
Chapter 3 

Proportional 
Hazards Modelling 

1 Introduction 

In the preceding chapters, the problem that motivated this research was described, 

possible solutions to the problem were considered and the Proportional Hazards Model 

(PHM) was selected as the most logical route to the solution of the problem. In Chapter 

3, the PHM is considered in detail. 

Cox proposed the original PHM in 1972, initially intended for biomedical applications[21. 

The model was immediately considered to be a revolution in life data analysis and it is 

still applied on a wide variety of survival data today. It only started to become popular 

amongst reliability modelers in the early 1980's, especially because of the model's 

ability to model the hazard rate without making assumptions about its functional form (if 

used in its semi-parametric form). The PHM have ever since the 1980's been applied in 

diverse reliability applications, for example, component failures in a light water reactor 

plant[611, marine gas turbine and ship sonar[81, motorrettes[71, aircraft engines[501, high 

speed train brake discs[511, sodium sulfur cells[521, surface controlled subsurface safety 

valves[531, machine tools[541, diesel engines[51, aircraft cargo doors[551, rolling mills[56,571, 

power transmission cables[58,591 and components of a mine loader[601. 

It is impossible to include all the theory, which was developed over the years of the 

model's existence in this dissertation. For this reason, the discussion is limited to the 

Proportional Hazards theory required to apply the model in practical situations although 

some attention is given to the original PHM for the sake of completeness. An optimal 

renewal decision making technique developed specifically for use with the model IS 

considered as well. 
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Chapter 3: Proportional hazards modelling 33 

Numerical methods required to implement the model in real life situations are also 

described in a fair amount of detail. 

2 The Proportional Hazards Model 

Before introducing the PHM, the probabilistic hazard rate h(t) as derived in Chapter 1 is 

repeated here for convenience as equation (2.1): 

h(t) = J(t) 
R(t) 

(2.1) 

The probabilistic hazard rate is a function of time only, a property which seriously limits 

the function ' s abilities in reliability modelling as discussed previously. Cox addressed 

this problem in the PHM by assuming that the hazard rate of a component can be 

determined by the product of an arbitrary and unspecified baseline hazard rate, ho (t) 

and a functional term l(z (t». The baseline hazard rate is a function of time only and 

the functional term is a function of time and covariates (concomitant or explanatory 

variables). (If the covariates are independent of time, the functional term is only a 

function of the covariates, i.e. 1(~) )' . 

-
h(t, z) = ho (t) . l(z(t» , (2.2) 

-
where r is a regression vector estimated during model fitting procedures. 

There are several possible forms for the functional term l(z(t». Some are: the 
-- --

exponential form, exp(y · z(t»; the logarithmic form, 10g(1 + exp(r · z(t») ; the inverse 

linear form, 1/(1 + r· z(t» ; or the linear form, 1 + r · z (t) . The exponential form of the 

functional term has been used most often in reliability applications (and is the only form 

considered in this dissertation) and then equation (2.2) becomes: 

h(t, z(t» = ho (t) . exp(r· z(t» (2.3) 

All theory on PHM presented in this dissertation will allow for time-dependent 

covariates, i.e. z(t) , for the sake of generality. 

This discussion deals with two forms of the PHM, namely (a) the semi-parametric PHM; 

and (b) the fully parametric PHM. When using the semi-parametric form, no assumption 

needs to be made about the shape of the baseline hazard rate when estimating the 

, Although time, t, is used throughout as the unit of measure in this dissertation, any other suitable use 
parameter could be used instead, such as mileage or tons processed. 
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Chapter 3: Proportional hazards modelling 34 

regression coefficients, although this only yields relative risks. To detennine absolute 

risks, the baseline hazard rate has to be estimated first. This feature is considered to be a 

huge advantage even though some numerical difficulties are often encountered. The 

fully parameterized model makes use of a continuous distribution, most often the 

Wei bull distribution because of its flexibility, for the baseline hazard rate, which makes 

it much more numerically tractable. 

