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Abstract 

Slat-band chains are used as conveyors by the food industry, breweries and bottling plants. 

The operating conditions require abrasion resistance and strength which are at the limit of the 

capabilities of the current material of choice, cold worked type 430. In an unconventional way 

of strengthening this material, Mintek developed a process in which the cold worked material 

is aged between 450°C and 500°C. The present work aims to elucidate the strengthening 

mechanism, using type 430 stainless steel containing 16.42% Cr and 0.036% C, in the cold­

rolled condition (38% reduction in area), with and without prior solution heat treatment. 

The Cr-rich precipitate a" may form in the 450°C to 500°C range (due to the miscibility gap 

in the Fe-Cr system), resulting in the increased hardness and lowered ductility. Mossbauer 

studies confirmed that the a", at this composition and temperature, forms through the process 

of nucleation and growth. Hardening due to a" precipitation was only observed after aging 

for 64 hours or more, however. After increasing the dissolved interstitial content by solution 

heat treatments (in the vicinity of 900°C), increases in Vickers hardness of 30-50 kg/mm2 

could be obtained after only 8 minutes at 475°C. This hardness increase corresponds to an 

increase in tensile strength of more than 100 MPa. The increased hardness does not appear to 

be caused by strain aging, and presumably results from fine carbide or nitride precipitation. 

Solution treatment at 930°C also introduced some martensite (a') into the microstructure, 

which raised the hardness of the unaged cold worked material. 

Overaging of the carbide and nitride precipitates was observed at 475°C, but not at 450°C, 

probably due to the lower diffusion rates at the lower temperature. No averaging of the a" 

precipitates occurred, for aging times up to 2072 hours. 

Samples aged for selected periods of time at 475°C had low impact strengths - even well 

before the formation of a" - and revealed predominantly cleavage fracture with some ductile 

fracture areas, mostly at grain boundaries. Both impact strength and lateral expansion 
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indicated that embrittlement accompames the increased hardness obtained by agtng. 

Calculation of critical crack lengths from the impact data, however, revealed that a maximum 

flaw length of 0.8 mm, for specimens solution treated at 880°C, could be tolerated before 

catastrophic failure. Since it is not expected that flaws of that size would exist in the as­

manufactured links, fatigue will probably determine the lifetime of the chains, although the 

lower K1c values indicate that less crack propagation will be tolerated before brittle fracture. 

During the aging treatment, the strength may be lowered by recrystallisation of the cold­

worked material. Transmission electron microscopy (TEM) revealed the start of recovery, 

but no recrystallisation. Some large precipitates (around lJlm in diameter) were present. 

These were identified, through their diffraction patterns, as M23C6; these carbides were 

present in both aged and unaged material and hence represent precipitates which had not 

dissolved during the initial solution treatments. The a" precipitates- and the presumed newly 

formed nitride and carbide precipitates - were too fine for detection by TEM. 

Potentiodynamic testing of the treated material in a 0.5M H2S04 solution indicated that, 

although the probable hardening mechanisms imply localised Cr depletion of the matrix, the 

general corrosion resistance and passivation behaviour were not affected. 

It is concluded that the strength of the chain may be increased markedly by short-term heat 

treatments at 475°C, with lowered toughness, but with no decrease in corrosion resistance. 

Martensite, work hardening, and precipitation of carbides and nitrides all contribute to the 

final strength, with a" formation only becoming significant after longer aging times. 
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Opsomming 

V ervoerbandkettings word veral in die voedselbedryf, brouerye en bottelarye gebruik. Die 

gebruikstoestande vereis slytasieweerstand, sterkte en korrosiebestandheid. Tipe 430 ferritiese 

roesvrye staal word tans tot by sy sterktelimiet gebruik. 'n Onkonvensionele 

versterkingsproses is deur Mintek ontwikkel waarin die bestaande materiaal tussen 450°C en 

500°C verouder word. Die doel van hierdie studie is om die moontlike 

versterkingsmeganismes wat betrokke is, te identifiseer deur van 'n 430 roesvrye staal, met 

16.42% Cr en 0.036% C, gebruik te maak. Die materiaal is in die koudverwerkte toestand 

(38% reduksie in area) getoets, met en sonder voorafgaande oploshittebehandelings. 

