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Introduction

Fredholm determinant theory of integral operators was introduced by I Fred-
holm at the turn of the centuary [Fre03], by studying the properties of the
eigenvalues of these operators and their connections with the analyticity of the
determinant. This theory sparked the development of functional analysis, in
particular a comprehensive study of the spectral theory of compact operators.
In fact a few years later after Fredholm published his 1903 paper, E. Schmidt
and F. Riesz developed an approach to functional analysis which was determi-
nant free, marking the beginning of abstract operator theory [Sch07, Riel8].
After contributions of J. Schauder [Sch30] and S. Banach [Ban32]
there was a gap of about two decades until in the fifties when A.F. Ruston, T.
Lezanski and A. Grothendieck almost simultaneously introduced determinants
for nuclear operators on Banach spaces [Rusb1, Lez53, Grob56). The works of
the latter were complicated due to the problem of the approximation property,

hence, later on attention was given to the Hilbert space case.



The counterexample of P. Enflo [Enf73] suggested that Fredholm de-
terminants could reasonably be investigated only in cases where the Banach
space has the approximation property. In this case the Fredholm determinant
is well defined on the ideal of nuclear operators with all the desired properties.

During the eighties, Pietsch [Pie87] gave an axiomatic approach to
the theory of trace and determinant defined on certain operator ideals by
iﬂvestigating the relationship between traces, detefminants and eigenvalues.
This monograph provides a beautiful interplay between Riesz theory and the
theory of traces and determinants in operator ideals. It is therefore natural
and important to establish whether such a theory can be extended to general
Banach algebras. The aim of this thesis is on one hand to obtain a complete
Riesz decomposition theorem for Riesz elements in a semiprime Banach algebra
and on the other hand to extend the existing theory of traces and determinants
to a more general setting of Banach algebras.

Already in 1978, J. Puhl [Puh78] introduced the notion of a trace on
the socle of a semiprime Banach algebra. In the case where the Banach algebra
consists of bounded linear operators on some Banach space, the socle coincides
with the ideal of finite rank operators. Puhl showed that as in the classical

case, the trace of an element of the socle has a spectral representation known



as the Lidskij trace formula. Moreover if the algebra has some approximation
property, the trace can be extended uniquely to the ideal of nuclear elements
of the algebra (although not necessarily spectral).

To our knowledge, B. Aupetit and du T. Mouton [AdTM96] were
the first to introduce a Fredholm determinant for elements of the socle of a
semisimple Banach algebra. If one uses similar axioms for a functional to be
a trace on the socle as Pietsch did, it follows directly that such a functional
satisfies the Lidskij trace formula, hence justifying the definition of Aupetit
and Mouton of their Fredholm determinant. In their approach, Aupetit and
Mouton made use of the theory of analytic multifunctions on the socle. How-
ever, as the classical case shows, the spectral determinant does not extend
continuously to the ideal of nuclear elements as a spectral determinant.

Chapter one contains some notations, definitions and standard facts
that will be used throughout the thesis. We will introduce the rank notion as
defined by P. Nylen and L. Rodman [NR90] in order to define multiplicity of
isolated spectral points of elements of Banach algebras. Some of the standard
facts will be stated without their proofs, however, corresponding references
will be included. We also use our rank notion to give a characterization of the

essential spectral radius of elements of \A. This characterization turns out to



settle a conjecture of P. Nylen and L. Rodman [NR90], Conjecture 5.11 in the
affirmative [BS98).

In Chapter 2 we use our rank notion to establish a complete Riesz
decomposition theorem for Riesz elements of a semiprime Banach algebra. For
a comprehensive study of these elements we refer the reader to [BMSW82].
The main characteristics of Riesz elements seem to be the fact that they are
precisely those elements for which the spectral points are isolated with finite
multiplicities [BMSW82], Corollary R.2.5.

In Chapter 3 we provide an alternative formula for the determinant
on the ideal F of finite rank elements of the algebra (as the one suggested by
Aupetit and Mouton) emanating from Plemelj’s type formulas. We will show
that our determinant extends continuously to the ideal of nuclear elements N/
of A, provided .A has some approximation property, and that the determinant
possesses all the desired properties. The approach we follow complements the
recent work of I. Gohberg, S. Goldberg and N. Krupnik [GGK96].

We remark that earlier this year, B. Carl and C. Schiebold [CS99]
established the importance of Fredholm determinants in solving some nonlinear
equations in soliton physics such as the Korteweg-de Vries and sine-Gordon

equations.



Chapter 1

On the essential spectrum

Throughout the thesis .4 will denote a unital Banach algebra over the complex
field C unless otherwise stated in some chapters. For an element a € A, o(a)
denotes the spectrum of a and r(a) the spectral radius of a.

We adopt the rank notion of P. Nylen and L. Rodman [NR90], Defi-
nition 2.1. We say z € A is of rank one if for every y € A there is a complex
number )\, such that zyz = A\yz. We say z € A is of rank n for some integer
n if £ can be expressed as a sum of n rank one elements of A but cannot be
expressed as a sum of less than n rank one elments of A. We denote the set of
finite rank elements of A by F and the norm closure of F by K. We denote by

Fn, the component of F consisting of rank n elements only. We will establish
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some properties of this rank notion in Proposition 1.1.1 where we will prove
that F is a two-sided ideal of A.

For an element a € A, ok(a) and ri(a) will respectively denote the
essential spectrum of ¢ and the essential spectral radius of a, that is,
the spectrum and spectral radius of a+X in the quotient Banach algebra A/K.
Clearly ok (a) C o(a).

We say z €A is Fredholm if 2+X is invertible in .A/K and denote
the set of the Fredholm elements of A by F(A). We say an element z € A is
Riesz if the essential spectrum of z, ok (z), relative to K consists of zero only.
The set of Riesz elements of .A will be denoted by R(A).

A complex number ) is called a Fredholm point of z € Aif A—z €
F(A) and ) is called a Riesz point of z € A if A — z is invertible or A is a
Fredholm point of z which is an isolated point of o(z).

As in the classical theory of bounded operators on a Banach space the
notion of multiplicity is essential. We say A € o(a) has finite multiplicity if
) is an isolated spectral point such that the corresponding Riesz idempotent
ex = g ji”_ A= (1 — a)""'dy is of finite rank. The multiplicity of X is defined
to be the rank of e). Spectral points of finite multiplicity will often be denoted

by f.m. spectral points. We denote the rank of ey by m, if it is finite.
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1.1 Finite rank elements

We will assume the definition of rank given in the opening of the chapter and

establish some facts about the rank.

Proposition 1.1.1. ([NR90], Proposition 2.2). Let a,b € A. The rank func-

tion has the following properties:

(a) rank(a+b) < rank(a) + rank(b),

(b) if rank(a) = 1, then for: every b € A either ab = 0 or

rank(ab) = 1. Moreover rank(ba) = 1 unless ba = 0,

(c) rank(ab) < min{rank(a), rank(b)},

(d) the set F is a two-sided ideal in A , and

(e) the subalgebra A(ay,...,a;) of A, generated by 1 and o finite

number of finite rank elements a,,...,as of A, is finite dimensional, as a

vector space over C.

Proof. (a) For the case where at least one of a and b is of infinite rank the result
follows trivially. Hence, suppose both rank(a) and rank(b) are finite, that is
rank(a) = n; and rank(b) = ng. So, a = a; + . .. + an,, where rank(a;) = 1,

(i=1,...,ny). Alsob=b, +...+ by,, where rank(b;) =1, (j = 1,... , ).
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Then a +b = ay + ...+ @y, + b + ... + by,, from which we deduce that
rank(a + b) < n; + ny = rank(a) + rank(b).

(b) Since rank(a) = 1, for every c € A there is a A € C such that aca
= Aa. Arbitrarily choose d € A and assume ab # 0. Then abdab = (Ao)ab, for
some )\ € C. That is (ab)d(ab) = Ao(ab) which shows that rank(ab) = 1. By

a similar argument, it can be shown that rank(ba) = 1 unless ba = 0.

(c) If both rank(a) and rank(b) are infinite we then have nothing to
prove. Suppose rank(a) =n < rank(b). So, ab= (a1+. ..+a,)b with rank(a;) =
1, (6 =1,...,n). Thatis, ab = a;b+ ... + azb. Thus, from (a) rank(ab)
< rank(a,b) + . ..+ rank(a,b). By (b) rank(ab) < n = min{rank(a), rank(b)}.
The analogous argument works for the case where rank(b) = n < rank(a).

(d) Let a,b € F and d € A. We apply (a) and (c) to get the following:
rank(ca + Bb) < rank(ca) + rank(Bb) < rank(a) + rank(d), (@, € C). That
is, rank(aa + Bb) < co. Hence, F is a subspace of A.

Also from part (b), rank(db) < min{rank(d),rank(d)} < rank(b) <
oo. Thus, db € F and by a similar argument, bd € F. Whence, F is a

two-sided ideal of A.

(e) Since any finite rank element of A is a sum of a finite number of

rank one elements of A, we assume that rank(a;) =1, (i =1,...,s).
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The algebra A(a;, az, . - - ,as) consists of all polynomialsin 1, a1, az; ... , G-
Let gg = 1. Forall 1 <i < sand 0 < k < s it follows that a;aa; = Aik Q-

Thus all powers of finite products of elements of A(as, az, - . - , ag) will
reduce to scalar multiples of products of distinct elements from {ag, a1, . . . , s}
Hence .A(a1,as, ... ,a,) will be spanned by all possible finite products of dis-
tinct elements from {ao, a1, @z, ... ,a,} which can only be finite in number.

Therefore dim(A(ay, az, . . . , a,)) < 0o and the theorem is established.

O

Corollary 1.1.1. ([NR90], Corollary 2.3). Every z € A with rank(z) < 00
is algebraic. That is, there is a non-zero polynomial P(t) such that P(z) = 0.

In particular, the spectrum o(z) is a finite set.

Proof. The subalgebra A(z), generated by the identity 1 and z is finite di-
mensional, which follows from Proposition 1.1.1 (e). Since z" € A(z), (n =
1,2,...), the z™s cannot all be linearly independent over C. This says that

scalars Ay, ..., A\x exist, not all zero, such that
AZ™ 4+ ...+ Az = 0.

Whence,

P(t) = Mt™ + ...+ At™
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is the required polynomial for which P(z) = 0.
Lastly, by the Spectral Mapping Theorem, it follows that o(P(z)) =

P(o(z)). But,

So, P(o(z)) = {0}. Since P(t) has a finite number of zeros, it follows that

o(z) is a finite set and we are done. U

The following lemma will be needed to show that if A = B(X), then

the rank notion coincides with the classical notion of finite dimensional range.