2.1 Assumptions of the PHM 

The assumptions on which the PHM is postulated are best illustrated for the model 

with time-independent covariates: 

a) Renewal times are independent and identically distributed. 

b) All influential covariates are included in the model. 

c) The ratio of any two hazard rates as detennined by any two sets of 

covariates Zl and Z2 associated with a particular component has to be 
- -

constant with respect to time, i.e. h(t,zl)ah(t,z2)' (This assumption 

implies that the covariates acts multiplicatively on the hazard rate of the 

component). 

Assumption (c) is illustrated graphically in Figure 2.1 below: 

'" '" 

Time 

--- - --~ 

Figure 2.1: Graphical illustration of PHM assumption (c) 

Figure 2.1 shows that the two hazard rates, h(t, Z 1) and h(t, Z 2) , calculated from 

different covariate vectors associated with a specific component are proportional to 

each other with respect to time. 
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Chapter 3: Proportional hazards modelling 35 

2.2 The Semi-Parametric PHM 

The semi-parametric PHM has a very valuable attribute in that no assumption needs 

to be made about the baseline hazard rate of the model when estimating the 

regression coefficients. This means that relative risks of the item under 

consideration can be estimated without any knowledge about the time dependent 

failure behavior of the item, as is contained in the baseline hazard rate. The reason 

for the existence of this advantageous property becomes clear in the explanation of 

the estimation technique proposed by Cox with the proposal of the PHM, called the 

method of partial likelihood. 

As an introduction to the method of partial likelihood, the method of maximum 

likelihood is discussed in general terms. 

2.2.1 The Method of Maximum Likelihood 

The method of maximum likelihood is a well known method for, amongst 

other uses, estimating regression coefficients and is used widely in the 

literature. It is important to describe this method before introducing partial 

likelihood since these methods are closely related and the method of 

maximum likelihood is used to determine the fully parametric PHM 

coefficients. 

Likelihood refers to the hypothetical probability that an event, which has 

already occurred, would yield a specific outcome. This concept differs from 

that of probability in that probability refers to the occurrence of future events, 

while a likelihood refers to past events with known outcomes. 

The method of maximum likelihood starts off by specifying the joint 

probability distribution function for events, in this case, failures. (For the 

moment the possibility of suspensions is omitted). We assume a sample of 

size n drawn from some probability distribution. Let T = [T] , T] , ... . ,Tn ] 

denote failure times as random variables. The probability that T j = 1'; can be 

expressed informally as the probability density at 1'; , 1.e. 

P{Tj =1'; } =f(Tj,r,Zj(t)). By using the law of total probability, the joint 

probability of all the random variables is given by: 

n 

P{T] =T[,T] =T2 , ••• ,Tn =Tn}= ITf(Tj,y,z;(t)) (2.4.) 
;;[ 

Once the random variables have been observed, (2.4.) can be used to calculate 
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Chapter 3: Proportional hazards modelling 36 

the likelihood of events with all observed values fixed and r the only 

unknown as shown in (2.5 .) below: 

n 

L(Y) = ITf(T; ,y,z;(t)) (2.5.) 
;=1 

Equation (2.5.) can be extended to include suspended observations (see 

reference [3]): 

n 

L(y) = IT f(T; ,y, z; (t)r' . R(T; ,y, z; (t))I-C, , (2.6.) 
;=1 

for a data set with n renewals each at time T; with C; = 1 in case of failure and 

c; = 0 for suspended observations. The value of r that maximizes L is the 

most appropriate regression vector for the model since it maximizes the 

probability of occurrence of the observed data set. Numerical methods suitable 

to estimate the regression vector are discussed later in Chapter 3. 

Maximum likelihood estimation is suitable for estimating both the seml­

parametric and the parametric PHM although numerical difficulties are often 

experienced with this technique and the semi-parametric model. 

2.2.2 Method of Partial Likelihood 

In his original paper[2], Cox suggested parameter estimation for the seml­

parametric PHM by maximizing an expression which he called conditional 

likelihood. This term gave rise to much discussion in the literature where the 

validity of referring to the term as conditional likelihood was argued by 

critics. For the estimation technique of Cox to be a conditional likelihood 

function it had to be a likelihood function based on the conditional distribution 

of data, given some statistic, which it was certainly not[62] . It was neither a 

marginal likelihood function because then it had to be based on the marginal 

distribution of some reduction of the data. In reply[63] Cox showed (somewhat 

informally[3]) that his technique was accurate and consistent with considerably 

less numerical difficulties. He also eliminated all confusion in terminology by 

renaming the technique to partial likelihood because of the fact that it was not 

a likelihood function in the usual sense. 

