomedicine but became increasingly
popular in reliability modeling over the past two decades. The model uses a baseline hazard
rate and allows a functional term containing covariates to act multiplicatively on the baseline
hazard rate (or FOM), i.e.

h(z,z) = ho(x) - M, z(z)) (1.9)
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where hg is the baseline FOM, A is the functional term and z is a vector of covariates which
may be time-dependent. Kumar and Klefsjo (1993) summarized the assumptions of the PHM

as follows:

(i) Event data is I1D.
(i) All influential covariates arve included in the model.
(iii) The ratio of any two FOMs as determined by any two sets of time-independent covari-
ates z1 and zs associated with a particular item has to be constant with respect to
time, i.e. h(x.z)) o hz.z9). For time-dependent covariates, this assumption is not

defined.

The exponential function is used most often for the functional term. This leads to a semi-
parametric model. It is possible to calculate the semi-parametric model without making any
assummnption on the baseline hazard rate but this only vield relative risks. In reliability, the
absolute risk is usually required and the model is hence parameterized by specifying some
parametric FOM for the baseline, for example the Weibull FOM, i.e.

2 N\ B-1

Jl )

h(r,z) ==+ = <exp (v - z(z)) (1.10)

o\ '
where 3 and 5 are the Weibull shape and scale parameters respectively and 4 is a vector of
regression coefficients. The influence of the functional term results in an improved estimate

of an item’s FOM. Figure 1.9 illustrates this concept.

hy(x)

FOM

N

A
e
X

Figure 1.9: Hlustration of the PHM with time-dependent covariates

The PHM has been applied successfully in diverse reliability applications because of the im-
proved estimate of the FOM, including modeling component failures in a light water reactor
plant by Booker et al. (1981), marine gas turbine and ship sonar by Ascher (1983), mo-

torrettes by Dale (1985), aircraft engines by Jardine and Anderson (1988), high speed train
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brake discs by Bendell et al. (1986), sodium sulfur cells by Ansell and Ansell (1987), surface
controlled subsurface safety valves by Lindqvist et al. (1988) and machine tools by Mazzuchi
and Soyer (1989). Other authors that published applications of the PHM in reliability include
Jardine et al. (1989), Leitao and Newton (1989), Love and Guo (1991a) and Love and Guo
(1991b).

The biggest criticism of the PHM is the fact that it is by definition only applicable for 11D
data. This shortcoming can be addressed by allowing for imperfect repair in the covariates,
but this does not solve the problem completely and in some cases can even worsen the
sitnation. Some authors, for example Kumar (1996), have applied the PHM with reasonable

success on repairable systems, despite the requirement of IID data.

1.4.2 Decision making with the PHM

Estimating the optimum maintenance instant that will result in the minimum LCC of an
item, based on the FOM as determined by the PHM, is no trivial procedure since the FOM
is now dependent on time and the values of covariates. This implies that the optimum LCC
instant must be specified in terms of risk and not in terms of a process parameter, such as

time, as was described in Section 1.2.4.1.

Two attempts to calculate the optimal maintenance instant for a system with the PHM were
found in the literature. The first was by Kumar and Westberg (1996a) that used the PHM
together with Total Time on Test (TTT) plotting to estimate the optimum maintenance
frequency. This paper was not very case-orientated and is, as far is known, the only of
its kind. The second consists of a series of publications by, amongst others, Makis and
Jardine. These authors have developed a technique for calculating the minimum LCC in
terms of a system'’s risk as determined by the PHM. Makis and Jardine (1991) and Makis
and Jardine (1992) proposed a semi-Markov approach to calculate the minimum LCC where
covariate behavior is predicted by semi-Markov chains. Makis and Jardine’s technique was
then refined in several publications to follow, the most important being Banjevic, Ennis,
Braticevic, Makis, and Jardine (1997) and Jardine. Banjevic, and Makis (1997).

Makis and Jardine’s optimization technique produces a result that looks very similar to Figure
1.6, except that the cost is expressed as a function of h(z, z). It is then required to allow an
item to operate until the optimum risk level (as opposed to time) is reached before preventive
action is taken. Figure 1.10 illustrates the policy in two dimensions with imaginary inspection
data. The figure shows how the optimal risk is influenced by both time and the observed

level of covariates.

Examples of successful applications of this replacement policy include Viok (1999) and Jar-
dine, Banjevic, and Makis (1997).
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Figure 1.10: Illustration of the optimal policy with imaginary covariate levels

1.4.3  Shortcomings of PHM cost optimization

Even though the PHM cost optimization approach is an improvement on conventional tech-

niques, there are still two major shortcomings:

(i) The PHM has an underlying assumption that data is IID. This limiting assumption
can be overcome to a certain extend by including covariates that describe an item’s
failure history. The fact remains, however, that the model is not entirely suitable for
repairable systems data and repairable systems data is expected much more often than
1D data.

(i) The minimum LCC cost approach for the PHM is a long term type approach, as is
the case with conventional analysis techniques. This approach is also not accepted well
amongst maintenance practitioners because the minimum is only reached after a few

lifetimes of which some could be expeusive unexpected failures.

Both the above-mentioned shortcomings should be addressed in order to make a truly valuable

contribution to the field of statistical failure analysis.

1.5 Residual life

Maintenance would be a trivial affair if the exact times to failure of items were knowrn.
This would imply that no residual life is wasted and that expensive unexpected failures are
totally eliminated. Although this view seems only feasible in a perfect world, the approach
is certainly meritorious in a world striving for perfection. A scientific technique with the
ability to estimate the residual life of equipment will be of great advantage to the field of

maintenance engineering.
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In CM, some empiric methods exist to estimate residual life. These methods are seldom
generalized and are often only meaningful after many iterations. The methods also differ
from situation to situation, even for nominally similar items, which makes it very risky to

use a particular method to predict residual life.

For conventional renewal analysis, residual life estimation (in principle) only goes as far as
conditional expectation or mean. If a distribution, fx(z), describes an item’s failure history,

the residual life, p(z), can be calculated by

Joo (r=a)fx(r)dr _ [ Rx(r)dr

r) = FIX —xp|X >z = = 1.11)
() [ l J Rx (1) Rx (1) (1.11
The simple statistical mean life, 4, of the item is given by
o0
= [ - fx(x)dr (1.12)
Jo
It is important to note that any differentiable () has to satisty p(x) > —1 because of the
identity
dylx)
+1
hxlz) =—22—_= (1.13
plr) )

as described by Muth (1977). Ghai and Mi (1999) discussed mean residual life and its

association with the FOM iu detail. Other authors that worked on this subject include Tang,

Lu, and Chew (1999), Baganha, Geraldo, and Pvke (1999) and Guess and Prochan (1988).

Equally little work has been done on estimating the residual life of items with conventional
repairable systems theory. Calabria. Guida, and Puleini (1990) proposed a point estimation
procedure for future failure times of a repairable system modeled by a NHPP with a power
intensity law. Suppose a repairable system has suffered n failures and it is required to estimate
the (n + m) failure, where m > 1 and m € Z. The Maximum Likelihood Estimate (MLE)
of the expected value of the m'™ future failure is given by

Lk =T

e n+j—1 n+j—1

B=ln—1) ,/ ZC_,-—::— [1 gl T 1n(f.,,_m;r.,,)} dtnym  (1.14)
t
s }_]

n
where C; = H;;J (n+i—1)/(i —j). Schibe (1995) followed a similar approach, as did
Reinertsen (1996).

The theory above shows that conventional statistical failure analysis only yields a mean
residual life estimate. This fact makes the use of residual life estimates very unpopular and
unreliable in practice. A dynamic residual life estimate is required to be useful in practice,
i.e. a technique that will adjust estimates based on certain observed intluences. Statistical
models that have the ability to incorporate concomitant information immediately seem to be

a possible solution even though very few publications on this subject exist. Zahedi (1991)
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proposed a proportional mean remaining life model analogous to the PHM where a baseline
survivor function is influenced by a functional term containing covariates. No publication was
found where this model was applied on real life survival data, however, Other contributions to
multivariate residual life estimation include Nair and Nair (1989), Arnold and Zahedi (1988)
and Zahedi (1985). In neither of these publications, practical illustrations of the theory were

presented.

1.6 Problem statement

There is a need to optimize preventive maintenance decisions in today’s ever increasingly com-
petitive market. At present there are three established means for doing this namely, conven-
tional statistical failure analysis, condition monitoring and Proportional Hazards Modeline.

) & 5

The following shortcomings were identified for the respective techniques:
1

(A) Conventional failure analysis

A-1. Onuly allows for the GAN or BAO assumption, which is extremely limniting,.

A-2. Lack of ability to include concomitant information in the analyses.

A-3. Requires fixed estimates for C', and 'y, which often varies for every failure.

A-4. The long term nature of optimal replacement /repair policies is often rejected by main-

tenance practitioners because unexpected failures are regarded as unacceptable.
(B) Condition Monitoring

B-1. It is very difficult to set optimal initial alarm trigger settings for CM techniques.
B-2. No scientific technique exists with which the significance of CM parameters can be

calculated.

B-3. There is a general lack of managerial commitment to CM.

(C) Proportional Hazards Modeling

C-1. Assumes data to be 1ID.

C-2. The only replacement decision model found for the PHM is also based on costs and

requires a few lifetimes before it converges to the minimum cost.

This thesis aims at improving all nine shortcomings listed above. It is proposed that this

objective can be reached as follows:
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(i) Development of a combined Proportional Intensity Model (PIM) with the ability to

address all the model-related shortcomings mentioned above

It is proposed that a combined PIM, one for non-repairable and one for repairable sys-
tems, is developed that will include the majority of conventional PIM enhancements
as special cases (including the PHM) to be able to model most of the typical wear-
out/deterioration patterns found amongst industrial equipment. Such a PIM would be
able to accommodate discontinuities in the failure intensity and to adapt to discon-
tinuities or to scalings in its time scale which will be ideal for the WO and BOWN
scenarios. By developing the combined PIM, shortcomings A-1, A-2. B-2 and C-1 will
be addressed.

(i) Development of an algorithmn to calculate residual life of an item based on the combined

PIM

A flexible and adaptive combined PIM will theoretically lead to a close representation
of reality and hence realistic estimates of the residual life, provided that the future
behavior of covariates can be estimated with relative high certainty. This could be a
challenging task since very little work has been done in this field and the numerical
implementation of the theory is fairly complicated. Successful completion of this goal
would solve shortcomings A-3, A-4, B-1, B-2 and C-2.

(iii) Comprehensible presentation of results

To make a truly practical contribution to the field of reliability modeling, results pro-
duced by this study should be presented in a user-friendly and comprehensible manner.

This step is required to address shortcoming B-3.

1.7 Thesis outline

In Chapter 2, a literature survey of advanced failure intensity models (including PIMs) in
survival analysis is done. Terminology used in failure intensity models is defined and different
models are categorized and evaluated. Chapter 2 serves as the foundation for the development
of the combined PIMs in Chapter 3. In Chapter 3 the combined PIMs are derived and
it is illustrated how these models can be reduced to most conventional PIMs. Parameter
estimation techniques based on maximum likelihood are also discussed in Chapter 3. In
Chapter 4 conventional techniques are applied to the combined PIMs to estimate residual
life. Confidence bounds on estimates are also discussed. Chapter 5 contains a case study in
which the theory developed in this thesis is applied to a typical data set from a South African
industry. Results are compared to results obtained from a maintenance decision support tool
similar to the residual life approach. In Chapter 6 the findings of this thesis are summarized

with some recommendations for future research.
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CHAPTER 2

ADVANCED FAILURE INTENSITY MODELS

2.1 Introduction

Advanced failure intensity models are in this thesis defined as mathematical representations
of failure processes that require more than standard distributions or 2-parameter counting
process models to capture their characteristics. This chapter deals with advanced failure

intensity models found in the literature.

Chapter 2 starts off with a discussion of the concept of intensity with specific reference to
non-repairable and repairable situations. The importance of the difference between these
situations cannot be overemphasized even though it is frequently ignored in statistical failure
analysis. A clear notation with regards to intensities is defined in Section 2.2 and used
throughout this thesis. Deviations from the notation are explicitly indicated. Different
model classes are identified and relevant models are discussed. Some acclaimed applications
of advanced failure intensity concepts are also considered . For most models. the likelihood
or partial likelihood are derived or presented without describing the estimation of regression

parameters. Parameter estimation techniques are considered in Chapter 3.

The chapter ends with a summary of the advantages and disadvantages of the models corn-

sidered.

2.2 Intensity Concepts

The concept of intensity was introduced briefly in Section 1.2.3.2. In this section, the concept
is explained in detail since all reliability models discussed in this chapter strive to represent
the intensity of a certain failure process. It is assumed throughout the thesis that all failure

processes considered are orderly, i.e. simultaneous failures cannot occur ou the same item,.
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This is a reasonable assumption according to most authors, e.g. Hokstad (1997) and Lawless

(1987), and not much generality is sacrificed.

Let N(t) denote the number of failures an item has experienced in the interval (0,t]. The
unconditional intensity (i.e., the rate of failure events) of the process at any instant in time,
t, is then given by

iy = lim Pr[Failure occurs in [t, 1 + At)]

At—0) At
1 E[AN(t)] L)
T Alen | At

where AN () represents the increment N(t + At) — N(t). Because it is assumed that the
process is orderly, the following basic relation for counting processes applies:
dM(t)
L (t) = (2.2)
dt

with M(t) = E[N(t)]. The time derivative of the expected number of failures as in (2.2)

, 18
referred to as the rate of occurrence of failure (ROCOF) and will often be denoted by pl(t)
(instead of t,(#)), for convenience. From (2.2) it follows directly that the cumulative number
of failures up to time t is equal to the cumulative unconditional intensity, i.e.

"

My(t) = E[N(t)] = /D v () du (2.3)

Additional information about the failure process is often recorded with the times to failure.
The additional information is referred to as the history, Hy, or filtration of the process.
History is recorded in the form of covariates and could be any quantification of an influence
on the failure process. From Martingale theory (see Hokstad (1997)) it follows that H, is
the o-algebra generated by N(s), s < t, starting from a probability space (Q, Hy, P) that
defines the stochastic process. N(t) = N(t,w), with w € Q. Hence it is possible to define the
Jull intensity (also referred to simply as intensity or conditional intensity ), o(t, Hy) = o(t|Hy),
which is the conditional rate of occurrence of events, given the state of H,. Thus. u(f, H;) At
is the probability of an event to occur iu [t.t + At). i.e.

2L JN'I- 3
e(t, Hy) = lim 'M"_)

2.1
At—0) At 4)

The complete intensity as defined in (2.4) provides a general framework for modeling failure
event processes because the effect of maintenance activities can be recorded in Hy. Conven-
tional failure process modeling concepts such as the FOM and ROCOF are also special cases
of (2.4).

Similar to (2.3), it is possible to define a cumulative intensity process, i.e.

|
M(t, Hy) =] tlu, Hy)du (2.5)
0
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where M (t, H) is the compensator in Martingale theory. Both u(t, H;) and M(t, H,) are
denoted as predictable which means that for a given Hy, the values of (¢, H;) and M(t, H;)
are known but the value of N(¢)* not vet.

It is important to note that () is a mean function of (1, H,), averaged over all possible
sample paths. Suppose N(f,w) is a specific realization of the process of N(t) where w € Q
in the probability space (Q, H;, P). Here, N is not only a function of w for a fixed value of
t but also a function of ¢ for a fixed w (called the sample path of N). Taking the the mean

over the sample space, (), vields
E[AN(t)] = / AN (¢, w)dP(w) = 1,,(t) (2.6)
Ja

Similarly, E[AN(t)|H,]. and thus (¢, H;), is found as the conditional mean.

The last intensity concept to define is that of average intensity. Average intensity is simply
the average of M, (t) or M(t, H;) over an interval [0, 7], i.e. ¢y, = My(7)/7 0r t» = M (1)/7.
The concept of average intensity is not encountered frequently in the literature but is not
without interest. Bodsberg and Hokstad (1995) have shown that the average intensity concept

is very useful in modeling dormant failures.

Table 2.1: Summary of failure intensity concepts

Failure Intensity Concept

Intensity Mean Intensity  Average Intensity
Alternative term  Conditional intensity Unconditional -
intensity
Symbol ¢ b .
Definition . E[AN(t)|H,) . E[AN(t)] t~1. E[N(t)]
AT At AS T A
Non-repairable Ay (). truncated at fx(x) ' (1 - Rx(x))
case titne of failure
Repairable case A sequence of ROCOF or wit) Average ROCOF,
truncated FOMs i.e. AROCOF

(defined in local

time)

In Table 2.1, a concise summary (adapted from Hokstad (1997)) of the failure intensity
concepts discussed in this section is presented. Note that local time, denoted by z, is used as
time scale for the non-repairable case. consistent with the terminology introduced in Section

1.21.

“N(t) has right continuous sample paths,
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2.3 Literature survey on advanced failure intensity models

There are countless publications on advanced failure intensity models attempting to represent
the intensity concepts outlined in Table 2.1 as part of practical statistical failure analysis
exercises. Most of these publications consider variations on a small munber of fundamentally
different approaches. The fundamentally different approaches are referred to as model classes

and are listed below:

(i) Multiplicative intensity models
(ii) Additive intensity models

(ili) Models with mixed or modified time scales

)
)
)
(iv) Marginal regression analysis
(v) Competing risks

)

(vi) Frailty or mixture models

These model classes are discussed in Section 2.3. Publications that consider combinations of
fwo or more model classes are discussed as part of the model class where it makes the most
significant contribution. At the end of this section, noteworthy extensions of the listed model

classes are also discussed,

2.3.1 Multiplicative Intensity Models

Multiplicative intensity models represent the intensity of a failure process as the product
of a baseline intensity, that is a function of time only, and a functional term. that may be
a function of both time and covariates. Covariates are allowed to be time-independent or

time-dependent.

2.3.1.1 Proportional Hazards Model (PHM)

Survival data analysis underwent a revolution with the introduction of the PHM by Cox
(1972). The model was originally intended for biomedical applications but was soon applied
in reliability engineering. As the name implies, this model represents the FOM, i.e. the

failure intensity of non-repairable items, as a proportion of different FOMs.

The PHM is constructed as the product of a totally arbitrary and unspecitied baseline FOM,

ho(z), and a functional term A(z, z), where 2’s dependence on time is not important, i.e.
ovL ), . p

hiz,z) = ho(x) - Az, 2(2)) (2.7)

"The subscript x is dropped here for notational convenience.
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There are several possible forms for the functional term. Some are: the exponential form,
exp(y-2(z)); the logarithmic form, log(14exp(y-z(x))); the inverse linear form, 1/ (14+y-2(x));
or the linear form, 1 4+ - z(x), where v is a vector of regression coefficients associated with
a particular data set. The exponential form of the functional term is used most often in

reliability applications and results in the following PHM:
h(x,z) = ho(z) - exp(y - z(x)) (2.8)

The model assumes the following:

(i) Event times are I1D.
(ii) All influential variables are included in the model.
(iii) The ratio of any two hazard rates as determined by any two sets of time-independent
covariates z; and 2z, associated with a particular item has to be constant with respect
to time, i.e. hx(x,21) x hx(x,22). (This assumption is not valid for time-dependent

covariates).

The biggest advantage of the PHM, as defined in (2.8) in its semi-parametric form, is that
no assumption needs to be made about the baseline FOM when fitting the model. This is a
result of partial likelihood theory developed by Cox (1975). Kalbfleisch and Prentice (1980)
explain partial likelihood in detail. Partial likelihood only yields relative risks but can be

very useful in gross analyses.

Suppose m items are under observation and n events have occurred up to time x. Let F(z;)
be a risk set of the events up to time x; and let | be the number of events yet to occur. The
partial likelihood of (2.8) is then given by
exply - z:)
H — (2.9)
: exp(y - z;)
h—m:l]

In the case where relatively few ties, d;, are present, the following relation holds:

exp(y - 2z;) ;
L) =11 g (2.10)
i=1
> exply-z)
eF(x;)

It is also possible to stratify the PHM into different strata, i.e.

hiz,z) = ho, (x) - exp(y; - 2(z)) (2.11)

with partial likelihood given by.

rok
SN 212)
. !Jn-r(il_;]
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where 7 denotes the number of strata and &; is the number of events in the j* stratum.

Ascher, Kobbacy, and Percy (1997) applied the stratified PHM successfully.

If absolute risks are required, a fully parameterized PHM is required. A distribution often
used to perform the parameterization is the Weibull distribution because of its flexibility.
Substitution of the Weibull distribution in (2.8) vields
3 {#\P
hiz,z) = "_I (T—}) ~exp(y - z(x)) (2.13)

where (3 and 1) are the shape and scale parameters of the Weibull distribution respectively.

The parameters PHM in (2.13) can be calculated by constructing the full likelihood as,

1n

L(B,n,v,z) = H hix;, z)-exp (— ]ml h(}.‘._z)c'I.r)

=1

noo- 4—1 L 3—1
3 & T 8 ! .
- | | L= (I—) -eT% exp [ — / — (i) e #H) gy
g 1 Jo oM i

The solution of (2.14) is complex if z is dependent on time. Press et al. (1993) discuss some

(2.14)

numerical techniques with which an economic solution can be obtained.

It is also possible to stratify the fully parametric PHM. Usually, either the baseline FOM
or the regression coefficients are stratified, not both. This is done to limit the number of

parameters in the model and to obtain synergy amongst different strata.

A useful extension of the PHM is Aalen’s Regression Model as discussed in Aalen (1980) and
Aalen (1989). This model can be used to test time dependence of covariates in the PHM
and adds significant value to PHM analysis. In this model. the vector h(x; z) of the FOMs

hj(z;z) for j = 1,2, ...n, is given by:

h(z:2) =Y(2) -a(x) (2.15)

Here Y () is an n x (¢ + 1) matrix whose rows at time x; consist of those vectors,
2= [1,3{(.-:-},....:/5(.;-) (2.16)
where z;’ (x),1=1,2,...,q are covariate values, corresponding to those failure times that have

not occurred up to time ;. In the vector,

a(z) = [ap(x), ar(x), ..., ag ()] (2.17)

ap(x) is the baseline parameter function, while a;(z), i = 1,2,...,¢q are called regression
functions, defining the effects of covariates. The effect of a covariate is represented by the

cumulative regression function, A(x), defined as:

Ai(z)= A | ai(s)ds (2.18)
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for i = 0,1,....,q. To study the time-varying effect of the i*" covariate, an estimate of the
™ cumulative regression function should be plotted against the failure times. There are 4

possible outcomes:

(i) Straight line with an incline m. The effect is independent of time.
(ii) Constant line at value y. Indicates no effect at all.
(iii) Increasing at a decreasing rate. Indicates a decreasing effect over time.

(iv) Increasing at an increasing rate. Indicates an increasing effect over time.

Aalen’s approach is particularly useful in analyzing condition monitoring data since condition

monitoring data is almost always time-dependent.

2.3.1.2 Proportional Mean Intensity Models (PMIM)

Proportional Mean Intensity Models or Proportional ROCOF Models are constructed by
the product of a baseline ROCOF multiplied with a functional term, dependent on time
and covariates. PMIMs are very similar to PHMs as far as construction and estimation is
concerned but they are based on fundamentally different representations of the intensity of
failure processes. In the literature, the terminology for these concepts are often inconsistent,
e.g. Kumar (1996) investigated the use of “Proportional Hazards Modeling™ on repairable

systems while he was actually using PMIMs.

Suppose the PMIM is constructed as the product of a baseline ROCOF, 1, (), and a func-

tional term A(t, 2(¢)), where z may or may not depend on time, i.e.
Lu(t,2) = by (8) - A(2, 2(1)) (2.19)

As before, it is possible to estimate the semi-parametric model in (2.19) without making any
assumptions about t,,(¢) by using partial likelihood theory. Let m denote the number of
items under observation and let n represent the total number of failures that have occurred.
Let F(t;) be the risk set of the failure events and let | represent the number of events vet to

occur at time. The partial likelihood is then given by

T exp(y-zi)
L(y) = 2.20
el H] S exply-20) L
O LeF(t,)

If the number of ties. d;, in the data set is small, the following relation holds

mn
| exp(y - 2i) _
Ly =1] . (2.21)
=
>, exp(y-z)
I€F(t,)
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If the PMIM is stratified into » strata, i.e. u,;(t.z) = Lugj(t) exp(y; - z(t)). the partial

likelihood becomes,

r

kj
exply; - Ziy) 5 G
L) = 2.22
v ,fI_-[ltI—Ii 2. exply; - zy) e
T e R (ty)

where 7 is the number of strata and k&; is the number of of events in the j'" stratum.

If an absolute mean intensity is required, the PMIM can be parameterized. The log-linear
representation of a NHPP is often used to perform the parameterization, i.c. Ly (t) = exp(ap+
ay - t). The full likelihood becomes,

i T
L(ag, 01,7, 2) = H tug (t) - exp (— / r..,,(f.z(!.))dt)

=1 S0 d LIDY

,; = (2:23)
=TT (eoosorm v . exp (_ [ et F.-r-zmm)

i=1 J0

As in the case of the parametric PHM. it is difficult to maximize (2.23) if the covariates are

time-dependent.

If the fully parametric PMIM is stratified, usually, either the baseline ROCOF or the regres-
sion coefficients are stratified, not both. This is done to limit the number of parameters in

the model and to obtain synergy amongst different strata.

2.3.1.3 Proportional Odds Model (POM)

The proportional odds model originated from epidemiological studies and was introduced by
Bennet (1983) for use in biomedicine. This model is structurally similar to the PHM, but not
a direct extension. It models the odds of an event occurring and unlike the PHM, the effect
of covariates in the POM model diminishes as time approaches infinity. This diminishing
property of the covariates means that the model is suitable for situations where an item

adjusts to factors imposed on it or the factors only operate in early stages.

For this model the odds of a failure occurring is defined in terms of the survivor function as,

Fx(z) _ 1- Ryx(a)

— 2.24
R\(J) R_\'(.f.‘} ( )
This definition of odds is used to introduce the POM:
——l —hz.2) =) ———l - fix(2) (2.25)
R(x,z) Rx(x)
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Equation (2.25) states that the odds for a failure to occur under the influence of covariates
are ¢ times higher than the odds of a failure without the effects of covariates. If ¢ increases,
so does the probability of a shorter life time. Differentiation of (2.25) with respect to time

leads to,

hiz,z) ;s hy(x)
R(z, z) - Rx(z)

(2.26)

after using the coefficient rule. By rearranging the terms in (2.26) and re-using (2.25), a
FOM ratio can be obtained:
h(z,z) . R(z.z) 1-R(x,2)
=Y - —
hx () Rx(x) 1 — Rx(x)

(2.27)

Inspection shows that ¢|,—p = @ and ¥|,—oc = 1 . from there the diminishing effect of the

covariates.

Bennet (1983) derives the full likelihood for the model in his original paper to estimate the
model parameters. Research done by Shen (1998) provides more efficient estimation methods

and methods to enable the model to handle suspended observations.

A special case of the POM arise when it assumed that event times are distributed according
to a log-logistic distribution. Kalbfleisch and Prentice (1980) describe this special case in

detail. The FOM of an item with event times following a log-logistic distribution is given by:

)

hiz:iz) = -

a - {l -+ J_-—r'i ’ CXI)(_"Y . Z(.IT))) (228)

where § is a measure of precision. The FOM is assumed to be increasing first and then

decreasing with a change at time

= {(1—06)exp(—y-2(z))} /8 (2.29)

If # — oo, 7% - exp(—y - z(x)) — 0 (see (B.4)) and subsequently covariates will influence the

FOM less and less as the item ages.

2.3.2 Additive Intensity Models (ATMs)

Additive Intensity Models represent the intensity of a failure process as the sum of a baseline
intensity and a functional term containing covariates. Pijnenburg (1991) deals with AIMs in
completely general terms. Newby (1993) compare this type of model, for the case where the
FOM is used as intensity, to various other regression models. Authors often refer to AIMs
incorrectly as Additive Hazard Models (AHM) in reliability modeling literature. This section

describes AIMs in general terms.
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Suppose two items are in series, S; and Sy. Suppose S represents a repairable system and
S5 is an item representing the influence of covariates. Let 7 be be the time at which the
i system failure occurs and X, the system’s i*" interarrival time, i.e. X; =7T; —T,_,. The
system is supposed to have a survival time X ; and FOM h(:) and the item representing
the covariates has a survival time of X5 with a FOM, A(ty, zp). For the moment Alto, zp) is

defined as constant in-between interarrival times, i.e. constant covariates, but variable over

successive lifetimes, i.e. dependent on time.

After the first failure at system level at time, 177, ie. T} = X; = min(Xi,.Xy1) both

components are replaced, such that:

(i) Sy is renewed by an identical component, also called Sy, with lifetime X 5 and FOM
ha(-).
(ii) Sy is replaced by a component with lifetime X5 and FOM A(ty, 21).

In general terms it means that after the i'" failure on system level at time T}, i.e. 1; =
Tioy +min( Xy 4, Xy,):

(i) S is replaced by an identical new component with lifetime X1,it1 and FOM hy (). The
lifetimes X ;. are assumed to be 11D.
(i) Sz is replaced by a component with a lifetime X5, and FOM A(t;,z;). The lifetimes

X9k are assumed to be statistically independent.

It is also assumed that the survival times X ; and Xy are mutually independent.

For the various FOMs, A(#;,2;), it is assumed that the covariates. z;, are constant in [T%: Tieq)
but may change for different lifetimes. Higher covariate values, generally represent more
severe environmental stresses and xo; = min(xy 4, x2;) should be interpreted as a system
failure due to these higher environmental stresses. Pijnenburg (1991) suggests a few forms

for A(t;,z;). The simplest form for A\(t,.z;) is a linear function,

‘{J
Mt z)=7-2=) %z (2.30)

i=1
for p covariates. A linear term can be included in (2.30) by simply specifying z; = 1. In the
case where higher order terms are present in the polynomial, A(t;, z;) can be specified as,

pom

/\(f._z_]l = Z Z Vij - ;;l (231)

i=1 j=0

If covariates appear to interact, A(¢;, z;) can be chosen as,

P o1
At:2) =90+ a5 (2.32)
i=1 j=1
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A suitable form to handle both higher order terms and interaction can be.,

P i r T
Mt2) =D 3 DD k- 2f -2 (2.33)

i=1 j=1 k=0 (=0

Data limitations often cause that only (2.30) is practical.

Following the argument above, the AIM is completely generalized by allowing covariates to

dependent on time, i.e.

