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Summary 
Vibration Covariate Regression Analysis of Failure Time Data 

with the Proportional Hazards Model 

by 

Pieter-Jan Vlok 

Supervisor: Mr. J.L. Coetzee 
Co-supervisors: Prof. AX.S. Jardine & Prof. 1.L. van Niekerk 

Master in Engineering 
Department of Mechanical and Aeronautical Engineering 

Universi ty of Pretoria 

There is no doubt about the potential economical advantages of preventive renewals based on 
statistical failure analysis or vibration monitoring, if performed correctly. Despite their 
advantageous abilities to produce economical benefits, both techniques have shortcomings. 
Vibration monitoring strategies recommend renewal based on short term vibration 
information only (often by waterfall plots or other short term trending techniques) and no 
scientific technique exists with which long term vibration information can be included in 
recommendations . Conventional statistical failure analysis techniques, on the contrary, 
utilizes the statistical long term life cycle cost optimum to base renewal decisions on and do 
not take diagnostic information (like vibration information) into account. The mentioned 
techniques complement each other extremely well and in this dissertation a scientific method 
to integrate these techniques was searched for with the emphasis on practicality. 

Regression models with the ability to handle covariates (explanatory variables) was found to 
be the most logical route to the dissertation objectives. After an extensive literature study, the 
Proportional Hazards Model (PHM) was selected as the most suitable model for this 
application because of its sound theoretical foundation , numerical tractability and previous 
successes. The PHM was thoroughly researched including the investigation of different model 
forms, numerical parameter estimation techniques, covariate behavior and goodness-of-fit 
tests. A decision model utilizing the PHM, with the ability to handle non-monotonic 
covariates (like vibration parameters) through Markovian chains, was also identified and 
studied. 

Data obtained from a typical South African industrial concern was collected and modeled 
with the studied theory, with promising results. 

Keywords: Proportional Hazards Model , Vibration Monitoring, Failure Analysis, Preventive 
Maintenance, Renewal 

 
 
 



Opsomming 
Vibrasie Verklarende Veranderlike Analise van Falingstyd Data 

met die Proporsionele Gevaarkoers Model 

deur 

Pieter-Jan Vlok 

Leier: Mnr. J.L. Coetzee 
Mede-Leiers: Prof. A.K.S. Jardine & Prof. J.L. van Niekerk 

Magister in Ingenieurswese 
Dcpartement van Meganiese en Lugvaartkundige Ingenieurswese 

Universiteit van Pretoria 

Daar is geen twyfel oor die potensiele ekonomiese voordele van voorkomende hemuwing 
gebaseer op statistiese falingsanalise of vibrasie monitering nie, mits dit korrek bedryf word. 
Ten spyte van hul vermoens wat groot finansiele voordele inhou, het beide tegnieke 
tekortkominge. Vibrasie monitering strategiee beveel hemuwing aan alleenlik gebaseer op 
korttermyn vibrasie inligting (tipies deur waterval grafieke of ander korttermyn tendens 
identifiseringstegnieke) en geen wetenskaplike tegniek bestaan waarmee langtermyn vibrasie 
inligting in besluite geYnkorporeer kan word nie. In teenstelling biermee, neem konvensionele 
statistiese faJingsanalises geen diagnostiese inligting (so os vibrasie inligting) in ag in 
hemuwings aanbevelings nie, maar grand besluite op die minimum statistiese langtermyn 
lewenssikluskoste. Die bogenoemde tegnieke komplimenteer mekaar uitstekend en in hierdie 
studie is daar gesoek na 'n wetenskaplike metode waarmee die !wee tegnieke geintegreer kan 
word met die klem op praktiese toepasJikbeid. 

Regressie modelle met die vermoe om verklarende veranderlikes te banteer, het geblyk om 
die mees logiese raete na die studiedoelwitte te wees. Na ' n deeglike literatuurstudie is besluit 
dat die Proporsionele Gevaarkoersmodel (pGM) die mees geskikte model is vir die genoemde 
toepassing van wee sy bree teoretiese fondasie, numeriese implementeerbaarheid, asook 
vorige suksesse wat behaal is in soortgelyke toepassings. Die PGM is in diepte bestudeer, 
onder andere verskillende modelvorms, numeriese parameter beramingstegnieke, verklarende 
veranderlike gedrag en pasgehalte toetse. ' n Besluitnemingsmodel wat op die PGM gebasseer 
is met die vermoe om nie-monotone verklarende veranderlikes (soos vibrasie parameters) te 
hanteer deur Markov kettings is ook gerdentifiseer en bestudeer. 

Data is verkry uit 'n tipiese Suid-Afrikaanse industriele situasie en IS gebru ik om die 
bestudeerde teorie te toets, met belowende resultate. 

Sleutelwoorde: Proporsionele Gevaarkoersmodel, Vibrasie Monitering, Falingsanalise, 
Voorkomende Instandbouding, Hernuwing 
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Chapter 1 

Problem 
Statement 

1 Introduction 

There will always be a need for maintenance on mechanical systems and components 

because of friction and wear. It is however not always as simplistic as "if it breaks, repair 

it" and in recent years the need for scientific maintenance has increased tremendously. 

Reasons for this could be the increased sophistication of production equipment, the need 

for a high return on an investment and the high cost of maintenance. 

The objective of an organization's maintenance activities should be to support the 

production process with maximal levels of availability, reliability, operability and safety 

at acceptable cost. If this objective is pursued the results will be clearly evident in the 

form of increased production capacity and thus company profit. As high profit is the 

reason for the existence of production concerns, maintenance should be regarded in a 

very serious way. 

Various maintenance models exist to act as guidelines for an effective maintenance 

function. One such model called 'The Maintenance Cycle' is proposed by Coetzee[22] 

and act as a good overview of the total complicated maintenance function. See Figure 

1.1. on the next page. 

The maintenance cycle is divided into two orbits namely: (1) The outer cycle which 

represents the managerial processes in the maintenance organization; and (2) The inner 

cycle which involves the operational and technical processes. In this dissertation we will 

focus on maintenance strategy setting, one of the components in the inner cycle. 

Vibration Covariate Regression Analysis of Failure Time Data with the Proportional 
Hazards Model 

 
 
 



Chapter 1: Problem statement 
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Figure 1.1.: The Maintenance Cycle (taken from Coetzeef221
) 

2 

Several maintenance strategies are identified and are illustrated in the diagram in Figure 

1.2. below. This dissertation is on an advanced type of preventive maintenance strategy 

which combines scheduled renewal on the use based maintenance branch and condition 

monitoring, specifically vibration monitoring, on the predictive maintenance branch. 

Scheduled renewal is defined as the complete renewal of a system or component due to 

replacement or complete overhaul. Only scenarios where complete renewal of a system 

or component takes place after failure are considered in this dissertation. Since this type 

of scenario is usually (not always) associated with components and not systems there 

will only be referred to components in the text when renewal situations are discussed. 

Figure 1.2: Maintenance Strategies (adapted from Coetzeef221) 
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Chapter 1: Problem statement 3 

Although the science of scheduled renewal, i.e. determining the optimal economIC 

service life of a component before renewing it, and the technological marvel of vibration 

monitoring seem to be very close in the maintenance strategy tree, it is not nearly the 

case. A statistical approach is usually followed to calculate the optimal time for use 

based preventive renewal from time failure data while a methodology based on previous 

experience in the form of empirical rules and benchmarks are used to predict optimal 

renewal times with vibration monitoring. 

Both mentioned strategies are well established in practice and have proven themselves in 

many different situations although some disadvantages and deficiencies are experienced. 

It is believed that if a single scientific preventive maintenance strategy setting technique 

can be found that is able to overcome the current shortcomings and incorporate both 

techniques' advantages, much improved maintenance renewal decisions will be the 

result. This is the main goal of this dissertation. 

The goal of preventive maintenance strategy setting is always to minimize the total life 

cycle cost of a component, i.e. to determine the optimal economical renewal instant for a 

component and not necessarily to predict the time to failure of the component. This fact 

influences the approach of this research project immensely. 

In chapter I the two strategies are introduced in enough detail to be able to understand 

the objectives for the research project. After this discussion it would also be possible to 

identify and describe the most promising and logical research route that will lead to the 

achievement of the objectives. 

2 Use Based Preventive Renewal 

Use based preventive renewal is all about determining the optimal economic instant to 

replace a component preventively. This optimal instant could be measured in any use 

parameter for instance running hours, tonnage handled or production throughput. 

Running hours (also called working age or time) is most often used. Failure data of 

identical components in the past is used to estimate optimal preventive renewal of future 

components. This strategy is only a feasible possibility if failure data of a specific 

component is available. 

2.1 Failure Data 

Since time is usually used to describe a component's age this discussion will be on 

time failure data but the same principles apply for any other use parameter. 

Different types of time failure data are identified, i.e. time failure data sets with 

Vibration Covadate Regression Analysis of Failure Time Data with the Proportional 
Hazards Model 

 
 
 



Chapter 1: Problem statement 4 

different inherent characteristics. This fact is very important since different analysis 

techniques are used for every type of data set. Classification of data set types is a 

field on its own and details regarding the topic are beyond the scope of this 

dissertation, but logical steps that are taken in the process of classification are 

mentioned briefly. These steps are discussed with the aid of the flow diagram in 

Figure 2.1. on the next page. 

STEP (i): Order T; 's (times to failure) chronologically 

Before the classification process starts, the failure times should be sorted in its 

original chronological order of occurrence. This has to be done to discern 

trends in the data. 

(i) Chronologically 
ordered 1';'s 

Yes 

1';' s identically distributed but not 
necessarily dependent 

(iv) Renewal Process 

-Probabilistic modelling 
-Non-Probabilistic modelling 
-Regression modelling 
-Neural Networks 

Yes 

NHPP 

Other non-s tationary 
models 

Branching Poisson Process 

Special case: HPP 

Figure 2.1: Diagram to aid with classification of data 

(Adapted from Ascher and Feingold[J51) 

Vibration Covariate Regression Analysis of Failure Time Data with the Proportional 
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Chapter 1: Problem statement 5 

STEP (ii): Test for a trend in data 

A number of techniques exist to recognize trends in data. Graphical techniques 

include (a) plotting cumulative failures versus cumulative time on linear 

paper; (b) estimating average failure rate in successive time periods; and (c) 

Duane plots. 

Mathematical techniques proposed by Laplace (1773), Bartholomew (1955), 

Bates (1955), Boswell (1966), Cox and Lewis (1966) and Boswell and Brunk 

(I 969) are typically used to determine the existence of trends. Note that these 

techniques do not all apply for every possible scenario and that certain 

techniques are only applicable to certain situations. 

If a trend is found in a data set, the data set can be modeled by non-stationary 

models like the Non-Homogeneous Poison Process or models based on a 

sequence of independent but not identically distributed random variables. If 

not, it implies that the data is identically distributed, but no conclusion can be 

made about the dependence of the data and therefore step (iii) has to be 

evaluated. 

STEP (iii): Testfor dependence 

Although very important, this step is often neglected. Ascher and Feingold[15] 

suggest three reasons for this: 

(a) The need for a large number of times to failure or 1';'s. 

(b) The complexities involved in implementing and interpreting these tests. 

(c) An almost complete lack of understanding of the need to perform this type 

of test. 

The most straightforward way of testing for dependency of successive T/s, is 

by means of the sample correlation coefficient of lag }, called ~. (Lag) refers 

to the correlation between Tj and Tj +j , i=1,2, ... ,m-j, l<i+}<m where m is the 

total number of observed 1';'s). 

If the data turns out to be dependent, a Branching Poison Process is suitable 

to represent it. This type of data set is encountered in situations where primary 

failures has a positive probability of triggering one or more subsidiary failures. 

An example will be where a primary failure causes one or more secondary 

failures which are not detected until after the system is put back into 

operation. Another example is where repair to a system is not done properly 

and the system fails again after repair because of the same undetected 

Vibration Covariate Regression Analysis of Failure Time Data with the Proportional 
Hazards Model 

 
 
 



Chapter 1: Problem statement 6 

problem. 

It might be argued that subsidiary failures are not true functional . system 

failures and should not be dealt with in the same way as with true functional 

failures. In practice however, subsidiary failures will also cause a system to be 

out of operation and it must thus be seen as true functional failures. 

STEP (iv): Renewal process 

If the diagram leads to step (iv), the data is independent and identically 

distributed (i.i.d.) and is generated by a renewal process. Because it is 

independent and identically distributed we can infer that a previous failure of a 

system, sub-system or component do not influence the variation of the future 

life of the system, sub-system or component and consecutive failures arise 

from the same failure distribution. 

A renewal process that generates i.i.d. data is defined as a non-terminating 

sequence of independent and identically distributed non-negative variables 

T/, T2, ... , Tn which with probability one, are not all zero. In this case the typical 

variable is time to failure and it is usually the time to failure of sub-systems or 

components. Failure data of sub-systems or components is in general more 

likely to be part of a renewal process than the failure data of systems, although 

this is not a rule. 

In practice a renewal process is also referred to as an "As-Good-As-New" 

scenario. If a component fails, it is replaced or completely overhauled and the 

component is as-good-as-new again. As stated earlier will this dissertation be 

limited to the event of complete renewal. This type of data is analyzed with 

methods referred to as renewal theory which comprises probabilistic, non­

probabilistic or regression models. 

2.2 Incomplete Observations or Censored Data 

Up to this point it was assumed that time failure data was compiled from observed 

times to failure of a specific component. This is not always true and it could be that 

observations were incomplete. Incomplete observations are frequently encountered 

in data sets. An observation that is only known to have occurred before a certain 

time, within a certain interval of time or after a certain time is called a censored 

observation. These cases are called left-censored, interval censored or right­

censored observations respectively. Censored observations contain valuable 

information and have to be included in failure time models. 

I 

Vibration Covariate Regression Analysis of Failure Time Data with the Proportional 
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Chapter 1: Problem statement 7 

Two distinct types of right-censoring are identified. The first type, Type I, occurs 

when n components are put on test for a fixed time c and at the end of time c a 

number of components are still operational. In this case it is known that for the 
failed items indexed by i, 1'; ~ c and for the components still operational indexed 

by j, Tj > c. A different type of right-censoring occurs where observation ceases 

after a pre-specified number of failures. This is called Type II-censoring and the 

right-censored time (or times in the case where all items were not started up on the 

same time) is (are) not known before observation starts. 

Only Type I right-censored observations (also called suspensions) are considered in 

this research project. The terminology will remain the same for the remainder of the 

text as before, i.e. time failure data or failure times refers to both failures and 

suspensions. 

2.3 Renewal Theory 

Renewal theory compnses of estimating component reliability from recorded 

failure times of replaced components and calculating the renewal time which 

minimize the total average life cycle cost of future components. Four important 

reliability concepts are defmed in renewal theory to form the base of reliability 

modelling approaches used on i.i.d. data: 

(i) The failure density, J, which is the probability of component failure at a 

specific instant. 

(ii) The cumulative failure density, F, or the unreliability function which gives 

the probability of component failure up to a certain instant. 

(iii) The reliability function, R, which gives the probability of component 

success up to a certain instant. 

(iv) The instantaneous failure rate, force of mortality or hazard rate, h. This 

function gives the probability of component failure in a short interval 

(t,t+L1t] provided that the component is still operational at time t. 

Three different mathematical approaches suitable to approximate the reliability 

functions are identified: (1) A probabilistic modelling approach; (2) A non­

probabilistic modelling approach; or (3) A regression modelling approach. A fourth 

approach used to estimate the reliability of a component, part of a renewal process, 

is the utilization of neural networks. Neural networks do not strive to estimate the 

reliability functions but build dynamic models with observed data suitable to 

predict future events. 

The four approaches are introduced below without concentrating too much on the 

Vibration Covariate Regression Analysis of Failure Time Data with the Proportional 
Hazards Model 

 
 
 



Chapter 1: Problem statement 8 

underlying mathematics whereafter comments will be made about optimal renewal 

instant calculation. 

2.3.1 Probabilistic Modelling Approach 

Probabilistic modelling approaches are primarily based on the fact that failure 

times generated by a specific renewal process all arise from the same 

underlying distribution. Estimation of this underlying distribution or failure 

density function plays an important role in this type of approach. Another 

characteristic of probabilistic modelling is that only time (or any other use 

parameter) is used to represent the reliability functions and no concomitant 

information concerning failures is included. With these facts stated it is 

possible to define the formal reliability functions for this approach in terms of 

recorded failure times T; and continuous time t. 

2.3.1.1 Probability Density Function (PDF) 

The probability density function,f(t), denotes the positive probability of a 

failure T occurring within an interval dt. In probabilistic notation it can 
be expressed as f(t)dt = P{t ~ T ~ t + dt} with f(t) ~ 0 for all t and the 

probability of all outcomes [0 f(t)dt = 1 . 

2.3.1.2 Cumulative Probability Density Function 
(Unreliability function) 

F(t) is the cumulative probability of failures or the probability of 
component failure as a function of time, i.e. F(t) = P{T ~ t, } or 

F(t) = Lof(t)dt . 

2.3.1.3 Reliability Function (Survivor function) 

This function, R(t), represents the probability of component succes,s and 

is closely related to the unreliability function. In probabilistic terms is 
R(t) = P{T ~ t} or R(t) = 1- F(t) . 

Vibration Covariate Regression Analysis of Failure Time Data with the Proportional 
Hazards Model 

 
 
 



Chapter 1: Problem statement 9 

2.3.1.4 Hazard Rate (Instantaneous Rate of Failure) 

The hazard rate, h(t), is the most important and most valuable reliability 

function and because of its importance it is introduced in some detail. For 

this purpose we first define conditional probability. Suppose that one 

event, say X, is dependent on a second event, Y. We define the 

conditional probability of event X, given event Yas P{XlY}. From the 

third axiom of probability is: 

P{X n Y} = P{X I Y}P{Y} (2.1.) 

In equation (2.1.), X n Y denotes both X and Y take place. This imply 

the probability that both X and Y occur is' the probability that Y occurs 

multiplied by the conditional probability that X occurs, given the 

occurrence of Y. Equation (2.1.) can be written as the definition of 

conditional probability: 

P{X I Y} = P{X n Y} 
P{Y} 

For further discussion on conditional probability, see Lewis(17l. 

(2.2.) 

Let h(t)dt be the probability that the system will be in the failed state at 

some time T < t + dt , given that it has not yet failed at T = t. From the 

definition of conditional probability we have: 

h( )d P{T 
A IT} P{(T > t) (\ (T < t + ~t)} t t = < t + tit > t = ---"-'---------'~~--~~ 

P{T > t} 
(2.3.) 

The numerator on the right-hand side of (2.3.) is an alternative expression 

for the probability density function, i.e.: 

P{(T > t) n (T < t + dt)} == P{t < T < t + dt} = f(t)dt (2.4.) 

Combining equations (2.3.) and (2.4.) then yields: 

h(t) = f(t) 
R(t) 

(2.5.) 

For an increasing hazard rate a component has an increasing probability 

to fail and use based preventive renewal will be a definite option to 

consider, although costs will have the final say. Preventive renewal will 

Vibration Covariate Regression Analysis of Failure Time Data with the Proportional 
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Chapter 1: Problem statement 10 

only be used if the total cost of a failure is considerably higher than the 

total cost of preventive actions. If equation (2.5.) yields a constant hazard 

rate, the component is said to have a random shock failure pattern 

because the risk of failure of the component remains the same throughout 

the component's life. Corrective renewal will be the first option to 

consider for this case, i.e. repair only on failure. Corrective renewal will 

also most probably be used for a component with a decreasing hazard 

rate, since the probability of component failure becomes less as time 

progresses. It should be kept in mind however that condition based 

preventive renewal, like vibration monitoring, could be used for any 

shape of the hazard rate. Clearly the hazard rate has enormous value. 

It is important to note that the reliability functions as defined above for the 

probabilistic approach are all related and if one of the functions is determined 

any other function can be derived. 

2.3.1.5 Estimation Methods 

There are several appropriate techniques that can be used to estimate the 

reliability functions. These techniques are discussed below. 

• Parametric distributions. A continuous parametric distribution can be 

fitted to the data, usually to represent the failure density function. 

The Weibull distribution is often used for this purpose but 

exponential, normal, hyper-exponential or log-normal distributions 

are used in certain cases as well. See Coetzee[22l. 

• Techniques based on partial distributional knowledge. Certain 

properties of a data set can often be assumed before analysis, for 

instance an increasing hazard rate, because of observed physical 

properties of the component which generated the data set. ' This 

allows for slightly simplified techniques to fit parametric 

distributions on a data set. Ascher and Feingold[15l describe these 

simplifications briefly with references. 

• Hazard plotting. This graphical procedure can be used to tit an 

appropriate hazard rate to data without any analytical techniques. It is 

performed on distribution specific paper, usually Weibull probability 

paper, is fast and easy to use and is often taught to semi-skilled 

analysts in the industry. See Nelson[16l. 

• Bayes's methods or Bayesion theory. Bayesian statistical inference is 

. based on a subjective viewpoint of probability. This subjective 

viewpoint is often referred to as the "degree of believe" ih the 
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2.3.2 

behavior of a certain parameter, which is considered as a random 

variable. The subjective viewpoint is captured by a specified prior 

distribution based on prior knowledge about a parameter. This prior 

distribution is then updated with the aid of Bayes's theorem to a 

posterior distribution after new observation of the parameter of 

interest. See Hines and Montgomery[26]. 

• Multivariate models. This type of modelling is used more at a system 

level than at a simple component level. It is assumed that the 

components in the system as well as the system itself behave 

according to a renewal process and that more than one type of failure 

is associated with the system. Examples are a system of components 

in parallel where a number of components have to fail before system 

failure or components in series where failure of any component 

causes system failure. The reliability functions for this type of 

modelling are similar to those outlined above except that it is 

expressed in terms of the joint probabilities of different occurrences 

of failure. See Crowder et. al. [27]. 

