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Summary

Due to the technological interest of the wide band gap, high electron mobilities, thermal

and chemical stability semiconductors such as GaN, ZnO and 6H SiC which can be used

in semiconductor industries, high temperature, and corrosive atmosphere or irradiation.

However thermodynamic, magnetic properties and lattice dynamics of these semicon-

ductors are not well understood and are closely related to the vibrational modes.

We strongly make use of group theoretical techniques to classify the vibrational modes

in crystals throughout the Brillouin zone (BZ). By determining the Lattice Modes Rep-

resentations (LMR) of GaN, the number of allowed modes and their symmetries were

obtained and then also applied to ZnO and 6H - SiC.

Assignments of the phonons of high symmetry points and lines through the entire BZ

were done using compatibility relations. Phonons assignment due to the Time Reversal

Symmetry (TRS) at Γ −→ ∆ −→ A region was also discussed and shows the correlation

with experimental results done by means of Neutron and X-Ray scattering techniques.

Raman active modes which are allowed for the crystals belong to C4
6v space group at the

center of BZ were also calculated. Frequently, irradiation to most of the material leaves

damaged defects and impurities on the material. Silver(Ag) implantation was done on

the untreated material of 6H - SiC polytype. The process called annealing, yields to the

recovering of the crystal structure or on the surface of materials.

Raman, Infrared and Photoluminescence spectroscopy were used to characterize the

vibrational modes of different material (untreated, Ag implanted and annealed) at room

temperature. This is possible due to the advancement of the laser technology which is

widely available in laboratories.
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1 Introduction

We investigated the properties of vibrational modes of the semiconductors such as ZnO,

GaN and 6H-SiC belonging to the wurtzite structure in order to characterize the ma-

terials. These compounds have recently received considerable attention due to their

potential in the semiconductor industry.

These semiconductors have many applications in a electronics industry, a high-power,

fast switching devices, ultra violet (UV), Infrared (IR) and detectors. Recently, at-

tracted much attention in a new field in new device applications of spinotronics [1],[2],[3].

Spinotronics seeks to exploit the spin of charge carriers in conductors and its widely ex-

pected to be controlled above room temperature [4]. Most of these semiconductors can

also be used in a high temperature and corrosive atmosphere or radiation environment

due to their chemical stability.

However, their opto- electronic, thermodynamic, magnetic properties and lattice dynam-

ics are still not well understood. These properties are closely related to the vibrational

modes of the materials. By doping ZnO, GaN and 6H-SiC heterostructure has suggested

the possibility of spin injection from ferromagnetic electrode. The desire to combine

ferromagnetic and conventional semiconductor materials into new devices for the elec-

tronics industry has driven increasing interest into the study of magnetic layers suitable

for spin injection in semiconductors [5]. Ion implantation is one the methods of doping

in semiconductor technology and it makes the fabrication easier.[6]

There are various techniques that can probe phonons in a crystals, among them X- Ray

scattering, Raman Spectroscopy (RS), Infrared Photoluminescence (PL) and neutron

time-of-flight technique. In this work, we particularly use Raman, Infrared and Photolu-

minescence spectroscopy to characterize the vibrational modes at room temperature due

to the advancement of the laser technology which is widely available in the laboratory.

We strongly make use of group theoretical techniques to classify the vibrational modes

in crystals throughout the Brillouin zone (BZ) [5].
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2 Theoretical Background

In this chapter, we use the group theoretical approach to determine explicitly:

i) The number of allowed modes and their symmetries irreducible representations

spanned by Displacement Representation (DR) at a critical point and high sym-

metry lines.

ii) The connectivity relations (compatibilities) throughout the entire BZ.

iii) Raman active modes at the center of BZ.

We use the CDML 1979 Tables [8] where the generators of all small wave vector space

group irreducible representations (irrps) are given together with their characters. These

tables are the most comprehensive ones, because they provide also all possible Kronecker

Products for all space groups.

2.1 Lattice Modes Representations for wurtzite structure

The Lattice Modes Representation(LMR) also called the Displacement Representations

(DR) for GaN has been derived by Kunert [7]. In this, we recall part of determinations

and apply it to ZnO. Figure 1 displays the arrangement of the Ga and N atoms.

Figure 1: Arrangement of the Ga and N atoms
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There are six displacements (dj : 1, . . . , 6) and six angles between corresponding atoms

denoted as α5(d4d5d6) , where α5 is the angle between the atoms enumerated 4 and 6.

The angles α1(d6d1d2), α2(d1d2d3), α3(d2d3d4), α4(d3d4d5), and α6(d5d6d1) are not shown

for the sake of clarity.

We introduce twelve vector basis, six vector displacements and six angles between cor-

responding atoms (see figure 1).

Imposing symmetry operations of the C4
6v group of GaN at ~k = 0 onto base, we obtain

a set of twelve matrices of 12× 12 dimensions, called DR.

For example, applying the (C6|001
2
)) symmetry operator on the base we obtain:

(C6|001
2
)




d1

d2

d3

d4

d5

d6

α1

α2

α3

α4

α5

α6




=(d2, d3, d4, d5, d6, d1, α2, α3, α4, α5, α6, α1)
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The above equation can also be written as:

(C6|001
2
)




d1

d2

d3

d4

d5

d6

α1

α2

α3

α4

α5

α6




=




A11 .. .. .. .. A16

.. .. .. .. .. ..

.. .. .. .. .. ..

.. .. .. .. .. ..

.. .. .. .. .. ..

A61 .. .. .. .. A66







d1

d2

d3

d4

d5

d6

α1

α2

α3

α4

α5

α6




= (d2, d3, d4, d5, d6, d1, α2, α3, α4, α5, α6, α1)

It is the matter to find the matrix A. The formula above represent a set of algebric

equation for matrix elements Aij. By means of standard methods[8], it can be shown

that matrix A is:

D(C6/τ) =


A2 0

0 A2


 , A6 =




0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0




, χ (C6/τ) = 0

where the symmetry operator C6 is associated with a non-primitive translation (001
2
).

Acting by all others operators on the basis we obtain the DR (twelve matrices of 12×12).

The characters of the DR are listed in Table 1.
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Table 1: The character table of high symmetry point Γ from the CDML tables

E C+
6 /τ C+

3 C2/τ C−
3 C−

6 /τ σv1 σd2/τ σv3 σd1/τ σv2 σd3/τ
g 1 2.1 3 4.1 5 6.1 19 20.1 21 22.1 23 24.1

DR 12 0 0 0 0 0 4 0 4 0 4 0
Γ1 1 1 1 1 1 1 1 1 1 1 1 1
Γ2 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
Γ3 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1
Γ4 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
Γ5 2 −1 −1 2 −1 −1 0 0 0 0 0 0
Γ6 2 1 −1 −2 −1 1 0 0 0 0 0 0

Decomposing the DR by means of reduction formula onto irrps of the C4
6v space group,

we obtain the correct number and symmetries of vibrational modes in ZnO, originating

from the entire BZ [9].

The reduction formula is of the form:

nv =
1

g

∑
i

giχ
vi∗ (g/τg) χD (g/τg) (1)

where χvi∗ and χD are characters of the DR and irrps of ZnO respectively (see table 1).

From equation 1 at high symmetry point Γ , we obtain:

Γ ⇒ 2Γ1 ⊕ 2Γ4 ⊕ 2Γ5 ⊕ 2Γ6 (2)

for phonons with k ∼= 0 (center of the BZ)

The relation 2 says that there are eight allowed phonons with momentum ~k∼= 0, with

the symmetries Γ1, Γ4, Γ5, Γ6 respectively. Clearly, phonons of symmetries Γ2 and Γ3

are not existing in ZnO. By means of several experimental techniques such as neutron

scattering, Infrared absorption and Raman spectroscopy, the energies of these phonons

have been measured.
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Similarly using equation 1 and the character tables [8] for other high symmetry point

and lines we decompose DR onto irrps of ZnO for k 6= 0 (see Appendix 1). For instance

for high point symmetry K (table 2) and line
∑

(table 3), we obtain:

K ⇒ 2K1 ⊕ 2K2 ⊕ 4K3

and

∑ ⇒ 8
∑

1⊕8
∑

2

Table 2: The character table of high symmetry point K from the CDML tables [8]

g 1 3 5 20.1 22.1 24.1
K1 1 1 1 1 1 1
K2 1 1 1 −1 −1 −1
K3 2 −1 −1 0 0 0

Table 3: The character table of high symmetry line
∑

from the CDML tables [8]

g 1 23.1∑
1 1 1∑
2 1 −1

Consider the high symmetry point K in the BZ. From the table 4, follows that at this

point there are eight phonons of symmetries 2K1, 2K2 and 4K3. For the high symmetry

lines Λ and T we have 6Λ1, 6Λ2 and 6T1, 6T2 vibrational modes respectively [29].

