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Parailel manipulators have many advantages over traditional serial manipulators. These
advantages include high accuracy, high stiffness and high load-to-weight ratio, which make
parallel manipulators ideal for machining operations where a high accuracy is required to
meet the requirements that modern standards demand.

A number of previous workers have determined the stiffness of paralilel platforms using
the duality between instantaneous kinematics and statics in parallel mechanisms. For the
aforementioned analysis, compliance is introduced in the actuators, resulting in a platform
stiffness matrix. This methods furthermore predicts when the platform approaches a singular
or ill-conditioned configuration.

However, this idealized estimate of the stiffness is not accurate enough to determine how
an actual platform assembly will react to an externally applied force. For a planar parailel
platform, the out of plane stiffness is not included in the resulting stiffness matrix since the
kinematics equations are derived only in the plane in which the platform operates.

Recently, the finite element method (FEM) has been used by some workers to determine the
stiffness of spatial manipulators. These models are mainly used to verify stiffness predicted
using kinematic equations, and are restricted to relatively simple truss-iike models. In this
study, state-of-the-art finite elements are used to determine the out of plane stiffness for
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parallel manipulators. Beam elements that make use of Timoshenko beam theory and flat
shell elernents with drilling degrees of freedom are used to model the platform assembly.

The main objective of this study is to quantify the stiffness, particularly the out of plane
stiffness, of a planar parallel platform to be used for machining operations. The aim is to
suggest a design that is able to carry out machining operations to an accuracy of 10 gm for
a given tool force.

Reducing the weight of a parallel manipulator used in machining applications has many ad-
vantages, e.g. increased maneuverability, resulting in faster material removal rates. There-
fore the resulting proposed design is optimized with respect to weight, subject to displace-
ment and stress constraints to ensure feasible stiffness and structural integrity.

This optimization is carried out with both gradient-based methods and a genetic algorithm
(GA). The gradient-based methods include LFOPC and Dynamic-Q. A binary GA, imple-
mented as both a micro GA and full (A, is used to provide for the future inclusion of discrete
design variables.

Stiffness maps, as proposed by Gosselin, are drawn for the optimal design. These stiffness
maps can aid in determining the best toolpath inside a feasible workspace.

It is envisaged that this work, together with current work at the University of Pretoria, will
result in a feasible design for a planar parallel platform to be used in industry. An application
of such a planar parallel platform lies in retro-fitting existing, relatively inexpensive 3-axis
milling equipment. This increases their capability at a lower cost than the of the alternative
of purchasing a traditional 5-axis milling center.
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Parallelle manipuleerders het talle voordele bo tradisionele serie manipuleerders. Die voor-
dele sluit hoé akkuraatheid, hoé styfheid en 'n hoé las-tot-gewigverhouding in, wat parallelle
manipuleerders aantreklik maak vir masjineringsaksies waar 'n hoé akkuraatheid vereis word
om aan die vereistes van moderne standaarde te voldoen.

'n Aantal werkers het voorheen die styfheid van parallelle platforms bepaal deur gebruik te
maak van die dualiteit tussen oombliklike kinematika en statika in parallelle meganismes.
Vir eersgencemde analise word die stytheids-inverse van die aktueerders bereken, wat 'n
resultante styfheidsmatriks gee. Hierdie mefode voorspel voorts ook wanneer die platform
singulére of swak-gedefiniéerde konfigurasies nader.

Die geidealiseerde benadering van die styfheid is egter nie akkuraat genoeg om te bepaal hoe
'n werklike platform samestelling reageer onder eksterne belastings nie. Vir 'n vlak parallelle
platform word die uit-vlak styfheid nie in die resulterende stytheidsmatriks ingesluit nie,
aangesien die kinematiese verwantskappe slegs afgelei word in die vlak waarin die platform
opereer.

Die eindige element metode (KEM) is onlangs deur sommige werkers gebruik om die styfheid
van ruimtelike aktueerders te bepaal. Hierdie modelle word hoofsaaklik gebruik om styfheids
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voorspellings gedoen met behulp van inverse kinematiese verwantskappe te kontroleer, en
is beperk tot relatief eenvoudige stang-aptige modelle. In hierdie studie word gevorderde
eindige elemente gebruik om die uit-viak styfheid van parallelle manipuleerders te hepaal.
Balk elemente wat op Timoshenko balk teorie gegrond is, en plat dop elemente met boor-
rotasie vryhede, word gebruik om die platform samestelling te modelleer.

Die hoofdoel van hierdie studie is die kwantifisering van styfheid, en in die besonder die uit-
vlak styfheid, van 'n parallelle platform vir masjinerings doeleindes. Daar word gepoog om 'n
ontwerp geskik vir 'n masjinerings proses binne 'n toleransie van 10 pum vir 'n voorgeskrewe
gereedskapslas daar te stel.

Die verlaging van die gewig van 'n parallelle manipuleerder wat in masjinerings prosesse ge-
bruik word het talle voordele, soos bv. verhoogde manufreerbaarheid, wat tot hoér tempos
van materiaalverwydering lei. Die resulterende voorgestelde ontwerp word dan ook geopti-

meer met betrekking tot gewig, onderhewig aan verplasings- en spanningsbegr enslngs Wat

voldoende styfheid en strukturele integriteit waarborg.

Hierdie optimerings proses word met beide gradiént metodes en 'n genetiese algoritme (GA)
uitgevoer. e gradiént metodes sluit LFOPC en Dynamic-Q) in. 'n Binére GA wat as beide
n mikro en 'n vol GA geimplementeer is, word gebruik om voorsiening te maak vir die
insluiting van diskrete ontwerpsveranderlikes in die toekoms.

Styfheidskaarte, soos voorgestel deur Gosselin, word opgestel vir die optimale ontwerp. Hier-
die styftheidskaarte kan behulpsaam wees wanneer die beste gereedskapspad binne 'n wettige
werksruimte gevind moet word.

Dit word verwag dat hierdie werk, tesame met ander projekte by die Universiteit van Preto-
ria, sal let tot 'n werkbare vlak parallelle platform vir gebruik in die industrie. 'n Toepassing
van so 'n vlak parallelle platform [é in die ombouing van bestaande, relatiel goedkoop 3-
assige freesmasjiene. Dit verhoog die vermoéns van hierdie masjiene teen 'n laer koste as die
alternatief, naamlik die aanskaf van 'n tradisionele 5-assige masjien.
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Chapter 1

Introduction

1.1 Motivation

The word “robot” is, to a large extent, associated with the robots seen in movies. However,
in practice most robots are used as manufacturing tools, performing tasks such as spray-
painting, welding, assembling and machining.

In general, robots may be divided into two categories, namely seriai and parallel manipula-
tors. Serial manipulators are mechanisms in which a so-called end-effector is connected to
ground by ouly one kinematic chain. The end-effector may be defined as a tool or gripping
mechanism attached to the wrist of a robot to accomplish some prescribed task. It usnally
encompasses a motor, or driven mechanical device. It may be used as a sensor, gripping de-
vice, paint gun, drill, welding device, etc. [1]. Figure 1.1 depicts a typical serial manipulator.
(Figure 2.2(b) in Chapter 2 depicts a parallel type manipulator.)

Of particular itmportance in the study of serial and parallel manipulators is their dexterity
and associated workspace. Dexterity is a measure of a robot’s ability to follow complex paths,
while workspace may be defined as the volumne {or area in the case of planar manipulators}
of space within which the robot can perform given tasks [L, 2].

Serial-link manipulators are used in applications where a large workspace is required with
increased dexterity therein. However, their cantilever structure makes them susceptible to
large deflections, resulting in poor stiffness and thus poor positioning accuracy.

In recent years, parallel manipulators, and in particular Stewart platforins, have been re-
ceiving a great deal of attention in the field of robotics research. An application particularly
suited for this type of manipulator lies in the material machining industry, since parallel
manipulators do not suffer from the aforementioned stiffness drawbacks suffered by serial
manipulators.

Parallel manipulators are used in applications in which the accuracy requirements outweigh
the need for a large workspace {3]. For material removal machine tools, higher stiffness allows
higher machining speeds and feed rates while maintaining the desired precision, surface finish,
and improved tool life.

The most useful advantage of parallel mechanisms over serial type manipulators is their
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Figure 1.1: Typical serial manipulator.

ability to carry a high load, while not becoming bulky and heavy. This is due to the fact that
loads are distributed, to a great extent, evenly through the actuators. A further advantage
is the fact that the actuators experience mostly traction and compression loads, which are
preferred when using linear type actuators.

Another advantage of a parallel manipulator over a serial type is the fact that the end-
effector is much less sensitive to the errors in the position of the actuators. In a parallel
type manipulator, the error is approximately equal to the average of the actuator errors. In
a serial type actuator, the error of the end-effector is equal to the sum of the errors of the
actuators. This makes a parallel-link manipulator scheme, for a machining tool, potentially
more accurate and repeatable. Also, the superior tobotic stiffness of the structure results in
the deformation of the links being minimal, and contributes to the high positional accuracy
of the end-effector.

Thus, since in-parallel actuated mechanisms have advantages in accuracy, operational speed,
payload, rigidity and output power, compared with serial mechanisms, parailel manipulators
are well suited to heavy duty applications [4].

1.2 Objectives

This study forms part of a larger project at the University of Pretoria, in which the feasibility
of retro-fitting an existing 3-axis milling machine with a planar parallel platform is being

___________
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investigated. This will effectively transform a relatively inexpensive 3-axis milling machine
into a 4 axis machine center which is capable of machining more complex and irregular
shapes. Adding a fifth (rotation) axis to such a machine can be accomplished relatively
inexpensively, resulting in a machine capable of manufacturing complex shapes, e.g. plastic
injection molds, thus adding greatly to the value of the machine.

Researchers at the University of Pretoria [5, 6, 7} have studied various aspects of this type
of manipulator, including workspace and singularity considerations. In Section 2.2.8 this
existing work is presented in more detail.

Merlet {8] points out that the design process entails determining the design parameters so
that a set of congtraints is satisfied. He lists several possible constraints for the design of a
manipulator, including:

¢ a workspace requirement,

the maximum accuracy over the workspace for a given sensor accuracy,

the minimum articular forces for a given load set,

the maximal stiffness of the robot in some direction, and

the maximum velocities or accelerations for given actuator velocities and accelerations.

The current work deals with the design of a low weight planar parallel platform, subject to
stiffness and stress counstraints. An existing design is to be critically analyzed in order to
determine whether a machining tolerance of 10 pm is possible. If this tolerance is not met,
a change in design is to be suggested which is capable of meeting this tolerance. Once the
design is capable of meeting the prescribed tolerance, it is to be optimized with respect to
weight. The requirements may thus be summarized as:

=t

To analyze and critically evaluate an existing planar parallel platform design.

2. To suggest, if necessary, design improvements such that the prescribed machining tol-
erance of 10 pm is attainable for a given tool force.

3. To minimize the weight of the manipulator, subject to stiffness and stress constraints,
and such that the prescribed machining tolerance is met.

1.3 Approach

Traditionally, the stiffness of a Stewart platform has been computed using the kinematic
Jacchbian matrix [9]. Recently the finite element method has also been used to perform the
stiffness analysis {10]. These fairly simple finite element analyses, using mainly simple truss
elements, yield results of similar accuracy to that of the Jacobian stiflness analysis, and are
used mainly to verify stiffness predicted using kinematic equations.
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For the application studied here, the Jacobian stiffness analysis is not suflicient, since it can-
not calculate the out of plane displacements of the planar platform. The development of flat
shell elements with drilling degrees of freedom [11, 12, 13}, allowing beam-plate connections,
gives designers tlie ability to accurately model a planar parallel platform. Furthermore, us-
ing beam elements instead of simple truss elements enables the calculation of out of plane
deflections accurately.

For these reasons, a more complex model of the planar platform is used in this study to
calculate the platform displacement and stiffuess. Optimization with respect to weight is
then performed using both a Genetic Algorithm {GA) [14] and gradient-based methods
{15, 16]. The results of the different optimization algorithms are analyzed and compared.
The GA is included to facilitate the envisaged future optimization using discrete variables,
since in the discrete case the design space is disjointed and gradient information is of little
use.

The optimization results are furthermore used to evaluate the existing planar platform de-
sign and to suggest design improvements subject to a machining tolerance of 10 pm being
maintained.

1.4 Thesis overview

In Chapter 2 a brief overview of existing work regarding parallel platforms, and the Stewart
platform in particular, is presented. Firstly, a brief history of the Stewart platform is pre-
sented and typical applications for this manipulator are discussed. Thereafter the current
research trends in this field of study are touched upon.

Chapter 3 staris with a description of the existing planar parallel platform design, as well as
some detail concerning the way in which the platform is modeled. The chapter begins with
a description of the individual components of the planar platform assembly, and describes
how each is modeled. Next the model boundary conditions are presented, followed by some
results from the preliminary finite element analyses.

Chapter 4 is concerned with the optimization of the planar parallel platform proposed in
Chapter 3. Tle formal formulation of the optimization problem is presented, followed by a
discussion of the optimization methodology that is to be used. The chapter concludes with
a presentation of the optimization results, followed by a discussion of the results and the
conclusions drawn. It is ultimately shown that the design is unable to meet the prescribed
accuracy.

Chapter 5 contains information regarding the proposed improved planar parallel platform
design to meet the prescribed accuracy. Firstly a description of the improved design is
presented followed by a summary of the finite element model that is used. Next, the op-
timization results for this design are presented and discussed. Finally, stiffiness maps are
calculated for the improved design and the importance of toolpath planning is touched on.

Finally the study’s overall conclusions and proposals for future work are presented in Chapter

6.
Appendix A presents the traditional approach to computing the robotic stiffness {to be




CHAPTER 1. INTRODUCTION 5

referred to as the Jacobian method) required for the static analysis of a parallel platform,
with compliant actuators.

Appendices B and C present more detail regarding the respective formulation of the frame
and flat shell elements used in the finite element analyses.

Appendices D, B and F detail the optimization algorithms that are used in this work.
First the two gradient-based methods originated by Snyman, namely the “Leap-Frog” and
Dynamic~Q) methods are presented. This is followed by a presentation of the Genetic Algo-
rithim as coded by Carrol.

Appendix G contains information regarding the calculation of the tool forces that are as-
sumed to be acting on the workpiece.

Appendix H depicts the sensitivity of the objective and constraint functions to the various
variables.




Chapter 2

Overview of Existing Work

In this chapter existing work regarding Stewart platform manipulators is briefly summarized.
Current research trends and existing work at the University of Pretoria are noted and briefly
discussed.

2.1 Brief overview of Stewart platform manipulators

This section contains a brief intreduction to Stewart platforms and contains information
regarding the history, uses and some of the various designs of parallel manipulators.

2.1.1 History of the Stewart platform

In 1965, Stewart [17] suggested a parallel manipulator with six degrees of freedom {now com-
mounly known as a Stewart platform). The original application suggested in this pioneering
paper was to use the manipulator as a flight simulator.

One of the responses to the paper of Stewart was from Gough who stated that the design
of Stewart’s was similar to a tire testing machine that Gough and Whitehall [18, 18] had
already designed and built by 1955. This type of parallel manipulator is therefore also often
referred to as a Gough-Stewart platform.

Though the Stewart platform was proposed by Stewart {17] in 1965, its popularity as a
research topic only developed in the 1980°s. In the last decade there has been a steady
increase in the interest shown in parallel manipulators, and especially Stewart platform type
manipulators, for a number of different applications |[20].

2.1.2 Introduction to parallel manipulators

Since traditional serial manipulators are, in general, more commonly used in industry, the
use of parallel manipulators in their place needs to be adequately motivated. In this section,
some of the salient features of parallel manipulators are pointed out. Additionally, several
of the paraliel manipulators which have already been designed and built are listed.

G
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Merlet [21} defines a parallel manipulator as “a closed-loop mechanism in which the end-
effector 1s connected to the base by at least two independent kinematic chains”. He defines
a fully-paralle]l manipulator as “a closed-loop mechanism with an n degree-of-freedom end-
effector connected to the base by n independent chains which have at most two links and are
actuated by a unique prismatic or rotary actuator”. A Stewart platform is a fully-parallel
manipulator with 6 degrees of freedom (dof).

Figure 2.1: SMARTCUTS 3-dof planar parallel platform.

Although it is relatively simple to design a serial manipulator to carry out complicated tasks,
these types of manipulators are susceptible to large deflections and vibration problems at high
speeds due to their low rigidity. Parallel manipulators do not suffer from these disadvantages.

Since the load is distributed relatively evenly between its actuators and furthermore, the
actuators experience mostly traction and compressive loads, parallel manipulators have fa-
vorable load to weight ratios. As an example, Merlet [22] cites a parallel manipulator which
he developed with a weight of 35 kg and a nominal load capacity of 600 kg.

Additionally, parallel manipulators are less susceptible to end-effector error due to actuator
positioning errors. This is due to the fact that the end-effector error is approximately equal
to the average of the individual actuator errors, unlike serial manipulators for which end-
effector error is equal to the sum of the errors of the actuators. Parallel schemes, unlike
serial manipulators with a cantilever-type construction, have high global stiffness. This high
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global stiffness contributes to the platform end-effector’s high positional accuracy.

Thus, since in-parallel actuated mechanisms have advantages in accuracy, operational speed,
payload and rigidity, compared to that for serial mechanisms, parallel manipulators are better
suited to heavy duty applications [4].

A number of experimental parallel manipulators have been proposed and built, for example
the SMARTCUTS three degree of freedom (3-dof) planar platform shown in Figure 2.1 and
the 6-dof manipulators shown in Figures 2.2(a} and 2.2(b) [23]. Perhaps the most notable
Stewart platform-based machine tool in existence is the Octohederal Hexapod machine tool
developed by the Ingersoll Milling Machine Company. This milling machine consists of a
moving tool assembly manipulated over the workpiece by six ball screw actuators, making
up the 6-6 Stewart platform shown in Figure 2.2(b). The standard notation describing the
number of connection points for a Stewart platform (o — 3) is employed here. « refers to
the number of moving platform connection points while 3 refers to the number of stationary
platform connection points.

{a} Octzhedral Hexapod machining wax ren- {b} OGctahedral Hexapod machine installed at
dition of composite panel forming die. (Part the National Institute of Standards and Tech-
geometry supplied by NASA Johnson Space nology (NIST).

Flight Center).

Figure 2.2: Examples of 6-dof Stewart platform based machine tools.
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The internet web site “PKM {Parallel Kinematic Machines) Bookmarks” [24] lists a number
of research organizations involved in the development of parallel platforms, as well as parallel
platforms either available or in development in industry. Some of the research organizations
and their available products are listed below.

Products developed at research organizations:
s NASA (Cockpit Motion Facility)
s LIRMM (Parallel Robots)
o LME {Hezapod Machine)

o INRIA (Left hand, Active wrist)
e Sandia Hexapod Testbed

¢ NIST (Hezapod)

e NIST (RoboCrane)

e SFIT {Hexaglide)

Products developed in industry:
¢ Toyoda (HexaM Mauchine)
e DEMAUREX, Swiss (Delta, flevible packaging systems)
o Hexel Corporation { Tornado 2000}

o AEA Technology (Joystick)

o Vertex Antennentechnik (Antennas, Radio telescopes)
¢ CAE Electronics Ltd. (Motion simulators)

e MOOG Motion Systems (Motion simulators) 7
s ViRtogo {Motion Simulators)

o DELTALAB { Educational Set EX800)

In addition to these organizations, a number of learned institutions and universities are also
involved in parallel plaiform development. This suggest how popular and important this
line of research has become. Yet, in spite of this activity Ji [25] reports as recently as 1996,
that the use of platforim manipulators is still mainly in an experimental stage.
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2.1.3 Uses of the Stewart platform

Parallel-link manipulators based on the Stewart platform have been proposed as schemes for
many different applications, including:

¢ machine tools,

e flight simulators and amusement park rides,

assembly applications which require large forces,

forming presses,

mobile robots (by having a variable base geometry) and

and for use in stabilizing platforms aboard ships.