Suppose a vector of random variables denoting failure times (for the moment 

suspensions are not considered) is observed, T = [T], T2 , .... , Tn] , which comes 
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Chapter 3: Proportional hazards modelling 37 

from a probability density J(T, Zi (t),r, ho (t)). The baseline hazard function 

ho (t) is considered to be a nuisance function in this case. If a one on one 

transformation on the data in Tj is performed with auxiliary variables 

A1,B1, .... ,An,Bn such that A(k) =[A1 , .... ,Ak] and B(k) =[B1 , .... ,Bk] the 

likelihood of A(k) and B(k) is: 

m m 

I1J(bk Ib(k-I),a(k-I),y,ho(t))·I1J(ak Ib(k),a(k-I) ,y) (2.7.) 
k~1 k~1 

COX[63] defined the second product on the right hand side of (2.7.) as the partial 

likelihood function since only a part of the joint probability density function is 

considered and the nuisance function ho (t) is eliminated. The mathematical 

proof of the validity of partial likelihood is discussed in reference [63). See 

also reference [64] for a thorough discussion on the topic of partial likelihood. 

For the PHM, the partial likelihood can be constructed as follows: as before, 

suppose a certain number of similar items have been renewed on k occasions 

of which n were failures at T.., T2 , .... , Tn with corresponding covariate vectors 
---- --
ZI (t), Z2 (t), .... , Z n (t) . Define the order statistic to be O(t) = [T(I)' T(2) , .... , 1(n)] 

and the rank statistic to be ret) = [(1),(2), .... ,(n)]. The order statistic refers to 

the T(i)'s ordered from smallest to largest and the notation (i) in the rank 

statistic refers to the label attached to the th order statistic. Consider a set 

R(t(i)) of items at risk at time T(7). The partial probability that item (i) fails 

at T(i) given that the items R(t(i)) are at risk and that exactly one failure 

occurs at 1(i) is: 

h(1(i) , Z (i) (t)) 
= 

2>(T(i), ZI (t)) 
IER(1( i)) 

exp(r' z(iJ (t)) 

I exp(r ' ZI (t)) , 
IER(T(i)) 

(2.8.) 

where i = 1,2, ..... ,k. Equation (2.8.) shows that the baseline hazard rate has no 

effect on the joint probability and hence no effect on the estimated values of 

r . The partial likelihood can now be calculated by taking the product over all 

the failure points: 

(2.9.) 

To account for the possibility of ties at a specific T(i), i.e. the occurrence of 

more than one failure at a specific T(iJ' Breslow[65] has derived the following 
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Chapter 3: Proportional hazards modelling 38 

approximation of the partial likelihood (for numerical tractability): 

PL(y) = Ii exp(y.~) d' 

j;1 [ L expG · Zl (t))] , 
leR(1(i» 

(2.10.) 

where Sj = LZij(t) is the sum of the covariates of the dj items observed to 
j 

fail exactly at TU) . 

-
The value of y that maximizes PL(y) is the most appropriate for the semi-

parametric PHM. At this optimal point, the partial derivatives of PL(y) with 

respect to all the m measured covariates should be zero, i.e.: 

(2.11.) 

where S jj is the /h element in the vector S j and 

(2.12.) 

A suitable optimization technique is required to perform the maximization 

such as Newton-Raphson iteration. This technique and others are described 

later in Chapter 3. 

2.2.3 Efficiency of Partial Likelihood Estimation 

After the introduction of partial likelihood, its efficiency was measured and 

compared by many researchers, for example Kalbsfleich and Prentice[31, and 

Effron[681. 

Kalbsfleich and Prentice investigated the efficiency of the partial likelihood 
-

with the following two questions in mind: (1) Can the estimated y be 

improved at all for the case where ho (t) is unspecified?; and (2) How does 

the partial likelihood estimate of y compare to a maximum likelihood 

estimate? Two separate investigations were done, one for time-independent 

covariates and one for time-dependent covariates. 