All of the above mentioned techniques have the ability to accommodate 

incomplete observations or suspensions by allowing for it in parameter 

estimation procedures like the maximum likelihood method. 

Non-probabilistic Modelling Approach 

Non-probabilistic models or natural reliability estimators are the direct 

statistical analog of the probabilistic models described in the previous section. 

Natural reliability estimators represent the reliability functions in a discrete 

manner based on observed failure times and do not recognize the existence of 

an underlying distribution as a primary assumption. As is the case with the 

probabilistic approach, the non-probabilistic approach only models the 

primary use parameter, thereby excluding concomitant information on 

failures. A brief introduction to the reliability functions in their non­

probabilistic forms is given below. 

2.3.2.1 Failure Density Function 

To estimate the failure density function in a discrete manner is not non­

probabilistic in the true sense of the word since we are estimating the 

underlying distribution of a data set. It is listed here however because no 

probabilities are predicted with the discrete function but probabilities are 
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simply reproduced in retrospect. 

fl.n 

f(t) = K 
fl.t 
1 fl.n 

= 
N fl.t 

(2.6.) 

In (2.6.) L1n denotes the number of failures in the interval [t,t+L1t], N the 

total number of failure observations and L1t an appropriate time length. 

2.3.2.2 Reliability and Unreliability Functions 

If no incomplete observations are present in the data, the reliability or 

unreliability function can be estimated with: 

R(t) = 1- F(t) = 1- Number of failures up to time t (2.7 .) 
N 

This function was generalized by Kaplan and Meier[25) to handle 

censored observations. 

2.3.2.3 Hazard Rate 

Without making an assumption on the underlying distribution in the data, 

the hazard rate can be obtained by: 

h(t) = _ 1_ fl.n 
n(t) fl.t 

n(t) is the population surviving up to time t. 

(2.8.) 

Non-probabilistic estimators act as very useful guidelines on the form of the 

reliability functions before having to decide on a continuous distribution to fit 

to the data if a probabilistic approach is going to be used. 

2.3.3 Regression Modelling Approach 

Regression modelling of failure data can be seen as a hybrid between the 

previous two approaches but it has enough unique features to be recognized as 

a solitary third approach to renewal data modelling. Two clear properties 
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define the regression modelling approach: 

(a) Regression models do not use the existence of an underlying failure 

distribution as primary assumption but immediately recognize the being of 

the survivor function or hazard rate, similar to non-probabilistic models. 

(b) Not only is the primary use parameter modeled by regression models but 

also concomitant information surrounding failures or covariates. 

Regression models found in the literature are introduced below according to 

the date of first introduction without mathematical details. 

2.3.3.1 Accelerated Failure Time Models (AFTM) - 1966 

Accelerated failure time models or accelerated life models strive to 

estimate the survivor function of a component as a function of its 

accelerated life. The accelerated life is a modified use parameter for a 

component that is determined by the influence of covariates on the 

original use parameter. Covariates accelerate ( or decelerate) the predicted 

arrival of failures, thereby allowing for the effects of circumstantial 

influences surrounding failures. 

2.3.3.2 Proportional Hazards Models (PHM) - 1972 

For proportional hazards models, the hazard rate is of primary concern. 

The hazard rate is determined by a baseline hazard rate which is a 

function of time only and a functional term dependent on time and 

covariates which acts multiplicatively on the baseline hazard rate. The 

multiplicative effect of the covariates on the baseline hazard rate implies 

that the ratio of the hazard rates of any two items observed at any time t 

associated with two different covariate sets will be a constant with 

respect to time and proportional to each other. 

2.3.3.3 Prentice Williams Peterson Model (PWP model) -
1981 

This model is a major elaboration of the PHM and although very little 

research has been done on this model it is considered to have enormous 

potential. It is suitable to model data sets generated by both renewal 

processes and repairable systems and allows for the effects of covariates 

on the failure process. It also takes scenarios into account where more 
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than one failure have occurred on a specific unit and it is possible to 

stratify data, i.e. group data based on influential differences. 

2.3.3.4 Proportional Odds Models (POM) - 1983 

The odds of a failure occurring is defined as the ratio between the 

unreliability function and the reliability function. For this model, a value 

rp is introduced as the ratio between the odds of a failure occurring 

estimated when considering the influence of covariates and the odds of a 

failure occurring estimated without considering covariates. The model 

assumes that the covariates has a diminishing effect on a component as 
time increases, i.e. rp -+ I IH oo . 

2.3.3.5 Additive Hazards Models (AHM) - 1990 

2.3.4 

For additive hazards models the hazard rate is also of primary interest as 

in the case of PHM. This time the hazard rate is constructed as the sum of 

a baseline hazard rate which is a function of time only and a functional 

term dependent on time and covariates. The direct analogue of this model 

could also be used in repairable systems to model failure rate III an 

additive manner. 

Neural Networks 

Neural networks have a large appeal to many researchers due to their great 

closeness to the structure of the brain, a characteristic not shared by other 

modelling techniques. In an analogy to the brain, an entity made up of 

interconnected neurons, neural networks are made up of interconnected 

processing elements called units, which respond in parallel to a set of input 

signals given to each. The unit is the equivalent of its brain counterpart, the 

neuron. 

A neural network consists of four main parts: 

1. Processing units, where each processing unit has a certain activation level 

at any point in time. 

2. Weighted interconnections between the various processing units which 

determine how the activation of one unit leads to input for another unit. 

3. An activation rule which acts on the set of input signals at a unit to 
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produce a new output signal, or activation. 

4. Optionally, a learning rule that specifies how to adjust the weights for a 

given input/output pair. 

Recently attempts were made to apply neural networks in the reliability 

modelling field[28,29,301. Failure data with covariates were used as processing 

units to estimate or teach the neural network and additional data was then used 

as inputs to predict future outputs. The results were compared to the 

predictions of proportional hazards models and accelerated failure models and 

proved to be very promising. 

Neural networks are not considered to be an "official" renewal modelling 

approach by failure data analysts because very little research has been done on 

its application in reliability modelling up to date. It is listed here however 

because of its enormous future potential. No further reference to neural 

networks will be made in this dissertation. 

2.4 Optimal Use Based Preventive Renewal 
Decision Models 

As stated in the introduction the aim for optimal decision making in renewal theory 

is not to predict the exact time to failure of a component but to minimize the total 

life cycle cost of a component. This is done with the aid of the described reliability 

functions estimated by single variable techniques or regression models. 

Two very important quantities in optimal decision making are the cost of 

unexpected replacement or failure of a component, Cj , and the cost of preventive 

replacement Cpo It is normally much more expensive to deal with an unexpected 

failure than it is to renew preventively. A balance has to be obtained between the 

risk of having to spend Cj and the advantage in the cost difference between Cj and 

Cp without wasting useful remaining life of a component. The optimum economic 

preventive renewal time will be at this balance point. 

A similar argument to the one above can be followed if availability of a component 

is more important than cost. Only this time the downtime due to unexpected failure, 

'Fj, and the downtime due to preventive replacement, Tp , are weighed against each 

other to determine an optimum. 
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2.5 Concluding Remarks 

Use based preventive renewal has established itself as a maintenance strategy with 

the ability to bring huge cost savings about if implemented correctly. This 

statement is supported by countless instances in the industry where use based 

preventive renewal is practised successfully. 

When considering this preventive strategy it is important to note that it is extremely 

dependent on accurate failure data, which is often not easy to find in practice 

because of negligence in failure data recording processes. This requirement also 

implies that use based preventive renewal can only be applied after several failures 

of a component have occurred. 

Renewal theory as outlined above is familiar to most reliability engineers, 

especially the probabilistic and non-probabilistic approaches. Regression modelling 

in renewal theory is still in its infant stage in the reliability world although there are 

no doubts about is potential. The probabilistic and non-probabilistic approaches 

have one prominent disadvantage in the fact that concomitant information is not 

included in models but this problem is being addressed in regression models. 

3 Preventive Renewal Based on Vibration 
Monitoring Predictions 

By analyzing the vibrational behavior of a component, an enormous amount of 

information about the component's condition can be learned. This fact has been proven 

over and over in the past and it has driven development on theoretical vibration analysis 

techniques up to a very high technological level. Neural networks, self organizing maps, 

fuzzy logic, time series analysis, coherence, frequency band energy methods, trending, 

correlation and many other techniques were developed for decision making in vibration 

monitoring or were applied to vibration monitoring as a result. Very little of this high 

level vibration technology is found in the industry however and often only absolute basic 

vibration techniques are used in condition monitoring programs. 

An overview of techniques often used in preventive renewal based on vibration 

monitoring is presented in this section. The term "vibration monitoring" here, refers to 

the typical vibration monitoring practices found in the industry and not to the total 

complex field. 
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3.1 Methodology 

Vibration monitoring is a condition monitoring maintenance strategy which relies 

almost entirely on the current condition of the component as determined by 

vibration parameters to make renewal decisions. Benchmarks or envelopes are 

specified for every measured vibration parameter and if a parameter or certain 

parameters exceed these specified levels, the component is renewed. Reliable 

benchmark levels are usually specified by the component's manufacturer although 

experience could optimize these levels to a certain extent. Graphical aids like 

vibration severity charts and waterfall plots are often used to assist the vibration 

monitoring person in making renewal decisions. 

3.2 Vibration Parameters 

In most cases only time domain vibration parameters are measured to evaluate the 

condition of a component. These include peak signal values, RMS values, Crest 

factors and Kurtosis. Frequency domain analyses commonly found are power 

spectral density analysis, cepstrum and high-frequency resonance techniques. 

3.3 Shortcomings of Preventive Renewal Based 
on Vibration Monitoring 

A nUInber of shortcomings that have an influence of this research project arc 

outlined below. 

3.3.1 Lack of Comparative Means Between Current 
Vibration Condition and Past Vibration 
Behavior 

Very often in practice only short term changes in vibration levels are 

considered to estimate component reliability, i.e. only the vibrations measured 

during a specific component's life time are used to predict useful remaining 

life. This is usually done with the aid of waterfall plots where different 

vibration levels are presented in a user-friendly, graphical manner such that it 

is easy to recognize trends in vibration behavior. 

No verified or established means exist to consider long term vibration 

behavior in reliability estimations. Long term vibration behavior refers to 

vibration histories recorded from similar components that have failed under 

equivalent conditions in the past. Long term vibration behavior of components 

certainly holds extremely valuable information in terms of current component 
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reliability since vibration conditions during a component's life tend to repeat 

itself in subsequent components. 

The lack of a scientific technique with which long term vibration information 

can be incorporated in present component reliability estimation is considered 

to be a shortcoming of preventive renewal based on vibration monitoring. 

3.3.2 Significance of Vibration Parameters 

Numerous vibration parameters are usually measured and evaluated when 

monitoring the condition of a component as discussed in (3 .2.). In very few 

cases all of the measured parameters are significant in the failure process and 

often renewal decisions are made based on the level of a parameter totally 

insignificant in the failure process. 

Up to date, it is impossible to identify vital parameters in the failure process if 

only the current vibration behavior is considered. This is a second major 

deficiency of vibration monitoring. 

3.3.3 Calculation of Optimal Renewal Instant 

Vibration monitoring is definitely not perfect as a predictive preventive 

maintenance strategy. A perfect predictive preventive maintenance strategy 

would be able to determine the exact length of a component's remaining life. 

No such method exists. Unexpected failures of components still do occur 

regardless of the fact that the vibration levels are monitored and unexpected 

failures are normally very expensive relative to preventive replacements. 

Thus, renewal decisions based on vibration monitoring do not bring into 

account the risk of an expensive unexpected failure or the possibility of loss of 

useful remaining life due to premature renewal. 

3.3.4 Lack of Commitment towards Vibration 
Monitoring 

In general there was found during this research project that there is a lack of 

commitment towards vibration monitoring in the industry. In many cases 

expensive vibration monitoring equipment is used as the flagship of the 

maintenance department although inspections are done very irregularly and 

not recorded properly. Often the information supplied by vibration monitoring 
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is totally disregarded when a decision has to be made and expenence or 

intuition is relied on. Even if vibration information is considered, the final 

decision is frequently left to the discretion of the vibration technician. 

It does not matter how technologically advanced vibration monitoring is, if it 

is not practiced correctly meaningful results are impossible to obtain. This is a 

maintenance management issue and will not be addressed in the dissertation 

but this shortcoming could obviously have a huge effect on results from this 

dissertation. 

4 Integrating Use Based Preventive Renewal 
and Vibration Monitoring 

There is very little doubt as to the enormous economical advantages that preventive 

renewal have in maintenance engineering, whether the renewal instant is determined by 

use based statistics from the past or present condition monitoring (including vibration) 

information. The discussion above supports this statement but also identifies 

shortcomings in current practices where these approaches are used. A method with the 

ability to integrate the principles of use based preventive renewal and renewal based on 

vibration monitoring could potentially overcome the mentioned shortcomings while 

encompassing all the advantages of both approaches. Successful identification and 

implementation of such a method is the objective for this dissertation. The formal 

research objectives are: 

(i) Combining used based preventive renewal principles and preventive 

renewal based on vibration monitoring to make more appropriate renewal 

decisions than with either one of the mentioned techniques alone. 

(ii) Verifying the theory used to achieve (i) with data obtained from the 

industry. 

The route to the objective certainly runs through use based regression models with 

measured vibration parameters as covariates. From the discussion above it should be 

evident that no other logical route exist to approach the problem since the probabilistic 

and non-probabilistic approaches are lacking to handle covariates and almost no research 

has been done on neural networks in reliability. The research area will thus immediately 

be narrowed down to the above-mentioned route. The strategy to be followed to the 

objectives is outlined below. 
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4.1 Literature Study 

A thorough literature study has to be done on regression models suitable to model 

failure data generated by a renewal process to become acquainted with existing 

techniques and models. The aim with the literature study is not to go into the details 

of the various models but rather to become aware of the abilities of the different 

techniques. 

4.2 Identification of Most Suitable Model 

After an appropriate literature survey it would be possible to identify the model 

most suitable to integrate used based preventive renewal and preventive renewal 

based on vibration monitoring. This means that all the advantages and 

disadvantages of the various models considered in the literature study will have to 

be balanced to determine the best model. 

4.3 Thorough Study on Chosen Model 

To be able to implement the chosen model successfully an in-depth study on the 

mathematics of the chosen model will be done. This study will range from the 

original proposal of the model to optimal decision making, using the model. 

4.4 Practical Evaluation of the Model 

For this research project to have worth in the reliability modelling world, the 

theoretical results will have to be evaluated in practice. Data recorded in industrial 

situation will thus be collected and modeled to prove the success of this 

dissertation. 
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Chapter 2 

Regression Models 
• In Renewal Theory 

1 Introduction 

In Chapter 1, five regression models in renewal theory were identified that have the 

potential to lead to the dissertation objectives. In this chapter the results of a thorough 

literature study on these models are discussed. 

It was discovered that all the models have the same broad structure. First, a baseline 

function that describes the component's reliability as a function of time (usually the 

survivor function or hazard rate function) is estimated with either parametric or noo­

parametric techniques. Secondly, a functional term dependent on time and covariates is 

allowed to influence the baseline function (usually by multiplication) to estimate the 

total reliability of the component. 

Throughout this chapter, the functional term is referred to as A, which is a function of 

time and covariates, i.e. A(z(t)). Let z(t) denote a column vector of m measured 

covariates or z(t) =[ZI(t) Z2(t) .... zm(t)f. For the sake of generality, covariates are 

assumed to be functions of time, although covariates may be time-independent. Further, 

suppose that Y is a row vector of regression coefficients associated with a specific 

model's covariate vectors i.e., Y = [Yl Y2 ..... Ym], estimated during model fitting 

procedures. The terminology is followed closely, except for the PWP model where some 

additional variables are needed to describe the model. 

Each model is first introduced in mathematical terms and then some comments are made 

about the model's abilities, deficiencies and applicability. After the discussion of the 

different models, the model most suitable for this research project is selected with a 

proper motivation for the selection. 
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2 Accelerated Failure Time Model 

The accelerated failure time model was introduced by Pike[31] in 1966 and is considered 

as the second most popular regression model used in renewal theory today. It is a fully 

parametric type of model and strives to estimate the survivor function. The model allows 

covariates to influence expected life time of a component directly, in a multiplicative 

manner. 

2.1 Mathematical Model 

Pike[31] presents the model as follows: 

R(t, z(t)) = Ro (-i(z(t)) . t) (2.1.) 

In probabilistic terms the model can be written as: 

R(t, z(t)) = P{T ~ t I z(t)} (2.2.) 

Ro (t) is a parametric baseline survivor function estimated without considering 

covariates. The AFTM is then constructed by allowing covariates to influence life 
-- -

time by the functional term, -i(z(t)). In (2.1.), it is required that -i(O) == 1 for the 

case where covariates do not have an effect on life time and -i(z(t)) > 0 where 

covariates do playa role. 

A popular form of the functional term is the log-linear function, i.e. 

-i(z(t)) = exp(,r· z(t)) , where r is a vector of regression coefficients. In this case, 
-- --

-i(z(t)) > 1 accelerates and -i(z(t)) < 1 decelerates the rate at which a component 

moves through time with respect to the baseline survivor function. 

Leemis[32] derived the general hazard rate function for the AFTM as: 

h(t, z(t)) = -i(z(t)) · ho (-i(z(t)) . t) (2.3 .) 

Newby[33] suggests the maximum likelihood method to estimate the model 

parameters although the method of moments have also been used successfully. 

2.2 Comments 

The theory of AFTMs has been developed in detail over the 33 years of the model's 
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existence. Numerous theoretical publications on model estimation techniques, 

goodness-of-fit tests and extensions for the model to suit repairable systems 

reliability are found in the literature. A very good example of such a publication is 

Lin et. al. [35]. 

Not only has the AFTM a sound theoretical base, but it has also been applied 

widely on failure time data, especially in biomedical applications and more recently 

in reliability situations. Four relevant publications proving the abilities of the 

AFTM are: 

1. Martorell et. al. [36]. In this paper the AFTM is used successfully to estimate the 

useful remaining life of nuclear power plants. Results are compared to methods 

not incorporating covariates. The authors conclude that this model is a useful 

maintenance management support tool. 

2. Addison et. al. [37] used the AFTM to model unemployment duration data with 

attributes like employee age and profession. The results are compared to Cox's 

proportional hazards model (considered later in this chapter). 

3. Shyur and Luxhoj[38] use Cox's PHM, AFTM and neural networks to model 

data obtained from ageing aircraft with success. 

4. Publications where fatigue crack growth is modeled by the AFTM are 

encountered frequently in the literature. Principles of fracture mechanics as 

applied in fatigue crack growth are very suitable for the parametric approach of 

AFTMs. See [27] and [33]. 

Solomon[34] identified several cases where the AFTM was specified inappropriately 

because of many illustrations where accelerated failure time models seemed to arise 

naturally in practice. Newby[33] reports some of these misspecifications as well. 

Crowder[27] gives guidelines as to when the AFTM is appropriate. 

The AFTM is established in regression type failure analyses although it has certain 

limitations. Newby[33] describes this model to be "an effective alternative to the 

proportional hazards model in appropriate cases" after a thorough study on both 

PHMs and AFTMs in 1988, thereby suggesting that the PHM is superior to the 

AFTM. 

3 Proportional Hazards Model 

Failure time data analysis underwent a total revolution after COX[2] proposed this model 

in 1972. It was first intended for use in biomedicine but was soon modified to be suitable 

for the field of reliability. PHMs model the hazard rate of a component as the product of 

a baseline hazard rate dependent of time only and a functional term dependent on time 
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and covariates. 

The PHM was originally proposed as a semi-parametric model and regressIOn 

parameters can be determined independently of the estimation of the baseline hazard rate 

although this only yields relative risks. For an absolute hazard rate, the baseline hazard 

rate has to be estimated. In general the PHM is used in its parameterized form to 

overcome numerical difficulties. 

Extensions made to the original PHM by Prentice, Williams and Peterson[ll) lead to the 

famous PWP model and extensions made by Pijnenburg[I2) resulted in the additive 

hazards model, both considered later in this chapter. 

3.1 Mathematical Model 

The model is proposed by COX(2) as: 

h(t, z(t)) = ho (t) . A(z(t)) (3.1.) 

Analogous to AFTMs, the PHM consists of a baseline hazard rate, ho (t) , which is 

influenced multiplicatively by a functional term A(z(t)) ~ 0, thereby including the 

effects of covariates. Inspection shows that the total hazard rate is identical and 

equal to the baseline hazard rate when the covariates have no influence on the 

component's risk to fail. 

The assumption of the multiplicative effect of the covariates on the baseline hazard 

rate implies that the ratio of the hazard rates of any two items observed at any time t 

associated with covariate sets Zl and Z2 , respectively, will be a constant with 
-- --

respect to time and proportional to each other, i.e. her, z I) a her, Z 2) . This property 

is referred to as the proportional hazards property of the model. 

There are several possible forms for the functional term A(z(t)). Some are: the 
-- --

exponential form, exp(r · z(t)); the logarithmic form, 10g(1 + exp(r' z(t))); the 

inverse linear form, 1/(1 + r' z(t)) ; or the linear form, 1 + r ' z(t) . The exponential 

form of the functional term is used most widely and then equation (3.1.) becomes: 

h(t; z(t)) = ho (t) . exp(r . z(t)) (3.2.) 

where the regression vector r and the baseline hazard function ho (t) needs to be 

determined. Methods to estimate ho (t) for the semi-parametric model in (3 .2.) 

involve maximum likelihood theory and can be found in [2],[3] and [6]. 
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The PHM is often used in its fully parameterized form to mcrease numerical 

practicability with the aid of the Weibull distribution, which is very suitable to 

model failure time data. Parameterization is done by approximating ho (t) with the 

Weibull representation of the hazard rate, i.e.: 

[ )

fJ- l 

h(t; z(t)) = ~ ~ . exp(r . z(t)) (3.3.) 

where fJ and '1 are the shape and scale parameters of the Wei bull distribution 

respectively. Parameters of (3.3.) are generally determined by maximum likelihood 

methods, see [5] for example. 