Proceeding this way, we find the number and allowed symmetries of phonons in ZnO

listed in table 4. Detailed calculations are shown in the Appendix 1.
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Table 4: Normal modes spanned by Displacement Representations at critical high symmetry points and
lines in C4

6v wurtzite

Γ : 2Γ1 ⊕ 2Γ4 ⊕ 2Γ5 ⊕ 2Γ6

A : 2A1 ⊕ 2A4 ⊕ 2A5 ⊕ 2A6

∆ : 2∆1 ⊕ 2∆4 ⊕ 2∆5 ⊕ 2∆6

H : 2H1 ⊕ 2H2 ⊕ 4H3

P : 2P1 ⊕ 2P2 ⊕ 4P3

K : 2K1 ⊕ 2K2 ⊕ 4K3

L : 4L1 ⊕ 4L2 ⊕ 4L3 ⊕ 4L4

M : 4M1 ⊕ 4M2 ⊕ 4M3 ⊕ 4M4

U : 4U1 ⊕ 4U2 ⊕ 4U3 ⊕ 4U4

R : 8R1 ⊕ 4R2

∑
: 8

∑
1⊕4

∑
2

Q : 6Q1 ⊕ 6Q2

S : 6S1 ⊕ 6S2

Λ : 6Λ1 ⊕ 6Λ2

T : 6T1 ⊕ 6T2

The decomposition of the derived Lattice Modes Representations(LMR) yields the finite

number of allowed phonons and their symmetries. Our table 4 can be quite useful in

verification of the experimental measurement for phonons dispersion curves but it cannot

help us to do the phonons assignment. In section 2.2, we will discuss phonons assignment

of semiconductors with C4
6v space group in detail.
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2.2 Phonons assignment in ZnO, GaN and 6H-SiC semiconduc-

tors with C4
6v space group

In this section, we assign phonons of high symmetry point and lines through the entire

BZ, using compatibility relations. Nipko’s et al [14] have measured phonons frequencies

in GaN by means of time - of - flight neutron spectroscopy. The results are showed

in figure 4. Clearly, using reduction formula and table 1 in section 2.1, we see that at

high symmetry point Γ, we have eight phonons. The Γ’s phonons are assigned, where

the short lines showed correspond with the dimensions of the symmetry as follows (see

figure 2).

Figure 2: GaN bulk group theoretical phonon assignments of Γ modes
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Figure 3 exhibits the phonons dispersion curve measured by time-of-flight neutron scat-

tering, where the phonons are not yet assigned.

Figure 3: Phonon dispersion curves for GaN crystal
of wurtzite structure, From Nipko’s et al [14]

Figure 4: Phonons dispersion curve of symme-
try point K3 for GaN crystal

Next, we assign K’s phonons from high symmetry points Γ passing via the low symmetry

line Λ. Clearly, the splitting occurs due to lowering of symmetry.

Using the reduction formula 3 and the character tables of high symmetries points and

lines [8], we can derive the compatibility relations between the irreducible representa-

tions (irrps) of the high symmetry point and lines presented in Table 7.

The reduction formula is of the form:

aµ =
1

g

∑
giχ

σ (g/τg) χµ (g/τg) (3)

where χσ is the character of high symmetry point, while χµ is the character of low

symmetry lines, for example Γ −→ Λ, K −→ Λ, M −→ ∑
, etc... From compatibility

relations, the exact number and symmetries of phonons originating from the entire BZ

with k 6= 0 can be obtained.

9

 
 
 



For example, compatibility from high symmetry point Γ to low symmetry line Λ can be

calculated using table 1 (for χΓ), table 5 (for χΛ) and reduction formula (equation 3).

Table 5: The character table of high symmetry line Λ from the CDML tables [8]

g 1 24.1
Λ1 1 1
Λ2 1 −1

Table 6: The character table of high symmetry line K from the CDML tables [8]

g 1 3 5 20.1 22.1 24.1
K1 1 1 1 1 1 1
K2 1 1 1 −1 −1 −1
K3 2 −1 −1 0 0 0

Equation 3 can be formulated as:

For Λ1

aΛ1 =
1

g

∑
j

χΓj (g/τg) χΛ1 (g/τg) (4)

where (g/τg) is 1 and 24.1, and j= 1, . . . 6

For Γ1:

aΛ1 = 1
2
[1(1) + 1(1)] = 1

For Γ2:

aΛ1 = 1
2
[1(1) + 1(−1)] = 0

For Γ3:

aΛ1 = 1
2
[1(1) + 1(1)] = 1

For Γ4:

aΛ1 = 1
2
[1(1) + (−1)(1)] = 0

10

 
 
 



For Γ5:

aΛ1 = 1
2
[2(1) + 0(1)] = 1

For Γ6:

aΛ1 = 1
2
[2(1) + 0(1)] = 1

And for Λ2, the reduction formula (eq. 3) can be formulated as follows:

aΛ2 =
1

g

∑
ij

χΓj (g/τg) χΛ2 (g/τg) (5)

where (g/τg) is 1 and 24.1, and j= 1,2 . . . 6

For Γ1:

aΛ2 = 1
2
[1(1) + 1(−1)] = 0

For Γ2:

aΛ2 = 1
2
[1(1) + (−1)(−1)]

aΛ2 = 1

For Γ3:

aΛ2 = 1
2
[1(1) + 1(−1)] = 0

For Γ4:

aΛ2 = 1
2
[1(1) + (−1)(−1)] = 1

For Γ5:

aΛ2 = 1
2
[2(1) + 0(−1)] = 1

11

 
 
 



For Γ6:

aΛ2 = 1
2
[2(1) + 0(−1)] = 1

Clearly,

Γ5 −→ Λ1 ⊕ Λ2 and Γ6 −→ Λ1 ⊕ Λ2

Therefore the compatibility relations between Γ’s and Λ’s yields:

Γ1,3 −→ Λ1, Γ2,4 −→ Λ2, Γ5 −→ Λ1 ⊕ Λ2 and Γ6 −→ Λ1 ⊕ Λ2

Similarly, for high symmetry point K (table 6) and low symmetry line Λ, the reduction

formula (eq. 3) can be formulated as follows:

aΛ1 =
1

g

∑
j

χKj (g/τg) χΛ1 (g/τg) (6)

where (g/τg) is 1 and 24.1, and j= 1,2.3

For K1:

aΛ1 = 1
2
[1(1) + 1(1)] = 1

For K2:

aΛ1 = 1
2
[1(1) + 1(−1)] = 0

For K3:

aΛ1 = 1
2
[2(1) + 0(1)] = 1

And for Λ2, the reduction formula (eq. 3) can be formulated as follows:

aΛ2 =
1

g

∑
ij

χKj (gi/τg) χΛ2 (gi/τg) (7)

where (gj/τg) is 1 and 24.1, and j= 1,2,3
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For K1:

aΛ2 = 1
2
[1(1) + 1(−1)] = 0

For K2:

aΛ2 = 1
2
[1(1) + (−1)(−1)] = 1

For K3:

aΛ2 = 1
2
[2(1) + 0(−1)] = 1

Therefore the compatibility relations between K’s and Λ’s yields:

K1 −→ Λ1, K2 −→ Λ2, K3 −→ Λ1 ⊕ Λ2

By repeating the same for all other high symmetry points and high symmetry lines, we

can derive the compatibility relations of the C4
6v space group which is shown in Table 7.
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Table 7: Compatibility of the C4
6v space group representations

