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CHAPTER 1

PROBLEM STATEMENT

1.1 Introduction

Maintenance engineering is one of the fasted growing engineering disciplines in the world.
Industry has only started to realize the importance of maintenance in the early 1980°s and,
ever since, there was no turning back the rapid development in the theory of maintenance.
This theory is also more readily accepted by maintenance practitioners in industry as the
mindset with regards to maintenance changes and greater successes are achieved by formal

maintenance Prograuns.

As is the case with most engineering disciplines, there is a drive in the field of maintenance
engineering to optimize methodologies and practices. The maintenance fraternity has real-
ized that the use of formalized maintenance models and tactics alone are not necessarily the
optimal way to maintain equipment. One aspect of formal maintenance that needs optimiza-
tion is decision making in life-limiting maintenance strategies, i.e. preventive maintenance,

hecause of enormous losses industries are suffering due to a waste of residual life of equipment.

Preventive maintenance practitioners* have mostly reasoned along one of two schools of think-
ing. The first is to take action (replacement, repair or overhaul) based purely on an item’s
age as measured in time, miles, tons processed or any other convenient process parameter.
The second is to assess the condition of an item through diagnostic measurements, which
may include vibration monitoring, results of oil analysis, thermographic profiles, pressure,
temperature, ete. This second viewpoint is referred to as predictive maintenance. Coetzee

(1997) compiled a maintenance strategy tree that serves as a concise summary of possible

*Preventive maintenance, contrary to popular believe, is not necessarily the optimal maintenance strategy
{0 apply. Any strategy’s technical and economical feasibility should be determined before it is implemented.
A methodology such as Reliability Centered Maintenance (RCM) or Total Productive Maintenance (TPM)

should lead maintenance practitioners to the correct strategy.
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maintenance strategies. See Figure 1.1,
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Figure 1.1: Maintenance Strategy Tree

Preventive maintenance is performed for one reason only: to prevent unexpected failure,
which is in most cases cousiderably more expensive than planned preventive action. Unex-
pected failures often involve costly secondary damage to equipment, production losses, late
delivery penalties, overtime labor costs and even loss of life. Preventive action is usually
inexpensive relative to corrective action because of the planned nature of this type of action

that eliminates many of the unwanted cost factors associated with unexpected failure.

[nn the case of use based maintenance. action is taken (by definition) only when an item has
reached a certain age ". The time at which action is taken should be chosen in such a way that
acceptably little residual life is wasted in the process but also such that the risk of unexpected
failure does not rise unacceptably high. Optimization of use based maintenance thus involves

a tradeoff between the waste of residual life and the risk of suffering an unexpected failure.

Predictive maintenance technologies, on the contrary, strive through continual * assessment of
an item’s condition to warn those concerned of an imminent failure shortly before occurrence
of failure. With advanced technology available at present, this seems to be a much more
elegant approach than use based action. Closer investigation reveals that this is not neces-

sarily true because, even with the advanced technology. there are still numerous unknowns

"Time will be used consistently to refer to an item’s age but it should be emphasized that any convenient

process parameter may be used

"The word continual may be replaced by continuous in some cases
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that cannot be eliminated and a tradeoff has to be made again. In this case the tradeoff is
between the accuracy of the technology utilized to perform the condition assessment and the

risk of running info an unexpected failure.

Both use based maintenance and predictive maintenance procedures have been optimized
individually but very little work has been done to combine the advantages of the two schools
of thought to produce an optimal solution. In this thesis, an methodology will be developed
to merge the advantages of the two approaches into one approach that can be used as an

authoritative decision making tool.

1.2 Conventional use based maintenance optimization

Lawrence (1999) studied mathematical use based optimization techniques in maintenance

and concluded that most models address one of three questions,

(i) How often should a component be replaced?
(i) How many spare parts should be kept in stock?

(ii1) How should maintenance tasks be scheduled?

This section (and thesis) addresses point (i).

Many authors agree that the only scientific way to optimize use based maintenance strate-
gies is through statistical analysis of event data. In this section, conventional optimization
techniques are discussed, i.e. optimization through statistical models without covariates ¥ or
discontinuities. This field is poorly understood by maintenance practitioners, mainly because
of the confusing terminology found in the literature. It is thus very important to define clear
notation before any further discussion on optimization of used based maintenance through

statistical modeling.

1.2.1 Terminology

The terminology of Ascher and Feingold (1984) will be used in this thesis. Ascher and
Feingold’s book was specifically written with the objective to clear some of the confusion
in the field of statistical failure analysis. First of all it is important to distingnish between

different types of items:

i 5 5
‘Covariates are often also referred to as explanatory variables.
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After

Part. An item that is never disassembled and is discarded after first failure Y.

Socket. A space that, at any given time, holds a part of a given type.

System. A collection of two or more sockets with their associated parts that is inter-
connected to perform a specific function(s).

Non-repairable system. A system that is discarded the first time it ceases to perform
satisfactory, i.e. after first failure.

Repawrable system. A system that, after failure, can be restored to perform all of its

function by any method other than complete replacement of the system.

a system is repaired it could be in one of the following states:

As good as new (GAN).