3.2 Comments 

Proportional hazards modelling was probably the greatest contribution to time 

failure data analysis up to date and it is still the most popular model of its kind. The 

model was used extensively in biomedicine after its introduction and since the mid 

1980' s the model has been accepted more and more in the reliability modelling 

world. 

The theoretical foundation of proportional hazards modelling and its successes are 

well established in the literature. Since its introduction in 1972, countless papers 

have been published on more efficient estimation methods, goodness-of-fit tests 

and minor extensions to the model. 

Application of the model to practical failure time data is predominantly found in the 

field of biomedicine until the mid 1980's, especially the semi-parametric PHM. The 

reason for the popularity of the semi-parametric PHM is because no assumption 

needs to be made about the baseline hazard rate. Younes and Lachin[39] sum this up 

by stating: "In biomedical applications, little is generally known a priori about the 

shape of baseline functions, and models that assume specific parametric shapes 

(such as the accelerated failure time model) can be difficult to justify." 

Bendell[l] expressed his disappointment in failure data analysts in 1985 with: "Why 

is it, however, that recorded applications of the PHM to date have until recently 

been almost entirely associated with medical data?", thereby criticizing them for 

overlooking this very logical approach to life data analysis. During this time many 

more publications on the PHM in reliability applications were made with data 

obtained from, amongst others, majorettes[71, marine gas turbines and ships' 

sonar[8], valves in light water reactor nuclear generating plants[9] and aircraft 

engines[IO]. More recently the model was used with great success to model the 
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reliability of locomotive diesel engines in Canada by using types and quantities of 

foreign particles in the engine oil[5) as covariates with the failure time data. It was 

also used on aircraft and marine engine failure data[4). 

The PHM has certainly made good ground in the field of reliability modelling and 

has proved itself to be an excellent support tool for maintenance renewal decisions. 

4 Prentice Williams Peterson Model 

Prentice, Williams and Peterson[ll) made a major extension to the original Cox PHM in 

1981, with a model which will be referred to as the PWP model. The PWP model 

extends the PHM to handle situations where a specific item (component or system) 

experiences multiple failures during its life time, by allowing for stratification of the data 

in the model. The model is defined in such a way that it is suitable to model data 

generated by repairable systems and data from renewal situations (situations where the 

hazard rate is of primary importance). This model has three dimensions (compared to the 

two of the PHM) namely age, covariates and stratum which makes the PWP model 

extremely powerful. 

4.1 Mathematical Model 

Because of its complexity, the PWP model will only be introduced in very general 

terms. Suppose a specific item can experience more than one failure during its life 

time. For the moment it is not important whether the item is repaired to the as­

good-as-new or as-bad-as-old condition. Define u as the long term life variable, 

where u=O at the item's initial startup and let N(u) be the counting process of the 

multiple item failures. Every short term item life, i.e. operational period in-between 

failures, is referred to as a stratum, S, where S=N(u) + 1 at any instant u. Thus, the 

item enters the ith stratum at occurrence of the (i-1)th failure, where i=2,3, .. . and 

enters stratum 1 at u=O when N(O) =0. Also define t, the time from the most recent 

failure to the current time u. Let Z(u) be the covariate process observed from u=O. 

From the above it is possible to define a concept used in repairable systems theory, 

that of rate of occurrence offailure (ROCOF): 

d 
v(u) =-N(u) 

du 
(4.1.) 

Prentice, Williams and Peterson tried to estimate the ROCOF of items experiencing 

multiple failures with their model. They suggest two possibilities: 
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PWP model!: Vi 

Let the baseline function be a combination of the item's ROCOF and hazard 

rate by defining the function to be stratum-specific but dependent on long term 

time u. This leads to: 

vl[ul{N(u),u~O},{Z(u),u~O}]=vo (u)·exp(ys ·z(u)) (4.2.) , 

where Ys is a vector of stratum-specific regression coefficients. 

PWP model 2: V2 

For model 2 the baseline function is the stratum-specific hazard rate (as a 

function of t) of the Sb stratum: 

v2 [u I {N(u), u ~ a}, {Z(u), u ~ O}] = ho, (t) . exp(ys . z(u)) (4.3 .) 

Cox's PHM is the general case of V2, where ho, (-) = ho (-) for all strata. 

Prentice, Williams and Peterson used partial likelihood concepts similar to those 

used by COX[2] to estimate the regression coefficients. 

4.2 Comments 

From the brief description above it should be clear that this model is extremely 

powerful. Surprisingly enough very little research has been done on this model up 

to date. Except for the original proposal of the model and an unpublished Ph.D. 

dissertation of Williams[40], only a few attempts have been made to utilize the 

endless advantages of this model. Two examples are Ascher[41], who investigated 

gas turbine engine reliability in 1982 with the PWP model and Dale[42] who has 

illustrated in 1983 how the model can be used for repairable systems reliability. 

Authors who support the statement about the PWP model's extreme potential are, 

amongst others, Pijnenburg[12] and Ascher and Feingold[15]. Ascher and Feingold 

are of opinion that "the importance of the PWP model can scarcely be 

overemphasized" . 
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5 Proportional Odds Model 

The proportional odds model originated from epidemiological studies and was 

introduced by Bennett[43] in 1983 for use in biomedicine. This model is structurally 

similar to the PHM, but not a direct extension. It models the odds of an event occurring 

and unlike the PHM, does the effect of covariates in the POM model diminish as time 

approaches infinity. This diminishing property of the covariates means that the model is 

suitable for situations where a component adjusts to factors imposed on it or the factors 

only operate in early stages. 

5.1 Mathematical model 

For this model the odds of a failure occurring is defined in terms of the survivor 

function as: 

Fe-) 

R(·) 

1- R(·) 

R(·) 

This definition of 'odds' is used to introduce the POM: 

l-R(t,z(t)) l- Ro(t) 
-----':==~ = rp . -----=.....:....:.... 

R(t, z(t)) Ro(t) 

(5.1.) 

(5.2.) 

Equation (5.2.) states that the odds for a failure to happen under the influence of 

covariates are rp times higher than the odds of a failure without the effects of 

covariates. If rp increases, so does the probability of a shorter life time. 

Differentiation of (5.2.) with respect to time leads to: 

h(t, z(t)) ho(t) 
=rp._-

R(t, z (t)) Ro(t) 
(5.3 .) 

after using the coefficient rule. By rearranging the terms in (5.3 .) and re-using 

(5.2.), a hazard ratio can be obtained: 

h(t,z(t)) R(t,z(t)) l-R(t , z(t)) ---'--'---:....:..:... = rp . = -----':....:....:....:....:..:... 
ho (t) Ro (t) 1- Ro (t) 

(5.4.) 

Inspection shows that rp 11=0 = rp and rp 11=00 = 1 , from there the diminishing effect of . 

the covariates. 
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Bennett derives the full unconditional likelihood for the model in his original paper 

to estimate the model parameters. Research done by Shen[44] provides more 

efficient estimation methods and methods to enable the model to handle suspended 

observations. 

5.2 Comments 

The POM has not been used very often in reliability modelling up to date although 

it has been fairly popular in biomedical data analyses since first publication. Its 

diminishing covariate effect property is probably the primary reason for its 

unpopularity in the reliability modelling field. It is argued that the effect of 

covariates describing components' reliability will seldom taper down close to 

failure or suspension. 

6 Additive Hazards Model 

Pijnenburg[12] proposed the additive hazards model In 1991. For this model a time 

dependent hazard rate is used as a baseline function and a functional term is added to the 

baseline function. Because of the addition, the functional term need not be positive as in 

the case of the PRM which immediately gives the model more flexibility. David and 

Moeschberger[45], Aranda-Ordaz[46] and Elandt-Johnson[47] are all of the opinion that this 

is a very valuable advantage. The ARM is also suitable for repairable systems when the 

ROCOF is modeled in an additive manner. 

6.1 Mathematical Model 

As before, suppose the time dependent hazard rate is denoted by ho (t) and the 

functional term which incorporates covariates is represented by A(z(t)). The 

additive hazard model is then: 

h(t, z(t)) = ho (t) + A(z(t)) (6.1.) 

There are many possibilities for the functional term. The most attractive form of the 

functional term is a polynomial. In practice the 1 st order polynomial or straight line 
- --

is used most often because of a lack of data availability, i.e. A(z(t)) = r' z(t) . 

The behavior of the functional form gives the model its flexibility. If the measured 

covariates cause A(z(t)) ~ 0, it implies that the covariates have an accelerating 
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effect on the wear out process of the component. A negative A(z(l)) would mean 

that the covariates are such that the expected wear out process is decelerated. If 

A(z(l)) = 0 , the covariates have no additional effect on the wear out process. 

Maximum likelihood can be used to estimate model parameters. Pijnenburg also 

provides a technique with which the additive assumption of the model can be 

evaluated. 

6.2 Comments 

Although Pijnenburg has shown the potential of the ARM with Davis,[47] bus 

engine data and Proschan's[48] aircraft air-conditioning system data, the model is 

not found very often in the literature. Pijnenburg is of opinion that "the ARM 

seems to be preferable to the PRM" for the mentioned data sets. 

The model has not really been evaluated by the reliability modelling world and it is 

difficult to judge the model's potential based on publications. 

7 Selection of Most Suitable Model 

To be able to make an educated decision regarding the most suitable model for this 

research project, the following evaluation criteria were identified with which the 

different models could be compared (in order of importance): 

(i) Theoretical foundation 

(ii) Previous practical successes in reliability modelling 

(iii) Potential to lead to the dissertation objectives 

(iv) Achievability of numerical implementation 

(v) Future potential in reliability modelling 

With these criteria, a decision matrix can be constructed where different weights are 

allocated to the criteria and each model is evaluated with a mark out of 5 according to 

each criterion. The decision matrix is given on the next page in Table 7.1. 
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Re2ression mod e I 

Criterion Wei2ht AFTM PHM PWP POM AHM 

(i) Theoretical foundation 25 4 5 3 3 3 

(ii) Previous practical successes in reliability modelling 2' 5 5 I I 3 

(iii) Potential to lead to the dissertation obiectives 23 4 5 4 I 4 

(iv) Achievability of numerical implementation 22 4 4 2 4 4 

(v) Future potential in reliability modelling 21 3 3 5 I 3 

I Weighted total: 262 302 162 138 198 

Table 7.1.: Decision matrix 

The decision matrix shows that the proportional hazards model is the most suitable for 

this project and all research efforts will be focused on this model for the remainder of 

this dissertation. 
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Chapter 3 

Proportional 
Hazards Modelling 

1 Introduction 

In the preceding chapters, the problem that motivated this research was described, 

possible solutions to the problem were considered and the Proportional Hazards Model 

(PHM) was selected as the most logical route to the solution of the problem. In Chapter 

3, the PHM is considered in detail. 

Cox proposed the original PHM in 1972, initially intended for biomedical applications[21. 

The model was immediately considered to be a revolution in life data analysis and it is 

still applied on a wide variety of survival data today. It only started to become popular 

amongst reliability modelers in the early 1980's, especially because of the model's 

ability to model the hazard rate without making assumptions about its functional form (if 

used in its semi-parametric form). The PHM have ever since the 1980's been applied in 

diverse reliability applications, for example, component failures in a light water reactor 

plant[611, marine gas turbine and ship sonar[81, motorrettes[71, aircraft engines[501, high 

speed train brake discs[511, sodium sulfur cells[521, surface controlled subsurface safety 

valves[531, machine tools[541, diesel engines[51, aircraft cargo doors[551, rolling mills[56,571, 

power transmission cables[58,591 and components of a mine loader[601. 

It is impossible to include all the theory, which was developed over the years of the 

model's existence in this dissertation. For this reason, the discussion is limited to the 

Proportional Hazards theory required to apply the model in practical situations although 

some attention is given to the original PHM for the sake of completeness. An optimal 

renewal decision making technique developed specifically for use with the model IS 

considered as well. 
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Numerical methods required to implement the model in real life situations are also 

described in a fair amount of detail. 

2 The Proportional Hazards Model 

Before introducing the PHM, the probabilistic hazard rate h(t) as derived in Chapter 1 is 

repeated here for convenience as equation (2.1): 

h(t) = J(t) 
R(t) 

(2.1) 

The probabilistic hazard rate is a function of time only, a property which seriously limits 

the function ' s abilities in reliability modelling as discussed previously. Cox addressed 

this problem in the PHM by assuming that the hazard rate of a component can be 

determined by the product of an arbitrary and unspecified baseline hazard rate, ho (t) 

and a functional term l(z (t». The baseline hazard rate is a function of time only and 

the functional term is a function of time and covariates (concomitant or explanatory 

variables). (If the covariates are independent of time, the functional term is only a 

function of the covariates, i.e. 1(~) )' . 

-
h(t, z) = ho (t) . l(z(t» , (2.2) 

-
where r is a regression vector estimated during model fitting procedures. 

There are several possible forms for the functional term l(z(t». Some are: the 
-- --

exponential form, exp(y · z(t»; the logarithmic form, 10g(1 + exp(r · z(t») ; the inverse 

linear form, 1/(1 + r· z(t» ; or the linear form, 1 + r · z (t) . The exponential form of the 

functional term has been used most often in reliability applications (and is the only form 

considered in this dissertation) and then equation (2.2) becomes: 

h(t, z(t» = ho (t) . exp(r· z(t» (2.3) 

All theory on PHM presented in this dissertation will allow for time-dependent 

covariates, i.e. z(t) , for the sake of generality. 

This discussion deals with two forms of the PHM, namely (a) the semi-parametric PHM; 

and (b) the fully parametric PHM. When using the semi-parametric form, no assumption 

needs to be made about the shape of the baseline hazard rate when estimating the 

, Although time, t, is used throughout as the unit of measure in this dissertation, any other suitable use 
parameter could be used instead, such as mileage or tons processed. 
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regression coefficients, although this only yields relative risks. To detennine absolute 

risks, the baseline hazard rate has to be estimated first. This feature is considered to be a 

huge advantage even though some numerical difficulties are often encountered. The 

fully parameterized model makes use of a continuous distribution, most often the 

Wei bull distribution because of its flexibility, for the baseline hazard rate, which makes 

it much more numerically tractable. 

2.1 Assumptions of the PHM 

The assumptions on which the PHM is postulated are best illustrated for the model 

with time-independent covariates: 

a) Renewal times are independent and identically distributed. 

b) All influential covariates are included in the model. 

c) The ratio of any two hazard rates as detennined by any two sets of 

covariates Zl and Z2 associated with a particular component has to be 
- -

constant with respect to time, i.e. h(t,zl)ah(t,z2)' (This assumption 

implies that the covariates acts multiplicatively on the hazard rate of the 

component). 

Assumption (c) is illustrated graphically in Figure 2.1 below: 

'" '" 

Time 

--- - --~ 

Figure 2.1: Graphical illustration of PHM assumption (c) 

Figure 2.1 shows that the two hazard rates, h(t, Z 1) and h(t, Z 2) , calculated from 

different covariate vectors associated with a specific component are proportional to 

each other with respect to time. 
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2.2 The Semi-Parametric PHM 

The semi-parametric PHM has a very valuable attribute in that no assumption needs 

to be made about the baseline hazard rate of the model when estimating the 

regression coefficients. This means that relative risks of the item under 

consideration can be estimated without any knowledge about the time dependent 

failure behavior of the item, as is contained in the baseline hazard rate. The reason 

for the existence of this advantageous property becomes clear in the explanation of 

the estimation technique proposed by Cox with the proposal of the PHM, called the 

method of partial likelihood. 

As an introduction to the method of partial likelihood, the method of maximum 

likelihood is discussed in general terms. 

2.2.1 The Method of Maximum Likelihood 

The method of maximum likelihood is a well known method for, amongst 

other uses, estimating regression coefficients and is used widely in the 

literature. It is important to describe this method before introducing partial 

likelihood since these methods are closely related and the method of 

maximum likelihood is used to determine the fully parametric PHM 

coefficients. 

Likelihood refers to the hypothetical probability that an event, which has 

already occurred, would yield a specific outcome. This concept differs from 

that of probability in that probability refers to the occurrence of future events, 

while a likelihood refers to past events with known outcomes. 

The method of maximum likelihood starts off by specifying the joint 

probability distribution function for events, in this case, failures. (For the 

moment the possibility of suspensions is omitted). We assume a sample of 

size n drawn from some probability distribution. Let T = [T] , T] , ... . ,Tn ] 

denote failure times as random variables. The probability that T j = 1'; can be 

expressed informally as the probability density at 1'; , 1.e. 

P{Tj =1'; } =f(Tj,r,Zj(t)). By using the law of total probability, the joint 

probability of all the random variables is given by: 

n 

P{T] =T[,T] =T2 , ••• ,Tn =Tn}= ITf(Tj,y,z;(t)) (2.4.) 
;;[ 

Once the random variables have been observed, (2.4.) can be used to calculate 
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the likelihood of events with all observed values fixed and r the only 

unknown as shown in (2.5 .) below: 

n 

L(Y) = ITf(T; ,y,z;(t)) (2.5.) 
;=1 

Equation (2.5.) can be extended to include suspended observations (see 

reference [3]): 

n 

L(y) = IT f(T; ,y, z; (t)r' . R(T; ,y, z; (t))I-C, , (2.6.) 
;=1 

for a data set with n renewals each at time T; with C; = 1 in case of failure and 

c; = 0 for suspended observations. The value of r that maximizes L is the 

most appropriate regression vector for the model since it maximizes the 

probability of occurrence of the observed data set. Numerical methods suitable 

to estimate the regression vector are discussed later in Chapter 3. 

Maximum likelihood estimation is suitable for estimating both the seml­

parametric and the parametric PHM although numerical difficulties are often 

experienced with this technique and the semi-parametric model. 

2.2.2 Method of Partial Likelihood 

In his original paper[2], Cox suggested parameter estimation for the seml­

parametric PHM by maximizing an expression which he called conditional 

likelihood. This term gave rise to much discussion in the literature where the 

validity of referring to the term as conditional likelihood was argued by 

critics. For the estimation technique of Cox to be a conditional likelihood 

function it had to be a likelihood function based on the conditional distribution 

of data, given some statistic, which it was certainly not[62] . It was neither a 

marginal likelihood function because then it had to be based on the marginal 

distribution of some reduction of the data. In reply[63] Cox showed (somewhat 

informally[3]) that his technique was accurate and consistent with considerably 

less numerical difficulties. He also eliminated all confusion in terminology by 

renaming the technique to partial likelihood because of the fact that it was not 

a likelihood function in the usual sense. 

Suppose a vector of random variables denoting failure times (for the moment 

suspensions are not considered) is observed, T = [T], T2 , .... , Tn] , which comes 
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from a probability density J(T, Zi (t),r, ho (t)). The baseline hazard function 

ho (t) is considered to be a nuisance function in this case. If a one on one 

transformation on the data in Tj is performed with auxiliary variables 

A1,B1, .... ,An,Bn such that A(k) =[A1 , .... ,Ak] and B(k) =[B1 , .... ,Bk] the 

likelihood of A(k) and B(k) is: 

m m 

I1J(bk Ib(k-I),a(k-I),y,ho(t))·I1J(ak Ib(k),a(k-I) ,y) (2.7.) 
k~1 k~1 

COX[63] defined the second product on the right hand side of (2.7.) as the partial 

likelihood function since only a part of the joint probability density function is 

considered and the nuisance function ho (t) is eliminated. The mathematical 

proof of the validity of partial likelihood is discussed in reference [63). See 

also reference [64] for a thorough discussion on the topic of partial likelihood. 

For the PHM, the partial likelihood can be constructed as follows: as before, 

suppose a certain number of similar items have been renewed on k occasions 

of which n were failures at T.., T2 , .... , Tn with corresponding covariate vectors 
---- --
ZI (t), Z2 (t), .... , Z n (t) . Define the order statistic to be O(t) = [T(I)' T(2) , .... , 1(n)] 

and the rank statistic to be ret) = [(1),(2), .... ,(n)]. The order statistic refers to 

the T(i)'s ordered from smallest to largest and the notation (i) in the rank 

statistic refers to the label attached to the th order statistic. Consider a set 

R(t(i)) of items at risk at time T(7). The partial probability that item (i) fails 

at T(i) given that the items R(t(i)) are at risk and that exactly one failure 

occurs at 1(i) is: 

h(1(i) , Z (i) (t)) 
= 

2>(T(i), ZI (t)) 
IER(1( i)) 

exp(r' z(iJ (t)) 

I exp(r ' ZI (t)) , 
IER(T(i)) 

(2.8.) 

where i = 1,2, ..... ,k. Equation (2.8.) shows that the baseline hazard rate has no 

effect on the joint probability and hence no effect on the estimated values of 

r . The partial likelihood can now be calculated by taking the product over all 

the failure points: 

(2.9.) 

To account for the possibility of ties at a specific T(i), i.e. the occurrence of 

more than one failure at a specific T(iJ' Breslow[65] has derived the following 
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approximation of the partial likelihood (for numerical tractability): 

PL(y) = Ii exp(y.~) d' 

j;1 [ L expG · Zl (t))] , 
leR(1(i» 

(2.10.) 

where Sj = LZij(t) is the sum of the covariates of the dj items observed to 
j 

fail exactly at TU) . 

-
The value of y that maximizes PL(y) is the most appropriate for the semi-

parametric PHM. At this optimal point, the partial derivatives of PL(y) with 

respect to all the m measured covariates should be zero, i.e.: 

(2.11.) 

where S jj is the /h element in the vector S j and 

(2.12.) 

A suitable optimization technique is required to perform the maximization 

such as Newton-Raphson iteration. This technique and others are described 

later in Chapter 3. 

