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CHAPTER 2

ADVANCED FAILURE INTENSITY MODELS

2.1 Introduction

Advanced failure intensity models are in this thesis defined as mathematical representations
of failure processes that require more than standard distributions or 2-parameter counting
process models to capture their characteristics. This chapter deals with advanced failure

intensity models found in the literature.

Chapter 2 starts off with a discussion of the concept of intensity with specific reference to
non-repairable and repairable situations. The importance of the difference between these
situations cannot be overemphasized even though it is frequently ignored in statistical failure
analysis. A clear notation with regards to intensities is defined in Section 2.2 and used
throughout this thesis. Deviations from the notation are explicitly indicated. Different
model classes are identified and relevant models are discussed. Some acclaimed applications
of advanced failure intensity concepts are also considered . For most models. the likelihood
or partial likelihood are derived or presented without describing the estimation of regression

parameters. Parameter estimation techniques are considered in Chapter 3.

The chapter ends with a summary of the advantages and disadvantages of the models corn-

sidered.

2.2 Intensity Concepts

The concept of intensity was introduced briefly in Section 1.2.3.2. In this section, the concept
is explained in detail since all reliability models discussed in this chapter strive to represent
the intensity of a certain failure process. It is assumed throughout the thesis that all failure

processes considered are orderly, i.e. simultaneous failures cannot occur ou the same item,.
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This is a reasonable assumption according to most authors, e.g. Hokstad (1997) and Lawless

(1987), and not much generality is sacrificed.

Let N(t) denote the number of failures an item has experienced in the interval (0,t]. The
unconditional intensity (i.e., the rate of failure events) of the process at any instant in time,
t, is then given by

iy = lim Pr[Failure occurs in [t, 1 + At)]

At—0) At
1 E[AN(t)] L)
T Alen | At

where AN () represents the increment N(t + At) — N(t). Because it is assumed that the
process is orderly, the following basic relation for counting processes applies:
dM(t)
L (t) = (2.2)
dt

with M(t) = E[N(t)]. The time derivative of the expected number of failures as in (2.2)

, 18
referred to as the rate of occurrence of failure (ROCOF) and will often be denoted by pl(t)
(instead of t,(#)), for convenience. From (2.2) it follows directly that the cumulative number
of failures up to time t is equal to the cumulative unconditional intensity, i.e.

"

My(t) = E[N(t)] = /D v () du (2.3)

Additional information about the failure process is often recorded with the times to failure.
The additional information is referred to as the history, Hy, or filtration of the process.
History is recorded in the form of covariates and could be any quantification of an influence
on the failure process. From Martingale theory (see Hokstad (1997)) it follows that H, is
the o-algebra generated by N(s), s < t, starting from a probability space (Q, Hy, P) that
defines the stochastic process. N(t) = N(t,w), with w € Q. Hence it is possible to define the
Jull intensity (also referred to simply as intensity or conditional intensity ), o(t, Hy) = o(t|Hy),
which is the conditional rate of occurrence of events, given the state of H,. Thus. u(f, H;) At
is the probability of an event to occur iu [t.t + At). i.e.

2L JN'I- 3
e(t, Hy) = lim 'M"_)

2.1
At—0) At 4)

The complete intensity as defined in (2.4) provides a general framework for modeling failure
event processes because the effect of maintenance activities can be recorded in Hy. Conven-
tional failure process modeling concepts such as the FOM and ROCOF are also special cases
of (2.4).

Similar to (2.3), it is possible to define a cumulative intensity process, i.e.

|
M(t, Hy) =] tlu, Hy)du (2.5)
0
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where M (t, H) is the compensator in Martingale theory. Both u(t, H;) and M(t, H,) are
denoted as predictable which means that for a given Hy, the values of (¢, H;) and M(t, H;)
are known but the value of N(¢)* not vet.

It is important to note that () is a mean function of (1, H,), averaged over all possible
sample paths. Suppose N(f,w) is a specific realization of the process of N(t) where w € Q
in the probability space (Q, H;, P). Here, N is not only a function of w for a fixed value of
t but also a function of ¢ for a fixed w (called the sample path of N). Taking the the mean

over the sample space, (), vields
E[AN(t)] = / AN (¢, w)dP(w) = 1,,(t) (2.6)
Ja

Similarly, E[AN(t)|H,]. and thus (¢, H;), is found as the conditional mean.

The last intensity concept to define is that of average intensity. Average intensity is simply
the average of M, (t) or M(t, H;) over an interval [0, 7], i.e. ¢y, = My(7)/7 0r t» = M (1)/7.
The concept of average intensity is not encountered frequently in the literature but is not
without interest. Bodsberg and Hokstad (1995) have shown that the average intensity concept

is very useful in modeling dormant failures.

Table 2.1: Summary of failure intensity concepts

Failure Intensity Concept

Intensity Mean Intensity  Average Intensity
Alternative term  Conditional intensity Unconditional -
intensity
Symbol ¢ b .
Definition . E[AN(t)|H,) . E[AN(t)] t~1. E[N(t)]
AT At AS T A
Non-repairable Ay (). truncated at fx(x) ' (1 - Rx(x))
case titne of failure
Repairable case A sequence of ROCOF or wit) Average ROCOF,
truncated FOMs i.e. AROCOF

(defined in local

time)

In Table 2.1, a concise summary (adapted from Hokstad (1997)) of the failure intensity
concepts discussed in this section is presented. Note that local time, denoted by z, is used as
time scale for the non-repairable case. consistent with the terminology introduced in Section

1.21.

“N(t) has right continuous sample paths,
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2.3 Literature survey on advanced failure intensity models

There are countless publications on advanced failure intensity models attempting to represent
the intensity concepts outlined in Table 2.1 as part of practical statistical failure analysis
exercises. Most of these publications consider variations on a small munber of fundamentally
different approaches. The fundamentally different approaches are referred to as model classes

and are listed below:

(i) Multiplicative intensity models
(ii) Additive intensity models

(ili) Models with mixed or modified time scales

)
)
)
(iv) Marginal regression analysis
(v) Competing risks

)

(vi) Frailty or mixture models

These model classes are discussed in Section 2.3. Publications that consider combinations of
fwo or more model classes are discussed as part of the model class where it makes the most
significant contribution. At the end of this section, noteworthy extensions of the listed model

classes are also discussed,

2.3.1 Multiplicative Intensity Models

Multiplicative intensity models represent the intensity of a failure process as the product
of a baseline intensity, that is a function of time only, and a functional term. that may be
a function of both time and covariates. Covariates are allowed to be time-independent or

time-dependent.