2.2 Current research trends

In their state-of-the-ari reviews, Merlet [21], and more recenily, Dasgupta and Mruthyunjaya
126] identify a number of current research trends with regard to the Stewart platform and
other parallel platforms. In this section these irends are briefly discussed in order to put the
present work into perspective.

2.2.1 Direct position kinematics

The forward kinematics problem may be simply stated as: given the leg or link lengths,
determine the end-effector or platform posiiron and orientation. This problem is challenging
since the solution is not unique and an iterative approach is required in most cases.

The mathematical description of the problem equates to the solution of the kinematic equa-
tions [27]:

Jb — (d+ BRp)T(h — (d+ Rp™)) = L, i=1,2,...,6 (2.1)

where:

b; represents the vector from the origin of the base coordinate frame B, to the joint that
connects the it leg to the base,

g2 is the vector that connects the coordinate system of the platform M with the i leg

joint in the platform coordinate system,

d = [z,y, 2] is the position vector of the platform coordinate system’s origin (M} in the base
coordinate system B,
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I; is the length of the i** leg, and

cos gpcosd cospsinfsiny — sin¢gcosyy  cos¢sind cos ¥ + sin dsin
K= | singcosf sin¢gsinfsiny + cosgcosy sin¢sind cosy — cos @sin
~ 8in ¢ cos fsin o cos @ cos 1
is the rotation matrix relating the platform’s coordinate system, M, to the base coordinate
system, B as shown in Figure 2.3. Here R is constructed using Roll (¢} about the z-axis,
Pitch (¢} about the y-axis and Yaw (1) about the z-axis. ln particular, it is required to
solve for d = [z, y, z] and the angles ¢, § and .

Mohbile

- Platform
pG y I
) Py

Vi
Py

Controllable
Legs

Spherical
Joints

Figure 2.3: Schematic of a 6-dof Spherical Prismatic Spherical (SPS) Stewart platform.

Merlet [28] developed an algorithm to solve the Stewart Platform forward kinematics prob-
lem, in which the upper bound on the number of solutions was found to be 1320. Raghavan
[29] found that a general Stewart platform has 40 real solutions. Some special designs of the
Stewart Platform reduces the solution space. Utilizing specialized approaches, many differ-
ent structures, ranging from the simplest (3-3) to complicated (5-5 and 6-4) schemes, were
solved. In [30, 31, 32| and many others, authors studied specific topological configurations
of the Stewart Platform. As El-Khasawneh and Ferreira {27] point out, these solutions are
highly restrictive or even mechanically infeasible designs.

Gosselin et al. {33] studied a 3-dof planar manipulator, in which he found that reducing the
degrees of freedom to 3 greatly simplifies the problem. The forward kinematics problem for
this manipulator becomes a matter of solving a 6'* order polynomial in one variable. Sim-
phifying the design further, by having the three base joints collinear and the platform joints
collinear reduces the order of the polynomial to 3"¢ order, which has a closed-form solution.
They explain that having a closed-form solution for the forward kinematics problem will
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impact the control type and sampling speed that can be implemented. This has implications
for the accuracy and dynamic stiffness that can be achieved through closed loop controls.
This implies that lower dof parallel link manipulators may have superior performance to a
full 6-dof manipulator in some respects.

In summary, closed-form solutions of special cases, numerical sclution schemes and analytical
approaches have been implemented to solve the direct positional kinematics problem.

2.2.2 Statics and rate kinematics

The inverse kinematics problem is defined as: given the end-effector position and orientation,
compute the manipulator leg-lengths. Unlike the forward kinematics problem, the inverse
kinematics problem is easy to solve {34]. This problem is defined mathematically as:

i = (b — (d+ Rp)"(bs — (d + Rp?)) = g:( R, d) (22)
where {;, b;, d, pi*, and R are as described in (2.1).

 Now, the change in the length of the i** leg, Al; is obtained as a row vector J; multiplied
by a column displacement vector Ap as shown below:

Al; = J,Ap (2.3)

where J; = [%ﬁ— b oo oo %] and Ap = [Az Ay Az Ay A# Ad]". Assembling

the equations for all the legs in the mechauism gives,

Aq = JAp (2.4)

where Agq = [Al; Aly Aly Aly Al; Alg] . In the limit, this equation relates the speed of
the joints of the mechanism to the speed at the end-effector. Thus

g =JTb (25)

Whereg=1[l, Iy ls I3 Iy lglandp=1[z v =z ¢ 6 ¢&]. Thus.J;is the i*" row of the Jaco-
bian matrix J, and represents the change in the ** joint for a unit component displacement

vector change.

From the principle of duality between force-torque and velocity fields, or what is commonly
known as contragedience (see Section 2.2.9):

F=J'F (2.6)
where 7 = [F, F, F, Mz My Mz]T is the end-effector wrench, the vector of forces
experienced by the legsis f = [f1 fo f3 fi f5 fs], and J7 is the transpose of the Jacobian
matrix.

Thus the forward force transformation of the Stewart Platform is a straightforward linear
mapping as described by Merlet |28] and Fichter {34], and denoted by the matrix H in the
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following discussion. The columns of the 6 x 6 force transformation matrix essentially consist
of the Plicker coordinates of the six legs. Naturally the inverse force decomposition requires
the inverse of the matrix H, giving rise to the possibility of static singularities {26

The inverse velocity kinematics, derived by Fichter {34], is essentially a linear transformation
given by HT. The forward velocity kinematics can be obtained by inverting H7T. The
Jacobian in the conventional sense is thus given by H™7 for the Stewart Platform. The
acceleration kinematics can also be derived from this transformation [26].

2.2.3 Singularities

Gosselin [9] suggests that the classification of singularities, which can occur only in mechani-
cal systems containing closed loop kinematic chains, correspond to a configuration for which
there exists a certain set of nonzero generalized velocity vectors, or twists, of the gripper link
that produce a velocity of zero at all of the actuators. Therefore the motion of the gripper
link cannot be controlled by the motion of the actuators, and the stiffness of the manipulator
in the direction corresponding to the nullspace of the Jacobian matrix will be zero.

The Stewart Platform experiences force singularities when the force transformation matrix
H 1s rank deficient. When the platform is in such a position, the manipulator loses some
degree(s) of constraint and becomes uncontrollable.

The important association of the conditioning of the static transformation with the stiffness
of the Stewart Platform was studied through stiffness mapping by Gosselin [9] who also
discusses the near-singular behavior (or ill-conditioning) leading to loss of stiffness.

A more general problem, posed in a global sense, is that of singularity avoidance in path plan-
ning between two end poses. This question has been addressed by Dasgupta and Mruthyun-
jaya [35] who formulated the singularity-free path planning problem for the Stewart platform
and developed a strategy for planning well-conditioned paths in the workspace of the manip-
ulator. This problem was also addressed by Snyman et al. [6] at the Untversity of Pretoria
and their work is discussed in Section 2.2.8. However rigorous criteria for the existence (or
non-existence) of such a path is still not available.

2.2.4 Semnsor applications

As the planar paralle] platform structure has a good stiffness and the reconstruction of the
wrench applied at the platform from measured leg forces is relatively straightforward, a
Stewart platform with instrumented elastic legs can be used as a wrist force sensor.

Dasgupta et al. [36] presented a design methodology for the Stewart platform sensor struc-
ture based on the optimal conditioning of the force transformation matrix.

2.2.5 Workspace and dexterity

The relatively small workspaces of parallel manipulators 1s one of thewr major drawbacks.
As such, the problem of solving for the workspace of these types of manipulators is not only
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important, but also a challenging problem.

The problem [26] is to ” determine the kinematic geometry of a Stewart platform manipu-
lator for a singularity-free workspace segment with the giwen boundary and with erienting
capabilities in a given 3D region”.

In short the following three possibilities may arise and need to be addressed:

¢ (iven an orientation, or number of orientations in 3D space, the positional workspace
of the end-effector is to be determined.

e (Given a position, or a number of positions in 3D space, the orientating capability at
these positions is to be determined.

e (iiven a trajectory, it 1s necessary to determine whether the trajectory lies completely
within the manipulator workspace.

In addition, such an analysis should preferably be performed in association with singularity
analysis because a workspace segmented by singularity barriers will not be fully usable in
practice.

One of the major difficulties in the workspace and dexterity analysis of the Stewart platform
is the strong coupling between the position and orientation.

According to Dasgupta et al. [26], Merlet {37] has already made great inroads with regards
this problem, and expects that this problem will be attracting much attention in the near
future.

2.2.6 Dynamics and control

Compared to the vast amount of literature on the kinematic analysis of the Stewart platform,
literature concerning both the dynamics and the control of this manipulator are relatively
few. Control of the Stewart platform manipulator is almost an open field and work reported
is not rigorous [26].

The dynamics problem has been solved for a simplified 3-dof planar parallel platform model,
in which frictionless joints and negligible dynamic effects due to asymmetrical legs are as-
sumed [38].

Generally, the cheice of generalized coordinates in the derivation of the dynamic equations is
critical to ensure manageable equations. Since the forward kinematics problem of the Stew-
art platform is much more complicated than its inverse kinematics problem, the Cartesian
position and orientation of the mobile platform cannot easily be expressed in terms of the leg
lengths, whereas given the platform coordinates [z y z ¢ & ¢] with respect to the global
reference frame, it is a simple task to obtain the leg lengths. Thus the dynamic equations
are less diflicult to obtain in the Cartesian space than the joint space.

fp=1I[z v 2z ¢ 8 ¢|7 is the vector with the coordinates of the platform and ¢ =
[l Iy I3 14 s 15]7 is the vector with the leg lengths, the Jacobian relating the associated
velocities are given by
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q=J{p)p (2.7)

with p representing the generalized coordinates. The dynamic equations can be derived hy
the Lagrangian approach and can be written as [38]:

M(p)p+C(p,p)=J"T (2.8)

where M is the mass matrix, C' is the vector with the coriolis, centrifugal and gravity terms
and T 1s the forces acting in the legs. The above equation holds for a manipulator that is not
interacting with the environment. If the manipulator is interacting with the environment
and is exerting a force, F, in the task space the dynamic equations can he written as [38]:

M(g)q+Clq,q)+F=J"r (2.9)

2.2.7 Stiffness analysis

The stiffness of a parallel manipulator has a direct impact on its usefulness as a machine
tool since stiffness is related to the accuracy with which tasks are carried out. Stiffness also
has implications on the life of the tool with which machining operations are carried out. If
the platform is sufficiently stiff, undesirable phenomena such as tool chatter are less likely
to occur.

The traditional robotic stiffness matrix may be written as [27]:

K=JkJ (2.10)

where k = diag(k; k2 ... ks) is a matrix containing the stiffness of each actuator, modeled
as linear springs. The stiffness matrix 1s a positive semi-definite symmetric matrix whose
eigenvalues represent the coefficient of stiffness in the principal directions (which are given by
the eigenvectors). These directions are in fact represented by twist vectors, i.e., generalized
velocity vectors [9].

Moreover, the square root of the ratio of the smallest eigenvalue to the largest one gives the
reciprocal of the condition number & of the Jacobian matrix [39], which 1s a measure of the
dexterity of the manipulator. This is written as:

1 )\m'in
= 2.11
K )\mam ( )

where A, and A,,.. are the smallest and the largest eigenvalues of the stiffness matrix
respectively [9].

Gosselin [9] developed stiffness or conditioning maps for a Stewart platform for a specific
direction of perturbation. These stiffness maps are used to reveal the existence of zones
where the stiffness is not acceptable, or in other words, when the manipulator is close to a
singular configuration.
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In their papers, El-Khasawneh and Ferrejra {27, 40] address the problem of finding the
minimum and maximurn stiffness and the directions in which they occur for a manipulator
in a given posture. Furthermore, they show how the stiffness value in any direction can
be computed from the stiffness in the eigenvector directions. Engineers are often interested
in the response of the mechanism in the direction of perturbation, and they prove that
the computed bounds (maximum and minimum) are tight for such a deflection. Stiffness,
computed using the algebraic formulae they derived, were compared to those obtained from
a finite element analysis to demonstrate the correctness of the formulation. In order to
compare the results, a necessary assumption is that the platform is completely rigid.

Clinton ef al. {10} presented the development of a mathematical model describing the stiff-
ness of a Stewart platform-based milling machine. Matrix structural analysis was used to
determine the stiffness matrix. Estimations of the system parameters are determined through
experimental stiffness measurements. A computer simulation was used to demonstrate how
the developed stiffness model suggests an optimization process for tool-path planning.

The above discussion deals with only a few of the many published works dealing with parallel
manipulator stiffness (eg. {3, 4, 41, 42]).

In this study, research is conducted using the real stiffness {approximated by a numerical
method) and not the traditional robotic stiffness {described in Appendix A). Out of plane
stiffness of the planar parallel platform is considered, and the platform itself is not assumed
to be rigid.

2.2.8 Existing work at the University of Pretoria

The current study forms part of a larger project at the University of Pretoria. As said,
the aim of the project is to establish the feasibility of retro-fitting existing 3-axis milling
machines with planar parallel platforms in order to improve the versatility of these relatively
inexpensive machines. Various aspects of this design have been studied by several authors
[5, 6, 7] and are summarized in this section.

A demonstration model of a planar parallel platform, shown in Figure 2.4, has been built
by Du Plessis [43]. This demonstrator has the advantage of being adjustable, in that the
placement of the revolute joints can he varied to suit workspace (or other) requirements.
The current work needs to accommodate this adjustability.

Optimization approach to the determination of the boundaries of manipulator
workspaces.

Snyman et al. [5] presented an optimization approach to the computation of the boundaries
of a planar parallel platform. This numerical method consists of finding a suitable radiating
point within the output coordinate space and then determining the points of intersection of
a representative pencil of rays, emanating from the radiating point, with the boundary of the
accessible set. This was done by application of a novel constrained optimization approach
that has the considerable advantage that it may easily be automated. This method was
illustrated by its application to two planar mechanisms, namely a planar Stewart platform




CHAPTER 2. OVERVIEW OF EXISTING WORK 17

Figure 2.4: Planar parallel platform demonstrator at the University of Pretoria after com-
pletion of a specified toolpath.

and a planar redundant controlled serial manipulator. In addition the exterior boundaries of
the workspace, interior curves that represent the configurations at which controlability and
mobility may be limited, were also mapped. The optimization methodology, implemented
for the planar case, may readily be extended to spacial Stewart platforms.

An extension to the novel optimization approach for the determination of accessible output
sets of planar manipulators was presented by Hay et al. {7]. If any section of the workspace
cannot be determined due to non-convexity, then the missing section is mapped using a
suitably chosen new radiating point.

Optimization of the adjustable geometry of a planar Stewart platform machining
center with respect to placement of workspace relative to toolpath.

Snyman et al. {6} presented a new integrated configurational design system that allows
for the feasible and optimal placement of the workspace of an adjustable planar parallel
manipulator, relative to a specified machine toolpath. The basic design of the manipulator
ig such that the positioning and relative size of the workspace may be varied by means of
the adjustable placement of the revolute joints, shown in Figure 2.4. For a given specified
toolpath an integrated geometry optimizer prescribes a manipulator configuration which
not only ensures feasibility, but also enhances performance through the minimization of an
objective function related to the required actuator forces and subject to physical constraints.

The availability of the combination of a physically adjustable platform coupled to a geom-
etry optimizer, is essential for the practical application of a planar parallel platform as a
machining device for toolpaths of varied specification. The proposed system was applied
and tested through its application to a planar Stewart platform demonstrator with full ad-
justment capabilities. The platform serves to demonstrate the optimum machining motion

[
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obtainable through the integrated design system.

2.2.9 Series-parallel duality

As pointed out by Dasgupta and Mruthyunjaya [26], two celebrated theorems in mechanics,
by Chasles aud Poinsot respectively, state that a general displacement of a rigid body can
reduce to a twist about a screw and that a general force system can be reduced to a wrench
on a screw. Upon these two theorems, Ball [44] developed the theory of screws.

Cue of the salient features of the theory of screws is the emergence of the duality between
instantaneous kinematics and statics, angnlar and huear velocities being dual to force and
moment respectively.

It has been shown that there is a symmetry between serial chain and fully parallel systems
such as the Stewart platform. This symmetry is shown to be the result of the duality of
motion screw axes and wreuches. The appearance of the inverse of the Jacobian matrix
in force decomposition, in the same role as the Jacobian in rate decomposition, is also a
consequence of this same duality and of the reciprocity relationship between the motion of
screw system, and the wrench system of a kinematic joiant {451

There are several symmietries between the force /torque and angular velocity /velocity vector
systems. Classically it has been observed that the velocity field of a system of interconnected
rigid bodies can be described by systems of instantaneous screw axes. At the same time the
static force systems acting on the same system of rigid bodies can be described by a system
of wrenches, which are vectorially homologous to the screw systems. The two types of vector
systems are interrelated by Ball's reciprocity relationship {44, 45].

This duality between serial and parallel manipulators is used to summarize the positive and
negative attributes of serial and parallel manipulators. Since most traditional machine tools
are serial, the use of parallel manipulators in their place should be justified. El-Khasawneh
127] summarizes the following differences between parallel-link manipulators (PLM’s) and
serial-link manipulators (SLM).

Motion Description

The end-effector of a parallel-link manipulator moves at the intersection of the constraints
produced by the joints. Serial-link manipulators end-effector motion is at the conjunction of
the constraints produced by the joints.

Dynamics and Kinematics

The inverse dynamics and kinematics of SLMs are difficult to solve, while their forward
problem is easy to solve. In coutrast, the mverse dynamics and kinematics problems of
PLMs are easy to solve, but their forward dynamics and kinematics are difficult to solve,
requiring the inversion of the Jacoblan matrix.
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Stiffness

SLMs have a cantilever-type structure, therefore their stiffness is low. The reason for this is
that each actuator experiences the full end-effector load in addition to the weights of other
joints and actuators. PLMs have a table-like structure, therefore, the stiffness is generally
expected to be high. The end-effector load is distributed among the different legs, resulting
in a smaller load per leg, producing smaller deflections, hence higher structural stiffness.

Singularity

Singular (degenerate) positions have different implications for these two classes of mecha-
nisms. In SLMs, a singularity results in the loss of mobility in certain directions and partial
locking., In PLMs it results in the gain of uncontrollable mobility in certain directions. This
causes the stiffness to reach zero in those directions.

Accuracy

Accuracy is related to stiffness, the higher the stiffness the better the accuracy. Therefore
the accuracy, in non-singular regions, is low for SLMs and high for PLMs. Furthermore, for
serial-link manipulators the joint errors accumulate to the end-effector, often with large lever
arm effects. In PLMs their effect is more direct and less accumulated and less magnified.

Workspace

Due to the SLM cantilever-type structure, and since the workspace size i1s dependent on the
collective extendabilties of all the links, the end-effector reachability and workspace will be
large. PLMs, on the other hand, have a table-like structure with limited workspace size that
is dependent on the extendability of its individual legs.

Dexterity

SLMs have high dexterity which stems from good reachability and number of degrees of
freedom. PLMs have Jow dexterity because of the small reach and mechanical constraints
that are more limiting than they are in SLMs.

Torque and force variation

Since SLMs have a cantilever structure, joint torque requirements may vary substantially
from joint to joint, depending on where in the serial order the joint is located. In PLMs tle
joint torque requirements are more uniform, because of the system symmetry. This allows for
modularization of actuator units which may be an important manufacturing consideration.
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Actuated and unactuated joints

In SLMs there are no unactuated joints. In PLMs it is necessary to have unactuated joints,
such as spherical or revolute joints. Consequently the undesirable effects of clearances and
backlash may be more pronounced in PLMs than SLMs.