2.2.3 Efficiency of Partial Likelihood Estimation 

After the introduction of partial likelihood, its efficiency was measured and 

compared by many researchers, for example Kalbsfleich and Prentice[31, and 

Effron[681. 

Kalbsfleich and Prentice investigated the efficiency of the partial likelihood 
-

with the following two questions in mind: (1) Can the estimated y be 

improved at all for the case where ho (t) is unspecified?; and (2) How does 

the partial likelihood estimate of y compare to a maximum likelihood 

estimate? Two separate investigations were done, one for time-independent 

covariates and one for time-dependent covariates. 

It was found for time-independent covariates that the partial likelihood 
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estimation was 'reasonably' efficient. The details concerning the investigation 

are not discussed, see reference [3] pp. 103-113 for a comprehensive 

explanation. Cooper and Darch[69] agree with this statement after doing a study 

on armoured vehicles. For time-dependent covariates it is difficult to predict 

the partial likelihood's efficiency and it could in some cases even be very low. 

See reference [3], pp. 140-141. 

2.2.4 Estimation of the Baseline Hazard Rate 

The baseline hazard rate function represents the hazard rate that an item would 

experience if covariates had no effect on the item. No assumption needs to be 

made about its functional form for the semi-parametric PHM provided that the 
-

regression vector y is known. Several authors have developed techniques 

with which the baseline hazard rate can be estimated, including Cox[2], 

Kalbsfleish and Prentice[3], Breslow[65,66] and Link[67]. The method of Breslow 

is presented here. 

Suppose that ho (t) is a step function which jumps just before the occurrence 

of a failure and is constant between times to failure, i.e. : 

ho (t) = hOi ' TU-I) < t ..:;, 1(i)' i = 1,2, .... , n (2.13.) 

With ho (t) defmed as in (2.13.), an expression for the joint distribution can be 

derived and reduced to Cox's partial likelihood, exactly as explained in 2.2.2 

which results in: 

(2.14.) 

with hOi completely distribution-free. The distribution-free baseline hazard 

rate is often used to check the appropriateness of continuous distributions used 

for the baseline hazard rate. 

2.3 The Fully Parametric PHM 

By assuming a continuous distribution for the form of the baseline hazard rate, the 

PHM is completely parameterized. The very versatile Weibull distribution (and the 

only one considered in this research project) is most often used for the 

parameterization because of its flexibility. It is impossible to estimate the baseline 
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hazard rate independently for the fully parametric PHM1 and the distribution- and 

regression parameters have to be estimated simultaneously. Considerably less 

numerical problems arise for the Weibull PHM and its is much more numerically 

convenient. 

2.3.1 Statistical Model 

The time-dependent Weibull distribution is given by: 

( )

/l-I 

!(t) = ~ ~ . exp(-(t/17/) , (2 .15 .) 

with its corresponding hazard rate function: 

( )

/l-I 

h(t) = ~ ~ , (2.16.) 

where jJ and 17 are shape and scale parameters of the distribution, 

respectively. 

If the Weibull distribution is used as the baseline hazard rate of the PHM as 

presented in (2.3.), the model becomes: 

( )

/l-I 

h(t'Z(t))=~ ~ ·exp(y·z(t)), (2.17.) 

which is a fully parametric model. 

From reliability theory we know that the reliability, R, of a component under 

the influence of ageing only, just before renewal at 1'; is: 

(2.18 .) 

If U j = (1'; /17)/l , then U j has a unit negative exponential distribution. Similar 

to (2.18.), the reliability at a time 1'; for a component under the influence of 

time-independent co variates according to the PHM can be estimated by: 

1 Also referred to as the WeibuII Proportional Hazards Model in this dissertation. 
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R(I,~) = exp[ - r ~( J' dtexpG· ~)l 
(2.19.) 

= exp[- (Tj / '7 Y' exp(Y· Zj)] 

with Vj = (Tj h Y' expcY' Zj) , again with unit exponential distribution. For the 

case of time-dependent covariates, the covariates have to be included in the 

integration to estimate the reliability of a component at time 1';: 

R(I, z(I)) = exp[ - r ~ (J' exp(r' z, (I))dl] 

= exp[ - r exp(r ' z, (I))d(t/ ry)p 1 
(2.20.) 

with Vj = f; exp(Y· Zj (t))d(t/ '7)/1, also with unit negative exponential 

distribution. In practice, (2.20.) is often approximated by: 

_ { i _ - [(t )/1 (t )/1]} R(t,z;(t))=exp ~exp(y.z;(tk))· ~I -; , (2.21.) 

where 0 = to < tl < .... < 1'; are inspection points where covariate measurements 

were taken and z; (tk) = 0.5· (Zj (tk) + Zj (tk+I))' 

2.3.2 Parameter Estimation 

The method of maximum likelihood IS used to estimate the model's 

parameters. The full likelihood is obtained by: 

L(P,'7,Y) = IT h(1';, Zj (1';)) . ITR(Tj,zj(t)) (2.22.) 
j 

where i indexes failure times and j=i,2, .. . ,n indexes failure and suspension 

times. If (2.17.) and (2.20) are substituted in (2.22.), the full likelihood 

becomes: 
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L(jJ,17,Y) = ITjJ(1;)fJ-
1 

exp~ .zi(1;))· 
i 17 17 

IT exp[ - J:J expcY' Z j (t))d(t / 17)fJ ] 
) 

(2.23.) 

-
The same values for jJ, 17 and r that maximize (2.23.) will also maximize 

- -
10g(L(jJ, 17, r)) or l(jJ, 17,r), the log-likelihood. It is numerically much more 

-
attractive to maximize l(jJ,17,r) given by: 

l(jJ,17,Y) = rln(jJ!17) + L ln[(Ti l17)fJ-1
] + 

LY' Zi (1;) - L f2 exp(Y· Z j (t))d(t / 17)fJ ' 
(2.24.) 

i j 

with r being the number of failure renewals. 

Several maximization techniques were tested on (2.24.) with success. This 

includes (a) a Neider-Mead type simplex search method as is commonly found 

in the literature, (b) a BFGS Quasi-Newton method with a mixed quadratic 

and cubic line search procedure, (c) Snyman's dynamic trajectory 

optimization method[20.21] and (d) a modified Newton-Raphson procedure that 

gives fast convergence. 

3 Covariates 

The ability of the PHM to include covariates in its estimations and predictions is a very 

attractive attribute of the model. Covariate behavior and their effects on the PHM are 

not trivial issues however and a proper background knowledge of covariates is required 

before the model can be used with confidence. Some comments on these issues are 

presented in this section. 

3.1 Effects of Interaction and Omission of 
Covariates 

Interaction (dependency) of covariates can influence parameter estimation 

significantly and therefore the presence of this phenomenon should be checked. 

The easiest, most practical way to test for interaction of covariates is by introducing 

a new temporary covariate. (This is only to get a feel for the behavior of the data 

and is not very scientific). The temporary covariate is simply the product of the 
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covariates under discussion and the new covariate's effect on the model is then 

tested. (Usually the interaction of only two covariates will be checked at a time). If 

interaction is present, the new covariate will be statistically significant in the 

model. The results of statistical tests for interaction, i.e. testing for significance of 

the new covariate in the model, should also be practically justified if possible, to 

identify possible inconsistencies in the data. 

Bendell et al. [51] investigated covariate interaction by dividing data into groups 

(strata) based on major differences in the data and then estimating the regression 

coefficients for each group. It was shown that a suitable test statistic can be defined 

to test the effect of a particular covariate on different groups. See also reference 

[70] for a discussion on 'stratum-covariate' interactions. 

Omission of influential covariates from the PHM also effects the regressIOn 

coefficients of the model. Suppose ZI and z2 are two significant covariates with 

corresponding regression coefficients YI and Y2. If only ZI is considered in the 

model and its coefficient is Yl> then IYII < h I· The estimates for YI are 

asymptotically biased towards Y 2 and have smaller asymptotic variance than 

Y2 [71]. The magnitude of the bias depends on the relative importance of the omitted 

covariate to that of the included covariate. Omission of influential covariates could 

also lead to overestimation or underestimation of the baseline hazard rate[72]. 

3.2 Effects of Measurement Error and 
Misspecification of Covariates 

Significant errors in the estimation of the regression vector yare possible if an 

inappropriate parametric form of the baseline hazard rate is specified or if errors in 

covariate measurement are distributed in an dismal manner. The regression vector 

is influenced in the same manner as in the of case of linear regression when 

measurement errors in the covariates are present. It is possible to test the 

significance of the effects of a covariate, in spite of its measurement error and 

misclassification, provided that sufficient information or assumptions are available 

relating to the covariate error or misclassification distribution[73]. Lagakos[74] 

determined that the efficiency of the partial likelihood estimator may be very low 

compared to the correct model if covariates are misspecified. 
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3.3 Effects of Monotonicity and Multicolinearity 
of Covariates 

The 'usual' difficulties of regression analysis like multicolinearity, monotonicity 

and large covariate values are often encountered in the PHM as well. In such cases, 

maximization procedures used for parameter estimation often fail to converge. 

Monotone increasing or decreasing covariate values in a data set, when ordered 

according to the magnitude of times to failure, is the biggest cause for divergence 

of maximization procedures. Bryson and Johnson[75] suggest seven steps to avoid 

the problems associated with monotonicity of covariates. In a censored data set, it 

may occur that the covariate at each failure time is either the largest or the smallest 

of all covariates in the risk set at that time. In such cases the regression vector 

estimate is often infinite. 

It is important to formulate the covariates in such a manner that co linearity is 

avoided during the estimation of the regression vector since results may be very 

inaccurate. The data set could be analyzed in different groups based on a trail-and­

error method to address this problem. Peduzzi et al. [76] published a general 

procedure for the selection of covariates in a nonlinear regression analysis to avoid 

colinearity. This is useful when there is a large number of covariates and it is 

difficult to determine the priority of selection of covariates for the model to their 

confusing effects on the times to renewal[591• 

3.4 Time-dependent Covariates 

Numerous papers have been published on the theory of time-dependent covariates 

in the PHM. This include topics like efficiency of estimation techniques for 

regression coefficients of time-dependent covariates[3], a two-step PHM model to 

accommodate time-dependent covariates more accurately[771, techniques to detect 

time-dependent effects of fixed covariates[78
1 and graphical techniques based on 

partial residuals suitable to detect time varying effects of covariates[79]. The 

detailed theory and analysis of time-dependent covariates are not important for this 

dissertation but rather its practical use and therefore this discussion is limited to 

some practical calculation issues. 

Covariates in the Weibull PHM in (2.20.) are allowed to be time-dependent and 

assumed to be known for all values of time, t. This assumption is not entirely valid 

for the case of vibration covariates because vibration inspections are normally done 

on a discrete periodic basis. It is thus necessary to estimate covariate values 

between inspections for the model in (2.20.) to hold. Experience has shown that 
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there is no fixed rule for this estimation (especially not for vibration covariates) 

and every situation should be considered separately. In (2.21.) an estimation 

technique was presented where the covariate values between any two inspections 

were taken to be the average of the covariate values between the two particular 

inspections. Jardine et al.[4] describe a similar method that was used with success 

on aircraft and marine engine failure data. 

In some situations where co variates have a monotonic behavior, conventional 

interpolation techniques can be used with confidence such as linear, hyperbolic, 

parabolic, geometric or exponential interpolation, depending on the particular 

situation. It can be much more difficult to predict the values of other, non­

monotonic, situations between inspections. In these cases the most sensible option 

is usually to consider the covariate behavior as a continuous right jumps process, 

where covariate values only increase or decrease at inspections and remain 

constant between inspections. 

4 Numerical Model Fitting Procedures 

Four optimization techniques were implemented successfully to fit the Weibull PHM 

with the method of maximum likelihood, i.e. converged to the point where all the 

objective function's partial derivatives were zero, namely: 

1. A NeIder-Mead type simplex search method. 

11. A Standard BFGS Quasi-Newton method with a mixed quadratic and cubic line 

search procedure. 

111. Snyman's dynamic trajectory optimization method[20,21] 

IV. A modified Newton-Raphson procedure. 

The performance of each one of the methods was measured according to their economy 

(number of iterations needed before convergence, number of objective function 

evaluations and number of partial derivative evaluations) and robustness (the accuracy 

of initial values required for convergence and its ability to handle steep valleys and 

discontinuities in the objective function). Methods (1) and (2) maximized the likelihood 

function successfully but performed fairly mediocre. Snyman's method was found to be 

somewhat expensive but extremely robust which is a very valuable attribute. The 

modified Newton-Raphson method proved to be by far the most economical and fairly 

robust as well. Of the four above mentioned techniques, this technique is certainly the 

most suitable for optimization of the maximum likelihood function. 

For the above mentioned reasons, only Snyman's method and the modified Newton­

Raphson method are considered in this discussion on numerical model fitting 
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procedures. Snyman's method is presented ill fairly general terms to illustrate its 

robustness, but the Newton-Raphson method is described in detail since this method is 

used in the case study in Chapter 4. 

4.1 Snyman's Dynamic Trajectory Optimization 
Method 

Snyman's method models a conservative force field in rn-dimensions (the number 

of variables in the objective function) with the objective function and then monitors 

the trajectory of a particle of unit mass (released from rest) as it 'rolls' down the 

objective function to the point of least potential energy, which is the minimum of 

the objective function. 

In this general presentation of Snyman's technique, the objective function is l(fJ) , 
- -

the maximum log-likelihood function as presented in (2.24.) , where fJ = [,8,17,1'] . 

4.1.1 Cha racteristics 

The attributes ofSnyman's technique can be summarized as follows : 

4.1.2 

1. It uses only gradient information, i.e. "\l[l(fJ)] . 

n. No explicit line searches are performed. 

Ill. It is extremely robust and handles steep valleys and discontinuities in 

the objective function or gradient with ease. 

IV. This algorithm seeks low local minimum and it can be used as a basic 

component in a methodology for global optimization. 

v. The method is not as efficient on smooth and near quadratic functions 

as classical methods. 

Basic Dynamic Model 

Assume a particle of unit mass in a rn-dimensional conservative force field 
- -

with potential energy at fJ given by l(fJ) , then the force experienced by the 

particle at fJ is given by: 

rna = fJ = -"\l[l(fJ)] , (4.1.) 

from which it follows that for the time interval [0, t] : 
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(4.2.) 

Equation (4.2.) can be simplified by expressing it in terms of kinetic energy 

as: 

T(t) - T(O) = 1(0) -/(t) (4.3.) 

From (4.3.) it evident that l(t) + T(t) = constant, which indicates conservation 

of energy in the conservative force field. It should also be noted that 

t11 = -t1 T , therefore as long as T increases, I decreases, which is the basis of 

the dynamic algorithm. 

4.1.3 Basic Algorithm 

- - -
Suppose 1((J) has to be minimized from a starting point (J(O) = (Jo, then the 

dynamic algorithm is as follows: 

1. Compute the dynamic trajectory by solving the initial value problem, 

O(t) = -V[l(8(t))] , 8(0) = 0 and 8(0) = (Jo . In practice the numerical 

integration of the initial value problem is often done by the 'leap-frog' 
method. Compute for k = 0,1,2,.... and time step t1 t, the following: 
- k+1 - k -;-k -;-k+1 -;k -:; k -:;k --k 
(J = (J + (J t1t and (J = (J + (J t1t, where (J = -V'[l((J )] and 

00 = (1/2) Bot1 t. 
ll. Monitor O(t), the velocity of the particle. As long as the kinetic energy 

T = ~118(t)11 increases, the potential energy decreases, i.e. 1(8) decreases. 

lll. As soon as T decreases, the particle is moving uphill and the objective 
-;k+1 -;k 

function is increasing, i.e. II (J II ~ II (J II. Some interfering strategy 

should be applied to extract energy from the particle to increase the 

likelihood of decent. A typical interfering strategy is to let 
-;-k -;k+1 -;k - k+ 1 - k+l - k 
(J =(l/4)((J +(J) and (J = (l/2)((J +(J) after which a new 
- k+1 
(J is calculated and the algorithm is continued. 

lV. To accelerate convergence of the method, the algorithm should allow for 

magnification and reduction of the stepsize, t1 t, depending on the 

particle's position. 
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4.2 Modified Newton-Raphson Optimization 
Method 

48 

As mentioned earlier the modified Newton-Raphson optimization method was 

found to be the most suitable to perform the likelihood maximization according to 

the criteria defined above. This method is used in the case study in Chapter 4 and it 

will hence be discussed in detail in this chapter. 

4.2.1 Data 

To simplify the discussion of the optimization technique, the form in which 

the data should be arranged is defined here with specific reference to vibration 

monitoring. 

Suppose we have n cases of renewal, called histories, in our data and i is used 
to indicate the history number, i.e. i= 1,2, .. . ,n. Let I: denote time to failure or 

suspension in a particular history and use cp c2 , ... , cn as event indicators such 

that c; = 1 if I: is a failure time and c; = ° in case of suspension. The number 

of failures present in the data is thus r = L c; . 

To be able to develop the model for time-dependent covariates we set k; to be 

the number of inspections or vibration measurements at moments t ij during a 

certain history i over the period (0, I:] for j = 1,2, .... , k; such that: 

(4.4.) 

Suppose that covariate vector z~ = (Z~I' Z~2", ,,,, ,z~rn) consisting of m 

covariates, is measured during history i. For convenience of estimation, it 
- -

could be assumed that Z;(tint) = z;(tij), where tij ~t int <t;(j+I)' The data for 

history i can be summarized as follows : 

Time Co variates 

tjQ 
; 

ZOI 
i 

Z02 .... .... 
i 

ZOrn 

til 
; 

ZII 
; 

Z12 .. ...... i 
zirn 

...... .. 

tik; 
; 

Zk;1 
i 

Zk;2 ........ 
; 

zk;rn 

Table 4.1.: Data summary for particular history 

Vibration Covariate Regression Analysis or Failure Time Data with the Proportional 
Hazards Model 

 
 
 



Chapter 3: Proportional hazards modelling 49 

Some covariates can be time-independent, i.e. vary with history i, but not with 

time t, or in mathematical terms z! = z~ for any valid value of s. 

4.2.2 Definition of the Objective Function 

The Weibull PHM as introduced in (2.17.) is repeated here for convenience as 

equation (4.5.): 

[ J
P-1 

h(t,Z(t» = ~ * · exp(y · z(t» (4.5.) 

If the model in (4.5.) is transformed with an auxiliary equation a =-jJlnlJ , 

(4.5.) becomes: 

h(t,z(t» = jJ. t P- 1 
• exp(a + y. z(t», (4.6.) 

which is more convenient for calculation procedures. We will now construct 

the maximum log-likelihood function as explained in section (2.3.2) with 
- -

(4.6.) as a function of fl, where fl = (a,jJ'Y1 ' Y2' .... . ' Ym ) . Also assume that 

c1 = c2 = .. . = cr = 1 and cr+1 = ... = cn = 0 for simplification of notation. The 

log-likelihood will be of the form: 

where 

with 

- - -
/(fl) = v(fl) - u(fl), 

r 

v(B) = ~)n h(t;, z(tJ) 
;=1 

m 

= ra + rlnjJ + (jJ-l) · A + LYbBb 
b=1 

r r 

A = LInt;; and Bb = Lzi;b 
;=1 ;=1 

Similarly for the second part of equation (4.7.): 

(4.7.) 

(4.8.) 

(4.9.) 
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u(O) = :t J;i h(s,z;(s))ds 
i;] 

(4.10.) 

The most appropriate value of 8 is found where the objective function 1(8) is 

a maximum, i.e. where all the partial derivatives with respect to 8 are zero or 

81(0)/88) = o. 

4.2.3 Partial Derivatives 

- - -
The first and second partial derivatives for 1(8) = v(8) - u(8) are required in 

the Newton-Raphson method. 

-
First and second partial derivatives of v( 8) are: 

- - -
ov(8) = r 8v(8) = ~ + A 8v(8) = B 

oa 'ojJ jJ '8Yb b 
(4.11.) 

(4.12.) 

-
First and second partial derivatives of u(8) with respect to a are: 

ou(8) = u(8), o2u(8) = u(8), o2u(8) = ou(8) , o2u(8) = ou(8) 
oa oa 2 oaojJ ojJ oaoYb OYb 

(4.13.) 

-
First and second partial derivatives of u(8) with respect to jJ are: 

-
First and second partial derivatives of u( 8) with respect to Y bare: 
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(4.15 .) 

4.2.4 Numerical Procedure 

-
The objective of the numerical procedure is to find the value of 8 where all 

the partial derivatives are zero. Let F(B) = 81(8)/8B = (8Ij8a, 81j8jJ,81j8YI , .. 

.... ,8Ij8Ym) and G(B) = 8 21/8B
2 

= 8 21/88i 88j . (Matrix notation IS 

suppressed for convenience). The following approximation for F(8) can be 
- - --- -

used: F(8) ';:j F(80) + G(80)' (8 - 80 ) where 80 is an initial estimate. It is 
- - - -

required to solve F(80) + G(80)·(8 - 80) = 0 to determine the optimal value 

of 8 . 

-
The conventional Newton-Raphson procedure would solve for 8 as follows: 

-
1. Estimate a meaningful initial value for 8, i.e. 80 • 

11. Calculate F(80) and G(80). 

111. Solve for ~o in the system G(80~0 = - F(80). 

IV. Set 81 = 80 +~o and repeat the procedure until convergence. 

Instead of the conventional Newton-Raphson method, a variable metric 

method (quasi-Newton method) can be used to overcome some numerical 

difficulties. In this modified Newton-Raphson method, G(8) is not calculated 
-

directly but an approximation of G(8) is used which is chosen to be always 

positive definite, thereby eliminating the possibility of singular matrices. The 

approximation of G( 8) is explained in detail in reference [80). 