Γ −→ Λ : Γ1,3 −→ Λ1, Γ2,4 −→ Λ2, Γ5,6 −→ Λ1 ⊕ Λ2

Γ −→ ∑
: Γ1,4 −→

∑
1, Γ2,3 −→

∑
2, Γ5,6 −→

∑
1⊕

∑
2

Γ −→ M : Γ1 −→ M1, Γ2 −→ M2, Γ3 −→ M3, Γ4 −→ M1, Γ5 −→ M1 ⊕M2,

Γ6 −→ M1 ⊕M2

Γ −→ K : Γ1,3 −→ K1, Γ2,4 −→ K2, Γ5,6 −→ K3

Γ −→ T : Γ1,3 −→ T1, Γ2,4 −→ T2, Γ5,6 −→ T1 ⊕ T2

A −→ R : A1,4 −→ R1, A2,3 −→ R2, A5,6 −→ R3

A −→ Q : A1,3 −→ Q1, A2,4 −→ Q2, A5,6 −→ Q3

A −→ L : A1 −→ L1, A2 −→ L2, A3 −→ L3, A4 −→ L4, A5 −→ L1 ⊕ L2,

A6 −→ L3 ⊕ L4

A −→ H : A1,3 −→ H1, A2,4 −→ H2, A5,6 −→ H3

L −→ R : L1,4 −→ R1, L2,3 −→ R2

L −→ S : L1,3 −→ S1, L2,4 −→ S2

H −→ Q : H1 −→ Q1, H2 −→ Q2, H3 −→ Q1 ⊕Q2

H −→ S : H1 −→ S1, H2 −→ S2, H3 −→ S1 ⊕ S2

M −→ ∑
: M1,4 −→

∑
1,M2,3 −→

∑
2

M −→ T : M1,3 −→ T1,M2,4 −→ T2

K −→ Λ : K1 −→ Λ1, K2 −→ Λ2, K3 −→ Λ1 ⊕ Λ2

K −→ T : K1 −→ T1, K2 −→ T2, K3 −→ T1 ⊕ T2

K −→ M : K1 −→ M1 ⊕M3, K2 −→ M2 ⊕M4,

K3 −→ M1 ⊕M2 ⊕M3 ⊕M4

Calculations of the derived compatibility relations can be checked as follows:

Considering the highest in energy, Γ4 phonon (first from the top on figure 5 at high

symmetry point Γ) and lower in energy, Γ1 (second from the top on the same figure).

From the figure, phonons Γ4 −→ Λ2 and Γ1 −→ Λ1. While on the other hand, phonons

from K3 (the top phonons at high symmetry point K), K3 −→ Λ1⊕Λ2 which leads back

to Γ4 and Γ1.

From Nipko’s[14] experimental data (figure 5) follows that there are 12 phonons with

different energies at symmetry point K. Our rigid calculations in section 2.1, table 4
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yield only eight phonons at symmetry point K which is 2K1,2K2, and 4K3.

Therefore, the top symmetry lines Λ1 and Λ2 modes must join each other at point K

yielding one phonon at K3 symmetry: K3 −→ Λ1 ⊕ Λ2.

Similarly for the phonons at Γ5 and Γ6, the lines must join each other at the symmetry

point K also yielding another one phonon of K3 symmetry. The other two phonons at

K3 will be the joints of symmetry lines from Γ6 and Γ1 ⊕ Γ6

Similarly, the T1 and T2 modes on high symmetry line T must join each other at symme-

try point K yielding K3 mode: K3 −→ T1 ⊕ T2. The four circles at the point K indicate

four two - fold degenerate K3 vibrational modes (see figure 4). The small energy gaps

between branches at K3 are most presumably caused by experimental error or impurities

on the sample.

We did not assign k∆ and kA phonons on figure 5. In Section 2.3, we list the irrps of

Gk
∆ and Gk

A factor space groups. Instead of the symmetry groups Gk
∆ and Gk

A, we then

handle with the antiunitary groups which will be discussed in details later.

Considering Nipko’s et al. [14] measurement done for GaN by means of time-of-flight

neutron scattering (see figure 5). Clearly, this group theoretical method can verify the

experimentally measured vibrational modes in a crystal.

From figure 5 , it follows that the measured frequencies of all allowed phonons modes

by these technique and their group theoretical phonon assignments are available. The

energies of eight allowed symmetry phonons modes have been measured by time-of-flight

neutron scattering technique (see figure 3).

However the measurement of Γ phonons by this technique yield inaccurate measurements

for phonons with k = 0.

The best technique to be used for the phonons with k = 0 is Raman spectroscopy. We

took several Raman spectrum of ZnO and 6H - SiC crystals. Our frequency slightly

differs with Nipko’s et al. In order to discuss the Raman spectrum, we introduce or

recall short theory of Raman Scattering in Section 2.4.
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Figure 5: GaN bulk group theoretical phonon assignments of the Nipko’s et al.[14] measured and
calculated modes
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2.3 Space and Time reversal symmetry

2.3.1 Space symmetry

The Hamiltonian for a lattice vibration on a crystal is invariant with respect to the

symmetry operators {gi|τg} ≡ {g} of a crystal space group Gk ({gi|τg} ≡ {g} ∈ Gk)

ĝĤĝ−1 = Ĥ (8)

For Ĥψi = Eψi

ĝ
(
Ĥψi

)
= ĝ (Eψi) (9)

Ĥ (ĝψi) = E (ĝψi) (10)

but

ĝψi =
∑

j

ψjDji(g) (11)

where Dji are the matrix elements of an irreducible representation (irrps) D(g) ≡ D

of the space group Gk. Clearly the ψ are the eigenfunctions of the Hamiltonian and

simultaneously are the basis of the irrps D.

Consequently the vibrational modes of a crystal are classified according to irrps D. This

follows from the space symmetry. However, there might be an existence of so - called

Time reversal symmetry (TRS) in some crystals.

2.3.2 Time reversal symmetry

Consider a general time dependent Schroedinger equation in the absence of spin orbit

coupling and external magnetic field, which is suitable for lattice vibrations excitations.

In this case the Hamiltonian for phonons is real.

Hψi = i} (∂/∂t) ψi = Eψi (12)

Replacing t −→ −t and taking complex conjugate of the above equation we get:

H∗ψ∗i = i} (∂/∂t) ψ∗i = Eψ∗i (13)
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Clearly, ψ∗i are also eigenfunctions of Hamiltonian H as ψi (equation 10). Consequently,

we are dealing with two set of wave functions: ψi and ψ∗i .

On the other hand ψi are the basis functions of D(g) irrps and ψ∗i are the basis functions

of D∗(g) irrps. The total basis (ψi, ψ∗i ) transforms according to joint irrps D ⊕ D∗.

Therefore, the degeneracy of the phonons modes have been doubled.

In order to determine whether in a crystal the TRS is present or not, one has to inves-

tigate all irrps of a crystal and find out which of those are complex.

Forbenius and Schur [17], derived a criteria for real and complex irrps.

(1/|g|)
∑

g

χ(g2) =





1 case (a) D is real

0 case (b) D andD∗are complex and inequivalent

−1 case (c) D andD∗ are complex and equivalent

(14)

where |g| is the order of a given group G. If the sum of the characters of squares of the

group elements is equal to the order of the group |g|, then the representations (reps) D

are real; if the sum is −|g|, then the reps are equivalent to its conjugate; and if the sum

vanishes the reps D and D∗ are complex and inequivalent.[17]

In summary, the cases (b) and (c) lead to an extra degeneracy of phonons due to the TRS.

Using Forbenius and Schur criteria and the CDML [8] Tables, we have investigated all

irrps of the C4
6v space group and obtain the following:

i) Γ1,2,3,4,5,6, M1,2,3,4, K1,2,3,
∑

1,2, T1,2,, H3. Real reps, which means no extra degener-

acy.

ii) A1,2,3,4,5,6, ∆1,2,3,4,5,6, L1,2,3,4, U1,2,3,4, P1,2,3, S1.2. Complex reps which means extra

degeneracy occurs.

iii) R1,2. Complex reps, which also means extra degeneracy.

According to the calculations, the ∆ and A phonons are influenced by the time reversal

symmetry (TRS). We have shown that at high symmetry point A the reps spanned by
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modes are 2A1, 2A4, 2A5, 2A6 and at high symmetry line ∆ the reps spanned by modes

are 2∆1, 2∆4, 2∆5, 2∆6 symmetries.