2.3.1.1 Proportional Hazards Model (PHM)

Survival data analysis underwent a revolution with the introduction of the PHM by Cox
(1972). The model was originally intended for biomedical applications but was soon applied
in reliability engineering. As the name implies, this model represents the FOM, i.e. the

failure intensity of non-repairable items, as a proportion of different FOMs.

The PHM is constructed as the product of a totally arbitrary and unspecitied baseline FOM,

ho(z), and a functional term A(z, z), where 2’s dependence on time is not important, i.e.
ovL ), . p

hiz,z) = ho(x) - Az, 2(2)) (2.7)

"The subscript x is dropped here for notational convenience.
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There are several possible forms for the functional term. Some are: the exponential form,
exp(y-2(z)); the logarithmic form, log(14exp(y-z(x))); the inverse linear form, 1/ (14+y-2(x));
or the linear form, 1 4+ - z(x), where v is a vector of regression coefficients associated with
a particular data set. The exponential form of the functional term is used most often in

reliability applications and results in the following PHM:
h(x,z) = ho(z) - exp(y - z(x)) (2.8)

The model assumes the following:

(i) Event times are I1D.
(ii) All influential variables are included in the model.
(iii) The ratio of any two hazard rates as determined by any two sets of time-independent
covariates z; and 2z, associated with a particular item has to be constant with respect
to time, i.e. hx(x,21) x hx(x,22). (This assumption is not valid for time-dependent

covariates).

The biggest advantage of the PHM, as defined in (2.8) in its semi-parametric form, is that
no assumption needs to be made about the baseline FOM when fitting the model. This is a
result of partial likelihood theory developed by Cox (1975). Kalbfleisch and Prentice (1980)
explain partial likelihood in detail. Partial likelihood only yields relative risks but can be

very useful in gross analyses.

Suppose m items are under observation and n events have occurred up to time x. Let F(z;)
be a risk set of the events up to time x; and let | be the number of events yet to occur. The
partial likelihood of (2.8) is then given by
exply - z:)
H — (2.9)
: exp(y - z;)
h—m:l]

In the case where relatively few ties, d;, are present, the following relation holds:

exp(y - 2z;) ;
L) =11 g (2.10)
i=1
> exply-z)
eF(x;)

It is also possible to stratify the PHM into different strata, i.e.

hiz,z) = ho, (x) - exp(y; - 2(z)) (2.11)

with partial likelihood given by.

rok
SN 212)
. !Jn-r(il_;]
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where 7 denotes the number of strata and &; is the number of events in the j* stratum.

Ascher, Kobbacy, and Percy (1997) applied the stratified PHM successfully.

If absolute risks are required, a fully parameterized PHM is required. A distribution often
used to perform the parameterization is the Weibull distribution because of its flexibility.
Substitution of the Weibull distribution in (2.8) vields
3 {#\P
hiz,z) = "_I (T—}) ~exp(y - z(x)) (2.13)

where (3 and 1) are the shape and scale parameters of the Weibull distribution respectively.

The parameters PHM in (2.13) can be calculated by constructing the full likelihood as,

1n

L(B,n,v,z) = H hix;, z)-exp (— ]ml h(}.‘._z)c'I.r)

=1

noo- 4—1 L 3—1
3 & T 8 ! .
- | | L= (I—) -eT% exp [ — / — (i) e #H) gy
g 1 Jo oM i

The solution of (2.14) is complex if z is dependent on time. Press et al. (1993) discuss some

(2.14)

numerical techniques with which an economic solution can be obtained.

It is also possible to stratify the fully parametric PHM. Usually, either the baseline FOM
or the regression coefficients are stratified, not both. This is done to limit the number of

parameters in the model and to obtain synergy amongst different strata.

A useful extension of the PHM is Aalen’s Regression Model as discussed in Aalen (1980) and
Aalen (1989). This model can be used to test time dependence of covariates in the PHM
and adds significant value to PHM analysis. In this model. the vector h(x; z) of the FOMs

hj(z;z) for j = 1,2, ...n, is given by:

h(z:2) =Y(2) -a(x) (2.15)

Here Y () is an n x (¢ + 1) matrix whose rows at time x; consist of those vectors,
2= [1,3{(.-:-},....:/5(.;-) (2.16)
where z;’ (x),1=1,2,...,q are covariate values, corresponding to those failure times that have

not occurred up to time ;. In the vector,

a(z) = [ap(x), ar(x), ..., ag ()] (2.17)

ap(x) is the baseline parameter function, while a;(z), i = 1,2,...,¢q are called regression
functions, defining the effects of covariates. The effect of a covariate is represented by the

cumulative regression function, A(x), defined as:

Ai(z)= A | ai(s)ds (2.18)
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for i = 0,1,....,q. To study the time-varying effect of the i*" covariate, an estimate of the
™ cumulative regression function should be plotted against the failure times. There are 4

possible outcomes:

(i) Straight line with an incline m. The effect is independent of time.
(ii) Constant line at value y. Indicates no effect at all.
(iii) Increasing at a decreasing rate. Indicates a decreasing effect over time.

(iv) Increasing at an increasing rate. Indicates an increasing effect over time.

Aalen’s approach is particularly useful in analyzing condition monitoring data since condition

monitoring data is almost always time-dependent.

2.3.1.2 Proportional Mean Intensity Models (PMIM)

Proportional Mean Intensity Models or Proportional ROCOF Models are constructed by
the product of a baseline ROCOF multiplied with a functional term, dependent on time
and covariates. PMIMs are very similar to PHMs as far as construction and estimation is
concerned but they are based on fundamentally different representations of the intensity of
failure processes. In the literature, the terminology for these concepts are often inconsistent,
e.g. Kumar (1996) investigated the use of “Proportional Hazards Modeling™ on repairable

systems while he was actually using PMIMs.