To accelerate convergence and increase accuracy of the procedure, the data is 

transformed to more numerically convenient forms before the iteration process 

is started. All recorded times, including inspection times, times to failure and 

times to suspension as well as the scale parameter 1J are divided by a value C, 

where: 

C = (1/ N) 2> ij , (4.16.) 
i,j 
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and N is the total number of recorded times. With these scaled observations, 

initial values of 170 = 3 . C and Po = 1.5 were found to be very reliable in the 

numerical procedure. The covariates are also standardized to have the same 

relative magnitude with the following relation: 

i avg 
*i Z jf - Zb 

zjl = (4.17.) 

where 

avg _ 1 ~ i d 2 _ 1 ~(i avg)2 
Zb --L..JZjb an Sb --L..J Zjb - Zb ' 

Nb .. Nb .. I,J I,J 

(4.18.) 

with N b the number of recordings of a specific covariate. This standardization 

of the covariates accelerates convergency considerably with initial values 

Yo = 0. 

Methods to vary step sizes of the procedure as well as stopping rule 

procedures are discussed in Press et al. [80). 

5 Goodness-of-fit Tests 

Goodness-of-fit tests for the PHM are all aimed at evaluating the assumptions (see 

section (2.3.)) on which the model is based. Methods to evaluate the first assumption, the 

i.i.d. assumption, were discussed in section (2.1.) of Chapter 1 in considerable detail and 

are not repeated here. 

For the second assumption, graphical methods are usually employed to test whether an 

influential covariate has been omitted from the model. Plots of estimated cumulative 

hazard rates versus the number of renewals for different strata should be approximately 

linear with slope equal to one, ifno influential covariate has been omitted[8I). 

Two approaches can be used to test the validity of the third assumption. Graphical 

techniques have been used most widely and is considered to be the first approach.[81,82,83) 

The other approach is either based on hierarchical models or makes use of analytical 

techniques. In the case of hierarchical models, a time-dependent covariate is introduced 

into the model and tests are then performed to establish whether the estimate of the 

effect of this covariate is significantly different from zero. [2,84,85,86 ) A review of these 

methods is given by Kay[87). 
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5.1 Graphical Methods 

Graphical methods suitable for testing the assumptions of the PHM can generally 

be categorized into three groups: cumulative hazard plots, average hazards plots 

and residual plots. In this discussion the emphasis is on residual plots because of its 

versatility and enormous level of inherent information. 

5.1.1 Cumulative Hazard Plots 

Measured values of a certain covariate may often be grouped into different 

levels, also referred to as strata, r. For example, the covariate Z r (t) which 

occurs on s different levels and for which the proportionality assumption is to 

be tested is assigned to one of the s strata. Therefore, the hazard rate in this 

case can be written as: 

m 

hr(t, z r(t)) = hor(t)·exp( L>'j · z/t)) (5 .1.) 
j=l ,j# 

To explain cumulative hazard plots further, consider a binary covariate Z r (t) 

of which the level indicator s has two values, 0 and 1. This yields the 

following in terms of total hazard rate: 

m 

h(t, z(t)) = ho(t)·exp( IYj ,zj(t)) · exp(Yr); (s = l) (5.2.) 
j=lJ#r 

m 

h(t,z(t)) = ho(t)·exp( IYj 'Zj(t)); (s = O) (5.3.) 
j=l,J-#r 

Therefore, to satisfy the assumption that h(t, Z x (t)) a h(t, Z y (t)) we obtain 

from (5.2.) and (5 .3.) that hOr(t) =crhO(t) for r =1,2, ... ,s where C 1'C2 ' .. . ,cs 

are constants equal to exp(Yr . Zr (t)) for all strata. A similar relation holds for 

the cumulative hazard rate, i.e. H Or (t) = C rH 0 (t) . If plots of the logarithm of 

the estimated cumulative hazard rates against time are constructed, they will 

be shifted by an additive constant Y r , the regression parameter of a specific 

stratum. Thus, if the proportionality assumption is valid, the two plots should 

be approximately parallel and separated according to the different values of 

the covariates. Figure 5.1. below illustrates this concept for a case where the 

PHM is valid. 
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Figure 5.1.: Cumulative hazards plots 

5.1.2 Average Hazards Plots 

Average hazards plots for different strata are based on the assumption that 
hrj (t) is a slowly varying function that can be approximated by piecewise 

constant functions, i.e. hrj (t) = hrj in the time interval between inspection 

number i(j-l) and ij, where i is the history number. COX[82] defined s,j) to be 

the total estimated operational time at risk in the strata r between inspections 

i(j-lyth and /h. The operational time is the timescale obtained when the 

contribution at each inspection point associated with a specific covariate is 

weighted by exp(r· Zi (t)) . An auxiliary random variable is now defined as: 

Z(p) = 1 - ln~ 
[

S(i) ) 

'J (2i - 1/ 3) i ' 
(5.4.) 

which is independent with mean In(hrj) and variance 1/(i - 0.5) [82] . Ifplots of 

Z;) against the midpoint of the time interval are constructed, the different 

plots should be parallel and spaced according to the estimated value of the 

covariate Z r (t) defining the strata, if the model fits the data. 

5.1.3 Residual Plots 

Residual plots are constructed with Cox-generalized residuals for the PHM. 

Cox-generalized residuals are given by: 
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{

U i , if ti is a failure time 

r
i 

= U i + 1, if t i is a suspension time (5.5.) 

where i = 1,2, .... , n. 

In (5.5.) u i is defined as: 

_ 1 ki-I - j fJ fJ 
Ui -7 I exp(r· Zj)· ~i(j+I) - tij ], 

17 j=O 

(5.6.) 

with the same notation used as in section (4.2.). The calculation of u i can be 

checked by noting that: 

n n 

LUi = r; and L ri = n , (5.7.) 
i=1 i=1 

with r denoting the number of failures in this case. The unknowns in (5.6.) are 

determined during the model fitting procedure as described in paragraph 

(4.2.). With these Cox-generalized residuals known, several plots can be 

constructed to assess the goodness of fit visually. 

5.1.3.1 Residuals Against Order of Appearance 

Here the residual for every history i = 1,2, .... ,n is plotted against the 

corresponding history number, i.e. (xi;yJ = (i;1j). 

The residuals should all be scattered around the straight line y = 1. Note 

that the residual values of suspended cases will always be greater than 1. 

If an upper limit of 1j = 3 (95%) and a lower limit of 1j = 0.05 (5%) are 

chosen, it is expected that at least 90% of the residuals will fall inside 

these limits if the model fits the data. 

5.1.3.2 Ordered Residuals Against Expectation 

If the calculated residuals 'i, 'i , .... , rn are ordered in ascending order we 

get rt ~ r; ~ ..... ~ r: , the ordered residuals. The expected values of the 

residuals are: 

1 1 
Ei =Ein =-+--+ ..... +---

, n n-l n-i+l 
(5.8.) 
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For a Weibull PHM that fits the data well, the points (Xi; Yi) = (Ei; rio) 

will be distributed around the line Y = x. Note however that the 

difference in consecutive expectations increases and that there will be a 

concentration of cases below the value 1 (around 50% - 60%). The points 

on the right side of the y = x line need not necessarily be close to the 

line to indicate an appropriate model. This is because the variability of 

the residuals increases with order number. It is possible to improve the 

situation by using suitable transformations for the residuals. 

To transform all points to lie between 0 and 1 with an approximately 

equally spaced x-axis we could use Xi = 1 - exp( - Ei) and 

Yi = 1- exp( -ri*). It is possible to stabilize the variance by using 

Xi = (2/ 1r )sin -1 {exp[- (Ei /2 )]} for the x-axis and 

Yi = (2/ 1r )sin -1 ~xpl- h* /2)n for the y-axis. All points will again lie 

between 0 and 1. For further discussion on this method see reference [88, 

89]. 

5.2 Analytical Goodness-of-Fit Tests 

Graphical goodness-of-fit tests are often interpreted totally different by different 

analysts. For this reason, analytical goodness-of-fit tests have tremendous value 

since it is totally objective. Several analytical tests have been used on the PHM in 

the literature, amongst others, the .%2 test, the log rank test, Z-test (normal 

distribution test), Kolmogorov-Smimov test, Wald test, the doubly cumulative 

hazard function, the likelihood ratio test, score tests and generalized moments 

specification tests. See references [3,84,90,91,92,93,94,95,96,98] . Three of these 

tests are discussed below. 

5.2.1 Z-Test 

Before the Z-test can be presented, some comments have to be made about 

transformation rules in statistics. Transformation rules describe the changes in 

the mean, variance and standard deviation of a distribution when every item in 

a distribution is either increased or decreased by a constant amount. These 

rules also describe the changes in the mean, variance and standard deviation of 

a distribution when every item in the distribution is either multiplied or 

divided by a constant amount. 

• Rule 1: Adding a constant to every item in a distribution adds the constant 

to the mean of the distribution, but it leaves the variance and standard 
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deviation unchanged. 

• Rule (2): Multiplying every item in a distribution by a constant multiplies 

the mean and standard deviation of that distribution by the constant and it 

multiplies the variance of the distribution by the square of the constant. 

The Z-test makes use of a special application of the transformation rules, the 

Z-score statistic from which inferences are made. The Z-score for an event, 

indicates how far and in what direction that event deviates from its 

distribution's mean, expressed in units of its distribution's standard deviation. 

The mathematics of the Z-score transformation are such that if every event in 

a distribution is converted to its Z-score, the transformed scores will 

necessarily have a mean of zero and a standard deviation of one. 

For the PHM, the Z-test can be used by letting rl*:-:; r; :-:; ..... :-:; rn* be the 

ordered residuals, as before, and define Zi = rio / < and m = n - 1. The Z­

score for the PHM is then: 

Z = ....:.i-==I,---;:==-_ 

~m/2 
(5.9.) 

Inferences about the value of Z can be made by calculating the p-value of Z, 

using the normal distribution. 

5.2.2 Kolmogorov-Smirnov Test 

This testing procedure is classified as a frequency test of the degree of 

agreement between distributions of a sample of generated random values (or a 

sample of empirically gathered values) and a target distribution. Since it is 

known that the residuals of the PHM should have an exponential distribution, 

the Kolmogorov-Smirnov test is performed on the PHM residuals to check the 

model fit. 

The null hypothesis is that the cumulative density function of the PHM 

residuals is equal to the cumulative density function of an exponential 

distribution fitted on the residuals. To be able to test the null hypothesis, a test 

statistic, called the D-statistic, is introduced. This statistic is defined as the 

largest absolute difference between the Weibull PHM residuals and the 

cumulative exponential distribution and inferences on the goodness-of-fit of a 

model is made based on this statistic. The procedure seems simple but 

becomes fairly complicated for the PHM with censored data[971. 
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As before, assume rl' ~ r; ~ ..... ~ r: to be the residuals ordered by magnitude 

and ci to be an event indicator as defined in section (4.2.1). Let Si and a i be 

sequences defined by: 

( 
1 )C, 

s· I =S ·· 1---l+ I . 
n-l 

(5.10.) 

n 
(5.11.) ai+1 =ai + ( .) ( . 1) ·ci , n-l . n-l-

with So =1 , sn =exp(-rn'_I)' ao =0, an =0 and i=0,1,2, .. .. ,n-2. The D­

statistic is then: 

(5.12.) 

From the D-statistic, a p-value can be determined to evaluate the quality of the 

fit. 

5.2.3 Wald Test 

A test specifically developed for testing the quality of parameter estimations 

by the method of maximum likelihood, is the Wald test. This test is 

categorized under likelihood ratio tests and can be used to evaluate the 

appropriateness of specific coefficients in the estimated regression vector and 

not only the total goodness-of-fit of a model. This attribute of the Wald test is 

very useful for the PHM because the contribution of different covariates to the 

quality of the model can be assessed. 

The Wald test statistic for a specific regression coefficient is then given by: 

(5.13.) 

where Yare 8 i ) is the variance of the regression coefficient and n is the sample 

size. Inference on the Wald test statistic is made by calculating p-values from 

the 1'2 distribution. See [98] for further details. 
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6 Optimal Decision Making with the 
Proportional Hazards Model 

59 

The PHM supplies us with an accurate estimate of a component's present risk to fail 

(hazard rate), based on its primary use parameter and the influence of covariates. This 

educated knowledge of the hazard rate should be utilized to the full to obtain economical 

benefits, otherwise the PHM estimation exercise is futile. 

Economical benefits from a statistical failure analysis can be guaranteed with a high 

confidence level if the minimum long term life cycle cost (LeC) of a component is 

determined and pursued, i.e. if renewal always takes place at either the statistical 

minimum Lee or in the case of failure prior to the minimum Lee. The instant of 

minimal LCC can easily be specified in terms of time for statistical models where time is 

the only age parameter but for models including covariates, this makes no sense because 

the covariates influence survival time. 

For optimal decision making with the PHM in reliability, only one model is used in 

practice, a model specifically developed for the PHM by Makis and Jardine[13,141. This 

specifies the optimal renewal policy in terms of an optimal hazard rate which will lead to 

the minimum Lee. At every inspection the latest hazard rate is calculated and if it 

exceeds the optimal hazard rate the component is renewed, otherwise operation is 

continued. If the recommendations of the decision model is obeyed, the Lee will strive 

to a minimum over the long run. 

To be able to determine the hazard rate that will lead to the minimum Lee it is required 

to predict the behavior of covariates. Makis and Jardine's model does this by assuming 

the covariate behavior to be stochastic and approximating it by a non-homogeneous 

Markov chain in a finite state space. The Markov chain leads to transition probabilities 

of covariates from where the optimal hazard rate is calculated. 

An approach of predicting the useful remaining service life of a component and acting 

preventively on the prediction rather than pursuing a statistical optimum sounds 

intuitively meritorious but no research on techniques for such an approach in 

conjunction with the PHM has been published up to date. 

6.1 The Long Term Life Cycle Cost Concept 

Lee is a concept used widely in statistical failure analysis. Several models to 

achieve this minimum for repairable systems and renewal situations which depends 

only on time can be found in the literature. See [15] and [22] for an overview. The 
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minimum Lee in renewal situations arise from two important quantities in practice 

namely the cost of unexpected renewal or failure of a component, Cf , and the cost 

of preventive replacement Cpo It is normally much more expensive to deal with an 

unexpected failure than it is to renew preventively. A balance has to be obtained 

between the risk of having to spend Cf and the advantage in the cost difference 

between Cf and Cp without wasting useful remaining life of a component. The 

optimum economic preventive renewal time will be at this balance point. LeC's are 

usually compared when expressed as cost per unit time. 

The Lee concept will be illustrated with a simple Weibull model, i.e. a model 

without covariates. If a component is renewed either preventively after tp time units 

or at unexpected failure for every life cycle over the long term, the total expected 

cost for a life cycle would be: 

(6.1.) 

Since, the Lee is usually expressed m cost per unit time the average life 

expectancy has to be calculated as well: 

(6.2.) 

where tf is the expected length of a failure cycle under the condition that failure 

occurred before tp and Tp and Tf are the times required for preventive renewal and 

failure renewal, respectively. When (6.1.) and (6.2.) are expressed in terms of the 

Weibull reliability functions and divided into each other, the Lee per unit time, if 

renewed at tp over the long term, is: 

The preventive renewal time that will lead to the minimum Lee, t;, is found 

where D/[C(tp)]=O. An example of (6.3.) is shown in Figure 6.1. for Weibull 

parameters of jJ = 1.80 and 17 = 430 days . 
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Figure 6.1.: Example plot of LCC function 

A distinct minimum for C(t p) in Figure 6.1. exist at 221 days. 

6.2 Prediction of Covariate Behavior 

Techniques used to predict covariate behavior in Makis and Jardine's model is 

discussed in this section. 

6.2.1 Transition States and Covariate Bands 

Transition states have to be defined for the covariates before it can be modeled 

with a Markov chain. For this reason, every range of covariate values is 

divided into appropriate intervals or bands and every covariate band is defmed 

as a covariate state. Covariate bands are then used as boundaries for the 

transition probabilities in the transition probability matrix (TPM). For 

numerical convenience, 4 or 5 bands are usually selected between upper and 

lower bands except for the last band which need not have an upper bound. 

6.2.2 Markovian Chains and the Transition Probability 
Matrix 

Suppose that {Xo'X1'X2' .... } is a multidimensional Markov process which 

makes up a component's renewal history such that X k = (Zkl(t),Zk2(t), .. 

. , Z km (t» E 91 m where m is the number of covariates, and Z ki (t) is the klh 
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observation of variable i before renewal, performed at time t = kl:1, 

(k = 0,1,2, .... ) while 1:1 is a fixed inspection interval. A stochastic process 

{Xo'X1'X2' .. .. } is assumed to be Markovian if, for every k ~ 0, 

P{Xk+1 = } IX k =i,Xk _1 =ik-l,Xk - 2 =ik - 2'·· ··· ·,X o =io}= 

P{Xk+1 = } I X k = i} (6.4.) 

where },i,io,ip ... , ik_1 are defined states of the process, m this case the 

covariate bands. 

The transition probability for any covariate in state i to undergo a transition to 

state} for a given inspection interval 1:1 is : 

where T denotes time to renewal as before and i and} denote any two possible 

states. 

Suppose we have a sample X iO , Xii' X i2 , .... and let nyCk) denote the number 

of transitions from state i to} at k throughout the sample, where the sample 

may contain many histories : 

(6.6.) 

Similarly, the number of transitions from i at time kl1 to any other state can be 

calculated by: 

ni(k) =# {Xk =i} = Inij(k) 
j 

(6.7 .) 

It is now possible to estimate the probability of a transition from state i to state 

} at time kl1 with the following relationship derived with the maximum 

likelihood method: 

P,;; (k) = nij (k), k = 0,1,2, .. . 
" ni (k) 

(6.8.) 

If it is assumed that the Markov chain is homogeneous within the interval 
a ~ k ~ b, i.e. Pij (k) = Pij (a), the transition probability can be estimated by: 
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(6.9.) 

It would also be possible to assume that the entire Markov chain is 
homogeneous, then P;j = Pij (k), for k = 0,1,2,.... and hence the transition 

probabilities are estimated by: 

(6.10.) 

It is not realistic to assume that the transition probabilities of vibration 

covariates are independent of time. For this reason continuous time is divided 

into w intervals, [0,ad ,(a1,a2 ], ••••• ,(aw ,oo), in which the transition 

probabilities are considered to be homogeneous. This manipulation simplifies 

the calculation of the TPM tremendously without loosing much accuracy. 

The estimations of the TPM above all assumed that the inspection interval ~ 

was constant. In practice, this is rarely the case. This would mean that 

recorded data with inspection intervals different than ~ have to be omitted 

from TPM calculations, thereby loosing valuable information about the 

covariates' behavior. To overcome this problem a technique utilizing 

transition densities (or rates) is used. Assume that the Markov chain is 

homogeneous for a short interval of time. The probability of transition from 
i 11=0 ~ j 11 =1 is P;/t) = P(X(t) = j I X(O) = i) and the rate at which the 

transition will take place is D t [Pij (t)] = Aij' (i;;/:. j) . For the case where i = j 

the transition rate can be derived with the following argument. Suppose the 
system is in state i 11=0 and state j 11=1 with r possible states. If the sum over 

all probabilities over t is taken: 

P;o (t) + P;l (t) + P;2 (t) + ..... + P;r (t) = 1 

Ip(X(t) = j I X(O) = i) = I 
j 

If we take the time derivative, 

or IPij(l) = I 
j 

(6.11.) 
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L ~[P;/t)] = 0 
j at 

:. ,,1,;0 + Ail + Aii + ..... + Air = 0 

Aii =-LAij 
i#'i 

The value of any Aij' (i i:- j) can be approximated by: 

nij 
A,ii = 

" Q.' 
I 

nij = Lnij(k) 
k 
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(6.12.) 

(6.13.) 

where, k runs over the given interval of time and Qi is the total length of time 

that a state is occupied in the sample. The calculation of the transition rates 

can be generalized for the system from any state i to j at any time t with: 

plij (t) = LP;/(t)Alj (6.14.) 
/ 

Equation (6.14.) provides a system of differential equations that has to be 

solved to obtain the transition probability matrix. A solution to the system of 

differential equations solution is: 

p(t) = exp(A . t) , (6.15.) 

where pet) = (P;/t)) and A = (Aij)' (Brackets denote matrices). This can be 

calculated by the series: 

(6.16.) 

which is fast and accurate. Statistical tests (such as 1'2) can be used to 

confirm the validity of the homogeneity assumption over the given time 

intervals. 

6.2.3 Calculation of the Optimal Decision Policy 

Two different renewal possibilities are considered in Makis and Jardine's 

model: (i) Variant 1, where preventive renewal can take place at any moment; 

(ii) Variant 2, where preventive replacement can only take place at moments 

of inspection. Only Variant 1 will be discussed since Variant 2 is only a 

simplification of Variant 1. 

Vibration Covariate Regression Analysis of Failure Time Data with the Proportional 
Hazards Model 

 
 
 



Chapter 3: Proportional hazards modelling 65 

A basic renewal rule is used: if the hazard rate is greater than a certain 

threshold value, preventive renewal should take place otherwise operations 

can continue. The objective here is thus to calculate this threshold level while 

taking working age and covariates into account. 

The expected average cost per unit time is a function of the threshold risk 

level, d, and is given by [ '3 , '4]: 

r/J(d) _ _ C-,-P _+_K_Q_(d_) 
- W(d) , 

(6.17.) 

where K = C f - C p ' Q(d) represents the probability that failure replacement 

will occur, i.e. Q(d) = P(Td ~ T) with Td the preventive renewal time at 

threshold risk level d or Td = inf{t ~ 0 : h(t , Z (t)) ~ d / K} . W (d) is the 

expected time until replacement, regardless of preventive action or failure, i.e. 