The presence of TRS at symmetry point A and symmetry line ∆ requires classification of

modes according to A⊕A∗ and ∆⊕∆∗ reps. Using compatibility relations the resulting

mode’s assignment is:

i) Point Γ, from the bottom to the top: Γ1 ⊕ Γ5, Γ6, Γ4, Γ5, Γ6, Γ4 and Γ1

ii) Point A, from the bottom to the top: A5⊕ (A5)
∗, A1⊕ (A1)

∗, A5⊕ (A5)
∗, A1⊕ (A1)

∗

iii) Line ∆: the dispersion curves connect the points Γ and A when going from the

bottom to the top on the A axis side: ∆5, (∆5)
∗, ∆1, (∆1)

∗, ∆5, (∆5)
∗, (∆1)

∗ and

∆1

19

 
 
 



Table 8: The character table of high symmetry point A from the CDML tables

g/τg 1 2.1 3 4.1 5 6.1 19 20.1 21 22.1 23 24.1

A1 1 i 1 i 1 i 1 i 1 i 1 i

A2 1 i 1 i 1 i −1 −i −1 −i −1 −i

A3 1 −i 1 −i 1 −i −1 i −1 i −1 i

A4 1 −i 1 −i 1 −i 1 −i 1 −i 1 −i

A5

(
1 0
0 1

) (
iω∗ 0
0 iω

) (
ω 0
0 ω∗

) (
i 0
0 i

) (
ω∗ 0
0 ω

) (
iω 0
0 iω∗

) (
0 −i
i 0

) (
0 −ω∗
ω 0

) (
0 −iω

iω∗ 0

) (
0 −i
i 0

) (
0 −iω
iω 0

) (
0 −ω

ω∗ 0

)

A6 = A∗
5 ω = exp(2πi/3)

Table 9: The character table of high symmetry point ∆ from the CDML tables

g/τg 1 2.1 3 4.1 5 6.1 19 20.1 21 22.1 23 24.1

∆1 1 1.T 1 1.T 1 1.T 1 1.T 1 1.T 1 1T

∆2 1 1.T 1 1.T 1 1.T −1 −1.T −1 −1.T −1 −1.T

∆3 1 −1.T 1 −1.T 1 −1.T −1 1.T −1 1.T −1 1.T

∆4 1 −1.T 1 −1.T 1 −1.T 1 −1.T 1 −1.T 1 −1.T

∆5

(
1 0
0 1

) (
Tω∗ 0

0 Tω

) (
ω 0
0 ω∗

) (
T 0
0 T

) (
ω∗ 0
0 ω

) (
Tω 0
0 Tω∗

) (
0 T 2

T 2 0

) (
0 Tω∗

Tω 0

) (
0 −ωT 2

ω∗T 2 0

) (
0 T
T 0

) (
0 −ωT 2

ωT 2 0

) (
0 ωT

ω∗T 0

)

∆6 = (∆5)
∗ ω = exp(2πi/3), T = exp(iπα)
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From the reps provided in tables 8 and 9, it follows that (A1)
∗ = A4, (A5)

∗ = A6,

(∆1)
∗ = ∆4 and (∆5)

∗ = ∆6 for high symmetry point A and for symmetry line ∆

respectively [13].

These are consistent with the number of modes at Γ, A, and ∆ with their symmetries

obtained from Lattice modes representation (LMR).

Figure 6: Assignments of phonons in ZnO influenced by the time reversal symmetry.[16]

Figure 6 displays the schematic dispersion curves Γ −→ ∆ −→ A region of BZ subjected

to TRS in wurtzite crystal. The numbers on the brackets indicate the degree of degen-

eracy. For example: representation A1 and (A1)
∗ are both one fold degenerate, then

A1 ⊕ (A1)
∗ becomes two fold degenerate.

For simplicity, the straight lines are used to show the phonons from one symmetry

point to another. Generally, the frequencies of the modes Γ, ∆ and A point may shift for

different compounds under the space group C4
6v/T , but the connection between Γ and A

points will be kept by ∆’s experimental phonon data.

The shifting may cause more accidental degeneracy. The existence of experimentally

measured modes which generate dispersion curves ∆5, ∆6, ∆1, ∆4 and four phonons

modes on A axis 2(A5 ⊕ A6), 2(A1 ⊕ A4) evidently proves the presence of the TRS in

wurtzite crystals.
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Due to the TRS, phonons at high symmetry point A with reps A1 and A4 will be repre-

sented with joint A1⊕ (A1)
∗ with two fold degenerate while the phonons at reps A5 and

A6 will be represented with joint A5 ⊕ (A5)
∗ with four fold degenerate. These lead us

to two degenerate pairs 2(A1 ⊕ A∗
1), 2(A5 ⊕ A∗

5) which proves the presence of TRS (see

figure 6).

In figure 6, two of the phonons at high symmetry line ∆ joins each other at high sym-

metry point A. For example, phonons ∆1 and ∆4 at high symmetry line ∆ which are

not degenerate joins each other at A1 ⊕A∗
1. Phonon A1 ⊕A∗

1 is a two fold time reversal

degenerate. In other words, the phonons generated by reps with low degeneracy com-

bines to give high degeneracy. While the phonons by reps with high degeneracy split

into reps with low degeneracy, for example, at high symmetry point A, 2(A5⊕A∗
5), four

fold degenerate split into two phonons with reps of two fold degenerate each at high

symmetry line ∆ which are ∆5 and ∆6.

Lets consider an experimental results done by different techniques (neutron time-of-

flight,inelastic neutron scattering and X-Ray scattering) with GaN and ZnO crystals.

Consider the experimental measurement done by Nipko’s [14] with time-of-flight neu-

tron scattering technique at Γ −→ ∆ −→ A region (figure 5). There are four phonons

A⊕A∗ modes of high symmetry point A and eight phonons ∆ modes at symmetry line

∆. Their measured energies can be read from figure 3. We can relate our calculations

under TRS and the experimental phonon dispersions curve measured by this technique.

Two phonons at high symmetry point Γ also joins each other at high symmetry point A

passing via high symmetry line ∆.

Similarly, the experimental measurement (figure 7 and 8) by Hewat[18] and Thoma[19]

using inelastic neutron scattering technique evidently proves the presence of TRS in

ZnO at Γ −→ ∆ −→ A region. On figure 8 on ∆ symmetry line there are experimental

points. The joint of two phonons from high symmetry point Γ at symmetry point A can

be related to TRS in both figures. The phonons dispersions curve also agrees with the
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calculations as well as phonon dispersion curve shown in figure 6.

Ruf[20] used the different technique from Hewat and Thoma, which is X - Ray scattering

technique in wurtzite type GaN. The phonon dispersion along the several high symmetry

was also measured. Considering the Γ −→ ∆ −→ A region in figure 9, we can evidently

prove the joining of two phonons at the high symmetry point A due to the TRS. Again,

the experimental results agree with the calculations and phonons dispersion curve in

figure 6.

Different techniques used to measure phonons frequencies of wurtzite- type semicon-

ductors yields the same results at Γ −→ ∆ −→ A region. Therefore, the joining of

the phonons at high symmetry point A are evidently influenced with TRS and phonon

assignments presented in figure 6 is valid for phonons with wurtzite structures.
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Figure 7: Phonons dispersion curves in ZnO predicted by shell model based on elastic constants and
Raman spectrum, with measured frequencies. Hewat [18]
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Figure 8: Calculated and measured phonon dispersion curves for ZnO. Thoma et al. [19]
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Figure 9: Phonon dispersion curve of wurtzite type GaN along several high symmetry directions. Ruf
et al.[20]
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2.4 Determination of the Raman active modes in crystals with

the C4
6v space group (~k ∼= 0)

Figures 5,7,8 and 9 shows experimental measurement by Nipko, Hewat, Thoma and Ruf

by means of Neutron time of flight, inelastic neutron and X - Ray scattering techniques.

These techniques provide accurate frequencies of measurement with longer momenta ~k.

How ever, these techniques are not able measure the frequencies of long wavelength

phonons (k ∼= 0, Γ center of BZ). The best techniques to measure this frequencies is

Raman and Infrared scattering.

Raman scattering and infrared scattering spectra of a crystal can be used to determine

the frequencies of phonon modes of a crystal. The number, symmetry type, and selection

rules for the phonon modes of a crystal are determined by its space group. Where the

orientation of the crystal axes relative to the polarization of the incident and scattered

or absorbed photon is known, these selection rules can be used to identify the symmetry

of an observed vibrational modes.

