
Chapter 2 

Regression Models 
• In Renewal Theory 

1 Introduction 

In Chapter 1, five regression models in renewal theory were identified that have the 

potential to lead to the dissertation objectives. In this chapter the results of a thorough 

literature study on these models are discussed. 

It was discovered that all the models have the same broad structure. First, a baseline 

function that describes the component's reliability as a function of time (usually the 

survivor function or hazard rate function) is estimated with either parametric or noo­

parametric techniques. Secondly, a functional term dependent on time and covariates is 

allowed to influence the baseline function (usually by multiplication) to estimate the 

total reliability of the component. 

Throughout this chapter, the functional term is referred to as A, which is a function of 

time and covariates, i.e. A(z(t)). Let z(t) denote a column vector of m measured 

covariates or z(t) =[ZI(t) Z2(t) .... zm(t)f. For the sake of generality, covariates are 

assumed to be functions of time, although covariates may be time-independent. Further, 

suppose that Y is a row vector of regression coefficients associated with a specific 

model's covariate vectors i.e., Y = [Yl Y2 ..... Ym], estimated during model fitting 

procedures. The terminology is followed closely, except for the PWP model where some 

additional variables are needed to describe the model. 

Each model is first introduced in mathematical terms and then some comments are made 

about the model's abilities, deficiencies and applicability. After the discussion of the 

different models, the model most suitable for this research project is selected with a 

proper motivation for the selection. 
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2 Accelerated Failure Time Model 

The accelerated failure time model was introduced by Pike[31] in 1966 and is considered 

as the second most popular regression model used in renewal theory today. It is a fully 

parametric type of model and strives to estimate the survivor function. The model allows 

covariates to influence expected life time of a component directly, in a multiplicative 

manner. 

2.1 Mathematical Model 

Pike[31] presents the model as follows: 

R(t, z(t)) = Ro (-i(z(t)) . t) (2.1.) 

In probabilistic terms the model can be written as: 

R(t, z(t)) = P{T ~ t I z(t)} (2.2.) 

Ro (t) is a parametric baseline survivor function estimated without considering 

covariates. The AFTM is then constructed by allowing covariates to influence life 
-- -

time by the functional term, -i(z(t)). In (2.1.), it is required that -i(O) == 1 for the 

case where covariates do not have an effect on life time and -i(z(t)) > 0 where 

covariates do playa role. 

A popular form of the functional term is the log-linear function, i.e. 

-i(z(t)) = exp(,r· z(t)) , where r is a vector of regression coefficients. In this case, 
-- --

-i(z(t)) > 1 accelerates and -i(z(t)) < 1 decelerates the rate at which a component 

moves through time with respect to the baseline survivor function. 

Leemis[32] derived the general hazard rate function for the AFTM as: 

h(t, z(t)) = -i(z(t)) · ho (-i(z(t)) . t) (2.3 .) 

Newby[33] suggests the maximum likelihood method to estimate the model 

parameters although the method of moments have also been used successfully. 

2.2 Comments 

The theory of AFTMs has been developed in detail over the 33 years of the model's 
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existence. Numerous theoretical publications on model estimation techniques, 

goodness-of-fit tests and extensions for the model to suit repairable systems 

reliability are found in the literature. A very good example of such a publication is 

Lin et. al. [35]. 

Not only has the AFTM a sound theoretical base, but it has also been applied 

widely on failure time data, especially in biomedical applications and more recently 

in reliability situations. Four relevant publications proving the abilities of the 

AFTM are: 

1. Martorell et. al. [36]. In this paper the AFTM is used successfully to estimate the 

useful remaining life of nuclear power plants. Results are compared to methods 

not incorporating covariates. The authors conclude that this model is a useful 

maintenance management support tool. 

2. Addison et. al. [37] used the AFTM to model unemployment duration data with 

attributes like employee age and profession. The results are compared to Cox's 

proportional hazards model (considered later in this chapter). 

3. Shyur and Luxhoj[38] use Cox's PHM, AFTM and neural networks to model 

data obtained from ageing aircraft with success. 

4. Publications where fatigue crack growth is modeled by the AFTM are 

encountered frequently in the literature. Principles of fracture mechanics as 

applied in fatigue crack growth are very suitable for the parametric approach of 

AFTMs. See [27] and [33]. 

Solomon[34] identified several cases where the AFTM was specified inappropriately 

because of many illustrations where accelerated failure time models seemed to arise 

naturally in practice. Newby[33] reports some of these misspecifications as well. 

Crowder[27] gives guidelines as to when the AFTM is appropriate. 