Suppose the PMIM is constructed as the product of a baseline ROCOF, 1, (), and a func-

tional term A(t, 2(¢)), where z may or may not depend on time, i.e.
Lu(t,2) = by (8) - A(2, 2(1)) (2.19)

As before, it is possible to estimate the semi-parametric model in (2.19) without making any
assumptions about t,,(¢) by using partial likelihood theory. Let m denote the number of
items under observation and let n represent the total number of failures that have occurred.
Let F(t;) be the risk set of the failure events and let | represent the number of events vet to

occur at time. The partial likelihood is then given by

T exp(y-zi)
L(y) = 2.20
el H] S exply-20) L
O LeF(t,)

If the number of ties. d;, in the data set is small, the following relation holds

mn
| exp(y - 2i) _
Ly =1] . (2.21)
=
>, exp(y-z)
I€F(t,)
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If the PMIM is stratified into » strata, i.e. u,;(t.z) = Lugj(t) exp(y; - z(t)). the partial

likelihood becomes,

r

kj
exply; - Ziy) 5 G
L) = 2.22
v ,fI_-[ltI—Ii 2. exply; - zy) e
T e R (ty)

where 7 is the number of strata and k&; is the number of of events in the j'" stratum.

If an absolute mean intensity is required, the PMIM can be parameterized. The log-linear
representation of a NHPP is often used to perform the parameterization, i.c. Ly (t) = exp(ap+
ay - t). The full likelihood becomes,

i T
L(ag, 01,7, 2) = H tug (t) - exp (— / r..,,(f.z(!.))dt)

=1 S0 d LIDY

,; = (2:23)
=TT (eoosorm v . exp (_ [ et F.-r-zmm)

i=1 J0

As in the case of the parametric PHM. it is difficult to maximize (2.23) if the covariates are

time-dependent.

If the fully parametric PMIM is stratified, usually, either the baseline ROCOF or the regres-
sion coefficients are stratified, not both. This is done to limit the number of parameters in

the model and to obtain synergy amongst different strata.

2.3.1.3 Proportional Odds Model (POM)

The proportional odds model originated from epidemiological studies and was introduced by
Bennet (1983) for use in biomedicine. This model is structurally similar to the PHM, but not
a direct extension. It models the odds of an event occurring and unlike the PHM, the effect
of covariates in the POM model diminishes as time approaches infinity. This diminishing
property of the covariates means that the model is suitable for situations where an item

adjusts to factors imposed on it or the factors only operate in early stages.

For this model the odds of a failure occurring is defined in terms of the survivor function as,

Fx(z) _ 1- Ryx(a)

— 2.24
R\(J) R_\'(.f.‘} ( )
This definition of odds is used to introduce the POM:
——l —hz.2) =) ———l - fix(2) (2.25)
R(x,z) Rx(x)
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Equation (2.25) states that the odds for a failure to occur under the influence of covariates
are ¢ times higher than the odds of a failure without the effects of covariates. If ¢ increases,
so does the probability of a shorter life time. Differentiation of (2.25) with respect to time

leads to,

hiz,z) ;s hy(x)
R(z, z) - Rx(z)

(2.26)

after using the coefficient rule. By rearranging the terms in (2.26) and re-using (2.25), a
FOM ratio can be obtained:
h(z,z) . R(z.z) 1-R(x,2)
=Y - —
hx () Rx(x) 1 — Rx(x)

(2.27)

Inspection shows that ¢|,—p = @ and ¥|,—oc = 1 . from there the diminishing effect of the

covariates.

Bennet (1983) derives the full likelihood for the model in his original paper to estimate the
model parameters. Research done by Shen (1998) provides more efficient estimation methods

and methods to enable the model to handle suspended observations.

A special case of the POM arise when it assumed that event times are distributed according
to a log-logistic distribution. Kalbfleisch and Prentice (1980) describe this special case in

detail. The FOM of an item with event times following a log-logistic distribution is given by:

)

hiz:iz) = -

a - {l -+ J_-—r'i ’ CXI)(_"Y . Z(.IT))) (228)

where § is a measure of precision. The FOM is assumed to be increasing first and then

decreasing with a change at time

= {(1—06)exp(—y-2(z))} /8 (2.29)

If # — oo, 7% - exp(—y - z(x)) — 0 (see (B.4)) and subsequently covariates will influence the

FOM less and less as the item ages.

2.3.2 Additive Intensity Models (ATMs)

Additive Intensity Models represent the intensity of a failure process as the sum of a baseline
intensity and a functional term containing covariates. Pijnenburg (1991) deals with AIMs in
completely general terms. Newby (1993) compare this type of model, for the case where the
FOM is used as intensity, to various other regression models. Authors often refer to AIMs
incorrectly as Additive Hazard Models (AHM) in reliability modeling literature. This section

describes AIMs in general terms.
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Suppose two items are in series, S; and Sy. Suppose S represents a repairable system and
S5 is an item representing the influence of covariates. Let 7 be be the time at which the
i system failure occurs and X, the system’s i*" interarrival time, i.e. X; =7T; —T,_,. The
system is supposed to have a survival time X ; and FOM h(:) and the item representing
the covariates has a survival time of X5 with a FOM, A(ty, zp). For the moment Alto, zp) is

defined as constant in-between interarrival times, i.e. constant covariates, but variable over

successive lifetimes, i.e. dependent on time.

After the first failure at system level at time, 177, ie. T} = X; = min(Xi,.Xy1) both

components are replaced, such that:

(i) Sy is renewed by an identical component, also called Sy, with lifetime X 5 and FOM
ha(-).
(ii) Sy is replaced by a component with lifetime X5 and FOM A(ty, 21).

In general terms it means that after the i'" failure on system level at time T}, i.e. 1; =
Tioy +min( Xy 4, Xy,):

(i) S is replaced by an identical new component with lifetime X1,it1 and FOM hy (). The
lifetimes X ;. are assumed to be 11D.
(i) Sz is replaced by a component with a lifetime X5, and FOM A(t;,z;). The lifetimes

X9k are assumed to be statistically independent.