As bad as old (BAO).

Better than old but worse than new (BOWN).
Worse than old (WO).

The GAN and BAO assumptions are by definition the backbone of conventional statistical

failure data analysis. Models with covariates or discontinuities are required to model BOWN

or WO situations.

It is also very important to define appropriate time scales to measure life times of itemns. See

Figure 1.2 for an example sample path of a failure process.
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Figure 1.2: Example sample path of a failure process (Dots denote failures)

In Figure 1.2, X;, i = 1,2, 3..., refers to the interarrival time between the (i —1)* failure and

i*h failure. X; is a random variable (RV) with X = 0. This is referred to as local time and is

YAn item has lailed when it no longer performs according to certain preset standards. This does not

necessarily imply complete destruction.
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convenient to use when analyzing non-repairable systems. The real variable x; measures the
time elapsed since the most recent failure. 7}, i = 1.2. 3. ..., measures time from 0 to the i*®
failure time. 7} is also called the arrival time to the i*" failure and is mostly used to analyze

repairable systems. This time scale is referred to as global time.

Clearly, T} = X1 4 Xo+ ...+ Xj. From this, a RV N(t) can be defined as the maximum value
of k for which T}, < ¢, i.e. N(t) is the number of failures that occur during (0. t]l. N(t),t > 0is
the integer valued counting process that includes information on both the number of failures

in (0,t], N(t), and the instants of occurrence, 171,75, ....

Another important concept used in survival data modeling is that of the backward recurrence
time, B(t). It is defined as the time from the arbitrary time ¢ to the immediately preceding
failure, i.e. B(t) = t — Ty(. Similarly, is the forward recurrence time. W(t), defined as
W(t) = Ty — t-

1.2.2 Selecting an appropriate model type

The process of selecting the correct model type for a particular data set is totally ignored
in many applications of statistical failure analysis theory. Ascher and Feingold (1984) have

constructed an outline of this process based on fundamental statistics. See Figure 1.3.

Some comments will be made on Figure 1.3:

(i) Chronologically ordered X;'s. It is extremely important to keep data in chronological
order when starting with the process of deciding on the model type. Very often. failure
data is reordered by magnitude which makes the process appear to follow, for example,
an exponential distribution according to Ascher and Hansen (1998).

(i) Trend testing. A munber of techniques exist to recognize trends in data. Graphical
techniques include (a) plotting cumulative failure times versus cumulative time on linear
paper (Nelson (1982)); (b) estimating the average rate of occurrence of failure (ROCOF,
see Section A.3) in successive time periods; and (¢) Duane plots as introduced by Duane

(1964).

Mathematical tests generally suitable to identify trends in data include De Laplace
(1773) (commonly referred to as Laplace’s test), Bartholomew (1955), Cox (1955),
Bartholomew (1956a). Bartholomew (1956b), Bates (1955), Boswell (1966), Cox and
Lewis (1966), Boswell and Brunk (1969), Lorden and Eisenberger (1973) and Saw
(1975). More recent examples are Bain, Engelhardt, and Wright (1985). Lawless and
Thiagarajah (1996), Martz and Kvam (1996) and Vaurio (1999). Laplace’s test is re-
garded as the most reliable test and is used most often because it produces useful results

even for small samples and its result is easily interpreted. Laplace’s test is discussed in
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Figure 1.3: Statistical failure analysis of successive interarrival times of a system. (Adapted
from Ascher and Feingold (1984)).

(i)

Section A.l.

Non-stationary models. Non-stationary models should be used to model data with a
definite trend. The Non-homogeneous Poisson Process (NHPP) is used extensively for
this purpose. Countless examples of the application of the NHPP are found in the
literature, including Kumar and Westberg (1996b), Vineyard, Amoako-Gyampah, and
Meredith (1999), Rhodes, Halloran, and Longini (1996), Percy, Kobbacy, and Ascher
(1998). Newby (1993) and Lawless (1987). The NHPP is defined and described in
Section A.3.3. Although the NHPP is used most often to model repairable systems’
failure behaviour, there are also some other fundamentally different non-stationary
models suitable for this application. See for example Cozzolino (1968), Singpurwalla
(1978) and McWilliams (1979). These approaches were never very popular and are

seldom cited in the literature.
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(iv)

(vi)

(vii)

(viii)

Differential equations are also suitable to model non-stationary point processes in spe-
cial cases. Schafer, Sallee, and Torrez (1975) have summarized a few differential equa-
tion models for repairable systems. Another approach occasionally used to model re-
pairable systems’ failure behaviour is time series models such as the Auto Regressive
(AR) model (see Chatfield (1980)) and the Box-Jenkins Auto Regressive Integrated
Moving Average (ARIMA) model (see Wals and Bendell (1987)). The Box-Jenkins
model has been used on a few occasions to model software reliability. See for example
Burtschy, Albeanu, Boros, Popentiu, and Nicola (1997) and Chatterjee, Misra, and
Alam (1997).