The AFTM is established in regression type failure analyses although it has certain 

limitations. Newby[33] describes this model to be "an effective alternative to the 

proportional hazards model in appropriate cases" after a thorough study on both 

PHMs and AFTMs in 1988, thereby suggesting that the PHM is superior to the 

AFTM. 

3 Proportional Hazards Model 

Failure time data analysis underwent a total revolution after COX[2] proposed this model 

in 1972. It was first intended for use in biomedicine but was soon modified to be suitable 

for the field of reliability. PHMs model the hazard rate of a component as the product of 

a baseline hazard rate dependent of time only and a functional term dependent on time 
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and covariates. 

The PHM was originally proposed as a semi-parametric model and regressIOn 

parameters can be determined independently of the estimation of the baseline hazard rate 

although this only yields relative risks. For an absolute hazard rate, the baseline hazard 

rate has to be estimated. In general the PHM is used in its parameterized form to 

overcome numerical difficulties. 

Extensions made to the original PHM by Prentice, Williams and Peterson[ll) lead to the 

famous PWP model and extensions made by Pijnenburg[I2) resulted in the additive 

hazards model, both considered later in this chapter. 

3.1 Mathematical Model 

The model is proposed by COX(2) as: 

h(t, z(t)) = ho (t) . A(z(t)) (3.1.) 

Analogous to AFTMs, the PHM consists of a baseline hazard rate, ho (t) , which is 

influenced multiplicatively by a functional term A(z(t)) ~ 0, thereby including the 

effects of covariates. Inspection shows that the total hazard rate is identical and 

equal to the baseline hazard rate when the covariates have no influence on the 

component's risk to fail. 

The assumption of the multiplicative effect of the covariates on the baseline hazard 

rate implies that the ratio of the hazard rates of any two items observed at any time t 

associated with covariate sets Zl and Z2 , respectively, will be a constant with 
-- --

respect to time and proportional to each other, i.e. her, z I) a her, Z 2) . This property 

is referred to as the proportional hazards property of the model. 

There are several possible forms for the functional term A(z(t)). Some are: the 
-- --

exponential form, exp(r · z(t)); the logarithmic form, 10g(1 + exp(r' z(t))); the 

inverse linear form, 1/(1 + r' z(t)) ; or the linear form, 1 + r ' z(t) . The exponential 

form of the functional term is used most widely and then equation (3.1.) becomes: 

h(t; z(t)) = ho (t) . exp(r . z(t)) (3.2.) 

where the regression vector r and the baseline hazard function ho (t) needs to be 

determined. Methods to estimate ho (t) for the semi-parametric model in (3 .2.) 

involve maximum likelihood theory and can be found in [2],[3] and [6]. 
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The PHM is often used in its fully parameterized form to mcrease numerical 

practicability with the aid of the Weibull distribution, which is very suitable to 

model failure time data. Parameterization is done by approximating ho (t) with the 

Weibull representation of the hazard rate, i.e.: 

[ )

fJ- l 

h(t; z(t)) = ~ ~ . exp(r . z(t)) (3.3.) 

where fJ and '1 are the shape and scale parameters of the Wei bull distribution 

respectively. Parameters of (3.3.) are generally determined by maximum likelihood 

methods, see [5] for example. 

3.2 Comments 

Proportional hazards modelling was probably the greatest contribution to time 

failure data analysis up to date and it is still the most popular model of its kind. The 

model was used extensively in biomedicine after its introduction and since the mid 

1980' s the model has been accepted more and more in the reliability modelling 

world. 

The theoretical foundation of proportional hazards modelling and its successes are 

well established in the literature. Since its introduction in 1972, countless papers 

have been published on more efficient estimation methods, goodness-of-fit tests 

and minor extensions to the model. 

Application of the model to practical failure time data is predominantly found in the 

field of biomedicine until the mid 1980's, especially the semi-parametric PHM. The 

reason for the popularity of the semi-parametric PHM is because no assumption 

needs to be made about the baseline hazard rate. Younes and Lachin[39] sum this up 

by stating: "In biomedical applications, little is generally known a priori about the 

shape of baseline functions, and models that assume specific parametric shapes 

(such as the accelerated failure time model) can be difficult to justify." 

Bendell[l] expressed his disappointment in failure data analysts in 1985 with: "Why 

is it, however, that recorded applications of the PHM to date have until recently 

been almost entirely associated with medical data?", thereby criticizing them for 

overlooking this very logical approach to life data analysis. During this time many 

more publications on the PHM in reliability applications were made with data 

obtained from, amongst others, majorettes[71, marine gas turbines and ships' 

sonar[8], valves in light water reactor nuclear generating plants[9] and aircraft 

engines[IO]. More recently the model was used with great success to model the 
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reliability of locomotive diesel engines in Canada by using types and quantities of 

foreign particles in the engine oil[5) as covariates with the failure time data. It was 

also used on aircraft and marine engine failure data[4). 