Die Cr-ryke presipitaat (a") vorm in die 450°C tot 500°C gebied (a.g.v. 'n 

onmengbaarheidsarea in die Fe-Cr fasediagram) en veroorsaak 'n toename in hardheid en 

afhame in taaiheid. Dit is deur middel van Mossbauer-studies bevestig dat die a", by hierdie 

samestelling en temperatuur, vorm deur 'n proses van kemvorming en groei van partikels. 

Verharding deur die a"-presipitate is egter eers waargeneem na veroudering vir meer as 64 

uur by 475°C. Nadat die opgeloste interstisiele inhoud verhoog is deur addisionele 

oploshittebehandelings (in die omgewing van 900°C), is gevind dat 'n toename in 

Vickershardheid van 30-50 kg/mm2 verkry kan word binne 'n verouderingstyd van 8 minute. 

Die toename stem ooreen met 'n verhoging in treksterkte van meer as 100 l\1Pa. Dit blyk dat 

die verhoging nie die gevolg van rekveroudering is nie, maar wei waarskynlik toegeskryf kan 

word aan die presipitasie van fyn karbiede en nitriede. Oplosbehandeling by 93 0°C het ook 

die vorming van martensiet tot gevolg, wat die hardheid van die onverouderde materiaal 

verhoog. 

Oorveroudering van die karbied- en nitriedpresipitate is by 475°C waargeneem, maar nie by 

450°C nie, moontlik as gevolg van die laer diffusietempo's by die laer temperatuur. Geen 

oorveroudering van die a"-presipitate is waargeneem nie, selfs vir verouderingstye van tot 

2072 uur. 
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Veroudering by 475°C het lae slagsterktes tot gevolg, selfs voor die vonmng van a". 

Breukvlakke het hoofsaaklik uit splytingsvlakke bestaan, met smeebare breukareas meestal op 

korrelgrense. Beide die slagsterkte en die laterale uitsetting het getoon dat verbrossing 

gepaardgaan met die verhoging in hardheid wat verkry word deur veroudering. Die 

berekening van kritieke kraaklengtes uit die impakdata het egter getoon dat, vtr 

oplosbehandelings by 880°C, die maksimum defekgrootte- voor katastrofiese faling- 0.8 mm 

is. Dit word nie verwag dat defekte van hierdie grootte in die soos-vervaardigde skakels 

teenwoordig sal wees nie, en daarom sal die leeftyd van die kettings waarskynlik deur 

vermoeidheid bepaal word. Die laer K1c waardes toon egter dat minder kraakvoortplanting 

plaas sal kan vind voor bros faling. 

Tydens veroudering kan die sterkte van die materiaal moontlik weens herkristallisasie verlaag. 

Deur transmissie-elektronmikroskopie (TEM) is dit wei waargeneem dat herstel, maar geen 

herkristallisasie nie, plaasvind. Presipitate (van ongeveer 1 J.lm in diameter) is deur middel van 

hul diffiaksiepatrone as M23C6 geeien, en aangesien die presipitate teenwoordig was in beide 

die verouderde en onverouderde materiaal, is dit waarskynlik dat die presipitate nie opgelos 

het tydens die oorspronklike oplosbehandelings nie. Die a" en nuutgevormde karbied- en 

nitriedpresipitate was te fyn om deur middel van TEM waargeneem te word. 

Potensiodinamiese toetse in 'n 0.5M H2S04 oplossing het getoon dat, alhoewel die 

waarskynlike versterkingsmeganismes gelokaliseerde chroomverarming tot gevolg het, die 

algemene korrosieweerstand en passiveringsgedrag nie deur die hittebehandelings belnvloed 

word nie. 

Dit kan gevolglik afgelei word dat die sterkte van die materiaal noemenswaardig verhoog kan 

word deur koue verwerking, en hittebehandeling by 475°C. Dit gaan gepaard met 'n afuame 

in taaiheid, maar algemene korrosiebestandheid word nie belnvloed nie. Martensiet, 

werksverharding en die presipitasie van fyn karbiede en nitriede dra by tot die finale sterkte, 

terwyl a" eers 'n invloed na Ianger verouderingsperiodes het. 
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