Lt z) = 1p(t) + A(t, (1)) (2.34)

The AIM can be stratified and parameterized in the same manner as the PHM and PMIM.
Pijuenburg (1991) also allows the AIM to have modified time scales. These extensions are
discussed in sections to follow. Crowder, Kimber, Smith, and Sweeting (1991) and Newby
(1993) derive the full likelihood to fit AIMs?.

2.3.3 Models with mixed or modified time scales

Modified or mixed time scales in intensity models can be interpreted as an additional covariate
in data sets to provide more flexibility. Modified time scales increase or decrease the modeled
intensity of a failure process by either accelerating or decelerating the actual age of an item.
Mixed time scale models incorporate local and global time in the same model to utilize the
advantages of both long and short term history. Newby (1993) refers to the result of these
concepts as the virtual age of an item since the actual survival time differs from the survival

time uged in models.

2.3.3.1 The Prentice Williams Peterson (PWP) model

Prentice, Williams, and Peterson (1981) published the so-called PWP model after research
done by Williams (1981). This model is generally considered as the most significant extension
of the PHM by Cox (1972) according to Ascher and Feingold (1984). T'wo versions of the
PWP model were proposed, both of the stratified Proportional Hazards type, which means
this discussion would also be applicable in Section 2.3.1 where multiplicative models were
considered but it is believed that this model made a more significant contribution to models

with modified or mixed time scales.

The PWP model is specifically directed towards the analysis of situations where only a small

number of observations is available on an item but where a large number of items is studied.

tPartial likelihood can not be used because of the summation of terms in the model and relative risks are

thus not possible
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Specific items are also allowed to experience multiple failures. This makes the PWP very

attractive in reliability modeling where data sets are often limited in size.

The model is constructed as follows. Let z = [z1(¢). ..., 2,(t)] denote a vector of covariates
of a specific item, part of the covariate process, Z(t). Also, let N(t), denote the counting
process of the the number of failures, n(t), on an item up to time ¢. The counting process,
N(t), is equivalent to the random failure times 77 < .... < T,y in [0,1). Prentice, Williams

and Peterson then define the intensity of a failure process as,

Prit < Ty41 < t+ At|N(s), Z(s).s <t
e.(rIN(s},Z(s),ﬂgr‘):i}n_'}” rft < D41 < -I-Af [N(s),Z(s),s <t

(2.35)
Some special cases of (2.35), in the absence of covariates, are:

(i) t(t|N(t)} = eu(t) for some ¢,(-) > 0 is the unconditional intensity function of a NHPP.
(ii) t(t|N(t)) = n(t)e(t) specifies a nonhomogeneous pure birth process.
(i) e(tIN(f)) = te(t — tg) for an arbitrary () > 0 (k =n(t)+1 = 1,2,...) gives a semi-
Markov process.
(iv) A further restriction on the semi-Markov process that tx(-) = () for all k gives an

ordinary renewal process,

Prentice, Williams and Peterson suggest two models based on (2.35), both of a stratified
: 28

Proportional Hazards type,

PWP Model 1: (t|N(t), Z(t)) = to,(t) - exp(7ys - 2(1)) (2.36)

PWP Model 21 ((t|N(t), Z(t)) = to,(t — tug)) - exp(s - 2(t)) (2.37)

The stratification variable s = s{N(t), Z(t), t} may change as a function of time for a given
item, e.g. § = n(f)+1 and the subject moves to stratum k immediately following its (k— 1_)1'}1
failure and remains there until the k" failure. More refined stratum conditions can easily be
constructed. For Model 1, it is possible to define s = 2 n(t) + A{N(t)}, where A{N(t)} =1
if the time since the last failure, t —t,4), is less than some specified value and A{N(t)} = 2,
otherwise. In the case of Model 2, it is possible to define s = 2 - n(t) + A(t), where A(t) = 1

if t is less than some value and A(t) = 2, otherwise.

The PWP formulations differ from Andersen (1985) in two aspects: (a) the risk sets of
the (k + 1)™ recurrences are restricted to the individuals who have experienced the first k
recurrences; and (b) the underlying intensity functions and regression parameters are allowed
to vary amongst distinct recurrences. Gail, Santner, and Brown (1980) published a two-
sample special case of Model 2 with strata defined at least as finely as s = n(t) + 1. Clifton
and Crowley (1978) considered a special case of Model 1 without covariates and with s = 1
if n(t) =0and s =2if n(t) > 1.
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Partial likelihood can be used to estimate relative risks with both Models 1 and 2. For Model

1 the partial likelihood is,

i )
_TTTT Py - 2siltsa) |
o l:{l I;Il > exp(ys - z(ty) (2.38)

IER(tsi.8)

where t;; denotes the failure time of item i in stratum s, 2. (ts;) refers to the covariate vector

of item ¢ at time tg; and d, denotes the total number of events in stratum s.

The partial likelihood for Model 2 is.

i
’ exp(Ys - Zsiltai)) 0
FoN /S %
e 1:[11:[1 > exp(Ys -z + usi)) Y
= e R (us.8)

where ug; are the interarrival times of the different items in various stratums and ¢ is the last

failure time on item / prior to entry into stratum s ({ = 0 if no prior failure on the item).

Prentice et al. also extend the PWP model to multivariate failure time applications where
there will be more than one type of failure. Let J € {1,2,....,m} denote mn mutually exclusive
failure type classes. Analogous to (2.35) it is possible to define type-specific intensity functions

at time t by,

Prit < Ty+1 < t+ AL J = §|N(@), Z(t)]
JHN(), Z(t) = i e = ' 2.40
(N (2, 2(2)) At At (2:40)
where, in this case, N(t) = {Ny(t),...., Ny, (t)} is the counting process for each of the m types

of failure and n(t) = ny(t) + ... + ny,(t). This leads to the following extensions of (2.36) and
(2.37):

Li(tIN(t), Z(t)) = to,,(t) - exp(vs; - 2(t)) (2.41)
LN (2), Z(t)} = to,,(t — ta(r) - explys; - 2(t)) (2.42)

Prentice et al. applied their models on a data set from Atkinson et al. (1979) and generally
achieved better results than with an ordinary PHM. In another example. Ascher (1983) used
PWP Model 2 on marine gas turbine failure data by using indicative covariates, i.e. 0's and
I's, with good results. Ascher believes the “custom tailoring” allowed by the PWP models,

is essential in failure data analysis.

2.3.3.2  Accelerated Failure Time Models (AFTM)

Pike (1966) introduced the AFTM and it is often a useful alternative to the PHM in many
reliability modeling situations, according to Newby (1988). This model incorporates the effect

of covariates by allowing for changes in the time scale of, for example, the reliability function.
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Let the probabilistic reliability function be given by Rx(z) and the accelerated reliability

——
function be denoted by Ry (r), due to environmental stresses, i.e.

Rx(z) = R[(z —¢) /1) (2.43)

where ¢ is a location parameter and b is a scale parameter. The model is similar to regression
models which assume that (z — ¢)/b is distributed according to a known parametric form.

Some density functions often used, are,

Weibull:
oty k k-1 I :
Fais) = U exp(—u"), u=(x—c)/b (2.44)
Gumima:
o L g
fx(x) = bF(Fr)u exp(—u), u=uzx/b (2.45)
Log-normal:
— 1 1 [In(u)]?
Fx(a) = = exp { = { ( )} = (z—c)/b (2.46)
Inverse Gaussian:
fx(x) = 5\/ 2Tru. exp = [ uw=x/b (2.47)

where k is a shape parameter.

A logical variation on the AFTM is where the underlying distribution is only a function of x
and k, fx(x,k), but the accelerated distribution is fy(z/b;. k), with b; = b(z;; q) where z; is

a vector of covariates and ¢ is a flexibility parameter. Commonly used models for b are;

(i) Constant
(ii) Linear as a function of stress, e.g. b=2z;-a
(iii) Exponential, e.g. b; = explz; - a)

(iv) Inversely exponential, e.g. b; = exp(—1/(z; -a)) (Arrhenius model)

Constructing the likelihood for the mentioned models is similar to simple two-parameter
likelihood construction. Many authors have discussed the likelihood construction, including
Smith and Naylor (1987), Cheng and Amin (1983) and Cheng and Isles (1987).

Solomon (1984) has shown that, in the absence of censoring, the relative effect of covariates
are identical in the AFTM and the PHM. Great care should thus be taken in such cases that

either one of the two models is not misspecified.
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A very popular application of the AFTM is fatigue crack growth in the field of structural
mechanics. The acceleration-property of the model is used to estimate fatigue crack growth
rates. Many examples of this kind can be found in the literature, including Crowder, Kimber,
Smith, and Sweeting (1991) and Newby (1988).

Ciampi and Etezadi-Amoli (1985) and Etezadi-Amoli and Ciampi (1987) combined the PHM
and the AFTM in the so-called Extended Hazard Regression Model (EHRM), i.e.

h(z;2) = ho (z - 1 (2(2) - a)) lz(x) - B) (2.48)

where ¢ (2(z) - @) and ¢(z(x) - 3) are positive functions equal to 1 when all covariate values
are equal to 0. When a = 0, the model in (2.48) becomes an ordinary PHM and when a = 3,

the corresponding model is an AFTM.

2.3.3.3 Proportional Age Setback (PAS)

In this approach, introduced by Martorell, Munoz, and Serradell (1996), each maintenance
action is assumed to shift the origin of time from where the age of the component is evalu-
ated. Let every maintenance action reduce the age of a component, just before maintenance,
proportionally by a factor £, where € lies in [0,1]. If e = 0, the PAS produces the BAO
situation and if £ = 1, the GAN situation results. Thus, the virtual age, 7. of an item after

it has undergone its first maintenance action® is given by:

rif = (1—e1) - A(z1) - T \2:48)

In (2.49), A(-) is a functional term containing covariates in the vector z;. Covariates could
be time-dependent or time-independent. The superscript “4+" indicates that the virtual age
is applicable shortly after the event at T). After the second maintenance action the virtual

age 1s,

=1 —¢) [n+ Mza) - (Ta = T1)] (2.50)
Substitution of the above yields:
= —e2) - [(L=21) Az1) T1 + Az2) - (T2 — 1)l (2.51)

If m denotes the maintenance number, the virtual age of a component iz generally given by,
3 Lo = * s ]

m—1 k
T:, == Z )\[:Zm—k-] ‘ H {l — Em r) ' (Ilm—k' — .-I:m.—k— l_) [\25‘—)
=0 r=0

Martorell, Sanchez, and Serradell (1999) simplify the virtual age model in (2.52) by assuming

that,

§ Maintenance action could be interpreted here as renewal, minimal repair or imperfect repair.
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(i) the effectiveness of each maintenance action is equal to some constant value z, i.e.
Ep = E.
(ii) constant operating conditions apply, i.e. zj = z.
This leads to a simplification of (2.52), i.e.
=1
; _yh+1 e
b = AM2) - [ D0 (A=) (T — Tng) _
k=0 (2.53)
- ’\(Z) . (t'm _ AT?r'r.)
where
m—1]
Atm=Y (1—e)f k- Ty (2.54)
k=0

This simplification is useful in cases where information in data sets are limited or where a

first approximation suffices.

Atwood (1992) used an approach similar to the PAS, specifically on the ROCOF of items, i.e.
p(t) = po-g(t: 3). Here, py is a constant multiplier and g(t; 3) is the portion of the expression
that determines the shape of p(t). Three models for the ROCOF are proposed (exponential,

linear and power law):

poexp[B(t — ty)]
plt) = { poll + Bt — to)] (2.55)
po(t/to)?]
The value of ty can be selected for convenience. In the first two cases, if g is set to zero.
t — tg is the time measured from the system’s installation. In the third case, ¢y normalizes
the scale in which time is measured. In all three models. py has units of 1/time. If 3 > 0,

p(t) is increasing, 3 = 0, p(t) is constant or 4 < 0, p(t) is decreasing. The value of py is
the value of p(f) at time t = t5. Atwood uses a Bayesian approach to fit the models, i.e. a
preliminary analysis is done first based on the conditional likelihood of the models given in

(2.55) whereafter the full likelihood is constructed and the values of parameters are estimated.

2.3.3.4 Proportional Age Reduction (PAR)

Malik (1979) introduced the PAR model. where the virtual age is based on the survival time
of the most recent lifetime. This differs from the PAS approach where the virtual age is based

on the entire history.

Let £ be the efficiency factor, as before, that lies within [0, 1]. The virtual age of an item,

after it has undergone its first maintenance action, in the PAR model is given by:

T'I" = (1—.‘?1) -/\{zll}le {256)
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The functional term, A(-), incorporates covariates and the superscript “+" denotes applica-
bility of the 7 shortly after event 7 occurred. After the second maintenance action the

virtual age is,
T =7+ (1=e2) - Az2) - (Ta — T1) (2.57)

Immediately after maintenance action m, the virtual age is given by:

m
ik = (I-—eg) ~Al2e) (Tim—Tm=1) (2.58)
k=m
If € and z are fixed, (2.58) simplifies to.
T = (1=€)  X2) - Ty (2.59)

This simplified estimation of the PAR was applied by, amongst others, Malik (1979) and Shin,
Lim, and Lie (1996). Shin, Lim, and Lie, for example, implemented the PAR concept on two
models namely the power-law intensity function (Weibull) and log-linear intensity function.
From here the PAR model is defined as

b1 (t) = et — ¢ 7k), t > 7y (2.60)

where ¢ is an improvement factor or factor of rejuvenation and 0 < ¢ < 1. This particular
model was only used on a single item under observation but it can be extended to handle

counts of multiple system copies.

2.3.4 Marginal regression analysis

Marginal regression analysis has been used with success in the field of biomedicine to rep-
resent multiple-event time data. See for example Pepe and Cai (1993) and Wei, Lin, and
Weissfeld (1989). The approach of marginal regression analysis is similar to the stratified
PHM approach with vaguely defined strata. This approach has the attractive attribute that
no explicit model needs to be formulated for the probabilistic association between failures of
the same individual. Wei et al. also allow for k different failure types, censoring and missing

observations, which could be very useful in reliability modeling.

" subject (i = 1,...n) that experiences the k' type

Let X, be the failure time of the i
of failure (k = 1,.... K). In some instances a bivariate vector, i’;ﬂ-, is observed consisting
of [Xi. Agi], where Xj; = min(X pi, Cyi) and Cy; is the censoring time. Let Ay = 1 if
Xii = )?m and Ay = 0 otherwise. [f ik:‘ is missing, C; = 0, which implies that Xy, = 0
and Ay; = 0, since Xy, = )2';”- is positive. Let zp; = (214, ..., 21ki] De a vector of p covariates

Lh

for the i*" subject with respect to the &' type of failure. Conditional on zj;, the failure vector

Kegi= [)Z'l,u .y Xi] and the censoring vector Cy = [Chy, ..., Cy] (i = 1, ...,n) are assumed to
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be independent. For the k™" type of failure of the i*'" subject, the FOM hy;(z) is assumed to

take the form,

hii(x) = hro(x) - explyk - 2ki(@)] (2.61)

where hyo(r) is an unspecified baseline FOM and -y, is a vector ol failure-specific regression
coefticients. If Fy(x) = {l : Xy > x} is defined as the set of subjects at risk just prior to time

z with the respect to the &' type of failure, the k' failure-specific partial likelihood is,

Ak:
n
_ exp(y - zxi(Xpi)) i
. B 2.62
k(7) 1;‘1: > exply - zp (X)) o
L EE]F.H.A'\'MJ

Pepe and Cai (1993) considered a simplification of the approach above by defining a FOM
hP'(z) for individuals at risk at time = but not previously infected and a FOM hi(z) for
individuals at risk and previously infected. It is possible to decompose hf*(z) into further
components, i.e. {h?' h32 ..}, where h*/*~1)(z) is the FOM of individuals with the k'
infection amongst those who have already experienced k —1 infections. Ascher, Kobbacy, and
Percv (1997) proposed a similar approach by specityving a different FOM for items following
either corrective maintenance or preventive maintenance. Every model has its own baseline

and regression coefficients.

The approach of marginal regression analysis as outlined above requires large data sets -
something that ig not common in reliability. The failure type specific regression coefficients
is an important attribute however, since machines rarely fail repeatedly because of the same

type of failure.

2.3.5 Competing risks

Crowder (1991) believes the principle of competing risks is best explained by an example from
the field of biomedicine. Suppose the time to recurrence of a specific type of cancer in a group
of patients is modeled. Patients not only run the risk of the recurrence of cancer but also, for
example, of dying before recurrence or developing a different disease before recurrence. This

problem is defined as competing risks in data and is common in reliability problems.

Competing risk models have two interpretations: (1) it describes the lifetime of a system sub-
ject to several potential causes of failure; and (2) it describes the lifetime of a system consisting
of a series of components which fails as soon as one of the components fail. The occurrences
of potential failures can be regarded as a vector of random variables X = [ X, ..., X, so that

the actual stopping time is at the smallest element of X, say X;. If the random variables in
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X are independent, the system reliability is given by,

Rays(z) = [[ Bit=) (2.63)
i=1
with FOM
Rays(2) = Z hila) (2.64)
i=1

Competing risks situations arise naturally in reliability problems, particularly where series
systems are considered. Equations (2.63) and (2.64) are, for example, directly applicable in
the “weakest-link” argument of Blanchard and Fabrycky (1990). Lewis (1987) cousidered
an approach similar to that of competing risks, called the “S-factor” method. This method
analyzes a system as a series of (i)subsystems of independent components; and (ii) common-
canse components. Crowder (1991) derives the likelihood for competing risks models in

general terms.

2.3.6 Frailty or Mixture Models

The concept of frailty or mixture is used in two ways in reliability models: (1) as a way of
introducing an idea of heterogeneity into the construction of a model; and (2) as an object

of interest in itself. Mixture models are more applicable in reliability than frailty models.

Frailty in this context is an unobservable random effect shared by subjects in a group. It is
defined by Vaupel, Manton, and Stallard (1979) rather like the PHM. but differs in that the
relative risk factor is a random variable in this case. The frailty, £, is defined in terms of the

FOMs of individuals in a population, i.e.
h(z]€) = & - ho(x) (2.65)

is the FOM of an individual with frailty £ and baseline FOM, hq. If the frailty at time z has

a density f,(-), the average FOM at time x is,

@) = [ hlal) - ()
=ho(z) | € fal€)de (2.66)
J0
=£ h{)(l)

If the frailty decreases with time, so will £ (since the weakest die young if no fatal external
influences are present). This leads to a situation where the average FOM is declining more

rapidlv than the FOM for individuals.
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Many authors have also used frailties in regression models. See for example Klein and
Moeschberger (1990). The inclusion of frailties overcome the limiting assumption of most
regression models that survival times of distinct subjects are independent of each other. This
assumption is for instance not valid for a study on litter mates that share the same genetic

makeup or married couples that share the same, unmeasured environment.

Klein and Moeschberger (1990) present two types of frailty models (both based on Cox’s
PHM). For the first it is assumed that the FOM of the j'" subject in the " group. given the
frailty, to be

hij(x) = ho(z) - explow; +9 - z;5) (2.67)

where wy, ..., w¢ are frailties. It is assumed that the w’s are an independent sample from

some distribution with mean 0 and variance 1. The second model is given by
hij(x) = ho(z) - u; - exp(y - 2i5) (2.68)

where the u;’s are an independent and identically distributed sample from a distribution
with mean 1 and some unknown variance. Common models proposed in the literature for the
random effect are the one-parameter gamma distribution, the inverse Gaussian distribution

and the log normal distribution.

Lawless (1987) introduced frailties in a Poisson process model by inclnding a variable a; which
accounts for unobservable random effects for each subject, i.e. p(t,z) = a;polt) exp(y - z;).
The ;s are independent and identically distributed random variables, independent of the

zi's with some distribution G(«). The likelihood for subject i's event history over (0, ;] is

voe M T
L:(0) = /U H aip(tij) exp(y - z;) exp {— / aip(t)exp(y - z;)df}dG(ul} (2.69)

=1 Jo

Mixture models arise naturally in reliability according to, amongst others, Lancaster (1990)
and Littlewood and Verrall (1973). These models are expressed as a conditional FOM,
h(z|z, o), where o is a random variable with density w. The conditional density and survivor

functions for = are,

f(z]|z) = /f(_.r'|z.rr_)-.u(_cr)dcr

(2.70)
= /h.[.r|z.rr]exp[—H{.;:|z._r_TJ]Llcr
and
R(z|z) = /R(.J?|276}w(0}d0
: (2.71)
= /exp[—H{.r:|z.ch]dU
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Note that,

hizlz) = z,0)w(o)do = h(z|z) (2.72)

flelz)
R(.‘I'|Z) # / h(I

since the FOM defined in terms of frailty is not the FOM of the unconditional distribution.

Mixture models are also often interpreted as Bayesian models with prior w(e) for a parameter
a. See for example Lancaster (1990) and Ridder (1990).

2.3.7 Noteworthy extensions of intensity concepts

On a few occasions authors published extensions of the failure intensity concepts described
above that are beneficial to this study. These extensions are mostly integrations of different

approaches to suit particular applications.

2.3.7.1 A point-process model incorporating renewals and time trends, with
application to repairable systems

Lawless and Thiagarajah (1996) presented a family of models that incorporates both Pois-
son¥ and renewal behavior although multiple system copies are not considered. The authors

studied models of the form,
u(t, z) = e7*0 (2.73)

where z(t) = [z1(t), ..., zp(t)] and ¥ = [y, ..., 7). This model is a special case of that con-
sidered by Berman and Turner (1992). Two important Poisson processes can be modeled by

(2.73) by specitving the covariates intelligently:

(i) p1(t) = exp(e + Bt) by letting 2(t) = [1,t] and v = [wv, 5]
(i) pa(t) = at? by letting z(t) = [1,logt] and y = [log a, 3]

Renewal processes are obtained by taking z(t) as a function of the backward recurrent time,
B(t), as defined in Section 1.2.1. For example. z(t) = [1,log B(t)] and v = [log a, 8] produce
a renewal process with a Weibull distribution and FOM hx (z) = az”. Models with z(t) =
[1,91(t), g2(B(t))], where gy and go are specified functions, incorporate both renewal and time

trend behavior.

YSee Section A 3.3 for details on Poisson processes.
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Anderson, Borgan, Gill, and Keiding (1993) and Berman and Turner (1992) have shown that

the maximum likelihood of (2.73) is given by,

n T
L{vy) = Hp(t.;) - exp {—A p{f.):_lf} (2.74)

i=1

for Poisson processes and for renewal processes by,

L{y) = [ flzi) - Flzg ) (2.75)

i=1

where ; is defined as before, 7, | is a suspension time and Fx(:) is the survivor function.

In an example where Prochan’s! “famous” airplane air-conditioning data is modeled, the
usefulness of this approach is illustrated. The general model with g1(t) and go(B(t)) as
covariates was fitted on the data. After evaluation of the significance of the covariates by
means of the Wald test statistic it was clear that only g1(1) was significant. i.e. the the data
was more suitable for repairable systems theory because an underlying trend was present in
the data. Laplace’s trend test (see De Laplace (1773)) and the test by Cox and Lewis (1966)

confirmed this result.

Calabria and Puleini (2000) presented a special case of the model by Lawless and Thiagarajah
(1996) where the model determines the characteristics of the failure process during fitting
procedures. The two most popular NHPPs (Power-Law Process (PLP) and Log-Linear Pro-
cess (LLP)) are considered in terms of (2.73), together with the Weibull Renewal Process
(WRP). The proposed models are as follows:

(i) The Power-Law Weibull Renewal process with an intensity of,

(| Hy) = g1

9= (1))~ (2.76)

where 0 >0, #+0>1for 0 <t <7y and u(t) =t — tiv()- The intensity up to the first
failure time T} is 4(t) = vt°7°=2 where v = (3 + 6 — IJ/H‘BT‘Ll. This is a power law
function which does not depend on H; or the maintenance policy. If minimal repair was
done after each failure, the failure process should evolve on the basis of the intensity.
Thus, the ratio of (2.76) and the intensity up to the first failure gives a measure of
the improvement or worsening introduced by the actual maintenance policy (minimal
repair), i.e. [u(t)/t]°~'. An indication of the departure from minimal repair is thus
given by d. For example, if § > 1, the ratio is less than 1 for any t > 77 and, at a
given distance B(t) from the most recent failure, it becomes smaller and smaller as
the number of occurred failures increases, thus indicating a repeated beneficial effect of

maintenance actions on the equipment reliability.

ISee Prochan (1963).
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The parameter 3 in (2.76) measures the departure from perfect maintenance. If 3 =
1. then (2.76) reduces to Weibull renewal. When 3 > 1. reliability degradation is
experienced and if 1 — ¢ < 7 < 1, reliability improvement is experienced.

(ii) The Log-Linear Weibull Renewal process with intensity function,
A(t|Hy) = dexp(f + [t)[u(t)]> ! (2.77)

with —cc < 6, 3 < ocand 6§ > 0 for 0 < ¢ < 77. Up to the first failure, t(t|Hy) =
exp(v+ 31t where v = §+1n d, which is exactly the intensity of an ordinary Poisson
process. When 3 = 0, (2.77) does not depend on global age but only on B(t) which
implies perfect maintenance, i.e. Weibull renewal. If § = 1 the process intensity does

not depend on local time and reduces to a log-linear process.

The value of § has the same physical meaning here as in the Power-Law Weibull Renewal
model. But, for the value of 3, if 3 > 0 a reliability deterioration of the equipment
with the operating time is described. The more 3 differs from 0. the bigger the time
trend. Finally, if =0 and 6 = 1, the Log-Linear Weibull Renewal process reduces to
the HPP.

Likelihood construction for the above models is trivial and will not be discussed here.

2.3.7.2 Simple and robust methods for the analysis of recurrent events in
repairable systems

Lawless and Nadeau (1995) considered some robust methods to estimate the behavior of point
process data based on the Poisson model. This is an extension of the techniques described
by Nelson (1982) for 11D data.

Suppose k systems are observed and system ¢ is under consideration over a time period [0; T;].
Let Ni(t) be the number of events up to time ¢. It follows that the Cumulative Mean Function
(CMF) is M;(t) = E[N;(t)]. In the continuous sense my(t) = M;(!), which is the ROCOF.

To estimate the common CMF in a discrete sense, let n;(t) > 0 be the number of events
that occur to system ¢ at time t. This means m(t) = E[n;(t)] and hence M(t) = ZL:] m(s).
System i is observed over [0;7;] and we define di(t) =11ift < T; and 6;(t) = 0 if t > T, to
indicate whether ¢ is observed at t. The total number of events is given by n.(t) = Zf_] dini(t)
and the total number of systems observed at ¢ is 4. (t) = Zj‘;l 0i(t). Further, assume the k

systems under observation are mutually independent. Then. if the ni(t)’s are independent

Poisson random variables with means m(t), the MLE's of m(t) is given by:

) n.(t)
mi(t) = . 2.78
() o.(1) ( )
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Similarly for M (t) we have,

t

M(t) = Z 5 ( (2.79)

s5=0

The authors present a valve seat replacement example as well as an automobile warranty

claim example to illustrate the above concepts.

This publication is very useful for this study since it is robust and simple. It is ideal for a
preliminary analysis of data. The assumption that the end observation times 7; are indepen-
dent of the event process may be somewhat unrealistic in reliability problems. For example,
if system failures are studied and systems with many failures are withdrawn from service

earlier, the estimates of M (t) or the regression coeflicients could be badly biased.

2.4 Conclusion

Chapter 2 covered the majority of advanced failure intensity model classes in the literature
as well as a few noteworthy extensions of model classes. Kumar and Westberg (1996b)
compiled a summary of advanced failure intensity models for non-repairable systems and
how these models are interrelated. This summary was broadened and generalized for both

non-repairable and repairable systems and is shown in Figure 2.1 on the next page.

The theory, models and concepts discussed in this chapter are used in chapters to follow to

achieve the objectives set in Section 1.6.
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ADVANCED FAILURE
INTENSITY MODELS
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Figure 2.1: Summary of different advanced failure intensity models
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CHAPTER 3

COMBINED ADVANCED FAILURE INTENSITY
MODELS

3.1

Introduction

In Chapter 2, advanced failure intensity models found in the literature were discussed and

categorized in different model classes. The theoretical foundation, implementability and prac-

tical applicability of each model were evaluated. From this literature survey and evaluation,

the following conclusions were drawn:

(i)

(ii)

(iii)

(iv)

The distinction between models applicable for non-repairable systems and repairable
systems are not clear enough and are rarely emphasized in the literature. According to
Ascher (1999) this contributes to the confusion between the two approaches.

Most models only consider relative risks. Relative risks are attractive because no as-
sumption needs to be made about the underlying baseline, but it does not provide
any information with regards to absolute probabilities. Absolute risks are required to
utilize the techniques described in Section 1.4.2 and also to estimate residual life. For
this study, models need to be fully parametric to be able to caleulate absolute risks and
hence residual life, as was stated in the problem statement in Section 1.6.

With the exception of the Extended Hazard Regression Model (EHRM) (see Section
2.3.3.2), models focus on one particular enhancement (such as addition. multiplication,
frailty, mixed time-scales, ete.) rather than combining different enhancements. Models
will be more practical if more than one enhancement is allowed in the same model.
Data sets are often modeled with only one type of model and the results of this model
are accepted without comparing it to other models. Part of the reason for this practice
is because it is such a laborious task to manipulate data, estimate coefficients and refine

algorithins for any particular model.
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Subsequent to these conclusions, a methodology was established to improve the shortcomings

outlined. The methodology is illustrated in Figure 3.1 and elucidated below.

OBSERVED DATA SET
WITH COVARIATES

| e o it
NON-REPAIRABLE " Tests to distinguish . : REPAIRABLE

CASE -~ < unu‘n}gsl_rcpair;‘-llhlc gnd _rmn—/*—h CASE
repairable situations -~ |
|
\ ’/./ ! .
R l
I

Generic PIM (based on
the ROCOF) and a

Generic PIM (based on 1
the FOM) and a

combination of PIMs -« — L‘t‘:r_nhmuh_un of PllMs
applicable for non- applicable for repairable
repairable systems systems
v y
Generic numerical Generic nun?cru.'_al
parameler estimation parameter estimation
procedure based on pmc.cdurc b‘m?d on
maximum likelihood maximum likelihood
| ¥
= v
—
: Moaodel testing
Model testing | g
5 3 P
’ \\ - '\\
-~ Acceptable N No No ACCL‘pluh}!c S
- —— ] . + ' -~
~. model? - o model s
S /’ L P
LW Bl
LYes — Y%J

!