It is also assumed that the survival times X ; and Xy are mutually independent.

For the various FOMs, A(#;,2;), it is assumed that the covariates. z;, are constant in [T%: Tieq)
but may change for different lifetimes. Higher covariate values, generally represent more
severe environmental stresses and xo; = min(xy 4, x2;) should be interpreted as a system
failure due to these higher environmental stresses. Pijnenburg (1991) suggests a few forms

for A(t;,z;). The simplest form for A\(t,.z;) is a linear function,

‘{J
Mt z)=7-2=) %z (2.30)

i=1
for p covariates. A linear term can be included in (2.30) by simply specifying z; = 1. In the
case where higher order terms are present in the polynomial, A(t;, z;) can be specified as,

pom

/\(f._z_]l = Z Z Vij - ;;l (231)

i=1 j=0

If covariates appear to interact, A(¢;, z;) can be chosen as,

P o1
At:2) =90+ a5 (2.32)
i=1 j=1
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A suitable form to handle both higher order terms and interaction can be.,

P i r T
Mt2) =D 3 DD k- 2f -2 (2.33)

i=1 j=1 k=0 (=0

Data limitations often cause that only (2.30) is practical.

Following the argument above, the AIM is completely generalized by allowing covariates to

dependent on time, i.e.

Lt z) = 1p(t) + A(t, (1)) (2.34)

The AIM can be stratified and parameterized in the same manner as the PHM and PMIM.
Pijuenburg (1991) also allows the AIM to have modified time scales. These extensions are
discussed in sections to follow. Crowder, Kimber, Smith, and Sweeting (1991) and Newby
(1993) derive the full likelihood to fit AIMs?.

2.3.3 Models with mixed or modified time scales

Modified or mixed time scales in intensity models can be interpreted as an additional covariate
in data sets to provide more flexibility. Modified time scales increase or decrease the modeled
intensity of a failure process by either accelerating or decelerating the actual age of an item.
Mixed time scale models incorporate local and global time in the same model to utilize the
advantages of both long and short term history. Newby (1993) refers to the result of these
concepts as the virtual age of an item since the actual survival time differs from the survival

time uged in models.

2.3.3.1 The Prentice Williams Peterson (PWP) model

Prentice, Williams, and Peterson (1981) published the so-called PWP model after research
done by Williams (1981). This model is generally considered as the most significant extension
of the PHM by Cox (1972) according to Ascher and Feingold (1984). T'wo versions of the
PWP model were proposed, both of the stratified Proportional Hazards type, which means
this discussion would also be applicable in Section 2.3.1 where multiplicative models were
considered but it is believed that this model made a more significant contribution to models

with modified or mixed time scales.

The PWP model is specifically directed towards the analysis of situations where only a small

number of observations is available on an item but where a large number of items is studied.

tPartial likelihood can not be used because of the summation of terms in the model and relative risks are

thus not possible
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Specific items are also allowed to experience multiple failures. This makes the PWP very

attractive in reliability modeling where data sets are often limited in size.

The model is constructed as follows. Let z = [z1(¢). ..., 2,(t)] denote a vector of covariates
of a specific item, part of the covariate process, Z(t). Also, let N(t), denote the counting
process of the the number of failures, n(t), on an item up to time ¢. The counting process,
N(t), is equivalent to the random failure times 77 < .... < T,y in [0,1). Prentice, Williams

and Peterson then define the intensity of a failure process as,

Prit < Ty41 < t+ At|N(s), Z(s).s <t
e.(rIN(s},Z(s),ﬂgr‘):i}n_'}” rft < D41 < -I-Af [N(s),Z(s),s <t

(2.35)
Some special cases of (2.35), in the absence of covariates, are:

(i) t(t|N(t)} = eu(t) for some ¢,(-) > 0 is the unconditional intensity function of a NHPP.
(ii) t(t|N(t)) = n(t)e(t) specifies a nonhomogeneous pure birth process.
(i) e(tIN(f)) = te(t — tg) for an arbitrary () > 0 (k =n(t)+1 = 1,2,...) gives a semi-
Markov process.
(iv) A further restriction on the semi-Markov process that tx(-) = () for all k gives an

ordinary renewal process,

Prentice, Williams and Peterson suggest two models based on (2.35), both of a stratified
: 28

Proportional Hazards type,

PWP Model 1: (t|N(t), Z(t)) = to,(t) - exp(7ys - 2(1)) (2.36)

PWP Model 21 ((t|N(t), Z(t)) = to,(t — tug)) - exp(s - 2(t)) (2.37)

The stratification variable s = s{N(t), Z(t), t} may change as a function of time for a given
item, e.g. § = n(f)+1 and the subject moves to stratum k immediately following its (k— 1_)1'}1
failure and remains there until the k" failure. More refined stratum conditions can easily be
constructed. For Model 1, it is possible to define s = 2 n(t) + A{N(t)}, where A{N(t)} =1
if the time since the last failure, t —t,4), is less than some specified value and A{N(t)} = 2,
otherwise. In the case of Model 2, it is possible to define s = 2 - n(t) + A(t), where A(t) = 1

if t is less than some value and A(t) = 2, otherwise.

The PWP formulations differ from Andersen (1985) in two aspects: (a) the risk sets of
the (k + 1)™ recurrences are restricted to the individuals who have experienced the first k
recurrences; and (b) the underlying intensity functions and regression parameters are allowed
to vary amongst distinct recurrences. Gail, Santner, and Brown (1980) published a two-
sample special case of Model 2 with strata defined at least as finely as s = n(t) + 1. Clifton
and Crowley (1978) considered a special case of Model 1 without covariates and with s = 1
if n(t) =0and s =2if n(t) > 1.
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Partial likelihood can be used to estimate relative risks with both Models 1 and 2. For Model

1 the partial likelihood is,

i )
_TTTT Py - 2siltsa) |
o l:{l I;Il > exp(ys - z(ty) (2.38)

IER(tsi.8)

where t;; denotes the failure time of item i in stratum s, 2. (ts;) refers to the covariate vector

of item ¢ at time tg; and d, denotes the total number of events in stratum s.