W(d) = E(min {Td , T}) . The optimal threshold risk level, d * , is determined 

with fixed point iteration to get: 

r/J(d*) = min r/J(d) = d* , (6.18.) 
d >O 

if the hazard function is non-decreasing, e.g. if jJ ~ 1 and all covariates are 

non-decreasing and covariate parameters are positive. If covariates are not 
monotonic, then the fix point iteration does not work, and min r/J(d) should 

d>O 

be found by a direct search method. During the calculation of d* it is 
necessary to calculate Q(d) and W(d) which is no a trivial procedure. To do 

this we define the covariate vector z(t) = [z'(t)'z2(t)' ...... 'zm(t)] as before 

with i(t) = [i, (t), i2 (t), ..... , im (t)] the state of every covariate at time t. Thus, for 

every coordinate [let Xl (il(t)) be the value of the zth covariate in state il (t) 

(representative of the state) at moment t, and X(i(t)) = {X' (i, (t)) , .. . 

. , Xm (irn (t))} . We could express the hazard rate now as: 

[ )

/1-' 

h(t, i(t)) = ~* exp(Y· X(i(t))) (6.19.) 

From (2.20.), the conditional reliability function can be defined as 

R(j,i,t) = P(T > jLJ + tiT> jLJ,i(t)), which becomes after substitution: 

(6.20.) 
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with 0 ~ t ~b. . If h(t,i(t)) is a non-decreasing function in t, and if we defme 

tj =inf{t~O:h(t,i(t))~d/K} and the kj's as integers such that 

(k j -1~ ~ t; < kp. we can calculate the mean sojourn time of the system in 

each state with: 

(6.21.) 

where a;=t;-(k;-I~ and r{j,i,s) = f:R(j,i,t)dt. Similarly, the 

conditional cumulative distribution function for this situation is: 

t
o, j ~k; 

F(j ,i(t)) = 1- R(~,~,a;), ~ = k; -1 

1- R(},l,L1),} < k; -I 

(6.22.) 

Let for each j, Tj = (T(j, i)); and Fj = (F(j, i)); are column vectors, and 

(Pj ) = (R(j,i,L1)Pi/(j))i/ is a matrix. From here, the column vectors 

Wj = (W(j, i)) and Qj = (Q(j, i)) are calculated as follows: 

Wj = Tj + PjWj+1 

Qj = Fj + ljQj+1 
(6.23.) 

Then W = W (0, io) and Q = Q(O, io), where io is an initial state of the 

covariate process, usually io = ° . By starting the calculation with a large value 

for j, where Wj+1 = Qj+1 = 0 and working back to 0, it is possible to solve for 

Wand Q from (6.23 .). The above calculation procedure is described in detail 

in [14]. A forward version of this backward calculation is numerically more 

convenient and much faster (see [23]), which can be suitably adjusted for non­

monotonic hazard functions also. 

Thus, once the optimal threshold level is determined we renew the item at the 

first moment t when: 

( )

fJ-I • 
jJ t - - d 
- - exp~ .z(t))~- , 
7J 7J K 

(6.24.) 

or, which is practically more convenient, when 

Vibration Covariate Regression Analysis of Failure Time Data with the Proportional 
Hazards Model 

 
 
 



Chapter 3: Proportional hazards modelling 

d* fJ 
where 5* = In(_lJ_) . 

K,8 

Y·z(t)"2(s* - (,8 - 1)lnt, 

A warning level function is defined only in terms of time by: 

g(t) = 5* - (,8 -1) · In(t) , 

with g(t) strictly decreasing if ,8 > 1 . 
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(6.25.) 

(6.26.) 
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Chapter 4 

Vibration 
Covariate PHM 
Application 

1 Introduction 

The only way to truly contribute to the reliability modelling field with this dissertation is 

to apply the theory discussed in Chapter 3 successfully to an applicable situation in the 

industry. In Chapter 4, data collected from the industry is analyzed and modeled with the 

Proportional Hazards Model to make such a contribution. 

Up to date, no successful case study on vibration covariates in the PHM has been 

published, mainly due to a lack of suitable data. While searching for suitable data in 

South Africa, a number of serious shortcomings in vibration data recording practices 

were discovered in general vibration monitoring programs. From the shortcomings it was 

possible to compile a structured list of data requirements that have to be fulfilled before 

vibration covariates can be used in the PHM. 

Data satisfying the determined requirements was found at SASOL Coal's Twistdraai 

plant at Secunda l
. The Twistdraai plant is a coal beneficiation plant that seperates raw 

coal into different coal products according to client specifications. In September 1996 

the plant was formally started up and ever since a vibration monitoring maintenance 

strategy has been used on 8 Warman ® axial in, radial out pumps used to circulate a water 

and magnetite solution which is used in the washing process. Data recorded from these 

I SASOL Coal has granted full pennission to publish their name, data obtained from them as well as 
modelling results. 
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pumps during their operation was retrieved from the plant's meticulous Computerized 

Maintenance Management System (CMMS) and is used in this research project. 

The data was modeled and analyzed in detail according to the theory described in 

Chapter 3 with close involvement of the vibration technicians who are monitoring the 

vibration of the pumps at the plant. Experience of these technicians was utilized in the 

mathematical modelling process by including their knowledge in the selection of 

covariates. Results obtained from mathematical models were also continually presented 

to the technicians for their interpretation and comments for improvement to make the 

final model truly useful in practice. 

2 Preliminaries for PHM Analysis 

Several futile searches for suitable data were undertaken before the data at SASOL Coal 

was discovered. During these searches a structured list of requirements for a PHM 

analysis was set up and used to assess the potential of a possible data source effectively 

and quickly. In this section the list of requirements is presented together with the 

shortcomings in general vibration data recording practices that were identified in the 

industry. 

2.1 Requirements for a Vibration Covariate PHM 
Analysis 

Requirements are defined under two main headings: (1) The suitability of an 

item for a vibration covariate PHM analysis; and (2) The availability of certain 

observations (data) throughout the item's working life. 

2.1.1 Identification of a Suitable Item 

First of all, a suitable item must be important enough for periodic diagnostic 

data collection, i.e. vibration measurements must be taken periodically 

(preferably at fixed intervals). If the item is important enough to be included 

in a vibration monitoring program, the cost of unexpected failure is usually 

considerably higher than the cost of preventive renewal. This is only a rule of 

thumb and it is not true in all cases. For situations where this is true, the 

optimal renewal time will be very distinct compared to a much more 

insensitive optimum for other scenarios. 

The specific item must have been renewed on a number of occasions in the 
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past, preferably because of failure. (The renewal assumption is thus made 

implicitly). Failure does not necessarily refer to a physical shutdown or 

destruction of the item, but to any condition where the item was unable to 

perform according to requirements, whereafter it had to be renewed. The 

preference of failure does not mean that preventive renewals are not important 

and all available data should be included in an analysis and handled suitably. 

If certain parts of available data is ignored, important information could be 

lost and biased estimates of the life time distribution will be the result, such as 

underestimation of the mean time to failure. 

2.1.2 Required Information 

Two main types of information have to be available: 

(i) The operational age of an item at significant events (explained below) 

as well the event type. An operational age instant can be expressed in 

any suitable use parameter - in this case time will be used. 

(ii) Diagnostic information (vibration levels) at every significant event. 

Significant events mentioned above are any of the following: 

(i) The moment when the item is brought into service. 

(ii) Every point where diagnostic information is available. 

(iii) Points in time where minor maintenance is done that could affect 

(usually reduce) covariate values, for example realignment, increased 

lubrication or balancing. The information on expected covariate 

values at these points should also be included in the data. 

(iv) Time of renewal and the state of the item at renewal, i.e. failed or 

suspended. 

(v) Data cutoff date where all operating units will be treated as calendar 

suspensions. 

2.2 Shortcomings 

Numerous shortcomings in data collection practices and data retrieving 

mechanisms of companies were discovered while searching for suitable data. Some 

of the major shortcomings most often encountered, are: 

(i) Unfriendly or improperly organized Computerized Maintenance 

Management Systems or Enterprise Asset Management Systems. 

Vibration Covariate Regression Analysis of Failure Time Data with the Proportional 
Hazards Model 

 
 
 



Chapter 4: Vibration Covariate PHM Application 71 

(ii) Only the calendar age of a component IS recorded and not the 

operational age, i.e. the real usage of the component. 

(iii) Irregular inspections. 

(iv) Records of maintenance done on a component that could have 

influenced its vibration levels are not recorded. 

(v) The state of the item at the time of renewal is seldom recorded, i.e. 

whether a preventive renewal or failure renewal was performed. 

(vi) A general lack of commitment exists regarding proper vibration 

monitoring documentation amongst managers of vibration monitoring 

programs. 

The shortcomings mentioned above are all direct, major impairments of a 

successful vibration covariate PHM analysis, although improvements to these 

shortcomings could hold benefits for conventional vibration analysis techniques as 

well. 

2.3 Concluding Remark 

The information requirements stated in section (2.1.2.) were derived from the PHM 

theory described in Chapter 3. These requirements are defined for a best case 

scenario. It does not mean if these requirements are not met flawlessly that a PHM 

analysis is totally impossible. Mathematical manipulations and approximations 

allow for some deviation of the requirements as was also described in Chapter 3. 

Section (2.1.2.) should thus rather be used by analysts not familiar with PHM 

theory as detailed guidelines for a PHM feasibility analysis in his/her situation, than 

as strict prerequisites for a successful PHM analysis. 

3 SASOL Data 

Useful data was found at one of SASOL Coal's coal beneficiation plants, a part of the 

Twistdraai mine, situated at Secunda. The data does not strictly satisfy all the 

requirements outlined above - the main deviation being that no regular inspection 

frequency is used, although this is not a rigid prerequisite. This data set was the best one 

found following a fairly extensive search for suitable data in the South African industry. 

The Twistdraai plant was started up in September 1996 and is thus still relatively new. 

Data was collected from September 1S
\ 1996 to November 1St, 1998 which gives an 

analysis time horizon of 791 days. The information recorded over the 791 days was 

used to estimate the PHM and for finding the optimal decision policy. Thereafter a 

second data set was collected from November 1 st, 1998 to February 281
\ 1999 that was 
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used to evaluate the model's performance as if it was used to make renewal decisions in 

a real life situation. (Other techniques, apart from the second data set, were also utilized 

to test the optimal policy). 

3.1 Background 

A total of 8 identical axial in, radial out, Warman® pumps are used in a specific 

section of the plant to circulate a water and magnetite solution. These pumps are 

very important in the washing process and significant production losses are suffered 

when one of the pumps breaks down. All 8 pumps work under exactly the same 

conditions and it was assumed that renewals on the various pumps were generated 

by the same renewal process. Figure 3.1. below shows the pump installation layout, 

with the 8 pumps. Figure 3.2 shows a close-up of one of the pumps. 

Figure 3.1.: Pumps in operation 

Figure 3.2.: Warman pump 

When there is referred to a pump in this chapter, all the elements visible in Figure 
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3.2. are implied, except for the 220 kW electrical motors used to drive the pumps. 

A pump consists of an impeller housing, impeller, bearing housing, 2 SKF 938 932 

bearings, a drive shaft, V -belt pulley and seals. 

Because of the aggressive nature of the fluid being circulated and the robust 

environment of the pumps, total destructive failures are encountered frequently. 

These destructive failures often occur very abruptly, i.e. a pump's state literally 

change overnight from being in an acceptable condition to being completely failed. 

Functional failures are usually caused by one (or a combination) of the following: 

i. Complete bearing seizure. 

ii. Broken or defective impeller. 

111. Damaged or severely eroded pump housing. 

IV. Broken drive shaft. 

When a pump has failed due to one of the reasons above, it is overhauled 

completely to an as-good-as-new condition regardless of the amount of work that 

needs to be done. This may include replacement of bearings, repair or renewal of 

impeller, repair or renewal of impeller housing or replacement of the main shaft. 

No complete spare pumps are stocked at the plant but only spare parts, since some 

parts tend to fail more often than others. 

During the analysis time horizon, the plant's management prescribed a condition 

based preventive renewal strategy based on vibration monitoring results. No fixed 

inspection interval was used and vibration levels were only measured sporadically 

or when a notable deterioration in a pump's condition became evident, whereafter 

more regular inspections were done. This strategy lead to several unexpected 

failures. 

Vibration levels of the pumps were measured on the shaft bearings in two 

directions, horizontally and vertically, to assess a pump's condition. Figure 3.3. on 

the next page shows the horizontal measuring positions. 

The 'wet-end' bearing (the bearing closest to the impeller) is labeled as bearing 

number 3 while the 'dry-end' bearing is labeled as bearing number 4. Measuring 

positions 3H and 4H are thus the horizontal measurements on bearing number 3 and 

4, respectively. Only the horizontal measurements were used in this PHM analysis 

- reasons are presented later. 
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Figure 3.3.: Monitoring positions 

As in most typical vibration monitoring programs, the renewal decisions of pumps 

were based on spectral vibration analysis. Several important frequencies are 

enveloped or benchmarked and renewal is performed as soon as two or three of the 

benchmarks are exceeded. Benchmarks levels were determined by a combination of 

technician experience and OEM specifications. 

Vibration data loggers were used to capture vibration data on the pumps, from 

where the information was downloaded onto a dedicated computerized vibration 

measurement database. Data used in this research was retrieved from this database. 

Frequency spectrums of all measurements are stored in the database and the chosen 

covariate levels (discussed later) could be retrieved easily and accurately. 

The vibration measurement database does not contain information regarding events 

during a pump's life, nor does the plant's computerized maintenance management 

system (CMMS). This is not considered to be a serious shortcoming for this 

research since the only event or action performed on a pump during its life time is 

additional lubrication, which probably does not effect the covariate levels too 

severely. 

Failure analysis records obtained from the CMMS provided insight on the state of a 

pump when it was renewed, i.e. whether it was in the failed state or was suspended 

(preventively renewed). 

3.2 Covariates 

Covariate selection was based primarily on the experience of vibration technicians 

involved with the pumps at the plant. These technicians are of the opinion that the 

horizontal vibration measurements on the bearings alone is a good enough 
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indication of a pump's condition and that not much additional information is 

obtained from the vertical measurements. This corresponds to vibration theory and 

hence only the horizontal vibration measurements are considered. 

As mentioned earlier, the vibration monitoring program that was used on the pumps 

was based on spectral analysis. A number of important frequencies (as defined by 

theory and experience) are monitored and a pump is renewed as soon as two or 

three of the frequencies' amplitudes exceed certain benchmarks. It was decided to 

use all of these frequencies as covariates in the PHM, thereby incorporating 

vibration theory and prior experience with the pumps in the model. Table 3.1. 

summarizes the 12 selected covariates. 

The biggest challenge when defining vibration covariates is to select a single 

quantity that describes a specific defect most clearly. A specific defect can often be 

identified by numerous parameters but not all parameters can be used as covariates, 

since the number of covariates has to be limited. Too many covariates may cause 

the proportional hazards model to become mathematically unstable or difficult to 

estimate, especially when the sample size is fairly small. 

Covariate Description 

Abbreviation 

1. RF043H 0.4 x Rotational frequency amplitude, measured on 

bearing 3, indicative of a bearing defect. 

2. RF13H 1 x Rotational frequency amplitude, measured 

horizontally on bearing 3, indicative of unbalance in the 

pump. 

3. RF23H 2 x Rotational frequency amplitude, measured 

horizontally on bearing 3, indicative of misalignment in 

the pump. 

4. RF53H 5 x Rotational frequency amplitude, measured 

horizontally on bearing 3, indicative of cavitation in the 

Ipump. 

5. HFD3H High frequency domain components between 1200-2400 

Hz, measured on bearing 3, indicative of bearing defect. 

This is a subjective covariate where 1 indicates the 

Ipresence and 0 the absence of the mentioned components. 

6. LNF3H Lifted noise floor in 600-1200 Hz range, measured on 

bearing 3, indicative of a lack of lubrication where 1 

indicates the presence and 0 the absence of the mentioned 

components. 
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7. RF044H 0.4 x Rotational frequency amplitude, measured on 

bearing 4, indicative of a bearing defect. 

8. RFI4H 1 x Rotational frequency amplitude, measured 

horizontally on bearing 4, indicative of unbalance in the 

Ipump. 

9. RF24H 2 x Rotational frequency amplitude, measured 

horizontally on bearing 4, indicative of misalignment in 

the pump. 

10. RF54H 5 x Rotational frequency amplitude, measured 

horizontally on bearing 4, indicative of cavitation in the 

Ipump. 

11. HFD4H High frequency domain components between 1200-2400 

Hz, measured on bearing 4, indicative of bearing defect. 

This is a subjective covariate where 1 indicates the 

presence and 0 the absence of the mentioned components. 

12. LNF4H Lifted noise floor in 600-1200 Hz range, measured on 

bearing 4, indicative of a lack of lubrication where 1 

indicates the presence and 0 the absence of the mentioned 

components. 

Table 3.1.: Summary of covariates 

3.3 Data 

The data collected include the pump unit identification, dates of inspection, 

vibration frequency spectrum at each inspection, date of failure or suspension and 

the state at renewal, i.e. failed or suspended. Accurate inspection data was generally 

not available for cases where unexpected failures occurred and data was generated 

by extrapolating available data as appropriately as possible to the date of 

unexpected failure. 

A total of 27 histories were compiled over the analysis horizon with 98 inspections 

(extrapolations included). This gives an average of 3.6 inspections per history. 

Approximately 50% of all inspections were done on an irregular basis either at the 

beginning or the end of a pump's life time. 

Of the 27 histories, 11 were failures, 8 were suspensions and 8 were calendar 

suspensions since all 8 pumps were running at the cutoff date of the analysis 

horizon. The 11 failures were all unexpected and production losses were suffered 

following these events. The 8 suspensions were all done based on vibration 

measurements and were considerably cheaper than the unexpected failures. Three 
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of the 8 suspensions were done on very short life times relative to other survival 

times. 

The working age of the pumps was considered to be the same as the calendar age, 

because the pumps run 24 hours per day, 365 days per year. The pumps are very 

rarely shut down because of breakdowns on other parts of the plant and these times 

are considered to be insignificantly small. 

Three events were defined for the pumps through their life times: (1) B - Begin or 

pump startup; (2) ES - Event suspension; and (3) EF - Event failure. Events that 

occurred to the pumps are listed in Table 3.2. below: 

Pump Age Date Event 
Identification (days) PC1232 599 4/23/98 ES 

PCl131 0 9/ 1196 B PC1232 599 4/23/98 B 

PCl131 397 10/3/97 ES PC1232 791 1111198 ES 
PC1131 397 10/3/97 B PC2131 0 9/1196 B 

PCl131 554 3/9/98 EF PC2131 184 3/4/97 EF 
PCl131 554 3/9/98 B PC2131 184 3/4/97 B 

PCl131 690 7/23/98 ES PC2131 470 12/15/97 ES 
PC1131 690 7/23/98 B PC2131 470 12/15/97 B 

PCl131 765 10/6/98 EF PC2131 631 5/25/98 EF 
PCl131 765 10/6/98 B PC2131 631 5/25/98 B 

PCl131 791 11/1 /98 ES PC2131 774 10/15/98 EF 
PC1132 0 9/ 1196 B PC2131 774 10/15/98 B 

PC1132 491 115/98 EF PC2131 791 1111198 ES 
PCl132 491 115/98 B PC3131 0 9/ 1196 B 

PC1132 544 2/27/98 ES PC3131 450 11125/97 EF 
PCl132 544 2/27/98 B PC3131 450 11125/97 B 

PCl132 557 3/12/98 ES PC3131 791 1111198 ES 
PC1132 557 3/12/98 B PC3132 0 9/1196 B 

PCl132 751 9/22/98 EF PC3132 506 1120/98 EF 
PCl132 751 9/22/98 B PC3132 506 1120/98 B 

PC1132 791 1111198 ES PC3132 791 11/1 /98 ES 
PC1231 0 9/1 /96 B PC3232 0 9/1 /96 B 

PC1231 563 3/18/98 EF PC3232 563 3/18/98 EF 
PC1231 563 3/18/98 B PC3232 563 3/18/98 B 

PC1231 578 4/2/98 ES PC3232 723 8/25/98 ES 
PC1231 578 4/2/98 B PC3232 723 8/25/98 B 

PC1231 791 11/1/98 ES PC3232 791 1111 /98 ES 
PC1232 0 9/1/96 B 

Table 3.2.: Events table 

Detailed inspection data of all the covariate measurements between events is 

provided as an appendix to this chapter. Covariate values immediately after the 

occurrence of an event were all taken to be zero. Further detailed comments on the 
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data are presented below: 

1. Covariate RF043H recorded two unusually high values of 250 and 1200 mm/s 

compared to the normal range of between 0 and 5.6 mm/s. These high values 

were confirmed by the vibration monitoring database and vibration technicians 

are confident that these levels were not due to faulty monitoring equipment or 

human error. A further noticeable fact is that these values occurred at 

suspensions. 

The most logical physical explanation for these values lies in the wear 

mechanism present in the bearing. (RF043H is indicative of a particular bearing 

defect). It could be that the bearings that produced these extreme values were 

able to withstand the wear associated with RF043H, i.e. did not abrade with the 

introduction of the RF043H vibration, which would have kept the vibration 

levels within normal limits. The vibration levels continued to rise up to their 

outrageously high values, which persuaded management to renew the pumps 

preventively. 

2. Subjective covariates HFD3H, HFD4H, LNF3H and LNF4H indicated the 

presence of their associated phenomena with a simple 0 or 1. These phenomena 

certainly appear in different degrees of severity and it could be argued that 

covariates that quantify the severity could lead to a more accurate model. It is 

however very difficult to quantify the severity of these phenomena with a 

single number (covariate) because it ranges over large frequency bands. In 

practice, vibration technicians do not try to estimate the severity of these 

phenomena either but only use the presence (or absence) thereof as a supportive 

argument in decisions. It was hence decided that a simple 0 or 1 would suffice 

for this study. 

Intuitively it is expected that whenever one of the considered covariates turns to 

1, it will remain 1. This is however not observed in the data, once again due to 

wear mechanisms present in the pumps. For example, LNF3H or LNF4H will 

be present in a certain inspection but will be absent in the following, only to 

return in subsequent inspections. LNF is indicative of a lack of lubrication. 