Estimate residual life of
equipment currently in
operation

Figure 3.1: Modeling methodology

(i) Fundamentally different models will be constructed for non-repairable and repairable

situations and it is therefore important to distinguish between these cases. Techniques
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such as those of De Laplace (1773), Bates (1955), Bartholomew (19564), Bartholomew
(1956b), Boswell (1966), Cox and Lewis (1966), Boswell and Brunk (1969), Lorden
and Eisenberger (1973), Saw (1975), Bain, Engelhardt, and Wright (1985), Lawless
and Thiagarajali (1996), Martz and Kvam (1996) and Vaurio (1999), as mentioned
in Section 1.2.2, will be used on data sets to determine whether non-repairable or
repairable systems theory is more appropriate. These techniques are applied in Chapter

.

(ii) For both the non-repairable and repairable case, generic fully parametric PIMs will be
developed that are able to simplify to the majority of models (or combination of mod-
els) described in Section 2.3. For non-repairable cases, the full intensity or conditional
intensity is used, i.e. FOM, and for repairable cases the mean intensity or uncondi-
tional intensity is used, i.e. ROCOF. (See Table 2.1). Such generic models have the
advantage that data can be modeled with the aid of more than one of the conventional
enhancements.

(iii) Numerical parameter estimation techniques and algorithms will be developed for the
generic PIMs based on maximum likelihood techniques. These algorithms will also
be able to estimate the parameters of any simplification of the generic models. This
simplifies the modeling processes because different models can be tested without having
to develop an estimation algorithmn for every special case of the generic PIMs.

(iv) Statistical techniques similar to those described by Kay (1984), Anderson (1982) and
Moreau, O'Quigly, and Mesbah (1985) will be used as part of the testing of models’
quality. Model quality will also be evaluated by “forecasting” observed events, following
case studies by Vlok (1999) and Vlok, Coetzee, Banjevic, Jardine, and Makis (2001)
that have shown that models with relatively poor statistical performance can provide
very useful practical results. The motivation for this approach is discussed as part of

the residual life estimation procedure in Chapter 4.

The methodology above addresses the shortcomings ontlined earlier in this section. In the
remainder of Chapter 3, the generic PIMs for both the non-repairable and repairable cases
are developed with likelihood construction for parameter estimation. Several assumptions
are made while developing the theory. These assumptions are motivated in Section 3.4 at
the end of this chapter where the practical implementation of the combined advanced failure

intensity models is discussed.

3.2 The non-repairable case

A single model that incorporates all the conventional model enhancements related to non-
repairable systems (discussed in Chapter 2) is required. In this section such a model is

developed. The following assumptions are made:
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(i) Multiple system copies are nominally similar and are operating in similar conditions.
(i1) All items considered are behaving according to renewal processes.
(iii) The Weibull distribution is used to parameterize models, except for the case of the
POM.

(iv) Covariates are assumed to be positive.
The validity and practical implications of these assumptions are discussed in Section 3.4,
3.2.1 Model development

Suppose k& = 1,2, ..,w nominally similar single-part system copies are studied and the event

times on each system are recorded. This scenario is illustrated in Figure 3.2.

k=1 ¢ &
- X e

—-', )1,_’4—?' = s 0

X, X —ea—X —»

k=2 o o—|—e————e 0O

- X - X

\

-,
g e

|
k=w © © 4{ o P . {b
- X X X e X'

Figure 3.2: w nominally similar single-part system copies (renewed / replaced after each
failure) with m time-dependent covariate measurements on each copy (Dots denote failures,

circles denote suspensions)

It is assumed that tests revealed that all the particular systems can be modeled with non-
repairable systems theory. Event data for each system is recorded in a ¢¥ x 2 matrix, where
each row contains \f the time to event and (f‘ the event type indicator, i.e. C-'f' =0
denotes suspension and C*f" = 1 denotes failure. This is similar to the approach of Wei,
Lin, and Weissfeld (1989). The total observation period for any system k is ZX:" (for
i = 1,2,...,¢"). On each system m time-dependent covariates are measured, i.e. zf" =
[zf"l () zf‘{i} z.f‘;u{.f.')]“. where x refers to the local time of system & during lifetime ¢, It
is also assumed that the data is categorized in s = 1,2, ...,r different strata, where r is the
highest stratum of item k. A general model that represents the FOM of any of the observed

system copies is given by,

h(x,0) = & (.uf:‘(.z:. & k) AE - 2E) + vk - zi‘)) (3.1)

¥

“For notational convenience, the indication of the time dependence of covariates, “(x)”, is suppressed in

expressions Lo lollow.
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where 07 consists of  k:  the system copy indicator
s:  the current stratum indicator
a random variable that acts as a frailty in the model that
could be system copy- and stratum-specific
ge: a fully parametric baseline function that could be system copy-
and stratum-specific
<t a factor that acts additively on x in _t,rf to represent a time
Jump or time setback that could be system copy- and stratum-
specific
w¢: a factor that acts multiplicatively on x in g¥ to result in
an acceleration or deceleration of time that could be systemn
copy- and stratum-specific
AF: @ multiplicative functional term that is determined by z‘;" and
that acts on g*
an additive functional term determined by 2%

a vector of thme-dependent covariates

Before any comment is made on (3.1), the model will be fully parameterized first. The
Weibull distribution is used throughout this thesis for a parametric baseline function because
of its versatility, except for the special case of the Proportional Odds Model (see Section
B.1.2). (3 and » denote the Weibull shape and scale parameters respectively). Both the
multiplicative and additive terms are assumed to be exponential. Every element in @ has po-
tentially unique values for every k and every s, i.e. y& = [“,-'._f_‘] G AL S [ < e e
vf € {vf. v . k) th e {of, 7h, o TF), BY € {8F, B, ..., BF) and ot € {n¥,n5. ... n%}. For

any given value of s, k and , the baseline function g* is,

ak—1
; gr [y (2 — 'r‘?") : )
k 8 & s v
(v, f)="— | —————~ 3.2
gs(z,0) " pe (3.2)
Similarly, for the functional terms,
ky - . ARk " ¢
Ae(z,0) =exp E Yoy R, (3.3)
J=1
’\‘ ; e _ k‘ P ,,_f\‘. b £
ve(x,0) = exp E ag, vz (3.4)
Jj=1

19 also include any additional parameters used in the parametric baseline.
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The FOM of any item, k, under consideration at any point in time, x, and for any stratum,
s, is thus given by,

-1 &k L
}_A _feu';,'zt:- Z Oy . %

'.355‘
ak fiankifa ok L
ﬂ e (.L (i ) . =1 J + ef=t 7' (35)

&

hiz,0) =k
?(T ) Q\ ”f ??"2

The model in (3.5) is probably unrealistic from a reliability modeling point of view because
of the large number of parameters that need to be estimated. Huge data sets would be
required to fit such a model. The objective with this model however, is not to use it in its
complete form as presented above, but to simplify it to conventional enhanced models or
to combinations of models with different enhancements by applying restrictions on some of
the parameters. For example, to obtain a conventional Weibull-parameterized PHM from w

system copies, the restrictions summarized in Table 3.2 is applied on (3.5).

Table 3.2: Parameter restrictions for equation (3.5) to obtain
a conventional Weibull-parameterized PHM from w system

copies

Parameter Restriction

k: k= 1.2,..,w
s s = 1. for all values of i*
L:f : g;‘ = 1, for all values of s and k
{;’Jﬁ’: u{’ = 1. for all values of s and &
7 T = 0, for all values of s and k

i u;-i': r.\-fj_ = —ox, for j=1,2,....m and all values of s and k
~yk: "ri‘J = 7, for j =1,2,...,m and all values of s and k
BE: B = 3, for all values of s and k
nk: nk =, for all values of s and k

The restrictions in Table 3.2 applied to (3.5) gives,

17

R | Y 45z
h(z,0) = 5 (i) Lemr (3.6)

To further illustrate the usefulness of (3.5), a special case of the Weibull-parameterized PWP
Model 2 (similar to (2.37)) is constructed. Suppose the following requirements for the model

are set:

(i) No frailty.

(ii) No accelerative or decelerative component.
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}] No PAR or PAS component, i.e. no time jump or setback.
) No additive component.
(v) Strata are defined as s = i*,i.e. s=1for 2 < Xf, s =2 for X} <z < X}, etc.
) Regression coefficients in the multiplicative functional term are stratum-specific but
not system copy specific.
(vii) The Weibull shape parameter is neither stratum nor system copy specific.

(viii) The Weibull scale parameter is system copy specific but not stratum-specific.

To obtain the desired model, certain restrictions are applied on (3.5). These restrictions are
summarized in Table 3.3.

Table 3.3: Parameter restrictions for equation (3.5) to obtain

a special case of the Weibull-parameterized PWP Model 2

from w system copies

Parameter Restriction
k: k = 1200w
s ¥ = i, for all values of i*
q i‘ ¢t = 1, for all values of s and k
ks ¥ = 1, for all values of s and k
e 8 = 0, for all values of s and k
ak: rl_{fj = —oo, for j =1,2,...,m and all values of s and k
~E: ¥ = 4 for j=1,2,...,m and all values of s and &
Bk 3¢ = 3, for all values of s and k
nk; ':;i‘.' = ¥, for all values of s and k

Applying the restrictions in Table 3.3 on (3.5), results in:

LLLs

15} < L Yoz,
”"‘”’G)ZF(@ S (3.7)

Equation (3.5) can be generalized even further by allowing for system copies that consist of
multiple parts in series, where the total system success is dependent on the success of each
individual part. On failure of any part, the total system is renewed or replaced. A situation

of competing risks arise in such a case.

Reconsider the configuration in Figure 3.2, but suppose that each system copy now consists
of [ = 1,2,....n parts in series (see Figure 3.3). The success of the entire system is therefor
dependent on the snccess of each individual part. It is assumed that tests confirmed the

validity of non-repairable systems theory on all | parts of each of the & systems. On failure
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Figure 3.3: w nominally similar system copies containing n parts each with my; time-dependent

covariate measurements on each copy (Dots denote failures, circles denote suspensions)

of any of the n parts. all the parts are renewed or replaced before the system is put back
into service. The event history of every part in every system is recorded in a ¢ x 2 matrix,
consisting of event ftimes. Xf’ and event type indicators, C':”. Every system las a similar
event history matrix that can be deduced from the part histories, i.e. XF = 111i11{.\':‘"} for
[=1,2,...,nand ('f" corresponds to the event type of 11'1i11{_‘{;"I t. On each part in each systemn,

ki

A g g ke k
my time-dependent covariates are measured, i.e. 2;' = [z, ]‘ z;,

k E
; :_M:”JI. where = denotes the
local time during lifetime ¢ of system k. Event data is categorized in s = 1,2, ....7' strata,
where 7 is the highest stratum of any part [. A general model for such a situation (analogous

to 3.1) is given by,

n
h(z,8) =" ¢k (yi‘.‘* (2, 78, 8 Ay 28 + (et 2B J) (3.8)
=l

where the baseline function g for any item [, associated with system A in stratum s becomes,

it ke ( ki) gt -1
g fapdt (a2 — 7 ’
k A s -
gt (,8) = == [ L (3.9)
e 17
*As before, “(x)” is suppressed.
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The functional terms become,

Ty .
Aot (z,0) = exp 'vz‘; : zf;‘ (3.10)
J=1
my
k - k ki
vit(z,0) = exp Z(Ysj = (3.11)
=1

The FOM for any part [ in system copy k at any time in stratum s is given by,

j"‘ |k ( ki) JG:[_L :;.l ,\.k! L E ky Ky

(351 U =T, 2. .'.,J,--Z, Chg, 23

h(x.0) = ;F: '_;! "7’”“ . gi=1 i 4=t Y (.3_12)
Tls s

while the FOM of the entire systein is represeuted by,

n j""" k!( kﬂ) d:"_l y ky  ky E kp Ry
gy | Bt [ Yst (o — 74 X VejE o) -
Mell=2 G| e\~ ) e A T (3.13)
=1 Mls Ts

Equation (3.13) is more general than (3.5) and can be reduced to (3.5) by letting n = 1 for

all values of k. Thus, the model constructed in (3.7), can also be achieved by (3.13). An

advantage of the model in (3.13) is that different failure modes in systems are accommodated

even if the system’s condition is monitored by only one set of covariates, as is often the case
Ry

in practice. For such a situation, 2% = 2%, 4% = 4% and o = a¥, for all /.

In Appendix B it is shown that (3.8), and hence (3.13), can be reduced to the majority of

models discussed in Section 2.3.

3.2.2 Likelihood construction

The general approach of Anderson, Borgan. Gill, and Keiding (1993) combined with the
method used by Prentice, Williams, and Peterson (1981) is used to construct the likelihood
for equation (3.13). Suspensions are accommodated in the likelihood, but should preferably
ouly be used for calendar suspensions and for cases where the system was withdrawn from
service preventively, according to Aschier (1999). Even if a svstem was withdrawn from service
before failure, it is usually done for good reason, i.e. it is believed that the system is near to
the end of its lifetime. In such a case it is more meaningful to include the observation as a

failure as apposed to a suspension in the intensity model.

To simplify the calculation of the likelihood, data should be structured in the following way.
Suppose d, events are observed in stratum s. An auxiliary dg x 4 matrix is introduced, con-

sisting of the chronologically ordered event times of stratum s in column 1, the corresponding
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event tvpe indicators in column 2, the system on which the event occurred in column 3 and
the part on the system which (:m.lsed the event in column 4. In this matrix, the events are
denoted Xj. the event indicators (', the system identifiers in kj and the part identifiers in

Ly, for b= 1,2, ....d,. The general form of the likelihood for (3.13) is given by,

n rt de 7l

Liz.0)=> " |T]TI " x,,9~’= HH 5 " hia e (3.14)

=1 |s=1lb=1 s=1b=1

For numerical convenience, the natural logarithm of the likelihood, i.e. In L(x,0), is maxi-

mized because,

argmax L(z.0) = argmaxIn L(z,0) (3:15)
.0 w0

which leads to,

InL(x.0) H FZZM; ) —iZ/ hiz,0)dx (3.16)

I=1 | s=1 b=1 s=1b=1

> /

Term 1 lt.rm 2

Term 1 in equation (3.16) is

.}
"}fl_l my Ty Lh
i dy ki U ki (/\ h ) Y -,-f!-sz 5 uiq ::'f
| Ps - I _—
In |65* | = f - el + e~ (3.17)
=1 b=1 ”"’I F.fr-"'f
where bk =k} and [ = []. Term 2 is.
b ~b
, ; 'fh o rmy & my I
r s X ki "‘t r— 7h o 5 okt Y adt.2h
i ~ky %7’5 Q d g ) e B = b A
DN B =l L L= + el da (3.18)
s=1 h=1 Y s’ Ns
also with k = kf and I = [}.
The maximmm value of equation (3.16) is found where.
dinL(x,0) .
Rkt i A (3.19)

o)
for all values of . Numerical optimization techniques with which (3.19) can be obtained are

described in Appendix C.
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3.3 The repairable case

A single model that incorporates all the conventional model enhancements related to re-
pairable systems (discussed in Chapter 2) is required. In this section such a model is devel-

oped. The following assumptions are made:

(i) Multiple system copies are nominally similar and are operating in similar conditions.
(ii) All items considered are by the definition of Section 1.2.1, repairable systems.
(iii) NHPPs of log-linear and power-law forms are used to parameterize models.
(iv) Covariates are assumed to be positive.

The validity and practical implications of these assumptions are discussed in Section 3.4.

3.3.1 Model development

Suppose k& = 1.2, .., w nominally similar single-part system copies are studied (see Figure 3.4)
on which ¢* observations were recorded. Assume that tests revealed that repairable systems
theory is suitable to model the reliability of each of these systems. Event data of each system
is saved in a ¢* x 2 matrix, where each row contains I'T‘ the arrival time a particular event
and C‘f‘ the event type indicator, i.e. CF = 0 in case of snﬁpemmn and C -' = 1 r>l'ht“l’\\’1*—“s(“
On each system m time-dependent covariates are measured. i.e. = [23 () 2E(t) 2k (D))
for i = 1,2, ....¢", where t refers to the global time of system k. It is also assumed that the
data of each system is categorized in s = 1,2, ...,r different strata, where r is the highest

stratum of system k.

A general model that represents the mean intensity, i.e. ROCOT. of anv of the observed

system copies i= given by,

o(t,0) = ¢k (gh(t. 7, w) - A - 2h) + viah -2 (3.20)

where 8% consists of  k:  the system copy indicator

the current stratum indicator

a random variable that acts as a frailty in the model that

could be system copy- and stratum-specific

g¥:  a fully parametric baseline function that could be system copy-
and stratum-specific

a factor that acts additively on t in g% to represent a time

iFor notational convenience, the indication of the time dependence of covariates, “(1)". is suppressed in

expressions to follow.
99 also include any additional parameters used in the parametric baseline,
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jump or time setback that could be system copy- and stratum-
specific

a factor that acts multiplicatively on ¢ in gé“ to result in

an acceleration or deceleration of time that could be system
copy- and stratum-specific

/\" a multiplicative functional term that is determined by zi’ and

that acts on gk

vh: an additive functional term determined by zi‘.‘
z¥:  a vector of time-dependent covariates

The same symbols that were used to present the general combined model for the FOM of a
number of system copies in (3.5), are used in (3.20) to introduce the general combined model
for the ROCOF of a number of system copies. It is assumed that the different variables will
be interpreted in context, i.e. as FOMs in the non-repairable case and as ROCOFs in the

repairable case.

NHPP models have gained general acceptance for non-repairable situations as described in
Section 1.2.2. In this thesis two types of NHPP models are used namely the log-linear
process where p; = exp(I' + Tt) and power-law process where py = k37!, Theory will
only be developed for the log-linear process but the same principles apply for the power-law
process. Both the multiplicative and additive terms are assumed to be exponential. Every
element in @ has potentially unique values for every k and every s. i.e. 'yf e th ~k k

I8 " (8t

Ci'l € {Q-';‘- I:é' wees Q_r-k }- fa';"f- € {'fa'll'.{{- f."ff'-ﬁl- caey ‘:"I“‘.r'k}. T;Ir € { leq T-:;c‘ coen Ty }'. ]—1{: = {Iwﬁ{.l 1—“3. vaay [‘T'k} and

TE e {T’;‘", 3 i TR T, }. For any given value of s, k and ¢, the baseline function gk is,
g% (t.0) = exp(T* + ETE(t — 75)) (3.21)

Similarly, for the functional terms,

T

A¥(t,0) = exp Z 7":, : :f: (3.22)
=1

vE(t,0) = exp Zui’) :f‘} (3.23)
1=1

The peril rate of any item, k, under consideration at any point in time, ¢, and for any stratum,

s, 1s thus given by,

_ ) I“i'-l-r,-'fTi? I_:F—T:."\,l-i— % ‘;_{."_ -:f" rE”: ufJ -z:‘
pi(t.8) = (3:‘ € =1 T 4 ei=t i (3.24)
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Figure 3.4: w nominally similar single-part system copies (repaired after cach failure) with
m time-dependent covariate measurements on each copy (Dots denote failures, circles denote

suspensions)

As in the case of (3.5), the model in (3.24) is probably unrealistic from a reliability modeling
point of view because of the data requirements. The objective with this model is also not to
use it in its complete form as presented above, but to simplify it to conventional enhanced
models or to combinations of models with different enhancements by applying restrictions on

some of the parameters.

Equation (3.24) can be generalized further by allowing for system copies that consist of
multiple parts in series, where the total system success is dependent on the success of each
individual part. On failure of any part, only the particular part is repaired and the system

is put back into service. A situation of competing risks arise in such a case.

Suppose a system is considered with parts | = 1,2, ....n in series (see Figure 3.5) where the
success of the system is dependent on the success of each individual part. Event data from
each part in each system is recorded in ¢ x 2 matrices, consisting of event times. T:‘" and
event type indicators, C':"’, Every system has a similar event history matrix that can be

deduced from the part histories, i.e. T/ = min{7"} for { = 1,2,...,n and C}" corresponds to
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Figure 3.5: w nominally similar repairable system copies containing n parts each with my
time-dependent covariate measurements on each copy (Dots denote failures. circles denote

suspensions |

the event type of min{7}"}. On each part my; time-dependent covariates are measured, i.e.
. S 3 . f ; : g A
2= [:f* Zq' s :zf,';f Il where t refers to the global time of system k. Event data is categorized

ins=1,2,..r" different strata, where »! is the highest stratum of any part [. The general

TAs before, “(t)” is suppressed.
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model for such a situation (analogous to 3.20) is given by,

-3¢ (oh(tmie ) vkt 2f) + (el - 28 (3.25)

=1 '

where the baseline function g for any item [, associated with system & in stratum s becomes,

kpro B k T N -
gs'(t,8) = exp(I'g* + o Tt (t — 754)) (3.26)
The coefficients 3%, k. 5 and 75 can not be represented as matrices because different

svstems could be in different strata. The functional terms become,

i

f\i.:“ (t,0) = exp Z '*(if;f . :j-"’ (3.27)
iy

uf’ (t,0) = exp ﬂ'fj . :jf'! (3.28)
7=l

The peril rate for any part [ in a system copy k at any time f in stratum s is given by,
kg sk ky <l f ky my kp kg
Dot 41he T {(t=myt ) 3 g ook,

pi(t,8)=ch | e te=t (3.29)

while the peril rate of an entire system is represented by.

""-1--;-:&"’1"‘"(: .,—A'"J_.rg S E :\’_I‘I ”,Jf".‘kn’
_* £l & s - -'-‘_,i = _:‘ ba g2y .
pi(t,0) E e i + =1 (3.30)

=1

Equation (3.30) is more general than (3.24) and can be reduced to (3.24) by letting n = 1 for
all values of k. The biggest advantage of the model in (3.30) is that different failure modes
in systems are accommodated even if the system’s condition is monitored by only one set
of covariates, as is often the case in practice. For such a situation, 28 = 2% 4% = 4% and

’” = a , for all /.

In Appendix B it is shown that (3.30) can be reduced to the majority of models discussed in
Section 2.3.

3.3.2 Likelihood construction

The general approach of Anderson, Borgan, Gill, and Keiding (1993) combined with the
method used by Prentice, Williams, and Peterson (1981) is used to construct the likelihood
for equation (3.30). Suspensions are accommodated in the likelihood, but should preferably
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only be used for calendar suspensions and for cases where the system was withdrawn from
service preventively, according to Ascher (1999). Even if a gystem was withdrawn from service
before failure. it is usually done for good reason, i.e. it is believed that the system is near to
the end of its lifetime. In such a case it is more meaningful to include the observation as a

failure as apposed to a suspension in the intensity model.

To simplify the calculation of the likelihood, data should be structured in the following way.
Suppose dg events are observed in stratum s. An auxiliary ds »x 4 matrix is infroduced, con-
sisting of the chronologically ordered event times of stratum s in column 1, the corresponding
event type indicators in column 2, the system on which the event occurred in column 3 and
the part on the system that cansed the event in column 4. In this matrix, the events are
denoted T7, the event indicators Cj, the system identifiers as kj and the part identifiers as
Iy forb=1,2; ..ty

The general formn of the likelihood for (3.30) is given by,
n [t Ch
Lu‘g) = Z l_[ le Th' & I,, plﬁfﬁd - I[n "I.r); (t,0)dt (331J

=1 |s=1

For numerical convenience. the natural logarithm of the likelihood, i.e. In L(t,8). is maximized

because,

argmax L(t,0) = argmaxIn L(t,0) (3.32)
1.6 .0

which leads to,

n rl s dy - 5

Ty Irf_.,
InL(t,0) = H Z Zgﬁlnm[fﬁ,ﬂ}—zg'ﬁ / pi(t.0)dr| — /{ p1(t,0)dt
b=t VO )

=1 |s=1 =1 ~ "

L
"~ g

Term 1 Term 2 Term 3
(3.33)
In equation (3.33) Term 1 is,
) . ) _ Ty my " )
ri‘.‘ ;.,._.',I:I'Tﬁl’llrl"g_rj‘é 1+ E }”Jl’ ::f ): ”i}_‘::'f
Z Cy |11g ¢ = i < (3.34)
where k = kj and [ = [j. Term 2 is,
: _ Lomy o
ds . el Yol (=t )+ 5 “j_:" T a:j ! _
> ¢ / k| e = e Y e (3.35)
h=1
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with &k = kj and ! = [} and Term 3 is,

P 3 _ ) _ my ) : iy . _
To [ TRl e+ £ gl T ekl
/ e =17 Ty ed= 7] dt (3.36)
J0
with k =k} and | = [j.
The maximumn value of equation (3.33) is found where,
dln L(x.,0)
—— = (3.37
6 )

for all values of 8. Numerical optimization techniques with which (3.37) can be obtained are

described in Appendix C.

3.4 Practical implementation of the combined models

In this section some comments are made with regards to the practical implementation of the
combined models. As part of this, the validity of the assumptions for the models are also

considered.

3.4.1 Comments on the assumption that covariates are always positive

Covariates were restricted to be positive during the model development in order to simplify
the specification of restrictions. For example, in the non-repairable case, to restrict A to 0
it is simply required to fix all elements of v to —o0, i.e. Az,0) = exp(} —oc - -:-j”) = 0.
for all valid values of j. The assumption of positive covariates has no other influence on the
combined models. Positive and negative covariates and also decreasing covariates do play a

role in the estimation of residual life. This is discussed in Chapter 4.

3.4.2 Different modeling scenarios

Four different modeling scenarios are identified and munbered in Figure 3.6.

The different scenarios correspond to the following equations: (1) Equation (3.5); (2) Equa-
tion (3.13): (3) Equation (3.24); and (4) Equation (3.30). While developing these equations,
it was assumed for Scenarios (1) and (2) that all parts of all system copies form part of
renewal processes and that all parts of all system copies form part of NHPPs for Scenarios
(3) and (4). In practice this will probably seldom be true but by separating renewal pro-

cesses from NHPPs in “mixed” data sets, this can be overcome. In Table 3.5 below, scenarios
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NON-REPAIRABLE
Single Component System

NON-REPAIRABLE
Multiple component system

REPAIRABLE
Single Component System

D|a
d @

REPAIRABLE
Multiple Component System

Figure 3.6: Modeling scenarios

other than the four in Figure 3.6 are sketched. i.e. mixed scenarios, with proposed modeling

methodologies.

Table 3.5: Methodologies to model mixed scenarios

Scenario

Proposed modeling approach

Model w

copies of which y forms part

single part system
of renewal processes and w — y

forms part of NHPPs.

Model the y renewal systems with Scenario (1) of Figure
3.6 and the w — y remaining system with Scenario (3) of]
Figure 3.6. To estimate the next event time of a renewal
system, use the model calculated for the y systems and
to estimate the next event time for a repairable system,

use the model for the w — y systems.

Model w system copies consist-
ing of n parts each. Of part [,
y' copies follow a renewal process
while 1 — ¢! behave according to

NHPP processes.

Model the 3~ ¢! renewal copies with Scenario (2) of Figure
3.6 and the Y (n — ¢') remaining copies with Scenario
(3) of Figure 3.6. To estimate the next event time of
a renewal system. use the model calenlated for the > y!

copies and to estimate the next event time for a repairable]

system, use the model for the 3 (n — y') systems.

Table 3.5 emphasizes the importance of separating renewal processes and repairable systems

as was discussed in Section 1.2.2.

3.5 Conclusion

The models developed in this chapter primarily arose from a need to include more than one

conventional enhancement in the same model. Generic models were developed to address this

need with a clear distinction between the non-repairable and repairable cases.
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For non-repairable cases. a generic model was constructed to estimate the FOM while for
repairable cases. a generic model was constructed to estimate the peril rate. The Weibull
distribution and log-linear NHPP were used to parameterize the generic model for the non-
repairable and repairable cases, respectively. This was done to be able to calculate absolute
risks and eventually estimate residual life (in Chapter 4). A summary of these models is

presented in Table 3.6,

Table 3.6: Summary of generic models

Non-repairable Case**

w single part system copies (all forming part of a renewal process):

|'_'k_

&

h(z,6) = ¢ nk nk

w system copies consisting of n parts in series each, where every part

forms part of a renewal process:

k ™ T
n /3]\"; i-"k: (J Tr‘i';) 'Ijsl_] f "I':-! ,zkf i“: Qki 5
g | et (o — L Yoy PR
h(l‘,ﬁ) = E g:‘f ol Y I o3 I AN W ) ei=1 ] + ei=1 24

k k
=1 s s

Repairable Case!f

w single part system copies (all forming part of a NHPP):

m
ko Lk ko Lk
V' % E Q,EJ'Z;J.

Ty TR (=78 + ;
1 ! er=1

p(t.0) = Q: e

T3

w system copies consisting of n parts in series each, where every part

forms part of a NHPP:

ky o kpak k Mok K ook ok
o'+ Tl (t=g! )+ 3 vel 2! L gzt

" . |
pi(t,6) = Z(,}f" ¢ = s =
1=1

The models in Table 3.6 are generic and it was proved in Appendix B that, in most cases,
they can be reduced to the models considered in the literature survey of Section 2.3. Data
constraints encountered in practice make these generic models unrealistic in their complete
form but provide a basis from which simpler models (with more than one enhancement) can
be derived. This concludes point (i) of Section 1.6 - the problem statement.

"*Variables for the models corresponding to the non-repairable case are declared and described in Section
3.2
""Variables for the models corresponding to the repairable case are declared and deseribed in Section 3.3

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING 67
UNIVERSITY OF PRETORIA



University of Pretoria etd — Vlok, P-J (2006)

CHAPTER 4

ESTIMATING RESIDUAL LIFE BASED ON
FAILURE INTENSITIES

4.1 Introduction

Chapter 4 deals with Residual Life Estimation (RLE) of items based on observed FOMs (in

the non-repairable case) and peril rates (in the repairable case). The intention was not to

develop new theory for RLE but to apply existing theory to the combined models that were

developed in Chapter 3. Three steps in the process of estimating residual life are identified:

(i) Prediction of covariate behaviour because covariates are assumed to be time-dependent.

(ii) Calculating residual life based on observed FOMs or peril rates with the assistance of
covariate behaviour predictions.

(iii) Presentation of results in a comprehensible manner.

These steps are discussed thoroughly in the remainder of the chapter.

In Step (i) covariates are assumed to be time-dependent for more generality but also because
of practicality. This assumption requires prediction of future covariate behaviour to be able to
estimate residual life. Varions approaches can be followed to perform the covariate behaviour

prediction and it is discussed in the first part of this chapter.