Testing for dependence. Although testing for dependence of interarrival times are of
extreme importance in reliability modeling, it is almost always ignored. Two reasons
for this are (1) the need for large sample sizes; and (2) the complexity of interpreting
dependency tests. Cox and Lewis (1966) propose a very natural technique to test for
dependency by simply calculating the sample correlation coefficient of lag j, i.e. ¢;.
Thus, the correlation between X; and X;i; is calculated for ¢ = 1,2,....,m — j and
1 < i+ 7 < m where m is the total number of observed events.

Branching Poisson Process (BPP). The BPP is described in Section A.3.4. “The BPP
potentially has wide applicability to reliability problems™ according to Ascher and Fein-
gold (1984). However, no practical application of the BPP was found in the literature.
This could be because of large data set requirements and that the reliability fraternity
still has not accepted and understood a model like the NHPP.

Renewal Process. A renewal process describes an item that, after a failure, is simply
replaced by a new item with the same characteristics, so that the life distribution of the
item is enough to deduce all the properties of the item. Although it is very important
to recognize renewal situations, it is seldom realistic for true life gystems. Parts or
non-repairable systems do, however, sometimes behave according to renewal processes.
Some notes on renewal theory are presented in Section A.2.1.

Homogeneous Poisson Process (HPP). The details regarding the HPP are discussed in
Section A.3.2. It is given as a special case of a renewal process in Figure 1.3 because
it is numerically equivalent to the FOM of a renewal processes being represented by
an exponential distribution. Other than this property, there is no relationship between
the HPP and a renewal process.

Distributions. Distributions typically used to model renewal processes are presented as

part of the discussion on renewal theory in Section A.2.2.

The outline in Figure 1.3 can be seen as a road map to the correct model-type and should

always be used in failure data analysis. Guidelines for the appropriate selection of regression

models are presented in by Kumar and Westberg (1996b) and are considered in Chapter 2,

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING

=1

UNIVERSITY OF PRETORIA



University of Pretoria etd — Vlok, P-J (2006)

CHAPTER 1: PROBLEM STATEMENT

1.2.3 Statistical models in conventional failure time data analysis

In conventional failure time data analysis it is either assumed that an item is totally renewed
after maintenance (GAN), i.e. perfect maintenance was done I or that the item is in the same
condition after maintenance as it was shortly before failure (BAO), i.e. minimal repair was
done. The GAN property is modeled by zeroing an item’s Force of Mortality (FOM) after
renewal while the BAO assumption is represented by equating an item’s intensity shortly

before and shortly after failure. These concepts are introduced in the sections to follow.

1.2.3.1 Renewal models

Suppose the interarrival times of a system follow a distribution fx (z) with cumulative distri-
bution Fy (). Fx(x) is referred to as the unreliability function since it gives the probability
of failure up to a certain age x, i.e. Fx(x) = Pr[X < x|. Similarly, the reliability function,
Rx(z), is defined as Ry(z) = Pr[X > z] or Rx(x) = 1 — Fx(z), lLe. the probability of
survival up to age x. From this it is possible to define the force of mortality (FOM) or hazard
rate of an item that gives the probability of failure within a short time, provided that the

item survived up to that time, i.e. hx(z) = Prlz < X < r+dz|X > z|. The FOM can also

be expressed as,

Ix(x)
1 — Fyl(x)

hx(x)= (1.1)

The FOM is further known as the full intensity or conditional intensity of the failure process
of a non-repairable system. These concepts are defined in detail in Section 2.2. The FOM is
often erroneously described as a conditional probability density function. The FOM is clearly

not a conditional PDF because,
Ry (z) = e o hx(r)dr (1.2)

and since Ry (oc) = 0 it implies that,

lim / hx(r)dr = o (1.3)

F—20 J0

For an increasing FOM, an item has an increasing probability to fail as time progresses and
nse based preventive renewal will be a definite option to consider, although cost will be the
decisive factor. Preventive renewal will usually only be used if the total cost of a failure
is considerably higher than the total cost of preventive actions. If equation (1.1) yields a
constant risk, the component is said to have a random shock failure pattern because the

risk of failure of the component remains the same throughout the item’s life. Corrective

IThis could imply complete replacement.

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING 8
UNIVERSITY OF PRETORIA



University of Pretoria etd — Vlok, P-J (2006)

CHAPTER 1: PROBLEM STATEMENT

renewal will be the first option to consider for this case, i.e. a Repair Only On Failure
(ROOF) strategy. A ROOF strategy will also most probably be used for a component with
a decreasing FOM, since the probability of component failure becomes less as time increases.
It should be kept in mind, however, that condition monitoring could be used for any shape of
the FOM. The GAN assumption implies that the FOM is zeroed after every failure. Figure

1.4 illustrates this concept.

FOM

N

— X, X— X, x;

X
¥

Figure 1.4: Illustration of the GAN assumption

Because of the assumption that interarrival times are part of an underlying distribution, only
independent and identically distributed data sets can be used in renewal theory. This require-
ment is often totally ignored in the literature. In cases where the IID assumption holds, the
Weibull distribution is usnally most suitable to describe the data set because of its flexibility.
Other distributions favored by analysts include the exponential, log-normal, log-logistic and

normal distributions. Section A.2.2 gives more information about these distributions.