The partial likelihood for Model 2 is.

i
’ exp(Ys - Zsiltai)) 0
FoN /S %
e 1:[11:[1 > exp(Ys -z + usi)) Y
= e R (us.8)

where ug; are the interarrival times of the different items in various stratums and ¢ is the last

failure time on item / prior to entry into stratum s ({ = 0 if no prior failure on the item).

Prentice et al. also extend the PWP model to multivariate failure time applications where
there will be more than one type of failure. Let J € {1,2,....,m} denote mn mutually exclusive
failure type classes. Analogous to (2.35) it is possible to define type-specific intensity functions

at time t by,

Prit < Ty+1 < t+ AL J = §|N(@), Z(t)]
JHN(), Z(t) = i e = ' 2.40
(N (2, 2(2)) At At (2:40)
where, in this case, N(t) = {Ny(t),...., Ny, (t)} is the counting process for each of the m types

of failure and n(t) = ny(t) + ... + ny,(t). This leads to the following extensions of (2.36) and
(2.37):

Li(tIN(t), Z(t)) = to,,(t) - exp(vs; - 2(t)) (2.41)
LN (2), Z(t)} = to,,(t — ta(r) - explys; - 2(t)) (2.42)

Prentice et al. applied their models on a data set from Atkinson et al. (1979) and generally
achieved better results than with an ordinary PHM. In another example. Ascher (1983) used
PWP Model 2 on marine gas turbine failure data by using indicative covariates, i.e. 0's and
I's, with good results. Ascher believes the “custom tailoring” allowed by the PWP models,

is essential in failure data analysis.

2.3.3.2  Accelerated Failure Time Models (AFTM)

Pike (1966) introduced the AFTM and it is often a useful alternative to the PHM in many
reliability modeling situations, according to Newby (1988). This model incorporates the effect

of covariates by allowing for changes in the time scale of, for example, the reliability function.
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Let the probabilistic reliability function be given by Rx(z) and the accelerated reliability

——
function be denoted by Ry (r), due to environmental stresses, i.e.

Rx(z) = R[(z —¢) /1) (2.43)

where ¢ is a location parameter and b is a scale parameter. The model is similar to regression
models which assume that (z — ¢)/b is distributed according to a known parametric form.

Some density functions often used, are,

Weibull:
oty k k-1 I :
Fais) = U exp(—u"), u=(x—c)/b (2.44)
Gumima:
o L g
fx(x) = bF(Fr)u exp(—u), u=uzx/b (2.45)
Log-normal:
— 1 1 [In(u)]?
Fx(a) = = exp { = { ( )} = (z—c)/b (2.46)
Inverse Gaussian:
fx(x) = 5\/ 2Tru. exp = [ uw=x/b (2.47)

where k is a shape parameter.

A logical variation on the AFTM is where the underlying distribution is only a function of x
and k, fx(x,k), but the accelerated distribution is fy(z/b;. k), with b; = b(z;; q) where z; is

a vector of covariates and ¢ is a flexibility parameter. Commonly used models for b are;

(i) Constant
(ii) Linear as a function of stress, e.g. b=2z;-a
(iii) Exponential, e.g. b; = explz; - a)

(iv) Inversely exponential, e.g. b; = exp(—1/(z; -a)) (Arrhenius model)

Constructing the likelihood for the mentioned models is similar to simple two-parameter
likelihood construction. Many authors have discussed the likelihood construction, including
Smith and Naylor (1987), Cheng and Amin (1983) and Cheng and Isles (1987).

Solomon (1984) has shown that, in the absence of censoring, the relative effect of covariates
are identical in the AFTM and the PHM. Great care should thus be taken in such cases that

either one of the two models is not misspecified.
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A very popular application of the AFTM is fatigue crack growth in the field of structural
mechanics. The acceleration-property of the model is used to estimate fatigue crack growth
rates. Many examples of this kind can be found in the literature, including Crowder, Kimber,
Smith, and Sweeting (1991) and Newby (1988).

Ciampi and Etezadi-Amoli (1985) and Etezadi-Amoli and Ciampi (1987) combined the PHM
and the AFTM in the so-called Extended Hazard Regression Model (EHRM), i.e.

h(z;2) = ho (z - 1 (2(2) - a)) lz(x) - B) (2.48)

where ¢ (2(z) - @) and ¢(z(x) - 3) are positive functions equal to 1 when all covariate values
are equal to 0. When a = 0, the model in (2.48) becomes an ordinary PHM and when a = 3,

the corresponding model is an AFTM.

2.3.3.3 Proportional Age Setback (PAS)

In this approach, introduced by Martorell, Munoz, and Serradell (1996), each maintenance
action is assumed to shift the origin of time from where the age of the component is evalu-
ated. Let every maintenance action reduce the age of a component, just before maintenance,
proportionally by a factor £, where € lies in [0,1]. If e = 0, the PAS produces the BAO
situation and if £ = 1, the GAN situation results. Thus, the virtual age, 7. of an item after

it has undergone its first maintenance action® is given by:

rif = (1—e1) - A(z1) - T \2:48)

In (2.49), A(-) is a functional term containing covariates in the vector z;. Covariates could
be time-dependent or time-independent. The superscript “4+" indicates that the virtual age
is applicable shortly after the event at T). After the second maintenance action the virtual

age 1s,

=1 —¢) [n+ Mza) - (Ta = T1)] (2.50)
Substitution of the above yields:
= —e2) - [(L=21) Az1) T1 + Az2) - (T2 — 1)l (2.51)

If m denotes the maintenance number, the virtual age of a component iz generally given by,
3 Lo = * s ]

m—1 k
T:, == Z )\[:Zm—k-] ‘ H {l — Em r) ' (Ilm—k' — .-I:m.—k— l_) [\25‘—)
=0 r=0

Martorell, Sanchez, and Serradell (1999) simplify the virtual age model in (2.52) by assuming

that,

§ Maintenance action could be interpreted here as renewal, minimal repair or imperfect repair.
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(i) the effectiveness of each maintenance action is equal to some constant value z, i.e.
Ep = E.
(ii) constant operating conditions apply, i.e. zj = z.
This leads to a simplification of (2.52), i.e.
=1
; _yh+1 e
b = AM2) - [ D0 (A=) (T — Tng) _
k=0 (2.53)
- ’\(Z) . (t'm _ AT?r'r.)
where
m—1]
Atm=Y (1—e)f k- Ty (2.54)
k=0

This simplification is useful in cases where information in data sets are limited or where a

first approximation suffices.