Residual life calculations are based on the models for items” FOMs or peril rates developed
in Chapter 3. i.e. equations (3.13) and (3.30). A detailed literature survey was done on
this subject and subsequent procedures were based on the literature survey. Step (ii) is the

ultimate objective of this thesis.

To make this study more useful, a method to present the results of calculations to maintenance

practitioners in a user-friendly manner, is proposed at the end of this chapter to conclude
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Step (ii1). This was identified as one of the main research objectives in Section 1.6 and should

be achieved to make a contribution to practical reliability modeling.

4.2 Covariate characteristics and behaviour prediction

Section 4.2 covers covariate characteristics and the prediction of covariate behaviour. Before
techniques for covariate behaviour prediction can be considered, three covariate characteris-

tics need to be discussed. Covariates can be either,

(i) time-dependent or time-independent;
(ii) internal or external; or

(ii1) stochastic or non-stochastic.

These characteristics are discussed in the next three subsections after which techniques are
discussed to predict stochastic and non-stochastic covariate behaviour. The section ends
with formal assumptions on covariate characteristics (in Section 4.2.6) that is applied in the

remainder of the thesis.

4.2.1 Time-dependent vs. time-independent covariates

In this thesis it is consistently assumed that covariates are time-dependent, not only for
generality but for more practicality. If covariates were time-independent, the section on
prediction of future covariate values would be unnecessary since covariate values would be
known and would remain constant. PIMs and residual life calenlations with time-independent

covariates are special cases of models that allow for time-dependent covariates.

4.2.2 Internal vs. external covariates

Covariates can be either internal or external. This subject is discussed in detail by Fahrmeir
and Tutz (1994). External covariates can be measured on a system regardless of whether
an event has occurred on the system and the value of an external covariate is not changed
materially by the occurrence of an event. An example of an external covariate is the ambient,

temperature close to a systern.

Internal covariates, on the contrary, can only be meaningfully measured on a system before
an event has occurred. The value of an internal covariate generally changes dramatically

after the event occurs and is generally uninterpretable after the event. An example from the
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biomedicine field is a living organism’s heartbeat, which is by definition zero after the event
of death.

The type of covariate, i.e. internal or external, does not play a mathematical role in predicting
covariate behaviour but it is an important aspect to consider when constructing a model for
covariate behaviour. In the case of internal covariates for example, it is important to study

the effect of event-type on covariates before it is attempted to model the covariate behaviour.

4.2.3 Stochastic vs. non-stochastic covariates

Covariates can be either stochastic or non-stochastic. For the stochastic case, covariates can
only be predicted within certain confidence bounds and an exact prediction is not possible.
At least three techniques exist to model stochastic covariates, i.e. time series analysis, state
space models and Markoy chains. Both time series analysis and state space models requires
large quantities of data (observations in this context) to prodice reasonable models. Markov
chains are less dependent on large data sets and because the case study of Chapter 5 deals
with a fairly small data set, only Markov chains are considered in Section 4.2.4. For more
detail on the theory and application of state space models, see Cmiel and Gurgul (2000),
Christer, Wang, and Sharp (1997) and Wang, Wang, and Mao (1999). Harvey (1981) and

Chatfield (1980) provide an introduction to time series analysis.

Non-stochastic covariates can, by definition, be predicted with reasonable accuracy. Two
cases of non-stochastic covariates exist however, In the first case, covariates are known from
the origin of time and observations are unnecessary in intensity models, e.g. the complete
peril rate of a system would simply be a complex parametric formulation of a NHPP as a
function of time. In the second case, information about a covariate’s behaviour up to a point
x or t is required to be able to predict covariate behaviour beyond z or t. These cases are

considered in Section 4.2.5.

4.2.4 Predicting stochastic covariate behaviour

Markov chains have been used by, amongst other, Makis and Jardine (1992), Makis and
Jardine (1991), Vlok (1999) and Vlok, Coetzee, Banjevic, Jardine, and Makis (2001) to
predict covariate behaviour. Other authors that have applied Markov chains in reliability
include, Lagakos, Sommer, and Zelen (1978), Ng (1999), Billard and Meshkani (1995), Collins
(1973) and Zhang and Love (2000). Christer and Wang (1995) oppose the use of Markov
chains to model covariate behaviour because present covariate levels are in practice more often
than not dependent on immediately preceding levels. Ross (1990) and Hines and Montgomery

(1980) discuss Markov chains in detail. In this section an overview of the theory required to
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predict covariate behaviour with Markov chains is presented.

Covariate states have to be defined for the covariates before it can be modeled with Markov
chains. For this reason, every range of covariate values is divided into appropriate intervals or
bands and every covariate band is defined as a covariate state. Covariate bands are then used
as boundaries for the transition probabilities in the Transition Probability Matrix (TPMX),
For numerical convenience, 4 or 5 bands are usually selected between upper and lower bands

except for the last band which does not have an upper bound.

Following the covariate states, suppose that { X, X1, Xo,....} is a multidimensional Markov
process which makes up an item’s event history such that Xy = (zp(2). 2p2(2), o, zpm (@) €
R™, where m is the number of covariates, and z;(x) is the &'" observation of variable i before
an event, performed at time x = kA where A is a fixed inspection interval. A stochastic

process {Xg, X1, X5, ....} is assumed to be Markovian if, for every k > 0,

P{Xps1 = | X = &, X1 = th—1, Xp—2 = k-2, «cooo., Xog = i} = P{Xp11 = j| X = i}
(4.1)

where j,i,ip, i1, ..., tp—1 are defined states of the process, in this case the covariate bands.

The transition probability for any covariate in state ¢ to undergo a transition to state j for a

given inspection interval A is,

Pyj(k) = Pyj(k, A) = P(Xps1 = §IX > (k+1)A, Xy = i) (4.

%]
—

where X denotes time to event as before and i and j denote any two possible states.

Suppose a sample Xo, Xy, Xp,.... is observed and let n;; (k) denote the number of transitions
from state 7 to j at k throughout the sample, where the sample may contain several histories,

i.e.

n(k) = #{ X = i, Xp1 = j} (4.3)

Similarly, the number of transitions from i at time kA to any other state can be calculated

by,

ni(k) = #{ Xy =i} = Z ni; (k) (4.4)

J

[t is hence possible to estimate the probability of a transition from state i to state j at time

kA with the following relationship derived with the maximum likelihood method,

- Tyl k)
Pyk)=—— 4.5
?.)[ ) '”a“‘"-} t )
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If it is assumed that the Markov chain is homogeneous within the interval @ < k& < b | ie.
F;j(k) = Pj;(a), the transition probability can be estimated by,

z ’ﬂ.ij(k)

] ask<h
o) ==

ask<h

(4.6)

It would also be possible to assume that the entire Markov chain is homogeneous, then

P,; = P;;(k), for k =0,1,2,.... and hence the transition probabilities are estimated by,

B = “i where n;; = Z nij(k), ni= Z i (4.7)

1y
k=0 b

As mentioned before, covariates are assumed to be time-dependent by default. For this
reason continuous time is divided into w intervals, (ay, as], ....., (a,,>), in which the transition
probabilities are considered to be homogeneous. This manipulation simplifies the caleulation

of the TPMX considerably without loosing much aceuracy.

The estimations of the TPMX above assumed that the inspection interval A was constant.
In practice, this is rarely the case. This would mean that recorded data with inspection
intervals different from A have to be omitted from TPMX calculations, thereby loosing
valuable information about the covariates” behavior. To overcome this problem a technique
utilizing transition densities (or rates) is used. Asswme that the Markov chain is homogeneous
for a short interval of time. The probability of transition from il,—p — jle=e is Pj(2) =
P(X(z)=3

(i # j). For the case where ¢ = j the transition rate can be derived with the following

X(0) = i) and the rate at which the transition will take place is D [P;;(x)] = Aij

argument. Suppose the system is in state i|,—p and state j|,—, with r possible states. If the

s over all probabilities over x is taken,

J (4.8)
or Y Py(z) =1
3
If the time derivative is taken,
)
; 5z [P(@)] =0
Xio + Xt + At A =0 (4.9)
Au = — Z )\U
1#)
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The value of any A;; (i # j) can be estimated by,

Nij = EE%: Nij = Z ni; (k) (4.10)
I

where, & runs over the given interval of time and ; is the total length of time that a state
is occupied in the sample. The calculation of the transition rates can be generalized for the

system from any state ¢ to j at any time z with,

Pli(x) =" Pylz)\; (4.11)
i

Equation (4.11) provides a system of differential equations that has to be solved to obtain
the transition probability matrix. A solution to the system of differential equations solution

is,
P(r) =exp(A- 1) (4.12)

where P(x) = (P;(x)) and A = (A;;)". This can be calculated by the series,

o0 n
) T
Plr) = A" — 4.13
(x) Z_;j = (4.13)
which is fast and accurate. Statistical tests (such as y?) can be used to confirm the validity

of the homogeneity assumption over the given time intervals.

4.2.5 Predicting non-stochastic covariate behaviour

When selecting a parametric function to predict future covariate behaviour, the first option
should be to select a function that has a physical relationship to the observed phenomenon.
In vibration analysis, for example, it is expected that the spectral component related to
unbalance would increase quadratically with increasing rotational velocity according to Rao
(1995). If this spectral component is used as a covariate, its future behaviour should typically
be modeled by a parametric function of some parabolic type. Selecting an appropriate para-
metric function should as far as possible not be a curve fitting exercise but rather a physical

interpretation of the actual situation.

Rao (1980) formulated a few basic parametric functions that could be used to predict covariate

behaviour!. These functions with solutions to their parameters are summarized in Table 4.1.

"Brackets denote matrices.

'"These parametric functions are general and were not intended to predict covariate behaviour.
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Table 4.1: Parametric functions suitable to predict covariate

behaviour
Linear curve
Form y=uad+b
Solution -
- (dy — d)(y1 —F) + (d2 — a ){J’_' g)+ .. +£ffu—ff) Yn — )
(dy —d)2 + (dz — d)? + ... + (dy, — d)?
b=%— ad
Quadratic curve
Form y = ad® + bd + ¢
Solution .
ZJ; = ung + J)Zd- +cn
Zd?g? = aZd‘j + bZa’2 i Za’
f—]. .:—I
Zu’ Yi = aqu ﬂl—bi:ufi +e Zd.'f
1=1 i=1
Hyperbolic curve
Form y=a/d+b
Solutron :
Z Yi = a Z + b
1=1 =1
n 'H. n
Yi 1 1
7 it
2 d; ”Z fz - JZI d;
Exponential curve
Form y=ab?
Solution " n
Z log y; = nloga+ log hz d;
=1 i=1
Z dilogy; = loga Z d; +logh Z d,;”’
=] i=1 i=1
Geometric curve
Form y = ad’
Solution . .
Z logy; = nloga+logh Z log d;
=1 i=1
i n T
Z d; logy; = loga Z d; +log hz log d?
v—==1 1=1 i=1

A simple technique to test the goodness of fit of a straight line to a particular data set, is to
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calculate the correlation coefficient, R, by

(di — d)(y1 — ) + (da —
\/[(dl - ‘:?) + oo+ (dn —

I q) T T (d” EJ(SJ“ - E)
) ] (y1 =92+ ... + (yn ~-7)

R=

£ (4.14)
d

To be able to calculate R for the non-linear functions in Table 4.1, data should be linearized

first. A summary of the linearization procedure is shown in Table 4.2,

Table 4.2: Linearization of data to calculate correlation co-

efficient
Curve d; Yi
Quadratic d, Yit1 — W
Hyperbolic 1/d, 1
Exponential d; log w;
Geometric log d; log y,

Rao (1980) suggests that for an acceptable fit, 0.88 < R < 1 for 5 samples, 0.28 < R < 1 for
50 samples and 0.20 < R < 1 for 100 samples.

It would also be possible to fit a n'" order polynomial through the covariate history and
then predict future covariate values. This should preferably only be done for fixed inspection
intervals. A n'" order polynomic approximation for a particular future covariate value, y; at

instant d, is given by,
Yi = and} + an_1d " + .+ ayd; + ag (4.15)

Ellis and Gulick (1990) describe numerical methods to solve for the coefficients of non-linear

systems such as (4.15).

4.2.6 Assumptions on covariate characteristics

According to Banjevic (2001), assumptions on covariate characteristics should be based pri-
marily on the specific situation that is considered since there are too many different possible
scenarios to generalize these assumptions. The assumptions on covariate behaviour made in
this thesis are however generalized to a certain extent, since it is valid for the majority of
situations where condition monitoring measurements are used as covariates. A summary of

the assumptions is presented in Table 4.3.
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Table 4.3: Summary of assumptions on covariate behaviour

Covariate Assumption
Characteristic
Time dependency Time-dependent covariates are assumed. The majority of diagnos-

tic parameters measured on equipment in industry are functions
of time. Constant covariates are special cases of time varying co-

variates.

Internal vs. external No assumption needs to be made with regards to this character-
istic but it will be considered when postulating the method of

covariate behaviour prediction.

Stochasticity Non-stochastic covariates are assumed for two reasons. Firstly,
it is believed that covariate behaviour in a condition monitoring
environment can be predicted with reasonable accuracy provided
information about the covariate is available up to a certain time

x or t. Secondly, it is shown in Section 4.5 that this approach has

more appeal to maintenance practitioners.

4.3 Residual life estimation based on an observed FOM

Section 4.3 discusses RLE of a system based on an observed FOM. Relevant literature is
presented in Subsection 4.3.1 after which the most applicable approach is applied on equation
(3.13) in Subsection 4.3.2.

4.3.1 Literature survey

Residunal life is defined as the time from some current point in time. 2. until the follow-
ing event. This coucept is not unique to reliability modeling. In reliability modeling the
event corresponds to failure or suspension, in queuing theory it could correspond to the time
from a customer arrives until he/she is served (see Gross and Harris (1985)) or in inventory

management theory it could be the time to the reorder point (see Tijms (1976)).

The vast majority of literature found on RLE? based on observed FOMs, deals with the
situation where covariates are not observed or recorded. A possible reason for this is the
complexity of estimating the conditional survival function of a system where the system is
a function of time-dependent covariates. Percy, Kobbacy, and Ascher (1998) confirm this

statement by describing the procedure as “tricky” and mention it as a possible subject for

TRLE in a reliability modeling context is considered in the remainder of this section.
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future research.

Many authors studied the relationship between the FOM and RLE, for example, Ghai and
Mi (1999), Ruiz and Navarro (1994), Guess and Prochan (1988) and Ebrahimi (1996). The
univariate residual life, p, of a system at time z is defined as a conditional expectation, i.e.
f:c Ry(x)dx

pr)=EX -zl X 2 2]= R (@)

(4.16)
Ry (x) is related to hx(z) by,
Rx(z) = e~ Io hx(s)ds (4.17)

Tang, Lu, and Chew (1999) describe the discrete relationship between FOM and residual
life and Baganha, Geraldo, and Pyke (1999) propose a simple algorithm with which the

conditional expectation can be solved for discrete relationships.

Rausand and Reinertsen (1996) believe that the probability distribution selected for RLE
should primarily be based on knowledge of the underlying failure mechanism in the system.
Event data should only be used to quantify parameters. Lee, Chung, Kim, Ford, and Andersen
(1999) follow this school of thinking with some examples from the nuclear power generation
industry. Huang, Miller, and Okogbaa (1995) describe these approaches as proof that data

in industry is too limited to estimate residual life.

Guess and Park (1988), Guess and Park (1991) and Mi (1995) address the possibility that
the residual life of a system is not constant. This is not done by allowing for the effects of
covariates but by assuming a bathtub-curved FOM and then base RLEs on this assumption.
It is also proved in these publications that by minimizing the FOM, the residual life is not
necessarily maximized. Lim and Park (1995) considered a similar scenario. They propose
a procedure for testing constant residual life against increasing or decreasing residual life,
assuming that the proportion of the population that fails at or before the change point of the

residual life function, is known.

In Pulkkinen (1991), the residual life is calculated as the time until the degree of wear of a
system reaches a certain threshold level. The estimate is formed by updating the distribution
of a stochastic process by describing the degree of wear. The updating procedure is based on
successive application of Bayes™ formula. Pulkkinen concludes that even though analytical
calculation is difficult, the approach is promising. Shimizu, Ando, Morioka, and Okuzumi

(1991) used a similar approach but based estimates on a threshold reliability level.

Karpinski (1988) developed a general method to determine the distribution of residual life
(conditional expectation) of a system after some partial failures. The RLE starts after the
first partial failure and the approach is based on the knowledge of a special distribution of
component lives and system life. This method was applied with success on systems operating

in nuclear power plants.
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Nair and Nair (1989) and Kulkarni and Rattihalli (1996) extended the common univariate
residual life concept to the bivariate case where two random variables are observed at each
event. This extension could be useful in cases where survival times of different parts on
the same system are dependent because of common environmental influences. Zahedi (1985)
and Arnold and Zahedi (1988) generalized the bivariate approached further by introducing
multivariate residual life estimation. No practical examples of the bivariate or multivariate

approach were found in the literature.

An approach fundamentally different to the conventional conditional expectation was pro-
posed by Zahedi (1991). Zahedi constructed a proportional mean remaining life model,

analogous to the PHM proposed by Cox (1972), i.e.
w(x,z) = po(x) - exp(y - 2) (4.18)

where pg(x) is a baseline residual life function dependent on time which is influenced by a
functional term containing covariates. Regression parameters are determined in a similar
manner as with the model of Cox. Zahedi mentioned in this publication that practical tests
were done on the model and that results would be published shortly. No further publication

on this approach could be located.

4.3.2 Application of residual life theory on the combined model for
non-repairable systems

In the previous section it became evident that a conditional expectation approach is most
suitable for this application. This approach is a natural extension of the FOM (which is the

conditional probability of failure) and has been proven in many reliability applications.

Following the assumptions made in Section 4.2.6, it is required to substitute equation (3.13)

into equation (4.16). This yields,

[> R(¢.0)do

w(x,8) = = 4.19
aly) R(2.0) el
where.,
: gt _q ™ e o® "ok
T it ik 4 k s Tl ] et
2 ] I.if!‘.l 'u-“‘.f @ — T,‘_; j fa; %y 2. Gsez;
R{:p,ﬂ) =exp |— / ngf _z %_) . gd=1 3 + ei=! 37y de
Jo 15 s 75!
(4.20)

In (4.19) and (4.20), & corresponds to the time of the last observation in the history of

a system currently in operation. To be able to integrate these functions to infinity, the
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covariate behaviour should be extrapolated with suitable techniques up to the point where

R(z,0) = 0.

A 95% confidence bound can be constructed around the mean residual life of (4.20) to quantify
the certainty of an estimate. First it is assumed that the density corresponding to the FOM

in (3.13) is given by,

f(z,8) =D, {1 — exp (— /T h(.c,ﬂ)d:r:ﬂ (4.21)
0

The lower limit for the residual life is p(xz,0) = v — z, where z is calculated from,

x f(z,8) . o
/ T 1 gya e = 0028 (4.22)

Similarly, the upper limit g(z,0) = £ — z is found where,

T f(b 9) o ) |
/ W‘“ =0.975 (4.23)

Both equations (4.22) and (4.23) are solved numerically.

4.4 Residual life estimation based on an observed peril rate

Section 4.4 discusses RLE of a system based on an observed peril rate. Relevant literature is
presented in Subsection 4.4.1 after which the most applicable approach is applied on equation
(3.30) in Subsection 4.4.2.

4.4.1 Literature survey

Publications on RLE of repairable systems are not nearly as common as for non-repairable
systems. Reinertsen (1996) supports this statement. All the publications found on this
particular subject follow a conditional expectation approach, similar to what was described
in Section 4.3.1.

Bhattacharjee (1994) investigated RLE for repairable systems and concluded that the time to
first failure cannot adequately reflect its degradation over time because the aging property is
influenced by maintenance. He developed a framework that attempts to formulate appropriate
ratios of aging under repair and the corresponding implications. This formulation is based

on conditional expectation of the next time to failure.

Calabria, Guida, and Pulcini (1990) propose a point estimation procedure for the m'™ future

failure of a repairable system based on the observation of n preceding failures. The procedure
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is based on the conditional expectation of the next failure calculated by maximizing the

likelihood. Monte Carlo simulations done to evaluate the approach produced good results.

4.4.2 Application of residual life theory on combined model for

repairable systems

Following the approaches in the literature study, a conditional expectation approach will be
used to estimate residual life of a system based on an observed peril rate. According to
Banjevic (2001) this is in general complicated but for the NHPP it is simple because of the
definition of the NHPP (see Section A.3.3).

Meeker and Escobar (1998) describe RLE of repairable systems modeled by NHPPs in detail.
[t is required to calculate the mean of the distribution of failure times of a repairable system
that experienced its most recent failure at time 7} and is currently operating at time t where
t > 1;. The residual life p for a repairable system is g = 7, — t and for a NHPP with

covariates it 1s expected to be,

]rx - Dy [1 —exp (— [fx (p(s,0) — p(t,0)) ds]]dt'_‘) i

t,0) =
2ULY 1—exp (= [ (p(s,8) — p(t,0)) ds)

(4.24)

A 95% confidence bound can be constructed around the mean residual life of (4.24) to quantify
the certainty of an estimate. First it is assumed that the density corresponding to the relevant

portion of the peril rate is given by,

f(t,8) =D [1 — exp (~— / (p(s,0) — ,u(_f.t?))al.s)} (4.25)

(!

The lower limit for the residual life is u(t,0) = t — ¢, where ¢ is calculated from,

nE o 3\
~ f(t.0) L
———dt = 0.025 4.26
/r jsx f(t,0)dt ) ( )

Similarly, the upper limit ji(t.0) =t — t is found where,

_ fte) .
= 0.975 4.27
/ L fﬁ‘df = 0.975 (4.27)

Both equations (4.26) and (4.27) are solved numerically.

4.5 Presentation of results to maintenance practitioners

Up to this point, objectives (i) and (ii) of the problem statement (see Section 1.6) were

addressed. But, if these results are not presented in a user-friendly and comprehensible
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manner, the contribution of the thesis to practical reliability modeling will be small. It is
necessary to “sell” the concept of RLE to maintenance practitioners on two levels. The first
level of people is the middle and upper level maintenance managers. This would typically
include maintenance supervisors, general maintenance managers and engineering managers.
The second level of people will be referred to as end-users of the RLE methodology and could
include maintenance planners and highly skilled maintenance technicians responsible for a

limited scope of equipment.

Different approaches should be followed to promote the RLE methodology amongst the two
identified levels of maintenance practitioners because each level will evaluate the methodology
differently. Middle and upper level maintenance practitioners will be interested in the process-
flow of the concept and how the concept will be integrated with conventional practices and

processes.

|
i '
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Figure 4.1: Diagrammatic overview of the process-flow of the RLE concept

Figure 4.1 shows a diagrammatic overview of the process-flow of the RLE methodology that
can be used as a basis to introduce the concept to the first level of maintenance practition-
ers. The involvement of an organization’s Computerized Maintenance Management System

(CMMS) is emphasized in Figure 4.1 because data required for RLE would typically be re-
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irieved and stored in the CMMS. Note that even though the illustration in Figure 4.1 is very
conceptual, the difference between the non-repairable and repairable cases is stressed. The
process is sketched as a loop to show that as soon as new information is available (a new CM

inspection was done) or a maintenance action was taken, the process is repeated.

End-users of the RLE concept will not be interested in the process-flow of the methodology
but rather in the outputs of the concept. For this reason, the methodology should be intro-
duced and results should be presented in a practical (graphical) manner. End-users should
understand that RLE algorithms developed in this thesis are only decision support tools
and that the final maintenance decision is still up to the individual. Guidelines for decision

making are covered in Section 4.6.

Two different illustrations of the output of the RLE methodology should be presented to end-
users to promote the concept: one for a non-repairable system and another for a repairable

system. Figure 4.2 shows the output of the RLE methodology on a non-repairable system.
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Figure 4.2: Presentation of RLE results of non-repairable systems to end-users

Suppose a fixed CM inspection interval of A is used to monitor a particular non-repairable
system. At time x = 0 when the system was installed, an estimate of the residual life is
made within statistical bounds (indicated as a dotted vertical lines). After A time units new
information (covariates) are observed and the residual life is recalculated. If the system’s
degradation is linear and the model is accurate, the residual life estimate should reduce
by A. It is expected that the p(z,8) would decrease monotonically with wear but minor
maintenance to the system could elongate the system’s life and p(x,0) could increase (see

2 = 4A on Figure 4.2).
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The output of the RLE methodology on a repairable system is virtually the same as for the

non-repairable system except that the time scale is different. See Figure 4.3.
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Figure 4.3: Presentation of RLE results of repairable systems to end-users

Suppose a fixed CM inspection interval of A is used to monitor a particular repairable system.
At time T7 when the system was re-installed. an estimate of the residual life is made within
statistical bounds (indicated as dotted vertical lines). After A time units new information
(covariates) are observed and the residual life is recalculated. If the system’s degradation is
linear and the model is accurate, the residunal life estimate should reduce by A. It is expected
that the pu(f,0) would decrease monotonically with wear but minor maintenance to the system

could elongate the system’s life and pu(t,0) could increase (see t = 19+ 4A on Figure 4.3).

4.6 Decision making with the assistance of dynamic residual

life estimates

The ideal decision rule for the RLE approach would be to take action as soon as the lower limit
of the residual life estimate equals zero. This is not practical however because of two reasons.
Firstly. because the lower limit of the residual life estimate is calculated from the conditional
expectation of failure it implies that this estimate will only approach zero when time (local or
global) approaches infinity. Secondly, inspections are most often done discretely which means
that the lower limit of the residual life estimate could become zero in-between inspections and
the failure could occur before the next inspection. For these reasons a simple but practical

decision rule is proposed: take preventive maintenance action as soon as the lower residual
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life estimate is less than the time to the next inspection. Thus, for the non-repairable case it

is when,
;_3.(.:;9) <j-A—uw (4.28)

where the j'" inspection is the next inspection and A is the inspection interval. Similarly,

for the repairable case it is when,

u(t,0) <TT+j-A—t (4.29)

[t is important to realize that these decision rules are influenced by the following:

(i) Quality of data

(i) Quantity of data
(iii) Selection of the PIM
(iv) Selection of covariates
(v) Accuracy of covariate behavior prediction
(vi) Accuracy of covariate measurements

It 1s difficult to quantify the effect of these influences on residual life estimates and it would
differ for each situation. The proposed decision rule should thus only be used as a mainte-
nance decision support tool and the final decision should still be made by the maintenance

practitioner.

4.7 Conclusion

In this chapter, the RLE process was divided into three steps: (i) prediction of future covari-
ate behaviour: (ii) calculating residual life based on observed FOMs or peril rates with the
assistance of covariate behavionr predictions: and (iii) the presentation of results in a com-
prehensible manner. These steps are similar to the 2-phase approach of Christer and Wang
(1995) that constructed a model for the prediction of covariate behaviour first and then used
this prediction as a covariate in a PIM to make maintenance decisions. Christer and Wang
restricted their approach to the renewal case modeled by a simple Weibull FOM and used the

results to minimize long term cost, downtime or risk (similar to Makis and Jardine (1991)).

Covariates in this thesis are assumed to be time-dependent, internal and non-stochastic,
provided that the covariates have been observed up to a certain point & or t. Several possible
parametric functions with their solutions that could be used for covariate behaviour prediction

are summarized in Table 4.1.
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A detailed literature study was done on RLE based on observed FOMs or peril rates and it was
found that very few attempts have been made to calculate RLE based on an observed peril
rate. Many publications were found on RLE based on FOMs. In both cases, the vast majority
of authors used a conditional expectation approach to calculate residual life. Following this,
it was decided to use the conditional expectation approach to calculate p(z,8) and p(t,8).
The conditional expectation approach applied to the theory of Chapter 3 is swnmarized in
Table 4.4.

Table 4.4: Summary of RLE calculations based on a FOM or

peril rate

Non-repairable Case"

) — Ifo R(¢,0)do
u0) = =gy

Repairable Case’

[0-Dy [1—exp (= [° (p(s,0) — p(t,0))ds) |dv)

p(t.0) =t - L —exp (= [ (p(5,0) — p(t,0))ds)

The RLE process used in this thesis is of a fairly complex nature and would probably not
find acceptance amongst maintenance practitioners in its mathematical form. For this reason,
simplified graphical representations of the approach were developed for middle to upper level

management and for end-users in Section 4.5.

In this chapter, Steps (ii) and (iii) of the objectives set out in Section 1.6 were achieved. It is
hence required to apply the theory and methodologies developed on an actual data set. This

is done in Chapter 5.

Bar . . ¥ . . -y .

"Variables for the models corresponding to the non-repairable case are declared and described in Section
4.3

“Variables for the models corresponding to the repairable case are declared and described in Section 4.4
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CHAPTER 5

CASE STUDY

5.1 Introduction

It was stated earlier in this thesis that a useful contribution to the field of reliability modeling
can only be claimed if the developed theory is implemented successfully on an actual data set.
Data can be obtained in two ways: (i) it can be generated in a laboratory under controlled
conditions; or (ii) it can be collected in a typical industrial sitnation. Successful application
of the theory on data obtained from a laboratory may be doubtful because of the controlled
conditions in laboratories that do no exist in practice. It was hence decided to use data from

a real industrial situation.

Data satisfying the requirements of proportional intensity modeling was found at SASOL
Coal's Twistdraai plant at Secninda®. The Twistdraai plant was started up in September
1996 as a coal washing plant that washes coal to a certain cleanliness before it enters the
petrochemical process. In the plant, eight Warman® axial in, radial out pumps are used to
circulate a water and magnetite solution which is used in the washing process. A condition
monitoring maintenance strategy through vibration monitoring was applied on the pumps
from the startup date. Despite this strategy, to date several failures have occurred on these
pumps. The events produced by the pumps together with the vibration information are used
in the PIM theory of Chapter 3.

The theory that was developed in this thesis not only needs to be applied to real data but also
to be benchmarked against existing approaches. The only existing approach that the present
research can be compared against is the decision technique of Makis and Jardine mentioned
in Section 1.4.2. This approach was applied to the above-mentioned data set by Vlek (1999)

and the results are briefly repeated in this chapter and compared to the RLE approach.

"SASOL 1s a major petrochemical company in South Africa
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Chapter 5 starts off with a description of the SASOL data set after which the approach of
Makis and Jardine is applied and discussed. Because this approach was only briefly introduced
in Chapter 1, more details on the theory are also presented for completeness. The second
part of this chapter consists of the application of the RLE theory developed in this thesis on

the same data set. Chapter 5 ends with a detailed comparison of the two approaches.