It was found for time-independent covariates that the partial likelihood 
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Chapter 3: Proportional hazards modelling 39 

estimation was 'reasonably' efficient. The details concerning the investigation 

are not discussed, see reference [3] pp. 103-113 for a comprehensive 

explanation. Cooper and Darch[69] agree with this statement after doing a study 

on armoured vehicles. For time-dependent covariates it is difficult to predict 

the partial likelihood's efficiency and it could in some cases even be very low. 

See reference [3], pp. 140-141. 

2.2.4 Estimation of the Baseline Hazard Rate 

The baseline hazard rate function represents the hazard rate that an item would 

experience if covariates had no effect on the item. No assumption needs to be 

made about its functional form for the semi-parametric PHM provided that the 
-

regression vector y is known. Several authors have developed techniques 

with which the baseline hazard rate can be estimated, including Cox[2], 

Kalbsfleish and Prentice[3], Breslow[65,66] and Link[67]. The method of Breslow 

is presented here. 

Suppose that ho (t) is a step function which jumps just before the occurrence 

of a failure and is constant between times to failure, i.e. : 

ho (t) = hOi ' TU-I) < t ..:;, 1(i)' i = 1,2, .... , n (2.13.) 

With ho (t) defmed as in (2.13.), an expression for the joint distribution can be 

derived and reduced to Cox's partial likelihood, exactly as explained in 2.2.2 

which results in: 

(2.14.) 

with hOi completely distribution-free. The distribution-free baseline hazard 

rate is often used to check the appropriateness of continuous distributions used 

for the baseline hazard rate. 

2.3 The Fully Parametric PHM 

By assuming a continuous distribution for the form of the baseline hazard rate, the 

PHM is completely parameterized. The very versatile Weibull distribution (and the 

only one considered in this research project) is most often used for the 

parameterization because of its flexibility. It is impossible to estimate the baseline 

Vibration Covariate Regression Analysis of Failure Time Data with the Proportional 
Hazards Model 

 
 
 



Chapter 3: Proportional hazards modelling 40 

hazard rate independently for the fully parametric PHM1 and the distribution- and 

regression parameters have to be estimated simultaneously. Considerably less 

numerical problems arise for the Weibull PHM and its is much more numerically 

convenient. 

2.3.1 Statistical Model 

The time-dependent Weibull distribution is given by: 

( )

/l-I 

!(t) = ~ ~ . exp(-(t/17/) , (2 .15 .) 

with its corresponding hazard rate function: 

( )

/l-I 

h(t) = ~ ~ , (2.16.) 

where jJ and 17 are shape and scale parameters of the distribution, 

respectively. 

If the Weibull distribution is used as the baseline hazard rate of the PHM as 

presented in (2.3.), the model becomes: 

( )

/l-I 

h(t'Z(t))=~ ~ ·exp(y·z(t)), (2.17.) 

which is a fully parametric model. 

From reliability theory we know that the reliability, R, of a component under 

the influence of ageing only, just before renewal at 1'; is: 

(2.18 .) 

If U j = (1'; /17)/l , then U j has a unit negative exponential distribution. Similar 

to (2.18.), the reliability at a time 1'; for a component under the influence of 

time-independent co variates according to the PHM can be estimated by: 

1 Also referred to as the WeibuII Proportional Hazards Model in this dissertation. 
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R(I,~) = exp[ - r ~( J' dtexpG· ~)l 
(2.19.) 