Atwood (1992) used an approach similar to the PAS, specifically on the ROCOF of items, i.e.
p(t) = po-g(t: 3). Here, py is a constant multiplier and g(t; 3) is the portion of the expression
that determines the shape of p(t). Three models for the ROCOF are proposed (exponential,

linear and power law):

poexp[B(t — ty)]
plt) = { poll + Bt — to)] (2.55)
po(t/to)?]
The value of ty can be selected for convenience. In the first two cases, if g is set to zero.
t — tg is the time measured from the system’s installation. In the third case, ¢y normalizes
the scale in which time is measured. In all three models. py has units of 1/time. If 3 > 0,

p(t) is increasing, 3 = 0, p(t) is constant or 4 < 0, p(t) is decreasing. The value of py is
the value of p(f) at time t = t5. Atwood uses a Bayesian approach to fit the models, i.e. a
preliminary analysis is done first based on the conditional likelihood of the models given in

(2.55) whereafter the full likelihood is constructed and the values of parameters are estimated.

2.3.3.4 Proportional Age Reduction (PAR)

Malik (1979) introduced the PAR model. where the virtual age is based on the survival time
of the most recent lifetime. This differs from the PAS approach where the virtual age is based

on the entire history.

Let £ be the efficiency factor, as before, that lies within [0, 1]. The virtual age of an item,

after it has undergone its first maintenance action, in the PAR model is given by:

T'I" = (1—.‘?1) -/\{zll}le {256)
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The functional term, A(-), incorporates covariates and the superscript “+" denotes applica-
bility of the 7 shortly after event 7 occurred. After the second maintenance action the

virtual age is,
T =7+ (1=e2) - Az2) - (Ta — T1) (2.57)

Immediately after maintenance action m, the virtual age is given by:

m
ik = (I-—eg) ~Al2e) (Tim—Tm=1) (2.58)
k=m
If € and z are fixed, (2.58) simplifies to.
T = (1=€)  X2) - Ty (2.59)

This simplified estimation of the PAR was applied by, amongst others, Malik (1979) and Shin,
Lim, and Lie (1996). Shin, Lim, and Lie, for example, implemented the PAR concept on two
models namely the power-law intensity function (Weibull) and log-linear intensity function.
From here the PAR model is defined as

b1 (t) = et — ¢ 7k), t > 7y (2.60)

where ¢ is an improvement factor or factor of rejuvenation and 0 < ¢ < 1. This particular
model was only used on a single item under observation but it can be extended to handle

counts of multiple system copies.

2.3.4 Marginal regression analysis

Marginal regression analysis has been used with success in the field of biomedicine to rep-
resent multiple-event time data. See for example Pepe and Cai (1993) and Wei, Lin, and
Weissfeld (1989). The approach of marginal regression analysis is similar to the stratified
PHM approach with vaguely defined strata. This approach has the attractive attribute that
no explicit model needs to be formulated for the probabilistic association between failures of
the same individual. Wei et al. also allow for k different failure types, censoring and missing

observations, which could be very useful in reliability modeling.

" subject (i = 1,...n) that experiences the k' type

Let X, be the failure time of the i
of failure (k = 1,.... K). In some instances a bivariate vector, i’;ﬂ-, is observed consisting
of [Xi. Agi], where Xj; = min(X pi, Cyi) and Cy; is the censoring time. Let Ay = 1 if
Xii = )?m and Ay = 0 otherwise. [f ik:‘ is missing, C; = 0, which implies that Xy, = 0
and Ay; = 0, since Xy, = )2';”- is positive. Let zp; = (214, ..., 21ki] De a vector of p covariates

Lh

for the i*" subject with respect to the &' type of failure. Conditional on zj;, the failure vector

Kegi= [)Z'l,u .y Xi] and the censoring vector Cy = [Chy, ..., Cy] (i = 1, ...,n) are assumed to
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be independent. For the k™" type of failure of the i*'" subject, the FOM hy;(z) is assumed to

take the form,

hii(x) = hro(x) - explyk - 2ki(@)] (2.61)

where hyo(r) is an unspecified baseline FOM and -y, is a vector ol failure-specific regression
coefticients. If Fy(x) = {l : Xy > x} is defined as the set of subjects at risk just prior to time

z with the respect to the &' type of failure, the k' failure-specific partial likelihood is,

Ak:
n
_ exp(y - zxi(Xpi)) i
. B 2.62
k(7) 1;‘1: > exply - zp (X)) o
L EE]F.H.A'\'MJ

Pepe and Cai (1993) considered a simplification of the approach above by defining a FOM
hP'(z) for individuals at risk at time = but not previously infected and a FOM hi(z) for
individuals at risk and previously infected. It is possible to decompose hf*(z) into further
components, i.e. {h?' h32 ..}, where h*/*~1)(z) is the FOM of individuals with the k'
infection amongst those who have already experienced k —1 infections. Ascher, Kobbacy, and
Percv (1997) proposed a similar approach by specityving a different FOM for items following
either corrective maintenance or preventive maintenance. Every model has its own baseline

and regression coefficients.

The approach of marginal regression analysis as outlined above requires large data sets -
something that ig not common in reliability. The failure type specific regression coefficients
is an important attribute however, since machines rarely fail repeatedly because of the same

type of failure.

2.3.5 Competing risks

Crowder (1991) believes the principle of competing risks is best explained by an example from
the field of biomedicine. Suppose the time to recurrence of a specific type of cancer in a group
of patients is modeled. Patients not only run the risk of the recurrence of cancer but also, for
example, of dying before recurrence or developing a different disease before recurrence. This

problem is defined as competing risks in data and is common in reliability problems.