1.2.3.2 Models for repairable systems

For repairable systems it is assumed that the intensity of the failure process is equal shortly
before and shortly after failure. To continue the discussion it is necessary to introduce the
concept of intensity (also known as full intensity or conditional intensity) briefly at this point.
This is done in detail in Section 2.2. The intensity of a counting process is generally defined
as:

. Pr{N(t+ At) — N(t) > 1|H;}

((t) = lim
At—0 At

(1.4)

where N (1) is the observed number of failures in (0, J’] and H; is the history up to, but not
including, time ¢. Thus, «(t)At is, for a small At, the approximate probability of an event in

[t,t + At), given the process history.
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In conventional repairable systems modeling it is assumed that processes are orderly, i.e.
simultaneous failures cannot occur, and also stationary, which implies ¢(t) = v(t), where v(t)
is the so called Rate of OCcurrence of Failure (ROCOF), given by

d . _
u(t) = — E{N(t)} (1.5)

The above mentioned simplifications make the NHPP a very suitable candidate for modeling
the ROCOF ™ of repairable systems. The following forms are encountered most frequently:
(1) p1 = exp(I' + Tt) (log-lincar) and (2) p2 = wFt7~! (power-law) or even a constant
ROCOF. A few authors that used these models are Balakrishnan (1995). Shin, Lim, and
Lie (1996). Hokstad (1997), Jensen (1990), Ledoux and Rubino (1977), Kobbacy, Percy, and
Fawzi (1994) and Hasser, Dietrich, and Szidarovszky (1995). Figure 1.5 illustrates the BAO

assumption for an item.

ROCOF

w

k3

v S N
s
W

Tr.—>

Figure 1.5: Illustration of the BAO assumption

Even though the BAO assumption is much more realistic than the GAN assumption, it could
still be a very limited approach according to Ascher and Feingold (1984), since in practice

the highest probability of failure is often directly after maintenance.

1.2.4 Conventional replacement /repair cost optimization models

Conventional cost optimization models strives to minimize long term operational cost of
equipment by using the statistical models mentioned above. This optimum is often referred
to as the minimum Life Cycle Cost (LCC) of an item. The term LCC could be somewhat
confusing in this context since it is commonly used in capital replacement studies where the
total cost of ownership is taken into account, including operation and maintenance cost, the

time value of money. depreciation, etc. To be consistent with the majority of literature in

““The ROCOF ol an NHPP is referred to as the peril rate and is denoted by p(t).
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this field, the term LCC will also be used in this document even though only operational
costs are considered. In this section, some examples of different approaches are presented to

explain the concept.

1.2.4.1 Optimization models for renewal situations

Here, the risk of wasting residual life is balanced with the risk of suffering an expensive
unexpected failure in terms of cost. At the point of balance, the LCC per unit time will be
a minimum. The costs involved are €, the cost of preventive replacement (or renewal) and

C'y, the cost of unexpected failure.

The principle of these models is fairly simple to understand. Suppose a component is always
replaced at time X, or at failure time X, whichever comes first. The total cycle cost is then
given by CpRx (X)) + Cy[l — Rx(Xp)]. If it is assumed that it takes a time units to perform
preventive action and b time units to perform corrective maintenance, the expected duration
of the component’s life is (X, +a)Rx(X,)+(X +D)[1- Rx(X,)]. Division yields the following

relation for component cost per unit time (if the replacement rule is followed):

CpRx(Xp) + Cy[1 = Rx(X,)]

Cr'{}fp) = e i R X ; -
X+ ) Bx(X,) + (7 2 fx(@)de + b)[1 — Ry (X,)]

(1.6)

The minimum cost is found where dC'(X,)/dr = 0. (See Jardine (1973) for details). For
example, suppose a data set is described by a Weibull distribution with 8 = 2.5 and 5 = 200.
Also, assume €}, = R 5 000 (with @ = 2h) and Cy = R 20 000 (with b = 8h), then equation
(1.6) will yield the graph in Figure 1.6. This graph shows that there is a clear optimum at

around 111 days, i.e. R 77 per unit time .

Using the same methodology as above, a relation can be derived to optimize availability
instead of cost. It is also possible to calculate the optimum preventive replacement frequency

for component-blocks rather than for single components.