Lemma 1.1.1. Let T € B(X), with X a Banach space and dim(T(X)) =

n < 0o. Then, T has a representation of the form

Tz = fl(z)yl +...+ fn(w)ym

where {y1,... ,yn} and {f1,..., fn} are sets in X and X* respectively.

Proof. There is an independent set {y1, ... ,¥n} in Y, such that span{y,... ,¥a} =

T(X). Then for each z € X,

Tz = ifi(z)yi- (1.1)
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Since this representation is unique the coefficients f;(z) are clearly seen to
define linear functionals on X. Since T'(X) has a finite dimension, all norms

on T(X) are equivalent, hence there exists a constant K > 0 such that

Z |fi(z)| < K| Efi(x)yi” for any z € X.

i=1 i=1

Hence

> i@ < K||Tz)),

i=1

< K|T|ll=|\-
This shows that all the f;’s are bounded. O

The y,...,y, in representation (1.1) are chosen to be linearly inde-
pendent. We could arrange it so that fy,... , f, are also linearly independent

but we will not need this fact for our purpose.

We next prove a theorem that confirms that if A = B(X), where X
is a Banach space, the rank notion applied to an elment = of A boils down to

the rank of z as an operator, that is, the dimension of the range of z.

Theorem 1.1.1. ([NR90], Theorem 2.4). Let A = B(X), where X is a Ba-

nach space. Let T € A. Then, rank(T) = n if and only if dim(T(X)) = n.
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Proof. By the representation in Lemma 1.1.1 it is clear that any operator
T € B(X) with dim(T(X)) = n can be written as a sum of n operators each
with one-dimensional range. Hence it suffices to prove the theorem for n = 1.

Now suppose rank(T) = 1. Since 72 = AT for some scalar A, we can
assume, if A # 0, by rescaling, that T2 = T. The rescaling can be done by

considering Ty = T, if X # 0. So that, T¢ = I; = 4T = T = T;,. Hence either

>|

T?=T or T? =0.
Case 1: Suppose T? = T. That is, T is a projection. Thus, X is

a direct sum of T-invariant subspaces X, and X; such that Ta = a, for all

a € Xy and Tb =0, for all b € X,.

We now assume dim(X;) > 1. So, there are a1, a2 € X, which are lin-
early independent. Let X, be a direct complement of span{a; } in X;. Clearly

as € X,y. Define S € Aby Sb=0, be Xy & X, and Sa; = a,. So,

TSTa1 = TSa1
= Ta1

= aji.
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Also,

TST(IQ = TS(JQ

So, there is no A € C such that TST = AT, which contradicts the assumption
that rank(7) = 1. So, we must have
dim(T(X)) = dim(Xy)
=1
= rank(T).

Case 2: Suppose T? = 0. We also carry out the argument by con-
tradiction. We suppose that dim(T(X)) > 1. Let a1 = T¢c; and az = T'c; be
linearly independent for some ¢; and ¢, € X. It then follows from the linearity
of T that ¢; and c; are also linearly independent. Since T? = 0, it follows that

{a'17 az, C1, 62}

is linearly independent, because

)\1(11 + /\2a2 + /\361 + /\462 =0
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implies that

T(/\lal + /\202 + /\361 + /\462) = 0,

which implies that

/\1Ta1 + /\2T02 + /\3T01 + /\4T02 =0.

Hence

MT%¢; + AT %o + A3Te; + ATy = 0.
So,

AsTci + A\Tcy = 0, because T? = 0.
That is,

Aza; + Agaz =0,

which means that

A3 = Ay =0, because a; and ay are linearly independent.

Since

A101 + A2a2 + Azc1 + Agc2 =0,

it follows that

/\101 + /\20«2 = 0,
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Therefore,
A1 = A = 0, because a;and a, are linearly independent.
We then have
A=A =A3=A =0.

We now let

M = span{a, a2, ¢1, 2}

Clearly, M is T-invariant. Restricting 7" to the subspace M, we can represent

T by the following matrix:

Consider
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Clearly

(0000\

TST =
0001

\0000/

Thus, there is no scalar A € C such that TST = MT. This contradicts the

assumption that rank(7T) = 1. We therefore have
dim(T'(X)) = 1 = rank(T).

For the converse, assume that dim(7T'(X)) = 1. So, by using Lemma 1.1.1 it

follows that
Ta = ¢(a)b, (a € X), b a fixed vector and ¢ fixed in X™. (1.2)

Note that from equation (1.2) we have

Ta
b= ——, (a #0).
o) (a #0)
So, for any S € B(X), we get
TSb = ¢(Sb)b.
Therefore,
TSTa _

TN (Sb)b.
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That is,
TSTa = 1(Sb)(a)b.
That is,
TSTa = %zﬁ(a)zﬁ(Sb)
= ¢(Sh)Ta.
Therefore,
TSTa = ¢(Sb)Ta, for all a € X.
So,
TST = AT for all S € B(X), where A = 9(Sb).
Whence, rank(T) = 1. O

Remark 1.1.1. Let A = M,(C), the algebra of all n by n matrices over C.
The space A with the usual matrix multiplication, can be viewed as the algebra
B(C™) with multiplication being the composition of operators and the classical
matrix rank of an n by n matrix T is exactly the dimension of T(C") which

by Theorem 1.1.5 equals rank(T’).

Let us consider for a moment the case where A is a semiprime Banach

algebra. Recall that A is called semiprime if uzu = 0 for all z € A then u = 0.
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The example given in Theorem 1.1.1 is semiprime. If K is a compact Hausdorft
space then it is easy to see that the algebra C(K) of continuous functions on
K is semiprime. In fact if A is any C*-algebra then A is semiprime. To see
this suppose aba = 0 for all b € A which implies that (ab)? = 0 for every b €
A. Thus if we choose b = a* we have (aa*)’ = 0 and since aa® is positive,
it clearly follows that aa* = 0. Hence 0 = ||aa®|| = ||a||’, which implies that

a=0.

Remark 1.1.2. In the case where A is semiprime it follows from [Puh78],
Remark 1.2.5 that A contains minimal left ideals. Moreover F coincides with
the socle of A, that is the ideal generated by the set of minimal idempotents

of A. For more details on minimal idempotents see [Ric60]

1.2 Nuclear elements

An element u of A is called nuclear if there exist rank one elements u; € A
such that u = 370 u; and 30 |luil| < co. We denote by A the class of
nuclear elements of A. For u € N, we let v(u) = inf(3°2; ||u;||) where the
infimum is taken over all such possible representations of u. In fact in the case

where A is semiprime it was shown by Puhl that N is complete in the norm v
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[Puh78]. This definition is motivated by the definition of nulear operators on
a Banach space X. We establish the completeness of A in the norm v for any

Banach algebra which is not necessarily semiprime.

Proposition 1.2.1. Nis a two-sided ideal of A with FC N. Moreover v is a

norm on N satisfying v(zuy) < ||z||v(u)||y|| for any z,y € A andu € N.

Proof. That N is a two-sided ideal of A and F C N is clear. We will only
show that v is a norm on N satisfying the inequality v(zuy) < ||z||v(u)|ly|| for
any z,y € Aand u € N.

By definition v(u) < oo for any nuclear element u. Let u = Y .2, u;
be any nuclear representation such that v(u) = 0. It then follows from |jul| <
Yoo2i llui|| that ||u|| € v(u) = 0. Therefore u = 0. Conversely suppose u =
Y2, u; = 0. It follows trivially that v(u) = 0.

That v(Au) = |Aly(u) for all A € C is also clear from the definition
of v. To establish the triangle inequality, let u,w € N. So, v(u + w) <
Yooy Nuill + 302, |lws| for all nuclear representations of u and w. It then

follows that v(u + w) < v(u) + v(w). That v(zuy) < ||z||v(u)||y|| follows from

the fact that A is a two-sided ideal and ||.|| is an algebra norm on A. O

Proposition 1.2.2. N is complete with respect to v.
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Proof. Let {wy,} be any Cauchy sequence in N Since ||wp—wm|| < v(ws—wm),
it follows that {w,} is a Cauchy sequence in .A with respect to the norm ||.||.
Thus there is a w € A such that lim,,_,, ||w—wy|| = 0. We choose an increasing
sequence of positive integers n such that v(w, — wy,) < 57,%;, n,m > ng. We
consider the subsequence {wn,} of {w,}. Clearly v(wn,,, — ws,) < zr5z for
each k. For each k we choose a nuclear representation ) o, w,-(k) of wy, ,, — Wy,

satisfying

> 1l < g

i=1

For all I we can express wn,,, — wn, as follows:
Wnyyy = Wn, = [Wnyy — Woyy, ] + [Wnisior = Wngpiso] + -+ F [Wneyy — Wayl-

Letting [ go to infinity in the .4 norm ||.|, we get w — wy, = 372, 32, w?
with 3372, 32, lw?|| < > ik zr = ger. Thus w — w,, € M and hence
w € N. Also we have v(w — w,,) < st — 0. Therefore w, — w in the

nuclear norm v. d

Proposition 1.2.3. The ideal F is v-dense in N.

Proof. Suppose u € N has a representation u =Y ;o u;. Then

V(U - Z_:u,) = V(Z u,‘) < Z ||u,|| - 0.

i=n
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Thus F is v-dense in V. O

Remark 1.2.1. If A = B(X) for some Banach space X,then u € N if and
only if u is a nuclear operator. This follows from the fact that u € A is of rank

one if and only if u is a rank one operator (See Theorem 1.1.1).

1.3 A characterization of the essential spec-

trum

In 1967 T. Yamamoto [Yam67] proved a theorem on the asymptotic behaviour
of the singular values of an n x 7 matrix over C. For a number of years
this classical result was a subject of extension to B(X). In 1990, P. Nylen
and L. Rodman [NR90] introduced the notion of spectral radius property in
Banach algebras in order to generalize this classical result. In [BS98], the
author and A. Stréh proved a conjecture of P. Nylen and L. Rodman [NR90),
Conjecture 5.11 in the affirmative, namely that any unital Banach algebra has
the spectral radius property. In fact we showed that a slightly more general
spectral property holds. We showed that for every element which has spectral

points which are not of finite multiplicity, the essential spectral radius is the

{ 'UsS=2e2Hy

Bl U2 eSTFTU
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supremum of the set of absolute values of the spectral points that are not of

finite multiplicitity.

The spectral radius property is defined in [NR90] in terms of a spectral
point sequence which corresponds to each element of the Banach algebra A.