When there is a lack of lubrication, asperities induce a lifted noise floor over 

600-1200Hz but the asperities are soon worn off, thereby inducing increased 

levels of unbalance, but a reduction in the lifted noise floor. Hence, the LNF 

covariate appears, diminishes and reappears. 

Interaction between the subjective covariates and the quantitative covariates is 

an area which should be investigated in a study such as this. 
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3. Failure times are distributed such that 6 failures occurred below 200 days and 

the remaining 5 failures above 450 days (not randomly distributed). Suspension 

times are randomly distributed with some being very short like 53, 15 and 13. 

The question is whether these renewal patterns can be explained by the 

covariates. 

4. Covariate RF13H shows comparatively high values in the beginning of 

histories and then decreases gradually towards events. RFl4H has a very 

similar pattern, although not as distinct. Technical reasons for this would be the 

same as discussed in (3). 

Costs associated with failures and suspensions of the pumps could not be disclosed 

exactly by the Twistdraai plant because of company policy. The Twistdraai plant 

did provide scaled costs however which is proportional to the true costs. An 

unexpected failure cost C f = R 162 200 will be used and a preventive renewal cost 

of Cp = R 25 000 . These costs were average costs sustained by the Twistdraai plant 

over the two years over which the data was collected. No details are available. 

4 Weibull PHM Fit 

There is no straightforward procedure to select the most appropriate covariates for a 

good Weibull PHM. For this data set, a combination of backward selection (eliminating 

covariates with the highest p-values, one at a time), residual graphs, goodness-of-fit tests 

and technical experience were used to get to the best possible model. 

Some important facts and guidelines concerning vibration covariates and vibration 

covariate selection for the PHM were discovered and established from experience 

gained in this research project: 

(i) It is not recommended to exclude several co variates from the model in one 

step. This may lead to an inaccurate model. 

(ii) If two covariates are highly correlated, it can produce very uncertain 

estimates (large standard errors) which will make them appear as 

insignificant, even if one of them could be a very good predictor of failure. 

(iii) Some covariates can appear as insignificant, contrary to a technician's 

opinion, simply because of insufficient data or high variations. It is not 

recommended to include these in the model, because their parameters could 

be very inaccurate and produce a misleading model. They could be checked 

again when more data is collected. 

(iv) Positive covariates with negative regression coefficients should be 

considered with special care, because it indicates that the hazard increases 
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with decreasing covariate values (as is the case with RF13H and RF14H), 

which is not usually expected. In some cases it could be because some 

influential events, such as minor repairs, were not recorded. 

(v) Some covariates can surprisingly appear as significant, without practical 

interpretation. This almost always indicates some data problem, particularly 

if wrong covariate values are reported at failures, because failure 

information has a large influence on the maximum likelihood .. 

An extensive discussion about practical analysis of covariate data and modeling 

procedures can be found in [5]. 

The following theory, described in Chapter 3, will be used to fit the PHM: 

• The numerically convenient method of maximum log-likelihood as objective 

function in the optimization routines. (Chapter 3, section 2.3 .2.). 

• For estimation of the parameters in the objective function, the Newton-Raphson 

optimization method because of its rapid convergence. Snyman's method will 

only have a supportive role in the modelling process because of its robustness. 

(Chapter 3, section 4.). 

• Guidelines on covariate behavior and selection will constantly be referred to in 

the modelling process. (Chapter 3, section 3.). 

• Residual plots as graphical indication of the goodness-of-fit of models because 

all the PHM assumptions can be evaluated by analyzing the residuals. The 

Kolmogorov-Smirnov test, Wald test, p-values and standard errors will be used 

as analytical goodness-of-fit tests. (Chapter 3, sections 5.1. and 5.2.). 

To be able to recognize all patterns in the data, it was decided to model the data in three 

phases: (1) By a simple Weibull model; (2) By a Weibull PHM where the subjective 

covariates are temporary excluded; and (3) By a Weibull PHM with all covariates 

included from the start. 

The results of the modelling procedures are presented below. 

4.1 Phase 1: Simple Weibull Model 

The simple Weibull model was calculated to be: 

1.984 ( t )0.984 
h(t) = 468.7' 468.7 

(4.1.) 
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Residual plots of the model in (4.1.) yield the following: 

Residuals in order of appearance 
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Figure 4.1.: Residuals in order of appearance 
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Figure 4.2.: Ordered residuals agains expectations 
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Figure 4.3.: Transformed ordered residuals 
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From the residual plots it is clear that the model does not represent the data very 

well, especially the suspended observations. Analytical tests revealed a standard 

error for the shape parameter of 0.46, which is significantly different from 1, while 

the standard error for the scale parameter is 71 .9 days, showing that the model is 

not very accurate but still a useful estimate. The MTTF = 415.5 which is realistic. 

The Kolmogorov-Smirnov test (KS-test) yielded a value of KS = 0.3949 with a 
p - value = 0.000276, which rejects the fit at a 5 % level of significance. (A time­

independent model, i.e. jJ = 1 fixed, was also tested but rejected based on an 

observed value for the Wald test of 4.57 with a p - value = 0.0325). 

4.2 Phase 2: Weibull PHM with Subjective 
Covariates Excluded 

For this phase, HFD3H, HFD4H, LNF3H and LNF4H were excluded from the 

modelling process. A reasonable model fit was obtained when using all of the 

remaining quantitative covariates, i.e. RF13H, RFI4H, RF23H, RF24H, RF53H, 

RF54H, RF043H and RF044H, with negative regression coefficients for RF13H 

and RFI4H. This is consistent with the observed behavior of the data (see comment 

5 of section 3.3.). 

Using mainly backward selection with an upper Wald p-value limit of 5 %, the best 

possible model was obtained by using only the two covariates associated with 

cavitation, RF53H and RF54H. The model is presented below as (4.2.). 

- 1 464 ( t )0.464 
h(t,z(t))=_· - . -- exp(0.127 · RF53H +0.143 . RF54H) 

1431.8 1431 .8 
(4.2.) 
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The following results were obtained with residual analyses of (4.2.): 
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Figure 4.6.: Ordered residuals against expectation 

'jij 0.8 
:s 
'0 
'iii 

~= 0.6 
'U* .. x 

E! f 0.4 
In 
r:: 
OJ 

{::. 0.2 

.. 

Transformed Ordered Residuals 

/. .. 
........ y. 

.: / 
./ 

.. 
• • 

O~~---,------.-----,,-----.----~ 
o 0.2 0.4 0.6 0.8 

Transformed Expectation 
1-exp(-E) 

Figure 4.7.: Transformed ordered residuals 

83 

Vibration Covariate Regression Analysis of Failure Time Data with the Proportional 
Hazards Model 

 
 
 



Chapter 4: Vibration Covariate PHM Application 

VilriilnCe Stilbilized Trilnsformiltion 

•••••••••• 

/ . . .. 

• ••• 
... 

O~----.-----.-----.-----.---~ 
o 0.2 0.4 0.6 

Trilnsformed Expectiltion 
1·(2/Pi) arcsin(exp(·EJ2)) 

0.8 

Figure 4.8.: Variance stabilized transformation 

84 

The results of analytical significance tests on the parameters are summarized in 

Table 4.1. It is clear that both RF53H and RF54H are very significant in the failure 

process although the shape parameter did not prove to be significant. The KS-test 

was determined to be KS = 0.3180 with a p-value of 0.00628, which is not an 

extremely good model fit. 

Parameters 
jJ RF53H RF54H 

Estimate 1.464 0.1271 0.1414 
Standard Error 0.4719 0.0227 0.0569 

Wald 0.9678 31.24 6.172 
Wald p-Value 0.3252 0.000 0.013 

Table 4.1.: Results of analytical goodness-of fit tests 

performed on (4.2.) 

The graphs obtained from the residual analysis show that 4 of the 6 short failures 

(see comment 4 in section 3.3.) cannot be explained well by the model (e.g. with 

high covariate values). The data was analyzed and it was found that no other 

quantitative covariate contributed significantly to these early failures . Further 

analyses of the data revealed that the contribution of RF53H and RF54H to the 

other, longer, failures is evident. The model with RF53H only was also considered, 

and a better model fit was obtained KS p - value = 0.145. Still, this model did not 

explain the 4 short failures any better. 

It was noticed that for all considered models, the shape was not significant although 

the hypothesis of jJ= 1 was never rejected with Wald p-values between 0.18 and 

0.36, except for the model with RF53H only, where the Wald p-value was 

calculated to be 0.062. (Values of jJ ranged from 1.4 to 2). After this observation, 

models with jJ = 1 were hence estimated, and in all cases better model fits were 

obtained than with jJ ",:.l (Wald p-values > 1 0 %). It is important to note however 

that RF53H and RF54H were, as before, the only two significant covariates (after a 
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process of backward covariate selection based on Wald p-values). This implies that 

time (working age) is not a significant variable in the model and that some of the 

failures could be better explained by an additional non-observed covariate. 

Vibration technicians do not agree with this statement and the problem possibly lies 

in a too short data horizon. 

4.3 Phase 3: Weibull PHM With All Covariates 

For this phase, the inspection data was analyzed with all the covariates. Inspection 

showed that subjective covariates are somehow, 'complementary' to the numerical 

covariates, i.e. at failures the majority of them have the value 1 if numerical 

covariates are low, and mostly the value 0, if numerical covariates are high. 

To get a feel for the behavior of the subjective covariates, they were first analyzed 

separately. Only LNF4H appeared to be significant, with test model fit KS p-value 

= 0.17, which is acceptable. It was further noticed when LNF3H and LNF4H are in 

the model, their regression coefficients have the opposite signs and the same for 

HFD3H and HFD4H, as they tend to compensate each other. The data was analyzed 

again and the correlation coefficient for LNF3H and LNF4H was calculated to be 

0.57, and for HFD3H and HFD4H to be 0.80. The high correlation between 

HFD3H and HFD4H could be because of the similar configuration (and operating 

conditions) of the bearings and a lack of lubrication will affect both bearings. 

The next step was to build a model with all covariates included. Estimation 

procedures (both Snyrnan and Newton-Raphson) failed to converge initially, with 

the scale parameter approaching infinity. In such a case, it is not simple to decide 

which covariate to exclude from the model. By looking at the highest partial 

derivatives in the model fitting optimization routine, it was decided to exclude 

RF043H from the model (this could be because of the few unproportionally high 

observations). Still the estimation procedure would not converge and it was 

necessary to exclude more covariates from the model, in different combinations, to 

get convergence. These covariates were considered in the model at later stages, to 

check whether their removal was not only due to some relationship with other 

covariates. 

A good example of this was RF53H, which was removed in one of the procedures 

at an early stage, and when later considered showed high significance. When both 

RF53H and RF54H were included in a model, they appeared as significant, but with 

a poor model fit, due to the large residuals when both covariates have high values. 

Their correlation was found to be 0.60 (one measurement with a very high value for 

RF53H and a very low value for RF54H was excluded). It shows that both these 
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covariates are good predictors of failures but it still has to be decided whether it 

makes practical sense to include both in the final model. 

When RF53H was removed from the model (either at an early stage, as mentioned 

above, or to improve the model fit), RF54H and LNF4H remained in the model, 

with a p-value for the scale parameter of 0.416, and the model fit KS p-value = 

0.015, which is not very good. When J3 was fixed to 1, a much improved model fit 

was obtained (KS p-value = 0.647). From the residuals it appears that some of short 

failures could be better explained by this model, than by the model without LNF4H. 

The sum ofLNF3H and LNF4H was also included as a covariate in the model with 

RF54H, and the model showed a very good model fit for both estimated values of 

jJ, and J3 fixed to 1. This definitely shows that subjective covariates could be useful 

in the pumps' condition diagnosis. 

4.4 Final Model 

The analyses showed clearly that RF53H and RF54H are the two most significant 

covariates in the data and will hence be used in the final model. It was also decided 

that the shape parameter should not be restricted in the final model although better 

model fits were obtained with J3 = 1. The only reason for the good performance of 

the model with J3 = 1 could be because of a shortage of data and it was concluded 

that a model with J3 -:;:.1 would be of more practical use. 

The final PHM with which the decision models will be constructed is presented 

below as (4.3.), previously (4.2.): 

- 1 464 ( t )0.464 
h(t,z(t» =-' _ . -- exp(O.127 ·RF53H +0.143 .RF54H) 

1431.8 1431.8 
(4.3.) 

5 Decision Model 

This section describes the construction of the transition probability matrices (TPM) as 

well as the calculation of the optimal cost function. The policy is evaluated theoretically 

by applying it on the observed data but also evaluated practically on a second data set 

collected from November IS
\ 1998 to February 28th

, 1999, as ifit was used in a real life 

situation. 
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5.1 Transition Probability Matrices 

The optimal policy is very sensitive to the choice of covariate bands and it is thus 

very important to choose these bands with great care. As explained in Chapter 3 is 

it generally recommended to select the lower bands shorter than the upper bands 

especially for vibration covariates, because vibration covariate values tend to be 

closely grouped under normal wear-out of a component and outlier values only 

occur sporadically. The data used for this research also shows this behavior. See the 

PDF' s of the two covariates below, represented by continuous Weibull 

distributions: 
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Figure 5.1.: PDF of observed RF53H values 

40 

After evaluation of Figure 5.1., the following bands were selected that resulted in 

realistic cost models (explained later): 

RF53H RF54H 

Band Frequency Band Frequency 

rO-51 67 [0-3] 54 

(5-10] 15 (3-7] 28 

(10-15] 11 (7-11] 11 

(15-26.84] 4 (11-151 4 

(26.84- 00) 1 (15-00 ) 1 

Table 5.1.: Selected bands and observed frequencies 
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With the above covariate bands the transition rates were determined and transition 

matrices were calculated. For example, the transition probabilities for covariate 

RF53H for an observation interval of 50 days are given in Table 5.2. 

BANDS [0-5] (5-10] (10-15] (15-26.84] (26.84-00) 

[0-5] 0.913 0.068 0.014 0.004 0.001 

(5-10] 0.208 0.481 0.173 0.088 0.050 

(10-15] 0.063 0.260 0.228 0.216 0.233 

(15-26.84] 0.010 0.064 0.104 0.234 0.588 

(26.84-00) 0 0 0 0 1 

Table 5.2.: TPMfor RF53H (for observation interval of 50 days) 

From the table it can be seen that ifRF53H is currently between 0 and 5, then after 

50 days it will be still within the same limits, with a probability of 91.3%. If it is 

currently between 5 and 10, it will stay there with a probability 48.1 %, but it can 

also decrease, with the probability 20.8%, i.e. it can improve. This is very realistic 

in practice since vibration levels most often increase with the deterioration process 

but it can sometimes decrease because of specific wear mechanisms present in the 

component as was observed in the data. Similarly was the TPM for RF54H 

determined. See Table 5.3. 

BANDS [0-3] (3-7] (7-11] (11-15] (15-00) 

[0-3] 0.893 0.090 0.014 0.0009 0.0004 

(3-7] 0.239 0.547 0.184 0.017 0.011 

(7-11] 0.108 0.078 0.609 0.96 0.105 

(11-15] 0 0 0 0.212 0.787 

(15-00) 0 0 0 0 1 

Table 5.3.: TPMfor RF54H (for observation interval of 50 days) 

5.2 Cost Function and Optimal Replacement 
Policy 

As mentioned earlier, were the costs provided by the Twistdraai plant, 
C f = R 162 200 and C p = R 25 000 based on averages over the two year data 

horizon. Further details about the cost estimation are not available. 

No fixed inspection frequency was used at the plant which made calculations 

somewhat more difficult. The transition probability matrices were estimated based 

on transition rates (as described in Chapter 3, section 6.2.2.) and a future inspection 
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interval of 50 days was used for the cost model. With all preliminary calculations 

completed, the cost function (equation (6.17.) of Chapter 3) was hence calculated 

using the backward recursive procedure. The result is shown graphically in Figure 

5.2. in terms of the threshold risk level, d (or h(t, z(t)) · K) for convenience. 

Cost Function 
1000 .... - -------------------, 

..... 
~ 800 

~ 
'U 
C 
~ 600 Exp ected average total ren evval 

cost per unit time ti 
o 
(.) 400 

200 

______ Expected average failure renewal 
cost per unit time 

o~--.--.--~-_.--._-_.-~ 

o 200 400 600 800 1000 1200 1400 
Risk [rand/days] (hazard' K) 

Figure 5.2.: Estimated cost function in terms of risk 

A distinct optimum exist at a risk ofR 401.41 / day or a hazard rate of h = 0.0029. 

This optimum is not very sensitive to slight deviations from the decision rule. With 

the optimal risk known it is also possible to represent the replacement rule and 

warning level function graphically (equations (6.24.) and (6.26.) of Chapter 3): 

Optimal Replacement Age 
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Figure 5.3.: Decision policy 

5.3 Evaluation of Optimal Renewal Policy 

First a summary of the performance of the optimal renewal policy is presented in 

Table 5.4. below, whereafter detailed comments follow. 
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Theoretical Renew Only Theoretical Real Policy 

Optimal at Failure Policy 

Policy Strategy Applied 

Cost 224.04 401.41 214.03 345.16 

Preventive 
75.31 0 100.56 63.21 

Renewal 

Cost 
(33 .6%) (0%) (47.0%) (18.3%) 

Failure 
148.73 401.41 113.47 281 .95 

Renewal 

Cost 
(66.4%) (100%) (53.0%) (81.7%) 

Preventive 
76.7% 0% 80.0% 42.1% 

Renewals 

Failure 
23 .3% 100% 20.0% 57.9% 

Renewals 

254.49 404.08 263.6 214.6 
MTTR 

days days days days 

Table 5.4.: Summary of renewal policy performance (All costs are in Rlday) 

The table shows that the theoretical model predicts an average cost ofR 224.4 / day 

when using the calculated optimal renewal policy, with 66.4% of the cost due to 

failures, although failures only occur 23.3% of the time. This is due to a relatively 

high renewal cost ratio of R 162 200/ R 25000 = 6.5. The average time between 

renewals is calculated to be 254.5 days. If no renewal policy is used, except at 

failures, it would result in a mean time between failures of 404.1 days, close to an 

estimate of 415.5 days obtained from the simple Weibull model (see section 4.1.), 

but with an average cost of renewal of R 401.4 / day. This would be 44.2% more 

expensive than using the optimal policy. 

To evaluate the above mentioned theoretical costs, it should be compared with: (a) 

the real replacement costs realized for the analyzed histories, (b) the cost that would 

be obtained if the theoretical optimal policy was used for the analyzed histories 

(a) It is very important to realize that there are two options when using real 

histories for the cost calculation. Every failure or suspension (preventive 
renewal) has a clearly defined cost, either C J or C p , but this is not the case for 

temporary suspensions or calendar suspensions. A conservative approach is to 

exclude all temporary suspensions from the calculation (TSE method) or a less 

conservative method is to include them all in the calculation as true suspensions 

(TSI method). The TSI method could be justified by counting the replacement 

cost at the beginning of the history as an installation cost, so that the calculated 

average replacement cost would be a "current" average cost. With a large 
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number of histories, and not many temporary suspensions, both methods will 

give similar results. With a small number of histories and many temporary 

suspensions, the TSE method usually gives an overestimation of the real 

average cost value. Using both methods, the real average replacement cost for 

the pumps over the analysis horizon was R 345.16 / day (using the TSI method, 

counting 11 failures and 16 suspensions), or R 385.58 / day (using the. TSE 

method, counting 11 failures and 8 suspensions). So, if the TSI method cost is 

compared to the theoretical optimal cost, the saving would be (345-224)/345 = 

35%. The real policy is slightly better than the policy to replace only at failure, 

with a saving of (401-345)/401 = 14%. The real average time to renewal is 

214.6 days, calculating only completed histories (failures and true suspensions). 

The theoretical mean time to renewal is 254.5 days which can also be 

considered as an advantage of the theoretical optimal policy. 

(b) The optimal theoretical decision policy is applied on all 27 histories. Three 

situations are considered: (i) immediate renewal based on the most recent 

inspection record; (ii) renewal based on an earlier inspection record (with that 

renewal time counted); and (iii) no renewal based on all inspection records. 

After appying the theoretical policy, the number of failures was reduced from 

11 to 4, which is then 4119 = 21 % of all renewals (temporary suspensions 

excluded), close to the theoretical value of 23%. Renewal times were not 

significantly reduced, which resulted in a significant reduction of the average 

cost. Using the TSI method, the average renewal cost is R 214 / day, close to 

the theoretical cost ofR 224 / day, so the real saving would be (345-214)/345 = 

38%. Using the TSE method, the average cost is R 215 / day (one real 

temporary suspension is included in the calculation as a definite suspension, 

due to (ii)), surprisingly close to the previous value. The average renewal time 

is 263.6 days (7 undecided temporary suspensions excluded), close to the 

theoretical value of 254.5 days. 

Such coincidence of the theoretical and actual results in some of the above cases 

should not be expected in general, particularly for a small sample size, but it shows 

that the selected statistical and decision models are reasonable. The method of 

comparison could be argued because the same data is used to build the model and 

to test it. The method can be justified however by noticing that the data is first used 

to build the statistical model and then to calculate the optimal decision policy, 

without refering to the actual renewal policy. Theoretically, the same statistical 

model would be obtained (within the range of a statistical error), even if the actual 

policy was to renew only at failure. With a larger data set (more histories) other 

methods can be used, such as to use a random sample of histories to build the 

model, and then the rest as a control group to test the model. 

As a final test of the renewal decision policy's performance, more data was 
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collected from the plant from November 1st, 1998 to February 28th
, 1999. During 

this period only one of the pumps considered as calendar suspensions in the first 

data set, failed and was renewed. The decision policy's performance for this 

pump's history is described here, although the data from the other pumps was tested 

as well. 