5.2 Description of SASOL data

The data set under discussion has many shortcomings, including missing observations and
irregular inspection intervals, but was the best data set found after an extensive search
for suitable data in the South African industry. The Twistdraai plant was started up in
September 1996 and is thus still relatively new. Data was collected from September 1, 1996
to November 1, 1998 which gives an analysis time horizon of 791 days. A second data set
was collected from Novernber 1, 1998 to February 28, 1999 to further evaluate the combined

PIM’s performance.

5.2.1 Background

A total of eight identical axial in, radial out, Warman pumps are used in a specific section
of the plant to circulate a water and magnetite solution. These pumps are very important
in the washing process and significant production losses are suffered when one of the pumps
breaks down. All eight pumps work under nominally similar conditions. Figure 5.1 shows

the configuration of the eight pumps while Figure 5.2 shows a close-up of one of the pumps.

All the elements visible in Figure 5.2 are implied when referring to a pump except for the 220
kW electrical motors used to drive these pumps. A pump consists principally of an impeller
housing, impeller, bearing housing, 2 x SKF 938 932 bearings, drive shaft, V-belt pulley and

seals.

Because of the aggressive nature of the fluid being circulated and the robust environment of
the pumps, destructive failures are encountered frequently. These destructive failures often
oceur abruptly. i.e. a pump’s state literally change overnight from being in an acceptable
condition to being completely destructed. Functional failures are usually caused by one (or

a combination) of the following:

(i) Complete bearing seizure
(ii) Broken or defective impeller

(iii) Damaged or severely eroded pump housing
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Figure 5.2: Warman Pump

(iv) Broken drive shaft

When a pump has failed due to one of the reasons above, it is overhauled completely regardless
of the amount of work that needs to be done. This may inclnde replacement of bearings,
repair or renewal of impeller, repair or renewal of impeller housing or replacement of the
main shaft. No complete spare pumps are stocked at the plant but only spare parts, since

some parts tend to fail more often than others.
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During the analysis time horizon, the plant’s management prescribed a condition based pre-
ventive maintenance strategy based on vibration monitoring results. No fixed inspection
interval was used and vibration levels were only measured sporadically or when a notable de-
terioration in a pump’s condition became evident, whereafter more regular inspections were

done. This strategy lead to several unexpected failures.

Vibration levels of the pumps were measured on the shaft bearings in two directions, horizon-
tally and vertically, to assess a pump’s condition. Figure 5.3 shows the horizontal measuring

positions.

Figure 5.3: Monitoring spots on pumps

The “wet-end” bearing (the bearing closest to the impeller) is referred to as Bearing 3 while
the “dry-end” bearing is labeled Bearing 4. Measuring positions 3H and 4H are thus the
horizontal measurements on Bearing 3 and 4, respectively. Only the horizontal measurements

were used in the analyses - reasons are presented later.

As in most typical vibration monitoring programs, the maintenance decisions on the pumps
were based on spectral vibration analysis. Several important frequencies are enveloped with
alarm levels and the required maintenance is performed as soon as two or three of the alarm
levels are exceeded. Alarm levels were determined by a combination of technician experience
and OEM specifications.

Vibration data loggers were used to capture vibration data on the pumps, from where the
information was downloaded onto a dedicated computerized vibration measurement database.
Data used in this research was retrieved from this database. Frequency spectrums of all
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measurements are stored in the database and the chosen covariate levels (discussed later)

could be retrieved accurately.

The vibration measurement database does not contain information regarding events during a
pump’s life, nor does the plant’s CMMS. This is not considered to be a serious shortcoming
for this research since the only event or action performed on a pump during its life time
is additional lubrication. It is assumed that additional lubrication does not effect covariate

levels severely.

Root cause failure analysis records obtained from the CMMS provided insight on the state
of a pump when maintenance was performed, i.e. whether it was in the failed state or was

preventively withdrawn from service.

5.2.2 Covariates

Covariate selection was largely based on the experience of vibration technicians involved with
the pumps at the plant. These technicians are of the opinion that the horizontal vibration
measurements on the bearings alone is a sufficient indication of a pump’s condition and that
not much additional information is obtained from the vertical measurements. According to
the theory of vibration analysis this viewpoint is not necessarily correct, but it was neverthe-
less decided to use only the horizontal vibration measurements to show that the combined

PIMs can improve decision making even if covariates have certain shortcomings.

As mentioned earlier, the vibration monitoring program that was used on the pumps was
based on spectral analysis. A number of important frequency bands (selected on theory
and experience) are monitored and a pump is maintained as soon as two or three of these
frequency bands’ amplitudes exceed certain alarm levels. It was decided to nse all of these
frequency bands as covariates in the combined PIMs, thereby incorporating vibration theory
and technician experience in the models. Table 5.1 summarizes the 12 selected covariates (6

on each bearing).

Table 5.1: Summary of covariates

Covariate Description

1. | RFO43H 0.4x rotational frequency amplitude, measured horizontally on Bear-

ing 3 in mm/s, indicative of a bearing defect.

2. | RF13H 1x rotational frequency amplitude, measured horizontally on Bearing

3 in mm/s, indicative of unbalance in the pump.

3. | RF23H 2x rotational frequency amplitude, measured horizontally on Bearing

3 in mm/s, indicative of misalignment in the pump.
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4. | RF53H 5 x rotational frequency amplitude, measured horizontally on Bearing

3 in mm/s, indicative of cavitation in the pump.

cn

HFD3H High frequency domain components between 1200-2400 Hz, measured
on Bearing 3, indicative of a bearing defect. This is a subjective co-
variate where 1 indicates a presence and 0 an absence of the men-
tioned components.

G. | LNF3H Lifted noise floor in 600-1200 Hz range, measured on Bearing 3, in-

dicative of a lack of lubrication where 1 indicates a presence and 0

a1l absence of the mentioned components.

=~

REO44H 0.4x rotational frequency amplitude, measured on horizontally on

Bearing 4 in mm/s. indicative of a bearing defect.

8. | RF14H 1 x rotational frequency amplitude, measured horizontally on Bearing

4 in mm/s, indicative of unbalance in the pump.

9. | RF24H 2x rotational frequency amplitude, measured horizontally on Bearing

4 in mm/s, indicative of misalignment in the pump.

10. | RF54H 5x rotational frequency amplitude, measured horizontally on Bearing|

4 in mm/s, indicative of cavitation in the pump.

11. | HFD4H High frequency domain components between 1200-2400 Hz, measured
on Bearing 4, indicative of a bearing defect. This is a subjective co-
variate where 1 indicates a presence and (0 an absence of the men-

tioned components.

12. | LNF4H Lifted noise floor in 600-1200 Hz range, measured on Bearing 4, in-

dicative of a lack of lubrication where 1 indicates a presence and 0

an absence of the mentioned components.

The biggest challenge when defining vibration covariates is to select a single quantity that
describes a specific defect most clearly. A specific defect can often be identified by numerous
parameters but not all parameters can be used as covariates, since the number of covariates
has to be limited. Too many covariates often canse the PIMs to become mathematically

unstable or difficult to estimate, especially for small sample sizes.

5.2.3 Description of collected data

The data collected include the pump unit identification, dates of inspection, vibration fre-
quency spectrum at each inspection (covariates), date of failure or suspension and the state
at maintenance, i.e. failed or suspended. Accurate inspection data was generally not avail-
able for cases where unexpected failures occurred and data was generated by extrapolating

available data as appropriately as possible to the date of unexpected failure.
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A total of 27 lifetimes with condition monitoring information (called histories) were compiled
over the analysis horizon with 98 inspections (extrapolations included). This gives an average
of 3.6 inspections per history. Approximately 50% of all inspections were done on an irregular

basis either at the beginning or the end of a pump’s life time.

Of the 27 histories, 11 were failures, 8 were suspensions and 8 were calendar suspensions since
all 8 pumps were running at the cutoff date of the analysis horizon. The 11 failures were
all unexpected and production losses were suffered following these events. The 8 suspensions
were all done based on vibration measurements and were considerably cheaper than the
unexpected failures. Three of the 8 suspensions were done on very short life times relative to

other survival times.

The working age of the pumps was considered to be the same as the calendar age, because
the pumps run 24 hours per day, 365 days per year. The pumps are very rarely shut down
because of breakdowns on other parts of the plant and these times are considered to be

insignificantly small.

Three events were defined for the pumps through their life times: (1) B - Beginning or pump
startup; (2) S - Suspension: and (3) F - Failure. Events that occurred to the pumps are listed
in Table 5.2 below!.

Table 5.2: Summary of events

Pump ID | Age (days) Date Event
PC1131 0 9/1,/1996 B
PC1131 397 10/3/1997 S
PC1131 397 10/3/1997 B
PC1131 D54 3/9/1998 F
PC1131 554 3/9/1998 B
PC1131 690 7/23/1998 S
PC1131 690 7/23/1998 B
PC1131 765 10/6/1998 F
PC1131 765 10/6/1998 B
PC1131 791 11/1/1998 S
PC1132 0 9/1/1996 B
PC1132 491 1/5/1998 F
PC1132 491 1/5/1998 B
PC1132 544 2/27/1998 S
PC1132 544 2/27/1998 B
PC1132 557 3/12/1998 S
"A graphical illustration of the event data is presented in Figure 5.8,
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[ PC1132 557 3/12/1998 | B
PC1132 751 9/22/1998 | F
PC1132 751 0/22/1998 | B
PC1132 791 11/1/1998 S
PC1231 0 9/1/1996 B
PC1231 563 3/18/1998 | F
PC1231 563 3/18/1998 | B
PC1231 578 4/2/1998 S
PC1231 578 4/2/1998 B
PC1231 791 11/1/1998 S
PC1232 0 9/1/1996 B
PC1232 599 4/23/1998 S
PC1232 599 4/23/1998 B
PC1232 791 11/1/1998 S
PC2131 0 9/1/1996 B
PC2131 184 3/4/1997 F
PC2131 184 3/4/1997 B
PC2131 470 12/15/1997 | S
PC2131 170 12/15/1997 | B
PC2131 631 5/25/1998 | F
PC2131 631 5/25/1998 | B
PC2131 7 10/15/1998 | F
PC2131 |- 774 10/15/1998 | B
PC2131 791 11/1/1998 S
PC3131 0 9/1/1996 B
PC3131 450 11/25/1997 | F
PC3131 450 11/25/1997 | B
PC3131 791 11/1/1998 S
PC3132 0 9/1/1996 B
PC3132 506 1/20/199% F
PC3132 506 1/20/199% B
PC3132 791 11/1/1998 S
P(13232 0 9/1/1996 B
PC3232 563 3/18/1998 | F
PC3232 563 3/18/199% | B
PC3232 723 8/25,/1998 S
PC3232 723 8/25/1998 | B
PC3232 791 11/1/1998 S
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Detailed inspection data of all the covariate measurements between events is presented in

Appendix D. Covariate values immediately after the occurrence of an event were all assumed

to be zero. Further detailed comments on the inspection data are presented below:

(1)

(i)

(iii)

(iv)

Covariate RF043H recorded two unusually high values of 250 and 1200 mm/s compared
to the normal range of between 0 and 5.6 mm/s. These high values were confirmed by
the vibration monitoring database and vibration technicians are confident that these
levels were not due to faulty monitoring equipment or human error. A further notable

fact is that these values occurred at suspensions.

The most logical explanation for these values lies in the wear mechanism present in the
bearings. RF043H is indicative of a particular bearing defect and the bearings that
produced these extreme values were probably able to withstand the wear associated
with RF043H, i.e. did not abrade with the introduction of the RF043H vibration
which would have retrained the vibration levels to within normal limits. The vibration
levels continued to rise to the unusually high values, which persuaded management to
maintain the pumps preventively,

Subjective covariates HFD3H, HFD4H, LNF3H and LNF4H indicated the presence of
their associated phenomena with a simple “07 or “17. These phenomena appear in
different degrees of severity and it is possible to argue that covariates that quantify the
severity would lead to more accurate PIMs. It is however very difficult to quantify the
severity of these phenomena with a single number (covariate) because it ranges over
large frequency bands. In practice, vibration technicians do not attempt to estimate
the severity of these phenomena either but only use the presence (or absence) thereof
as a supportive argument in decisions. It was hence decided that a simple “0” or *1”

would suffice for this study.

It is expected that whenever one of the subjective covariates turns to 1, it will remain 1.
This is however not observed in the data, once again due to wear mechanisms present in
the pumps. For example, LNF3H or LNF4H is present in certain inspections but absent
in following inspections, only to return in subsequent inspections. LNF is indicative of
a lack of lubrication. When there is a lack of lubrication asperities induce a lifted noise
floor over 600-1200 Hz but the asperities are soon worn off thereby inducing increased
levels of unbalance but a reduction in the lifted noise floor. Hence, the LNF covariate
appears, diminishes and reappears.

Failure times are distributed such that 6 failures occurred below 200 days and the
remaining 5 failures above 450 days. Suspension times are apparently randomly dis-
tributed with some being very short such as 53, 15 and 13 days.

Covariate RF13H shows comparatively high values in the beginning of histories and
then decreases gradually towards events. RF14H has a very similar pattern, although

not as distinct., Technical reasons for this would be the same as discussed in (i).
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Costs associated with failures and suspensions of the pumps could not be disclosed exactly
by the Twistdraai plant because of company policy. The Twistdraai plant did provide scaled
costs however which is proportional to the true costs. An unexpected failure cost of Cy =
R 162 200 will be used and a preventive maintenance cost of /p =R 25 000. Costs related to
production losses suffered due to unavailability are included in Cy and C),. These costs were
average costs sustained by the Twistdraai plant for the two years over which the data was

collected.

5.3 Maintenance Strategy Optimization through

Proportional Hazards Modeling with Cost Optimization

The decision-model by Makis and Jardine uses the Weibull PHM as PIM to optimize the
maintenance strategy. In this section, the selection of covariates and the Weibull PHM fit are
described before the decision-model is applied to the Weibull PHM?. The description mainly

focusses on the results since the details are presented in Vlok (1999).

5.3.1 Weibull PHM fit

There is no straightforward procedure to select the most appropriate covariates to obtain an
acceptable Weibull PHM. For this data set a combination of backward selection (eliminating
covariates with the highest p-values, one at a time), residual graphs, goodness-of-fit tests
and technical experience were utilized to obtain the best possible model. Some guidelines
for covariate selection proposed by Hosmer and Lemeshow (1999), Sakamoto, Ishiguro, and

Kitagawa (1983) and Schwartz (1978) that were also used include:

(i) It is not recommended to exclude several covariates from the model in one step. This
may lead to an inaccurate model.

(ii) If two covariates are highly correlated, they can produce very uncertain estimates (large
standard errors) which will make them appear as insignificant, even if one of them is a
good predictor of failure.

(ili) Some covariates can appear as insignificant, contrary to a technician’s opinion, simply
because of insufficient data or high variations. It is not recommended to include these
in a PIM, because their parameters could be very inaccurate and produce a misleading

model. They could be checked again when more data is available.

*In this section, maintenance actions are referred to as renewals because the PHM implicitly makes the

GAN assumption.
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(iv) Positive covariates with negative regression coefficients should be considered with spe-
cial care, because it indicates that the FOM increases with decreasing covariate values
(as is the case with RF13H and RF14H), which is not usually expected. In some cases
it could be because some influential events, such as minor repairs, were not recorded.

(v) Some covariates can surprisingly appear as significant, without practical explanation.
This almost always indicates some data problem, especially if wrong covariate values

are reported at failures.

To be able to recognize all patterns in the data, it was decided to model the data in three
phases: (1) By a simple Weibull model, i.e. a Weibull FOM without covariates; (2) By a
Weibull PHM where the subjective covariates are temporary excluded; and (3) By a Weibull
PHM with all covariates included from the start. This exercise revealed that the second phase
produces the most practical model with only two covariates, RE53H and RF54H%. The model

is given by,

1.464 .
Kz %) - (“

.464
= 18) exp (0.127 - RE53H + 0.143 - RE54H) (5.1)

431.

The results of analytical significance tests on the parameters are summarized in Table 5.3.
It is clear that both RF53H and RF54H are significant in the failure process although the

shape parameter, (. did not prove to be significant. A Kolmogorov-Smirnov (KS) test yielded

Table 5.3: Summary of analytical significance tests per-

formed on the model in equation (5.1)

Parameters
B RF53H | RF54H
Estimate | 1.464 0.1271 0.1414
Standard Error | 0.4719 | 0.0227 0.0564
Wald | 0.9678 31.24 6.172
Wald p-value | 0.3252 0.000 0.013

Residual analyses were also done on the model. A plot of the residuals in order of appearance

is shown in Figure 5.4,

In the case of a perfect model fit, the residuals in Figure 5.4 would all be scattered around the
straight line y = 1. Note that the residual values of suspended cases will by definition always
be greater than 1 (see Schoenfield (1990)). If an upper limit of y = 3 (95%) and a lower limit

of y = 0.05 (5%) are chosen, it is expected that at least 90% of the residuals will fall inside

"RES3H and RF34H also proved to be significant covariates in the first and third phases.
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Figure 5.4: Residuals in order of appearance

these limits if the model fits the data. Figure 5.4 shows that 4 of the 6 short failures are not
modeled well by the equation (5.1), i.e. the 4 observations close to y = 3 and y = 0.05. Further
analyses of the data showed that no other quantitative covariate contributed significantly to
these early failures. RF53H and RF54H proved to be very significant in the other, longer
failures.

The model in equation (5.1) is of an average statistical quality but was finally chosen because

of its practical value and its relation to the actual sitnation.

5.3.2 Transition probabilities

Covariates were assumed to be stochastic and transition probabilities were used to estimate
future covariate behaviour (see Section 4.2.4). The covariate bands that were selected for
RF53H and RF54H are presented in Table 5.4 with the frequency of observations in each
band. See Table D.1 and D.2 for the actual data.
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Table 5.4: Covariate bands for RF53H and RF54H

RF53H RF54H
Band Frequency Band Frequency
[0—5] 67 [0—3] 54
(5—10] 15 (3—7] 28
(10—15] 11 (7—11] 11
T (15-26.84] 1 (11—15] 4
(26.84— oo ) 1 (15— o0 ) 1

With the covariate bands in Table 5.4 transition rates were calculated with (4.11) and transi-
tion matrices were constructed. For example, the transition probabilities for covariate RF53H

for an observation interval of 50 days are given in Table 5.5.

Table 5.5: Transition probability matrix for RF53H for an

observation interval of 50 days

BANDS | [0—5] | (5—10] | (10—15] | (15—26.84] | (26.84— o)
[0—5] 0.913 | 0.068 0.014 0.004 0.001
(5—10] 0.208 | 0.481 0.173 0.088 0.050
(10—15] | 0.063 | 0.260 0.228 0.216 0.233
(15—26.84] | 0.010 | 0.064 0.104 0.234 0.588
(26.84—00) | 0 0 0 0 1

A similar TPMX was calculated for RF54H and is shown in Table 5.6.

Table 5.6: 'Transition probability matrix for RF54H for an

observation interval of 50 days

BANDS | [0-3] | (3—7] | (7—11] | (11—15] | (15— o0)
[0—3] | 0.893 | 0.090 | 0.014 | 0.0009 0.0004
(3—7] | 0239 | 0547 | 0.184 0.017 0.011
(7—11] | 0.108 | 0.078 | 0.609 0.96 0.105

(11—15] | 0 0 0 0.212 0.787

(15— 00) | 0 0 0 0 1

With the transition probabilities known, the cost optimization can be performed and it is

deseribed in the next section.
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5.3.3 Renewal decision policy

Makis and Jardine’s decision-model was not described when introduced in Section 1.4.2. For
the sake of continuity, it is done briefly in this section before the results of the application of
the theory on the SASOL data set are presented. Two different maintenance possibilities are
considered in the decision-model: (i) Variant 1, where preventive renewal can take place at
any moment; and (ii) Variant 2, where preventive renewal can only take place at moments of
mspection. Only Variant 1 will be discussed since Variant 2 is a simplification of Variant 1.
A basic renewal rule is used: if the FOM is greater than a certain threshold value, preventive
renewal should take place otherwise operations can continue. The objective here is thus to

calculate this threshold level while taking the working age and covariates into account.
The expected average cost per unit time is a function of the threshold risk level, I, and is
given by (see Makis and Jardine (1991) and Makis and Jardine (1992))

Cp + KQ(D)
W)

a(D) = (5:2)
where K = Cy — €. Q(ID) represents the probability that failure replacement will occur,
Le. Q(d) = P(X, =2 X) with Xp the preventive renewal time at threshold risk level I or
Xp=inf{z > 0: h(z.2) > D/K}. W(d) is the expected time until replacement, regardless
whether preventive action or failure, i.e. W(D) = E[min{Xp, X}]. The optimal threshold
risk level, ", is determined with fixed point iteration to obtain,

®(D”) = min ®(D) = D* (5.3)
>0

provided that the FOM is non-decreasing, e.g. when 3 > 1, all covariates are non-decreasing
and covariate parameters are positive. If covariates are non-monotonic, then fixed point
iteration does not work, and Lrliﬁ@(ﬂ)] should be calculated by a direct search method.
a_
During the calculation of I it is necessary to calculate (D) and W (D) which is not a
trivial procedure. To do this a covariate vector, z(z) = [z1(2), 2o(x), vzm ()], is defined
with corresponding vector i(x) = [i)(x), i2(x), ..., im (x)], the state of every covariate at time
2. Thus. for every coordinate [, let X"(_-i.; (x)) be the value of the I'" covariate in state ij(r) at
instant x and X (i(x)) = (X (i1(2)), ... X™(im(2))]. It is hence possible to express the FOM
as,
x

3 #d o
hix,i(z)) = ;_; (;—,) exp(y - X(3(x))) (5.4)

From Section A.2.1, the conditional reliability function can be defined as R(j, i, z) = P[X >
JA 4+ z[X > jAi(x)], which becomes after substitution,

. iA+z\? A\
R(j.i(x),z) = exp{ —exp(y - 2(z)) - (i—+—) - (L) (5.5)
Ui 1
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with 0 < =z < A. If h(z,i(z)) is a non-decreasing function in z, z; = inf{z > 0: h(z,i(z)) =
d/K} and the k;’s are integers such that (k; — 1)A < x; < kA, the mean sojourn time of the
system in each state can be calculated by,
0, =2k
S(j.4(x)) = 8,4 ai), §=ki—1 (5.6)
S(j,i,A), j<ki—1
where a; = z;—(k;—1)A and S(j,4,5) = [, R(j,i,z)dz. Similarly, the conditional cumulative
distribution function for this situation is,
0, j=k
F(ji(z)) =< 1—R(j,4,a:), j=k —1 (5.7)
1= B{7 8,8 4 €k =1
Let for each j. S; = (S(j,i)); and F; = (F(j,4)); be column vectors and (P;) = (R(j, 2, A)Py(7))it
be a matrix. The column vectors W; = (W(j,47)) and Q; = (Q(j,)) can hence be calculated
as follows.
Wj =35+ BW;n
Q= F;+ PiQj+1

Following this, W = W/(0,4y) and Q = Q(0.ip) where iy is an initial state of the covariate
process, usually iy = 0. By starting the calculation with a large value for j, with Wii1 =
Q41 = 0 and working back to 0, it is possible to solve for W and @ from (5.8). The above
caleulation procedure is described in detail in Makis and Jardine (1992). A forward version
of this backward calculation is numerically more convenient and much faster according to
Banjevic, Ennis, Braticevic, Makis, and Jardine (1997), which can be suitably adjusted for

non-monotonic FOMs as well.

Thus, once the optimal threshold level is determined, the item is renewed at the first moment

r when,

B (z\P . . D .
= = exp (y-z(x)) = — (5.9)
0o\ 1 K
or when
Y-2(z) 26" —(F—1)Inx (5.10)

where 6* = ln{[DJ"-n"?/K/H}.
A warning level function is defined only in terms of time by,

Glz)=0"—=(8-1)-Inz (5.11)
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with G(r) strictly decreasing if 3 > 1.

As mentioned earlier, the costs provided by the Twistdraai plant, C';y = R 162 200 and
Cp = R 25 000 were based on averages over the two year data horizon. Further details about

the cost estimation are not available.

No fixed inspection frequency was used at the plant which made calculations somewhat more
difficult. The transition probability matrices were estimated based on transition rates (as
described in Section 4.2.4) and a future inspection interval of 50 days was used for the cost
model. With all preliminary calculations completed, the cost function of equation (5.2) was
hence calculated using the backward recursive procedure. The result is shown graphically in
Figure 5.5 in terms of the threshold risk level, I (or h(x. 2z) - K).

1000

T T T T T

— Expected average total replacement cost per unit time
Expected average failure replacement cost per unit time
— Replacement only on lailure

900

800

700
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Risk [Rand/day] (FOM*K)

Figure 5.5: Expected cost in terms of risk

Figure 5.5 shows a distinct optimum at a risk of R 401.41 / day or a FOM of h(x, 2) = 0.0029.
If renewal is always performed at this risk, the long term cost is expected to be R 224.04 /
day. This optimum is not very sensitive to slight deviations from the decision rule. With
the optimal risk known it is also possible to present the renewal rule (equation (5.9)) and
warning level function (equation (5.11)) graphically as shown in Figure 5.6.
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Figure 5.6: Optimal decision policy with warning function

The renewal policy is evaluated in detail in the next section.

5.3.4 Evaluation of renewal policy

A summary of the performance of the decision-model of Makis and Jardine on the SASOL
data set is presented in Table 5.7. Four criteria were nsed to evaluate the decision-model

under the following headings:

(i) Theoretical optimal policy. The theoretical average costs.
(ii) Renew only on falure (R.O.0.F). A prediction of costs if a corrective maintenance
strategy was followed.
(iii) Theoretical policy applied. An estimation of costs if the decision-model was applied to
the observed data.

(iv) Observed policy. The true costs incurred by the plant.
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Table 5.7: Summary of optimal policy performance

Theoretical | R.O.0.F. | Theoretical | Observed

Optimal Strategy Policy Policy

Policy Applied

F Cost 224.04 401.41 214.03 345.16

Preventive Renewal 75.31 0 100.56 63.21

Cost |  (33.6%) (0%) (47.0%) (18.3%)

Failure Renewal 148.73 401.41 113.47 281.95

Cost |  (66.4%) (100%) (53.0%) (81.7%)

% Preventive Renewals 76.70% 0% 80.00% 42.10%

% Failure Renewals 23.30% 100% 20.00% 57.90%
MTBR | 254.49 days | 404.08 days | 263.6 days 214.6 days

*All costs are in R/day

The two most important figures in Table 5.7 are the cost per day if the theoretical policy
was applied (R 214.03) and the cost per day that was actually observed (R 345.16). It is also
hmportant to compare the percentage of preventive renewals with the percentage of failure
renewals of the theoretical policy and the observed policy. It is clear that the decision-model
of Makis and Jardine is not only considerably less expensive but also more orderly because
of 80% of events would have been suspensions if the theoretical policy was applied. Table 5.7
is analvzed in detail in Vlok (1999).

Such coincidence of the theoretical and actual results in some of the above cases should not be
expected in general, particularly for a small sample size, but it shows that the selected PHM
and decision-model are realistic. The method of comparison could be challenged however
because the same data that is used to build the model is used to evaluate it. For this reason
a final test of the decision policy was performed by collecting more data from the plant from
November 1, 1998 to February 28, 1999, During this period only one of the pumps considered
as calendar suspensions in the fArst data set failed and was renewed. The decision policy’s
performance for this pump’s history is described here, although the data from the other

pumps was tested as well.

Pump PC1232 was treated as a calendar suspension after 192 days of working life in the
first data set. This was on November 1, 1998. The pump eventually failed unexpectedly 67
days later on January 6, 1999 at an age of 259 days. A total of five inspections were done
during this time. The latest inspection data is shown on Figure 5.7, together with the three

inspections from the first data set.

Figure 5.7 shows that the unexpected failure could have been prevented if the calculated

decision policy was followed. In monetary terms. the unexpected failure cost resulted in
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Figure 5.7: Decision-model applied on PC1232

R 162 200/259 days = R 626.25/day. If the calculated policy was available and acted upon,
R 25 000/235 days = R 106.38/day. would have been the result. This is another confirmation

that the model is relevant and practical.

5.4 Maintenance strategy optimization through combined

PIMs and residual life estimation

The modeling methodology proposed in Figure 3.1 is followed in this section to model the
SASOL data. It starts off with tests to determine wether non-repairable or repairable systems
theory is more applicable for this data set, including tests for trend and dependence. Following

this, parametric approximations for the covariates are calculated and different combined PIMs

are fitted on the data before the best combined PIM is selected.
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5.4.1 Testing for trend and dependence

It was motivated in Section 3.1 that the Laplace test will be used to test for trend in the data
(Laplace’s test is described in Section A.1). Four or more event observations are required to
reach a 95% level of confidence of trend. For this reason Laplace’s test was only applied on
3 of the 8 pumps, i.e. PC1131, PC1132 and PC2131. The results were as follows: Upci1a) =
1.8043. Upci13z = 1.6663 and Upcgar = 1.0444. In all three cases Laplace's test confirmed
that the event data is not non-committal and shows signs of reliability degradation, i.e.

interarrival times become shorter.