We outline the construction of the spectral point sequence as in [NR90].
For each a € A we consider S; = {A: |A\| = r(a)} (N o(a). If S; consists of f.m.
spectral points, we set u;(a) =r(a), ((=1,2,...,n,) where n; is the sum of
the multiplicities of the points of S;. If S; contains some point which is not
of f.m. we set p;j(a) =r(a), (i=1,2,...). In the former case, we proceed by
considering Sy = {A : |A| = r(a;)} N o(a1), where a; = (1 —es,)a(l —es,) and
es, is the Riesz idempotent corresponding to S,. We view a, as an element of
the Banach algebra (1 —eg, ). A(1 —es, ) with unit 1 —eg,. If S, consists of f.m.
spectral points, we set up,4;(a) = r(a;), (J = 1,2,...,ny) where ny is the
sum of the multiplicities of the points of S;. If S; contains some point which
is not of fm. we set pn,+;(a) =7r(a1), (j=1,2,...). Continuing this process
we obtain a nonincreasing sequence of positive numbers which can either be
infinite or finite (we have the latter case if o(a) consists only of f.m. spectral
points). We let n(a) denote the length of the sequence. If the sequence is infi-

nite, we denote its limit by p(a). We will show that any unital Banach algebra
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has the following spectral property which was first introduced in [NR90]:

For every a € A for which the spectral point sequence {un(a)}r,
18 of infinite length and u(a) = pm(a) for some integer m, we have that
rk(a) = p(a).

The proof is based on a well-established Fredholm theory in a Banach
algebra relative to an inessential ideal [BMSW82].

We will need the following facts in the sequel:

Theorem 1.3.1. ([BMSW82], Lemma R.2.3) If X is a Riesz point of o(z),

then it is an isolated point of o(z) and ey € K.

Theorem 1.3.2. ([BMSW82], Theorem R.2.4) Let A be a unital Banach al-
gebra and z € A. Then every Fredholm point of x which is a boundary point

of o(z) is a Riesz point of x.

We recall that each element of  has a finite spectrum. By [BMSW82],
Theorem R.2.6 it follows that F and hence K are inessential ideals of A . As
an important corollary of the punctured neighbourhood theorem [BMSW82],
Theorem F.3.9, Barnes, Murphy, Smyth and West obtained very useful results,

[BMSW82], Theorem R.2.7 and Theorem 1.3.1 above, on the structure of the
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spectrum of an element in a Banach algebra. Note that Theorem R.2.7 was
stated for a semisimple Banach algebra, but it holds without the hypothesis
of semisimplicity. We will indicate a short proof of the following special case

that will be needed:

Proposition 1.3.1. (/BS98], Proposition 2.1) Leta € A and Q = {\ € o(a) :

|A| > rx(a)}. Then every point A of Q is an isolated point and ey, € K.

Proof. We first show that if A\ € 2, then ) is a boundary point of o(a). If
this is not the case we can find a neighbourhood of A which consists entirely

of spectral points and does not intersect ok (a). Let
to=sup{t >0:(1+€)) €o(a)forall 0 <e <t}

Then (1 +%)X is in the boundary of ¢(a) and it is not isolated. On the other
hand, since (1 + #)|A| > rx(a), (1 + to)A — a is Fredholm relative to K. It
follows directly from Theorem 1.3.2 that (1 + #,)A is isolated, which yields a
contradiction. Hence ) is a boundary point of o(a). Applying Theorem 1.3.2
again, this time to A instead of (1+1%9)J, it follows that ) is an isolated spectral

point. That e, € K follows from Theorem 1.3.1. O

From this proposition we immediately obtain the well-known charac-
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terization of Riesz elements in a general Banach algebra .4 [BMSW82], Corol-

lary R.2.5.

Corollary 1.3.1. An element a € A is Riesz if and only if all the nonzero

spectral points are isolated and are of finite multiplicities.

Lemma 1.3.1. If I is any two-sided ideal in A , then I and ideal I which is

the norm closure of I have the same sets of idempotents.

Proof. Let p be an idempotent in I. Then pIp is a Banach algebra with identity

D, algebraic structure inherited from .4 and norm ||.||, defined by

lpapll, = sup{||(pap)(pbp)|| : b € I, ||pbp|| = 1}.

Moreover, since I is norm dense in I, it follows that pIp = pIp. Hence
pIp is a dense two-sided ideal in the unital Banach algebra pIp, which only

holds if pIp = pIp. Hence p = ppp € pIp = pIp C I. O

oo

Note that if a € A for which the spectral point sequence {u,(a)}.-;
is infinite and its limit x(a) is attained by u,y, for some m, then o(a) must con-

tain a point which is not of f.m.
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Theorem 1.3.3. (/BS98], Theorem 2.3) Let a € A be such that o(a) con-
tains a point that is not of finite multiplicity. Then rx(a) = sup{|A| : A €

o(a) is not a spectral point of finite multiplicity}.

Proof. Choose A € o(a) such that rx(a) < |A|. It follows from Proposition
1.3.1 that ey € K. From Lemma 1.3.1 we have that e, € F, hence ) is a

spectral point of finite multiplicity. Thus,

sup{|A| : A € o(a) is not a spectral point of finite multiplicity} < 7x(a).
Now suppose that

sup{|A| : A € o(a) is not a spectral point of finite multiplicity} < rx(a).

Then {X € o(a) : |\| = rx(a)} consists of a finite number of f.m. spectral
points. We can find a Ay € o(a) such that [Ag| < rx(a) and A = {A: |A| > ||}
consists of a finite number of f.m. spectral points. Let e) denote the Riesz
idempotent corresponding to the set A, then the rank of e, is finite and e,
commutes with a. Then,
Dol = Timnoeo (1 = en)a(l — en)]" 14
= limge [|a™ — a”es|”
> limp oo (infrex [|a® — k)=

= rx(a),
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which yields a contradiction. O

As a direct corollary of Theorem 1.3.2 we affirmatively answer [NR90)

Conjecture 5.11.

Corollary 1.3.2. (/BS98], Corollary 2.4) Every unital Banach algebra has

the spectral radius property.

The goal in {[NR90] was to obtain a Yamamoto type theorem in the
general framework of Banach algebras. The situation is the following: Let a €
A and

d;j(a) = inf{|la —b|| : b € A, rank(b) < j}.

For each j, §;(a) is called the j** approximation number of a. Clearly the
sequence {d;(a)}, is non-increasing and satisfies some properties of the classical
approximation numbers of operators on a Banach space [Pie87]. In the case
where A is the algebra of n x n matrices, §;(a) is exactly the j* singular
value for the matrix a.

Let a € A and {un(a)}, be the corresponding spectral point sequence.
The generalized Yamamoto’s Theorem in Banach algebras states that for every

n < n(a) one has
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lim (8,(a™)™ = pn(a)- (1.3)

m—0o0

From [NR90] Theorem 4.2 this asymptotic relation holds for alla € A
for which either n(a) < oo or n(a) = oo and py,(a) > p(a). In the case where
there exists an n such that u,(a) = p(a), the spectral radius property was
needed to obtain (1.3) [NR90], Theorem 5.1. As a consequence of Corollary

1.3.2, (1.3) holds in general.



Chapter 2

Riesz decomposition results

In this chapter we will assume that .A is a semiprime Banach algebra unless oth-
erwise stated. We extend decomposition results of Barnes [Bar68] for elements
of the closure of the socle of a semi-simple Banach algebra to Riesz elements
in a semiprime Banach algebra A and provide a complete Riesz decomposition
theorem for Riesz elements. We refer the reader to [Pie87], Theorem 3.2.14 for
the well-known Riesz decomposition theorem in B(X). In Section 2.3 we show
that these results can be obtained by an extensive use of spectral analysis and
C*-algebra techniques if A is a C*-algebra.

Call an element h in A hermitian if its numerical range is contained

in R (i.e for any norm one linear functional ¢ on .4 satisfying ¢(1) = 1 we have

29
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#(h) € R). An element z of A is called regular if there exists a b € A such
that zbz = z. It is clear from this definition that zb and bz are idempotents.
The element b is called a generalized inverse of z. When such a b exists,
it is not necessarily unique, however it is shown in [Rak88] that there is only
one such a b such that bz and b are hermitian idempotents. Following the

classical notation we call the unique b the Moore-Penrose inverse of .

Remark 2.0.1. If A is a C*-algebra then an element z € A is hermitian
if and only if z is self-adjoint [Zhu93], Theorem 13.9. In this case the exis-
tence of a Moore-Penrose inverse b implies that both zb and bz are self-adjoint
idempotents. We refer the reader to [HM93] for a comprehensive study of

Moore-Penrose inverses in C*-algebras.

For a subset B of A we let L[{B] = {a € A :ab =0 for b € B} and
call it the left annihilator of B in A. The right annihilator of B in A denoted
by R[B] is defined analogously.

For z € A, L; and R, will denote the left and the right multiplica-
tion operator respectively. Clearly Ker(L;) = R[{z}] and Ker(R,) = L[{z}]
where for a linear operator T we use Ker(T) to denote the kernel of 7.

If z € A we say an idempotent p in A is a left Barnes idempotent

for r in A if zA = (1 — p)A and we say an idempotent ¢ in A is a right
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Barnes idempotent for  if Az =A(1 — ¢). As noted in [BMSW82], p. 26

e the Barnes idempotents, if they exist, are not necessarily unique;
e if p is a left Barnes idempotent for z in A, then Ker(R,) =Ap;

e if g is a right Barnes idempotent for z in A, then Ker(L,) = qA.

It then follows from this remark that R[Az] = ¢.A and L[z.A] = Ap.

2.1 A Riesz decomposition theorem

Recall that for a linear operator T on a Banach space X and for any nonnega-
tive integer n we clearly have the following inclusions: Ker(T™) C Ker(T™+!)
and T™!(X) C T™(X). Moreover if there is an m such that Ker(T™) =
Ker(T™*) and T™(X) = T™*+'(X), then for any nonnegative integer n we
will have Ker(T™) = Ker(T™") and T™(X) = T™"(X). The smallest non-
negative integer m satisfying Ker(T™) = Ker(T™*!) is called the ascent of T
and the smallest nonnegative integer n satisfying T"(X) = T™t!(X) is called
the descent of T If there is no such an integer we define the ascent or descent

to be infinite.
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Remark 2.1.1. It is a well-known fact from operator theory that if a linear
operator T on a Banach space X has finite ascent and descent, then they are
equal and X = T™(X) @ Ker(T™) where m is their common value. See for

instance [Pal94], Lemma 8.5.2.

For z € A the quantities ;(z) and §;(z) will denote the ascent and
descent of L, respectively whereas o, (z) and §,(z) will denote the ascent and
descent of R, respectively.