= exp[- (Tj / '7 Y' exp(Y· Zj)] 

with Vj = (Tj h Y' expcY' Zj) , again with unit exponential distribution. For the 

case of time-dependent covariates, the covariates have to be included in the 

integration to estimate the reliability of a component at time 1';: 

R(I, z(I)) = exp[ - r ~ (J' exp(r' z, (I))dl] 

= exp[ - r exp(r ' z, (I))d(t/ ry)p 1 
(2.20.) 

with Vj = f; exp(Y· Zj (t))d(t/ '7)/1, also with unit negative exponential 

distribution. In practice, (2.20.) is often approximated by: 

_ { i _ - [(t )/1 (t )/1]} R(t,z;(t))=exp ~exp(y.z;(tk))· ~I -; , (2.21.) 

where 0 = to < tl < .... < 1'; are inspection points where covariate measurements 

were taken and z; (tk) = 0.5· (Zj (tk) + Zj (tk+I))' 

2.3.2 Parameter Estimation 

The method of maximum likelihood IS used to estimate the model's 

parameters. The full likelihood is obtained by: 

L(P,'7,Y) = IT h(1';, Zj (1';)) . ITR(Tj,zj(t)) (2.22.) 
j 

where i indexes failure times and j=i,2, .. . ,n indexes failure and suspension 

times. If (2.17.) and (2.20) are substituted in (2.22.), the full likelihood 

becomes: 
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L(jJ,17,Y) = ITjJ(1;)fJ-
1 

exp~ .zi(1;))· 
i 17 17 

IT exp[ - J:J expcY' Z j (t))d(t / 17)fJ ] 
) 

(2.23.) 

-
The same values for jJ, 17 and r that maximize (2.23.) will also maximize 

- -
10g(L(jJ, 17, r)) or l(jJ, 17,r), the log-likelihood. It is numerically much more 

-
attractive to maximize l(jJ,17,r) given by: 

l(jJ,17,Y) = rln(jJ!17) + L ln[(Ti l17)fJ-1
] + 

LY' Zi (1;) - L f2 exp(Y· Z j (t))d(t / 17)fJ ' 
(2.24.) 

i j 

with r being the number of failure renewals. 

Several maximization techniques were tested on (2.24.) with success. This 

includes (a) a Neider-Mead type simplex search method as is commonly found 

in the literature, (b) a BFGS Quasi-Newton method with a mixed quadratic 

and cubic line search procedure, (c) Snyman's dynamic trajectory 

optimization method[20.21] and (d) a modified Newton-Raphson procedure that 

gives fast convergence. 

3 Covariates 

The ability of the PHM to include covariates in its estimations and predictions is a very 

attractive attribute of the model. Covariate behavior and their effects on the PHM are 

not trivial issues however and a proper background knowledge of covariates is required 

before the model can be used with confidence. Some comments on these issues are 

presented in this section. 

3.1 Effects of Interaction and Omission of 
Covariates 

Interaction (dependency) of covariates can influence parameter estimation 

significantly and therefore the presence of this phenomenon should be checked. 

The easiest, most practical way to test for interaction of covariates is by introducing 

a new temporary covariate. (This is only to get a feel for the behavior of the data 

and is not very scientific). The temporary covariate is simply the product of the 
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covariates under discussion and the new covariate's effect on the model is then 

tested. (Usually the interaction of only two covariates will be checked at a time). If 

interaction is present, the new covariate will be statistically significant in the 

model. The results of statistical tests for interaction, i.e. testing for significance of 

the new covariate in the model, should also be practically justified if possible, to 

identify possible inconsistencies in the data. 

Bendell et al. [51] investigated covariate interaction by dividing data into groups 

(strata) based on major differences in the data and then estimating the regression 

coefficients for each group. It was shown that a suitable test statistic can be defined 

to test the effect of a particular covariate on different groups. See also reference 

[70] for a discussion on 'stratum-covariate' interactions. 

Omission of influential covariates from the PHM also effects the regressIOn 

coefficients of the model. Suppose ZI and z2 are two significant covariates with 

corresponding regression coefficients YI and Y2. If only ZI is considered in the 

model and its coefficient is Yl> then IYII < h I· The estimates for YI are 

asymptotically biased towards Y 2 and have smaller asymptotic variance than 

Y2 [71]. The magnitude of the bias depends on the relative importance of the omitted 

covariate to that of the included covariate. Omission of influential covariates could 

also lead to overestimation or underestimation of the baseline hazard rate[72]. 