Many authors have made some minor refinements to the conventional optimization models
for components, often to adapt to data constraints. Overviews of these refined models can
be found in Sherif and Smith (1981). Aven and Dekker (1997), Aven and Bergman (1986),
Dekker (1995), Zijlstra (1981), Sherwin (1999), Van Noortwijk (2000) and Schibe (1995). A
noteworthy extension of these models, is the model of Ran and Rosenlund (1976) in which
the time value of money is taken into account. This model is obviously only useful in cases

where equipment is expected to survive for several years.
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Figure 1.6: LCC of an item renewed after X, time units or at failure (if X < X))

1.2.4.2 Optimization models for repairable systems

For repairable systems, a decision has to be made between minimal repair or complete re-
placement of a system when it has failed. The cost of minimal replacement, ('}, is expected
to be considerably less than that of system replacement, C'y. It is hence required to calculate
the number of minimal repairs that should be allowed before system replacement with the
objective to minimize the LCC. The optimal solution can be expressed in terms of the number
of minimal repairs, n, or as time, /. Ascher and Feingold (1984) showed that if the power-law
process. pz = k3t is used to model the ROCOF of a process modeled by an NHPP, the

optimal replacement time will be,

Ca L
I'=|——7r—— 147
[C’. (B-1) h} (1.7)
and the optimal number of minimal repairs before complete replacement is:
Cy
NS e 1.8
(‘] : {j - l) ( )

where [* and n* are the optimal solutions. Suppose 3 = 1.7 and & = 0.0015 with C7 = R500
and (5 = R8,000, then /™ =~ 288 at R 67 per unit time and n* = 22 at R 65 per unit time.
Figures 1.7 and 1.8 show these results graphically. The costs per unit time resulting from the

two policies above are often very similar except in situations where Cy = Cy (which is rare).
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Figure 1.7: LCC of a system minimally repaired up to I* time units

Several minor improvements to minimal repair /replacement policies have been proposed since
the introduction of conventional statistical failure analysis. For some early references see
Barlow and Hunter (1960), Ross (1969), Morimura (1970) and Park (1979). More recent
examples include Stadje and Zuckerman (1991), Yeh (1991), Lam and Yeh (1994). Hsu (1999),
Sheu (1999) and Lim and Park (1999).

1.2.5 Shortcomings of conventional approaches

Limitations of conventional approaches do not so much lie in the techniques themselves
but rather in the underlying assumptions. The renewal (GAN) assumption is probably the
most unrealistic of the two assumptions discussed above. Deterioration of a system may
influence the lifetimes of future components in certain sockets severely, even if components
are completely renewed /replaced. Renewal theory deals with an important data type however,
and certainly has its place in theory even though it is seldom practical. The minimal repair
(BAO) assumption is much more realistic than the GAN assumption but still not completely
practical. Human interference to improve the condition of a system is often the greatest cause

of maintenance - a fact that the BAO assumption does not take into account.

Many authors have proposed models with discontinuities to incorporate the BOWN or WO
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Figure 1.8: LCC of a system minimally repaired up to n failures

sitnations. These models are major improvements on the conventional approaches although
seldom utilized in practice, mainly because of complexity. Models with discontinuities are

discussed in Chapter 2.

The biggest shortcoming of models used for conventional failure time data analysis is their
inability to include concomitant information in analyses. Diagnostic information recorded
during lifetimes, such as Condition Monitoring (CM) results, is not included in models which
certainly limits the accuracy of predictions immensely. Regression models solves this problem
to a great extent because diagnostic information can be included in the form of covariates.

Regression models are described extensively in chapters to follow.

A further serious disadvantage of couventional approaches is the long term nature of replace-
ment/repair policies. Costs only converge to the statistical optimum after a few lifetimes and
the minimum LCC approach is often rejected due to the impatience of maintenance practi-
tioners. It is often also very difficult to estimate realistic values for Cp, Cy, Cy and C for
use in the policies outlined in the previous section. The LCC is further poorly understood in

industry and the optimum is commonly interpreted as a prediction of time to failure.
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1.3 Preventive maintenance optimization through Condition

Monitoring

Condition Monitoring has become increasingly popular in recent times. One reason for this
is the present affordability of specialized condition monitoring equipment and the perception
that advanced technology can solve all maintenance problems. A further reason is that
maintenance strategy setting methodologies, such as RCM, recommend an on-condition task
as default strategy, provided that the task is technically and economically feasible. (See
Nolan and Heap (1978) for details on RCM). These and other factors contribute to a (often

erroneous) drive towards condition monitoring in industry.

An item’s condition can be assessed much better at present than a few years ago with tech-
nology of the day incorporated into technigues such as vibration analysis, oil analysis and
thermography. This however does not imply that these techniques are perfect. A general in-
vestigation into fypical condition monitoring practices revealed several shortcomings, which

are discussed below.

1.3.1 Alarm trigger setting

CM technigues assess an item’s condition in its present operating state and a maintenance
decision has to be made based on the observed diagnostic information. This implies than
limits have to be set for measured parameters and once one or more of the limits are ex-
ceeded (triggered), preventive action should take place. This may seem simple, but setting

appropriate benchmarks is no trivial procedure.

Original Equipment Manufacturers (OEM’s) often give guidelines as to what is acceptable
operating conditions for equipment in terms of temperature, vibration, oil debris, etc. These
guidelines usually form the basis of benchmarks although it is normally very conservative for
obvious reasons. Initial benchmarks can then only be optimized through a trial and error

approach that may be very expensive.