In this section we show that for any Riesz element a of a semiprime
Banach algebra .4 and any nonzero complex number X it follows that k :=
(A —a) = (A —a) = a,(A —a) = §,(A — a) < co. We use this to de-
duce the following Riesz decomposition result: R[A(A — a)*]® A(A — a)* = A
and analogously L{(A — a)* A|®() — a)*A = A. These results were proved by

Barnes [Bar68] for elements of the closure of the socle of a semisimple algebra.

Theorem 2.1.1. ([BMSW82], Theorem F.1.10)Let A be a unital semiprime
algebra and z € A. Then z is left (right) invertible modulo K if and only if z

has a right (left) Barnes idempotent in K.

Lemma 2.1.1. Let = be a reqular element of A and ¢ € A such that zcx = z,

then p = 1 —zc and ¢ = 1 — cz are left and right Barnes idempotent for z
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respectively.

Proof. A(1 — q) = Acx C Az and Az = Azcz = Az(l — ¢q) C A(l - q).

Therefore Az = A(1 — q). By a similar argument zA = (1 — p)A. O

A powerful result of Atkinson characterizes Fredholm operators (those
operators which are invertible modulo the compact operators) as those which
have closed ranges and finite dimensional kernels and cokernels. The following

result provides a similar characterization in a Banach algebra context.

Proposition 2.1.1. Let x € A. Then z is left (right) invertible modulo K if
and only if 1) = is regular and 2) the left and right hermitian Barnes idem-
potents 1 — zc and 1 — cx respectively are in F where c is the Moore-Penrose

inverse of x.

Proof. Suppose z is regular with c its Moore-Penrose inverse such that 1 — zc
and 1 — cz are in F. Since by Lemma 2.1.1 the elements 1 — zc and 1 — cz are
Barnes idempotents for z, it follows from Theorem 2.1.1 that z is both right
and left invertible modulo K.

Conversely, suppose z is left (right) invertible modulo K. By Theorem
2.1.1 z has a left (right) Barnes idempotents in X, say p and q respectively.

That is zA = (1 —p)Ad and Az = A(1—¢q). Sozy=1—-pandzz=1—¢



CHAPTER 2. RIESZ DECOMPOSITION RESULTS 34

for some y and z in A. That is, zyz = (1 — p)z and zzz = z(1 — ¢). Since

pz = 0, it follows that zyr = x, whence, z is regular. d

As a corollary of Proposition 2.1.1 we generalize (1.1) of [Bar68] p.

496 on elements of the closure of the socle of A to Riesz elements of A.

Corollary 2.1.1. Let a € R(A) and A\ a nonzero scalar. Then Li_gm 18

injective if and only if R(y_q)m is surjective for any nonnegative integer m.

Proof. Suppose L(y_qm is injective. That is ker(Lp_q=) = {0}. Let ng
is the right Barnes idempotent for (A —a)™. It follows that A(A —a)™ =
A(l — np) and Ker(Lp-gm) = nmA. Hence n, € Ker(Li_qm™) and so
Ny = 0. Therefore A(A — a)™ = A. That is Ry_qm is surjective.

Conversely, suppose R(x_q)m is surjective. That is A(A — o)™ = A
Since A(A — @)™ = A(1 — nyp), it follows that A = A(1 — ny,), that is Ang, =

{0}. That is Ker(Lp_qm) = {0}. O

Recall that a right(left) ideal Z of A is said to be of finite order if and
only if Z can be expressed as a sum of a finite number of minimal right(left)
ideals of \A. We define the order of Z to be the smallest number of minimal
right(left) ideals whose sum is Z. Conventionally we consider the zero ideal to

be of finite order.
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We will need the following well-known result of Barnes [Bar68]:

Theorem 2.1.2. ([Bar68], Theorem 2.2) Let I be a nonzero right ideal of

finite order m. Then T = pA where p € A is a rank m idempotent.

Lemma 2.1.2. ([Tay66], Lemma 3.4) Let T € B(X) for some Banach space
X. 1) If Ker(T)NT™(X) = {0} for some nonnegative integer n then a(T) < n

and 2) If a(T) < n then Ker(T*) NT™(X) = {0} fork=1,2,....

Proof. Suppose Ker(T) NT™(X) = {0}. Let z € Ker(T™!). Then T""'z =
T(T"z) = 0, so that T"z € Ker(T) N T"(X) = {0}, and so T"z = 0, that is
z € Ker(T").

Conversely, suppose o(T) < n and let z € Ker(T*) N T"(X), where
k is a positive integer. Then z = T™y for some y and T*z = 0, so that
y € Ker(T™**). However Ker(T™+*) = Ker(T™) and thus T"y = 0. Therefore

Ker(T*) nT™(X) = {0}. O

Proposition 2.1.2. Let A be semiprime Banach algebra and let a € R(A).
Then, for any non-zero scalar A and a nonnegative integer k, R[A(A — a)¥] is
of finite order and ay(A — a)< oo . Similarly L[(A — a)*A] is of finite order

and o (A — a)< oo.
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Proof. Let cx be the Moore-Penrose inverse of (A — a)*. Since (A — a)¥ is in-
vertible modulo , it follows from Proposition 2.1.1 that the right Barnes idem-
potent 1 for (A — a)* corresponding to ¢ is in F, that is it is of finite rank.
Since R[A(A — a)*]= ny.A, it follows from Theorem 2.1.2 that R[A(A — a)¥]
is of finite order. We next show that aq(A — a)< oo. For each k € N we let
Ry = ni AN(A — a)kA. Suppose oq(A—a)= oo from which it follows from Lem-
ma 2.1.2 that R, # {0}. Since the sequence { Ry} is decreasing and R[A(A—a)]
is of finite order, { Ry} should become constant. Recall that Ry’s are of finite

order, hence there is a minimal idempotent e € Ry, for all k. That is
e € RJA(A — a)]N (A — a)* A for all £. (2.1)

Since a € R(A), lim,,_, |||a™ + K|||* = 0 where |||.||| denotes a norm in A/K.
We thus can find a ¢ € N and an f € F such that ||a? — f|| < l’\zﬁ Consider
T=L;, R=1L%and S=T9— R = L _; where for z € A L denotes the
restriction of L, to Ae (cf. [Pal94], p.669). Since L is contractive for all d €
A, we have that ||S|| < % We will show that the ascent of A — L is finite
which due to Lemma 2.1.2 will contradict (2.1). Suppose the ascent of A — L¢

is infinite. By Riesz lemma we can find zj € ker((A — T)**') with ||zx|| = 1



CHAPTER 2. RIESZ DECOMPOSITION RESULTS 37

and ||zx — z|| > 2 for all z € ker((A — T)*). Let yx = A~9Rzy. That is,

Y = /\‘q(T"zk—Szk)

= zr— A1\ - T)qi‘i ATy 23, — A8 .
=0
Since /\‘I(A—T)Eg;}) (AT z; € ker((A — T)*), it follows that for any k > I,
Yk — Y1 = Tp — T — A\ ISz + A799x;, for some z € ker((A — 5.
Thus,

lye = wll 2 llox — =l = 1A Szl - [A7Sz|

But this cannot be because R is a finite rank operator, hence compact. There-
fore the ascent of A — L¢ has to be finite which contradicts (2.1). Thus the
assumption that o, (A — @) = oo is violated. The other part of the proposition

follows analogously. U

Remark 2.1.2. 1) For a € R(A) we adopt the notation in the proof of Propo-
sition 2.1.2 by letting n; be the hermitian right Barnes idempotent for (A — a)*

corresponding to the Moore-Penrose inverse ¢ of (A — a)’c . Similarly 1 — 7
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will denote the hermitian left Barnes idempotent of (A — a)*. See Proposition
2.1.1 for details.

2) For a € F(A) we will denote by n, the hermitian right Barnes
idempotent for a corresponding to the Moore-Penrose inverse of a and by
1 — r, we denote the hermitian left Barnes idempotent corresponding to the

Moore-Penrose inverse of a.

From these two remarks it is clear that if a € R(.A) then ni = T r—a)*

and r; = T(a—a)*s A#0.

Lemma 2.1.3. Let a € R(A) and ) a nonzero complez number. If R _) has
a finite ascent, say o, (A — a) = m, then L{((A — a)™ —np)A] = {0}. Moreover

A=A(N—a)™ — ngy).

Proof. Let b € L[(A —a)™ — ny)A]. That is b(A — a)™ — bny, = 0, which
implies that b(A — @)™ = bny, (A — a)™ = 0. Since or(A —a) = m, it follows
that (A —a)™ = 0. This implies that b € L[(A — a)"A] = Any,. So b =
bnm = b(A — a)™ = 0. Therefore L[((A — @)™ — np)A] = {0}. For the second
part of the lemma, since {0} = L[((A — @)™ — 1) A] = Ker(R(a-a)™—nm))> it
follows that R((x—a)™—n,,) is injective. Since RB((r—a)™-n,) = B(r-u) for some

u € R(A), it follows by Corollary 2.1.1 that A = A((A — a)™ — nm). O
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Proposition 2.1.3. Let a € R(A) and A a nonzero complez number. Then
a(A—a) =8§(A—a) =a,(A—a) =6, (A —a) < oo.

Proof. Let oy(A — a)= m and b € A(A —a)™, that is b = ¢c(A — a)"™ for some
¢ € A. Since by Lemma 2.1.3 we have A = A((A — @)™ — 1), it follows that

c=d((A —a)™ — ny,) for some d € A. So

b = d(A—a)™ — ny)(A— a)™ for some d € A
= d\ -a)’™ —dnp(A—a)™
= d(\ —a)™ because dnpm(A —a)™ = 0.
So b € A(X — a)®™. Therefore 6,(A — a) < ay(\ — a). Analogously §;(A — a) <
o, (A — a). Since o (A — a), &;(\ — a), ar(A — a) and 6, (A — a) are all finite, we
then have o;(\ — a) = &(A — a) and or(\ — a) = 6;(A — a). The result follows

from these equations and the above two inequalities. O

Lemma 2.1.4. ([Ric60], p. 32) Let a € A. Then L, and R, are invertible in

B(A) if and only if a is invertible in A.

Proof. We only give a proof for L, as the other case for R, follows analogously.

If a is invertible in A ,then

L,-1L,x=Ly,Ly-vz==x
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for all z in A which implies that L, is invertible in B(.A) with the inverse given
by La—l

Conversely, if L, is invertible in B(.A), then
TL,=LT=1I

for some T in B(A) where I is the identity in B(A). Let = T'1. Then az =
L,T1 = 1 which implies that LyL, = Loz = L1 = I. Therefore za = LyLo =1

and thus a is invertible in A and its inverse is . ([

Lemma 2.1.5. Let a € R(A) and k € N. Then for any nonzero complez

number A\, (A — a)k.A =riA.
Proof. Let cx be the Moore-Penrose inverse of (A — a)®. Then

(A —a)* = (A - a)* (2.2)
and

re = (A — a)*cx. (2.3)
Let y € (A — a)* A, that is
y = (A—a)*d for some d € A
= r(A — a)*d by equation 2.2

(S ’I‘k.A.
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That is (A — a)*A C riA.