Summary

The above discussion suggests that, while there are potential benefits for parallel-link ma-
nipulators, the size effects may limit the usefulness under certain circumstances. Given poor
workspace sizes, it is possible that for some size machine the structural rigidity of the mech-
anism can be offset by the elasticity of the materials used in its construction. The effects
of clearances, and the small workspace and possible poor conditioning of the workspace,
suggest that the lower degrees of freedom PLMs may perform better. This further points to
the possibility that serial-parallel hybrid schemes may provide a better blend of the positive
features of both the SLMs and the PLMs.




Chapter 3

Modeling and analysis of an existing
concept design

3.1 Introduction

Due to its unique configuration, the Stewart platform parallel manipulator distributes service
loads (evenly) in the axial direction of the actuators. This property results in the platform’s
high global stiffness, and makes the Stewart platform manipulator very attractive for ma-
chining processes, where a high stiffness is required in order to meet the tight tolerances that
modern standards demand. A possible application currently being explored is to retro-fit
existing 3-axis milling machines with a planar parallel platform as shown in Figure 3.1.

Fixed base
@ / Actuators

Working point

(F)

ST

Tool
Workpiece

Moving platform

Figure 3.1: Schematic of milling operation using a planar parallel platform.
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In the case of the planar parallel platform, the high stiffness required is present only in the
plane in which the moving piatform operates, since the actuators act only in the plane of
motion. This poses a problem if there are substantial forces experienced out of this plane of
motion, such as those expected during milling operations. The stiffness in the out of plane
direction is associated mainly with the bending resistance of the actuators.

The existing design, originated by Du Plessis [43], aimed at eliminating excessive out of
plane displacements, is to add sliding guide rails adjacent to each of the three actuators.
This proposed design is analyzed using FEM, and evaluated for machining purposes. If the
design is found to be infeasible for machining operations, design improvements are required
to meet the prescribed tolerance.

The FEM code EDSAP, originated by Wilson [46], is used to perforin the finite element anal-
yses. Any other finite element package (including commercial FEM packages) can be used
in this process, however using EDSAP gives access to source code facilitating small element
modifications if necessary. Furthermore, very accurate and thoroughly tested elements have
been incorporated into the EDSAP suite of elements by Groenwold et al. {12, 13].

In order to explain the original concept design, a schematic figure of the assembly is depicted
in Figures 3.2. For clarity, Figure 3.2 does not include the moving platform slab.

3.2 Components of the planar Stewart platform assem-

bly

With reference to Figure 3.2, depicting the planar parallel platform assembly, the individual
components are as annoted in Table 3.1. A discussion of the individual components of the
assembly now follows.

Label Component
A Lateral platform members
B Transverse platform members
C Main transverse support struts
D Main lateral support struts
E Linear bearings
F Guide rails
G Actuator shafts
H Actuator stepper motors
1 Transverse support strut bearings

Table 3.1: List of labels.
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Figure 3.2: Originally proposed planar parallel platform design.

3.2.1 Actuators

The actuators (G & H) are of ball-screw type, similar to those shown in Figure 3.3 and are
fixed to the transverse platform members at their upper ends.

The actuator shafts can not rotate as they are fixed to the transverse platform members
which represent the upper revolute joint axes. The actuators are driven by stepper motors,
in turn manipulating the moving platform. The driving nuts and motor assemblies are
supported by the main transverse supporting struts which represent the lower revolute joint
axes.

This type of actuator is capable of resisting and supplying high axial loads. However, tan-
gential loads need to be avoided to prevent locking. The actuators are modeled as beam
elements in order to accurately calculate the reaction forces and moments at the driving
nuts. These forces and moments can later be used to determine if there is a possibility of
the actuators locking, and whether or not fatigue may become a factor in future.

3.2.2 Guide rails

The linear bearing and rail (E & F)} are required to supply suflicient resistance to out of
plane bending, without interfering with the motion of the moving platform in the plane.

The actuators and sliding guide rails are attached to the same revolute joint axes above and
below, therefore their respective effective lengths and orientations are necessarily equal.




CHAPTER 3. MODELING & ANALYSIS OF AN EXISTING CONCEPT DESIGN 24

3

Figure 3.3: Example of a ball-screw actuator.

The final working prototype will, in all probability, use off-the-shelf guide rails. However,
since this is a preliminary study considering mainly the functionality and feasibility of the
planar platform design, the guide rails are modeled as simple round beam elements. This
assumption is made to avoid a mixed real-integer optimization problem, since linear bearings
and corresponding guide rails are available only in discrete size increments., Considering the
guide rails in this way stmplifies the problem greatly in this initial study.

In Section 3.3.2, a technique to tailor the local stiffness matrix of the beam element used to
model the sliding guide rails, is explained.

3.2.3 Transverse platform members

The upper transverse platform members (B) are attached to the platform via bearings, al-
lowing rotation relative to the moving platform. These elements represent the upper revolute
joint axes. Both the guides and the actuators are fixed to these members. Modeling of the
transverse platform members is also accomplished by tailoring the element stifiness matrix

(3.4).
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Figure 3.4: Example of a linear bearing guide rail.

3.2.4 Main transverse support struts

The lower fransverse supporting siruts (C) are supporied on either end by bearings which

allow rotation about the 7 axis. These members represeut the lower revolute joint axes. The
actuator driving nuts are supported by these members, and hence the majority of the foad
is applied at the centers of these elements. This is expected to cause the beams to bend
substantially at their center points.

The bearings at either end of the supporting struts can easily be modeled by specifying the
correct element boundary conditions.

3.3 Finite elements used in the FEM model

In this section more detail is presented regarding the way in which the FEM model is set
up, as well as a brief description of the elements used in the analysis. Additionally, since
certain components are rather specialized, it is necessary to explain how the stiffness matrix
is tailored to suit the requirements of some of the components in the assembly.

3.3.1 Introduction

The EDSAP finite element analysis program is used to perform the finite element analysis.
The original code of Wilson [46] was modified and extended by Groenwold and Stander
112, 13} to incorporate new elements such as the flat shell element used in this study.

For this study it is assumed that the dynamic effects of the moving platform are negligible
compared to the static load and to the forces that are applied during machining operations.
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Therefore a static finite element analysis is performed at critical platform postures.

3.3.2 Three-dimensional frame element

For more detailed information concerning the formulation of this element, the reader is re-
ferred to Appendix B. Figure 3.5 represents a two-noded beam element in its local coordinate
system. Fach node has six degrees of freedom, three displacement and three rotational, as
indicated in the figure.

1 "Clb
1y 5

3 d]z ¢Ay

di, dagy do, @

1 ¢, / 2 do

P12 Pz
/ 1 duy | day
L

Figure 3.5: 51x degree of {freedom beam element.

In the local coordinate system the relationship between displacement and applied load is
given by:

f=Kgqg (3.1)

where the components of the displacement vector are given by

qt[dlm d.ly dlz thz (]51';} {;biz dZa: d2g;1 d?z qbZa: qbe QBQ—Z ]T (32)

and that of the generalized load vector by

F=1fie Ny fiz M my me fao Joy for Mo Mgy e T (3.3)

The asscociated stiflmess matrix is [47]:
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AS 0o 0 0 0 0 —AS 0 0 Q 0 0

a 0 0 0 bzf 0 — 0 aJ 0 bzf

ay, 0 =by 0 0 0 —ay 0 b, O

78 0 0 0 0 0 =75 ¢ 0

Cyy 0 0 0 byr 0 dy: 6]

, Cyl 0 —-—bz; 0 | 0 dzf
K= AS 0 0 0 0 0 (3.4)

(47 0 ] 0 —bzf

Cyr U by.' 0

TS 0 0

Cy.' 0

| Symm Cy |

where AS = AE/L, L = element length, T'S = GJ/L, a, = 12EL./L3 b, = 65E1../L%
Cop = 4Efzf/L, dy = ZE[zt/L, Q! = IQEIyl/Lg, etc.

In order to reduce the stiffness in the local = direction, the terms in the stiffness matrix
related to this degree of freedom are multiplied by a scaling factor v, where 0 < v < 1. For
this study, v is taken as zero. In the case of the guide rails, zero axial stiffness is required
and is modeled by multiplying all terms in the row corresponding to the axial displacement
by <. In the case of the transverse platform members, zero torsional stiffness is required to
model the bearings supporting these elements. Here the elements in the row corresponding
to the torsional degree of freedom are multiplied by .

3.3.3 Flat shell element with drilling degrees of freedom

A shell finite element {48] refers to an element which is an assemblage or a superimposing
of a membrane {plane stress) element and a plate element. The combination of membrane
elements with plate elements to form shell elements usually results in a 5-dof per node
element. Figure 3.6 schematically shows how such an element is constructed. It may be
noted that for the 3-dof plate element and 2-dof membrane element there is no stiffness
component in the #, direction. More detail regarding the assemblage of shell elements in
this way may be found, for example, in the work of Zienkiewicz and Taylor [49].

The shell element used in this study to model the platform slab is an assembly of the
modified QCnD membrane element [12, 13}, based on the element of Ibrahimbegovic et al.
[11], and the Bathe-Dvorkin [50] assumed strain plate element. The resulting shell element is
denoted QCnD-SA, with n indicating the number of integration points used in the membrane
component. Figure 3.7 represents this shell element with the additional in-plane drilling
degrees of freedom.

(zenerally a membrane element with drilling degrees of freedom is not required in a shell
assembly. Alternative approaches can work in locally defined systems with 5-dof per node.
Small artificial stiffnesses associated with the in-plane degrees of freedom can then be incor-
porated. These artificial stiffnesses are modeled with an equivalent "imaginary” torsional
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Figure 3.7: Shell element with drilling degrees of freedom.

spring at each node. The presence of drilling degrees of freedom however, allows for beam-
shell connections and enriches the calculated displacement field. Hence they enhance the
element accuracy.

The force-displacement relationship for the QCnD-5A shell element may be represented by

(Km. + P) 0 _ K'rnh
(Ky+K,) 0 |g=7F (3.5)
SYImrn Kh

for each of the corner nodes, 7 = 1,2, 3,4 the shell nodal displacements and loads are given
by

q, = [’U,z v, 0_5;., gyi in]T (36)
fi = U Vi W, My My, Mzi]T (3.7)

respectively. Further information regarding these specific elements may be found in Ap-
pendix C.
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3.4 Model boundary conditions

3.4.1 Model restraints

In Section 3.2 the components of the platform, as well as the way in which each component
is modeled, were discussed. The only restraint that was specifically specified in the ED-
SAP input file pertains to the bearings on either end of the main transverse support struts
(denoted I in Figure 3.2).

These bearings are easily modeled, by simply specifying that the nodes coinciding with the
bearing are free to rotate about the Z axis and constrained in all other degrees of freedom.

It is therefore assumed that the frame to which the platform is attached is rigid and that
the amount that the frame deflects is negligible compared to the deflection of the platform

members themselves, This is generally a good assumption since a rigid frame is easily

manufactured and fixed to a solid foundation.

3.4.2 Loading

There are two sets of forces that act on the platform, namely the tool forces and the body
forces due to the weight of the elements. Note that gravity in the model acts in the X
direction, since the stationary platform will be mounted vertically on an existing (horizontal)
milling machine as shown in Figure 3.1. Of course, if a horizontally mounted platform is
considered it is a simple matter to change the direction in which the gravitational acceleration
acts.

Since the model is discretized into a number of small finite elements, the weight contribution
of each element needs to be calculated individually. These body forces then need to be
applied at the element nodes.

Since beam elements with Hermitian shape functions are used, evenly distributed loads
equate to equivalent nodal loads that include moments. In the case of the shell elements the
nodal moments are not present since separate interpolation functions are used for displace-
ments and rotations.

Previously Smit {51} studied the forces that act on a workpiece while actual milling operations
are taking place. These forces are a function of a number of factors including the cut speed,
the rotational speed of the tool, the depth of the cut, the type of material being machined, the
type of lubrication used and many other factors. He shows that for a typical application the
forces acting on the structure in the X and 7 directions are 1600N and 1800N respectively,
and in the negative Y direction 440N. These forces act at the working point (P) on the
moving platform. More detailed information regarding these calculations may be found in
Appendix G.

The weight of the workpiece 1s not explicitly taken into account. It is expected to be relatively
small and its magnitude will vary from application to apphcation.
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3.5 Preliminary finite element results

In this section the results of the finite element analysis carried out on the initially proposed
design are discussed. These results are used to critically analyze the design and to suggest
design improvements. The way in which the structure deforms under load gives an important
insight into potentially weak links in the design, and points to possible design improvements.

A representative design is chosen that can possibly be used for machining operations. This
design is roughly based on a scaled version of the platform that Haug et al. [52] studied,
and for which the workspace has been calculated and documented for specific leg length
constraints. This workspace can be used to find points where stiffness is expected to be low,
or deflection high, for the given load. The chosen design is shown in Figure 3.8 in both the
loaded (thin lines} and unloaded {bold lines} conditions, and in four different views (a-d}.
(All dimensions in Figure 3.8 are in meters.)

3.5.1 Deformation analysis

In order to study the platform deformation under loading, elements in the model need to
be provided with material properties and section profiles. For this analysis, all elements
are assumed to be constructed from mild steel. All beam elements are assumed to have a
diameter of 40mm and the moving platform slab is chosen to be 40mm thick. This model s
sufficiently realistic to provide information about the way in which the platform is expected
to deflect under load.

A finite element analysis is carried out on this model and the displacements of each node
in the model are calculated and used to plot Figure 3.8. In the figure, displacements are
amplified 150 times and are superimposed over the original model. For clarity only the beam
elements are plotted.

The displacements of the nodes point to certain design shortcomings and provided valuable
insight for the later analysis of the optimization results.

The top view {d) and side view (b) of the platform displacement reveal that the magnitude
of the in-plane X displacement, compared to that of the out of plane 7 displacement, is
surprisingly high considering that parallel platforms are known to be very stiff in their work
plane. However, this result is partially explained by the fact that gravity acts in the X
direction.

The front (¢) and top {d) views of the platform show the extent to which the lower transverse
supporting struts deflect in the Y and X directions respectively. These large deflections are
due to the fact that the struts are supported only at the end points by bearings. This means
that the bending moments at the center of the supporting struts are large, and that the
members can relatively easily bend at their centers. The transverse support struts should
thus be supported by bearing nearer to their centers in order to reduce this deformation.

The top view {d) shows how the upper transverse members bend substantially at their center
points. These deformations can be eliminated by fixing the upper transverse members te
the platform at their centers. However, careful consideration will need to be paid to the
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Figure 3.8: Four views (a-d) of deformation of planar platform due to machine tool loading
and own weight.

practical design of this connection point.

The most remarkable characteristic of the displacement behavior is the way in which the
platform rotates about the X axis as depicted in view (c). This rotation is largely due to
the fact that the guide rails are not functioning as was initially intended. Since the guide
rails are allowed to move freely in their axial direction, rotation is not countered effectively.
The only stiffness preventing the 7 displacements of the platform, is that assoctated with
the bending stiffness of the actuators and the guide rails.

3.6 Design sensitivity studies

For improvement in the design via formal mathematical optimization, it 1s necessary to find a
workspace point that represents a worst case with respect to displacement. Two factors that
are important in this respect are the Y coordinate of the working point (¥,) and the width
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of the platform. Again for this study all beam elements are assumed to have a diameter of
40mm and the platform’s thickness is selected as 40mm.

In order to determine a representative point under the given conditions, the finite element
analysis is carried out for the ¥, coordinate of the working point stepped up from its lowest
to its highest value in the workspace, keeping the orientation at zero degrees throughout
and for a fixed width of 0.5 m. The X, coordinate of the working point is fixed at 0.5 m, as
prescribed by the workspace calculated by Haug et al. [52]. This does not strictly correspond
to the situation in the workspace calculation of Haug et al. since in their case the orientation
does change along the boundary of the workspace for the specific maximum and minimum
actuator lengths that are used.
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Figure 3.9: Sensitivity of displacement to the height of the working point at a fixed width
of 0.5 m.

From Figure 3.9 which depicts various displacements as a function of height (where height
refers to the value of Y},}, it is noticeable that the total displacement increases as Y}, increases.
This results is rather predictable as the structure is made up of mainly beam elements in
bending.

Only the Y coordinate of the displacement does not increase as the height is increased.
However, the magnitude of this displacement is an order of magnitude smaller than that of
the components which increase. Therefore the worst case with respect to the working point
deflection occurs at the maximum height of the working point as expected.

A similar study is carried out for the working point at a fixed height of 0.5 m in order to
determine how the platform reacts to a change in width. Again the platform is stepped from
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Figure 3.10: Sensitivity of displacement to the platform width at a fixed height of 0.5 1.

a relatively narrow width to a reasonably large width.

It can be seen from Figure 3.10, which plots corresponding displacements as functions of
width, that the total displacement increases as the platform width is increased. This result
seems counter intuitive, since one expects the deflection to decrease as width increases since
material is being added further from the plane of symmetry, which corresponds to a “neutral
axis” of bending.

However, this argument does not hold since there is a coupling between the various dis-
placement components due to the asymmetric loading. Furthermore, the X displacement
increases with an increase in width for two reasons. Firstly, the wider the platform becomes
the more material, and thus the greater weight that needs to be supported. Secondly the
lengths of the lower support struts are also increased with an increase in width. Therefore
not only is there a higher load, but the bending moments on the lower struts are increased.

For practical reasons of utility the platform width will be fixed at 0.5 m and the analysis
will be performed for a posture with the platform orientation at zero degrees. The working
point P will be fixed at Y, = 0.5 m and X,, = 0.5 m.




Chapter 4

Optimization of an original concept
design

Mathematical optimization techniques are used to evaluate the existing concept design of
the planar parallel platform. Firstly, it must be determined whether a feasible design exists,
and if a feasible design indeed exists, the design is to be optimized with respect to weight.

For the computed optimization results, the genetic algorithm due to Carrol [14] is used as
both a micro GA and a full GA. Two different gradient-based algorithms, both originated
by Snyman, are also used. They are the leap-frog algorithm for constrained optimization
[15] and the Dynamic-Q algorithm [16]. The performance of the GA’s is compared to that
of the gradient-based methods.

4.1 Formal optimization formulation

In Section 3.6 a point in the workspace with a low stiffness was determined. The optimiza-

tion is performed with the platform in this extreme posture. More precise detail of the
configurational settings are tabulated in Table 4.1, with reference to the annotation speci-

fied in Figure 4.1. The only permanently fixed configurational setiing is the platform width,

since the other (in plane) settings may be adjusted in order to meet other specific workspace

requirements as described in Section 2.2.8. The software written for this study thus needs e
to be compatible with this existing work. :

The configurational settings may be represented by the parameter vector

U=[X, Y5 X1 X2 X, Y, I, o w7 (4.1)

which remains fixed during a given eptimization process.

34
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Figure 4.1: Configuration of planar parallel platform.

Configurational Value

setting [m]
X, 0.00
Y, 0.00
X, 0.50
X, 0.75
X, .50
Y, 0.50
L, 0.50
¢ 0.00
w 0.50

Table 4.1: Configurational setting for optimization.

4.1.1 Design variables

The optimization is carried out with respect to the sizes of the various components, i.e. their
respective dimensions are taken as the design variables. In particular, the six components of
the vector of design variables ® = [z, 29,...,2¢]7, considered here are the diameters of the
five different components modeled as beam elements, and the thickness of the platform.

No a prioir attention is paid to the sensitivity of the cost function to the design variables
before proceeding with the optimization, in order to reduce the number of design variables
used. Indeed, the maximum number of design variables are used 1n order test the performance
of the optimization algorithms.

A precise description of the design variables that are used in the optimization are listed
below
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e r; — actuator diameter,

s 2o, — guide diameter,

e 13 — bottom transverse support strut diameter,

¢ 2, — upper transverse platform member diameter,
e o5 — lateral platform member diameter, and

o g — platform thickness.