We use the CDML 1979 Tables [8] where the generators of all small wave vector space

group irrps are given together with their characters.

The vector representations (VR) is based the cartesian coordinates (x,y,z). For the C4
6V

space group the VR is Γ1 ⊕ Γ6. See Appendix 2 for the calculations of symmetrized

Vector representations.

The Raman active modes (RAMs) follows from the decomposition of the symmetrized

square of the vector representation [V ⊕V ](2) (SVR) into irreducible representation of the

C6v point group. Since the Raman scattering tensor is symmetric, we split the Kronecker

Products (KP) of vector representation V ⊗ V onto symmetrized and antisymmetrized

parts. Only irreducible representations contained in the symmetrized KP are Raman

active modes.
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The symmetrized square of vector representation is of the form:

[χ (g/τg)× χ (g/τg)]sym =
1

2

[
(χ (g/τg))

2 + χ (g/τg)
2] (15)

To determine the characters of Vector representations (VR), we take the trace of the

standard matrices of Hexagonal group from CDML [8]. Table 10 shows the calculations

of the characters of square symmetrized vector representations .

Table 10: Table used to determine the Symmetrized Vector representations

g 1 2 3 4 5 6 19 20 21 22 23 24
g2 1 3 5 1 3 5 1 1 1 1 1 1

χ(g) 3 2 0 −1 0 2 1 1 1 1 1 1

(χ(g))2 9 4 0 1 0 4 1 1 1 1 1 1
χ(g2) 3 0 0 3 0 0 3 3 3 3 3 3[

(χ(g))2 + χ(g2)
]

12 4 0 4 0 4 4 4 4 4 4 4
1
2

[
(χ(g))2 + χ(g2)

]
6 2 0 2 0 2 2 2 2 2 2 2

To determine which irrps are contained in symmetrized square of vector representations,

we use the reduction formula and our calculated character table (Table 10.

The reduction formula is of the form:

aµ =
1

g

∑
i

[χ (g/τg)× χ (g/τg)]sym χΓi (g/τg) (16)

where [χ (g/τg)× χ (g/τg)]sym is the character of the symmetrized VR and χΓi the char-

acter of the high symmetry point Γ, with i = 1, 2 . . . , 6.

Using table 1 (for the character of Γ, χΓ), table 10 (for the character of symmetrized

VR, [χ (g/τg)× χ (g/τg)]sym) and reduction formula (equation 16), we obtain:

[(Γ1 ⊕ Γ6)⊗ (Γ1 ⊕ Γ6)](2) = 2Γ1 ⊕ Γ5 ⊕ Γ6

The instance calculations are presented in Appendix 3.
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Therefore, for C4
6v space group crystals, we deal with six Raman active modes at the

zone center of the Brillouin Zone (~k = 0) , which are: Γ1 (TO), Γ1 (LO), Γ5 (TO), Γ5

(LO), Γ6 (high) and Γ6 (low), since Γ5 and Γ6 are two fold degenerate.

Where TO and LO stands for Transverse Optic and Longitudinal optic respectively

Results of the experimental measurements done by Raman spectroscopy and will be pre-

sented in Chapter 4.
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3 Experimental procedures

3.1 Raman spectroscopy

Raman scattering measurements on a crystals obtains information about their lattice

vibration frequencies. Raman scattering is a weak effect and requires a powerful sharp

line source of radiation [21]. In this experiment, the Ar laser source was used.

To determine the lattice vibration frequencies of the crystal, light absorption and light

scattering experiments are often carried out.

The electric field E0cosω0t of the incident light causes a dipole moment µ:

µ = αE0cosω0t (17)

within the molecule, where α denotes the polarizability tensor of the molecule. The

modulated moment µ will have a frequencies ω0 ± ωs and the light emitted will have

those shifted frequencies. This process is not allowed for all the vibration modes and

only those modes which can generate components of the polarizability tensor by molec-

ular deformation can be Raman active[22].

The number of the Raman active and IR active modes for the material can be predicted

by group theory once the lattice structure and its symmetry are specified. The number

of the optically active modes is calculated by the decomposition of the irrps into sym-

metrized VR as already discussed.

Raman scattering is an inelastic scattering phenomenon of photons by phonons or elec-

trons in materials. Photons with energies different from that of incident light are scat-

tered when materials are irradiated with monochromatic light. The scattered light is very

weak and we need special spectrometers that is designed to eliminate strong Rayleigh

light [23].
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If there is a significant excitation of vibrational excited states of the scattering molecules,

then it also possible to observe scattering at frequencies above the incident frequency

as the vibrational energy is added to the incident photon energy called anti stokes lines

which are general weaker.

Figure 10: Energy level diagram showing the states involved in Raman signal

Raman scattering can also involve rotational transitions of the molecule from which scat-

tering occurs.

Since the Raman effect depends upon the porazibility of the molecule, it can be observed

for molecules which have no net dipole moment and therefore produces no pure rota-

tional spectrum.

Raman spectroscopy yields high accuracy of the energies of phonons at k ∼= 0 and offers

several advantages for microscopic analysis. Raman spectra can be collected for a very

small volume ( less than 1 µm in diameter); these spectra allow the identification of

different polytypes.
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Raman spectroscopy is associated with scattering of radiation than absorption of radia-

tion process by the sample. See schematic basic setup on the figure below.

Figure 11: Schematic of basic setup of Raman spectrometer

Typically, a sample is illuminated with a laser beam. Light from the illuminated spot is

collected by a lens and sent through a monochromator. Wavelengths close to the laser

line, due to elastic Rayleigh scattering, are filtered out while the rest of the collected

scattered light from the sample is dispersed onto a detector.

The Raman spectra may change by changing the frequency of the excitation laser. When

the excitation energy is close to an energy of the high optical absorption, the Raman

Intensity is enhanced, and this affect is known as the resonant Raman effect.

The Raman effect is the appearance of the weak lines in the spectrum of light scat-

tered by the substance which has been illuminated by monochromatic light with angular

frequency ω. The weak Raman sidebands are detected with a double monochromatic

scanning spectrometer and a sensitive photomultiplier tube (PMT) which is cooled to

reduce its intrinsic thermal noise.
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3.2 Infrared spectroscopy

Infrared spectroscopy is certainly one of the most important analytical techniques avail-

able to today’s scientists. The advantage of infrared spectroscopy is that any sample

in any virtually state may be studied. Infrared spectra can mainly be used to: identify

minerals, analyse components and the surface of minerals, establish the orientation of

components and detect phase changes.

Infrared spectroscopy is a technique based on the vibrations of the atoms of a molecule.

An infrared spectrum is commonly obtained by passing infrared radiation through a

sample and determining what fraction of the incident radiation is absorbed at a partic-

ular energy.

Figure 12: Schematic representation of Fourier Transform Infrared (FTIR) Spectrometer
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The source produce a light and is split by the beamsplitter into two different directions,

one at a right angle to the stationary mirror and the other one at a right angle to the

moving mirror. The sample will absorb some of the light with the detector collecting the

radiation that passes through the sample. An electrical signal is produce by the detector

out and send directly to the computer to analyse.

In the case of IR absorption, only those modes which give rise to an electric dipole

moment µ by molecular deformation can interact with light. Such modes are said to be

IR-active and other modes, IR-inactive.

Infrared and Raman spectrum yields a partial description of the internal vibrational

motion of the molecule in terms of the normal vibrations of the constituent atoms.
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3.3 Photoluminescence

Photoluminescence (PL) is a technique which is used to investigate the extrinsic optical

properties of the material. PL is the study of the luminescence emitted from the sample

by optical excitations source of energy which is greater than the band gap of the mate-

rials.

PL spectroscopy is a non destructive technique which uses laser light as an excitation

source. Materials will be bombarded with a laser light and absorbed it and excitation

will occur. The excitation causes the material to go to higher energy or electronic state.

Then, the material will release the energy and return to non excitation state.