For the reverse inclusion, let z € ;. A, that is

z = rybforsomebe A
= (A— a)kckb by equation 2.3

e (A—a)*A

We can now state and prove the main result of this section.

Theorem 2.1.3. Leta € R(A), A # 0 a complez number and k = oy(A — a) =
o,(A—a) = §(A\—a) = 6, (A —a). Then ng and 1 — i are of finite rank
and moreover Tyary = arg, nkany = ani and we can decompose the algebra
A = 1 A® riA such that (A — a)n;, is nilpotent and (A — a)ry, is invertible in

TkA.

Proof. The direct sum decomposition follows from Proposition 2.1.3 and Re-

mark 2.1.1.
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For any k € N,
rrary — oty = (rg — 1l)arg

= (re — 1)a(A — a)¥ck

= (re — 1)(A - a)¥acy

= (A - 0)*acy — (A — 0)*ac

= (A—a)*acy — (A — a)fac

=0
Therefore ryary = ary. Similarly nian; = any.
To see that (A — a)n is nilpotent, let c; denote the Moore-Penrose inverse of
(A —a)*. Then

A—a)m = (A=a)[l — (A —a)

= (A—a)— (A= a)ax(A — a)

and
(A —ayml = (A-a)® - (A= a)’cs(A - a)F.

Inductively, we obtain

(A — a)nk]k = (A— a)k —(A- a)kck(/\ — a)k
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Since the ascent and descent of L(,_q) are finite and equal to k, by
[CPY74], Lemma 3.4.2 L(,_,) restricted to ri.A is invertible. That is Lx_q)r,
is invertible in B(ry.A). Since by Lemma 2.1.4 the left regular representations

preserves the spectrum, it follows that (A — a)ry is invertible in 7;.A. O

Remark 2.1.3. The containment of the ideals n;.A for all k¥ and rx.A for all
k can be expressed in terms of the idempotents n; and 7. For idempotents
eand f in A we say f < e if ef = f which is equivalent to fA C eA. In
fact ef = f and fe = e if and only if eA = f.A, see [Pal94], Proposition 8.2.4.
Moreover if e and f are hermitian idempotents such that eA = fA it follows
that e = f. To see this we observe that from e = fe and f = ef we have
(e — f)? = 0. That is e — f is nilpotent, hence r(e — f) = 0. Since e — f is

hermitian, we have

le—fll = r(e—f)

Therefore e = f.
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2.2 On the multiplicity of isolated spectral points

In the ﬁr_st chapter we defined the multiplicity m) of an isolated spectral point
of an element u of A to be the rank of the corresponding Riesz idempotent ey
corresponding to \. If A = B(X) for some Banach space X and u € A, m, is
just the algebraic multiplicity of A that is m, is the dimension of Ker((A — u)®)
where « is the ascent of (A — u).

In Propostion 2.1.3 we showed that for a Riesz element u of a semiprime
Banach algebra A the ascent and descent of L(_y), with A # 0 coincide and
they are finite. We also know from Lemma 2.1.4 that 0 4(u) = o 4, (Ly) =
TpA) (R,), hence if ) is an isolated spectral point of u then it is also an
isolated spectral point of L,. In [Puh78] Puhl defined the multiplicity of an
isolated spectral point A of a nuclear element u to be the order of the ideal
Ker(L(—y)=) which he denotes by n(A, u) where o is the ascent of L(x—y). We

will show that, in fact, my = n(A, u).

Proposition 2.2.1. Let A be an isolated spectral point of u. Then L., =

exL,) ond ReA(u) = EX(Ry)-

Proof. We only give a proof for the left multiplaction operator as the other
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case follows analogously. For all z € A we have

1 / 1
exr)r = | =— (u— Ly,) du>:v
() (27” |e—A|=e ¢

1

= — L7 . zd
215 | s (u—u)TOH
1

= -— L _ —1:vdu
218 J i aj=e (n—u)
1 1

= 5= (b —u) " zdp
278 J|u—N=e

= L2

Remark 2.2.1. It is a well-known fact from spectral theory of Riesz opera-
tors on a Banach space X that if T is a Riesz operator and A is a nonzero
eigenvalue of T then Ker((A — T)*) = P,X where P, is the Riesz projection
corresponding to A and « is the ascent of A — T' (See [CPY74], p. 49). From
Proposition 2.2.1 Ker(Lf,_,)) = Le, A = exA. So the order of Ker(Lg,_,)) is

the order of ey A which equals the rank of e,. Therefore m) = n(\, u).

In fact from Proposition 2.2.1 again we have Ker(Rf,_,)) = Re, A=
Aey. From this it follows that if u € R(A) then the algebraic multiplicity of

A € 0 g(u) is rank(ny) = rank(1l — 1) = (A, u) = m,.
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2.3 Barnes idempotents in C*-algebras

1
In this section A will denote a C*-algebra, a* the adjoint of a and |a| := (a*a)?.
We will establish a spectral characterization of the hermitian Barnes idem-
potents for regular elements of the algebra corresponding to their respective

Moore-Penrose inverses.

Lemma 2.3.1. (cf. [HM9S], Theorem 8 and [Str94], Corollary 4) An element

a € A is regular if and only if inf(o(|a|)\{0}) > 0.

Clearly for a regular element a, if 0 € o(|a|) then 0 is an isolated

spectral point of |a|.

For a regular element a of A we let n, be the Riesz idempotent corre-
sponding to {0} and we define n,- analogously. If 0 ¢ o(|a|) then n, = 0. We
let 7, = 1—ng4 and 74+ = 1—n,. We will later see that n, and 1—r, are exactly
the hermitian Barnes idempotents for a corresponding to the Moore-Penrose

inverse of a, hence the notation does not violate that of Remark 2.1.2.

Lemma 2.3.2. Let a, z € A. Then |||a|z||® = |Jaz|>.
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Proof.

lalz|l®

I(lalz)* (lal<)ll

= ||z*|allalz]
= |lz*a*az]|

= ||(az)"(az)|

= [az|®.

Remark 2.3.1. Let a be a regular element of .A. Since by holomorphic func-

tional calculus |a|n, = 0 it follows from Lemma 2.3.2 that an, = 0.

Proposition 2.3.1. Let a be a regular element of A. If ax = 0 for some

z € A then (1 —ng)z = 0.
Proof. If az = 0 then by Lemma, 2.3.2 |a|z = 0. So for all A € p(|al)
z = (A=la)' (A= la])z
= AA—|a|) 7'z
That is

; =(\—l|a))7'z.
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Therefore,

NeT = 2—;; I1(/\—|a|)_ld)\:z:

= 2.3 r(/\ la|)” zdA

1 T
= %/Jd’\
1 1

= T.

That is n,z = z which implies that (1 — n,)z = 0. O

As a corollary of Proposition 2.3.1 we deduce that for a regular ele-
ment a of A the projection n, is the hermitian right Barnes idempotent for a

corresponding to the Moore-Penrose inverse of a.

Corollary 2.3.1. Letb be the Moore-Penrose inverse of a. Then ba = (1—n,).

Proof. Since aba = a, it follows that a(l — ba) = 0. Thus from Proposition
2.3.1 we have n,(1 —ba) = 1 —ba . From Remark 2.3.1 an, = 0, it follows that
(1 — ba)n, = ng. Since 1 — ba and n, are self adjoint idempotents, by Remark

2.1.3 we have 1 — ba = n,. O

From the above results we see that in a C*-algebra, if a is regular and b

is its Moore-Penrose inverse in A , then the hermitian projections p; = ab and
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po = ba are exactly the projections r, and ... We call n, the null projection
of @ and r, the range projection of a. See, for instance, [MS97], Section 1 for

a comprehensive study of kernel and range projections in C*-algebras.

An analogue of the following result was proven in Section 2.1 using
different techniques, see Proposition 2.1.1. We use the techniques of this sec-
tion to give a different reformulation of the result using the spectral charac-

terization of Barnes idempotents.

Theorem 2.3.1. ([Str94], Theorem 10) An element a € A is invertible mod-

ulo F if and only if 1) a is reqular and 2) ng, ng» € F.

Proof. If a is invertible modulo F, then clearly it is invertible modulo X, hence
0 ¢ ox(|a]). But since o(|a])\ok(|a|) consists only of isolated eigenvalues
which cluster on o(|a|), 0 must be (if it exists as an element of o(|a|)) an
isolated point of o(|a|). Hence a is regular. Suppose b € A such that 1 — ab,
1 —ba € F. Since F is a two-sided ideal, it follows that n, = (1 — ba)n, € F.
Similarly ng. € F. Conversely, if 1) and 2) hold, let b be the Moore-Penrose
inverse for a, then ab = r, = 1 — ng» and ba = 7.+ = 1 — n,. Hence a is

invertible modulo F. . O

We refer the reader to [BMSW82] for more details on Riesz elements
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of a Banach algebra. Since invertibility modulo F and invertibility modulo X
are equivalent, a is Riesz if and only if A — a is Fredholm for every A # 0. In
fact (A — a)® is regular for every k € N. Hence, if we let nx = M(r—q)+ and
Tk = T(r—a)*s then n; and r; are self-adjoint idempotents in .A. By Corollary
2.3.1 it follows that that n; and 1 — r; are exactly the hermitian right and
left Barnes idempotents of (A — a) respectively corresponding to the Moore-

. k
Penrose inverse ¢; of (A — a)”.



Chapter 3

Traces and Determinants

As mentioned in the introduction the theory of trace and determinant plays
an integral role in the study of operators on a Banach space, especially with
regard to its connections to Fredholm theory. In the case of Banach algebras
it seems that no complete theory exists for ideals larger than the socle of a
semisimple Banach algebra, see for instance [Puh78, AdTM96]. In [Puh78]
Puhl did, however, extend the trace defined on the socle to the ideal M of nu-
clear elements for algebras possessing the quasi-approximation property. This
property seems fairly reasonable for in the case where A = B(X) the property
is equivalent to X or X* having the approximation property. In this chapter

we will show that the determinant on the socle of a simiprime Banach algebra

91
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A can also be continuously extended to the ideal N if the Banach algebra A
possesses the quasi-approximation property. It turns out that our determi-
nant restricted to the ideal F of finite rank elements is spectral. In fact we
show that this determinant satisfies all the desired properties which hold in
the classical theory of bounded linear operators on a Banach space possessing

the approximation property, see for instance [Pie87].