4.1.2 Constraints

For the initial evaluation of the proposed design, only bounds on the variables and a simple
constraint on the maximum allowable displacement of the working point are specified. Two
cases are considered regarding the variable bounds. The first is a lenient case in which the
variables are effectively unbounded. The second 1s a more strict set of constraints, used to
determine what accuracy the platform design can realistically achieve.

The lenient set of constraints are required since most simple binary GA’s have a discrete
number of possible variable values, i.e. a maximum and minimum bound and a number of
(equally spaced) possibilities. Inherently therefore unbounded variables are impossible to
define. In order to compare the results of the GA’s with the two gradient-based methods,
for this large variable space, similar constraints are used for both methods.

The lenient side constraints are of the form

by < i <l i=1,2,...,6 (4.2)

where fcl refers to the lower bound of z;, and k; refers to the upper bound. The numerical
values of the lower and upper bound respectively are given in millimeters below:

E=[111111F

v (43)
k = [500 500 500 500 500 500]7
The lower and upper constraint functions {required for the standard < 0 formulation), are
respectively given by

Gi=ki—xi, i=12,...,6
) (4.4)
éim:C¢Mki, ixljgy...,G

The set of representative and relatively strict constraints are used to determine the minimum
deflection that is realistically attainable from the concept design. The set of strict side
constraints are written as
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K, <=z <K, i=1,2,...,6 (4.5)

Here, the numerical values (again in millimeters) of the lower and upper bounds are respec-
tively specified by the vectors

K =110 10 30 30 30 30]7

) , (4.6)
K =160 50 100 50 50 40|
The corresponding set of lower and upper constraint functions, required for the standard
< 0 formulation, may now be specified as

ég:f{?jwaﬁ,;, ’.'::1,2,...,6

. . (4.7)

G = x; — K; 1=1,2,...,6
Additionally, a displacement constraint is used to ensure sufficient stiffness. The stiffness of
the platform has a direct influence on the tool life for machining operations. If the platform
is sufficiently stiff, undesirable phenomena such as tool chatter are less likely to occur.
Furthermore, the global stiffness is directly related to the accuracy with which machining
operations are performed. For these reason 1t is necessary to constrain the displacement of
the working point. The constraint on the displacement of the working point may be written
as

glw) = d(e) —d <0 (4.8)

where d(x) is the implicit displacement function of the working point (P) computed via
FEM for any given design vector @, and where d is the maximum allowable displacement of
the working point. Depending on the machining requirements various target tolerances for
d may be prescribed. For the rough milling of molds a sufficient design should be obtained
if () is satisfied with d = 1 mm. However, since the current aim is to perform practical
machining operations as accurately as possible, the limit on d is set to as little as 10 pm for
the force vector prescribed by Smit [51] (see Appendix G). The computed displacements do
not take into account factors such as play in joints and bearing stiffnesses [4].

In order to investigate the capabilities of the design, three different valnes of d are selected,
namely 1000 pym, 100 ym and 10 gm respectively. The optimization process is then succes-
sively carried out for the different displacement constraints, with this constraint becoming
progressively stricter. These results are also used to compare the performances of the differ-
ent optimization methods.

The lenient constraint function vector (with components specified by (4.4) and (4.8)}), may
be written as

g(x)=[4(=) a(=) gla)] (4.9)
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while the strict constraint function vector (components (4.7) and (4.8)) is denoted by

~

Gle) = [G(e) Glz) Fo) (4.10)

4.1.3 Cost function

Reducing the weight of a paralle]l manipulator used in machining apphications has many ad-
vantages. A low weight structure is more maneuverable, resulting in faster material removal
rates. It is also less expensive and the need for heavy duty foundations is eliminated. For
these reasons the weight of the platform structure is minimized with respect to the selected
design variables and subject to the prescribed constraints.

The weight is calculated by summing all the weights (in kg) of the individual finite elements,
and may be written as

m

Pla) = Y(w) (4.11)

g=1
where w; represents the weight of finite element 7, and m represents the total number of
elements in the model.

The optimization problem may now be expressed in the general and standard form:

. _ r i T
II%HF(:B) , T =[z1 m ®3 T4 T Tg (4.12)
such that g(z) <0 or G(z) <0

Here g(x) and G{x) are the two distinctly different constraint function sets given by (4.9}
and {4.10} respectively.

A penalty function approach is used to solve the above constrained optimization problem.
The penalty function to be minimized for the lenient constraint set is formally defined as

P(z) , = (x) Ty 3 Ty Ts :L'a)T

13
where Pz} = F(x) + Zﬁzgf(‘r’)
0 if i X < 0
and [; = ()
iy if gilx) >0

and the penalty parameter wu; 3 1 is prescribed.
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4.2 Implementation of optimization methodology

Figure 4.2 illustrates the effect on both the cost function F' and the penalty function P with
respect to a change in variable 2; near the lower hound. When the lower bound is violated,
the function value is penalized to ensure that this area is avoided. The figure also shows
that z; cannot be negative since this value is physically undefined.
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Figure 4.2: Graphical illustration of violation of a lower bound constraint.

In practice, even though a penalty function approach is used by the gradient-based opti-
mization algorithms employed here, and the penalty function P{w), is drastically increased
when a constraint is violated, it does not prevent the algorithms from sporadically entering
infeasible regions. If a variable value becomes too low, the FEM analysis becomes inaccurate
due to the poor scaling of the stiffness matrix. Therefore, these badly scaled regions, as well
as the undefined regions, need to be avoided.

To this end, a point denoted here by %, (see graphical illustration in Figure 4.3), is determined
such that, even though the side constraint is violated, the stiffness matrix is not badly scaled.
Now, if z;, predicted by the algorithm, lies in the undesirable region it is artificially moved
to the point £; where the function value is penalized, but can still be accurately evalunated.
Since the constraint is violated at this point, the large slope will force the algorithm back to
the feasible region.

Figure 4.4 gives a diagrammatic representation of the basic optimization procedure. The
constraint and cost functions for the initial choice of design variables =¥, as well as the gra-
dient vector, VP {a), of the associated penalty function, are evaluated. The design variables
are then systematically changed by the selected algorithm, and the effect of these changes
on the constraint and cost functions 1s monitored after each iteration. The process of chang-
ing design variables and monitoring the constraint and cost functions 1s continued until a
stopping criterion is satisfled. This design is then taken as the optimum design, =™
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Figure 4.3: Graphical illustration of scheme aimed at avoiding badly scaled regions.
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Figure 4.4: Diagrammatic representation of the optimization procedure.
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4.2.1 The genetic algorithm of Carrol

(tenetic algorithms search the solution space of a function through the use of simulated
evolution, i.e. the survival of the fittest strategy. In general the fittest individuals of any
popuiation tend to reproduce and survive to the next generation, thus improving succes-
sive generations. However, inferior individuals can, by chance, survive and also reproduce.
Genetic algorithms have been shown to solve linear and nonlinear problems by exploring
regions of the state space and exploiting promising areas through mutation, crossover and
selection operations applied to individuals in the population.

In a micro GA relatively small populations are selected. These small populations quickly
converge to a solution, which is stored and usually survives, while re-birth occurs in the
rest of the population. This process is repeated a number of times until a suitable global
optimum is found. Hence, rebirth replaces mutation as the operator that ensures genetic
diversity. It would be Tutile to suggest a "universally best” GA. Indeed this quest contradicts
the "free-lunch” theorem |53, 54]. Nevertheless, a comparison between mutation and rebirth
for a specific class of problems is in order and of interest.

The model of the platform is noi very complex by modern standards. The analysis {or func-
tion evaluation) is evaluated relatively quickly and takes less than a second to be computed.
For this reason no complicated stopping criteria are used. The algorithm is simply allowed to
run for 5000 iterations, unless a spectfied number of generations pass with no improvement
in best function value.

For more detail about genetic algorithins, the reader is referred to Appendix F.

4.2.2 The dynamic trajectory “leap-frog” optimization method

LFOPC of Snyman [15, 55, 56] is a well-established constrained optimization code. This code
uses a very robust gradient descent optimization algorithi which handles discontinuities that
may occur in the gradients, as well as noise in the constraint and objective function with
ease. Considering the fact that the function values are computed via a numerical method and
that gradients are computed by forward finite differences, the occurrence of such difficulties
is a distinct possibility here.

The unconstrained form of the Leap-Frog OPtimizer (LI'OP) determines the minimum of
a function F(x) by considering the associated dynamic problem of the motion of a particle
of unit mass in an n-dimensional conservative force field, where the potential energy of the
particle at a point @{t} at time ¢ is represented by F(x). The algorithm thus requires the
solution the eguations of motion:

i(t) = —VF(2(t)) (4.14)

subject to the initial conditions

2(0) = =% x(0) = 2" {4.15)
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During the motion an interfering strategy is implemented by means of which energy is sys-
tematically extracted from the particle. This ensures that the particle trajectory converges
to a local minimum of F(x).

For constrained problems, the unconstrained trajectory method is applied to a penalty func-
tion formulation of the original constrained problem [15.

More detail about the LFOP and LFOPC algorithms can be found in Appendix D.

4.2.3 The Dynamic-Q algorithm of Snyman

Dynamic-(} {16, 57} constructs and solves successive sub-problems in which the constraint
and cost functions are approximations to the actual constraint and cost functions. For each
approximate sub-problem spherical quadratic functions are constructed using function and
gradient information of the actual constraint and cost functions, evaluated at the solution
points of the previous two sub-problems. In this manner solutions to a sequence of sub-
problems are obtained which, in practice and under relatively general conditions, invariably
converges rapidly to the solution of the original problem. The simple and computationaily
inexpensive sub-problents are solved by the LFOPC algorithm.

This algorithm has been successfully applied to various engineering problems {58, 59, 60
where the cost or constraint functions are computationally expensive. More information
regarding this algorithm is presented in Appendix E.

4.3 Optimization results

In this section the results of the optimization that is carried out on the platform are discussed.
The results for the gradient-based methods are compared with those of the GA’s.

It should be noted that finite forward differences are used to calculate the gradient vectors
where required. For the gradient-based methods, therefore, after N algorithm iterations,
N{n+1) finite element analyses are carried out, where n represents the number of variables.
Thus, in this case, one iteration requires seven function evaluations.

Displacements, calculated by the finite element method, are only made available correct to
four significant figures in the EDSAP output file. Therefore, the magnitude of the displace-
ment at the working point cannot be determined precisely. This accounts for the presence of
numerical noise in the computed displacement function. A relatively large finite difference
increment (0.1 mm) is therefore used to compensate for this noise.

In Appendix H the computed sensitivities of the objective and constraint functions to the
various variables are presented and discussed. In order to determine these sensitivities, 20
finite difference increments are used on either side of the desired point, and the effect on the
relevant function determined. This process is repeated for each design variable, while the
other variables are kept constant.

The initial sets of design variables (starting point) for the two gradient-based algorithms are

given below. In the case of the lenient constraint functions given by {4.9), an initial design
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variable set is chosen as

@ = [100, 100, 100, 100, 100, 100]" (4.16)

In the case of the strict set of constraint functions given by (4.10), some of the aforemen-
tioned initial variable choices are infeasible. Thus, the variables which would begin from an
infeasible point are moved to a feasible point (at their upper variable bound). The resulting
initial set of design variables for the strict set of constraint functions is given by

x? = [60, 50, 100, 50, 50, 40]7 (4.17)

In the tables which follow, containing the information regarding the terminal values obtained
for each of the optimization methods, the following abbreviations are used to indicate the
applicable criterion for stopping.

e Dmax - Dynamic-Q) terminated on maximum number of steps. {(max = 300 iterations),

o Dftol - Dynamic-Q) terminated on function value if the change in function value <

gr = 107* kg,
¢ Dztol - Dynamic-(} terminated on step size if the change in = = |[[Az|] < &, = 107¢
i,

e Lmax - LFOPC terminated on maximum number of steps per phase. {max = 300
iterations),

o Lztol - LFOPC terminated on step size if change in 2 = {|Az|| <&, = 107 m

7

e FGmax - Full GA terminated on maximum number of steps (max = 5000 function
evajuations),

e F(G20 - Full GA terminated after 20 generation with no change in best F(x},

¢ MGmax - Micro GA terminated on maximum number of steps (max = 5000 function
evaluations), and

e MG100 - Micro GA terminated after 100 generation with no change in best F{z).

The stopping criteria for the gradient-based methods are relatively strict. In order to ter-
minate on function value, a change of less than 0.1 g is required, and a |[Az|| of less than 1
um for termination on step size. Therefore, it is a notable achievement if these algorithms
terminate on their own criteria considering the distinet possibility of numerical noise. More
lenient stopping criteria could have been used, however these strict criteria better test the
algorithms.
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4.3.1 Optimization of original design for constraint set g(x) and
d = 1000 pm.

Dynamic-)  LFOPC Full GA Micro GA

F{z*) kg] 66.501 66.901 69.709 87.375
g(z*) [pm]  -1.477e-01 -8.215e-02 -8.097e¢+00 -1.233e+01
Function evaluations 1113 2247 5000 5000
z [mm] 48.748 48.674 49.826 34.202
zh [mm] 1.000 1.000 1.977 32.248
z% [mm] 40.760 40,913 38.108 49.826
¢} [mm] 28.816 28.770 33.225 32.248
zf lmm] 24.971 24.859 23.460 20.530
Ty {mm] 5.519 5.504 6.859 5.883
Termination type Dftol Lmax FGmax MGmax

Table 4.2: Original design with constraint set g{z) and d = 1000 pm: Terminal values.

The resuits for this optimization run are tabulated in Table 4.2 and the convergence histories
are depicted in Figure 4.5.

For this problem, both Dynamic-QQ and LFOPC terminated at approximately the same design
point, and therefore have very similar function values {around 66.9 kg). The point at which
Dynamic-Q) terminated, however, has a marginally lower working point displacement and is
therefore a slightly better design. What is more, Dynamic-Q converged rapidly compared
to the other algorithms. The micro GA in particular did not perform well for this problem,
and terminated at a comparatively high assembly weight. The large feasible variable space
explains why the two GA’s do not perform well for this problem.

For an engineering application such as this, Dynamic-Q) could have been stopped manually
before the algorithm terminated due to its own criterta. For example, after 85 iterations
(595 function evaluations) Dynamic-Q had already found a point (2**) with F(x%) = 67.3
kg and §(x*) = —2.74 pm. This manual termination is especially useful for the Dynamic-Q
algorithm since it reaches the region of the solution extremely quickly. The non-imonotonic
and oscillatory convergence behavior of Dynamic-Q} is discussed in the concluding discussion
in Section 4.4.

It is clear from Figure H.1(b} that the displacement is not sensitive to @ (the stiffening
guide diameter). This result indicates that the guides are not effective in preventing the
deformation of the moving platform.

Figure H.1{f) shows that both the assembly weight and platform displacement are very
sensitive to zg (the moving platform thickness}. The high sensitivity to weight of this
variable explains its low terminal value.

The above results also demonstrate that a platform, which is not required to be excessively
stiff, can be made very maneuverable due to its low weight. This quality can be exploited
in tasks where a large {orce is not required, such as in an assembly or placement process.
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4.3.2 Optimization of original design for constraint set g(x) and
d = 100 pm.

Dynamic-QQ LFOPC Full GA  Micro GA
Flz*) [kg] 218511 218517  246.311  34L617
g(z*) [um] -1.626e-03 -1558¢-03 -1.258e+01 -2.199e-01

Function evaluations 217 1925 2936 4004
z} {mm] 86.706 86.760 8R.886 84.980
x} [mm] 1.000 1.000 1.977 8.812
r3 [mm] 70.741 76.607 84.004 125.994
x; (mm] 55.157 55,628 74,239 gb450
zy fmm] 44.214 43.873 22.483 43,967
xf [mm] 12.716 12.772 14.671 8.812
Termination type D ftol Lztol FG20 MG100

Table 4.3: Original design with constraint set g(&) and d = 100 ym: Terminal values. S

The results for this optimization run are tabulated in Table 4.3 and the convergence histories
are shown in Figure 4.6.

Dynamic-() and LFOPC terminated at very similar design points, corresponding to a func-
tion value of approximately 213.5 kg. As expected, this value is significantly higher than
that for d = 1000 gm. Again the micro GA performed badly, and terminated far from the
best know design point (found by Dynamic-Q).

In this case, Dynamic-Q converged very quickly and did not oscillate very much in the region
of the optimum as depicted in Figure 4.6(b}. LFOPC again proved very robust and converges
in a very regular and predictable fashion.

Apain, the terminal values of zs and xg are relatively low. The function sensitivities are
depicted in Figure H.2. The sensitivities to these two variables is similar to that observed
in Section 4.3.1.
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4.3.3 Optimization of original design for constraint set g(x) and
d = 10 pm.

Dynamic-) LFOPC Full GA  Micro GA
F{x*) kg 839.990 840.567 1976.460  1232.120
g(a*) [um]  1.520e-02  -1.270e-05 -7.805e-02  2.980e-02

Function evaluations 2107 1330 1602 3159
z} [mm] 160.636 163.426 183.609 157.243

x5 [mm] 1.000 1.246 27.366 1.977
z3 lmm] 165.958 165.076 251.965 250.988
zh imm] 122.612 120.442 142.595 110.370

zy [mm] 85.074 83.521 39.084 16.896

z} [mm] 31.002 31.438 318.368 32.248
Termination type Dmax Lztol FG20 MG100

Table 4.4: Original design with constraint set g{x) and d = 10 gm: Terminal values.

For this extreme accuracy requirement, the optimization results are as tabulated in Table
4.4, with convergence histories depicted in Figure 4.7,

Again LFOPC and Dynamic-() found similar optimum design points, with a corresponding
weight of approximately 840 kg. However, the displacement constraint at the optimum
design point determined by Dynamic-Q is slightly violated. Both GA’s did very badly for
this problem, again suggesting that the large design space hinders the performance of these
algorithms.

As was the case for d = 1000 zm, Dynamic-Q oscillated for a long period of time in the region
of the optimum before termination. This oscillation could be prevenied by some manual user

interaction. For example, after 43 iterations {301 function evaluations) a sufficient optimum
value of F(x*) = 839.9 kg and g(«*®) = 0.356 x 10~ pm was found.

LFOPC could also have been manually stopped at an earlier point. For example, after 140
iterations (980 function evaluations) LFOPC had determined a design point with F(z*0) =
840.5 kg and g{z™*") = 0.49 x 107% um.

There are several important physical issues which are apparent from these results. Firstly,
the optimum assembly weight is very high (around 840 kg). This will limit the efficiency with
which machining operations are carried out. Secondly, the high terminal variable values, for
example the bottom transverse support strut diameter of 165 mm, leads to a design which
will become difficult to manufacture and assemble. Thirdly, the low value of 2o (1 mm, which
corresponds to the lower bound for this variable) confirms that adding stiffening guides is
not effective in adding stiffness to the design.

Figure H.3 confirms that both the objective and coustraint function are relatively sensitive
to all variables except zp at this optimum point determined by Dynamic-Q).
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4.3.4 Optimization of original design for constraint set G(z) and
d = 1000 pm.

Dynamic-QQ LFOPC Full GA Micro GA
F(;c*) kel 118.387 118.387 132.009 118,734
G(w*) [um] -3.931e-02  8.406e-03 -1.432e+02 -9.405e+00

Function evaluations 119 1267 1491 5000
r} [mm] 47.157 47.230 45,029 47.573
o} [mm] 10.000 10.001 20.959 10.000
x} [mm] 40.553 40.482 45.480 40.411
x} [mm] 30.000 30.004 31.566 30.000
z} [mm] 30.000 30.000 35.049 30.039
x} [mm] 30.000 30.000 30.235 30.039

Termination typ Dftol Laxtol FG20 MGmax

1

Table 4.5: Original design with constraint set G{) and d = 1000 um: Terminal values.