® Failure
PC1131 O ® O—@Q |0 Suspension
PC1132 €—C0 9O
PC3132 —@ O
PC3131 —@ O
PC123] 0 O
PC1232 O O
PC3232 L O0—0
PC2131 @ O @ 0

0 100 200 300 400 500 600 700 800
Global time [days]

Figure 5.8: Graphic illustration of event times

For the remaining pumps, i.e. PC3132, PC3131, PC1231, PC1232 and PC3232, it is very
difficult to proof or deny evidence of a trend mathematically becanse insufficient data is
available. In these cases, simple “eyeball-analysis” is often the most reliable and most effective
according to Ascher (1999). The representation of the event data in Figure 5.8 is ideal for
eyeball-analysis because each pump’s history can not only be evaluated individually but also
compared with the others. Eyeball-analysis cannot provide any additional information with
regards to trend about PC3132, PC3131 and PC1232 because only one event was observed
for each pump (excluding the calendar suspensions). PC1231 and PC3232 appear to be in
the process of reliability degradation since interarrival times become shorter as the global

time increases.
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Table 5.8: Summary of functions used to approximate ob-

served covariate behaviour in terms of global time ¢

Pump | Lifetime RF53H RF54H
PC1131 1 1.67e — 6 - t* — 0.000812 - t2 + | 5.71e—007-t> —0.000254 - 2 +
0.0938 - t — 0.0399 0.0262 - t + 0.00841
2 0.000602 - t* —0.47 -t +91.7 | 0.000793 - 2 — 0.69 - t + 149
3 0.000983 - t 4+ 0.897 —0.00107 - #* 4+ 1.33 - t — 411
4 0.0362 - t — 24.9 0.00628 - t — 4.16
5 0.463 - t — 354 0.27 - t — 207
PC1132 1 —6.63e — 007 - t3 4 0.000469 - | 0.000277-t2—0.0818-t+0.741
2 — 0.0684 - t + 0.00656
2 0.178 - t — 86.7 0.0499 - t — 18.9
3 0.155 -t — 84.4 —0.194 -t — 105
4 1.63 8.7e — 006 - t2 — 0.0173 - t2 +
11.4 -t — 2.49e + 003
5 0.0504 - t — 37.8 0.192-t — 145
PC1231 1 5.17e—005-t>—0.0115:t4+0.125 | —1.85e — 007 - > + 0.000183 -
t2 —0.0341 - t + 0.0254
2 0.403 - t — 227 0.604 - t — 340
3 2.57e—005-1>—0.0267-t4+6.92 | 9.54e—005-1*—0.119-t+36.9
PC1232 1 2.92 1.78
2 0.0214 - t — 12.7 1.05
PC2131 1 0.000112 - 2 — 0.0143 - t — | —2.85¢ —005-t2+0.00735 -t +
0.00117 0.000168
2 0.000197 -t — 0.103 - t + 13.9 | 0.000146 - t> — 0.0662 - t + 7.68
3 0.00577-t2—6.09-t4+1.59e+003 | —0.00103 - t* + 1.14 - t — 306
4 —0.0127 -t + 10.5 —0.0106 - t + 8.41
5 0.218 -t — 169 0.331 -t — 257
PC3131 1 —0.000107-#240.0566 -1 —0.42 | —4.89e — 005 -t + 0.0315-t —
0.396
2 —0.000333 - +* +0.429 -t — 128 | —0.000158-t%+0.209 -t —63.3
PC3132 1 0.000219-t* —0.0662-t+0.755 | 9e — 005 - 2 — 0.024 - t + 0.305
2 3.11e—005-t* —0.0288 ¢ +6.69 | —1.95e—005-t?40.035-t—12.8
PC3232 0.014 -t —0.215 3.54e — 005 - t2 — 0.00329 - t +
0.0106
2 —0.000685 - t2 +0.873 -t — 271 | —0.00121 - 2 + 1.54 - t — 477
3 0.0715 « t — 52.2 0.0416 - t — 30.3
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The parametric functions of Table 5.8 are also shown graphically in Appendix E with the
95% confidence intervals. In some cases confidence intervals could not be calculated because
of a lack of data.

5.4.4 Estimation of the PIMs

It was predicted in Section 3.3 that the entire model would probably never be applied to a
single situation because of data constraints. In this case the statement is true and certain
assumptions for. and simplifications to, the general model of equation (3.30) are required for
it to be applicable to the present data set. The most important characteristics of the data

set are listed before assimmptions and simplifications are made:

(i) Eight system copies have been observed operating in nominally similar conditions over
a period of 791 days.

(ii) Eleven failures, eight suspensions and eight calendar suspensions were recorded during
the 791 days.

(iii) Two components on each system have been observed, i.e. Bearing 3 and Bearing 4.

(iv) Covariate levels (vibration levels) on Bearing 3 and 4 were recorded at irregular inspec-
tion intervals during the 791 days.

(v) The data does not contain any information about the cause of failure, i.e. whether
Bearing 3 or Bearing 4 failed or another component that was not observed.

(vi) Following from Section 5.4.1, event data recorded on the systems appear to follow

repairable systems theory.

This data set complies to Scenario 4 of Figure 3.6, i.e. a single-component repairable system,
even though two components have been observed. The reason for assuming the systems to be
single-component repairable systems is because no information is available about the cause
of system failure, i.e. whether Bearing 3 or Bearing 4 was responsible for the failure. This
implies implicitly that it is assumed that RF53H and RF54H relate to the entire system and
not only the two bearings, which is largely true. The use of competing risks is immediately
eliminated by this assumption, i.e. summing over individual peril rates of each component is

not possible.

Following the summary and assumptions above, the following enhancements are permitted
in equation (3.30):

(i) Full stratification and system copy dependency of all coefficients.
(ii) Frailties.
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(iii) Time jumps or setbacks.

(v

(iv) Acceleration or deceleration of the global time.
) Multiplicative or additive functional terms.
)

(vi) Time-dependent covariates.

In Section 3.1 it was remarked that data sets are often modeled in literature with only one
particular enhancement because it is such a laborious task to estimate parameters for a model.
It is usnally required to develop a virtually unique algorithm to fit a model on any particular
data set. For this reason, an algorithm was developed to fit the completely general model
of equation (3.30) to the “perfect” data set, i.e. a data set with sufficient definition and
observations to satisfy the requirements of (3.30). By restricting the appropriate variables in
the algorithm, it is possible to use the algorithm to fit a combined PIM with any combination

of enhancements to a data set, similar to what was illustrated in Appendix B.

The generic algorithm made it possible to experiment with countless different combinations
of enhancements. In the subsections to follow, the best combinations of the possible en-
hancements fitted on the data are described. Each model’s performance is evaluated by the

following criteria:

(i) The sum of squared errors of residual life estimates. Errors on the estimates of calen-
dar suspensions are not included in the sum of squared errors although normal right-
censored observations are taken into account.

(ii) The sum (total number of days) of the confidence intervals produced by a particular

model.

A model performing well against both the above-mentioned criteria should be a useful tool

in practical maintenance decision-making.

5.4.4.1 Combined PIM simplified to the conventional p|(f) model without
covariates or stratifications

Model description

This model is the conventional pi(t) model (described in Section 1.2.3.2) often used in reli-
ability literature. Although it is a simplification of the combined PIM. it is not a PIM by
definition because it does not rely on intensity proportions. It is presented in this section
however, because it performed fairly well and to emphasize the advantages of enhancements

in the combined PIM, illustrated later in this section.

Model construction
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Restrictions that need to be applied to equation (3.30) to obtain the desired model are

summarized in Table 5.9,

Table 5.9: Parameter restrictions on equation (3.30) to ob-
tain a conventional p;(t) model without covariates or strati-

fications

Parameter Restriction

n: n = 1,thusl=1

k: k=1

st st = 1, for all values of i"

iy & = 1, for all values of s, k and |

-a,f'.r;"‘: u'.'i_‘f 1. for all values of s, k and !

Tk k= 0, for all values of s, k and [

akt: n’;'t — —o0, for j =1,2,...,m and all values of s, k and [
ki Wff — 0, for j=1,2,....m and all values of s, k and |

The restrictions above result in the following model:

p1(t) = exp(I' + Tt) (5.12)

When this model was fitted to the SASOL data using Snyman’s technique (see Section C.2),

the log-likelihood converged at a maximum of L(B) = —124.88. Coefficients at this value of
the log-likelihood are ' = —84859 and T = 0.0064. This model is evalnated in the next
section,

Model evaluation

Since there are no covariates present in the model in equation (5.12). dynamic residual life
estimates are not possible and estimates remain constant for the entire duration of a system’s
life. Residual life estimates! were calculated at the start of every lifetime of each pump
with 2-sided confidence intervals of 95%. Because this model is neither system copy nor
stratum specific, predictions for the time to the first event on all pumps are exactly the same.
Estimates and actnal observations are summarized in Table 5.10. For easy comparison with

actual observations, estimated arrival times are reported and not residual life.

A total of five events were observed outside the bounds forecasted by the model. Only one
of these five events was not a calendar suspension at 791 days, which shows that this simple

model fits the data fairly well.

IResicdual life is exactly equal to the expected time to the next event when the local time is zero.
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To quantify the quality of the model, squared errors on the estimates were calculated and
sumimed to obtain an indication of the model's accuracy. The width of confidence intervals
were also summed to quantify the certainty of the model. Estimates on calendar suspensions
do not contribute to squared errors, although normal right-censored observations were taken
into account. The sum of the squared errors is 2.3771ed and the sum of all the widths of

confidence intervals is 82017*,

5.4.4.2 Combined PIM simplified to the conventional p|(t) model with
stratified time jump/setback coefficients

Model description

The conventional pi(t) model is used again but with the inclusion of 7, to allow for time

jumps/setbacks as a function of the particular stratum that a system is in.
Model construction

Restrictions that need to be applied to equation (3.30) to obtain the desired model are

summarized in Table 5.11.

Table 5.11: Parameter restrictions on equation (3.30) to
obtain a conventional pi(t) model with stratified time

jump/setback coefficients

Parameter Restriction
n: n = 1, thus!l=1
ke k= 4
st st = N(t)+1, for all values of i*
i ¢M = 1, for all values of s, k and !
e ¢f = 1. for all values of s, k and [
T H = 7, for all values of s, k and /
alt: {ré'g = —o0, for j=1,2,....m and all values of s, k and [
ke, w": = 0.for y=1,2,....m and all values of s, k and [

The restrictions above result in the following model:

pi(t) =exp(I'+ Y(t — 7)) (5.13)

The log-likelihood was maximized using Snyman’s technique (see Section C.2) and converged
where L(é] = —130.43. Coefficients at this value of the log-likelihood are [ = —10.5049,

**These values are compared for each combined PIM in Section 5.4.4.6,
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Table 5.10: Conventional p;(t) model without covariates or

stratifications

Model description: pi(t) =1+ Tt
I = —8.4859 and T = 0.0064

Estimated parameters:

[ event 214 event 3" event 4 event
Pump D Obs. Est. Obs. Est. Obs. Est. Obs Est.
PC1131 397 149 < 467 < 711 554 414 < 559 < 727 | 690 | 560 < 640 < 757 | 765 | 692 < 735 < BO7
PC1132 191 149 < 467 < 711 544 500 < 604 <742 | 557 | 563 < 642 < 7H8 | 7H1 | 563 < 642 < 758
PC1231 5063 149 < 467 < 711 578 569 < 646 < 759 | 791 | 583 < (55 < 764 -
PC1232 599 149 < 467 < 711 791 603 < 669 < 770 - . - -
PC2131 184 149 < 467 < 711 470 243 <493 <712 | 631 | 481 <593 <738 | 774 | 635 < 691 < 782
PC3131 450 149 < 467 < 711 791 462 < 583 < 735 - - - -
PC3132 506 149 < 467 < 711 791 514 <€ 612 < 745 - - - -
PC3232 563 149 < 467 < 711 723 569 < 646 < 759 | 791 | 725 < 761 < 823 - -

5t event Y Squared Y Confidence
Pump ID Obs. Est. Errors Intervals
PC1131 791 766 < 795 < 847 | 3.6862e4 1268
PC1132 791 752 < 783 <839 | 2.9528e4 1281
PC1231 - - 1.3045e4 933
PC1232 - - 5.0136e3 729
PC2131 791 775 < 803 <852 | 1.1567ed 1512
PC3131 - - 1.7793e4 835
PC3132 - - 1.1375e4 793
PC3232 - - 8.4231e3 350

2.3771e5 8201

G HALAVH))

AdNLS 385V)D
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T = 0.0099, 7, = 204.73, 75 = 12.50, 73 = —34.86, 7y = —86.35 and 75 = —80.05. This model

is evaluated in the next section.
Model evaluation

Since there are no covariates present in the model in equation (5.13), dynamic residual life
estimates are not possible and estimates remain constant for the duration of a system'’s
lifetime. Residual life estimates were calculated at the start of every lifetime of each pump
with 2-sided confidence intervals of 95%. Because this model is not system copy specific,
predictions for the time to first event on all pumps are exactly the same. Estimates and actual
observations are summarized in Table 5.12. For easy comparison with actual observations,

estimated arrival times are reported and not residual life.

A total of twelve events were observed outside the bounds forecasted by the model. A total
of eight of these twelve events were not calendar suspensions at 791 days, which is a first

indication that this model does not fit the data very well.

To quantify the quality of the model, squared errors on the estimates were calculated and
summed to obtain an indication of the model’s accuracy. The width of confidence intervals
were also summed to quantify the certainty of the model. Estimates on calendar suspensions
do not contribute to squared errors, although normal right-censored observations were taken
into acconnt. The sum of the squared errors is 3.5171e5 and the sum of all the widths of

confidence intervals is 666371,

5.4.4.3 Combined PIM simplified to an additive intensity model with
stratified regression coeflicients

Model description

The p;(t) model is used here as a baseline intensity with an additive term of exponential form
containing covariates (similar to the model described in Section 2.3.2). Regression coefficients

are stratified into only two strata to limit the number of coefficients in the model.
Model construction

Restrictions that need to be applied to equation (3.30) to obtain the desired model are

swmmarized in Table 5.13.

M These values are compared for each combined PIM in Section 5.4.4.6.
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Table 5.12: p;(t) model with stratified time jump/setback
FIi\

coefficients

Model description:

Estimated parameters:

p1(t,8) = exp(T + Y(t — 7))
I = —10.5049, T = 0.0099, 7 = 204.73, 7> = 12.50, 73 = —34.86, 7y = —86.35 and 7 = —80.05

15% event 21 ayent 3" event 4™ event
Pump 1D Obs. Est. Obs. Est. Obs. Est. Obs. Est.
PC1131 397 124 < 339 < 500 554 424 < 552 < 688 | 690 | 563 < 641 < 727 | 765 | 693 < 734 < 763
pPC1132 491 124 < 339 < 500 544 501 < 582 < 749 | B5HT | 554 <637 <749 | 751 | H72 <672 <749
PC1231 563 124 < 339 < 500 578 568 < 613 <732 | 791 | 585 < 657 < 756 - -
PC1232 599 124 < 339 < 500 791 602 < 650 < 725 - - B -
PC2131 184 124 < 339 < 500 470 313 <528 <729 | 631 | 491 <608 <757 | 774 | 638 < 706 < 772
PC3131 450 124 < 339 < 500 791 466 < 578 < 700 - - - -
PC3132 506 124 < 339 < 500 791 515 < 600 < 706 - - - -
PC3232 563 124 < 339 < 500 723 568 < 613 <732 | 791 | 723 <746 < 810 - -

5% event ¥ Squared Y. Confidence
Pump ID Obs. Est. Errors Intervals
PC1131 791 T66 < 775 < 822 | 4.2037e3 1074
PC1132 791 752 < 767 < 809 | 3.6346¢4 1042
PC1231 - - 5.1258e4 711
PC1232 - - 6.7388e4 499
PC2131 791 775 < 780 < 811 | 9.6290e4 1450
PC3131 - - 1.0125¢e4 709
PC3132 - - 2.7258e4 567
PC3232 - - 5.8848e4 611

3.5171e5 6663
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Table 5.13: Parameter restrictions on equation (3.30) to ob-

tain an additive intensity model with stratified regression co-

efficients
Parameter Restriction

n: n = 1,thusl=1

s ¥ = I

s s = 1 where N(t) =0, s' =2 where N(t) > 1
for %t < 1; 8 =2, for if > 1

¢l M =1, for all values of s, k and !

r'.’é.'f: t,-".r:."“ = 1, for all values of s, k and [

. ki = 0, for all values of s, k and

m-i‘.'f: n-’;’j = ag;, for j=1,2,...m and all values of s, k and [

Akt fj = 0, for j=1,2,...,m and all values of s, k and [

The restrictions above result in the following model:

p(t,8) = exp(I' + Tt) + expla, - 2) (5.14)

The log-likelihood was maximized using the modified Newton-Raphson technique (see Section
C.3) and converged where L(8) = —109.02. Coefficients at this value of the log-likelihood
are I = —11.1674, T = 0.013, ah, = —0.6760, a7, = 0.5408, oy, = 2.1457 and a3, = 3.1665.

This model is evaluated in the next section.
Model evaluation

The covariates present in the model in equation (5.14). make dynamic residunal life estimation
possible. Residual life estimates were calculated at each inspection of every lifetime of each
pump with 2-sided confidence intervals of 95%. The residual life estimate and the actual
observation at the last inspection of every lifetime of each pump is reported in Table 5.14.
For easy comparison with actual observations, estimated arrival times are reported and not
residual life. This particular model is not system copy specific but stratum specific and
includes covariates, therefore predictions are different for the time to first event on every
pump. In the calculation of the residual life, covariates were assumed to remain constant
in-between consecutive inspections at the average level of the two inspections. In cases where
it was required to predict future behaviour of covariates, the applicable parametric function
in Table 5.8 was used.

A total of eight events were observed outside the bounds forecasted by the model. Only two

of these eight events were at calendar suspensions, which is an early indication that the model
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does not fit the data well. This is confirmed by the sum of the squared errors of 1.0599e5

and the sum of the widths of the confidence intervals of 5990,

5.4.4.4 Combined PIM simplified to a multiplicative intensity model with

stratified regression coefficients

Model description

The p;(t) model is used here as a baseline intensity with a multiplicative term of exponential
form containing covariates, similar to the model by Kumar (1996) that was introduced in
Section 2.3.1.2. Regression coefficients are stratified into two strata to limit the number of

coefficients in the model.
Model construction

Restrictions that need to be applied to equation (3.30) to obtain the desired model are

summarized in Table 5.15.

Table 5.15: Parameter restrictions on equation (3.30) to ob-

tain a multiplicative intensity model with stratified regression

coefficients
Parameter Restriction

n: n = 1, thusl=1

k: E = 1

£ st = 1 where N(t) =0, s' =2 where N(t) > 1
for it < 1; st = 2, for ift > 1

Che ¢k =1, for all values of s, k and !

TN YM = 1, for all values of s, k and !

i wh = 0. for all values of s, k and !

akt; uﬁj = —o¢, for 1 =1.2,...,m and all values of s, k and [

ki “:r"é:: = 7, for j=1,2,...,m and all values of s, k and !

The restrictions above result in the following model:

p1(t.0) = exp(l' + Tt + 75 - 2) (5.15)

The log-likelihood was maximized using the modified Newton-Raphson technique (see Section
C.3) and converged where L(#) = —142.66. Coefficients at this value of the log-likelihood are
[ = —6.2011. T = 0.00046, ~i, = 1.4021, ~j, = 0.9741, 73, = 1.002 and 45, = 0.6231. This

model is evaluated in the next section.
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Table 5.14: Additive intensity model with p;(¢) as baseline

and stratified regression coefficients

Model description: p(t,0) = exp(T + Tt) + exp(a, - z)
I'=—11.1674, T = 0.013, a7, = ~0.6760, i, = 0.5408, ), = 2.1457 and a3, = 3.1665

Estimated parameters:

15! event 214 event 3 event 4 event
Pump ID Obs. Est. Obs. Est. Obs. Est. Obs Est.
PC1131 397 91 <400 < 562 554 414 < 490 < 602 | 690 | 576 < 595 < 670 | 765 | 740 < 810 < 1040
PC1132 491 182 < 316 < 420 544 532 < H60 < 721 | 557 | 566 <612 <790 | 751 | 628 < 725 < 824
PC1231 563 390 < 501 < 661 578 591 < 649 < 708 | 791 | 740 < 759 < 881 - -
PC1232 599 224 < 480 < 585 791 782 < 890 < 975 - - - -
PC2131 184 112 < 241 < 410 470 390 <422 <577 | 631 | 544 <TI8 <785 | 774 | 673 < 770 < 890
PC3131 450 191 < 377 < 595 791 675 < 710 < 801 - - - -
PC3132 506 279 3'_4[19 < 500 791 721 < 845 < 921 - - - .
PC3232 563 356 < 551 < 677 723 640 < 795 < 890 | 791 | 746 < 880 < 986 -
5t event ¥ Squared ¥ Confidence

Pump ID Obs. Est. Errors Intervals
PC1131 791 732 < 798 < 856 | 1.5155e4 1127
PC1132 791 812 <917 <999 | 3.4582¢4 1034
PC1231 - - 8.8850e3 529
PC1232 - - 1.4161e4 554
PC2131 791 802 < 815 < 843 | 1.3138e4 984
PC3131 - - 5.3290e3 530
PC3132 - - 9.4090e3 421
PC3232 - - 5.3280e3 811

1.0599e5 5990
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Model evaluation

The covariates present in the model in equation (5.15), make dynamic residual life estimation
possible. Residual life estimates were calculated at each inspection of every lifetime of each
pump with 2-sided confidence intervals of 95%. The residual life estimate and the actual
observation at the second last inspection of every lifetime of each pump is reported in Table
5.16. For easy comparison with actual observations, estimated arrival times are reported and
not residual life. This particular model is not system copy specific but stratum specific and
includes covariates, therefore predictions are different for the time to first event on every
pump, contrary to the first two models. In the calculation of the residual life, covariates were
asstuned to remain constant in-between consecutive inspections at the average level of the
two inspections. In cases where it was required to predict future behaviour of covariates, the

applicable parametric function in Table 5.8 was used.

A total of seven events were observed outside the bounds forecasted by the model. Only
two of these seven events were at calendar suspensions, which is an early indication that the
model does not fit the data very well. The sum of the squared errors is 2.4388eb and the

total width of the confidence bands is 12768,

5.4.4.5 Combined PIM simplified to an additive intensity model with a time
jump/setback in the baseline

Model description

The pi(t) model is used here as a baseline intensity with an additive term of exponential
form containing covariates. The baseline also allows for a time jump/setback and regression

coefficients are stratified into two strata to limit the number of coefficients in the model.
Model construction

Restrictions that need to be applied to equation (3.30) to obtain the desired model are

summarized in Table 5.17.

Table 5.17: Parameter restrictions on equation (3.30) to ob-
tain an additive intensity model with stratified coefficients

and a time jump/setback in the baseline

Parameter Restriction
T n = 1, thusl=1
k: k = 1
s s' = 1 where N(t) =0, s' =2 where N(t) > 1
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for it < 1; st =2, for if > 1
€3 ¢M = 1, for all values of s, k and !
ke YR = 1, for all values of s, k and !
Thi, tht = 1, for all values of s, k and
akt; u-‘fj = ag, for j =1,2,....m and all values of s, k and !
l ~Fi, ﬂi‘: = 0, for j =1,2,...,m and all values of s, k and [

The restrictions above result in the following model:

p(t,60) = exp(T + Y(t — 7)) + expla - 2) (5.16)

The log-likelihood was maximized using the modified Newton-Raphson technique (see Section
C.3) and converged where L(f) = —128.21. Coefficients at this value of the log-likelihood
are [ = —9.2212, T = 0.0042, 7 = —22.02, a}, = 2.3061, o, = 1.8036, a3, = 0.9261 and

ap, = 1.5881. This model is evaluated in the next section.
Model evaluation

The covariates present in the model in equation (5.16), make dynamic residual life estimation
possible. Residual life estimates were calculated at each inspection of every lifetime of each
pump with 2-sided confidence intervals of 95%. The residual life estimate and the actual
observation at the second last inspection of every lifetime of each pump is reported in Table
5.18. For easy comparison with actual observations, estimated arrival times are reported and
not residual life. This particular model is not system copy specific but stratum specific and
includes covariates, therefore predictions are different for the time to first event on every
pump, contrary to the first two models. In the calculation of the residual life, covariates were
assumed to remain constant in-between consecutive inspections at the average level of the
two inspections. In cases where it was required to predict future behaviour of covariates, the

applicable parametric function in Table 5.8 was used.

A total of nine events were observed ontside the bounds forecasted by the model. Only one
of these nine events was observed at a calendar suspension of 791 days. This model generally
fits the data very well with the sum of squared errors being 4.8748e4 and the sum of the

confidence interval widths being 3475,

HThese values are campared for each combined PIM in Section 5.4.4.6.
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Table 5.16: Multiplicative intensity model with stratified re-

gression coefficients

Model description: p;(t,0) = exp(I' + Tt 4+, - 2)
Estimated parameters: = —6.2011, T = 0.00046, ~i, = 1.4021, 41, = 0.9741, 43, = 1.002 and v5, = 0.6231

15 event

21 event

3 avent

4t event

Pump 1D Obs. Est. Obs. Est. Obs Est. Obs. Est.
PC1131 397 201 < 590 < 721 554 420 < 435 <462 | 690 | 591 < 766 < 1760 | 765 | 712 < 883 < 1051
PC1132 491 500 < 525 < 592 544 526 < 640 < 792 557 70 < 750 < 911 751 | 599 < 802 < 1096
PC1231 563 126 < 744 < 1009 a78 622 < 746 < 918 791 615 < 791 < 983 - =
PC1232 599 165 < 662 < 1105 791 682 < 960 < 1223 - - - -
PC2131 184 186 < 290 < 407 470 202 < 530 < 751 631 507 < 655 < 817 | 774 | 709 < 787 <915
PC3131 450 218 < 582 < 811 791 491 < 858 < 1179 - - - -
PC3132 506 136 < 511 < 837 791 527 < 958 < 1313 - - -
PC3232 563 82 < 434 < 722 723 610 < 812 < 989 791 | 770 < 942 < 1276 - -
5t event ¥ Sqguared ¥ Confidence

Pump ID Obs. Est. Errors Intervals
PC1131 791 795 < 894 < 1121 | T.1110e4 2396
PC1132 791 789 < 936 < 1085 | 5.0222¢4 1492
PC1231 - - 6.0985¢4 1547
PC1232 - - 3.9690e3 1481
PC2131 791 832 <902 < 1105 | 1.5581e4 1559
PC3131 - - 1.7424e4 1281
PC3132 - - 2.5000e1 1487
PC3232 - - 2.4562e4 1525

2.4388e5 12768
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Table 5.18:

Additive

intensity

model

with

a time

jump/setback in the baseline and stratified regression coeffi-

cients

Model description:

Estimated parameters:

p1(t,0) =exp(I' + T(t+ 7)) + explas - 2)
['=—9.2212, T = 0.0042, + = —22.02, aj, = 2.3061, a}, = 1.8036, a3, = 0.9261 and a3, = 1.5881

15" event 214 ayent 3 event 4 event
Pump ID Obs. Est. Obs. Est. Obs. Est. Obs. Est.
PC1131 397 361 < 454 < 565 554 415 < 467 < 555 | 690 | 640 < 693 < 738 | 765 | 705 < 770 < 815
PC1132 491 459 < 528 < 60Y 544 557 < 608 < 636 | 557 | 433 < 545 < 616 | TH1 | 725 < 778 < 808
PC1231 563 516 < 555 < 624 578 592 < 612< 659 | 791 | 621 <694 <775 - -
PC1232 599 550 < 581 < 613 791 662 < 815 < 894 - - - -
PC2131 184 125 < 199 < 225 470 473 < 53T <603 | 631 | 476 < 593 < 703 | 774 | 645 <721 <749
PC3131 450 339 < 401 < 432 791 731 < 753 < 773 - - - -
PC3132 506 336 < 407 < 463 791 780 < 859 < 930 - - - -
PC3232 563 516 < 629 < 711 723 629 < 656 < 757 | 791 | 823 < 868 < H66 - -
5% event ¥ Squared | X Confidence

Pump 1D Obs. Est. Errors Intervals
PC1131 791 770 < 799 < 820 | 1.0852e4 624
PC1132 791 763 < 868 < 903 | 6.3380e3 635
PC1231 - - 1.2200e3 329
PC1232 - . 3.2400e2 245
PC2131 791 786 < 820 < 894 | 8.9670e3 764
PC3131 - - 2.4010e3 135
PC3132 - - 9.8010e3 277
PC3232 - - 8.8450e3 466

4.8748e4 3475
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5.4.4.6 Comparison of different combined PIMs’ performances

In Table 5.19 the performances of the different combined PIMs used in Section 5.4.4 are
summarized. The models are sorted by the magnitude of the sum of squared errors in

descending order.

Table 5.19: Comparison of different combined PIMs' perfor-

marce
¥ Squared | ¥ Confidence
No. Combined PIM errors bounds
1 p1(t.0) = exp(T + Y(t — 7)) 3.5171eb 6663
2. pi(t,0) = exp(I'+ Tt 4, z) 2.4388eH 12768
3. pi(t) =exp(I'+ Tt) 2.3771e5 8201
4. p(t,8) = exp(l + Tt) 4+ exp(a; - 2) 1.0599e5 5990
5 | pi(t.0) =exp('+ Y(t — 7)) + explas - z) 4.8748e4 3475

Model 5 in Table 5.19 produced the lowest sum of squared errors as well as the lowest sum
of confidence bounds. By removing the time setback 7 from Model 5. Model 4 is obtained.
This model performed significantly worse that Model 5 which stresses the usefulness of the
combined PIM. It is also significant to note that the conventional p;(t) model, i.e. Model
3 of Table 5.19, performed better than Models 1 and 2 which are much more sophisticated
models. The multiplicative PIM, Model 2 of Table 5.19, had the largest sum of confidence
bounds which indicates that the conditional probability densities produced by this model are

fairly broad compared to, for example. Model 5 of Table 5.19.

5.5 Comparing the performance of the RLE approach with
the combined PIM to the approach of Makis and Jardine

In the introduction of this chapter, the importance of comparing the RLE approach with the
established approach of Makis and Jardine was stressed. In this section, the performance of
Model 5 of Table 5.19 on the SASOL data is compared to the performance of the policy of
Makis and Jardine as described in Section 5.3.4. The criteria for comparison is the “Theo-
retical Policy Applied” as defined earlier. Table 5.7 of Section 5.3.4 is partially repeated here

as Table 5.20, including the comparative values for the RLE approach.
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Table 5.20: Summary of the comparison between the RLE

approach and the approach of Makis and Jardine

RLE Makis and | Observed
Approach Jardine Policy
Cost 205.22 214.03 345.16
Preventive Action 129.36 100.56 63.21
Cost (63.03%) (47.0%) (18.3%)
Corrective Action 75.86 113.47 281.95
Cost | (36.97%) (53.0%) (81.7%)
% Preventive Action 88.46% 80.00% 42.10%
% Corrective Action 11.54% 20.00% 57.90%
MTBR | 248.06 days | 263.6 days | 214.6 days

*All costs are in R/day

The most important figure in Table If the RLE
approach was applied to the actual situation, a cost of R 205.22 / day would be the result,
which is 4.1% lower than the approach of Makis and Jardine of R 214.03 /day and 40.5%

lower than the observed policy of R 345.16 / day. Preventive action is prescribed by the
] . / 3 p A

5.20 is the cost per day of each policy.