Many algorithms / techniques have been proposed by rescarchers in the various CM fields to
determine optimal benchmarks in a process to eliminate trial and error approaches. These
algorithms have one common underlying principle: to learn from observed diagnostic mea-
surements taken in the past and then estimate optimal benchmarks in a scientific manner for
a piece of equipment currently in operation. The most successful of these techniques is neural
networks. Neural networks have a large appeal to many researchers due to their great close-
ness to the structure of the brain. a characteristic not shared by other modeling techniques.
In an analogy to the brain, an entity made up of interconnected neurons, neural networks

are made up of interconnected processing elements called units, which respond in parallel to
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a set of input signals given to each. The unit is the equivalent of its brain counterpart, the

neurort.

A neural network consists of four main parts:

(i) Processing units, where each processing unit has a certain activation level at any point
in time.
(ii) Weighted interconnections between the various processing units whicl determine how
the activation of one unit leads to input for another unit.
(iii) An activation rule which acts on the set of input signals at a unit to produce a new
output signal, or activation.
(iv) Optionally. a learning rule that specifies how to adjust the weights for a given in-

put/output pair.

Time failure data with CM information can be used as processing units to estimate and teach
neural networks and additional data can then be used as inputs to predict future outputs.
Recent attempts to apply neural networks in the reliability modelling field include Shyur
and Luxhoj (1995), Rawicz and Girling (1994) and Lakey (1993). Neural networks have not
made much ground in the field of reliability because of its general complexity, large data set

requirements and its inability to eliminate insignificant observations.

Setting appropriate alarms for CM parameters is no easy task and CM techniques are seldom
optimal from implementation. This is a significant shortcoming in the field of condition

monitoring.

1.3.2 Significance of observed parameters

CM techniques use several parameters to assess an item’s condition. This may be a frequency
spectrum in vibration monitoring, a range of temperatures in thermography, the quantity of
various foreign elements in an oil sample, ete. In some instances different CM techniques are
combined to estimate equipment reliability. The reason for using more than one parameter is
because it is very seldom obvious which parameter is the best indicator of approaching failure
and no general technique exists in contemporary CM to isolate significant parameters. The
inability of CM techniques to isolate significant parameters is closely related to the alarm

trigger limit issues outlined in the previous section.
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1.3.3 Lack of commitment towards CM

In general, there is a lack of commitment towards condition monitoring in the South African
industry. In many cases, expensive CM equipment is used as the flagship of maintenance
departments although inspections are done very irregularly and not recorded properly. Often
the information supplied by CM is totally disregarded when a decision has to be made and
experience or intuition is relied on. Even if CM information is considered, the final decision

is frequently left to the discretion of technicians involved with the equipment.

It does not matter how technologically advanced CM is, if it is not practiced correctly,
meaningful results are impossible to obtain. This is a maintenance management issue that is

not directly addressed in this thesis.

1.4 Combining use based preventive maintenance optimizing

techniques with CM technology

From the discussions above it follows that nse based preventive maintenance optimization
techniques complement CM technology extremely well. A technique that combines these
strategies would have enormous potential. The solution lies in statistical regression models
since this type of model allows for concomitant information with time to event data - in
this context the concomitant information could be diagnostic information recorded by CM

techniques.

Several regression models have been applied in reliability to estimate the risk of failure of
an item and most of these models are diseussed in the next chapter. Only the Proportional
Hazards Model (PHM) is discussed in this section as an introduction to regression models, but
also because this is the only regression model for which a scientific preventive maintenance

decision model exist.

1.4.1 Proportional Hazards Modeling

The PHM was introduced by Cox (1972) and was considered to be a total revolution in sur-
vival analysis. This model was intended for the field of biomedicine but became increasingly
popular in reliability modeling over the past two decades. The model uses a baseline hazard
rate and allows a functional term containing covariates to act multiplicatively on the baseline
hazard rate (or FOM), i.e.

h(z,z) = ho(x) - M, z(z)) (1.9)
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where hg is the baseline FOM, A is the functional term and z is a vector of covariates which
may be time-dependent. Kumar and Klefsjo (1993) summarized the assumptions of the PHM

as follows:

(i) Event data is I1D.
(i) All influential covariates arve included in the model.
(iii) The ratio of any two FOMs as determined by any two sets of time-independent covari-
ates z1 and zs associated with a particular item has to be constant with respect to
time, i.e. h(x.z)) o hz.z9). For time-dependent covariates, this assumption is not

defined.

The exponential function is used most often for the functional term. This leads to a semi-
parametric model. It is possible to calculate the semi-parametric model without making any
assummnption on the baseline hazard rate but this only vield relative risks. In reliability, the
absolute risk is usually required and the model is hence parameterized by specifying some
parametric FOM for the baseline, for example the Weibull FOM, i.e.