3.1 Traces

It seems reasonable to call a function tr defined on an ideal I of A which

contains F a trace if it satisfies the following properties:

71 tr(u) = A, if u is of rank one and u® = \u
72 tr(uv) = tr(vu) for all u,v € I
73 tr(u + v) = tr(u) + tr(v) for all u,v € I

74 tr(ou) = atr(u) for alla € C andu € 1.

The above properties correspond to the axioms suggested by Pietsch,
see [Pie87] Definition 4.2.1. Our first step is to introduce the spectral trace on

the ideal F itself.

Definition 3.1.1. Letz € F and {)(z)}i, be the spectral points of T repeat-
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ed according to their respective algebraic multiplicities. We let
Tr(z) := Z Ai(z).

We note that B. Aupetit and du T. Mouton used the same definition

for elements of the socle of a semisimple Banach algebra.

Theorem 3.1.1. (¢f. [AdTM96], Theorem 3.1) Let f be an analytic function

from a domain D of C into F. Then Tr(f())) is holomorphic on D.

Lemma 3.1.1. Let 7,y € F. Then Tr(z +y) = Tr(z)+Tr(y).

Proof. By Theorem 3.1.1, f(a) = Tr(z + ay) is entire. In fact,

im £ = lim (& +y)
|a|=00 @ |aj—o0 @
= mm Tr
A T )
= Tr(y).

From Liouville’s theorem, f(c) has to be a polynomial of degree one. That is
f(a) = Tr(ay + =) = oTx(y) + k for some constant k. Letting o = 0 we get

Tr(z) = k, hence Tr(z + y) = Tr(y) + Tr(z). 0
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Remark 3.1.1. It follows from the fact that o 4(zy)\{0} = o 4(yz)\{0} that
Tr(zy) = Tr(yz) for all z,y € F. If z is a rank one element, that is for every
y € A there is a scalar ), such that zyz = Mz , then o 4(z) = {0, A},
see [Puh78], Lemma 2.7. These facts along with Lemma 3.1.1 imply that the

spectral trace satisfies the properties 71,... , 74 of a trace.

In [Puh78] Puhl introduced a trace on F which is continuous in the
nuclear norm and showed that it extends continuously to the ideal A of nuclear
elements of A provided the semiprime Banach algebra A has some approxi-

mation property. That property is defined as follows:

Property 3.1.1. A semiprime Banach algebra A has the quasi-approzimation
property (q.a.p) if for each minimal idempotent e € A the Banach space Ae

has the approzimation property (respectively e A).

Remark 3.1.2. If A is commutative, then it possesses Property 3.1.1. To see
this, let e € A be a minimal idempotent. Since eA = eAe = Ce, it follows

that A is isomorphic to C which implies that .4 has Property 3.1.1.

We also remark that if 4 = B(X) for some Banach space X, then

A possesses property 3.1.1 if and only if X or X* has the approximation
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property. To see this we let P € B(X) be a minimal idempotent. We show
that AP = X (respectively P.A 2 X*). Recall that P is a rank one projection.
Let P(X) := X,. Choose 0 # zy € X; with ||zo|| = 1 such that X is the norm
closure of the linear span of {xy}. Let 1 be defined as follows ¢ : AP — X
with ¢(SP) := Sz, S € A. Since P is a projection, 9 is well defined and
moreover it is both linear and one to one and clearly of norm less or equal to
one. To show that it is surjective, fix £ € X and define a map S;zp = 2.
Extend S, linearly to X; by S;(Azo) = Az. Clearly S; is linear and it is
bounded. By Hahn-Banach we extend S, to all of X. As such S, € B(X) and
moreover (S, P) = S;z¢ = z. The Closed Graph Theorem ensures that ¥ is

a Banach space isomorphism. 0

In [Puh78] Puhl defined a trace on the socle of a semiprime Banach

algebra as follows:

Definition 3.1.2. For a rank one element u, let 7(u) := A, where u> = Aju.

Ifuis of rankn and u =3, u; we let 7(u) := D> i, 7(u;).

Puhl proved that if u; € F, satisfy 3 5, u; =0, then >, 7(u;) = 0,
see [Puh78] Lemma 4.3. Thus T is well-defined on F. That 7(u) is a linear

functional on F follows directly from the above definition. We will show that
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T(uwv) = 7(vu) for all u,v € F.

Theorem 3.1.2. ([Puh78], Theorem 4.5.) Suppose A is a semiprime Banach
algebra. Then 7(u) is a linear funtional on F. Moreover T(uv) = 7(vu) for all

u,v € F.

Proof. We only prove the second statement of the theorem. Let u € F and y €
Fi. Then Ayuy = uyuy = 7(uy)uy and A yu = yuyu = 7(yu)yu. So T(yu) =
7(uy). Therefore for v € F we have 7(uv) = Y& 7(uv;) = Y iy T(vin) =

T (vu). a

Remark 3.1.3. In the light of Theorem 3.1.2, we deduce that T satisfies the

stated properties of a reasonable trace. In fact Puhl showed that the trace 7

defined on F is spectral. That is if u € F and {);(u)}Y, is the sequence of

the nonzero spectral points of u repeated according to their respective multi-

plicities, then 7(u) = SN | Ai(u) = Tr(w), see [Puh78], Theorem 6.6. In fact

on F there is a unique trace since for any trace tr and u € F, it follows that
tr(u) = tr(ul)+...+ tr(uy)

= 7(u) + ...+ 7(us)
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We state the following result of Puhl without proof as we will need it

in the sequel:

Theorem 3.1.3. ([Puh?8], Theorem 5.12) Let A be a semiprime Banach al-
gebra that possesses the q.a.p. Then the trace T defined on F extends contin-

uously to N' and moreover for u € N, |1(u)| < v(u).

3.2 Determinants

In this section we establish a continuous extension of a determinant from the
ideal F of finite rank elements to the ideal N of nuclear elements. We follow
a similar approach as in the classical theory of determinant on operator ideals
in Banach spaces [Pie87], Definition 4.3.1.

Let I be an ideal containing F. Similarly as for traces it seems rea-
sonable to call a function § assigning to every element of the form 1+ z with
z € I a complex number §(1 + z) a determinant if it satisfies the following
properties:

01 6(1+2z) =1+ ), if T is of rank one and 2 = A\ z;

02 6(1+ zy) = d(1 + yz) whenever z € A and y € I,

03 0(1+z)(1+y)) =0(1+2)0(1+y) forallz,y € I,
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64 6(1 + Az) is an entire function of A for fired z € I.
As it is the case with traces it is natural to introduce a spectral
determinant on F. The properties of this determinant were fully studied by

Aupetit and Mouton [AdTM96].

Definition 3.2.1. Let z € F and let {)\i(z)}), be the spectral points of T

repeated according to their respective algebraic multiplicities. We define

N
Det(1 +z) := [ (1 + Xi(=))-

Since 3- o (z\0) ™ = rank(z) for all z € F, it follows directly from

the above definition that

IDet(1 + z)| < r(1 + 7)™ < (1 + r(z))™"), (3.1)

Lemma 3.2.1. Let z € F. Then 1+ is invertible if and only if Det(1+z) #

0.

Proof. Suppose Det(1 +z) # 0. So 1+ X # 0 for all A € o(z). That is
—1 ¢ o(z). This says that 1 + z is invertible. For the reverse implication,
suppose 1+ z is invertible, so —1 ¢ o(z). That is 1 + A # 0 for all A € o(z).

Thus Det(1 + z) # 0. U
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Theorem 3.2.1. (c¢f. [AdTM96], Theorem 8.1) Let f be an analytic function

from a domain D of C into F. Then Det(1 + f(A)) is holomorphic on D.

Lemma 3.2.2. (c¢f. [AdTMY96], Lemma 3.2) Let (A, p) be a complez-valued
function of two variables which is separately entire in A, u and such that f(, p) #
0 for all A\, u in C. Suppose moreover that there exist two positive constants A

and B such that

|F(A, p)| < exp(A|A| + Blul).

Then there are three complezx constants «, 8,y such that

(A 1) = exp(aX + Bu+ 7).

Lemma 3.2.3. If z € F and ||z|| < 1, then there exists u € F such that

1 —z = exp(u).

Proof. Since ||z|| < 1, 1 — z is invertible in .A, hence 0 ¢ o(1 — z). Let o(z) =
{P, 22, , 0} Theno(l—z)={1-X : A€oa(@)}={1-A,...,1 =M}
and since ||z|| < 1, || < 1fori =1,...,n. Now if A; is real for some j we must
have 1 —; > 0. Hence o(1 — ) is entirely contained in a domain on which the
logarithmic function In is holomorphic. Let u =In(1 —z) = 377, t%zr—lz".

By functional calculus we have that u € F and 1 — z = exp(u). O
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Theorem 3.2.2. (c¢f. [AdTM96], Theorem 3.3) Let z,y € F.

(a) Det(exp(z +y)) = Det(exp(z) exp(y)) = Det(exp(z))Det(exp(y)),

(b) Det((1 + z)(1 + y)) = Det(1 + z)Det(1 + ).

Proof. (a) We consider the function f(\, u) = Det(exp(Az + py)). This func-
tion is well-defined because a € F implies that exp(a) — 1 € F. By Theorem
3.2.1, this function is separately holomorphic in A, x4 and it does not vanish
because exp(Az + py) is invertible. We let C = rank(exp(Az + py) — 1). By

subaddativity of the rank function, see Proposition 1.1.1 (a), and the inequality

(3.1),

|f(,\’u)| < ,r(exp(/\x+uy))rank(exp(,\a:+ﬂy)—1)

< exp(C(|Alllll + [elllylD))-

By Lemma 3.2.2, there are complex constants c, 3,7 such that f(\pu) =
exp(aA + Bu + 7). Since f£(0,0) = 1, we can suppose that v = 0. Letting
A = 1,p = 0 yields exp(c) = Det(exp(z)) and analogously we get exp(f) =
Det(exp(y)). Combining these two observations we obtain Det(exp(z + y)) =
f(1,1) = Det(exp(z))Det(exp(y)).

(b) We choose A € C such that ||\z||, ||M\y]| < 1. By Lemma 3.2.3

there are u,v € F such that 1 — Az = exp(u) and 1 — Ay = exp(v). Thus by
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(a) we have

Det (1 — Az)(1 — Ay)) = Det(exp(u)exp(v))

Det (exp(u))Det(exp(v))

= Det(1 — Az)Det(1 — Ay).

However, by Theorem 3.2.1 the functions Det(1 — Az)(1 — Ay), Det(1 — Az)
and Det(1 — \y) are entire, as such the property is true for all A and the proof

is concluded. O

Hence the spectral determinant satisfies the properties 4y, ... ,d,.