Competing risk models have two interpretations: (1) it describes the lifetime of a system sub-
ject to several potential causes of failure; and (2) it describes the lifetime of a system consisting
of a series of components which fails as soon as one of the components fail. The occurrences
of potential failures can be regarded as a vector of random variables X = [ X, ..., X, so that

the actual stopping time is at the smallest element of X, say X;. If the random variables in
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X are independent, the system reliability is given by,

Rays(z) = [[ Bit=) (2.63)
i=1
with FOM
Rays(2) = Z hila) (2.64)
i=1

Competing risks situations arise naturally in reliability problems, particularly where series
systems are considered. Equations (2.63) and (2.64) are, for example, directly applicable in
the “weakest-link” argument of Blanchard and Fabrycky (1990). Lewis (1987) cousidered
an approach similar to that of competing risks, called the “S-factor” method. This method
analyzes a system as a series of (i)subsystems of independent components; and (ii) common-
canse components. Crowder (1991) derives the likelihood for competing risks models in

general terms.

2.3.6 Frailty or Mixture Models

The concept of frailty or mixture is used in two ways in reliability models: (1) as a way of
introducing an idea of heterogeneity into the construction of a model; and (2) as an object

of interest in itself. Mixture models are more applicable in reliability than frailty models.

Frailty in this context is an unobservable random effect shared by subjects in a group. It is
defined by Vaupel, Manton, and Stallard (1979) rather like the PHM. but differs in that the
relative risk factor is a random variable in this case. The frailty, £, is defined in terms of the

FOMs of individuals in a population, i.e.
h(z]€) = & - ho(x) (2.65)

is the FOM of an individual with frailty £ and baseline FOM, hq. If the frailty at time z has

a density f,(-), the average FOM at time x is,

@) = [ hlal) - ()
=ho(z) | € fal€)de (2.66)
J0
=£ h{)(l)

If the frailty decreases with time, so will £ (since the weakest die young if no fatal external
influences are present). This leads to a situation where the average FOM is declining more

rapidlv than the FOM for individuals.
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Many authors have also used frailties in regression models. See for example Klein and
Moeschberger (1990). The inclusion of frailties overcome the limiting assumption of most
regression models that survival times of distinct subjects are independent of each other. This
assumption is for instance not valid for a study on litter mates that share the same genetic

makeup or married couples that share the same, unmeasured environment.

Klein and Moeschberger (1990) present two types of frailty models (both based on Cox’s
PHM). For the first it is assumed that the FOM of the j'" subject in the " group. given the
frailty, to be

hij(x) = ho(z) - explow; +9 - z;5) (2.67)

where wy, ..., w¢ are frailties. It is assumed that the w’s are an independent sample from

some distribution with mean 0 and variance 1. The second model is given by
hij(x) = ho(z) - u; - exp(y - 2i5) (2.68)

where the u;’s are an independent and identically distributed sample from a distribution
with mean 1 and some unknown variance. Common models proposed in the literature for the
random effect are the one-parameter gamma distribution, the inverse Gaussian distribution

and the log normal distribution.

Lawless (1987) introduced frailties in a Poisson process model by inclnding a variable a; which
accounts for unobservable random effects for each subject, i.e. p(t,z) = a;polt) exp(y - z;).
The ;s are independent and identically distributed random variables, independent of the

zi's with some distribution G(«). The likelihood for subject i's event history over (0, ;] is

voe M T
L:(0) = /U H aip(tij) exp(y - z;) exp {— / aip(t)exp(y - z;)df}dG(ul} (2.69)

=1 Jo

Mixture models arise naturally in reliability according to, amongst others, Lancaster (1990)
and Littlewood and Verrall (1973). These models are expressed as a conditional FOM,
h(z|z, o), where o is a random variable with density w. The conditional density and survivor

functions for = are,

f(z]|z) = /f(_.r'|z.rr_)-.u(_cr)dcr

(2.70)
= /h.[.r|z.rr]exp[—H{.;:|z._r_TJ]Llcr
and
R(z|z) = /R(.J?|276}w(0}d0
: (2.71)
= /exp[—H{.r:|z.ch]dU
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Note that,

hizlz) = z,0)w(o)do = h(z|z) (2.72)

flelz)
R(.‘I'|Z) # / h(I

since the FOM defined in terms of frailty is not the FOM of the unconditional distribution.

Mixture models are also often interpreted as Bayesian models with prior w(e) for a parameter
a. See for example Lancaster (1990) and Ridder (1990).

2.3.7 Noteworthy extensions of intensity concepts

On a few occasions authors published extensions of the failure intensity concepts described
above that are beneficial to this study. These extensions are mostly integrations of different

approaches to suit particular applications.

2.3.7.1 A point-process model incorporating renewals and time trends, with
application to repairable systems

Lawless and Thiagarajah (1996) presented a family of models that incorporates both Pois-
son¥ and renewal behavior although multiple system copies are not considered. The authors

studied models of the form,
u(t, z) = e7*0 (2.73)

where z(t) = [z1(t), ..., zp(t)] and ¥ = [y, ..., 7). This model is a special case of that con-
sidered by Berman and Turner (1992). Two important Poisson processes can be modeled by

(2.73) by specitving the covariates intelligently:

(i) p1(t) = exp(e + Bt) by letting 2(t) = [1,t] and v = [wv, 5]
(i) pa(t) = at? by letting z(t) = [1,logt] and y = [log a, 3]

Renewal processes are obtained by taking z(t) as a function of the backward recurrent time,
B(t), as defined in Section 1.2.1. For example. z(t) = [1,log B(t)] and v = [log a, 8] produce
a renewal process with a Weibull distribution and FOM hx (z) = az”. Models with z(t) =
[1,91(t), g2(B(t))], where gy and go are specified functions, incorporate both renewal and time

trend behavior.

YSee Section A 3.3 for details on Poisson processes.