2 N\ B-1

Jl )

h(r,z) ==+ = <exp (v - z(z)) (1.10)

o\ '
where 3 and 5 are the Weibull shape and scale parameters respectively and 4 is a vector of
regression coefficients. The influence of the functional term results in an improved estimate

of an item’s FOM. Figure 1.9 illustrates this concept.

hy(x)

FOM

N

A
e
X

Figure 1.9: Hlustration of the PHM with time-dependent covariates

The PHM has been applied successfully in diverse reliability applications because of the im-
proved estimate of the FOM, including modeling component failures in a light water reactor
plant by Booker et al. (1981), marine gas turbine and ship sonar by Ascher (1983), mo-

torrettes by Dale (1985), aircraft engines by Jardine and Anderson (1988), high speed train
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brake discs by Bendell et al. (1986), sodium sulfur cells by Ansell and Ansell (1987), surface
controlled subsurface safety valves by Lindqvist et al. (1988) and machine tools by Mazzuchi
and Soyer (1989). Other authors that published applications of the PHM in reliability include
Jardine et al. (1989), Leitao and Newton (1989), Love and Guo (1991a) and Love and Guo
(1991b).

The biggest criticism of the PHM is the fact that it is by definition only applicable for 11D
data. This shortcoming can be addressed by allowing for imperfect repair in the covariates,
but this does not solve the problem completely and in some cases can even worsen the
sitnation. Some authors, for example Kumar (1996), have applied the PHM with reasonable

success on repairable systems, despite the requirement of IID data.

1.4.2 Decision making with the PHM

Estimating the optimum maintenance instant that will result in the minimum LCC of an
item, based on the FOM as determined by the PHM, is no trivial procedure since the FOM
is now dependent on time and the values of covariates. This implies that the optimum LCC
instant must be specified in terms of risk and not in terms of a process parameter, such as

time, as was described in Section 1.2.4.1.

Two attempts to calculate the optimal maintenance instant for a system with the PHM were
found in the literature. The first was by Kumar and Westberg (1996a) that used the PHM
together with Total Time on Test (TTT) plotting to estimate the optimum maintenance
frequency. This paper was not very case-orientated and is, as far is known, the only of
its kind. The second consists of a series of publications by, amongst others, Makis and
Jardine. These authors have developed a technique for calculating the minimum LCC in
terms of a system'’s risk as determined by the PHM. Makis and Jardine (1991) and Makis
and Jardine (1992) proposed a semi-Markov approach to calculate the minimum LCC where
covariate behavior is predicted by semi-Markov chains. Makis and Jardine’s technique was
then refined in several publications to follow, the most important being Banjevic, Ennis,
Braticevic, Makis, and Jardine (1997) and Jardine. Banjevic, and Makis (1997).

Makis and Jardine’s optimization technique produces a result that looks very similar to Figure
1.6, except that the cost is expressed as a function of h(z, z). It is then required to allow an
item to operate until the optimum risk level (as opposed to time) is reached before preventive
action is taken. Figure 1.10 illustrates the policy in two dimensions with imaginary inspection
data. The figure shows how the optimal risk is influenced by both time and the observed

level of covariates.

Examples of successful applications of this replacement policy include Viok (1999) and Jar-
dine, Banjevic, and Makis (1997).
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- Optimal risk line

- Optimal risk for observed
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Figure 1.10: Illustration of the optimal policy with imaginary covariate levels

1.4.3  Shortcomings of PHM cost optimization

Even though the PHM cost optimization approach is an improvement on conventional tech-

niques, there are still two major shortcomings:

(i) The PHM has an underlying assumption that data is IID. This limiting assumption
can be overcome to a certain extend by including covariates that describe an item’s
failure history. The fact remains, however, that the model is not entirely suitable for
repairable systems data and repairable systems data is expected much more often than
1D data.

(i) The minimum LCC cost approach for the PHM is a long term type approach, as is
the case with conventional analysis techniques. This approach is also not accepted well
amongst maintenance practitioners because the minimum is only reached after a few

lifetimes of which some could be expeusive unexpected failures.

Both the above-mentioned shortcomings should be addressed in order to make a truly valuable

contribution to the field of statistical failure analysis.

1.5 Residual life

Maintenance would be a trivial affair if the exact times to failure of items were knowrn.
This would imply that no residual life is wasted and that expensive unexpected failures are
totally eliminated. Although this view seems only feasible in a perfect world, the approach
is certainly meritorious in a world striving for perfection. A scientific technique with the
ability to estimate the residual life of equipment will be of great advantage to the field of

maintenance engineering.
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In CM, some empiric methods exist to estimate residual life. These methods are seldom
generalized and are often only meaningful after many iterations. The methods also differ
from situation to situation, even for nominally similar items, which makes it very risky to

use a particular method to predict residual life.

For conventional renewal analysis, residual life estimation (in principle) only goes as far as
conditional expectation or mean. If a distribution, fx(z), describes an item’s failure history,

the residual life, p(z), can be calculated by

Joo (r=a)fx(r)dr _ [ Rx(r)dr

r) = FIX —xp|X >z = = 1.11)
() [ l J Rx (1) Rx (1) (1.11
The simple statistical mean life, 4, of the item is given by
o0
= [ - fx(x)dr (1.12)
Jo
It is important to note that any differentiable () has to satisty p(x) > —1 because of the
identity
dylx)
+1
hxlz) =—22—_= (1.13
plr) )

as described by Muth (1977). Ghai and Mi (1999) discussed mean residual life and its

association with the FOM iu detail. Other authors that worked on this subject include Tang,

Lu, and Chew (1999), Baganha, Geraldo, and Pvke (1999) and Guess and Prochan (1988).