Now let 7 be the trace on F define by Puhl, see Definition 3.1.2.

Definition 3.2.2. For a rank n element u of A we let

rw) 1 0 0 ... 0
'r(uz) T(u) 2 0 e 0
T (u3 (u2 (u 3 0
() = (v’)  7(u?) (u)
r(u!) T2 r@3) @Y ... i-1
r(uw)) @) r@?) (@) ... 7(u)

and let det(1 + u) := 14+ Y1 sou(u).
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From the expansion of the i by i determinant o;(u) where u € F, we

get

) = 30 (-0 (),

Lemma 3.2.4. Let u be a rank n element of A and A\ € C. Then a;(Au) =

Xa;(u) for alli < n.

Proof. For any A € C, a;(\u) = A (u) and also ap(Au) = Aaz(u). Suppose

the statement is true for all 2 < n. Then

on(Au) = Z( —1)*" 1((’; 1))'an_ Ow)7 ()’
= Z( -1)" 1((n _1))!'/\""’an_,-(u)/\"7'(u‘)
= ,\"Z( 1)’ 1(( ))|an ()T (u)
= Aoy(u).

As a consequence of the above lemma, we deduce the following propo-

sition:

Proposition 3.2.1. Letu € F. Then det(1+ \u) is a polynomial in A, hence

an entire function.
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The next proposition shows that our determinant restricted to JF is

spectral and hence it enjoys all the properties 61, ... ,d4.

Proposition 3.2.2. Let v € Fy and {\(u)}Y, be the spectral points of u

repeated according to their respective algebraic multiplicities. Then

N
det(1+u) = [ (1 + X(w)-
i=1
Proof. Let {Xi(u)}ir, be the sequence of the nonzero spectral points of u as
stated in the hypothesis. Consider the diagonal matrix 7" with diagonal entries

A(u),... ,An(u). Since rank(T) = N, it follows from Fredholm determinant

theory for bounded linear operators (cf. [Pie87], Proposition 4.4.11) that

N

det(1+w) =1+ Jou(w) =1+ Y 7ou(T) = [J1 + 3(@) = [[1+ Aw).

i=1 i=1

d

Remark 3.2.1. As a corollary of the above proposition, the function det sat-

isfies the properties 61, ... ,d4 of a determinant for all u € F.
For a positive real number r, we let B, = {z € F : v(z) <r}.

Proposition 3.2.3. Let A be a semiprime Banach algebra. Then the function

det defined on F satisfies the Lipschitz condition on B, for somer.
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Proof. We first show that det(1 + Au) = exp (Ele Linﬁl-f(u")/\") for any
u € F and |)| sufficiently small. Suppose rank(u) = N and let {X; (u)}i, be
the sequence of the nonzero spectral points of u repeated according to their
respective algebraic multiplicities. Then by Proposition 3.2.2 and Remark
3.1.3

N
det(l1 + du) = Z -ITa,- (Au)

i=1

- 1‘! (14 Mi(u))

T

- (f:fj( 1,2"+1A"Ai(u>")

- (f:( D™ (Z" n)))

= exp (i_o: ("IT)L"HT(u"),\"). (3.2)

Let 0 < r <1 and u, z € B, be arbitrary. Clearly o(z) and o(u) are contained
in {A € C | |\ <r}. Hence from the above computation we have

exp (i (—ln—)nHT(u")) — exp (i (—TI—TZ’:T(J;")> ‘ :

n=1 n=1

|det(1 + u) — det(1 + z)| =

Since the exponential function satisfies the Lipschitz condition on the unit disc
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there exists a ¢ > 0 such that

det(1 + u) — det(1 +7)| < ci ;11-|T(u") — (@)

n=1
2.1
= > frw" — 2"
n=1
00
1
< cz Eu(u” —z"). (3.3)
n=1

Since u(u"—z';) < v[(ur =z Vu]+v[z" " (u—z)), if we let p = max{v(u), v(z)},

it follows by induction that
v(u® — ") < np" 'v(u — z). (3.4)
The inequalities (3.3) and (3.4) yield

|det(1 + u) — det(1 + z)| < ch"_lv(u — )
n=1

c

v(u— z).

1—r7r

O

Theorem 3.2.3. Let A be a semiprime Banach algebra possessing the g.a.p.
Then the determinant det admits a continuous extension in the nuclear norm

from F to N.

Proof. Letu € N and u, € F such v(u,—u) — 0. It follows from the density of

F in N in the nuclear norm that u = z+y withy € F, v(z) < r and ||z < 1.
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We let yn, = u, —y which is of course an element of F. So, v(y,—z) — 0. From
Proposition 3.2.3 the function det is uniformly continuous on B, for some 7.
By using the fact that F is v dense in N again, we can write u = z + y where
v(z) <r,y € F and ||z|]| < 1. Since v(y,) = v(ug — ¥) < v(up — u) + v(z),
it follows that y, € B, eventually. Therefore the sequence {det(1 + yn)}oe, is
Cauchy and hence it converges. Since ||z|| < 1 and ||y, — z|| < v(yn — 2) = 0,
it follows that 1+ z and 1+ y,, are invertible in A for n sufficiently large. For

such an n it follows that
det(1+u,) = det(l+y,+Yy)
= det(1+ yn)det(1+ (1+ yn)_ly).

Since det(1 + y») converges, we should only show that det(1 + (1 + ys) %)

also converges. Suppose y = E:ﬂ fm, with f,, being of rank one. We then
-1 N -1 -1, _ N -1
have (1+y,) "y =Y, (1 +y) fmand 1+2z)'y=3"_ (14+72)" fm.

Since (1 +yn) 'y = (1+2) 'yin A, we have that
N
det(l+(1+ya)7'y) = 1+ Z il—!a,-((l +9n)”'Y)
l;l 1
- 14 Z i—!a,-((l + )7 'y)
i=1
= det(1+(1+2)"'y).

Therefore det(1 + (1 + y,)™'y) also converges and the result follows. 0O
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Definition 3.2.3. If A has the g.a.p and u € N with v(us,—u) =0, us € F,

we let
det(l + u) == lim det(1 + un).

Lemma 3.2.5. ([Aup91], Theorem 3.2.1) Suppose that A is a Banach algebra,

z € A and ||z|| < 1. Then 1 — z is invertible and (1 — ) =30,k

Proof. Let ||z|| =7 < 1 and let s, = Y _;_, zF. For n < m, it follows that

m
I$n = smll < ) Nl
k=n+1
n+1
< I—,
l1—7r

therefore {s,} is Cauchy and since A is complete, {s,} converges to some
element @ = Y z*F. Since s, = Sa41 — 1, it follows that a(l — z) =

(1-z)a=1. O

Proposition 3.2.4. If.A has the q.a.p andu € N is fized, the function det(1+

Au) is an entire function.

Proof. By Proposition 3.2.3 the function det :7 — C is uniformly continuous
on B, for some r. Let R > 0 and u € N. We write u = 2+ ¥ where y €
F and v(z) < {7z- Since v(z) < {5, we in fact can choose r so small such

that for |A| < R, ||Az|| < 1. So, 1+ Az is invertible in A and det(l + u) =



CHAPTER 3. TRACES AND DETERMINANTS 68

det(1 + Az)det(1+ A(1 + Az)"'y). We will show that det(1 + Az) and det(1 +
A1+ Az)~'y) are both analytic in |A| < R. Since z € N, there is a sequence
{yn} in F such that v(z—y,) — 0. We in fact may assume that v(y,) < 75 for
all n. So for |A| < R we have v(\y,) < r and det(1+\y,) — det(1+Az). Since
det(1+ Ayy) is a polynomial in A and the function det is uniformly continuous
on By, it follows that the convergence det(1+ Ay,) — det(1+ Az) is uniform on
B,. So det(1 + Az) is analytic in |A| < R. We show that det(1+A(1 + Az)"'y)

is also analytic in |A\| < R. By Lemma 3.2.5 we get

N

det(1+A(1+Xx)"'y) = 1+ E %ai(/\(l +2z)7'y)

=1

= 1+ E ;_lia,' (i (—1)""/\m+lxmy) .

i=1 m=0

In fact 7 [(3 ooy (—1)™A™*z™y)"] is a power series in A for any n. We illus-

trate this fact for n = 1. Suppose rank(y) = m. Thatisy = y1+...+ym Where

y; are of rank one. So 7 [Y oo, ((—=1)"A™Hizmy)] = 7[3o_ ((—=1)"A™H g™y, )]+

m=0

T Yoo ((=1)™Am+1zmy ). Since for each summand Y75 ((—1)™A™Hz™y;)

m=0

onehas ) > o [|((—1)™A™+1z™y,)|| < oo, it follows that Yoo _ ((—1)"A™+lz™y;)

m=0
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is a nuclear representation of a nuclear element, hence

' [(i((—l)”m%my")} = 3D (amy)

m=0 m=0
o0

= D (=)™ (™y) X"
m=0

which is a power series in . Since 7 [} oo_, ((—1)™A™*1z™y)] is a finite sum

of the 7 [(3"°_ ((—=1)™A™*1z™y;)] it should also be a power series.
=0

m

We denote 7 (300, (—1)™A™+Hz™y)"] by 3_,,. Therefore,

y, 1 0 0o ... 0
Y, 3, 2 0 ... 0
0 . . , 3 ... 0
(G | 22 T

Yoko1 k2 2oks k4 - k-1
b Yke1 k2 Xka - 2

which is also analytic in |A| < R. Therefore 35, Lox(Fee_o (=1)"A™Hz™y)

is a finite sum of analytic functions, hence det(1 + A(1 + Az)™") is analytic in
|A| < R. Since R was arbitrarily chosen, det(1+ Az) and det(1+ A(1 + Az)™h

are entire functions and thus det(1 + Au) is an entire function. a

Theorem 3.2.4. For any u € N, the function det(1 + Au) has a Taylor series
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ezpansion 1+ Y% 2=l \n ypere

7(u) 1 0 0 . 0
T(uw?)  1(u) 2 0 .. 0
7(ud 7(u? 7(u) 3 ... 0
o) = ) )
() 7% @3 @) ... n-1
T(w) @) 7@?) @3 ... 7(w)

Proof. If u € F, then the result follows from the definition of det. Let u €
N, with v(u, — u) — 0, where u, is of finite rank for all n. Let cm(uy) and
cm(u) be the coefficients of \™ in the respective Taylor expansions. Since the

convergence det(1 + \u,) — det(1+ Au) is uniform on B, for some r, it follows

that
nll)l{.lo cm(Un) =cm(u), m=1,2,...
By the continuity of the trace 7 on N the result follows. O

Proposition 3.2.5. Letu,v € N. Then det((1+u)(1+v)) = det(1+u)det(1+

v).
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Proof. Since multiplication is continuous and by Lemma 3.2.3 (b) det((1 +

u)(1 + v)) = det(1 + u)det(1 + v) if u,v € F, the result follows. O

In the classical case we know that if T is an element of an operator
ideal that admits a continuous determinant, then I+ T is invertible if and only

if the determinant of I 4+ T is not zero.