The PHM has certainly made good ground in the field of reliability modelling and 

has proved itself to be an excellent support tool for maintenance renewal decisions. 

4 Prentice Williams Peterson Model 

Prentice, Williams and Peterson[ll) made a major extension to the original Cox PHM in 

1981, with a model which will be referred to as the PWP model. The PWP model 

extends the PHM to handle situations where a specific item (component or system) 

experiences multiple failures during its life time, by allowing for stratification of the data 

in the model. The model is defined in such a way that it is suitable to model data 

generated by repairable systems and data from renewal situations (situations where the 

hazard rate is of primary importance). This model has three dimensions (compared to the 

two of the PHM) namely age, covariates and stratum which makes the PWP model 

extremely powerful. 

4.1 Mathematical Model 

Because of its complexity, the PWP model will only be introduced in very general 

terms. Suppose a specific item can experience more than one failure during its life 

time. For the moment it is not important whether the item is repaired to the as­

good-as-new or as-bad-as-old condition. Define u as the long term life variable, 

where u=O at the item's initial startup and let N(u) be the counting process of the 

multiple item failures. Every short term item life, i.e. operational period in-between 

failures, is referred to as a stratum, S, where S=N(u) + 1 at any instant u. Thus, the 

item enters the ith stratum at occurrence of the (i-1)th failure, where i=2,3, .. . and 

enters stratum 1 at u=O when N(O) =0. Also define t, the time from the most recent 

failure to the current time u. Let Z(u) be the covariate process observed from u=O. 

From the above it is possible to define a concept used in repairable systems theory, 

that of rate of occurrence offailure (ROCOF): 

d 
v(u) =-N(u) 

du 
(4.1.) 

Prentice, Williams and Peterson tried to estimate the ROCOF of items experiencing 

multiple failures with their model. They suggest two possibilities: 
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PWP model!: Vi 

Let the baseline function be a combination of the item's ROCOF and hazard 

rate by defining the function to be stratum-specific but dependent on long term 

time u. This leads to: 

vl[ul{N(u),u~O},{Z(u),u~O}]=vo (u)·exp(ys ·z(u)) (4.2.) , 

where Ys is a vector of stratum-specific regression coefficients. 

PWP model 2: V2 

For model 2 the baseline function is the stratum-specific hazard rate (as a 

function of t) of the Sb stratum: 

v2 [u I {N(u), u ~ a}, {Z(u), u ~ O}] = ho, (t) . exp(ys . z(u)) (4.3 .) 

Cox's PHM is the general case of V2, where ho, (-) = ho (-) for all strata. 

Prentice, Williams and Peterson used partial likelihood concepts similar to those 

used by COX[2] to estimate the regression coefficients. 

4.2 Comments 

From the brief description above it should be clear that this model is extremely 

powerful. Surprisingly enough very little research has been done on this model up 

to date. Except for the original proposal of the model and an unpublished Ph.D. 

dissertation of Williams[40], only a few attempts have been made to utilize the 

endless advantages of this model. Two examples are Ascher[41], who investigated 

gas turbine engine reliability in 1982 with the PWP model and Dale[42] who has 

illustrated in 1983 how the model can be used for repairable systems reliability. 

Authors who support the statement about the PWP model's extreme potential are, 

amongst others, Pijnenburg[12] and Ascher and Feingold[15]. Ascher and Feingold 

are of opinion that "the importance of the PWP model can scarcely be 

overemphasized" . 
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5 Proportional Odds Model 

The proportional odds model originated from epidemiological studies and was 

introduced by Bennett[43] in 1983 for use in biomedicine. This model is structurally 

similar to the PHM, but not a direct extension. It models the odds of an event occurring 

and unlike the PHM, does the effect of covariates in the POM model diminish as time 

approaches infinity. This diminishing property of the covariates means that the model is 

suitable for situations where a component adjusts to factors imposed on it or the factors 

only operate in early stages. 

5.1 Mathematical model 

For this model the odds of a failure occurring is defined in terms of the survivor 

function as: 

Fe-) 

R(·) 

1- R(·) 

R(·) 

This definition of 'odds' is used to introduce the POM: 

l-R(t,z(t)) l- Ro(t) 
-----':==~ = rp . -----=.....:....:.... 

R(t, z(t)) Ro(t) 

(5.1.) 

(5.2.) 