The results of this optimization run are presented in Tahle 4.5 with convergence histories in
Figure 4.8.

Again, Dynamic-(} and LFOPC terminated at very similar solutions {with a weight of ap-
proximately 118.4 kg). The Dynamic-Q algorithm terminated on the function tolerance
after very few escillations. As expected, the more realistic variable lower bounds used in
this problem result in a higher weight compared to the weight of only 66.9 kg found with
the lenient set of side constraints (see Table 4.2).

In this case the micro GA found a very good solution, similar to the best known solution.
This may be as a result of the smaller variable space (due to the "stricter” upper and
lower variable bounds) in this problem. However, Dynamic-Q required ouly 119 function
evaluations, compared to 1267 of LFOPC and 5000 of the micro GA.

The very flat convergence history of the micro GA suggests that the algorithm could have
been terminated sooner {after around 2000 function evaluations). A function value of 119.8
kg and g{z) = 1.897 pm was found by this point. The very flat history in this case is
due to the micro GA’s ability to refine the solution (due to rebirth), finding slightly better
solutions at regular intervals. This makes the stopping criterion of a given nwmber of function
evaluations with no improvement in function value a poor criterion. A minimum change in
fenction value should be used in this criterion, similar to the tolerance used for the gradient-
based algorithms.

It is also interesting to note that only z; {(actuator diameter) and 3 (bottom transverse
support strut diameter) did not terminate at their lower bound for the best known solution
(that of the Dynamic-Q) algorithm). Figure H.4 confirms that the constraint function (which
is active at the optimum design point) in particular, is very sensitivity to these variables.
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4.3.5 Optimization of original design for constraint set G(z) and

d = 100 pm.

Dynamic-Q  LFOPC Fuli GA Micro GA

F(z*) [kg]  318.362 318324 316.499 311.161
glz*) [pm] 1.251e+017  1.233e+01" 2.692e+017 2.578e+011

Function evaluations 2107 1554 3942 5000

@7 [mm]  61.739* 61.757* 59.002 60.000

25 [mm] 52104 52.115* 50.000 50.000

z3 [mm] 100.256% 100.191* 98.904 100.0600

z; [mm] 50.589* 50.697* 49.922 50.600

2t fmm]  50.113* 50.080* 49.922 49.961

2y [mm] 20.929* 29.938* 34.364 30.196
Termination type Dmax Lztol FG20 MGmax

textreme violation of constraint

*.slight violation on varieble bound

Table 4.6: Original design with constraint set G{z) aud d = 100 pm: Terminal values.

Table 4.6 contains the results for this optimization run, with corresponding convergence
histories depicted in Figure 4.9.

The tabulated results show that no feasible design could be obtained for this specified value
of d. The "compromised optima” of the gradient-based methods and the "optima” of the
GA’s all result in extreme violations of the displacement constraint function.

Both Dynamic-Q) and LFOPC violate the bounds on the variables slightly, and by doing so,
greatly decrease the amount by which the displacement constraint is violated. The genetic
algorithms are not able to compromise the solution in this way.

From Figure 4.9(b), it is clear that the behavior of the Dynamic-Q algorithm is very oscilla-
tory, and should clearly have been stopped after a few oscillations. LFOPC proved robust,
and the smooth convergence behavior allowed for termination on @ tolerance.

The best (infeasible} solution lies at the point where the variables 2; to x5 are close to their
upper bound and with zg close to its lower bound. At this design point, the displacement
constraint is most sensitive to z;, 22 and x4, which represent the actuator diameter, guide
diameter, and upper transverse platform member diameter respectively.
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Figure 4.9: Convergence histories and terminal variable values. (Original design with con-
straint set Gz} and d = 100um).
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4.4 Concluding discussion

From the optimization results presented, it is clear that the Dynamic-Q) algorithm performs
very well indeed for this problem. If consistently reaches the region of the solution very
quickly. The oscillatory nature of the convergence history, however, suggests that some user
interaction in terminating the optimization process would be advisable. This is especially
true in the case of engineering problems where function evaluations are usually expensive,
necessitating as few iterations as possible in reaching an acceptable optimal design, and an
exact optimum is usually not necessary.

Figure 4.10 depicts the typical response of the penalty function around the displacement
constraint boundary for this problem. The displacement function is know to be nurmerically
noisy due to fact the displacements are only made available to four significant figures in the
EDSAP output file. This noise, due to the displacement function, is further amplified by
the penalty function parameter.

Constraint

Undefined boundary
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Figure 4.10: Tllustration of noise on penalty function.

This explains the non-monotonic convergence behavior of Dynamic-(Q), which is characteristic
of the method, especially in the region of the active displacement constraint. The spikes cor-
respond to deviations of the algorithm from the bed of the “optimum valley” as it progresses
to the optimum. These deviations are always followed by correction steps. It is therefore
recominended that the user monitors, and stops the algorithm interactively if a plateau is
reached and constraints are sufficiently satisfied.

The LFOPC algorithm proved to be very robust, with very little oscillation. These two
gradient-based methods terminated at what appear to be identical optima, and used in
conjunction with each other, provide confidence in the computed optima. Overall, however,
LFOPC requires more function evaluations for convergence than the Dynamic-Q algorithm.

The micro GA and the full GA are very evenly matched, and it is difficult to predict which
algorithm will perform better for a particular application. In general the micro GA is able
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to refine the solution more efficiently once the region of the solution has been found for
this problem. This is due to the fact that the rebirth process occurs often, generating new
(sometimes better) genetic material. The full GA on the other hand relies on mutation which
takes longer to refine a good design, unless the probability of mutation is set high. However,
when the probability of mutation becomes too large, the algorithm tends to hecome little
more than a random samphng algorithm.

This is in agreement with the “No Free Lunch” [53, 53] theorem which in simple terms states
that if one tunes an algorithm to do well in one specific problem, in effect one is creating an
algorithm that performs poorly for a large number of other different classes of problems.

The computed optimization results point to several practical design shortcomings. Firstly,
it is evident from the results that the present design is not capable of meeting the 10 pym
displacement constraint when realistic constraints are placed on the variable values. This
manifests itself by the fact that, even for a relatively lenient displacement constraint, with
d = 100 pm, no feasible optima could be obtained. {See results in Table 4.6).

Secondly, if the side constraints were to be relaxed in order to attain higher accuracy, the
weight would probably be restrictive. This is illustrated by the computed weight of 840
kg of the platform, when the 10 pm constraint is met, with the lenient set of bounds on
the variables. Furthermore the converged variable values for this case, listed in Table 4.4,
suggest that the stiffness is not at all sensitive to the size of the stiffening guides {z;). The
conclusion here is that the original design is not adequate and that an improved design
should be sought. The design requires adjacent stiffening guides to be attached to each
other in some way, in order for them to act as a unit and to prevent the rotation shown in
Figure 3.8 {c).




Chapter 5

Optimization of an Improved Concept
Design

In the previous chapter it was shown that the proposed original concept design is not feasible,
and will not be able to carry out machining tasks to the required 10 pm accuracy. For this
reason design changes are to be implemented in order to carry out machining tasks to the
required machining tolerance.

In this chapter an improved concept design, based on a design suggested by Du Plessis [61],
is proposed and analyzed using FEM. The design modifications are intended to increase the
stiffness of the platform. Again, the dimensional design is to be optimized with respect to
weight. Here an additional stress comstraint is added in order to ensure that the design
is- structurally capable of supporting the loads experienced during machining operations.
Finally, stiffness maps are drawn up for the design and the importance of toolpath planning
in the workspace is briefly discussed.

5.1 The improved planar platform design

In the previous chapter it was concluded that a possible reaseon for the failure of the original

concept design is the lack of interaction between adjacent stiffening guides. The best way

to overcome this problem is to add a thin plate between adjacent guide rails, thus greatly —
adding to the inertia of the structure.

Design modifications are necessary to accommeoedate the plates and thus avoid interference
between the stiffening plates and the actuators. For this reason an offset is introduced
between the actuator and the plate itself as shown in Figure 5.1. The two center stiffening
guides are considered redundant and are removed from the assembly.

Figure 5.1 shows a schematic representation of the modified design. The differences between
the current design and the existing concept design are clearly illustrated. Again, the moving
platform slab has not been shown for clarity.
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Figure 5.1: Schematic of improved planar platform design.

5.2 Input file and mesh generation

The finite element analysis of the improved platform design is, again, carried out with
EDSAP. The (EDSAP) input file generating subroutine which was coded for this platform
geometry, creates a mesh in such a way that the discretization is regular and undistorted.
With reference to Figure 5.2 the functioning of the mesh generator is detailed below:

1. Specify the number of {platform) increments {n) that are desired along Iy.
2. Calculate the length of the elements along {,, dencted by 4l;.

3. Calculate the number of platform increments, ns, along {; that will come closest to

having &l; = d8{;.

4. Calculate &l using §lp = &

ny

5. Similarly, calculate i3, 1y and éis.
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Therefore by specifying only n, the user can control the size of the elements in the mesh. The
section on the moving platform bounded by {; and I3, for example, will have shell elements
of size 8Ly x b8ls.

Figure 5.2: Nustration of parameters used for mesh generation. ______________________ _

5.3 Optimization of the improved design

In this section the optimization methodoelogy is applied to the improved concept design.
The relevant definitions of the design variables, the constraint functions as well as the cost

function now follow.

5.3.1 Design variables

For consistency, the platform is fixed in a configuration similar to that used for the original
concept design in Chapter 4. For this design, nine design variables are used. They are

e 7, - moving platform thickness,
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e 7 - left hand side plate thickness,

s 75 - right hand side plate thickness,

e 1, - actuator diameter,

e 1 - guide diameter,

e 1 - transverse plate connecting strut diameter,

e 1, - transverse actuator connecting strut diameter,
s 1g - lateral platform member diameter, and

e g - main transverse supporting strut diameter.

Again, the maximum number of design variables are used, without doing sensitivity analyses
in order to ehminate those variables to which the objective function is not sensitive. This
allows for a better test of the various optimization methods.

5.3.2 Constraints

From the optimization carried out in Chapter 4, reahstic upper and lower bounds are known
for the vartous design variables. Given this information, the constraint set that is placed on
the the design variables is detailed below.

'The upper and lower bounds on the variables can again be written in the form:

ki <z <k, i=1,2...,9 (5.1)

where the numerical values for the lower and upper bounds are taken as

k=1[30 11 10 10 30 30 30 307

v (5.2)
k=[40 30 30 60 50 50 50 50 100]%
The corresponding constraint functions are given by
Gi=hi—m, i=1,2,...,9
. (5.3)
‘C}E:EL“-]C” ’.’::1,2,...,9
The constraint on the displacement of the working point is again written in the form:
Bu(e) = d(x) — < 0 (5.4)

In Chapter 4, no attention was paid to whether or not the assembly is structurally capable
of carrying the applied load. In order to be sure that the design will not fail structurally,
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an additicnal constraint is placed on the stress that is experienced by each element in the
assembly. Formally this stress constraint is

Ty .
Gole) = max{oyu(x) — §§—5 , i=1,2,...,mF<0 (5.5}
where oy (2) is the von Mises stress of element 7, o, is the yicld stress of element ¢, SF
is a factor of safety with SF = 2 and m is the total number of elements in the model.

These constraints may now be represented in vector form by

-

g(x) = [g(x) a(z) a(=)]" <0 (5.6)

5.3.3 Cost function

The cost function that is used for this optimization is consistent with that used in Chapter
4. The structure is minimized with respect to weight subject to the constraints given by
(5.6). The explicit objective function is therefore:

Fla) =3 (w) (5.7)

a1

where w; represents the weight of finite element (2) and m represents the total number of
elements in the model.

Again, a penalty function approach is used to handle the constraints.

5.4 Analysis of optimization results

The optimization is carried out for three different and progressively smaller values of d,
where d is the maximum allowable working point displacement. Because of the robustness
of the gradient-based methods used in this study, the infeasible starting = vector a' =
00000000 07 may be used. Furthermore, it was noted in Section 3.5.1 that the
lower transverse supporting struts need to be supported, in order to prevent these criticat
members from bending. For this study if is assumed that, for each supporting strut, the

design allows for supports 100 mm from the actuator connection point (on either side}.
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5.4.1 Optimization of improved design for constraint set g(x) and
d = 1000 pm.

Dynamic-()  LFOPC Full GA Micro GA

F(z*) ke 115.181 115,179 117.938 115.337
Gi(e*) [pm] -7.792e+02 -7.792e4+02 -7.906e+02 -7.822e+02
go{x*) [MPa] -7.350e+01 -7.350e4+01 -7.367e4+01 -7.367e+01

bunc,tmn evaluations 20 1540 5000 4837
z} [mm]  30.000 30.000 30.039 30.020
.7:2 {mm)| 1.000 1.000 1.170 1.000
2% fmm|  1.000 1.000 1.000 1.000
2} [mm]  10.000 10.000 10.196 10.098
2} imm]  10.000 10.000 10.626 10.235
2% [mm|  30.000 30.000 30.078 30.039
2t [mm|  30.000 30.000 32.583 30.000
z3 [mm]  30.000 30.000 31.135 30.000
2y [mmj 30.000 30.000 31.370 30.000
Termination type Dztol Latol FGmax MG10G

Table 5.1: Improved design with d = 1000 um: Terminal values.

The optimization results for this case are tabulated in Table 5.1, with convergence histories
depicted in Figure 5.3.

For this problem all the algorithms found similar optimum design points. Although LFOPC
found a slightly better function value, Dynamic-Q) converged in only 5 iterations (50 function
evaluations). This indicates that Dynamic-() performs well when the (noisy) displacement
and stress constraints, §i(x) < 0 and gy(®} < 0, are not active. Clearly, even though
the gradient-based methods started at the infeasible point =" = [0,0,0,...,0]", it did not
hamper the performances of these algorithms. Again, the flat convergence histories of the
GA’'s suggest that their stopping criteria are not effective. ‘

Al variables stopped at (or close to) their lower bound, and only these lower bound con-
straints are active at the optimum design point. That is, neither the stress nor the dis-
placement counstraints are active. The computed design therefore easily complies with the
prescribed accuracy requirement.

Figures H.6 and H.7 depict the sensitivity of the objective and constraint functions to the
variable values around the best known dimensional design. It is apparent that the dis-
placement of the working point is very sensitive to the variable z3 (the left hand side plate
thickness). This indicates that the parameters related to the improved design (i.e. the
additional stiffening plates) have a large influence on the working point displacement.

The stress sensitivity to z; has a "kink” around 2, = 1.3 mm, as depicted in Figure H.6(b}.
The stress constraint [unction is a function of the maximum stress out of all the elements.
This kink occurs at a point where the maximum stress in the system changes from occurning
at one element to another.
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Figure 5.3: Convergence histories and terminal variable values (Improved design with d =
1000pm).
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5.4.2 Optimization of improved design for constraint set g(x) and
d = 100 pm.

Dynamic-¢§  LFOPC ‘ull GA Micro GA
117.964 117.984 132.215 [19.340
-2.912e-03  -1.894e-01 -3.626e+01 -1.136e+01
-8.000e4-01 -8.004e4-01 -8.657e401 -8.102e401

Fla*) [kg
gi(x*) [pm
Ga2{x*) [MPa

[

Function evaluations 780 2470 3719 4317
23 [mm] 30.000 30.000 30,000 30.000G
z3 [mm]  1.000 1.001 1.227 1.000
2} lmm]  1.000 1.001 1.624 1.000
z; mm]  18.938 19.030 26.438 22,524
T [Inm] 10.000 10.000 14.462 10.000
Zg [mm] 30.000 30.000 41.742 30.039
23 Imm]  30.000 30.000 30.274 30.000
z; [mm]  30.000 30.000 30.078 30.000
x} {mm] 30.672 30.582 33.699 30.000
Termination type Datol Lztol FG20 MG100

Table 5.2: Improved design with d = 100 pm: Terminal values.

The optimization results for this case are listed in Table 5.2 and the convergence histories
are depicted in Figure 5.4.

For this problem only the full GA did not find a good design. As with the previous problem,
Dynamic-Q found the region of the solution guickly, but in this case took some time to
terminate. Again, Dynamic-(} could have stopped far sooner, supggesting again that user
interaction would be beneficial. For example after 30 iterations {300 function evaluations)
Dynamic-Q found a point with F(x2®) = 117.97 kg, 5, = 0.182399 x 107 ym and 3, =
~(.799988 x 10* MPa.

Of all the variables, ouly the optimum value for z4 (the actuator diameter) does not lie on
or near a lower bound. A reason for this is that the assembly, weight is not very sensitive to
x4, whereas the displacement constraint {which is the only active constraint other than the
variable bounds) is moderately sensitive to this variable. This is depicted in Figures 1.8(d).

From the variable values, depicted in Figure 5.4(e}, it is apparent that neither GA had fully
converged at the time of termination. This is clear from the fact that most of the variable
values are in the vicinity of the best known design point.
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5.4.3 Optimization of improved design for constraint set g(x) and
d = 10 pm.

Dynamic-¢} LFOPC Full GA Micro GA

F(z*) [ke]  285.563 302.708 301.473 204.501
G (x*) [um] 2.098e-017  2.008e-017  4.205e-01F  4.262e-011
gz(;l: } IMPa]  -1.207e4+02 -1.206e+02 -1.206e+02 -1.206e+02

Function evaluations 3014 4350 3584 3739

@} [mim 39.902 38.113 37.593 37.084

@ [mum] 13.081 17.552 17.798 17.004

Cc§ [} 12.867 15.773 17.515 15.926

@y [mm] 61.466™ 60.964* 60.000 60.000

2} [mm] 10.000 18.269 11.174 12.661

xy [mm) 30.129 31.357 30.078 30.000

2% [mm] 50.038* 50.081* 49.922 49.961

z} [mm]| 20.945 29.957 30.117 30.000

@} [mm 99.939 180.065* 100.000 100.000
Termination type Dmax Lmax FG&20 MG100

T-slight violation of constraint

*-slight violation on varieble bound

Table 5.3: Improved design with d = 10 pum: Terminal values.

The results for this final run with the most stringent deflection specification are tabulated
in Table 5.3 with convergence histories depicted in Figure 5.5.

For this case Dynamic-Q) found a solution that is significantly better than that of the other
algorithms. The Dynamic-Q) solution 1s approximately 10 kg lighter than the next best
solution. The optimal weight (286 kg) is relatively low, considering the high stiffness of the
design.

It is noticed that the solutions of the gradient-based methods are slightly compromised, in
that the displacement constraint as well as the upper bound of some of the variables, namely
z4 and x7, are slightly viclated. This ability to compromise variable values is not available
to the GA’s since a fixed upper and lower bound is specified. This design compromisation
explains why LFOPC and Dynamic-Q did not converge sharply, but terminate due the
algorithms exceeding the maximum allowable number of steps. However, the compromised
solution does indeed correspond to an acceptable design with an effective d &~ 10.2 s,

From the convergence history of the LFOPC algorithm (Figure 5.5(c}}, an increase in the
function value is noted after approximately 3000 function evaluations {300 iterations). This
coincides with the end of phase 0 of the algorithm. At this point LFGPC had found a design

point with F(z®"} = 296.7 kg and & (") = 0.217 um. After this, the penalty parameter

is increased, and a ﬁnal optimum design point is determined.
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5.4.4 Deformation analysis of the improved planar platform de-
sign

The best dimensional design {(given in Table 5.3) for the case where d = 10 ym was prescribed,
is now used to analyze the displacement characteristics of the improved design. From Table
5.3 it is clear that Dynamic-() found the best dimensional design with respect to weight,
albeit slightly infeasible (;(z*) = 0.2098 pm). The deflection of the platform is calculated
under load and depicted in Figure 5.6. For clarity the displacement is amplified 2000 times
in this figure,

Figure 5.6: Deformation of the improved design under load.