In this work, we have used an Argon laser as an excitation source and excited the different

types of the 6H - SiC samples. The samples were mounted and placed on the sample

chamber which have to be cooled to a very low temperature. The block diagram of the

PL spectroscopy is presented in the figure below:

Figure 13: The schematic block diagram of PL spectroscopy

The Argon laser light has to be focused with lenses and filters to the cooled chamber

which is used as the sample holder and the luminescence signal is detected by the pho-

tomultiplier tube (PMT) which produces the direct current. The direct current will be

35

 
 
 



analysed by computer program which provides us with spectrum of PL.

There are several advantages of PL spectroscopy such as: to determine the band gap,

the impurities and the defect on the materials, Recombination mechanisms and material

quality.
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4 Results and Discussions

4.1 Raman spectroscopy

Raman scattering is an inelastic scattering phenomena of photons by phonons or electron

in materials. Our material 6H - SiC was irradiated with monochromatic light (Argon

ion laser), and the photons with energies different from the incident light were scattered.

The spectrometer which is designed to eliminate strong Rayleigh light was used as the

scattered light is very weak. The dispersion signal were detected by a photomultiplier

or a multichannel detector.

Different samples of 6H - SiC were used during these measurement. We are going to

present the spectrum of the untreated, silver implanted and annealed material.

The spectrum was collected through different regions called region 1(100 cm−1−650 cm−1),

region 2 (600 cm−1 − 1100 cm−1) and region 3 (1000 cm−1 − 1900 cm−1).

In one phonon Raman scattering, we consider only phonons with k=0, which are phonons

near the Γ point of the BZ that are excited. As presented in chapter 2, section 2.4, Ra-

man active modes which are excited are:

[(Γ1 ⊕ Γ6)⊗ (Γ1 ⊕ Γ6)](2) = 2Γ1 ⊕ Γ5 ⊕ Γ6

Therefore there are six Raman active modes at the zone center of the Brillouin Zone

(~k = 0) which are: Γ1 (TO), Γ1 (LO), Γ5 (TO), Γ5 (LO), Γ6 (high) and Γ6 (low).

These are the first order Raman active modes which are contained in the Symmetrized

Kronecker product of the V representations. A first order Raman effect is when the

single phonon is created or destroyed in the scattering process.[24] In 6H - SiC there are

four Raman active strong modes at q = 0 and x = 0: 2Γ1 and 2Γ5. For q = 0 and

x = 0.33, there are twelve folded weak modes presented by Hoffmann et al. [26] and

Kunert et al. [27].
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Table 11: Phonons frequencies (in cm−1) of the strong and weak zone center modes from Raman
measurements [26]

strong mode Ref [26] Experimental measurements (±5 cm−1)
Γ1(LO) 964 968
Γ5(LO) 970 968
Γ5(TO) 797 797.2
Γ1(TO) 788 787.9

weak modes
axial o. Γ1 889 888

planar o. Γ6 788 787.9
Γ5 777 ?
Γ5 769 766.7
Γ6 769 766.7

axial a. Γ1 508 514
Γ1 504 504.8

planar a. Γ6 261 265.7
Γ5 241 241
Γ5 236 235
Γ6 149 149,7
Γ6 145 143.7

Figure 14 exhibit folded Raman active modes. The mode at 514 cm−1 can be axial a, Γ1

while mode at 265 cm−1 resembles planar a, Γ6. The peaks at 315 cm−1 and 581 cm−1

might follow from the instrument features or might have arises from the quality of the

material or the impurities on the material since they have not yet presented in the pre-

vious literature.

A small inserted figure on figure 14 shows the zoomed folded Raman mode peaks Γ5 at

235 cm−1 and 241 cm−1 which cant be visualize well in the main spectrum of untreated

sample and were also presented by Hoffmann et al. [26] and Kunert et al. [27] .

Figure 15 exhibit the strong Raman active modes, the mode at 968 cm−1 can be either

modes Γ1(LO) or Γ5(LO). Similarly, the mode at 968 cm−1 could be either one of the

following folded modes Γ5 or Γ6. All first order strong and weak Raman active modes

were found except folded modes Γ5 at 777 cm−1 presented in Hoffmann et al. [26] and

Kunert et al. [27] which might be caused by all those three factors presented before

(instrument features, quality of the material and impurities on the material).
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Figure 14: Raman measurements of 6H SiC, region 1
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Figure 15: Raman measurements of 6H SiC, region 2
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Now we consider the second order Raman effect which is a scattering process where two

phonons participate. These two phonons yields: Stokes component if both phonons are

created, stokes or anti-stokes if one phonon is created and the other is destroyed and if

both are destroyed, we end up having anti - stokes component only [24]. The second-

order Raman active modes are the overtones and combinations of the first order Raman

active modes obtained in Table 11. For them to be overtones, they have to satisfy group

theoretical selection rules[28]. Overtones are determined by irrps of modes contained in

the Symmetrized square of the first order Raman active modes. If one of the four first

Raman modes or one of the twelve folded mode is contained in Symmetrized square,

then the overtone will be allowed if not, then the overtone is not allowed.

Consider a two phonon process in GaN tabulated by Kunert [29] which shows all possible

overtones and combinations.

Table 12: Two phonons process in Wurtzite C4
6v

Species Activity Overtones
[Γ1](2) D, R 2Γ1(LO) or 2Γ1(TO)
[Γ5](2) D, R 2Γ5(LO) or 2Γ5(TO)
[Γ6](2) D, R 2Γ6(LO) or 2Γ6(TO)

Combinations
Γ1 ⊗ Γ5 D, R Γ1(LO) + Γ5(LO) or

Γ1(LO) + Γ5(TO) or
Γ1(TO) + Γ5(LO) or
Γ1(TO) + Γ5(TO)

Γ1 ⊗ Γ6 D, R Γ1(LO) + Γ6(low) or
Γ1(LO) + Γ6(high) or
Γ1(TO) + Γ6(low) or
Γ1(TO) + Γ6(high)

Γ1 ⊗ Γ6 D, R Γ5(LO) + Γ6(low) or
Γ5(LO) + Γ6(high) or
Γ5(TO) + Γ6(low) or
Γ5(TO) + Γ6(high)
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There are also three phonons modes where the overtones and combinations of GaN

tabulated with their frequencies in table 2 by Kunert [29] .

From the Kunert [29], we can have the following overtones and combinations:

(i) Three phonon overtones are 3Γ1(TO) , 3Γ1(LO), 3Γ5(TO), 3Γ5(TO), 3Γ6(low) and

3Γ6(high).

(ii) Simple combinations are Γ1 ⊗ Γ5 ⊗ Γ6 which resulting phonon energy such as:

Γ1(TO) ⊗ Γ5(TO) ⊗ Γ6(low), Γ1(TO) ⊗ Γ5(TO) ⊗ Γ6(high), Γ1(TO) ⊗ Γ5(LO) ⊗
Γ6(low), Γ1(TO) ⊗ Γ5(LO) ⊗ Γ6(high), Γ1(LO) ⊗ Γ5(TO) ⊗ Γ6(low), Γ1(LO) ⊗
Γ5(TO)⊗ Γ6(high), and so on.

(iii) General combinations such as: [Γ1](2) ⊗ Γ5, [Γ1](2) ⊗ Γ6, [Γ5](2) ⊗ Γ1, [Γ5](2) ⊗ Γ6,

[Γ6](2) ⊗ Γ1, and so on.

For 6H SiC, the overtones and combinations are similar to the one of GaN as both ma-

terial follows the same selection rules for C4
6v space group.

Figure 16 exhibits the second and third order Raman active modes which are overtones

or combinations of the first order and folded Raman active modes as stated above. We

are going to use the table of phonon frequencies by Kunert et.al [27] as the reference.

As to check the surface and structure of the material, the same 6H-SiC were treated

with ion implantation. Ion implantation results in damaging the lattice and form some

defects. To repair the damage, the material should be annealed at different temperature.

The Raman spectra of Ag implanted at 350keV and annealed 6H-SiC are presented in

figure 14, 15 and 16 . The energy and the fluence of the implanted ions and thermal

history of the sample determines the measured spectra.

In figure 14, the folded modes which are having a sharp peak at that region for an un-

treated material have disappear due to ion implantation and were also recovered by the

process of annealing at 1400 oC for 10H. Similarly for region 3, the combinations and

overtones modes peaks appearing on untreated modes disappeared due to ion implanta-

tion and also recovered by annealing process.
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In figure 15, the first Raman modes didn’t disappear completely as there are the strong

peak but the intensity was reduced. After annealing process, the Intensity turn to in-

creases which really shows the recovery of crystallinity.