RLE approach in 88.46% of all observed cases which is 8.46% more than the policy of Makis
and Jardine. In this particular case the RLE approach was thus a more conservative policy
compared to Makis and Jardine’s approach. The high percentage of preventive actions leads
to a relatively high percentage of preventive action cost as well as a MTBR of 248.06 days,
which is 15.54 days shorter than Makis and Jardine’s policy. Although the RLE approach
produced marginally better results than Makis and Jardine’s policy, are both significant

improvements on the observed policy.

To further compare the the RLE approach’s performance to the policy of Makis and Jardine,
Model 5 of Table 5.19 was also applied to the second data set that was compiled for Pump
PC1232 (see Section 5.3.4). The result is shown graphically in Figure 5.9 in the format

proposed in Section 4.5.

Figure 5.9 shows the entire history of the second lifetime of PC1232. It was put back into
service after 599 days and a vibration measurement was taken and recorded. A second
vibration measurement was taken after 699 days and then again at 791 days when the pump
was calendar-suspended. Five more measurements were taken up to 857 days of working life
and the pump failed unexpectedly one day later on 858 days. Model 5 of Table 5.19 estimated
the pump’s residual life to be 662 < 815 < 894 after the CM inspection on 599 days. This
is also the value reported in Table 5.18. The residual life estimate increases significantly at
791 days but then start to decrease rapidly to 5 < 18 < 49 at 829 days. Action should thus
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Figure 5.9: RLE approach applied on PC1232

have been taken after 834 days but the pump was left to run to over 850 days. The estimates
after 850 days are also consistent with the estimate at 829 days in that action should have

been taken immediately.

Figure 5.9 shows that the unexpected failure could have been prevented if the RLE approach
with Model 5 of Table 5.19 was followed. In monetary terms. the unexpected failure cost
resulted in R 162 200/(858—599) days = R 626.25/day. If the RLE approach was acted upon,
R 25 000/(829—599) days = R 108.69/day, would have been the result. If Makis and Jardine’s
approach was followed. the result would have been R 25 000/(834—599) days = R 106.38/day.

This is another confirmation that the model is relevant and practical.

5.6 Conclusion

The objective of Chapter 5 is to test the theory developed in Chapters 3 and 4 on an actual
data set obtained from industry and to compare the the results with a similar approach. The

only other maintenance decision support technique that uses a PIM as basis, is that of Makis
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and Jardine (1991) that uses the PHM. Results of the RLE approach were hence compared

to results from Makis and Jardine’s approach.

A data set was obtained from SASOL Secunda in South Africa. This data set has the typical
shortcomings of an industrial data set such as missing observations and irregular inspection
intervals. The data set contains a total of 27 histories of which eight are calendar suspensions,
eleven are failures and eight are suspensions. Twelve vibration covariates were recorded with

each history.

When Vlok (1999) applied the PHM to the data set, only two covariates (RF53H and RF54H
which are both related to cavitation) proved to be significant. The final PHM obtained by
Vlok (1999) is repeated here as equation (5.17):

h(x, z)

1.464 x \0.d64 ;

= (1431_8) exp (0.127 - RE53H + 0.143 - RF54H) (5.17)
Makis and Jardine's approach was used to optimize the plant’s vibration monitoring mainte-
nance strategy with (5.17) and the results are briefly repeated in the first part of this chapter.
Covariate behaviour was assumed to be stochastic and semi-homogeneous Markov chains were
used to predict future covariate behaviour. A cost of nnexpected failure of C'y = R 162 200
and a preventive maintenance cost of €', = R 25 000 were used in Makis and Jardine’s policy.
If this policy was applied to the actual data set, it would have resulted in a cost of R 214.03

/day which is considerably lower than the observed policy of R 345.16 / day.

In the second part of Chapter 5, the theory developed in this thesis is applied to the data
set. Trends of reliability degradation were detected in the interarrival times of the data
set and it was hence decided to nse repairable systems theory (see Figure 1.3). It was
assumed that the same covariates found to be significant in the PHM are significant in the
combined PIM of equation (3.30) and covariate behaviour was predicted with parametric
functions, thereby assuming covariates to be non-stochastic provided that these covariates
were observed up to a certain time f. No formal methodology was followed to obtain the
best possible combined PIM. Instead, a totally generic algorithm was developed to fit any
combination of enhancements in (3.30) and the best combined PIM was found by trial and

error to be:

p(t.8) =exp(l'+ Y(t — 7)) +explay - 2) (5.18)

If (5.18) was used to estimate residual life and action was taken on the lower confidence
bound of the prediction, it would have resulted in a cost of R 205.22 / day, which is 4.1%
lower than the approach of Makis and Jardine of R 214.03 /day and 40.5% lower than the
observed policy. The RLE approach was evaluated further by applying it on a second data
set that was collected for pump PC1231. In this evaluation the RLE approached performed
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slightly worse than the approach of Makis and Jardine but still considerably better that the

actual situation.

Chapter 5 proves that the RLE approach is valid and practical. It compares well with the
approach of Makis and Jardine and even performed marginally better in certain areas. There
are several possible improvements in the RLE approach. These possible improvements are

discussed in Chapter 6.
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CLOSURE

6.1 Overview

At present, there is a world-wide drive to optimize maintenance decisions in an increasingly
competitive manufacturing industry. Preventive maintenance is often the most organized and
cost efficient strategy to follow, but a decision still has to be made on the optimal instant
to perform preventive maintenance. Use based preventive maintenance decisions have been
optimized through statistical analysis of failure data while predictive preventive maintenance
(condition monitoring) has been optimized by utilizing more sophisticated technology. Very
little work has however been done to combine the advantages of the two schools of thought.
This thesis originated from a realization of the potential improvement in maintenance practice
by combining use based preventive maintenance optimization techniques with high technology

condition monitoring.

A literature survey showed that only one established technique exists to optimize preventive
maintenance decisions by considering failure time data and condition monitoring information.
That is the approach followed by Makis and Jardine (1991) where the PHM is utilized to
describe the failure process and decisions are then made by performing cost trade-offs in
terms of risk. Although this technique has a sound theoretical base and has produced many
successful results, it is not always well accepted by maintenance practitioners. The technique
produces results that are difficult to understand and the underlying model, the PHM, has

certain limitations.

Following the literature study, it was decided to pursue an approach that produces results
that are much easier to understand, i.e. residual life estimates. The RLE approach developed
in this thesis is similar to that of Makis and Jardine in that it also bases estimations on a PIM
(the PHM is a special case of a PIM) but the limitations of the PHM are largely overcome. A

combined PIM for non-repairable systems and a combined PIM for repairable systems were
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developed that contains the majority of the enhancements of conventional PIMs in literature
as special cases. Any data set under consideration dictates which enhancements are applicable
in the combined PIM and the combined PIM can be simplified to fit the attributes of the

particular data set.

A data set was obtained from SASOL and both Makis and Jardine's approach and the RLE
approach were applied to it. The two techniques produced very similar results with the RLE

approach performing marginally better in certain cases.

6.2 Recommendations for future research

Clear objectives for this thesis have been set in Chapter 1 and although these objectives were
largely achieved there are still areas where further research can itprove the results obtained.

A few recommendations for future research are discussed in this section.

6.2.1 Upper and lower bounds on residual life estimates

Upper and lower residual life bounds in Chapter 4 and 5 were calculated directly from the
conditional expectation of an event produced by the combined PIM. Tn doing this it was
implicitly assumed that the covariate behaviour was predicted without error. By evaluating
the graphs of actual vs. estimated covariate values of Appendix E, it is clear that this implicit
assumption is questionable. The influence of the quality of covariate behaviour predictions
on residual life estimates is also a function of a a particular combined PIM, Combined PIMs
with relatively high regression coefficients would be more sensitive to the guality of covariate

behaviour predictions than models with relatively low regression coefficients.

Although the combined PIM used in the Chapter 5 produced relatively good results, the
influence of the quality of covariate behaviour predictions is not known and and was not
formally taken into account in upper and lower confidence bounds. Further research on this

aspect could make residual life estimates more reliable.

6.2.2 Covariate and combined PIM selection

T'wo of the most difficult steps in a proportional intensity analysis such as this are the selection
of appropriate covariates for a particular combined PIM and the selection of the most relevant

combined PIM. These steps were addressed as follows in the case study of Chapter 5:

(i) It was assumed that covariates RF53H and RF54H are good descriptors of the failure
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process of the pumps based on the tests of significance of these covariates in a Weibull
PHM done by Vlok (1999). The validity of this assumption was not verified for every
model that was evaluated. It was however decided to sustain with these covariates
because their physical significance was confirmed by techuician experience.

(ii) A trial and error method was used to determine the most applicable combined PIMs
for the SASOL data set. This was possible because the generic algorithm that was
developed to fit any simplification of the combined PIM in equation (3.30) could easily
be adjusted to evaluate nmumerous different combinations of enhancements. This is one

of the biggest advantages of the combined PIM.

Reasonable results were obtained by dealing with the two steps in the manner outlined
above but a formal mathematical methodology confirming these selections could benefit future
application of the combined PIMs.

6.2.3 Using variable regression coefficients to limit the number of
parameters in models

It was on numerous occasions pointed out that in practice reliability data is often very limited.
Small data sets are desirable because that indicates that a system is performing well (Ascher
(1999)). For the complete combined PIMs in equation (3.13) and (3.30), large data sets
are required to be able to estimate parameters with reasonable certainty. Simplifications
of the combined PIMs requires much smaller data sets but fewer regression coefficient are
always desirable. For this reason regression coefficient elimination techniques should also be

implemented.

One method that could be used to reduce the number of parameters in models (especially
stratified models). is to define regression coefficients as functions of external influences. This
concept is illustrated by the following example. Suppose k = 1,2, ..., w single part system
copies are studied and the position of each copy. py = 1,2....,w, is expected to influence
the survival time of a particular system. Allocate position 1, i.e. pj. to the system that is
least affected by its position and p, to the system that is most affected by its position. If a
stratified combined PIM is used to model event data and the number of parameters should
be reduced. regression coefficients can be defined as a function of py. For example, if a linear
relationship between the regression coefficients and the position exists, /s can be defined as

vs(k) = ap + b. In such a case, only a and b need to be determined.

This method is appropriate provided that there is a valid reason to define a certain relationship
and in practice such relationships often exist. It is very difficult to formulate a single technique
or procedure that would lead to an optimal combined PIM with the minimum number of

parameters. Each data set should be modeled on merit.
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6.3 Conclusion

The RLE approach followed in this thesis originated directly from an industrial need and was
constructed in a formal and structured manner after a thorough literature survey. Results
obtained from the RLE approach compares favourably with those of an established approach.

This verifies that the RLE approach is relevant and practical.
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A.1 Laplace’s trend test

De Laplace (1773) makes use of the fact that under the HPP assumption, the first m — 1
arrival times, T, b, ..., T;n—1 are the order statistics from a uniform distribution on (0, Ty,]

and hence is,

rri—1
:EI & o Lﬂ_
= %ﬁm—[ ; 2 (A.1)

U approximates a standardized normal variate at a 5% level of significance as soon as m > 4.

In the case where U > 2 there is strong evidence of reliability degradation while U < -2
indicates reliability improvement. If 1 > [/ > —1, there is no evidence of an underlying trend

and it is referred to as a non-committal data set.

A.2 Renewal theory

A.2.1 Basic concepts

Only TID data sets can be used meaningfully in renewal theory. Data sets of this types are

very often. but not necessarily, generated by parts (as defined in Section 1.2.1).

Suppose the interarrival times are part of a distribution fy(zr) with cumulative distribution
Fy(z). Fx(z) is referred to as the unreliability function since it gives the probability of
failure up to a certain age z, i.e. Fy(z) = Pr[X < z]. Similarly, is the reliability function,
Ryx(z), defined as Ry(z) = Pr[X > 1] or Ry(z) = 1 — Fx(x). i.e. the probability of survival
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up to age x. From this it is possible to define the force of mortality (FOM) or hazard rate of
an item that gives the probability of failure within a short time, provided that the item lived
up to that time, i.e. hx(z) = Prjz < X < z +dz|X > z]. The FOM can also be expressed

as,

(o) = 1255 (A2)

The FOM is often described as a conditional probability density function. This is not true

because,
R'\v{;r) e Iu: h (T)dr (A?})

and since Rx () = 0 it implies that
T—00

lim / hx(7)dr = o (A4)
0

A.2.2 Distributions
Some distributions often used to model renewal situations are summarized in Table A.1 below.

Table A.1: Distributions often used in renewal theory

Distribution | Probability Density Function FOM
(fx(x)) (hx(x))
Exponential Aexp(—Ax) A
A>0,220

Weibull a (i{')d_l f_,‘(ﬁ)ﬁ 3 (5)5_1

n\n

gy >0,2>0

Log-normal

fx(@)/[1 = J5 fr(r)dr]

v"2_7rrr.r
g>0x>=0
KN ar® A ar® A
Log-logistic el Y

a.A>0.0r>10

exp|— (=)

. o = . T op B
Normal —— Fx(x) /1= [y fr(r)dr]
o>0,r=10
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A.2.3 Incomplete observations in renewal situations

Very often only partial information is available on an item'’s survival time. These are referred
to as censored or truncated information. In many cases, this type of information is the only

type available in reliability modeling.

A.2.3.1 Censoring

Type I Right Censoring occurs where an event is observed only if it happens prior to some
prespecified time. Progressive Type I Right Censoring occurs where specimens have different,
fixed-sacrifice censoring times, predetermined by the observer. This has the advantage that

the sacrificed specimens give information on the natural history of nonlethal events.

Type II Right Censoring occurs where a study continues until the failure of the first » indi-
viduals, with » < n and n the total number of individuals. This type of censoring scheme
may save time and money if equipment is tested. Progressive Type II Right Censoring is a

natural extension of Progressive Type I Right Censoring.

Left censored observations occur when the event of interest has occurred to the specimen
before the period of observation. A good example is a study on the time to first use of
marijuana by boys. where the question was asked: “When did you first use marijuana?” and

the response "I have used it but I cannot recall just when the time was”.

A data set contains doubly censored observations where some are left censored and some right
censored. If an event is only known to have occurred within a certain interval, the observation

is called interval censored.

A.2.3.2 Truncation

A truncation is defined as a condition where certain subjects are screened so that the investi-
gator is not aware of their existence. If Y is the time of the event which truncates individuals,
then, for left-truncated samples, only individuals with X > Y are observed. For example, if

survival times in an old age home are studied where the age of 60 is a prerequisite (Y = 60).

It is also possible to define right truncations. This situation is encountered where an event
has to occur first before a specimen is included in the sample. A good example is a mortality

study on AIDS infected people.
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A.2.3.3 Contribution of incomplete observations to the likelihood

The maximum likelihood method is most often used to estimate model parameters in survival

analysis and it is thus important to note incomplete observations’ respective contributions to
the likelihood.

Table A.2: The contributions of incomplete observations to
the likelihood

Observation type | Contribution to likelihood
Exact lifetimes | fx(z)

Right-censored | Rx(r;)
Left-censored | 1 — Rx([;)
Left-truncations | fx(z)/Rx(Y)
Right-truncations | fx(Y)/[1 — Rx(Y)]
Interval-censored | [Rx(l;) — Rx ()]

In Table A.2, [; and r; refer to the left and right margin of an observation interval respectively.
Klein and Moeschberger (1990) discuss incomplete information in survival analysis in detail.

A.3 Point Process Theory

A point process is a mathematical model that describes a physical phenomenon occurring as
highly localized events, distributed randomly in a continunm. In this case, the events are

failures and the continuum is time. Brillinger (1978) gives a formal definition.

A.3.1 Basic concepts

Counting process. A counting process, N(t), counts the number of events that have occurred
up to time t, where N(t) € Z* and t € R™.

Independent increments. A counting process N(t).t >0, has independent increments if
N(ty) = N(0),..., N(tg) — N(tg—y) for 0 < t; < ... < t}, k = 2,3, .., are independent ran-
dom variables.

Stationary merements. A counting process N(t),t > 0, has stationary increments if for any
two points ¢ > s > 0 and any A > 0. the random variables (N(t) — N(s)) and (N(t + A) —
N(s+ A)) are identically distributed.
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Stationarity of a point process. If a point process has stationary increments, it is said to be
stationarv.
Intensity. The intensity of a counting process is defined as:

 Pr{N(t+ At) — N(t) > 1|H}
At—0 At

(A.5)

where N(t) is the observed number of failures in (0,t] and H; is the history up to, but not
including, time t. Thus, «(t)At is, for a small At, the approximate probability of an event in

[t,t + At), given the process history.

When simultaneous failures cannot occur (when the process is orderly) and also stationary,
then 1(t) = v(t). where v(t) is the so called ROCOF, i.e.

d B

v(t) = —E{N(t)} (A.6)

T dt
The ROCOF of an NHPP is referred to as the peril rate and is denoted by p(t).

A.3.2 Homogeneous Poisson Process (HPP)

The HPP is a non-terminating sequence of independent and identically exponentially dis-
tributed X;’s. A counting process, N(t), is said to be an HPP if:

(i) N(0)=20
(i) {N(t),f = 0} has independent increments, i.e. N(t2) — N(t1)LN(t1).
(iii) The number of events in any interval of length t; — ¢, has a Poisson distribution with
mean p(ty — ty). This implies that for 15 > t; > 0,

E_—Iu[r’-_r fl-'{l,r}(ig =il }}J

Pr{N(t2) - N(t1) = j} = g

(A7)
for j >0
A.3.3 Non-homogeneous Poisson Process (NHPP)

The NHPP is a non-terminating sequence of independent and identically exponentially dis-
tributed X;'s. A counting process, N(t), is said to be an NHPP if:

(i) N(0)=0
(ii) {N(t).t = 0} has independent increments, i.e. N(ta) — N(t1)LN(t;)
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(iii) The number of events in any interval of length t, — t; has a Poisson distribution with

mean ffl" plt)dt. This implies that for 5 > ¢, > 0,

ePla=tl{ [ p(1)at))

PI‘{;\'—U.-J} — ;\fr[fl) = }}- = !}

(A.8)

for j > 0.

Bain, Engelhardt, and Wright (1985) proposed some methods to test for the validity of either
the NHPP or HPP assumption. Two popular parametric forms for the peril rate of an NHPP
are (1) pi(t) = ae? (log-linear); and (2) po(t) = ayt?~! (power-law). The latter is often
referred to as a Weibull process because the distribution of times to first failure of processes

of this kind will be Weibull. To avoid confusion, this term will not be used.

A.3.4 Branching Poisson Process (BPP)

The BPP is discussed in detail in Cox and Lewis (1966) and a smmmary of their discussion in
the present notation is given here. For this process a series of primary events is generated by
an HPP and each primary event has positive probability of generating a series of subsidiary
events according to a finite renewal process. It is also assumed that the two series of events
are indistinguishable. As before, the interarrival times to events (primary or subsidiary) are
denoted by X, while the interarrival times between primary events are described by Z;. The
interarrival time between a primary and subsidiary event or between two subsidiary events
is called Y;.

Let g be the probability that a primary event triggers a series of a subsidiary events. From
this it follows that the expected munber of subsidiary events, given that at least 1 subsidiary
event occurs, is a/q. Also, if it is assumed that times between subsidiary events will tend to

be small relative to Z,’s, it is possible to calculate F[Z] with,

> (Gj—y)

Blz] == (A.9)

[

where G is the J' excess time over j and [ is the total number of observed intervals. (y

should be interpreted in the same way as x, defined in Figure 1.2).

A.3.5 Likelihood construction for PMIM applied on Poisson Process data

Define the PMIM as,

tu(t, 2) = tu,(t) - exp(y - z) (A.10)
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The corresponding cumulative intensity function is:
Iy(t; 2) = Ty (1) vexply-%) (A.11)

where I, (1) = ]” to(w)du.

Suppose m individuals are under observation. Individual i is observed over the time interval
(Si, T;) and n; events are observed at times t;; < ... < tiy;- For simplicity suppose S; is equal

to zero. Now, let 1y, (t) be specified by parameters in the vector 8. The likelihood function

is then,
m My
L@.y) = [[§ TT wutis) p exp{—1u(T3)} (A.12)
i=1 | 7=1
which can be decomposed as,
moon F m
L(6.7) H ].—.[ fu“ T 9 exp [— 1y, (Ti;0)e”*] [T (T5: 0)€7 %)™
i=1j ”'L' =1 (AlB)
The likelihood kernel Ly (6, ) arises from the Poisson distribution of the counts ny, na, ..., fum,

and the kernel L;(8) arises from the conditional distribution of the event times, given the
counts. Lawless (1987) has shown that if the failure times are not too different, the two
kernels can be solved individually to obtain a result fairly close to the full maximum likelihood

estimate.

If it assumed that all the 7}'s are equal to T', then Lo(8,7) can be decomposed as,

L2(8,9) x Pr(ni, ..., i Zm n; =n) PT{Z__1 nyp=mn) (A.14)
or,
Ly(0,v) = La(ry) - Ls(0,7) (A.15)
where
- expl(y - 2;, _
Lsv) =] 1—(’?)_ (A.16)
i=1 | 3 exp(y - z1)
=1
and
L4(8,7) =exp | —1,,(1:8) Z exply - z,)jl : [IHU{T;{?) Zexp(q - Zi) (A.17)
=1 =1

Williams (1981) indicated that Li(y) is precisely Cox's partial likelihood. Lawless (1987)
used data from Gail, Santner, and Brown (1980) to illustrate the convenience of the theory

above.
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B.1 The non-repairable case

[n this section, it is shown that equation (3.8) (repeated below as equation (B.1) for con-
venience) can be reduced to the majority of models considered in the literature survey on

advanced intensity models (Section 2.3).

i

h(xz,8) = Z \ﬁf‘ (gi"f\.r. T:‘IE‘ phiy M’yi"’ . zi"] - u[_ai'* »zf:“ )) (B.1)
1=1

It is assumed that covariate values are always positive.

B.1.1 Proportional Hazards Model

Restrictions are summarized in Table B.1.

Table B.1: Parameter restrictions for equation (B.1) to ob-

tain a Proportional Hazards Model

Parameter Restriction

e n = 1 thusl=1
ki ¥k = 1,2 ..

B & s = 1. for all values of i*

3 che, ke = 1, for all \'ainm of $. k and I
NE gkt = 1, for all values of s, k and [
ki rht = 0, for all values of s, k and |
akt: r:ti_'j —  _nc, for j =1,2,...,m and all values of s, k and [
”;f:'“ “i“ = A forj=12,...m and all values of s, k and [
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Equation (B.1) reduces to,

hz,0) = g(z) - Ay - 2(x)) (B.2)

which is similar to (2.8) of Section 2.3.1.1, if X is chosen to be exponential. For the fully
parametric Weibull PHM, g(x) should be substituted with the FOM of a Weibull distribution.
To obtain a stratified PHM, s should not be fixed to 1 but, for example, used to denote the

previous mumber of failures, i.e. s¥ = 1ifr < Xf"‘. st =2if X{" <r< ’{_{f etc. This leads to,

h(z,8) = gs(z) - Ays - 2(x)) (B.3)

which was introduced in (2.11).

B.1.2 Proportional Odds Model for Non-repairable Systems

Equation (B.1) should be reduced to g(z) only. Restrictions are summarized in Table B.2.

Table B.2: Parameter restrictions for equation (B.1) to ob-

tain a Proportional Odds Model for non-repairable systems

Parameter Restriction

n: n = Il.thusl=1

ke B = L& i

s st = 1, for all values of i*

ki, = 1, for all values of s, k and

e ¥ = 1, for all values of s, k and !

e thi = 0, for all values of s, k and !
okt r_rf': = —oc¢, for j = 1.2, ...,m and all values of s, k and [
R ",-é:: = —oq, for y =1,2,...,m and all values of s, k and {

The restrictions in Table B.2 lead to h(x,8) = g(x). To obtain the effect of diminishing

covariates, g(x) should be substituted with the FOM of a log-logistic distribution, i.e.

)
hlx:0) = - B.4
(;9) (1429 exp(—y-2(x))) (B.4)
as explained in Section 2.3.1.3.
B.1.3 Additive Hazards Model
Restrictions are summarized in Table B.3.
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Table B.3: Parameter restrictions for equation (B.1) to ob-
tain an Additive Hazards Model

Parameter Restriction

n: n = 1, thus!i=1

k: B = 1,201

St s = 1, for all values of i*

%1 ¢M = 1, for all values of s, k and !
ki Yk = 1, for all values of s, k and [

75 i = 0, for all values of s, k and !
r'_rf;.": r'ri‘,'j = ay lor 3 =12 ...,m and all values of s, k and [
~ki. ')f_: = —oc, for j =1.2.....m and all values of s, k and [

Equation (B.1) reduces to.
h(z,0) = g(z) + via- 2(x)) (B.5)

If s is not fixed to 1, the model can be stratified as Pijunenburg (1991) suggested.

B.1.4 PWP Model 2

Restrictions are summarized in Table B.4.

Table B.4: Parameter restrictions for equation (B.1) to ob-
tain a PWP Model 2

Parameter Restriction
n: n = 1l thusl=1
k: k= 1200
s st = %, for all values of i
dy ko = 1, for all values of s, k and |
ki ¢h = 1, for all values of s, k and
it th = 0, for all values of s, k and !
alt: ﬂi‘,j = —oq, for j=1,2,...,m and all values of s, k and I
E ’}f: = 7. for j=1,2,...,m and all values of s, k and [

Equation (B.1) reduces to,

h(x,0) = gs(x) - Mys - 2(x)) (B.6)
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which is similar to the PWP Model 2 presented in (2.37). The combined model is not able
to reduce to the model praposed by Prentice et al. in (2.42). To have (2.42) as a special case

of (3.1), a second stratification variable would be required.

B.1.5 Accelerated Failure Time Model for Non-repairable Systems

Restrictions are suummarized in Table B.5.

Table B.5: Parameter restrictions for equation (B.1) to ob-

tain an Accelerated Failure Time Model for non-repairable

systems
Parameter Restriction

T n = 1, thusi=1

k: k= 1,2,..,w

s st = 1. for all values of i*

¢k f‘ = 1. for all values of s, k and [
Wit vF = olw-2z(2)), for all values of s, k and {

E r_f & Tk 0. for all values of s. k and [

rxf;": uij = —o¢, for j=1,2,...,m and all values of s, k and [
~kt; ’}’:{f = —og, for j =1,2,...,m and all values of s, k and [

Equation (B.1) reduces to,
hir.8)=gla- dlw-z(x)) (B.7)

which allows for implementation of (2.44) to (2.47). By lifting the restriction that 71‘; = —00,
for all values of s, k and j € {1,2,...,m}, the Extended Hazard Regression Model of Ciampi
and Etezadi-Amoli (1985) and Etezadi-Amoli and Ciampi (1987) can be obtained, i.e.

h(r,0) =gl olw-2(x)) - Ay - 2(2)) (B.8)
as presented in (2.4%).
B.1.6 Proportional Age Reduction

Restrictions are smnmarized in Table B.G.
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Table B.6: Parameter restrictions for equation (B.1) to ob-

tain an Proportional Age Reduction Model

Parameter Restriction

T n = 1,thusi=1

ke ko= 1,2,...,w

87 st = 1, for all values of i*

[ k= 1, for all values of s, k and |
Wkt Y = 1, for all values of s, k and !

Tt it = 7 for all values of s, k and !
aki. n‘f;i —o0, for j =1,2,...,m and all values of s, k and [
/& ‘\rﬁ; = —o0, for j =1,2,...,m and all values of s, k and [

Equation (B.1) reduces to,
h(z,8) = g(z, T) (B.9)

The FOM in (B.9) is only a function of  and the factor 7 that allows for a jump or setback

in time. This model can be used to formulate any PAR model discussed in Section 2.3.3.4.

B.1.7  The model of Lawless and Thiagarajah (1996)
For this model the baseline function g is chosen to be 1. Further restrictions are summarized
in Table B.7.

Table B.7: Parameter restrictions for equation (B.1) to ob-

tain an Proportional Age Reduction Model

Parameter Restriction
70 n = 1,thusl=1
B K A= 1,2,..,w
5 st = 1, for all values of i*
e ¢ = 1, for all values of s, k and !
(ré'*: cxg':_ = —o0, for j=1,2,...,m and all values of s, k and [
S yh [11‘1% B =1}, for j =1,2,...,m and all values of s, k and [
251 z8 = [1 Inz], for all values of s, k and [
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Equation (B.1) reduces to,

h(x,0) = %3:‘3_1

B G-1
T\

which is a simple Weibull FOM. Following the same argument, it is also possible to obtain

(B.10)

the models proposed by Calabria and Pulcini (2000), which are special cases of the model by

Lawless and Thiagarajah (1996).

B.2 The repairable case

It is shown in this section that equation (3.25) (repeated below as equation (B.11) for con-
venience) can be reduced to the majority of models considered in the literature survey on

advanced intensity models (Section 2.3).

n
v(t,0) = 3 b (ghi(t, iyl Ayl - 2f) + wielt - 2) (B.11)
=1 '

It is assumed that covariate values are always positive.

B.2.1 Proportional Mean Intensity Model

Restrictions are summarized in Table B.8.

Table B.8: Parameter restrictions for equation (B.11) to ob-

tain a Proportional Mean Intensity Model

Parameter Restriction

n: n = 1,thus{=1

k: E = 1,210

s s = 1, for all values of i

k. ke = 1, for all values of s, k and |

.'_'"'f" Li" 1. for all values of s, k and [

. thi = 0, for all values of s, k and |

akt: r_}:ifj = —ox, for j =1,2,...,m and all values of s, k and [

IS ’yf: = q;, for j=1,2,...,m and all values of s, k and [
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Equation (B.11) reduces to,
o(t.0) = g(t) - Ay - 2(1)) (B.12)

which is similar to (2.19) of Section 2.3.1.2, if A is chosen to be exponential. If the PMIM in
(B.12) is parameterized with a log-linear representation of a NHPP, i.e. g(t) is chosen to be
log-linear, the model in (2.23) is obtained. Equation (B.12) can also be stratified as described
in Section 2.3.1.2.

B.2.2 Proportional Odds Model

No reference was found where the POM was applied on repairable systems, but a similar
approach as in Section B.1.2 can be followed where (B.11) is reduced to g(t) only. The

restrictions are summarized in Table B.9.