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING 44
UNIVERSITY OF PRETORIA



University of Pretoria etd — Vlok, P-J (2006)

CHAPTER 2: ADVANCED FAILURE INTENSITY MODELS

Anderson, Borgan, Gill, and Keiding (1993) and Berman and Turner (1992) have shown that

the maximum likelihood of (2.73) is given by,

n T
L{vy) = Hp(t.;) - exp {—A p{f.):_lf} (2.74)

i=1

for Poisson processes and for renewal processes by,

L{y) = [ flzi) - Flzg ) (2.75)

i=1

where ; is defined as before, 7, | is a suspension time and Fx(:) is the survivor function.

In an example where Prochan’s! “famous” airplane air-conditioning data is modeled, the
usefulness of this approach is illustrated. The general model with g1(t) and go(B(t)) as
covariates was fitted on the data. After evaluation of the significance of the covariates by
means of the Wald test statistic it was clear that only g1(1) was significant. i.e. the the data
was more suitable for repairable systems theory because an underlying trend was present in
the data. Laplace’s trend test (see De Laplace (1773)) and the test by Cox and Lewis (1966)

confirmed this result.

Calabria and Puleini (2000) presented a special case of the model by Lawless and Thiagarajah
(1996) where the model determines the characteristics of the failure process during fitting
procedures. The two most popular NHPPs (Power-Law Process (PLP) and Log-Linear Pro-
cess (LLP)) are considered in terms of (2.73), together with the Weibull Renewal Process
(WRP). The proposed models are as follows:

(i) The Power-Law Weibull Renewal process with an intensity of,

(| Hy) = g1

9= (1))~ (2.76)

where 0 >0, #+0>1for 0 <t <7y and u(t) =t — tiv()- The intensity up to the first
failure time T} is 4(t) = vt°7°=2 where v = (3 + 6 — IJ/H‘BT‘Ll. This is a power law
function which does not depend on H; or the maintenance policy. If minimal repair was
done after each failure, the failure process should evolve on the basis of the intensity.
Thus, the ratio of (2.76) and the intensity up to the first failure gives a measure of
the improvement or worsening introduced by the actual maintenance policy (minimal
repair), i.e. [u(t)/t]°~'. An indication of the departure from minimal repair is thus
given by d. For example, if § > 1, the ratio is less than 1 for any t > 77 and, at a
given distance B(t) from the most recent failure, it becomes smaller and smaller as
the number of occurred failures increases, thus indicating a repeated beneficial effect of

maintenance actions on the equipment reliability.

ISee Prochan (1963).
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The parameter 3 in (2.76) measures the departure from perfect maintenance. If 3 =
1. then (2.76) reduces to Weibull renewal. When 3 > 1. reliability degradation is
experienced and if 1 — ¢ < 7 < 1, reliability improvement is experienced.

(ii) The Log-Linear Weibull Renewal process with intensity function,
A(t|Hy) = dexp(f + [t)[u(t)]> ! (2.77)

with —cc < 6, 3 < ocand 6§ > 0 for 0 < ¢ < 77. Up to the first failure, t(t|Hy) =
exp(v+ 31t where v = §+1n d, which is exactly the intensity of an ordinary Poisson
process. When 3 = 0, (2.77) does not depend on global age but only on B(t) which
implies perfect maintenance, i.e. Weibull renewal. If § = 1 the process intensity does

not depend on local time and reduces to a log-linear process.

The value of § has the same physical meaning here as in the Power-Law Weibull Renewal
model. But, for the value of 3, if 3 > 0 a reliability deterioration of the equipment
with the operating time is described. The more 3 differs from 0. the bigger the time
trend. Finally, if =0 and 6 = 1, the Log-Linear Weibull Renewal process reduces to
the HPP.

Likelihood construction for the above models is trivial and will not be discussed here.

2.3.7.2 Simple and robust methods for the analysis of recurrent events in
repairable systems

Lawless and Nadeau (1995) considered some robust methods to estimate the behavior of point
process data based on the Poisson model. This is an extension of the techniques described
by Nelson (1982) for 11D data.

Suppose k systems are observed and system ¢ is under consideration over a time period [0; T;].
Let Ni(t) be the number of events up to time ¢. It follows that the Cumulative Mean Function
(CMF) is M;(t) = E[N;(t)]. In the continuous sense my(t) = M;(!), which is the ROCOF.

To estimate the common CMF in a discrete sense, let n;(t) > 0 be the number of events
that occur to system ¢ at time t. This means m(t) = E[n;(t)] and hence M(t) = ZL:] m(s).
System i is observed over [0;7;] and we define di(t) =11ift < T; and 6;(t) = 0 if t > T, to
indicate whether ¢ is observed at t. The total number of events is given by n.(t) = Zf_] dini(t)
and the total number of systems observed at ¢ is 4. (t) = Zj‘;l 0i(t). Further, assume the k

systems under observation are mutually independent. Then. if the ni(t)’s are independent

Poisson random variables with means m(t), the MLE's of m(t) is given by:

) n.(t)
mi(t) = . 2.78
() o.(1) ( )
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Similarly for M (t) we have,

t

M(t) = Z 5 ( (2.79)

s5=0

The authors present a valve seat replacement example as well as an automobile warranty

claim example to illustrate the above concepts.

This publication is very useful for this study since it is robust and simple. It is ideal for a
preliminary analysis of data. The assumption that the end observation times 7; are indepen-
dent of the event process may be somewhat unrealistic in reliability problems. For example,
if system failures are studied and systems with many failures are withdrawn from service

earlier, the estimates of M (t) or the regression coeflicients could be badly biased.

2.4 Conclusion

Chapter 2 covered the majority of advanced failure intensity model classes in the literature
as well as a few noteworthy extensions of model classes. Kumar and Westberg (1996b)
compiled a summary of advanced failure intensity models for non-repairable systems and
how these models are interrelated. This summary was broadened and generalized for both

non-repairable and repairable systems and is shown in Figure 2.1 on the next page.

The theory, models and concepts discussed in this chapter are used in chapters to follow to

achieve the objectives set in Section 1.6.
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Figure 2.1: Summary of different advanced failure intensity models
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