Raman scattering which is the inelastic scattering of monochromatic light by vibrational

modes of the sample has proven to give additional insight into the recrystallization be-

havior of ion damaged materials.

Table 13: Phonons frequencies of 6H - SiC (in±5 cm−1) zone center modes from Raman measurements
by Kunert et. al[27]

Second - order modes [29] Possible assignments Experimental measured
energy (cm−1)

1470 1479
1516 ⇒ 3Γ1 (504) 1515.5
1532 1532
1542 ⇒ 3Γ1 (514) 1544
1614 1616
1626 ⇒ 889 + 504 + 236 combinations 1626
1651 ⇒ 889 + 515 + 241 combinations 1650
1686 1685
1714 1713.5
1925 ⇒ 2Γ1(LO) ?
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Figure 16: Raman measurements of 6H SiC, region 3
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4.2 Infrared spectroscopy

The structure or surface of untreated and treated 6H - SiC were investigated using

Fourier Transform Infrared Reflectance(FTIR). Figure 17 exhibits the measurement done

by FTIR technique on different surface of the material. The IR active modes of 6H -

SiC are presented by Patrick [30] as Γ1 at x = 0.67 and Γ5 at x = 0.

The reststrahl band appearing between 700 cm−1 and 1000 cm−1 is associated with the

transverse optical (TO) phonon frequency. The falling edge beyond the high frequency

is associated with the longitudinal optical (LO) phonon frequency. [31],[32]

The height and the shape of reststrauhlung band are affected by implantation damage

and are also often used to monitor the recovery of radiation damaged material during

thermal annealing.

The spectra of implanted sample shows an asymmetric depletion of the reststrahl band.

The spectra of the annealed sample shows the recovery of the crystallinity as the rest-

strahl band regain its height and shape.

Figure 17 exhibits also can prove the damaged done by ion implantation and a recovery

of the structural from the annealing process as it had been presented in Raman Spectra.

Infrared spectroscopy is also another technique which can be used to check the structural

changes of the untreated and treated materials.
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Figure 17: Infrared spectroscopy measurements of 6H SiC
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4.3 Photoluminescence

The same crystals of 6H - SiC were investigate by low temperature PL using 514nm Ar

laser as excitation source. Using this technique we managed to monitored the structural

changes of a different samples which are untreated material , Ag implanted and annealed

at 1400 oC.

Figures 18 exhibits the PL spectra of the high energy. The sharp peaks are observed

for the untreated and annealed material at photon energy between 2.96 eV and 3.0 eV

without phonon replica. The spectra shows prominent peaks which are phonons replica

at photon energies between 2.88 eV and 2.96 eV.

Ion implantation changes crystal quality of the sample at a different dose [33]. A dose of

2× 1016 cm−2, was used to irradiate the samples and shows the damage and changing of

the crystallinity of the sample to an amorphous state having evidently proved with the

PL spectra of Ag implanted since most of the peaks disappeared.

By annealing the sample as already stated earlier, the sample recover its crystallinity

as the annealing temperature increases. The PL spectra of annealed sample is also pre-

sented in the same figure which shows the recovering of the sharp peaks and phonons

replica which was found on the virgin sample. Figure 18 also shows the defects of Ag

implantation at photon energy of 2.95 eV.

The annealing of the sample from room temperature to high temperature shows the

different PL spectra which indicate the involvement of impurities in many of the lumi-

nescence centers [34]. Peaks which appears between 2.7 eV and 2.84 eV are related to

radiation defects or Ag implantation. Similar case was presented by Peppermuller et al.

[35] with 6H-SiC samples after implantation of either boron or hydrogen.

Figure 19 exhibits the low energy PL spectra, where the different materials shows their

properties. The spectra of annealed shows the Yellow Light band centering at about 2.3

eV and some distortion band. At low implantation dose and high annealing temperature

the Yellow Light band is created.
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The band is associated with deep levels involving boron acceptor and eventually alpha

particle at rest. Same results were presented by Kunert et al. [27]. The measurement

done by the PL shows the same effects in Ag implantations and annealed at a different

temperature sample.
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Figure 18: Photoluminescence measurements of 6H SiC, region 1
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Figure 19: Photoluminescence measurements of 6H SiC, region 2
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5 Conclusions

Lattice vibrations of the crystals are characterized by phonons. Lattice vibrations in a

crystals having any symmetry can be easily calculated using the Group theory approach.

The phonons modes of a semiconductor having the symmetry of C4
6v space group were

calculated theoretical. The allowed modes of the semiconductor were presented and there

was a correlation between the experiments measurements done by different techniques

such as: Inelastic X-Ray, time-of-flight neutron scattering done by Nipko, Thoma, Hewat

and Ruf. These techniques cannot measure the phonons frequencies at the center of the

BZ (k ∼= 0).

The phonons modes at region Γ −→ ∆ −→ A were treated under time reversal sym-

metry (TRS). The experiment measurements done using Inelastic X-Ray, time-of-flight

neutron scattering also proves the presence of time reversal symmetry at that region.

Two phonons from high symmetry point Γ passing via high symmetry line ∆ joins each

other at high symmetry point A.

The calculated results also shows that, the two phonons of ∆ line are associated with

the representation joint A⊕ A∗.

Raman and Infrared scattering can manage to probe phonons frequency at the center of

BZ. To do that, we need to know which modes are Raman and Infrared active. Selection

rules for which modes are Raman active it can also be determined using the group the-

oretical approach. Here we have to determine which representation are contained in the

symmetrized KP. The Raman modes were used to characterize the surface of the treated

and untreated material (Ag implanted and annealed at 1400 oC for 10H).

The different degrees of damage such as lattice distortion, amorphization and chemical

arrangement of a crystal caused by the ion implantation can be detected by Raman,

Infrared and photoluminescence spectroscopy. The Raman spectra show the lattice dis-

tortion and chemical arrangement. Infrared spectra show the formation of the surface

layers and allow the evaluation of the dielectric constants. The annealing process at dif-

ferent temperature could evidently show the recovery of the crystal surface or structure.
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Appendix

1. Normal modes

The following are the calculation of Normal modes spanned by DR at critical high

symmetry points and lines in C4
6v wurtzite:

Using the formulated reduction formula:

aΓi
=

1

g

∑
i

χDR (g/τg) χΓi (/τg) (18)

where (g/τg) is 1, 2.1, 3, 4.1, 5, 6.1, 19, 20.1, 21, 22.1, 23, and 24.1, and i = 1,

. . . , 6 and χDR is the characters of DR and chiΓi is the characters of Γ which are

presented in table 1 (section 2.1)

We are only going to use operator 1, 19, 21, 23 as the other ones turns to zero.

aΓ1 = 1
12

[12(1) + 4(1) + 4(1) + 4(1)] = 2

aΓ2 = 1
12

[12(1) + 4(−1) + 4(−1) + 4(−1)] = 0

aΓ3 = 1
12

[12(1) + 4(−1) + 4(−1) + 4(−1)] = 0

aΓ4 = 1
12

[12(1) + 4(1) + 4(1) + 4(1)] = 2

aΓ5 = 1
12

[12(2) + 4(0) + 4(0) + 4(0)] = 2

aΓ6 = 1
12

[12(1) + 4(0) + 4(0) + 4(0)] = 2

Therefore Γ : 2Γ1 ⊕ 2Γ4 ⊕ 2Γ5 ⊕ 2Γ6

55

 
 
 



Using table 2 (for χK) from section 2.1 for character of high symmetry point K

and formulated reduction formula 19

aΓi
=

1

g

∑
i

χDR (g/τg) χΓi (g/τg) (19)

where (g/τg) is 1, 3, 5, 20.1, 22.1, and 24.1, and i = 1, . . . , 3

aK1 = 1
6
[12(1) + 0(1) + 0(1) + 0(1) + 0(1) + 0(1)] = 2

aK2 = 1
6
[12(1) + 0(1) + 0(1) + 0(1) + 0(1) + 0(1)] = 2

aK3 = 1
6
[12(2) + 0(1) + 0(1) + 0(1) + 0(1) + 0(1)] = 4

Therefore K : 2K1 ⊕ 2K2 ⊕ 4K3

Using table 3 (χ
∑

) from section 2.1 for high symmetry line
∑

and formulated

reduction formula 20

a∑
i
=

1

g

∑
i

χDR (g/τg) χ
∑

i (g/τg) (20)

where (g/τg) is 1 and 24.1, and i = 1,2

a∑
1

= 1
2
[12(1) + 4(1)] = 8

a∑
1

= 1
2
[12(1) + 4(−1)] = 4

Therefore
∑

: 8
∑

1⊕ 4
∑

2

By repeating the same calculations for all other points, we can manage to complete

the table 4 shown in section 2.1.
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2. Vector representations(VR)