Proposition 3.2.6. Let u € N. Then det(1 + u) # 0 if and only if 1 +u is

invertible in A.

Proof. Suppose 1+ u is invertible. Then (1 + u)a = 1 for some a € A. In fact
there is b in A such that @ = 1 +b. Thus (1 + u)(1 + b) = 1. It then follows
from Proposition 3.2.5 that det(1 + u) # 0.

By the density of F in A in the nuclear norm, we write u = z + ¥
with z € F, |ly|| < v(y) < 1. Since y € N and 1 + y is invertible in A,
it follows from the first part of the proof that det(1 + y) # 0. Since 1 +u =
(14+y)(14+(1 + y) '), it follows that det(1+u) = det(1+y)det(1+(1 + y) 'z).
Now if det(1+u) # 0, then det(1+ (1+y) 'z) # 0. Since 1+ (1 + y) 'z € F,
it follows by Lemma 3.2.1 that 1+ (1 + y) ™'z is invertible in A, which implies
that (14 y)(1 + (1 + y)"'z) is invertible in A and hence 1+ u is invertible in

A. d
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Remark 3.2.2. In the case of an operator ideal & between Banach spaces
there is a one to one correspondence between continuous traces and continuous
determinants. The correspondence is established by the following formula:

Given a continuous determinant § on &/ and T' € Y then

&(T) := }\% w

defines a continuous trace on U [Pie87], Theorem 4.3.15. In fact the following

formula holds:
0(1+T) =exp(6(In(1 +T))) for all T € Y.
See also [Pie87], Proposition 4.6.2.

Proposition 3.2.7. For u € N it follows that

det'(u) := lim det(1 +/\/\u) ~1_ 7(u).

A—=0

Proof. By Theorem 3.2.4 det(1+Au) has a Taylor series expansion 1430  22{4 )7,

n!

Hence det'(u) = a1 (u) = 7(u). O

Lemma 3.2.6. Ifu € N then exp(u) — 1 € N. Moreover

v(exp(u) — 1) < v(u) exp(||ul])-
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Proof. Since exp(u) — 1 = "2 . ¥ it follows that exp(u) — 1 € N and for

n=1 ni?

any natural number £ we have

(55) = (o255

Hence if we let k = 1 the inequality follows. U
Proposition 3.2.8. Letu,v € N. Then det(exp(u+v)) = det(exp(u))det(exp(v)).

Proof. Without any loss we may assume that 3||u+ v|| < n for some n. So, by
Lemma 3.2.5 1 + 1(u + v) is invertible and ||(1 + (u +v))7']| < § < 3. We

introduce z,, and y, as follows:

(1+ %(u+v))(1 +z,) = (1+ %u)(l + %v)

= 1+ 1utv)+ 2w (3.5)
n n
and
1+y, = (1 + :L'n)n- (3'6)

From equation (3.6) we have (1 + i(u + v))z, = yuv. That is n’z, =
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1+ Li(u+ v)) 'uv. Since z,, and uv are nuclear elements of A, we have

nu(z,) = v ((1 F ot v))_luv)

< 0+ S ) )

< 3v(uv).

From equation (3.7) y, = (1 + z,)" — 1, that is

Yn = Zn:(:)xﬁ

It follows that y, € N as z, € N. Moreover

) < v (3) Il

n ‘nk
k—1
v(Zn) Z ‘Ef”xn”
k=1

IA

IA

nw(zn) exp(nl|znl|)

3v(uv) exp(n||:1;n||)‘

IA

That is v(y,) < 3"(7:“’) exp(s"S:‘”)) which implies that lim,_,c ¥(ys) = 0. How-
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ever
1\" 1\" 1 11"
det |{14+ —u) |det|{1+ —v = |det(l + —u)det(1+ —v)
n n n n
1 n
= [det (1 + E(u + v)) det (1 + :vn)]
1 " n
= det ([1 + E(u + v)] ) [det(1 + z,)]
1 n
= det ([1 + ;L—(u + v)] ) det(1 + yn)-
Now lim,,_,o ¥(y,) = 0 implies that lim,_, det(1+y,) = 1. It follows from the
proof of Lemma 3.2.6 that (1+ u)" -1 =3¢, ’,‘c—’,’ converges in the nuclear
norm to exp(u)—1 and similar results for (1 + 2u)"—1and (1 + L(u+v))" -1

hold. Taking limits on both sides of the above equation as n approaches infinity

the desired formula follows. g
Proposition 3.2.9. Let u € N. Then det(exp(u)) = exp(7(u)).

Proof. Recall that det'(u) = 7(u) for all u € N. So that
det(l+ 2u) = 1+ ~r(u) + ¥
e Su) =1+

where lim,,_,,,ny = 0. We let

n

R, = (1 + ;L—'r(u) +¢)n - (1 + i—r(u)) .
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We want to show that lim,_,e |[Rn| = 0. To accomplish that we take n such

that n|y| < 1. This implies that

n n 1 n—k N
< —
ml s Y ()fi+are]
z nk 1 n—k k
< il ol
< kgl o 1+ n'r(u) []
n 1 1 n—k X
= Z H\l + ;'r(u) |na|
k=1
< i 1 1+ —l-'r(u) n|n¢|k.
- k! n
k=1
Since n|y| < 1, we have
NN "1
Bul < |1+ )| nlol 3 g 37)
k=1 """

The first factor on the right hand side of the above inequality (3.8) approaches
exp(7(u)), the second factor approaches 0 and the third factor approaches

exp(1), which gives lim,_, |Ry| = 0. Hence
det = lim det[(1 Ly 1'(1+1()f
et(exp(u)) — exp(r(u) = lim det](1+ u) ] - lim (1 + v(u
. 3" 1 "
= ,.1320 [det(1 + ﬁu)] - nh_r& (1+ ;'r(u))

= lim [(1 + %’r(u) + ¢)" - (1 + %T(u))n]

= lim R, =0.

n—00
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It would be interesting to have a similar result as the one mentioned

in Remark 3.2.2. We do however have the following special case:

Theorem 3.2.5. If u € N with v(u) < 1 then
det(1+ u) = exp(r(In(1 + w))).

Proof. Since v(u) < 1 it follows that ||u|] < 1, hence o(1 + u) is entirely
contained in a domain on which In(1 + ) is holomorphic. Hence In(1 + u) is
well-defined and from the functional calculus 1+ u = exp(In(1+u)). It follows

from Proposition 3.2.9 that

det(1 + u) = det(exp(In(1l + u))) = exp(7(In(1 + u))).

3.3 Concluding remarks

1. An interesting problem will be to consider other ideals containing F and
to see whether the theory of traces and determinants can be extended. From
[Pie87] an axiomatic approach was followed and applied to a number of im-

portant operator ideals on Banach spaces.
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We give a short motivation for our problem: Recall from Chapter one

that for a € A and n € N, the nth approximation number of a is given by
6n(a) ;= inf{|la — z|| : rank(z) < n}.
If we let

Ci:={a€A : ién(a) < oo} and |lal|; = Zdn(a),

n=1
then C; is an ideal containing F. It is not known whether C; C NV in general.
Important examples for which the above inclusion hold include all commutative
Banach algebras, the algebra of bounded linear operators on a Banach space
and C*-algebras. In fact in the case of C*-algebras (as for operators on Hilbert

spaces) one has equality, that is
N =C; and ||.||; = v(.).

However if A = B(X), X a Banach space, it was shown by H. Konig,
see [K86], Theorem 4.a.6, that the trace and also the determinant can be
extended continuously from F(X) to C;(X) and moreover they are spectral on
C1(X).

If we can show that C; C N is general, then we will be able to obtain

the same result. The best that we can do is to show that for the ideal C; NN
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one has a continuous extension of the determinant from F to C; NN which is

spectral.

2. Another problem is to extend Theorem 3.2.5 to the general case where for

ueN with1+u invertibie one has
det(1 +u) = exp(r(In(1 + u))).

The main issue will be to get In(1 + u) to be defined ([Pie87], 4.6.2).
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Summary

Riesz theory and Fredholm determinants in

Banach algebras
by
Manas Majekwane Bapela

Supervisor: Prof A. Stroh
Co-supervisor: Prof J. Swart
Department: Mathematics and Applied Mathematics

Degree: Ph.D

In the classical theory of operators on a Banach space a beautiful interplay
exists between Riesz and Fredholm theory, and the theory of traces and de-
terminants for operator ideals. In this thesis we obtain a complete Riesz de-

composition theorem for Riesz elements in a semiprime Banach algebra and
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on the other hand extend the existing theory of traces and determinants to a

more general setting of Banach algebras.

In order to obtain some of these results we use the notion of finite
multiplicity of spectral points to give a characterization of the essential spec-
trum for elements in a Banach algebra. As an immediate corollary we obtain
the well-known characterization of Riesz elements namely that their non-zero
spectral points are isolated and of finite multiplicities. In the final chapter of
the thesis we use Plemelj’s type formulas to define a determinant on the ideal
of finite rank elements and show that it extends continuously to the ideal of

nuclear elements.
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Riesz theory and Fredholm determinants in

Banach algebras
deur
Manas Majakwane Bapela

Studieleier: Prof A. Stréh
Medestudieleier: Prof J. Swart
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Graad: PhD

Daar is a pragtige wisselwerking tussen Riesz- en Fredholm-teorie op 'n Banach-
ruimte en die teorie van spore en determinante gedefinieer op sekere operator-
ideale. Die proefskrif bevat 'n volledige Riesz-ontbinding stelling vir Riesz-

elemente in 'n Banach algebra en daar word aangetoon hoe die bestaande

87



teorie van spore en determinante uitgebrei word na 'n meer algemene raam-
werk. Hierdie resultate maak gebruik van 'n karakterisering van die essensiéle
spektrum in terme van spektraalwaardes met eindige multiplisiteite. Dit lei
dan direk tot 'n bekende karakterisering van Riesz-elemente, naamlik dat die

nie-nul spektraalwaardes geisoleerd is met eindige multiplisiteite.

In die tweede deel van die proefskrif word gebruik gemaak van Plemelj-
tipe formules om 'n determinant op die ideaal van eindige-rang elemente te
definieer. Verder word aangetoon dat hierdie determinant onder sekere voor-
waardes kontinu uitgebrei kan word na die ideaal van nukleére elemente met

al die verwagte eienskappe van 'n determinant.
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