From the results of the finite element analysis, it is clear that there is far less out of plane
displacement than in the original design. The deformation in the X direction has been
significantly reduced from that experienced by the originally proposed design. What is
more, the undesired rotation is almost completely eliminated.

5.5 Stiffness mapping of the improved planar platform
design

Gosselin {9] suggests the use of stiffness or conditioning maps in order to predict singularities
in the workspace. These maps reveal zones where the stiffness i1s not acceptable and also
help the designer by providing a more accurate representation of the manipulator properties.

The derivation of the stiffness of a planar parallel platform using the regular Jacobian method
is presented in Appendix A. In this section the approach taken by Clinton et af. [10] is
followed in which the stiffness is calculated using the finite element method.

In this study the platform orientation is held at ¢ = 0° and the working point is moved
to different points in the workspace. At each point the engineering {or single dimensional)
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stiffness is calculated by dividing the magnitude of the applied force in a certain direction
with the displacement in the same direction.

Real stiffness in this study is calculated by dividing the magnitude of a force vector f =
10007 + 10005 +1000k N by the total magnitude of the resultant working point displacement.
This resultant displacement is not necessarily in the same direction as the applied force as
is the case for the single dimensional stiffness.

From the stiffness maps depicted in Figure 5.7 it can be seen that the magnitude of the y
stiflness is noticeably lower than the = and z stiffnesses. The high 2 stiffness suggests that
the out of plane displacements are effectively prevented.

The complex shapes of these stiffness maps suggest that the optimization process should be
carried out with the moving platform in more than one posture. A better strategy would be
to perform the optimization over a toolpath, or even over the entire workspace.

Section 5.6 shows that these maps can be used, to a certain extent, to predict the existence
of singularities or ill-conditioned postures in the workspace. These ill-conditicned regions
represent zones with unacceptably low stiffness.

{a} Stiffness map for z-direction. {b) Stiffness map for y-direction.

(c) Btiffness map for z-direction. (d) Stiffness map for real stiffness.

Figure 5.7: Stiffness maps for optimal weight design and ¢ = 0°,
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5.6 Singularity analysis

Figure 5.8 depicts a planar parallel platform in a singular configuration. In such a posture
the Jacobian maitrix becomes rank deficient and the platform becomes uncontrollable. For
the geometry used in this study, the singularity occurs at (z,,y,) = (0.4268,0.3232) and
¢ = —45°.

The stiffness of the platform in this singular position is theoretically zero. In order to test the
validity of the finite element model used in this study, the platform is analyzed in the vicinity
of such a configuration. The working point is held at the z and y coordinates given above
and rotated through the singular configuration, and the corresponding stiffness is monitored.

¢

Figure 5.8: Planar parallel platform in a singular position.

Figure 5.9 depicts the computed response of the platform stiffness as the platform rotates
through the singular configuration. A definite decrease 1n the stiffness 1s encountered near
the geometrical singular position. This minimum stiffness is encountered at approximately
¢ = —42° and the magnitude of the stiffness is not exactly zero as may be expected.

The reason that the minimum stiffness does not occur at ¢ = —45° is that, although the lines
along which the actuators work meet at a single point, corresponding to a singular posture
at ¢ = —45°, the stiffening plates are not connected along these same lines. Figure 5.10
depicts the Finite Element model in this kinematically singular posture. It is clear that the
stiffening plates are adding to the assembly stiffness in this posture, prevenfing the stiffness
from approaching zero exactly.

5.7 'Toolpath planning for an improved planar platform
design

Clinton ef al. [10] suggest an application of stiffness mapping lies in toolpath planning.
The placements of identical toolpaths in several areas of the workspace can be evaluated by
comparing the maximum machine stiffness and variation in stiffness over the toolpath for
each placement.
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Figure 5.9: Effect of singularity on the real stiffness.

Even thought stiffuess is an important factor in toolpath planning, there are other important
factors. Examples of criteria used in toolpath planning are: the condition number [9], the
so-called quality index [62] and the forces exerted by the actuators {as used by Snyman et
al. [6]) in executing the prescribed path.
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Figure 5.10: Improved platform design in a singular configuration.



Chapter 6

Conclusions and Recommendations

6.1 General remarks

The main objective of the study has been achieved. From the results presented, it is evident
that the finally obtained design of the planar parallel platform is indeed feasible for use in
machining operations. Using the same tool forces prescribed by Smit [51], an end-effector
displacement of 10.2 pum is achieved, with a platform assembly weight of only 285.6 kg. This
corresponds to an end-effector stiffness of approximately 2.44x 108 N/m.

An existing concept design was analyzed and found to be infeasible for accurate machining
operations. The major reason for the failure of the original design is the lack of interac-
tion between adjacent stiffening guides. This deficiency has been eliminated in the finally
proposed platform design. The stiffness that is achieved by the improved planar parallel
platform design compares favorably with the stiffness of the design studied by Clinton et al
{10]. This is particularly encouraging since the manipulator studied by Clinton et al (the
Ingersoll Octahederal-Hexapod at NIST), is a successful working prototype of a Stewart-
platform-based milling machine.

The calculation of out of plane stiffness of a planar parallel manipulator cannot be carried out
using traditional robotic stiffness calculations, requiring the determination of the kinematic
Jacobian matrix. To date, little or no attention has been paid to the out of plane stiffuess of
a planar parallel platforms. The calculation of this stiffness requires a finite element analysis
(FEA}, since the kinematic equation are valid only in the plane of motion. In general it may
be noted that FEA has not been used to tts full potential in the study of these manipulators.
FEA’s used by other authors in the field of robotics research are mainly aimed at verifying
kinematic robotic stiffness models. These analyses mainly consist of simple truss elemenis
and are, in general, not more accurate than the kinematic models.

In this work the Finite Element Method (FEM) was used to calculate the displacement of
the working point. The FEM model makes use of state-of-the-art elements, such as the
QUnD-SA flat shell element with drilling degrees of freedomn. The use of these elements
allows for accuraie end-effector dispiacement calculation and beam-shell interactions.

The study emphasizes the usefulness of mathematical optimization in the design of ma-
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nipulators. Using mathematical optimization, components which significantly influence the
stiffuess of the structure, are easily identified. This allows for special attention to be paid to
these components in improving the design.

Stiffness maps have been drawn up for the finally obtained design using FEA’s. The stiflness
maps reveal regions of low stiffness, suggesting the use of stiffness as an aid in toolpath
planning. However, a singularity analysis carried out on this design, reveals that the more
realistic finite element model adds to the 1deahzed kinematic stiffness of the manipulator.
This makes kinematic singularities difficult to predict using more detailed FIEA’s.

6.2 Performance of optimization algorithms

The study shows that the gradient-based methods are much better suited to this problem
than the genetic algorithms {GA’s). The usefulness of GA’s in problems which are multi-
modal, discontinuous or nondifferentiable 1s well known. However, in a problem such as
this, where the objective function is relatively smooth and differentiable, not making use of
gradient information is a major drawback.

It is shown that the binary GA’s have difficulty with unbounded problems or problems with
large variable domains. Either a larger number of possible solutions need to be specified or
a very coarse sample taken, both of which have obvious disadvantages.

Both a micro GA and a full GA are used to compare performance. Again it is very difficult
to suggest which of the two will perform best for a specific problem. This 1s in agreement
with the “No Free Lunch” theorem mentioned at the end of Chapter 4.

The two gradient-based algorithms (LFOPC and Dynamic-Q) proved to be very efficient and
robust. This is borne out by the fact that, in the optimization of the proposed improved
platform design, even when a badly scaled starting point is chosen, little adverse effect on
the performance of the algorithms was experienced.

6.3 Recommendations for future work

This preliminary study into the feasibility of using a planar parallel platform for machining
operations proved successful. However, further work is needed before practical machining
can be carried out with confidence.

The validity of the Finite Element model needs to be further investigated. For example,
Clinton et al. [10] compared and actively updated their FEM results with displacement
measurements taken on a working prototype. Their test procedure is outlined in the ASME
standard B5.54 [63].

The optimization should perhaps be extended to take into account addiiional constrainis
in order to determine beyond any doubt whether or not the design is structurally capable
of succeeding. 'The forces and moments that result i the locking of compenents such as
the actuators and guide rails, are given in catalogs. Since the reaction forces and moments
at connection points are calculated during the finite element analysis they may be used in
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conjunction with the relevant catalog values to determine whether or not locking will occur.

Furthermore, instead of calculating the end-effector displacement at only one point in the
workspace, the minimum stiffness over a specified toolpath (or even over the entire workspace)
can be used as a criterion for evaluating design performance. This is relatively simple since
the infrastructure, which has already been written for this work, can easily be interfaced
with kinematic software.

Although in this study, only round beam elements were used in the analyses, the actual
shapes of these components are not necessarily round. Taking the actual shapes of the
elements into consideration, such as that of the guide rails (which are available only in a
discrete number of sizes), will entail a mixed real-integer optimization analysis to which a
GA is better suited.

The tool forces used in this study do not take into account the high frequency impact loads
that occur during milling operations. These loads are complicated to calculate and are very
operation specific, depending on the material being machined, the cut speed and depth,
and numerous other factors. lnstead of calculating the end-effector displacement for only
one specific tool force vector, a stiffness requirement for the end-effector should possibly be
specified and used as the measure for whether a design is feasible.

The concept design itself of the platform also needs further careful consideration. In par-
ticular the attachment of the actuators and the stiffening guides and plates need further
planning. Only after the design has been finalized should a detailed FEA be performed on
the structure to calculate stiffness and structural integrity.

As far as work in the field of Stewart platforms in general goes, Dasgupta et al. [26] suggest
a number of open problems which are likely to receive attention in the immediate future.
Special attention is needed in dynamics and control, workspace and singularity determina-
tion, as well as in the study of possible benefits to be gained from the use of redundant
manipulators.
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Appendix A

Derivation of robotic stiffness using
the kinematic Jacobian

In this appendix the in-plane stiffness matrix of a planar parallel platform wili be derived
using the kinematic Jacobian. This derivation stems mostly from the book of Dufly [64],
and the notation here is consistent with his.

A.1 Introductory concepts

Consider a line drawn in the XY plane as depicted in Figure A.1.

Y
4

2 Yo —

T

[

Figure A.1: A line in the XY plane.
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The two vectors r; and 73 from O to points 1 and 2, with coordinates (z1,31) and {22, y2)
determine the directed line segment 12 with vector S given by

S o T9 — T (A].)

The projections of 8§ onto the X and Y axes are, respectively,

L=2y—2z,=]Scosf and M=y, —y = |F]|sinf (A.2)

The moment of the directed line segment 12 about the origin is given by the vector cross
product r x §, where 7 1s any vector drawn {rom O to any point on the straight line joining
points 1 and 2, and the vector 8 can be located anywhere on the line.

It can be shown that the equation of the straight line can be written as

Ly—Mz+R=0 (A.3)
where
R — I yl (A4)
Tz s
and that
rx S=Rk (A.5)

The three numbers L, M and R were first established by Plicker, and are known as fhe
Pliicker line coordinates. They are homogeneous because substituting AL, AM and AR,
where A is a nonzero scalar into {A.3) yields the same line. However, their units are not
consistent. L and M have dimensions of (length)’, while R has dimensions of (length}?.
Because of this lack of consistency in dimensions, the coordinates are represenfed by the
ordered triple of real numbers { L, M; R}. A line segment which is determined by the ordered
triple of real numbers {L, M; R} is known as a line bound vector.

For a unit line segment where |S| = +/L? + M? = 1, it can be shown that R = p and the line
coordinates are {¢, s;p}, with abbreviations ¢ = cosf and s = sin # introduced, and where

R
SV vl (A5)
p is the length of the vector drawn from O perpendicular to the line §.
From this point onward, let S represent a unit vector in along $ with |§] = 1, and let us

define 8¢ = r x §.

The coordinates § for a line § can be expressed by the ordered pair of vectors {S; S} where

§={8; 50} (A.7)
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In this representation, the coordinates § are defined as ray coordinates because the line drawn
through two points may be imagined to be an actual narrow ray of light originating at a
point.

The coordinates for the same line $ can be expressed equally by the ordered pair of vectors
{8y; 8} and denoted by S, where

§ = {Su: 5} (A8)

The coordinates of S are defined as azis coordinates, because the line $ is considered as the
meet of two planes. Therefore the lower case § and the upper case S distinguish the two
coordinate representations of the same line $.

A.2 Mutual moment

Figure A.2 illustrates a line $; in the XY plane with ray coordinates

Figure A.2: Mutual moment of two lines.

Assume that there is a second line $, drawn through the point ( and perpendicular to the
XY plane with axis coordinates
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. Ya
S = i T (AlO)
1

The mutual moment is defined as §?S‘(ﬁ STég) From {A.9) and (A.10),

. Yo
78 = [e,snmi+ri| —ag
|
= r;+ 71— (268 — Yot (A1)
From Figure A.2, (zgs; — yge;} = v} and therefore,
8= (A.12)

The mutual moment of this pair of normalized lines, which are mutually perpendicular, 1s
their common perpendicular distance r;.

A.3 Infinitesimal displacement analysis of a planar par-
allel manipulator

Figure A.3 illustrates the moving platform of a parallel manipulator undergoing an infinites-
imal rotation é¢ about an axis §. This is modeled by a revolute joint at G to which the
moving platform is rigidly connected. The lines §,5 and 3, are perpendicular to the lines of
the connector $;, and they pass through the fixed and moving pivots B; and C}, respectively.

When the moving platform rotates relative to the fixed platform about an axis through
(7, each moving pivot C; displaces to point .. This displacement can be decomposed
into two displacements, an infinitesimal displacement 4/; along the line §; together with an
infinitesimal displacement [;46; which is tangent to a circle of radius {; centered at B; as
shown in Figure A.4. It can be shown from this figure that

5!;. = T?(Sd) and 17(56? = 7’?;(75@3 (A]S)

where r; and r;¢ are the perpendicular distances from (G to the lines $; and $;c respectively.
Therefore, as shown in (A.12)

re=§5, and rge =558 (A.14)

where §;, 8;c and S are the coordinates of the lines $;, 8;c and the axis § through G. If
(A.14) is substituted into (A.13), we get

8l =87 (6¢8) = 576D, i=1,2,3 and 1;66; = §5.(365) = 656D, i =1,2,3  (A.15)
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(A.15) can now be expressed in matrix from as:

631 . llé-@l R
8ly | =3T8D and | 1568, | = [C]74D (A.16)
613 13683

If the reference point O is chosen on the lower fixed platform, the coordinates of the lines §;,
$:p and 3¢ can easily be determined, and the matrices for the lines $,5 and $;¢ (perpendicular
to 8;) and passing through pivots B and C respectively) are:

—81 —82 —83 -81 —&8z —&83
[Bl=! aa & ¢ and [Cl=| a0 ¢ 3 (A7)
@i 92B 43B fic q¢ QDo

where q;5 and g;o are the perpendicular distances from O to the lines §,5 and $§0 respectively,
and gic = gip + L.

Figure A.3: Infinitesimal rotation of the moving platform about point &

Observe from Figures A.3 and A.4 that when the moving platform rotates through an angle
&b, each connector moves from a line $; to a new line $} due to a small rotation &6; about
the fixed pivot B;. We can now determine the coordinates of the new line 3.
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Figure A.4: Infinitesimal rotation of a single connector

A.4 The differential of a line

Figure A.5 represents a single connector which is attached to a revolute joint at B;, and the
revolute joint is in turn fixed to ground. If the counector rotates a small amount §8;, the

$ip

Figure A.5: Differential of a single connector

————————————
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line §; rotates to a new location §..

Since §;, the coordinates of the line §; are a function of the angle only,

5 = 5:(6)), (A.18)
the differential of §; is given by
da;
58, = —-86, Al
g 7} (A.19)

The coordinates of the line §; are given by:

§ = {ci, s} = {¢ci, 85, OBsin{f; — o)} (A.20)
where ¢; = cos 8; and s; = sin ;. Now we define

d"‘
§£B = a—zi = {—S,,:;Ci; OBCOS(&_.; — C)i)} pone {—Si’ Cé; q&B} (A21)

These are the coordinates for line 8,5, which is defined as the geometrical differential of §,.
The coordinates of the line $. can now be written as
8 = 8 + 68; = § + 3;pdb;, (A.22)

which are a linear combination of the coordinates of lines §; and ;5.

A.5 Stiffness of a planar parallel platform

Figure A.06 represents a relatively general planar parallel platform with compliance intro-
duced in the connectors. The lower platform is fixed to ground, while the upper platform is
manipulated by the compliant actuators. The actuators are represented by revolute joint -
prismatic connector - revolute joint {(RPR} connectors, each containing a linear spring.

The externally applied load f is expressed using the coordinates {L, M; R} with reference
to some coordinate system. The value for R 1s dependent on the placement of the origin O.

The force can be expressed in vector by the coordinates

w={f,co} (A.23)
The two representations are related as follows:
f=1{Le+ Mj), co=Rk (A.24)

f can also be represented as a multiple of a unit vector S in the form f§ where |S| =1 and
f =|f], and the moment vector can thus be represented as ¢cp = fS¢ where §p =7 x §.
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!

Figure A.6: Compliant planar parallel platform.

Since S is a unit vector, we may use the notation

§=1{8;80} (A.25)

In this way, the coordinates for a force can be expressed by a scalar f (the magnitude of the
force) and a unit line vector as:

b= f3 (A.26)

If the moving platform is at rest, the externally applied load must be in equilibrium with
the resultant forces in the actuators. This equilibrium condition can be mathematically
represented in the form

W= f15; + fada + fads (A.27)

where the externally applied force has coordinates 1 and magnitude f, and is applied along
the line $. fi, f2 and f, are the magnitudes of the resultant forces in the actuators and 3,
§9 and §;5 are the line coordinates for the connectors.

Since the force in each of the actuators is given by:

fi =kl = o), i=1,2,3 (A.28)

where {y; is the free length of the springs, I; is the length of the loaded spring and &; is the
stiffness constant of the spring. If the coordinates of W are known as well as &, 3;, &, the
coordinates of lines $3, $; and $3 respectively, {A.27) can be written as
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w = kl (11 - ggl)é\l + .ICQ (lg - Zgg)ﬁg + kg(l:.g - l03)§3 (AQQ)

In order to calculate the stiffness of the assembly, a small change (4] in the external load
is applied, resulting in an infinitesimal rotation 8¢ about an axis § through point G and
perpendicular to the page, as shown in Figure A.3.

Using the results from Sections A.3 and A.4, the effect of the small change d« in the exter-
nally applied load can now be calculated.

S = kySlidy + kablods + ksblyds + ke (1 — Jm)%;_léai +
1
di ds
k2(£2 — 302)ﬁ592 + }C3(l3 — 1(13)3£593 (.&30)

We now define p; = '—,"—‘ and using the result from (A.21) where j%;: = &;p, (A.30) becomes:

s = (§1k1(511 + §2k2(532 + .§3k36£3 + §1Bk1(l - ,0511591 -+
-§sz2(1 - ’0)52(592 + ggBkg(l - p)£3563+ (Agl)

Finally, {A.31) can be written in matrix from as:

aly L 86,
5 = [31 & &)[k] | 8lo | + (815 Sap S3ml[k(1 — p)] | 12664 (A.32)
814 1308,
{k 0 0] [kl(l—p) 0 0
where [k] = | 0 ko 0 | and [k(1~ p)] = | 0 ko(1 — p) 0 { (A.33)
L0 0 ks [ 0 0 ks(1 — p)
Also, it is known that:
C; €2 C3
j b= [é‘\l §2 33] = 81 89 83 (A34)
P Pz P3
is the matrix of the coordinates of the lines $;, $, and $3, and
I_ —81 —8z —83
[B] = {glﬁ §QB §SB] = [ 5] Can [ (AS«S}
iz G2  daB ]

is the matrix of the coordinates of the lines §, 5, $2p5 and 835. Therefore, given (A.16), (A.32)
simplifies to
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Sw = {5k]5" + [BI[k(1 - p))[CT"}6D (A.36)
which can be expressed in the usual fashion:
b = [K]6D (A.37)

where the stiffness matrix [K] is given by

(K] = jlk]5T + [Bl[k(1 - p)][CT (A.38)

[K]is symmetrical only at the unloaded position for which p; = 1 or §; = ly; and [K] = j[k};7. —




Appendix B

Beam and frame elements

In this appendix, the theory and finite element formulation of beam and frame structures
are considered. The formulation closely resembles the treatment by Chandrupatla and Bele-
gungu [47], and the notation used is similar.