Using the table 10, chapter 2, section 2.4 (third row) for χV R, table 1 section

2.1 for χΓ and formulated reduction formula 21, we can decompose irrps that are

contained in VR.

aΓi
=

1

g

∑
i

χV R (g/τg) χΓi (g/τg) (21)

where (g/τg) is 1, 2.1, 3, 4.1, 5, 6.1, 19, 20.1, 21, 22.1, 23, and 24.1, and i = 1, . . . , 6

aΓ1 = 1
12

[3(1) + 2(1) + 0(1) + (−1)(1) + 0(1) + 2(1) + 1(1)+

1(1) + 1(1) + 1(1) + 1(1) + 1(1) = 1

aΓ2 = 1
12

[3(1) + 2(1) + 0(1) +−1(1) + 0(1) + 2(1) + 1(−1)+

1(−1) + 1(−1) + 1(−1) + 1(−1) + 1(−1) = 0

aΓ3 = 1
12

[3(1) + 2(−1) + 0(1) +−1(−1) + 0(1) + 2(−1) + 1(−1)+

1(1) + 1(−1) + 1(1) + 1(−1) + 1(1) = 0

aΓ4 = 1
12

[3(1) + 2(1) + 0(1) +−1(1) + 0(1) + 2(1) + 1(1)+

1(1) + 1(1) + 1(1) + 1(1) + 1(1) = 0

aΓ5 = 1
12

[3(2) + 2(−1) + 0(−1) +−1(2) + 0(−1) + 2(−1) + 1(0)+

1(0) + 1(0) + 1(0) + 1(0) + 1(0) = 0
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aΓ6 = 1
12

[3(2) + 2(1) + 0(−1) +−1(−2) + 0(−1) + 2(1) + 1(0)+

1(0) + 1(0) + 1(0) + 1(0) + 1(0) = 1

therefore, we can write:

VR = Γ1 ⊕ Γ6
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3. Symmetry vector representations

Characters χ(g) of Twelve Symmetry Operators

1 E




1 0 0

0 1 0

0 0 1


 Tr(E) = 3

2 C+
6




1 −1 0

1 0 0

0 0 1


 Tr(C+

6 ) = 2

3 C+
3




0 −1 0

1 −1 0

0 0 1


 Tr(C+

3 ) = 0

4 C2+




−1 0 0

0 −1 0

0 0 1


 Tr(C2) = −1

5 C−
3




−1 1 0

−1 0 0

0 0 1


 Tr(C−

3 ) = 0

6 C−
6




0 1 0

−1 1 0

0 0 1


 Tr(C−

6 ) = 2

19 δv1




−1 1 0

0 1 0

0 0 1


 Tr(δv1) = 1
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20 δd2




−1 0 0

−1 1 0

0 0 1


 Tr(δd2) = 1

21 δv3




0 −1 0

−1 0 0

0 0 1


 Tr(δv3) = 1

22 δd1




1 −1 0

0 −1 0

0 0 1


 Tr(δd1) = 1

23 δv2




1 0 0

1 −1 0

0 0 1


 Tr(δv2) = 1

24 δd3




0 1 0

1 0 0

0 0 1


 Tr(δd3) = 1

Since the character is the trace of the symmetry operator’s matrix representation.

The following character table is obtained:

g 1 2 3 4 5 6 19 20 21 22 23 24

χ(g) 3 2 0 -1 0 2 1 1 1 1 1 1

Characters of the Kronecker Product χ2(g) of the Symmetry Operators

The character χ2(g) is the trace of the (9 × 9)-matrix obtained after taking the

Kronecker product of the symmetry operator’s (3×3)-matrix representation. This

is the same as squaring the character of the symmetry operator, therefore:

[χ(E)]2 = [Tr(E)]2 = 32 = 9
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g 1 2 3 4 5 6 19 20 21 22 23 24

χ(g) 3 2 0 -1 0 2 1 1 1 1 1 1

χ2(g) 9 4 0 1 0 4 1 1 1 1 1 1

Characters of the Symmetric and Anti-symmetric Product Representa-

tions

The symmetric and anti-symmetric product representations are given by (note

brackets):

[Dµ ⊗Dµ(g)]kl,ij ⇒ symmetric product representation with dimension 1
2
nµ(nµ + 1)

{Dµ ⊗Dµ(g)}kl,ij ⇒ anti− symmetric product representation with dimension 1
2
nµ(nµ − 1)

Their characters are defined as follows:

[χ⊗ χ(g)](z) = 1
2

[
χ2(g) + χ(g2)

] ⇒ character of symmetric product representation

{χ⊗ χ(g)}(z) = 1
2

[
χ2(g)− χ(g2)

] ⇒ character of anti− symmetric product representation

Using the multiplication table of a space groups, we can determine the squares of

the irrps:

g 1 2 3 4 5 6 19 20 21 22 23 24

g2 1 3 5 1 3 5 1 1 1 1 1 1

Therefore we obtain the following characters table of symmetrized product repre-

sentations :

g 1 2 3 4 5 6 19 20 21 22 23 24
g2 1 3 5 1 3 5 1 1 1 1 1 1

χ(g) 3 2 0 −1 0 2 1 1 1 1 1 1

(χ(g))2 9 4 0 1 0 4 1 1 1 1 1 1
χ(g2) 3 0 0 3 0 0 3 3 3 3 3 3[

(χ(g))2 + χ(g2)
]

12 4 0 4 0 4 4 4 4 4 4 4
1
2

[
(χ(g))2 + χ(g2)

]
6 2 0 2 0 2 2 2 2 2 2 2
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Determining Symmetries of the Raman-Active Modes

Using formulated reduction formula and the last row on above table, we can manage

to find which irreducible representation are symmetrized.

The reduction formula is of the form:

aµ =
1

g

∑
i

[χ (g/τg)× χ (g/τg)]sym χΓi (g/τg) (22)

where [χ (g/τg)× χ (g/τg)]sym is the character of the symmetrized VR, χΓi (i =

1, . . . , 6) is the character of the high symmetry point Γ and (g/τg) is 1, 2.1, 3, 4.1,

5, 6.1, 19, 20.1, 21, 22.1, 23, and 24.1, and i = 1, . . . , 6

aΓ1 = 1
12

[6(1) + 2(1) + 0(1) + 2(1) + 0(1) + 2(1) + 2(1) + 2(1)+

2(1) + 2(1) + 2(1) + 2(1)] = 2

aΓ2 = 1
12

[6(1) + 2(1) + 0(1) + 2(1) + 0(1) + 2(1) + 2(−1)+

2(−1) + 2(−1) + 2(−1) + 2(−1) + 2(−1)] = 0

aΓ3 = 1
12

[6(1) + 2(−1) + 0(1) + 2(−1) + 0(1) + 2(−1) + 2(−1)+

2(1) + 2(−1) + 2(1) + 2(−1) + 2(1)] = 0

aΓ4 = 1
12

[6(1) + 2(−1) + 0(1) + 2(−1) + 0(1) + 2(−1) + 2(1)+

2(−1) + 2(1) + 2(−1) + 2(1) + 2(−1)] = 0
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aΓ5 = 1
12

[6(2) + 2(−1) + 0(−1) + 2(2) + 0(−1) + 2(−1) + 2(0)+

2(0) + 2(0) + 2(0) + 2(0) + 2(0)] = 1

aΓ6 = 1
12

[6(2) + 2(1) + 0(−1) + 2(−2) + 0(−1) + 2(1) + 2(0)+

2(0) + 2(0) + 2(0) + 2(0) + 2(0)] = 1

Finally we can write:

[V ⊕ V ](2) = 2Γ1 ⊕ Γ5 ⊕ Γ6
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