Equally little work has been done on estimating the residual life of items with conventional
repairable systems theory. Calabria. Guida, and Puleini (1990) proposed a point estimation
procedure for future failure times of a repairable system modeled by a NHPP with a power
intensity law. Suppose a repairable system has suffered n failures and it is required to estimate
the (n + m) failure, where m > 1 and m € Z. The Maximum Likelihood Estimate (MLE)
of the expected value of the m'™ future failure is given by

Lk =T

e n+j—1 n+j—1

B=ln—1) ,/ ZC_,-—::— [1 gl T 1n(f.,,_m;r.,,)} dtnym  (1.14)
t
s }_]

n
where C; = H;;J (n+i—1)/(i —j). Schibe (1995) followed a similar approach, as did
Reinertsen (1996).

The theory above shows that conventional statistical failure analysis only yields a mean
residual life estimate. This fact makes the use of residual life estimates very unpopular and
unreliable in practice. A dynamic residual life estimate is required to be useful in practice,
i.e. a technique that will adjust estimates based on certain observed intluences. Statistical
models that have the ability to incorporate concomitant information immediately seem to be

a possible solution even though very few publications on this subject exist. Zahedi (1991)
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proposed a proportional mean remaining life model analogous to the PHM where a baseline
survivor function is influenced by a functional term containing covariates. No publication was
found where this model was applied on real life survival data, however, Other contributions to
multivariate residual life estimation include Nair and Nair (1989), Arnold and Zahedi (1988)
and Zahedi (1985). In neither of these publications, practical illustrations of the theory were

presented.

1.6 Problem statement

There is a need to optimize preventive maintenance decisions in today’s ever increasingly com-
petitive market. At present there are three established means for doing this namely, conven-
tional statistical failure analysis, condition monitoring and Proportional Hazards Modeline.

) & 5

The following shortcomings were identified for the respective techniques:
1

(A) Conventional failure analysis

A-1. Onuly allows for the GAN or BAO assumption, which is extremely limniting,.

A-2. Lack of ability to include concomitant information in the analyses.

A-3. Requires fixed estimates for C', and 'y, which often varies for every failure.

A-4. The long term nature of optimal replacement /repair policies is often rejected by main-

tenance practitioners because unexpected failures are regarded as unacceptable.
(B) Condition Monitoring

B-1. It is very difficult to set optimal initial alarm trigger settings for CM techniques.
B-2. No scientific technique exists with which the significance of CM parameters can be

calculated.

B-3. There is a general lack of managerial commitment to CM.

(C) Proportional Hazards Modeling

C-1. Assumes data to be 1ID.

C-2. The only replacement decision model found for the PHM is also based on costs and

requires a few lifetimes before it converges to the minimum cost.

This thesis aims at improving all nine shortcomings listed above. It is proposed that this

objective can be reached as follows:
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(i) Development of a combined Proportional Intensity Model (PIM) with the ability to

address all the model-related shortcomings mentioned above

It is proposed that a combined PIM, one for non-repairable and one for repairable sys-
tems, is developed that will include the majority of conventional PIM enhancements
as special cases (including the PHM) to be able to model most of the typical wear-
out/deterioration patterns found amongst industrial equipment. Such a PIM would be
able to accommodate discontinuities in the failure intensity and to adapt to discon-
tinuities or to scalings in its time scale which will be ideal for the WO and BOWN
scenarios. By developing the combined PIM, shortcomings A-1, A-2. B-2 and C-1 will
be addressed.

(i) Development of an algorithmn to calculate residual life of an item based on the combined

PIM

A flexible and adaptive combined PIM will theoretically lead to a close representation
of reality and hence realistic estimates of the residual life, provided that the future
behavior of covariates can be estimated with relative high certainty. This could be a
challenging task since very little work has been done in this field and the numerical
implementation of the theory is fairly complicated. Successful completion of this goal
would solve shortcomings A-3, A-4, B-1, B-2 and C-2.

(iii) Comprehensible presentation of results

To make a truly practical contribution to the field of reliability modeling, results pro-
duced by this study should be presented in a user-friendly and comprehensible manner.

This step is required to address shortcoming B-3.

1.7 Thesis outline

In Chapter 2, a literature survey of advanced failure intensity models (including PIMs) in
survival analysis is done. Terminology used in failure intensity models is defined and different
models are categorized and evaluated. Chapter 2 serves as the foundation for the development
of the combined PIMs in Chapter 3. In Chapter 3 the combined PIMs are derived and
it is illustrated how these models can be reduced to most conventional PIMs. Parameter
estimation techniques based on maximum likelihood are also discussed in Chapter 3. In
Chapter 4 conventional techniques are applied to the combined PIMs to estimate residual
life. Confidence bounds on estimates are also discussed. Chapter 5 contains a case study in
which the theory developed in this thesis is applied to a typical data set from a South African
industry. Results are compared to results obtained from a maintenance decision support tool
similar to the residual life approach. In Chapter 6 the findings of this thesis are summarized

with some recommendations for future research.
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