Pump PC1232 was treated as a calendar suspension after 192 days of working life 

in the first data set. This was on November 1 st, 1998. The pump eventually failed 

unexpectedly 67 days later on January 6th
, 1999 at an age of 259 days. A total of 

five inspections were done during this time. The latest inspection data is plotted on 

Figure 5.4. below, together with the 4 inspections from the first data set. 
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Figure 5.4.: Example policy on PCl232 

Figure 5.4. shows clearly that the expensive unexpected failure could have been 

prevented if the calculated decision policy was followed. In terms of cost, the 

unexpected failure cost meant R 162200/265 days = R 612.07 / day. If the PHM 

renewal policy was available and there was acted upon, R 25 000 / 235 days = 

RI06.38 / day, would have been the result. This is another confirmation that the 

model is relevant and practical. 

6 Conclusion 

Although the final PHM was not statistically speaking a very accurate model, it proved 

to be of high practical value. The two covariates used in the model, RF53H and RF54H, 

were correctly identified as good predictors of events, somewhat contrary to statistical 

recommendations. This shows that a PHM analysis can never be done away from 

practice otherwise costly misinterpretations may be the result. The calculated optimal 

policy also withstood thorough evaluation and clearly showed its enormous benefits 
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even with conservative assumptions. 
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Appendix 

Pump Age Date RF043H RF13H RF23H RF53H HFD3H LNF3H 
Identification (days) [mmls] [mmls] [mm/s] [mmls] [mm/s] [mm/s] 

PC1l31 159 2/7/97 0.00 0.70 0.30 0.80 1 0 

PC1l31 295 6123/97 0.15 0.30 0.25 0.55 0 1 

PC1l31 387 9/23/97 0.30 3.00 0.90 8.00 1 0 

PCl131 394 9/30197 0.80 2.40 1.00 12.30 1 0 

PC1l31 397 10/3/97 250.00 175.00 20.00 17.00 1 0 

PC1l31 530 2/13/98 0.10 11.50 3.20 11.00 0 0 

PC1l31 533 2/16/98 0.30 8.80 3.50 13.00 I 0 

PC1l31 554 3/9/98 0.50 7.00 3.80 16.00 0 0 

PC1l31 578 4/2/98 1.00 19.50 1.50 2.00 1 0 

PCIl31 597 4/21/98 0.30 27.50 1.50 1.60 1 0 

PCI131 639 6/2/98 0.50 31.00 6.00 4.00 1 0 

PCll31 689 7/22/98 0.00 9.00 2.00 0.80 0 0 

PCI131 690 7/23/98 0.00 8.27 1.82 0.67 0 0 

PC1l31 703 8/5/98 0.05 1.20 0.95 0.20 1 0 

PCI131 712 8/14/98 0.05 0.50 0.80 1.40 1 0 

PC1l31 765 10/6/98 0.05 0.40 0.70 2.70 1 0 

PC1131 791 11/1/98 0.50 9.00 2.00 12.00 0 0 

PC1l32 239 4/28/97 0.00 0.90 0.30 1.50 0 0 

PC1l32 386 9/22/97 0.10 7.00 0.60 2.10 1 0 

PC1132 394 9/30/97 0.20 8.00 0.50 11.00 1 0 

PCl132 397 10/3/97 0.10 6.20 0.20 3.00 0 0 

PC1l32 491 115/98 0.10 5.00 0.50 1.00 0 0 

PC1l32 499 11l3/98 0.10 27.50 2.00 2.50 0 0 

PC1132 533 2/16/98 0.10 35.00 2.50 12.00 0 0 

PC1l32 543 2/26/98 5.00 19.00 26.00 9.00 0 0 

PCll32 544 2/27/98 5.61 16.94 28.93 8.56 0 0 

PC1l32 557 3/12/98 3.00 43 .00 9.00 2.00 0 0 

PC1l32 558 3/13/98 1.00 41.00 14.00 3.00 0 0 

PC1132 597 4/21198 4.00 29.00 3.70 2.60 0 1 

PCl132 689 7/22/98 0.10 5.60 1.70 0.30 0 1 

PCl132 712 8/14/98 0.10 3.40 0.60 0.90 0 1 

PCl132 751 9/22/98 0.99 3.01 0.30 2.99 0 1 

PCll32 791 1111198 0.08 4.65 0.17 2.01 0 0 

PC1231 239 4/28/97 0.30 5.50 1.90 1.00 0 0 

PC1231 295 6/23/97 1.30 10.40 2.20 1.00 0 0 

PCI231 390 9126/97 1.00 56.00 12.00 3.00 0 0 

PC1231 530 2/13/98 0.30 18.10 6.10 8.50 1 0 

PC1231 563 3/ 18/98 0.09 12.00 1.18 10.24 I 0 

PC1231 578 4/2/98 1.00 33.00 18.00 6.00 1 1 

PCI231 653 6/16/98 0.22 3.57 0.98 0.57 0 0 

PC1231 698 7/31198 0.68 8.11 1.47 0.61 0 0 

PC1231 791 1111198 0.73 38.64 7.68 1.86 0 0 

PC1232 583 4/7/98 0.50 56.00 9.00 4.00 0 0 
PC1232 592 4/16/98 0.40 54.00 4.00 6.50 0 0 
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PC1232 597 4121198 0.60 48.00 9.00 3.50 0 0 

PC1232 599 4123/98 0.05 7.00 2.10 0.60 1 1 

PC1232 699 8/1198 0.33 34.16 5.76 2.48 0 0 

PC1232 791 11/1/98 0.24 32.40 2.44 4.09 0 0 

PC2131 156 2/4/97 0.00 9.00 1.20 0.40 0 0 

PC2131 159 2/7/97 0.10 5.80 2.20 0.60 0 1 

PC2131 178 2126/97 0.20 4.00 3.30 1.35 0 1 

PC2131 179 2/27/97 0.00 8.30 2.00 0.90 0 0 

PC2131 184 3/4/97 0.00 36.39 2.00 1.00 0 1 

PC2131 239 4/28/97 0.09 3.65 1.60 1.55 1 0 

PC2131 241 4/30/97 0.05 3.10 0.75 1.70 1 0 

PC2131 295 6/23/97 0.10 2.55 2.20 1.40 1 0 

PC2131 386 9122/97 0.40 5.60 7.50 0.70 1 0 

PC2131 470 12/15/97 1200.00 120.00 30.00 10.00 0 0 

PC2131 535 2/18/98 0.20 20.90 1.60 4.80 0 0 

PC2131 583 4/7/98 2.00 77.00 46.00 11.00 0 0 

PC2131 597 4121198 2.00 66.00 43.00 6.00 0 0 

PC2131 604 4/28/98 1.00 74.00 37.50 5.00 1 0 

PC2131 611 5/5/98 0.01 20.00 4.10 11.60 1 0 

PC2131 631 5125/98 0.10 18.00 10.00 72.33 1 0 

PC2131 640 6/3/98 0.60 10.50 2.80 5.90 1 0 

PC2131 689 7/22/98 0.09 1.70 0.40 0.50 1 0 

PC2131 768 10/9/98 0.10 1.92 0.55 0.66 1 0 

PC2131 774 10/15/98 0.14 2.66 0.76 1.12 1 0 

PC2131 791 1111198 0.16 13.37 1.08 3.69 0 0 

PC3131 241 4/30/97 0.10 6.80 3.90 1.30 1 0 

PC3131 295 6/23/97 0.80 29.00 17.00 14.00 1 0 

PC3131 386 9/22/97 0.50 37.00 6.50 4.00 1 0 

PC3131 450 11125/97 0.20 20.52 6.00 3.00 1 0 

PC3131 550 3/5/98 0.09 7.20 3.74 1.27 1 0 

PC3131 651 6/14/98 0.96 33.06 17.34 16.80 1 0 

PC3131 750 9121198 0.59 40.33 6.43 4.16 1 0 
PC3131 791 1111198 0.20 19.48 5.82 3.39 1 0 

PC3132 239 4/28/97 0.10 2.40 0.15 0.39 1 0 

PC3132 295 6123/97 0.20 9.60 1.80 1.60 1 1 

PC3132 386 9/22/97 0.20 24.00 3.00 3.50 1 1 

PC3132 450 11125/97 0.50 32.00 21.00 13.00 0 0 

PC3132 506 1120/98 0.97 37.56 48.37 26.84 0 0 

PC3132 566 3121198 0.12 2.44 0.16 0.45 1 1 

PC3132 711 8/13/98 0.19 11.04 1.92 1.82 1 1 

PC3132 791 1111198 0.20 27.60 3.27 3.39 1 1 

PC3232 239 4/28/97 0.30 11.50 3.80 0.60 1 0 

PC3232 295 6/23/97 1.00 43.00 8.00 6.00 1 0 
PC3232 386 9122/97 2.00 39.00 6.00 6.00 1 0 
PC3232 535 2/18/98 0.00 66.00 44.00 7.00 0 0 

PC3232 563 3/18/98 0.00 75 .72 56.86 7.33 1 0 
PC3232 591 4/15/98 0.00 235.00 22.00 10.00 0 0 
PC3232 604 4/28/98 2.00 175.00 18.00 7.00 0 0 
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PC3232 639 6/2/98 3.00 74.00 9.00 3.00 0 0 

PC3232 722 8/24/98 0.00 20.50 14.80 1.90 1 1 

PC3232 723 8/25/98 0.00 21.45 15.10 1.96 1 1 

PC3232 748 9/19/98 0.l8 7.59 2.96 0.39 1 0 

PC3232 783 10/24/98 0.62 26.66 5.44 4.50 1 0 

PC3232 791 1111198 1.28 28.08 3.72 4.08 1 0 

Table A.I.: Inspection data for bearing 3 

Pump Age Date RF044H RF14H RF24H RF54H HFD4H LNF4H 
Identification (days) [mm/s] [mm/s] [mm/s] [mm/s] [mm/s] [mm/s] 

PC1131 159 2/7/97 0.05 0.85 0.30 0.10 1 0 

PCl131 295 6/23/97 0.20 0.45 0.25 0.12 0 1 

PCl131 387 9/23/97 0.l0 4.00 1.70 6.20 1 0 

PCl131 394 9/30/97 2.30 4.00 2.10 5.00 0 0 

PCl131 397 10/3/97 4.00 4.60 2.80 6.00 1 0 

PC1131 530 2/13/98 0.10 13.20 3.50 5.50 0 0 

PCl131 533 2/16/98 0.20 10.00 3.80 7.00 1 0 

PC1131 554 3/9/98 0.30 5.00 4.20 10.00 0 0 

PCl131 578 4/2/98 0.70 42.00 3.00 3.00 1 0 

PC1131 597 4/21198 0.50 52.00 2.00 5.00 1 0 

PC1131 639 6/2/98 0.50 47.00 8.00 5.00 1 0 

PC1131 689 7/22/98 0.00 14.00 2.00 1.20 0 0 

PCl131 690 7/23/98 0.00 13.04 1.73 1.08 0 0 

PCl131 703 8/5/98 0.20 2.25 0.90 0.40 1 0 

PCl131 712 8/14/98 0.05 0.58 1.30 0.41 1 1 

PCl131 765 10/6/98 0.05 0.40 2.10 0.60 1 1 

PCl131 791 1111198 0.20 12.00 2.00 7.00 0 0 

PC1132 239 4/28/97 0.00 1.65 0.30 0.72 0 1 

PCl132 386 9/22/97 0.l0 12.20 0.70 7.80 1 0 

PCl132 394 9/30/97 0.10 14.00 0.90 8.20 1 0 

PCl132 397 10/3/97 0.20 12.00 0.90 12.00 1 0 

PC1132 491 115/98 1.00 10.00 0.80 30.00 1 0 

PC1132 499 1113/98 0.l0 66.00 4.00 12.00 0 0 

PC1132 533 2/16/98 0.00 65 .00 3.00 10.00 0 0 

PC1132 543 2/26/98 1.00 120.00 38.00 7.00 0 0 

PC1132 544 2/27/98 1.13 126.88 42.38 6.64 0 0 

PCl132 557 3/12/98 1.00 34.00 5.00 2.50 1 0 

PCl132 558 3/13/98 2.00 27.50 6.50 1.00 0 0 

PCl132 597 4/21198 1.00 24.00 4.20 5.40 0 1 

PCl132 689 7/22/98 0.10 4.80 0.70 0.40 0 0 

PC1132 712 8/14/98 0.05 2.70 0.30 0.40 0 0 

PC1132 751 9/22/98 0.13 1.61 0.06 1.54 0 1 

PCl132 791 1111198 0.l5 7.80 0.56 7.68 1 0 

PC1231 239 4/28/97 0.00 9.00 0.60 0.40 0 0 

PC1231 295 6/23/97 0.30 16.50 2.30 0.30 0 0 

PC1231 390 9/26/97 0.00 67.00 6.00 4.00 0 0 

PC1231 530 2/13/98 0.00 21.00 6.00 6.00 1 1 
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PC1231 563 3/18/98 0.08 10.00 5.05 5.87 1 1 

PC1231 578 4/2/98 2.00 51.00 16.00 9.00 1 1 

PC1231 653 6/16/98 0.00 6.75 0.41 0.27 0 0 

PC1231 698 7/31198 0.22 10.72 1.35 0.15 0 0 

PC1231 791 1111198 0.00 46.90 4.14 2.64 0 0 

PC1232 583 4/7/98 0.00 7l.00 8.00 3.00 0 0 

PC1232 592 4/16/98 0.05 53.00 3.00 2.00 0 0 

PC1232 597 4121198 1.00 57.00 6.00 3.00 0 0 

PC1232 599 4123/98 0.15 7.90 3.50 0.90 0 1 

PC1232 699 8/1 /98 0.00 49.70 5.28 l.92 0 0 

PC1232 791 1111/98 0.03 36.57 2.04 l.24 0 0 

PC2131 156 2/4/97 0.00 15.50 2.10 0.50 0 1 

PC2131 159 2/7/97 0.00 7.00 1.80 0.40 0 1 

PC2131 178 2/26/97 0.05 6.70 2.30 0.40 0 0 

PC2131 179 2/27/97 0.00 12.20 2.20 0.40 0 0 
PC2131 184 3/4/97 0.00 47.97 1.51 0.40 0 1 

PC2131 239 4128/97 0.05 9.60 1.10 0.70 0 0 

PC2131 241 4/30/97 0.10 8.10 l.00 0.70 1 0 

PC2131 295 6123/97 0.20 6.10 1.50 0.40 1 0 

PC2131 386 9122/97 l.70 2l.00 1.40 3.70 1 0 

PC2131 470 12/15/97 78.00 48.00 12.00 9.00 0 0 

PC2131 535 2/18/98 0.50 27.00 7.40 7.00 0 0 

PC2131 583 4/7/98 2.00 62.00 39.00 6.00 0 0 

PC2131 597 4/21198 2.00 64.00 38.00 4.00 0 0 

PC2131 604 4/28/98 2.00 6l.00 37.00 5.00 1 0 

PC2131 611 5/5/98 0.01 24.00 6.00 1.40 1 0 

PC2131 631 5/25/98 0.01 10.00 10.00 1.00 1 0 

PC2131 640 6/3/98 0.20 26.00 l.00 4.00 1 0 

PC2131 689 7/22/98 0.05 4.60 0.25 0.33 1 0 

PC2131 768 10/9/98 0.05 4.20 0.30 0.20 1 0 

PC2131 774 10/15/98 0.06 5.89 0.37 0.48 1 0 

PC2131 791 1111/98 0.34 17.55 4.66 5.60 0 0 
PC3131 241 4/30/97 0.10 8.00 l.70 1.00 1 0 

PC3131 295 6/23/97 0.70 35.00 10.00 7.00 1 0 

PC3131 386 9/22/97 2.00 33.00 5.00 7.00 1 0 

PC3131 450 11125/97 3.13 20.00 4.00 2.00 1 0 

PC3131 550 3/5/98 0.10 8.08 l.81 l.20 1 0 

PC3131 651 6/14/98 0.71 39.20 9.80 7.70 1 0 

PC3131 750 9/21198 2.40 36.30 4.90 6.58 1 0 

PC3131 791 1111/98 3.47 2l.40 4.08 l.80 1 0 

PC3132 239 4/28/97 0.20 3.60 0.25 0.55 1 0 

PC3132 295 6123 /97 0.30 12.20 0.90 2.20 1 1 

PC3132 386 9122/97 0.05 35.00 2.50 2.40 1 1 

PC3132 450 11125/97 0.00 81.00 8.00 6.50 0 0 

PC3132 506 1120/98 0.04 141.55 15.78 12.77 0 0 
PC3132 566 3/21/98 0.23 4.32 0.25 0.59 1 0 
PC3132 711 8/13/98 0.37 15.61 1.06 2.35 1 1 

PC3132 791 1111198 0.06 39.90 3.25 2.61 1 1 
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PC3232 239 4/28/97 0.01 16.00 2.30 0.30 1 0 

PC3232 295 6/23/97 1.00 48.00 9.00 4.00 1 0 

PC3232 386 9/22/97 1.00 52.00 4.00 3.00 1 0 

PC3232 535 2/18/98 0.00 91.00 26.00 8.00 0 0 

PC3232 563 3/ 18/98 0.00 102.83 34.32 9.86 0 0 

PC3232 591 4/15/98 0.00 280.00 10.00 15.00 0 0 

PC3232 604 4/28/98 0.00 150.00 9.00 8.00 0 0 

PC3232 639 6/2/98 5.00 73.00 6.00 6.00 0 0 

PC3232 722 8/24/98 0.00 27.00 10.00 0.80 0 0 

PC3232 723 8/25/98 0.00 27.62 10.14 0.73 0 0 

PC3232 748 9/19/98 0.00 12.00 1.84 0.23 1 0 

PC3232 783 10/24/98 0.73 30.72 5.85 3.20 1 0 

PC3232 791 11/1/98 0.72 31.20 2.96 1.95 1 0 

Table A.2.: Inspection data for bearing 4 
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Chapter 5 

Closure 

1 Overview 

This research originated from a lack of means to integrate two established preventive 

maintenance strategies, statistical failure data analysis and vibration monitoring. 

Intuitively such an integration could have enormous benefits because of the well known 

successes that these two techniques have had on their own in the past. After studying 

typical vibration monitoring practices in the industry, it was decided that the most logical 

route to overcome the lack of integration between the two techniques, was by using 

regression models in renewal theory. The strategy followed was as follows: 

(i) A thorough literature survey on existing regression models In renewal 

theory. 

(ii) Identification of the most suitable model for the specific application. 

(iii) A comprehensive, in-depth study on the chosen model with the emphasis 

on its practical use. 

(iv) Practical evaluation of the theory for this application with a case study from 

the industry. 

The literature study on regression models revealed that the Proportional Hazards Model 

(as in (Ll.» was most suitable regression model to integrate failure time data and 

vibration information (in the form of covariates). 

h(t, z(t» = ho (t) . exp(y· z(t» (1.1.) 

The three most important reasons for this selection are: (1) The PHM has the widest 

theoretical foundation; (2) Parameter estimation for the PHM (and specifically the fully 

parametric PHM) is relatively tractable; and (3) The PHM has been used in similar 

reliability applications before. 
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An in-depth study into the PHM showed that the fully parametric Weibull PHM (see 

(1.2.)) was most suitable for this application and numerically the most attractive. 

[ )

.8-1 

h(t, z(t)) = ~~ . exp(l" z(t)) (1.2.) 

Parameters were successfully estimated with four different optimization routines of 

which the modified Newton-Raphson method proved to be the most economical. Various 

goodness-of-fit tests for the PHM were found in the literature - all striving to test the 

PHM assumptions, in one way or another. 

Only one decision making method for the PHM could be found, that of Makis and 

Jardine(13, 14l. This method predicts the optimal hazard rate that will result in the 

minimum long term life cycle cost. 

Suitable data to test the theory was found as SASOL, Secunda. The collected data was 

not perfect according to requirements but was still useful enough to produce, as far as is 

known, the first publishable case study on vibration covariates in the PHM. The case 

study revealed that close practical involvement is crucial in the modelling process and 

that statistical tests alone could easily lead to a misleading model. Only two of a total of 

twelve covariates were identified to be good predictors of failure by the PHM. 

The decision model was proved to be valid and useful by several theoretical evaluations 

but also to be practical, by additional data. The case study showed that huge cost savings 

could have been brought about if the recommendations of the PHM were known and 

were acted upon. 

2 Recommendations 

From facts discovered and experience gained through this research project, three 

recommendations for future research/practices can be made: 

(i) It is very surprising that so little research has been done on the PWP-model up to . 

date. (Chapter 2, section 4.). This model has enormous potential because of its 

extreme versatility. It adds a third dimension to the PHM by taking previous 

replacements of the same item into account and it can handle both renewal and 

repairable systems situations. This model may have the ability to be a much 

better representation of practical situations than, for example, the PHM. It is 

recommended that the PWP-model's abilities are investigated further and it is 
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predicted that a major contribution to reliability modelling would be the result. 

(ii) The concept of minimum long term life cycle cost (Chapter 3, section 3.1.) is not 

accepted very well in the industry. People involved with reliability of items 

reject this concept as soon as an item lasts longer that the estimated time of 

minimum long term life cycle cost. Many reliability engineers have expressed 

their need for a decision making technique that predicts the 'exact' time to 

failure of an item rather than the minimum long term life cycle cost. Such a 

technique would certainly be possible if used with a model allowing for 

covariates, although no such technique was found in the literature during this 

research. A remaining service life estimation technique based on a regression 

model will be of wide practical interest if developed successfully. 

(iii) Vibration data recording practices in the South African industry were found to 

be very incomplete and ineffective. (Chapter 4, section 2.2.). This is mainly due 

to a lack of commitment to vibration monitoring by managers but also due to 

unfriendly and disorganized CMMS's. It is believed that the successful case 

study described in this dissertation will improve these practices if published 

widely enough. 
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