3.2 Effects of Measurement Error and 
Misspecification of Covariates 

Significant errors in the estimation of the regression vector yare possible if an 

inappropriate parametric form of the baseline hazard rate is specified or if errors in 

covariate measurement are distributed in an dismal manner. The regression vector 

is influenced in the same manner as in the of case of linear regression when 

measurement errors in the covariates are present. It is possible to test the 

significance of the effects of a covariate, in spite of its measurement error and 

misclassification, provided that sufficient information or assumptions are available 

relating to the covariate error or misclassification distribution[73]. Lagakos[74] 

determined that the efficiency of the partial likelihood estimator may be very low 

compared to the correct model if covariates are misspecified. 
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3.3 Effects of Monotonicity and Multicolinearity 
of Covariates 

The 'usual' difficulties of regression analysis like multicolinearity, monotonicity 

and large covariate values are often encountered in the PHM as well. In such cases, 

maximization procedures used for parameter estimation often fail to converge. 

Monotone increasing or decreasing covariate values in a data set, when ordered 

according to the magnitude of times to failure, is the biggest cause for divergence 

of maximization procedures. Bryson and Johnson[75] suggest seven steps to avoid 

the problems associated with monotonicity of covariates. In a censored data set, it 

may occur that the covariate at each failure time is either the largest or the smallest 

of all covariates in the risk set at that time. In such cases the regression vector 

estimate is often infinite. 

It is important to formulate the covariates in such a manner that co linearity is 

avoided during the estimation of the regression vector since results may be very 

inaccurate. The data set could be analyzed in different groups based on a trail-and­

error method to address this problem. Peduzzi et al. [76] published a general 

procedure for the selection of covariates in a nonlinear regression analysis to avoid 

colinearity. This is useful when there is a large number of covariates and it is 

difficult to determine the priority of selection of covariates for the model to their 

confusing effects on the times to renewal[591• 

3.4 Time-dependent Covariates 

Numerous papers have been published on the theory of time-dependent covariates 

in the PHM. This include topics like efficiency of estimation techniques for 

regression coefficients of time-dependent covariates[3], a two-step PHM model to 

accommodate time-dependent covariates more accurately[771, techniques to detect 

time-dependent effects of fixed covariates[78
1 and graphical techniques based on 

partial residuals suitable to detect time varying effects of covariates[79]. The 

detailed theory and analysis of time-dependent covariates are not important for this 

dissertation but rather its practical use and therefore this discussion is limited to 

some practical calculation issues. 

Covariates in the Weibull PHM in (2.20.) are allowed to be time-dependent and 

assumed to be known for all values of time, t. This assumption is not entirely valid 

for the case of vibration covariates because vibration inspections are normally done 

on a discrete periodic basis. It is thus necessary to estimate covariate values 

between inspections for the model in (2.20.) to hold. Experience has shown that 
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there is no fixed rule for this estimation (especially not for vibration covariates) 

and every situation should be considered separately. In (2.21.) an estimation 

technique was presented where the covariate values between any two inspections 

were taken to be the average of the covariate values between the two particular 

inspections. Jardine et al.[4] describe a similar method that was used with success 

on aircraft and marine engine failure data. 

In some situations where co variates have a monotonic behavior, conventional 

interpolation techniques can be used with confidence such as linear, hyperbolic, 

parabolic, geometric or exponential interpolation, depending on the particular 

situation. It can be much more difficult to predict the values of other, non­

monotonic, situations between inspections. In these cases the most sensible option 

is usually to consider the covariate behavior as a continuous right jumps process, 

where covariate values only increase or decrease at inspections and remain 

constant between inspections. 

4 Numerical Model Fitting Procedures 

Four optimization techniques were implemented successfully to fit the Weibull PHM 

with the method of maximum likelihood, i.e. converged to the point where all the 

objective function's partial derivatives were zero, namely: 

1. A NeIder-Mead type simplex search method. 

11. A Standard BFGS Quasi-Newton method with a mixed quadratic and cubic line 

search procedure. 