A ’beam’ is a mathematical approximation to a slender member that is used for supporting
transverse loading, while complex structures with rigidly connected members (beams) are
called 'frames’.

Only beams with symmetric cross sections with respect to the plane of loading (¢ — ¥ plane
in Figure B.2} are considered here. A relatively general horizontal beam is shown in Figure
B.1, while Figure B.2 shows the cross section and bending stress distribution. For small
deflections, and from elementary beam theory, we recall that

=My

= B.1
o= (B.1)
O
= — 2)
€=7 (B.2)
d?v M
T =TT (B.3)

where o is the normal stress, ¢ is the normal strain, M is the bending moment at the section,
v 1s the deflection of the centroid axis at x and [ is the moment of inertia of the section
about the neutral axis (z axis passing through the centroid).

B.1 Galerkin Approach

For the Galerkin formulation, we start from the equilibrium of an elemental length. From
Figure B.3, it is clear that

dV B

T =P (B.4)

89
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Figure B.2: Beam section and stress distribution.
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M

e V (B.5)
Combining (B.3), (B.4) and {B.5), the equilibrium equation is given by
d? d*v
— | El— ] —p=20 B.
dz? ( d:cz) # (B.6)

The approximate solution v is required (constructed by finite element shape functions) such
that

Ll d d*v ‘
I [a“”“ (Ef zf“*) ““P] ¢ do =0 (B.7)

where ¢ is an arbitrary function using the same basis function as v. ¢ is required to satisfy
the natural boundary conditions, thus ¢ is zero where v is specified as being zero. Now,
integrating the first term of {B.7) by parts, and splitting the integral from 0 to L into
intervalg from 0 to z,,, 2, to z; and z¢ to L, we obtain

L d*vd*p ¢ d*v o d?v o
pritie, m/ d El L prtl
/o dz? dx? pé de + 3 ( d?)d’ﬂ +dm( d:nz)qu
d*v do | dv dp |
Bt L Ere— ‘
& dz? dx o Idm2 dx 0 (B.8)
p
| [ : 3
4 M+ dM
M Vdv
dz

Figure B.3: Free body diagram of an elemental length dz.
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We note that £I{d*v/dz?} is equal to the bending moment M from {B.3). Also note that
(dfdz)[EI(d*v/dz*)] is equal to the shear force V from (B.5). From the beam depicted in
Figure B.1, ¢ and M are zero at the supports. At z,,, the jump in shear force is /2, and at
xy, the jump 1n bending moment 1s — ;. Thus, we get

L 20 A2 o1
[O Brivde,, /0 P 4z — 3 Pruth — 3 My = 0 (B.9)

2 g2
dz? dx — .

For the finite element formulation based on Galerkin’s approach, v and ¢ are constructed
using the same shape functions. Iquation B.9 is precisely the statement of the principal of
virtual work.

B.2 Finite element formulation

For a single two noded element, the local degrees of freedom are represented by

g=lg @ ¢ @l (B.10)

where g is the same as [v; v} vy v4[T. The shape functions for interpolating v are defined
in terms of the local coordinate £ on -1 to 1, as shown in Figure B.4. Since nodal values and
nodal slopes are involved, Hermitian shape functions are defined. The shape functions are
of cubic order, as represented below

Hi = a; + bi& + ;62 + d;€° i=1,2,34 (B.11)

(The coefficients a;, b;, ¢;, d;, obtained by imposing the required conditions, are shown in
Figure B.4.) This yields

o, = iu _ER(246)

My = (1= €€ +1)

Hs= (14 €2~ ¢)
1
Hy= S0+ 6P - 1)
The Hermitian shape functions can now be used to write v in the form
dv dv
v(§) = Hyvy + H, (‘&g)l + Hyva + Hy (‘gg)z (B.13)

The coordinates transform by the relationship
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Slope =0
Stope =1 Slope =0
H, l
£ ¢ ' 4 £
-1 0 +1

Slope = 0

‘ Slope = 0 Slope = 1
B! )[ H,

i Lt | o £

-1 0 +1 -1 0 +1

Figure B.4: Hermitian shape functions.

1—¢ I+& zit+my | Tz I
T 5 T1 + 5 ro= 5 + 5

3

And, since [, = 2y — @1 is the length of the element, we get

[
de = —d
T 5 ¢
The chain rule dv/d¢ = {dv/dz)(dz/dE) yields
dv L. dv
¢ 2dzx
Noting that dv/dz evaluated at nodes 1 and 2 is ¢ and ¢4 respectively, we have
. le .
v(€) = Higs + §H2% + Haqz + -2mH4q,1
which, in matrix notation, may be denoted as
v=Hgqg
with

!
2H,

e
H=|H “H, H
1 52 Hy

Now, from (B.16) it is clear that

93

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)
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Efgmzd_v q d%* A d%y B.90)
de L dt " dz? 12 di2 (B.20)

Meanwhile, substituting v = Hgq, we obtain

& H 3 —1+3£L 3. 1+3£1,
( i ) = [55 —3 3 T3t Ty (B.21)
In the development based on Galerkin’s approach (B.9), we note that
d¢dv 16 (dH\  (&H
BI=t = T B | i n
G Y Pl ( dé az )9 (B.22)
where
o= {1 Yy U3 1/14}11 (B.23)

ig the set of generalized virtual displacements on the element, v = Hq and ¢ = Hu.
Equation B.22 yields the stiffness matrix

12 6. 12 6l
_ B el 42 -6l 20
T —12 -6l 12 -6l
6l, 27 —6l. 42

(B.24)
upon integration, with 1" k,q being the internal virtual work in an element.

B.3 Plane frame element

Plane frame elements are similar to beam elements, except that axial loads and deformations
are present. Figure B.5 depicts a frame element in a general orientation. There are two
displacement and one rotational degree of freedom at each node. The nodal displacement
vector is thus given by

g=ln @ & o & 6 (B.25)

A local coordinate system (z', /) is defined such that z’ is orientated along 1-2, with direction
cosines [, m (with [ = cosf, m = sin#). Now, the displacement vector in the local coordinate
system 1s

9= ¢ & 4 % g (B.26)

where ¢} and ¢, are the translations at node 1 and ¢} is the rotation at node 1 in the local
coordinate system, as depicted in Figure B.5. Similarly, ¢; and g} are the transiation of node
2 and g the rotation at node 2.
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Recognizing that ¢; = g3 and that g, = g5, we obtain the local-global transformation

g = Lg (B.27)
where
Tl om0 0 o a7
00 0 0
g 0 1 0] 0 0
L= 0] O 0 { m 0 (BQS}
1] 0 06 —m [ 0
0 00 0 0 1.

g, ¢4, gt and gf are the beam degrees of freedom, while ¢| and ¢} are similar to the displace-
ments of a rod element. Superimposing the two stiffness matrices, the following element
stiffness matrix is obtained for a frame element

R 0
© 12EI  6EI é —12EI  GEI
5] iz 12 2
4B 0 —6EI 287
L I Iz I,
Kk, = EA : i (B.29)
i
¢ 12E]  —6ET
& 4%1
L SYymin i ]

Q3(QE)

Figure B.5: Plane frame element.
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From Galerkin’s approach, we recognize that the internal virtual work of an element is

W, =¢"klqg = LTk Lg (B.30)

where 1’ and 1p are the virtual nodal displacements in the local and global coordinate
systems respectively. From (B.30) we recognize the element stiffness matrix in the global
coordinate system to he

k.= LTk L (B.31)

B.4 Three dimensional frame element

Figure B.6 shows a general three dimensional frame element. The nodal displacement vector
in the local coordinate system is thus given by

d=0 & ¢ & & & & & b o Tl (B.32)

where ¢}, ¢, and ¢} are the translations at node 1 along z', ¥ and 2’ respectively and ¢}, ¢}
and g} are the rotations at node 1.

Orientation of the local 2’ — ¢/ — 2’ coordinate system is established with the use of three
points. Point 1 and 2 are the element end points, and the z'— axis is along the line jeining
1 and 2. The 3/ axis lies within the plane defined by points 1, 2 and 3, as shown in Figure
B.6.

1-2-3 plane

reference point

3
| Y
A

Figure B.6: Three dimensional frame element.
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The (12 x 12) element stiffness matrix k' in the local coordinate system is obtained by a
straightforward generalization of (B.29) as

AS o 0 0 0 0 A5 0 0 0 0 0

ar 0 0 0 bz-' 0 = gt 0 { 0 bzl

Tyt 0 Wby-' 0 0 Q Lyt 0 Wby 0

rs 0 0 0 0 0 =TS 0 0

Gyt 0 0 0 b.yr 0 dyf 0

' Cyt 0 -—bz! 0 d 0 dz.'
k= AS 0 0 0 0 0 (B.33)

Ay 0 0 0 —b,

Cy! 0 by 0

) 0 0

Cy’ a

 Symm Car ]

where AS = AE/L, L = element length, 7S = GJ/L, a» = 12EL./L°, b, = 6E1./L?
cp = 4B /Ly dy =281,/L, ay = 12E1,,/L*, etc. The global-local transformation is given
by

g = Lq (B.34)

With the (12 x 12) transformation matrix L defined as

where A is the (3 X 3) matrix of directicn cosines:

51 my Ty
A= lg Mo Tin (B36)
ls my ny

Here, {;, m; and ny are the cosines of the angles between the z'—axis and the global z—, y—
and z—axes respectively. Similarly, I3, my and n, are the cosines of the angles between the
i —axis and the x—, y— and z—axes and I3, m3 and n3 are associated with the z—axis.

Finally, the element stitfness in the global coordinate system is given by

k=L"EL (B.37)

where the k" matrix is given by (B.33).




Appendix C

Flat shell finite element

In this appendix the formulation of flat shells as an assembly of membrane and plate elements
is discussed. This discussion is taken mainly from Groenwold [12, 13], who implemented flat
shell finite elements with in-plane drilling degrees of freedom in the finite element (FE)
program EDSAP [46]. The drilling dof allow for beam-shell interactions, and are based on
the continunm mechanics definition of rotation.

C.1 A General Flat Shell Formulation

It is well known that shells are amongst the most complex structures to analyze numerically.
A number of shell theories exist, i.e. deep, shallow or flat shell theory, each associated with
particular assumptions and difficulties.

In this section the formulation of flat shell elements as an assembly of membrane and plate
elements is briefly discussed. Further detail may for instance be found in the standard work
of Zienkiewicz and Taylor [49].

This discussion is restricted to the assembly of the modified QCnD membrane element of
Ibrahimbegovic et al. [11] and the Bathe-Dvorkin [48] assumed strain plate element. The
resultant shell element is denoted QCnD-SA, where n indicates the number of integration
points employed in the membrane component. However, the formulation is easily generalized
to incorporate different 4-node membrane or plate elements. Furthermore, while driiling
degrees of freedom are included in the following formulation, the presence of drilling degrees
of freedomm is not an absolute requirement. Alternative approaches can work in locally defined
systems with 5 degrees of freedom per node. Small artificial stiffnesses associated with the
in-plane degrees of freedom can then be incorporated. These artificial stiffnesses are modeled
with an equivalent "imaginary” torsional spring at each node.

Nevertheless, drilling degrees of freedom are attractive in the formulation, since their presence
allows for beam-shell connections and enriches the calculated displacement field. Hence they
enhance the element accuracy. Finally, the drilling dof are based on the continuum mechanics
definition of rotation, which does not require the inclusion of imaginary in-plane torsional
stiffness.

08
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The element force-displacement relationship of the QCnD membrane elements is defined in
local membrane coordinates as

where K + P denotes the stiffness matrix, g,, the element displacements and f,, the element
loads. I represents a penalty stiffness which relates the in-plane translations and rotations,
and prevents mechanisms. In partitioned form, Equation {C.1) may be re-constructed as

(K'm, + P) K*m,h -
KT Kh I = f’m

mh

(C.2)

where subscript m indicates those terms associated with the 4 membrane corner nodes only.
Subscript h indicates those terms associated with the hierarchical membrane bubble shape
function (i.e. the center node}, while K, indicates the coupling stiffness between these two.
The terms arising due to K, are eliminated on the element level using static condensation.

The unknown nodal displacements ¢, and the specified consistent nodal loads f, are defined
by

4, = [wi v 8.7 (C.3)
o= Vi M, (C.4)

m

where 8,; is the in-plane nodal rotation and M,; the in-plane nodal moment.

Similarly, the Mindlin-Reissner plate force-displacement relationship is written as

(K?;+Ks)qp = -fp (G5)

where K, is the shear stiffness associated with the substitute assumed strain interpolation
[48], to prevent shear locking. Subscripts b, s and p denote bending, shear and plate re-

spectively. The displacements g, and the consistent nodal loads f, are respectively defined
by

The shell element stiffness matrix K therefore reduces to

(K m + P ) 0 _ K mh
sYmm Ky

The Iocal shell force-displacement is
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where the shell nodal displacements and loads respectively are

q; = [u v wi Ou Gy 8] (C.10)

and
f. = [Ui Vi Wy M, M, M" (C.11)

In Equation {C.8), the partition stiffness matrices are given by
K, = [[B, G C"[B, G (C.12)

where B, is the standard bi-linear strain-displacement operator and G defines the rotation
terms. {P° is a penalty stiffness, which relates the in-plane displacements and rotations.)

K, = /nt‘chb d6 | (C.13)
K, = f BTC*B, d (C.14)
14/
K, = fB?;CmBh do (C.15)
£
and
Ko, = [B'm G]T c™ B, df2 (Clb)

Q

The operators in (C.12) through {C.16) are explicitally given in |12, 13].

C.2 Constitutive Relationship

In this section the constitutive relationship for isotropic materials is presented. For isctropic
material and plane stress, the constitutive modulus C™ has the form

1 v {
O = —g——— vl 0 (C.l?)
(1—v2)
0 0 (1——1/)/2

and where & and v are Young’s modulus and Poisson’s ratio, respectively. Furthermore,

: 1w 0
Et?
‘ 00 (1-wv)/2

where ¢ is the element thickness, and

C* = Gt [ - ] (C.19)

where (¢ 1s the shear modulus.
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C.3 Local-Global Transformations

The element stiffness matrix described by Equations (C.8) is formed in a local element
coordinate system. Element assembly is performed in the global coordinate system, in which
system the nodal coordinates, forces and tractions are also prescribed. The relation between
the local element stiffness K° and the global element stifiness K is given by

K = TTK“T? (C.20)

where T is the applicable rotation transformation matrix (e.g. see [491).




Appendix D

LFOPC

The LFOPC (Leap-Frog Optimization Program for Constrained optimization) algorithm
applies a dynamic trajectory method for unconstrained optimization, originally proposed
and developed by Snyman [55, 56], to a penalty function formulation of the constrained
problem {15, 16]. The original dynamic trajectory method is based on the physical model of
the motion of a particle of unit mass in an n~dimensional conservative force field, where the
potential energy of the particle is given by the function to be minimized F(x}. This method
1s a proven reliable and robust method.

The LFOPC algorithm is well suited to the type of optimization problems encountered in
the engineering field, since engineering problems often consist of:

1. functions {cost function or constraint function) which are expensive to evaluate,

2. have noise present in these functions, which can originate from experimental data, or
from numerical inaccuracies,

3. functions which may be discontinuous or non-differentiable,

4. functions with many local minima,

[}

functions with regions in the design space where the function is badly scaled or unde-
fined and

6. functions with a large number of design variables.

These difficulties limit the application of traditional optimization algorithms to engineering
problems.

D.1 Basic dynamic model

Consider the general nonlinear optimization problem:

102
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mﬂ%nF(a:), T = (x3,Lq,...,2,) ER"
subject to g;{x) <0, j=12,...,p (D.1)
and hy(x) = 0, k=1,2,....q

Assume a particle of unit mass in an n-dimensional conservative force field with potential
energy at @ given by F{x), then at @ the force on the particle is given by:

a=i&=-VF(z) (D.2)

from which it follows that for the time interval {0, ]:

S~ SO = Fla(0) - Fla(2) (D.3)
T(8) — T(0) = F(0) — F(¢); or F(t) +T(t) = F(0)+ T(0) = K (D.A4)

where F(t) and T(t) are the potential energy and kinetic energy of the particle respectively
at time ¢ and K is a constant.

It may be noted that AF = —AT, and therefore as long as 7' increases, /' decreases. This
forms the basis of the dynamic trajectory method.

D.2 Basic LFOP algorithm for unconstrained optimiza-
tion

Given F{zx) and the starting point z(0) = 2°

value problem {IVP):

, compute the trajectory by sclving the initial

&(0) = 0 (D.5)

Monitor #{¢) = w(t}, since while 7'(t) = 1||v}|* increases, F(x(t)) decreases, and the solution
& moves towards the minimum of /. When ||v{t)|| decreases, the solution & is moving
“uphill”. In this case an interfering strategy is applied to extract energy from the particle,

in order to increase the likelihood of descent.

In practice, the numerical integration of the IVP in (D.5) is performed by means of the
leap-frog method:

Compute for k£ = 0,1,... and time step At:
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m(k+l} — m(k) + 'UkAt

(D.6}
,U(k-)—l) — 'U(k) + ak‘+1At
where
a®) = —VF ().
1 (D.7}
20 = Z g A
2
A typical interfering strategy is
If [lo® D] > [Jo®)|] continue
(h+1) (k) {k+1) (k)
otherwise set o) = v kv = vt (D.8}

4 ' 2
compute the new »**1) and continue

The following three termination criteria are used:

1. Stop if ||&® — &®+V]] < ¢,
2. Stop if {|at®|| < ¢, and
3. Stop if maximum number of iteration is exceeded.
Other heuristics are incorporated, such as specifying a maximum trajectory step size, an

empirical formulae for determining the mitial value for At, and a scheme to magnify and
reduce At in order to minimize the number of iterations required for convergence.

D.3 Modifications for constraints

Constraints are accommodated in the algorithm by means of a penaliy function formula-
tion. This formulation solves the constrained minimization problem stated in (D.1}, by
unconstrained minimization of a modified cost function, P{wx, p):

Tt

Pla, p) = Fle) + u ;[gj(w)]%j(gj) +u ;[f‘bk(ﬁﬂ)]2 (D.9)
where

s ={ 1 14050 10
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and where 1 >> 0 is the overall penalty parameter.
The solution to the minimization problem is performed in three phases:

Phase 0
Given some x, apply LFOP to P(x,uy) with an overall penalty parameter of g = up to
give £*(ug).

Phase 1

With ® = =* (1) and g = u; > g, apply LFOP to Pz, ) to give &*(p1). Identify the
active constraints i, = 1,2,...,n, where g;, (&*{11)) > 0.

Phase 2

With ¥ = 2*(u) apply LFOP to:

r g
minimize Py(@, ) = p1 3 hple) + Y g2 () (D.11)
k=1

tom=1

to give @*, where Pa(wz, 1) is a function involving only the equality constraint h,;, j =
1,2,...,», and the active constraints g;,, 1. = 1,2,..., 7.




Appendix E

Dynamic-Q

The Dynamic-() algorithm was proposed and developed by Snyman et al. [16], and applied
to a number of difficult engineering problems {58, 59, 60]. In the field of engineering, the
functions in an optimization problem are often very expensive to evaluate. Such problems
can be solved economically by using approximation methods {such as Dynamic-Q and SQP)
which require fewer function evaluations than standard gradient-based descent algorithms.