Table B.9: Parameter restrictions for equation (B.11) to ob-

tain a Proportional Odds Model for repairable systems

Parameter Restriction
n: n = 1, thusli=1
k: k= Ty2juagw
s g8 = 1, for all values of ik
'ff: ¢t = 1. for all values of s, k and !
T ¢k = 1. for all values of s, k and |
Th; Tk 0, for all values of s, k and [
okt ni‘j = —oc, for j =1.2,...,m and all values of s, k and [
WE }fj = —oq, for j = 1,2,...,m and all values of s, k and [

Following the argument of B.1.2, the restrictions in Table B.9 lead to v(t,8) = g(t). To
obtain the effect of diminishing covariates, g(t) could be substituted with a function where if

t — oo, v — 0. One such function is,

uls = t-(1 —I-t“i-eip(—'y-z(t))) (B.13)
where ¢ is a measure of precision as before.
B.2.3 Additive Mean Intensity Model (Additive ROCOF Model)
Restrictions are summarized in Table B.10.
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Table B.10: Parameter restrictions for equation (B.11) to
obtain an Additive Mean Intensity Model (Additive ROCOF

Model)
Parameter Restriction

n: n = 1l,thusi=1

k: k= 1,2,

s st = 1, for all values of i*

ki ¢h = 1, for all values of s, k and [
Wkt vk = 1, for all values of s, k and |
7 T = 0, for all values of s, k and !
okt tr_{:'; = ay, for j=1,2,...,m and all values of s, k and [
X ’yi‘i‘ = —oco, for j =1,2,...,m and all values of s, k and [

Equation (B.11) reduces to,
v(t.0) = g(t) +v(a - z(t)) (B.14)

If s is not fixed to 1. the model can be stratified.

B.2.4 PWP Model 1

Restrictions are sisunmarized in Table B.11.

Table B.11: Parameter restrictions for equation (B.11) to
obtain a PWP Model 1

Parameter Restriction

mn: n = l,thusi=1

k ¥ = 20

S st = i for all values of i*

¢k ki =1, for all values of s, k and |

T Yh = 1, for all values of s, k and |

T8 Th 0, for all values of s, k and /

okt f.rfj = —oo, for j =1,2,...,m and all values of s, k and [

ke "f; = 7, for j=1,2.....m and all values of s, k and !
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Equation (B.11) reduces to.

v(z.0) = gs(t) - Alys - 2(t)) (B.15)

which is similar to the PWP Model 1 presented in (2.36). The combined model is not able
to reduce to the model proposed by Prentice et al. in (2.41). To have (2.41) as a special case

of (B.11). a second stratification variable would be required.

B.2.5 Accelerated Failure Time Model for Repairable Systems

Restrictions are summmarized in Table B.12.

Table B.12: Parameter restrictions for equation (B.11) to ob-

tain an Accelerated Failure Time Model for repairable sys-

tems
Parameter Restriction

n: n = 1, thusl=1

k: o= 1.2 ..w

s: st = 1, for all values of i*

ik ¢ = 1, for all values of s, k and
Pkt ¢ = o(w-z(x)), for all values of s, k and [

T TRt =0, for all values of s, k and !
akt; aft = —oo, for j=1,2,..,m and all values of s, k and !
ﬂ'f: '*fjf = —oc. for j=1,2,...,m and all values of s, k and [

Equation (B.11) reduces to.

o(t,0) = g(t- dlw - 2(t)) (B.16)

which allows for implementation of (2.44) to (2.47). By lifting the restriction that v¥ = —oc,

J

for all values of s, k and j € {1,2,...,m}, the Extended Hazard Regression Model of Ciampi

and Etezadi-Amoli (1985) and Etezadi-Amoli and Ciampi (1987) can be obtained, i.e.
h(z.0) = gl ¢lw-2(x)) - M7y -2(x)) (B.17)

as presented in (2.48).

B.2.6 Proportional Age Reduction Model

Restrictions are summarized in Table B.13.
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Table B.13: Parameter restrictions for equation (B.11) to

obtain an Proportional Age Reduction Model

Parameter Restriction
T n = 1,thusli=1
k: kE = 12,0,
53 sl = 1, for all values of i*
oA (;"f = (1 — &), for all values of s, k and !
Pt :i‘ — 1, for all values of s, k and [
TH th = 0. for all values of s, k and [
akt; n’;; = —oc, for j =1,2,....,m and all values of s, k and [
vht “,'i.‘: = =, for j =1,2,...,m and all values of s, k and |

In this case g(t) should be selected such that g(t) = t. Equation (B.11) reduces to,

u(t,0) = (1 —€x) - Ay-2(t)) - t (B.18)

which is similar to the model proposed in (2.56).
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NUMERICAL OPTIMIZATION TECHNIQUES

C.1 Introduction

Four optimization techniques were implemented successfully to solve the objective functions
described in Chapter 3, i.e. converged to the point where all the objective function’s partial

derivatives were zero, namely:

(i) A Nelder-Mead type simplex search method. (See Buchanan and Turner (1992)).
(ii) A Standard Broyden-Fletcher-Goldfarb-Shanno (BFGS) Quasi-Newton method with a
mixed quadratic and cubic line search procedure. (See Wismer and Chattergy (1978)).
(iii) Snyman’s dynamic trajectory optimization method. (See Snyman (1982) and Snyman
(1983)).
(iv) A modified Newton-Raphson procedure. (See Klein and Moeschberger (1990) and Press,
Teukolsky, Vetterling, and Flannery (1993)).

The performance of each one of the methods was measured according to their economy
(number of iterations needed before convergence, number of objective function evaluations
and number of partial derivative evaluations) and robustness (the accuracy of initial values
required for convergence and its ability to handle steep valleys and discontinuities in the
objective function). Methods (i) and (ii) maximized the objective functions successfully but
performed mediocre. Snvinan’s method was found to be expensive but extremely robust which
is a very valuable attribute. The modified Newton-Raphson method proved to be the most
economical and fairly robust as well. For the above mentioned reasons, only Snyman’s method
and the modified Newton-Raphson method are considered in this discussion on numerical

optimization procedures.
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C.2 Snyman’s Dynamic Trajectory Optimization Method

Snyman’s method models a conservative force field in m-dimensions (the number of variables
in the objective function) with the objective function and then monitors the trajectory of
a particle of unit mass (released from rest) as it ‘rolls’ down the objective function to the
point of least potential energy, which is the minimumn of the objective function. In this
brief presentation of Snyman's technique, the objective function is /(x, ), the log-likelihood

function as presented in (3.15).

The attributes of Snyman’s technique can be summarized as follows:

(i) It uses only gradient information, i.e. V|[i(x,8)].
(ii) No explicit line searches are performed.
(iii) It is extremely robust and handles steep valleys and discontinuities in the objective
function or gradient with ease.
(iv) This algorithm seeks a low local minimum and it can be used as a basic component in
a methodology for global optimization.
(v) The method is not as efficient on smooth and near quadratic functions as classical

methods.

The basic dynamic model assumes a particle of unit mass in a m-dimensional conservative
force field with potential energy at @ given by [(x.8), then the force experienced by the
particle at @ is given by ma = = —V|i(z,8)]. From this it follows that for the time interval
[0, z],

2

61— Blemo| = 1(0.0) ~ 1(x,0) (c.1)

-3

Equation (C.1) can be simplified by expressing it in terms of kinetic energy, T', as T'(x) —

3|

T(0) =1(0.0)—1(x,0). It is clear that [(z,8) 4+ 1'(x) is constant, which indicates conservation
of energy in the conservative force field. It should also be noted that Al = —AT', therefore

as long as T increases, | decreases, which is the basis of the dynamic algorithm.

Suppose [(z,0) has to be minimized from a starting point 8|;—¢9 = 6p, then the dynamic

algorithm is as follows:

(i) Compute the dynamic trajectory by solving the initial value problem, é|-_r:x = -V|[l(x,8)],
é|u::ﬂ = 0 and 0|,—¢ = 0y. In practice the numerical integration of the initial value prob-
lem is often done by the “leap-frog” method. Compute for & = 1,2,.. and time step

Ar, the following: "+ = % + 0* Az and 6! = ¢" —f—ékA;r, where §* = ~V([i(x,0%)]
and éu = I/Qéoxﬁ.f'.
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(ii) Monitor él,rzm. the velocity of the particle. Aslong as the kinetic energy T" = 1/2 ‘ é|I=I

increases, the potential energy decreases, i.e. [(x,0) decreases.

(iii) As soon as T decreases. the particle is moving uphill and the objective function is
increasing, i.e. |[#571| < ||6F||. Some interfering strategy should be applied to extract
energy from the particle to increase the likelihood of decent. A typical interfering
strategy is to let §F = 1/4(ék+l + Gk) and 85! = Iﬁz(ﬂk‘] +60%) after which a new @*+!
ig calculated and the algorithim is continued.

(iv) To accelerate convergence of the method, the algorithm should allow for magnification

and reduction of the step size, Az , depending on the particle’s position.

The method is extremely robust and particularly useful when variables in the objective func-

tion is totally unknown.

C.3 Modified Newton-Raphson Optimization Method

The objective of the numerical procedure is to find the value of @ where all the partial
derivatives of [(x,0) are zero. Suppose (F(x)) and (G(x)) are matrices containing the first
and second partial derivatives of [(x,8), respectively. An approximation often used for (F(xz))
is (F(0)) = (F(8)) + (G(80)) - (0 — 8y) where 0 is an initial estimate. It is required to solve
(F'(8p)) + (G(6p)) - (8 —0p) =0 to determine the optimal value of 6.

The conventional Newton-Raphson procedure would solve for 8 as follows:

(i) Estimate a meaningful initial value for 8y, i.e. 6.
(ii) Calculate (F(x)) and (G(x)).
(iii) Solve for Ag in the system (G(00))Ap = —(F(8o)).
(iv) Set 8y =68y + Ay and repeat the procedure until convergence.
Instead of the conventional Newton-Raphson method. a variable metric method (quasi-
Newton method) can be used to overcome some numerical difficulties. In this modified
Newton-Raphson method, (G(r)) is not calculated directly but an approximation of (G(x))
is used that is chosen to be always positive definite, thereby eliminating the possibility of
singular matrices. The approximation of (G(z)) is explained in detail in Press, Teukolsky,
Vetterling, and Flanuery (1993). Press et al. also describe methods to vary step sizes in
the procedure as well as stopping rule procedures. Vlok (1999) discusses methods to acceler-
ate convergence and increase the accuracy of the procedure by transforming the data before
iterations start.

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING 150
UNIVERSITY OF PRETORIA



University of Pretoria etd — Vlok, P-J (2006)

APPENDIX D

SASOL DATA

D.1 Inspection data for Bearing 3

The inspection data for Bearing 3 is presented in Table D.1 on the next page, where the

columns have the following meanings:

Pump ID:  Pump identification number.
Age:  Global age of the pruunp measured in days.
Date:  Actual date of inspection.

A: RFO043H, i.e 0.4 % rotational frequency amplitude, measured on horizon-
tally on Bearing 3 in mm/s, indicative of a bearing defect.

B: RFI13H, i.e. 1x rotational frequency amplitude, measured horizontally
on Bearing 3 in mm/s. indicative of unbalance in the pump.

C: RF23H, i.e. 2x rotational frequency amplitude, measured horizontally
on Bearing 3 in mm/s, indicative of misalignment in the pump.

D: RF33H, i.e. 5x rotational frequency amplitude, measured horizontally
on Bearing 3 in mm/s, indicative of cavitation in the pump.

E: HFD3H, ie. high frequency domain components between 1200-2400
Hz, measured on Bearing 3, indicative of a bearing defect. This is a
subjective covariate where 1 indicates a presence and 0 an absence of
the mentioned components.

F:  LNF3H, i.e. lifted noise floor in 600-1200 Hz range, measured on Bearing
3. indicative of a lack of lubrication where 1 indicates a presence and 0

an absence of the mentioned components.
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Table D.1: Inspection data for Bearing 3

Pump Age Date A B C D E F
ID (Days) [mm/s] | [mm/s] | [mm/s] | [mm/s] | [0/1] | [0/1]
PC1131 159 02/07/97 0 0.7 0.3 0.8 1 0
PC1131| 295 06/23/97 0.15 0.3 0.25 0.55 0 1
PC1131| 387 09/23/97 0.3 3 0.9 8 1 0
PCI131 394 09/30/97 0.8 2.4 1 12.3 1 0
PC1131 397 10/03/97 250 175 20) 17 1 0
PC1131 530 02/13/98 0.1 11.5 3.2 11 0 0
PC1131 533 02/16/98 0.3 8.8 3.5 13 1 0
PC1131 554 03/09/98 0.5 7 3.8 16 0 0
PC1131 HTR 04/02/98 1 19.5 1.5 2 1 0
PC1131| 597 04/21/98 0.3 27.5 1.5 1.6 1 0
PC1131| 639 06/02/9%8 0.5 31 6 4 1 0
PC1131| 689 07/22/98 0 9 2 0.8 0 0
PC1131 690 07/23/98 0 8.27 1.82 0.67 0 0
PC1131| 703 08/05/98 0.05 1.2 0.95 0.2 1 0
PC1131| 712 08/14/98 0.05 0.5 0.8 1.4 1 0
PC1131 765 10/06/98 0.05 0.4 0.7 s 1 0
PC1131 791 11/01/98 0.5 9 2 12 0 0
PC1132| 239 04/28/97 0 0.9 0.3 1.5 0 0
PC1132| 386 09/22/97 0.1 7 0.6 21 1 0
PC1132] 394 09/30/97 0.2 b 0.5 11 1 0
PC1132| 397 10/03/97 0.1 6.2 0.2 3 0 0
PC1132 191 01/05/98 0.1 5 0.5 1 0 0
PC1132( 499 01/13/98 0.1 27.5 2 2.5 0 0
PC1132| 533 02/16/98 0.1 35 2.5 12 0 0
PC1132| 543 02/26/98 5 19 26 9 0 0
PC1132| 544 02/27/98 5.61 16.94 28.93 8.56 0 0
PC1132| 557 03/12/98 3 43 9 2 0 0
PC1132| 558 03/13/98 1 41 14 3 0 0
PC1132| 597 04/21/98 4 29 3.7 2.6 0 1
PC1132| 689 07/22/98 0.1 5.6 1.7 0.3 0 |
PC1132| 712 08/14/98 0.1 3.4 0.6 0.9 0 1
PC1132| 751 09/22/98 0.99 3.01 0.3 2.99 0 1
PC1132| 791 11/01/98 0.08 4.65 0.17 2.01 0 0
PC1231 239 04,/28/97 0.3 5.5 1.9 1 0 0
PC1231| 295 06/23/97 1.3 10.4 2.2 1 0 0
PC1231 390 09/26/97 1 56 12 3 0 0
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PC1231 530 02/13/98 0.3 18.1 6.1 8.5 1 0
PC1231| 563 03/18/98 0.09 12 1.18 10.24 1 0
PC1231| 578 04/02/98 1 33 18 § 1 1
PC1231| 653 06/16/98 0.22 3.57 0.98 0.57 0 0
PC1231| 698 07/31/98 0.68 8.11 1.47 0.61 0 0
PC1231| 791 11/01/98 0.73 38.64 7.68 1.86 0 0
PC1232| 583 04/07/98 0.5 50 9 4 0 0
PC1232| 592 04/16/98 0.4 54 4 6.5 0 0
PC1232( 597 04/21/98 0.6 48 9 3.5 0 0
PC1232| 599 04/23/98 0.05 7 2.1 0.6 1 1
PC1232| 699 08/01/98 0.33 34.16 5.76 2.48 0 0
PC1232| 791 11/01/98 0.24 32.4 2.44 4.09 0 0
PC2131 156 02/04/97 0 9 1.2 0.4 0 0
PC2131 159 02/07/97 0.1 5.8 2:2 0.6 0 1
PC2131 178 02/26/97 0.2 4 3.3 1.35 0 1
PC2131 179 02/27/97 0 8.3 2 0.9 0 0
PC2131 184 03/04/97 0 36.39 2 1 0 1
PC2131| 239 04/28/97 0.09 3.65 1.6 1.55 1 0
PC2131| 241 04/30/97 0.05 3.1 0.75 1.7 1 0
PC2131( 295 06/23/97 0.1 2.55 2.2 1.4 1 0
PC2131| 386 09/22/97 0.4 5.6 7.5 0.7 1 0
PC2131 470 12/15/97 1200 120 30 10 0 0
PC2131| 535 02/18/98 0.2 20.9 1.6 4.8 0 0
PC2131| 583 04/07/98 2 77 46 11 0 0
PC2131| 597 04/21/98 2 GG 43 6 0 0
PC2131| 604 04/28/98 | 74 37.5 5 1 0
PC2131| 611 05/05/98 0.01 20 4.1 11.6 1 0
PC2131 631 05/25/98 0.1 18 10 72.33 1 0
PC2131 640 06/03/9%8 0.6 10.5 2.8 5.9 1 0
PC2131| 639 07/22/98 0.09 1.7 0.4 0.5 1 0
PC2131 768 10/09/98 0.1 1.92 0.55 0.66 1 0
PC2131 774 10/15/98 0.14 2.66 0.76 1.12 1 0
PC2131| 791 11/01/98 0.16 13.37 1.08 3.69 0 0
PC3131| 241 04/30/97 0.1 6.8 3.9 1.3 1 0
PC3131| 295 06/23/97 0.8 29 17 14 1 0
PC3131 3806 09/22/97 0.5 37 6.5 4 1 0
PC3131| 450 11/25/97 0.2 20.52 6 3 1 0
PC3131| 550 03/05/98 0.09 T2 3.74 127 1 0
PC3131| 651 06/14/98 0.96 33.06 17.34 16.8 1 0
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PC3131| 750 | 09/21/98| 0.59 40.33 6.43 1.16 1 0
PC3131| 791 | 11/01/98| 0.2 19.48 5.82 3.39 1 0
PC3132| 239 | 04/28/97| 0.1 2.4 0.15 0.39 1 0
PC3132| 295 | 06/23/97| 0.2 9.6 1.8 1.6 1 1
PC3132| 386 | 09/22/97| 0.2 24 3 3.5 1 1
PC3132| 450 | 11/25/97| 0.5 32 21 13 0 0
PC3132| 506 | 01/20/98 | 0.97 37.56 48.37 26.84 0 0
PC3132| 566 | 03/21/98 | 0.12 2.44 0.16 0.45 1 1
PC3132| 711 | 08/13/98 | 0.19 11.04 1.92 1.82 1 1
PC3132| 791 | 11/01/98| 0.2 27.6 3.27 3.39 1 1
PC3232| 239 | 04/28/97| 0.3 11.5 3.8 0.6 1 0
PC3232| 295 | 06/23/97 1 43 8 6 1 0
PC3232| 386 | 09/22/97 2 39 6 6 1 0
PC3232| 535 | 02/18/98 0 66 14 7 0 0
PC3232| 563 | 03/18/98 0 75.72 56.86 7.33 1 0
PC3232| 591 | 04/15/98 0 235 22 10 0 0
PC3232| 604 | 04/28/98 2 175 18 7 0 0
PC3232| 639 | 06/02/9% 3 74 9 3 0 0
PC3232| 722 | 08/24/9% 0 20.5 14.8 1.9 1 1
PC3232| 723 | 08/25/98 0 21.45 15.1 1.96 1 1
PC3232| 748 | 09/19/98 | 0.18 7.59 2.96 0.39 1 0
PC3232| 783 | 10/24/98 | 0.62 26.66 5.44 45 1 0
PC3232| 791 | 11/01/98| 1.28 28.08 3.72 1.08 1 0

In Chapter 5 it is shown that RF53H is a good predictor of failure and plays an significant
role in the maximum likelihood. For the sake of completeness, the data for this covariate is

also displayed graphically in Figures D.1 to D.8 for each lifetime.
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Figure D.1: Observed values of RF53H for PC1131
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Figure D.2: Observed values of RF53H for PC1132
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Figure D.3: Observed values of RF53H for PC1231
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Figure D.4: Observed values of RF53H for PC1232
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Figure D.7: Observed values of RF53H for PC3132
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D.2 Inspection data for Bearing 4

The inspection data for Bearing 4 is presented in Table D.2 on the next page, where the

columns have the following meanings:

Pump ID:  Pump identification number.
Age: Global age of the pump measured in days.
Date:  Actual date of inspection.
A: RFO044H, i.e 0.4x rotational frequency amplitude, measured on horizontally

on Bearing 4 in mm/s, indicative of a bearing defect.

B:  RFI14H. ie. 1x rotational frequency amplitude, measured horizontally on
Bearing 4 in mm/s, indicative of unbalance in the pump.

C: RF24H, ie. 2x rotational frequency amplitude. measured horizontally on
Bearing 4 in mm/s, indicative of misalignment in the pump.

D: RF54H, i.e. 5x rotational frequency amplitude, measured horizontally on
Bearing 4 in mm/s, indicative of cavitation in the pump.

E:  HFDA4H, i.e. high frequency domain components between 1200-2400 Hz, mea-
sured on Bearing 4, indicative of a bearing defect. This is a subjective covariate
where 1 indicates a presence and 0 an absence of the mentioned components.

F:  LNF4H, i.e. lifted noise floor in 600-1200 Hz range, measured on Bearing
4. indicative of a lack of lubrication where 1 indicates a presence and 0 an

absence of the mentioned components,

Table D.2: Inspection data for Bearing 4

Pump | Age Date A B ' C D E P
ID (Days) [mm/s] | [mm/s] | [mm/s] | [mm/s] | [0/1] | [0/1]
PC1131 159 02/07/97 0.05 (.85 0.3 0.1 1 0
PC1131| 295 06/23/97 0.2 0.45 0.25 0.12 0 1
PC1131| 387 09/23/97 0.1 4 1.7 6.2 1 0
PC1131| 394 09/30/97 243 4 2.1 0 0
PC1131| 397 10/03/97 4 4.6 2.8 1 0
PC1131| 530 02/13/98 0.1 13.2 3.5 5.5 0 0
PCL131| 533 02/16/98 0.2 10 3.8 7 1 0
PC1131 554 03/09/98 0.3 5 4.2 10 0 0
PC1131 578 04/02/98 0.7 42 3 : 1 0
PC1131 597 04/21/98 0.5 52 2 1 0
PC1131 639 06/02/98 0.5 47 8 1 0
PC1131 689 07/22/98 0 14 2 1.2 0 0
PCI1131 690 07/23/98 0 13.04 1.73 1.08 0 0
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PC1131 703 08/05/98 0.2 2.25 0.9 0.4 1 0
PC1131 712 08/14/98 0.05 0.58 1.3 0.41 1 1
PC1131 765 10/06/98 0.05 0.4 2.1 0.6 1 1
PC1131 791 11/01/98 0.2 12 2 7 0 0
PC1132| 239 04/28/97 0 1.65 0.3 0.72 0 1
PC1132| 386 09/22/97 0.1 12.2 0.7 7.8 1 0
PC1132| 394 09/30/97 0.1 14 0.9 8.2 1 0
PC1132| 397 10/03/97 0.2 12 0.9 12 1 0
PC1132| 491 01/05/98 1 10 0.8 30 1 0
PC1132| 499 01/13/98 0.1 66 4 12 0 0
PC1132] 533 02/16/98 0 65 3 10 0 0
PC1132( 543 02/26/98 1 120 38 7 0 0
PC1132( 544 02/27/98 1.13 126.88 12.38 6.64 0 0
PC1132| 557 03/12/98 1 34 5 2.5 1 0
PC1132| 558 03/13/98 2 27.5 6.5 1 0 0
PC1132| 597 04/21/98 1 24 4.2 5.4 0 1
PC1132| 689 07/22/98 0.1 1.8 0.7 0.4 0 0
PC1132| 712 08/14/98 0.05 2.7 0.3 0.4 0 0
PC1132| 751 09/22/98 0.13 1.61 0.06 1.54 0 1
PC1132| 791 11/01/98 0.15 7.8 0.56 7.68 1 0
PC1231( 239 04/28/97 0 9 0.6 0.4 0 0
PC1231| 295 06/23/97 0.3 16.5 2.3 0.3 0 0
PC1231( 390 09/26/97 0 67 6 4 0 0
PC1231| 530 02/13/98 0 21 § 6 1 1
PC1231| 563 03/18/98 0.08 10 5.05 5.87 1 1
PC1231 o78 04/02/98 2 51 16 9 1 1
PC1231| 653 06/16/98 0 6.75 0.41 0.27 0 0
PC1231 698 07/31/98 .22 10.72 1.35 0.15 0 0
PC1231 791 11/01/98 0 46.9 4.14 2.64 0 0
PC1232| 583 04/07/98 0 71 8 3 0 0
PC1232( 592 04/16/98 0.05 53 3 2 0 0
PC1232| 597 04/21/98 1 o7 6 3 0 0
PC1232| 599 04/23/98 0.15 7.9 3.5 0.9 0 1
PC1232| 699 08/01/98 0 19.7 5.28 1.92 0 0
PC1232| 791 11/01/98 0.03 36.57 2.04 1.24 0 0
PC2131 156 02/04/97 0 15.5 2l 0.5 0 1
PC2131 159 02/07/97 0 7 1.8 0.4 0 1
PC2131 178 02/26/97 0.05 6.7 2.3 04 0 0
PC2131 179 02/27/97 0 12.2 2.2 0.4 0 0
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PC2131| 184 | 03/04/97 0 47.97 1.51 0.4 0 1
PC2131| 239 | 04/28/97| 0.05 0.6 1.1 0.7 0 0
PC2131| 241 | 04/30/97| 0.1 8.1 1 0.7 1 0
PC2131| 295 | 06/23/97| 0.2 6.1 1.5 0.4 1 0
PC2131| 386 | 09/22/97| 1.7 21 1.4 3.7 1 0
PC2131| 470 | 12/15/97| 78 48 12 9 0 0
PC2131| 535 | 02/18/98| 0.5 27 7.4 7 0 0
PC2131| 583 | 04/07/98 2 62 39 6 0 0
PC2131| 597 | 04/21/98 2 64 38 1 0 0
PC2131| 604 | 04/28/98 2 61 37 5 1 0
PC2131| 611 | 05/05/98 | 0.01 24 6 1.4 1 0
PC2131| 631 | 05/25/9% | 0.01 10 10 1 1 0
PC2131| 640 | 06/03/98 | 0.2 26 1 1 1 0
PC2131| 689 | 07/22/98| 0.05 4.6 0.25 0.33 1 0
PC2131| 768 | 10/09/98 | 0.05 42 0.3 0.2 1 0
PC2131| 774 | 10/15/98 | 0.06 5.89 0.37 0.48 1 0
PC2131| 791 | 11/01/98| 0.34 17.55 1.66 5.6 0 0
PC3131| 241 | 04/30/97| 0.1 8 1 1 1 0
PC3131| 295 |06/23/97| 0.7 35 10 7 1 0
PC3131| 386 | 09/22/97 2 33 5 7 1 0
PC3131| 450 | 11/25/97 | 3.13 20 1 2 1 0
PC3131| 550 | 03/05/98| 0.1 3.0% 1.81 1.2 1 0
PC3131| 651 | 06/14/98 | 0.71 39.2 9.8 7 1 0
PC3131| 750 | 09/21/98| 24 36.3 1.9 6.58 1 0
PC3131| 791 | 11/01/98| 3.47 21.4 1.08 1.8 1 0
PC3132| 239 | 04/28/97| 0.2 3.6 0.25 0.55 1 0
PC3132| 295 | 06/23/97| 0.3 12.2 0.9 2.2 1 1
PC3132| 386 | 09/22/97 | 0.05 35 2.5 2.4 i 1
PC3132| 450 | 11/25/97 0 81 8 6.5 0 0
PC3132| 506 | 01/20/98 | 0.04 141.55 | 15.78 | 12.77 0 0
PC3132| 566 | 03/21/98 | 0.23 1.32 0.25 0.59 1 0
PC3132| 711 | 08/13/98 | 0.37 15.61 1.06 2.35 1 1
PC3132| 791 | 11/01/98 | 0.06 39.9 3.25 2.61 1 1
PC3232| 239 | 04/28/97 | 0.01 16 2.3 0.3 1 0
PC3232| 295 | 06/23/97 1 43 4 1 0
PC3232| 386 | 09/22/97 1 52 3 1 0
PC3232| 535 | 02/18/98 0 91 26 8 0 0
PC3232| 563 | 03/18/98 0 102.83 | 34.32 9.86 0 0
PC3232| 591 | 04/15/98 0 280 10 15 0 0

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING
UNIVERSITY OF PRETORIA

161



University of Pretoria etd — Vlok, P-J (2006)

APPENDIX D: SASOL DATA

PC3232
PC3232
P(C3232
PC3232
PC3232
PC3232
PC3232

604
639
722
723
T4
783
791

04/28/98
06,/02/98
08/24/98
08/25/98
09/19/9%
10/24/98
11/01/98

0.73
0.72

150
73
27

27.62
12
30.72
31.2

9
6
10
10.14
1.84
5.85
2.96

8
6
0.8
0.73
0.23
3.2
1.95

0

0
0

oo o o o o

In Chapter 5 it is shown that RF54H is a good predictor of failure and plays an significant

role in the maximum likelihood. For the sake of completeness, the data for this covariate is

also displayed graphically in Figures D.9 to D.16 for each lifetime.
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Figure D.9: Observed values of RF54H for PC1131
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Figure D.11: Observed values of RF53H for PC1231
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Figure D.12: Observed values of RF54H for PC1232
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Fignure D.13: Observed values of RF54H for PC2131
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Figure E.3: Approximation of RF53H and RF54H measured on PC1131 during Lifetime 3
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Figure E.4: Approximation of RF53H and RF54H measured on PC1131 during Lifetime 4
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Figure E.5: Approximation of RF53H and RF54H measured on PC1131 during Lifetime 5
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Figure E.9: Approximation of RF53H and RF54H measured on PC1132 during Lifetime 4
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Figure E.10: Approximation of RF53H and RF54H measured on PC1132 during Lifetime 5
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Figure E.11: Approximation of RF53H and RF54H measured on PC1231 during Lifetime 1
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Figure E.14: Approximation of RF53H and RF54H measured on PC1232 during Lifetime 1
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Figure E.15: Approximation of RF53H and RF54H measured on PC1232 during Lifetime 2
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Figure E.16: Approximation of RF53H and RF54H measured on PC2131 during Lifetime 1
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Figure E.19: Approximation of RF53H and RF54H measured on PC2131 during Lifetime 4
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Figure E.22: Approximation of RF53H and RF54H measured on PC3131 during Lifetime 2
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Figure E.26: Approximation of RF53H and RF54H measured on PC3232 during Lifetime 2
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Figure E.27: Approximation of RF53H and RF54H measured on PC3232 during Lifetime 3
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