Equation (5.2.) states that the odds for a failure to happen under the influence of 

covariates are rp times higher than the odds of a failure without the effects of 

covariates. If rp increases, so does the probability of a shorter life time. 

Differentiation of (5.2.) with respect to time leads to: 

h(t, z(t)) ho(t) 
=rp._-

R(t, z (t)) Ro(t) 
(5.3 .) 

after using the coefficient rule. By rearranging the terms in (5.3 .) and re-using 

(5.2.), a hazard ratio can be obtained: 

h(t,z(t)) R(t,z(t)) l-R(t , z(t)) ---'--'---:....:..:... = rp . = -----':....:....:....:....:..:... 
ho (t) Ro (t) 1- Ro (t) 

(5.4.) 

Inspection shows that rp 11=0 = rp and rp 11=00 = 1 , from there the diminishing effect of . 

the covariates. 
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Bennett derives the full unconditional likelihood for the model in his original paper 

to estimate the model parameters. Research done by Shen[44] provides more 

efficient estimation methods and methods to enable the model to handle suspended 

observations. 

5.2 Comments 

The POM has not been used very often in reliability modelling up to date although 

it has been fairly popular in biomedical data analyses since first publication. Its 

diminishing covariate effect property is probably the primary reason for its 

unpopularity in the reliability modelling field. It is argued that the effect of 

covariates describing components' reliability will seldom taper down close to 

failure or suspension. 

6 Additive Hazards Model 

Pijnenburg[12] proposed the additive hazards model In 1991. For this model a time 

dependent hazard rate is used as a baseline function and a functional term is added to the 

baseline function. Because of the addition, the functional term need not be positive as in 

the case of the PRM which immediately gives the model more flexibility. David and 

Moeschberger[45], Aranda-Ordaz[46] and Elandt-Johnson[47] are all of the opinion that this 

is a very valuable advantage. The ARM is also suitable for repairable systems when the 

ROCOF is modeled in an additive manner. 

6.1 Mathematical Model 

As before, suppose the time dependent hazard rate is denoted by ho (t) and the 

functional term which incorporates covariates is represented by A(z(t)). The 

additive hazard model is then: 

h(t, z(t)) = ho (t) + A(z(t)) (6.1.) 

There are many possibilities for the functional term. The most attractive form of the 

functional term is a polynomial. In practice the 1 st order polynomial or straight line 
- --

is used most often because of a lack of data availability, i.e. A(z(t)) = r' z(t) . 

The behavior of the functional form gives the model its flexibility. If the measured 

covariates cause A(z(t)) ~ 0, it implies that the covariates have an accelerating 
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effect on the wear out process of the component. A negative A(z(l)) would mean 

that the covariates are such that the expected wear out process is decelerated. If 

A(z(l)) = 0 , the covariates have no additional effect on the wear out process. 

Maximum likelihood can be used to estimate model parameters. Pijnenburg also 

provides a technique with which the additive assumption of the model can be 

evaluated. 

6.2 Comments 

Although Pijnenburg has shown the potential of the ARM with Davis,[47] bus 

engine data and Proschan's[48] aircraft air-conditioning system data, the model is 

not found very often in the literature. Pijnenburg is of opinion that "the ARM 

seems to be preferable to the PRM" for the mentioned data sets. 

The model has not really been evaluated by the reliability modelling world and it is 

difficult to judge the model's potential based on publications. 

7 Selection of Most Suitable Model 

To be able to make an educated decision regarding the most suitable model for this 

research project, the following evaluation criteria were identified with which the 

different models could be compared (in order of importance): 

(i) Theoretical foundation 

(ii) Previous practical successes in reliability modelling 

(iii) Potential to lead to the dissertation objectives 

(iv) Achievability of numerical implementation 

(v) Future potential in reliability modelling 

With these criteria, a decision matrix can be constructed where different weights are 

allocated to the criteria and each model is evaluated with a mark out of 5 according to 

each criterion. The decision matrix is given on the next page in Table 7.1. 
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Re2ression mod e I 

Criterion Wei2ht AFTM PHM PWP POM AHM 

(i) Theoretical foundation 25 4 5 3 3 3 

(ii) Previous practical successes in reliability modelling 2' 5 5 I I 3 

(iii) Potential to lead to the dissertation obiectives 23 4 5 4 I 4 

(iv) Achievability of numerical implementation 22 4 4 2 4 4 

(v) Future potential in reliability modelling 21 3 3 5 I 3 

I Weighted total: 262 302 162 138 198 

Table 7.1.: Decision matrix 

The decision matrix shows that the proportional hazards model is the most suitable for 

this project and all research efforts will be focused on this model for the remainder of 

this dissertation. 
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