111. Snyman's dynamic trajectory optimization method[20,21] 

IV. A modified Newton-Raphson procedure. 

The performance of each one of the methods was measured according to their economy 

(number of iterations needed before convergence, number of objective function 

evaluations and number of partial derivative evaluations) and robustness (the accuracy 

of initial values required for convergence and its ability to handle steep valleys and 

discontinuities in the objective function). Methods (1) and (2) maximized the likelihood 

function successfully but performed fairly mediocre. Snyman's method was found to be 

somewhat expensive but extremely robust which is a very valuable attribute. The 

modified Newton-Raphson method proved to be by far the most economical and fairly 

robust as well. Of the four above mentioned techniques, this technique is certainly the 

most suitable for optimization of the maximum likelihood function. 

For the above mentioned reasons, only Snyman's method and the modified Newton­

Raphson method are considered in this discussion on numerical model fitting 
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procedures. Snyman's method is presented ill fairly general terms to illustrate its 

robustness, but the Newton-Raphson method is described in detail since this method is 

used in the case study in Chapter 4. 

4.1 Snyman's Dynamic Trajectory Optimization 
Method 

Snyman's method models a conservative force field in rn-dimensions (the number 

of variables in the objective function) with the objective function and then monitors 

the trajectory of a particle of unit mass (released from rest) as it 'rolls' down the 

objective function to the point of least potential energy, which is the minimum of 

the objective function. 

In this general presentation of Snyman's technique, the objective function is l(fJ) , 
- -

the maximum log-likelihood function as presented in (2.24.) , where fJ = [,8,17,1'] . 

4.1.1 Cha racteristics 

The attributes ofSnyman's technique can be summarized as follows : 

4.1.2 

1. It uses only gradient information, i.e. "\l[l(fJ)] . 

n. No explicit line searches are performed. 

Ill. It is extremely robust and handles steep valleys and discontinuities in 

the objective function or gradient with ease. 

IV. This algorithm seeks low local minimum and it can be used as a basic 

component in a methodology for global optimization. 

v. The method is not as efficient on smooth and near quadratic functions 

as classical methods. 

Basic Dynamic Model 

Assume a particle of unit mass in a rn-dimensional conservative force field 
- -

with potential energy at fJ given by l(fJ) , then the force experienced by the 

particle at fJ is given by: 

rna = fJ = -"\l[l(fJ)] , (4.1.) 

from which it follows that for the time interval [0, t] : 
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(4.2.) 

Equation (4.2.) can be simplified by expressing it in terms of kinetic energy 

as: 

T(t) - T(O) = 1(0) -/(t) (4.3.) 

From (4.3.) it evident that l(t) + T(t) = constant, which indicates conservation 

of energy in the conservative force field. It should also be noted that 

t11 = -t1 T , therefore as long as T increases, I decreases, which is the basis of 

the dynamic algorithm. 

4.1.3 Basic Algorithm 

- - -
Suppose 1((J) has to be minimized from a starting point (J(O) = (Jo, then the 

dynamic algorithm is as follows: 

1. Compute the dynamic trajectory by solving the initial value problem, 

O(t) = -V[l(8(t))] , 8(0) = 0 and 8(0) = (Jo . In practice the numerical 

integration of the initial value problem is often done by the 'leap-frog' 
method. Compute for k = 0,1,2,.... and time step t1 t, the following: 
- k+1 - k -;-k -;-k+1 -;k -:; k -:;k --k 
(J = (J + (J t1t and (J = (J + (J t1t, where (J = -V'[l((J )] and 

00 = (1/2) Bot1 t. 
ll. Monitor O(t), the velocity of the particle. As long as the kinetic energy 

T = ~118(t)11 increases, the potential energy decreases, i.e. 1(8) decreases. 

lll. As soon as T decreases, the particle is moving uphill and the objective 
-;k+1 -;k 

function is increasing, i.e. II (J II ~ II (J II. Some interfering strategy 

should be applied to extract energy from the particle to increase the 

likelihood of decent. A typical interfering strategy is to let 
-;-k -;k+1 -;k - k+ 1 - k+l - k 
(J =(l/4)((J +(J) and (J = (l/2)((J +(J) after which a new 
- k+1 
(J is calculated and the algorithm is continued. 

lV. To accelerate convergence of the method, the algorithm should allow for 

magnification and reduction of the stepsize, t1 t, depending on the 

particle's position. 
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