Dynamic-()} adopts a successive approximation approach to solve the minimization problem
in (E.1). It solves successive subproblems constructed from the original problem (E.1}.

These subproblems are analytically simple and can easily and economically be solved hy the
dynamic trajectory method {LFOPC).

E.1 Basic algorithm

Consider the general nonlinear optimization problem:

Il’%éHF(SB), ;B:(ml:m%‘";wn) c R”
subject to g;(x) <0, g=1,2,...,p (E.1)
and h{x) =0, k=1,2,...,9

E.1.1 Construction of successive sub-problems

In the Dynamic-Q approach, successive subproblems PJi], i = 1,2,... are generated at suc-
cessive approximations @' to the solution @*, by constructing spherically quadratic approxi-
mations F (@), §;(2) and h(2) to F(2), g;(x) and hg(x). These approximation functions,
evaluated at a point x*, are given by
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—

Flx) = Flz") + VT F (2 (z - :.-3”) + —(x — .’L‘é)TA(m — ')

o DO

gilm) = gj(mi) +Vng("Ei)(m_‘Ti)+_($_mi)TBj(m'_mi)a J=L2,...,p (E.2)

[}
—

Ek(:r) = hp(2") + VI (z') (2 — ') + E(m ~ 2Oz — 27, k=1,2,...,q
with the Hessian matrices A, B; and 'y taking on the simple forms

A = diag(a,a,...,a) = al, B; = b1, Ch o= a1 (E.3)

Clearly, the identical entries along the diagonal of the Hessian matrices indicate that the
approximate subproblems Pji] are indeed spherically quadratic.

For the first subproblem (7 = 0} a linear approximation is formed by setting the curvatures
a, b; and ey to zero. Thereafter a, b; and ¢; are chosen so that the approximating functions
(E.2) interpolate their corresponding actual functions at both @* and @*~'. These conditions
imply that for i = 1,2,...

2[F(2i71) — Fa*) — VIF(2) (2! — zt)]

o [

- 2ai@™) — (@) - Vigi(e') (@™ —a)] (E.4)
T [li= — |2

o 2hp(@™Y) — hy(2') — Vb (2 (2! — 2)]

L=

el

If the gradient vectors VF, Vg; and Vh; are not known analytically, they may be approxi-
mated from functional data by means of first-order forward finite differences.

The particular choice of spherically quadratic approximations in the Dynamic-Q algorithm
has implications on the computational and storage requirements of the method. Since the
second derivatives of the objective function and constraints are approximated using func-
tion and gradient data, the O(n?) calculations and storage locations, which would usually
be required for these second dervatives, are not needed. The computational and storage
resources for the Dynamic-Q) method are thus reduced to O(n). At most, 4+p+g+7r+sn-
vectors need to be stored {where p, ¢, r and s} are respectively the number of inequality and
equality constraints and the number of lower and upper bounds on the variables). These
savings become significant when the number of variables becomes large. For this reason,
the Dynamic-(Q method is well suited, for example, to engineering problems where a large
number of variables are commonly present.
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E.1.2 Variable bounds

v

In many optimization problems, additional simple side constraints of the form & < x; < &
occur. Constraints & and k& respectively represent lower and upper bounds on variable z;.
Since these constraints are of a simple form (having zero curvature}, they need not be
approximated in the Dynamic-Q method and are instead explicitly treated as special linear
inequality constraints.

Constraints corresponding to lower and upper bounds are respectively of the form

Q;(m)zl}ﬂ;wwﬂlgo, [=1,2,...,r<mn, and

: (E5)
gm(m)mmwmmkwmgoy mmlzga---wsg_n

where vl € (v1,v2,...,vr) the set of r subscripts corresponding to the set of variables for

which respective lower bounds k,; are prescribed, and wm € (wl,w2,... ws) the set of s

subscripts corresponding to the set of variables for which respective upper bounds k,,, are
prescribed. The subscripts vl and wm are used since there wiill, in general, not be n lower
and upper bounds, i.e. usually » # n and s # n.

E.1.3 Move limits

In order to obtain convergence to the solution in a controlled and stable manner, move limits
are placed on the variables. For each approximate subproblem P[i] the move limit takes the
form of an additional single inequality constraint

g =lle— P -8 <0 (E.6)
where 6 is an appropriately chosen step limit and «*™!

problem.

18 the solution to the previous sub-

The approximate subproblem, constructed at =*, to the optimization problem (I.1) (plus
simple side constraints (E.5) and move limit (E.6)), thus becomes P[i]:

Hgnﬁ’(:c), z=(z,32,...,L,) €ER" —
subject to g;(x) < 0, i=12,...,p

hi(z) <0,  k=1,2,...,q

Gilz) <0, I=12,...,r

dm{z) <0, m=12...,8

(@) = |z~ &P = 5 < 0

with solution =**.
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In the Dynamic-Q) method the subproblems are solved using the dynamic trajectory method,
or "leap-frog” method of Snyman (see Appendix D) for unconstrained optimization applied

to a penalty function formulation.

E.2 Formal Dynamic-() procedure

The Dynamic-Q procedure may be written as follows:

1.

2.

Choose a starting point ®° and step limit §. Set ¢ = 0.

Evaluate F{zt), g;(x) and hy(2) as well as VF(x'), Vg,(z") and Vhi(z'). If termi-

nation criteria are satisfied then stop.

. Construct a local approximation Pli] to the optimization problem at @' using expres-

sions (E.2), (E.3) and (E.4).

Solve the approximated subproblem P[i] (E.7) using the constrained optimizer LFOPC
with 2% = x* (see Appendix D) to give =*".

Set { =1+ 1 and @' = "~V and return to step 2.




Appendix F

The genetic algorithm

F.1 Introduction

This discussion is taken mostly from Goldberg [65] and Michaelwicz [66], as well as the notes
written by Houck et al. [67] for a Matlab implementation of a genetic algorithm.

Algorithms for function optimization are generally limited to convex regular functions. How-
ever, many functions are multi-modal, discontinuous or nondifferentiable. Stochastic sam-
pling methods have been used to optimize these functions.

Whereas traditional search techniques use characteristics of the problem to determine the
next sampling points (eg. gradients, Hessian, linearity and continuity) stochastic search
techniques make no such assumptions. Instead, the next sampled points are determined
based on stochastic sampling/decision rules rather than a set of deterministic decision rules.

Genetic algorithms have been used to solve difficult problems which do not posses “nice”
properties such as continuity, differentiability satisfaction of the Lipschitz Condition, etc.

A “survival of the fittest” strategy is employed in order to search the solution space [67].
In general, the fittest individuals of a population tend to reproduce and survive to the next
generation, thus improving successive generations. Genetic algorithms have been shown to
solve linear and nonlinear problems by exploring promising areas through mutation, crossover
and selection operations applied to individuals in the population [66].

Issues which require attention before using a genetic algorithm include: chromosome repre-
sentation, the creation of the initial population, termination criteria and formulation of the
selection function.

Figure F.1 depicts the pseudo-code for a simple genetic algorithm. (Only the most important
issues are depicted in this figure.)

F.2 Solution representation

Chromosome representation is necessary to describe the individuals in the population. Each
chromosome is made up of a sequence of genes from a certain alphabet. An alphabet can

110
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Procedure : Genetic Algorithm

initialize population of N individuals
while termination criteria are not satisfied
do
calculate fitnesses
apply selection function
apply crossover operator
apply mutation operator
continue
continue

Figure F.1: Representation of a simple genetic algorithm.

consist of binary digits (0 and 1), {loating point numbers, integers, symbols (i.e. A,B,C,D),
matrices, etc. In Holland’s [68] original paper, the alphabet was limited to binary digits.

F.3 Selection function

There are several schemes frequently used for the selection process: roulette wheel selection
and its extensions, scaling techniques, tournament, elitist models, and ranking methods
165, 66]. Bick [69] provides a summary of the most popular selection methods available, and
only the three most popular of these are considered here.

F.3.1 Proportional selection

Proportional selection is also known as Roulette wheel selection. Individuals are selected
randomly with a selection probability equal to the ratio of the fitness of an individual to the
sum of the entire population’s fitnesses as shown in (F.1}.

Plx;) = __nf(ﬂi'?:) (F.1)
; flz5)

where P(x;) is the probability of selecting individual x;. For obvious reasons, proportional
selection can only be used where the fitnesses are to be maximized and all fitnesses are
strictly positive. It is a relatively simple task, however, to perform transformations in order
to accommodate both negative fitnesses as well as minimization.

A problem with proportional selection is that proportional selecticn becomes little mere
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than random selection when a larger number of individuals have similar fitnesses. This is
frequently the case after a relatively large number of iterations, when most individuals in
the population have converged to similar fitness values.

Another problem is that an individual that 1s much better than all the others in a certain
generation will tend to get selected a large number of times, thus driving the population
to converge to that solution. This is a problem if such a ”good” individual is generated in
the initial stages of the run, and especially if it is not close to the global optimum (or best
possible design point). Both of these problems can be overcome by scaling the fitness to be
between some specific upper and lower bounds [65].

F.3.2 Rank-based selection

Ranking methods only require the evaluation function to map the solution to a partially
ordered set, thus allowing minimization and negativity. Ranking methods assign the proba-
bility of selection based on the rank of solution ¢ when all solutions are sorted. Individuals
that have a higher rank (better individuals) have a greater chance of being selected than
individuals with a lower rank.

F.3.3 Tournament selection

Tournament selection, like ranking methods, only require the evaluation function to map
solutions to a partially ordered set. However, it does not assign probabilities. Tournament
selection works by selecting j individuals randomly from the population to compete in a
tournament. The best of the j individuals is selected for survival. In order to determine the
winner of the tournament, proportional selection can be performed on the competitors. Fur-
thermore, the bias towards better individuals in the population can be adjusted by changing
the number of competitors in the tournament.

F.4 Genetic operators

(Genetic operators provide the basic search mechanism of the GA. The genetic operators are
used to create new solutions based on existing solutions in the population. There are two
general categories of operators, namely crossover and mutation. In most implementations,
crossover occurs before mutation. Crossover takes two individuals and produces a number
of new “children”, while mutation alters one individual to produce a single new solution.
Naturally, the implementation of the genetic operators depends on the type of representation
used.

F.4.1 Crossover

Crossover is analogous to breeding in nature. The basic principle of crossover s that genetic
information from two (or even more) individuals is combined to form a new individual.
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Crossover, in the majority of implementations, is the most important of the genetic operatofs.
Two different varable representations are considered here, namely binary and real-valued
representations.

Binary representation

Binary crossover was originally proposed by Holland [68] and is intended for use with a
binary representation. Binary crossover works by selecting two parents and one (or more)
crossover point{s). Data is then copied from before the crossover point of one parent and
added to the data after the crossover point of the other parent. An example where two 8
bit parents are crossed after bit 3 to produce two offspring is shown in Figure F.2, where z;
and y; represent the bits of the parents.

Two 8 bit parents Two offspring

—-

Y1 Y2 Ys{¥a UYs Ys Y7 U8 W1 Yo U3

A
% ; @

Crossover point

]
T3 &g &gjfs Ty Tg Ty Tg Ty Ty La1lYq Ys Ys Yr Ys

Iy &5 g 7 Ty

Figure F.2: An example of the crossover operator with a binary representation.

In this case two offspring are generated for every crossover. However, it is also possible to
produce only one child per crossover.

Real-value representation

Simple real valued crossover was introduced by Michaelwicz [66] and is very similar to binary
crossover, except that it is applied to real valued representations. The only difference is that
the values of z; and y; in Figure F.2 are real numbers.

Because simple crossover does uot alter the values of the variables, this operator is more
limiting. For this reason, Michaelwicz {66] introduced arithmetic crossover. In this improved
operator, variables from one parent before the crossover point are copied, the variable at the
crossover point is modified using both parents, and then the remaining variables from the
other parent are copied. An example of this operator 1s shown in Figure F.3. The value of
a; 18 given by

a; = re; + (1 —ry (F.2)

where r is a random number between 0 and 1.
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Parents Offspring

-y oo

1 ZLg T3|Ta|Ts Tg Ty T

g 1UYs Ys Y7 UYs
U1 Yo Y3 |Va|Ys Us Y7 Uy i

Figure F.3: An example of arithmetic crossover.

F.4.2 Mutation

Mutation operators select one individual and then change that individual through manipula-
tion of a few bits to ensure that genetic diversity is maintained in the population. Mutation
is a background operator that has a very small effect on the operation of most genetic
algorithms, and is applied with a very low probability.

Binary mutation

Binary mutation was originally suggested by Holland [68] as part of a binary genetic algo-
rithm. Binary mutation works by randomly inverting a bit in the binary representation of
an individual with a probability p,, as shown in ¥.3

r ) 1=z A r <pm
¥i= { r;,  otherwise (F.3)

where r i8 a random number between 0 and 1.

Real-value mutation

Let X and Y be two m-dimensional row vectors denoting individuals {parents) from the
population. In this case, both X and ¥ are real numbers. Furthermore, let a; and &; be the
lower and upper bound, respectively, for each variable i.

Uniform mutation randomly selects one variable, 7 and sets it equal to a uniform random
number U € {a;, b;):

, { U (a,b;), ifli=j

B i, otherwise (F.4)

Boundary mutation randomly selects one variable, j, and sets it equal to either its upper or
lower bound:

a4, lf’L:j, r < 0.5
wi=<{ b, ifi=4, r>05 (F.5)
2, otherwise

where 7 is a random number between 0 and 1.
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Non-uniform mutation randomly selects one variable, 7, and sets it equal to a non-uniform
random number:

x4+ (b; — ;) F(G), if rp <05

T4, otherwise

6= (1= 55))"

Tmar

71,79 are uniform random numbers between 0 and 1,
(7 is the current generation,
(4 e 18 the maximum number of generations and

b is a shape parameter.

F.5 Initialization and termination

Commonly, a randomly generated initial population is used. However, the initial population
can be seeded with potentially good individuals, while the remaining population is generated
randomly.

There are numerous possible stopping criteria for optimization algorithms. For GA’s, a
frequently used stopping criterion is to simply specify a maximum number of generations.
This is adequate if the function evaluations are inexpensive. Another termination strategy
involves population convergence criteria. There are numerous convergence criteria. When
the sum of the deviations among individuals becomes smaller that some specified tolerance,
the algorithm can be terminated. Alternatively, the algorithm can be terminated if no
improvement in the best known solution is found for a specified number of generations.
Furthermore, a target can be set for the best solution, and the algorithm may be terminated
if this target is met. These {and other) criteria may be used separately and /or in conjunction
with each other.

F.6 The genetic algorithm of Carrol

In this section, the genetic algorithm coded by Carrol [14] is discussed. A brief description
of the different functions and operators is presented.
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Initialization
In this implementation, a random initial population is generated with no seeding of poten-
tially good solutions.

Representation
A binary representation 1s used in this implementation. The binary number is mapped to a
real number between the specified upper and lower variable bound.

Selection
'The selection scheme used 1s tournament selection with a shuffling technique for choosing
random pairs for mating.

Mutation and crossover
"The routine includes binary coding for the individuals, jump (uniform} mutation, creep mu-
tation, and the option for single-point or uniform crossover.

Termination

The GA of Carrol simply terminates after a certain specified number of generations. How-
ever, in this study an additional criterion is implemented, which ensures that the algorithm
terminates after a certain number of generations without improvement in the best function
value.

Advanced operators

The implementation of Carrol includes niching (sharing). Niching was originally introduced
by Holland [68]. Basically, niching attempts to prevent the entire population from converging
to a single solution. The "payoff” at a specific design point is shared between the individuals
at that specific point. Therefore, the benefit of being at a good design point diminishes as
the number of individuals at that design point increases [65].

Niching thus drives the algorithm to explore other promising (possibly better) regions in the
design space. The result of niching is that groups of individuals gather around good design
points.

Carrol also included elitism in his algorithm. Elitism simply ensures that the best individual
is replicated into next generation.

Furthermore, in Carrol’s immplementation an option to use a micro-GA {pGA) is also in-
cluded. Basically, a micro-GA utilizes smaller popnlations which converge relatively quickly
to a design point. After it is clear that most {or all) of the population is at the same design
point, rebirth occurs. Normally elitisin is implemented for use in a micro-GA to ensure
that best individual is replicated into the next generation, while the remaining individuals
are selected randomly during rebirth. A micro-GA, therefore, does not necessarily need to
depend on mutation to maintain genetic diversity.
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Recommended settings
The following settings are recommended by Carrol [70] for efficient use of his algorithm:

¢ Probability of creep mutation = {(no. chromosomes/no. variables)|/[population size].
o Probability of jump mutation = [1]/[population size].

e Probability of crossover:
For single-point crossover a value of 0.6 or 0.7 1s recommended.
For uniform crossover a value of 0.5 is suggested.




Appendix G

Tool force calculations

This appendix describes how the tool force is determined for a specific machining operation.
For continuity, the tool forces that were proposed by Smit [51] are used in this study. For
this reason the following calculations are taken almost directly from the Masters thesis of
Smit [51].

The high frequency, high amplitude forces that may occur during machining operations are
not considered here.

In his study, Smit [51] considered only form-milling machining operations as shown in Figure
(3.1 with a ball-nose cutter as shown in Figure G.2.

Figure G.2: Ball-nose cutter.
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Figure (5.3 shows a model for the tool forces on the workpiece. The tool is moving in the
x-direction relative to the workpiece. The machining forces on the workpiece due to one tool
tooth can be resolved into an active force, F,, in the work plane and a passive force, F,,
perpendicular to the work plane. the active force, £, can be resolved into a force parailel
to the movement of the tool tooth, F,., and a force perpendicular to F., which is F.y. F,
and F,y are forces working in on the workpiece. F, and F.N are independent of the angle
through which the tool has rotated, and is given by Kienzle’s machining force equation [71]:

Fy = bl;h™™™, i=ccN,p (G.1)

where:

b is the undeformed chip width [mmj],

k; is the specific cutting force [N.mm™?] for an undeformed chip thickness in the range
[0.1mm, 1.0mm],

h is the undeformed chip thickness [mm| and

m; 18 the incremental value for the workpiece-cutting material pair.

The values of k; and m; are empirical and depend on the workpiece material and tool type.
These values are available from tables in [71]. The undeformed chip width and chip thickness
can be calculated from the feed speed, tool geometry and the tool rotational speed.

The machining operation considered is to form-mill an aluminum workpiece with a two teeth

Figure (G.3: Model of tool forces.




APPENDIX G. TOOL FORCE CALCULATIONS 120

ball-nose cutter with a shaft diameter, D), of %— inch. The tool speed is 2000 rpm, the feed

rate is 0.25 mm/rev and the cut depth is 6.35 {D/2). The tool forces are thus calculated as
fo = 1600 N, f, =400 N and f, = 1800 N, with the directions depicted in Figure G.4.

Tool S Direction of feed

: =

Workpiece

Figure (G.4: The machining forces acting in on the workpiece.




Appendix H
Sensitivity analysis

This appendix contains a sensitivity analysis of the objective and constraint functions to the
design variables. These sensitivity analyses are carried out after the optimization process.
The best design of all the algorithms is used to carry out this study.

These sensitivities are used mainly to interpret the optimization results. It can be seen from
these figures that the original design is not af all sensitive to the diamefer of the stiffening
guide rails (z;). The stiffening guides are intended to supply sufficient resistance to the out
of plane deformation. The results of the sensitivity analyses presented here show that these
components fail in this role.

Conversely, it may be noted that in the case of the improved design, the displacement
function, calculated via FEM, is sensitive to z; and z3, representing the plates connecting
the adjacent stiffening guides. This demonstrates that the components required to prevent
unwanted deformation are successful in increasing the stiffness of the assembly.
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