
CHAPTER 2 

MODEL IDENTIFICATION STRATEGIES 

2.1 Time domain and frequency domain identification 

Various methods can be used to identify the natural frequencies present in the Ex­
perimental Fan Blade Damage Simulator (EFBDS). The simplest form would be to 
read the natural frequencies from a power spectral density, or similar frequency do­
main graph. Since the damage identification method need to be autonomous it was 
decided early on not to use a technique that depended on a certain amount of hu­
man expertise and experience which will certainly be required if a value has to be 
read of a graph prior to damage identification. 

System identification is the field of modelling dynamic systems from experimental 
data. A schematic representation of a dynamic system can be seen if Figure 2.1. The 
system is driven by input variables u(t) and disturbances v(t). The user can control 
u(t) but not v(t) . For the EFBDS the inputs are missing. The output signal originates 
from sensors such as accelerometers and dynamic strain gauges, designed to 
measure dynamic properties of the system. 

Disturbance v(t) 

~r 

Input Output .. .. ... System ... 
u(t) y(t) 

Figure 2.1 Typical example of a dynamic system 

Mathematical models of systems are very useful in predicting behaviour of systems 
and although this is not necessary for this project, it will certainly be of paramount 
importance when automated detection using neural networks or similar methods are 
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implemented. Basically, there are two ways to model the EFBDS, mathematical 

modelling and system identification 

• Mathematical modelling: This is an analytical approach. Basic laws from phys­

ics (such as aerodynamics, Newton's laws etc.) are used to describe the dy­

namic behaviour of the damage simulator . 

• System Identification: This is an experimental approach. Some experiments are 

performed on the system; a model is then fitted to the recorded data by as­

signing suitable numerical values to its parameters. 

Clearly it would have been very difficult to obtain an accurate mathematical model of 
this particular system due to the many stochastic external forces and complicated 

boundary conditions. A FEM was constructed that was, in essence, a mathematical 
model. More detail can be seen in the second part of this chapter. 

Various modal identification techniques that require only output data were found in 
the literature study (Section 1.4). The problem with most of these techniques is that 

more than one output was required. While this was not an insurmountable problem 
(the data acquisition equipment used can sample up to four channels at the same 
time), the actual FD fan at the Majuba power generation fan has 20 blades. Even 

using one sensor per blade would already result in a huge amount of raw data, not to 
mention the cost involved (20 blades per fan, twelve fans at plant). 

ARMA based curve fitting has been used by various researchers for the identification 

of modal parameters from output only data (see section 1.4). This algorithm was also 
readily available as a MATLAB toolbox. A brief description of this model is given be­

low. 

ARMAXmodel 

The ARMAX model is short for an ARMA (AutoRegressive Moving Average) with an 

eXogenous signal (that is a control variable u(t)). A typical description of this model 
may be found in Torsten et al. (1989) and Pandit, (1991) . 

Let yet) and u(t) be scalar signals and consider the model structure: 

A(q-1 )y(t) = B(q-1 )u(t) + C(q-1 )e(t) (2.1) 

ChaDter 2 Model Identification Strateaies 36 

 
 
 



where 

A(q-1) = 1 + a1q-1 + ... + anaq-na 

B(q-1) = 1 + b1q-1 + ... + bnbq-nb (2.2) 
C(q-1) = 1 + C1q-1 + ... + cncq-nc 

The parameter vector is taken as 

(2.3) 

The model (2.1) can be written explicitly as the difference equation 

y(t) = a1y(t - 1) + ... + anay(t - na) = b1u(t - 1) + ... + bnbu(t - nb) 

+ e(t) + c1e(t - 1) + .. . + cnce(t - nc) 
(2.4) 

This model can easily be rewritten in state space format since from (2.1) 

(2.5) 

For this structure (2.5), 

(2.6) 

There are several important special cases for (2.1) 

• An autoregressive (AR) model is obtained when nb=nc=O. In this case a pure time 
series is modelled, no input signal is assumed to be present. In that case (2.1) re­
duce to 

A(q-1 )y(t) = e(t) 

e = (a1 ... ana) T 
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• A moving average (MA) model is obtained when na=nb=O. Then 

y(t) = C(q-1 )e(t) 

e = (c1 ... C nc ) T 

(2.8) 

• An autoregressive moving average (ARMA) model is obtained when nb=O. Then 

A(q-1 )y(t) = C(q-1 )e(t) 

e = (b1 ... bnb)T 
(2.9) 

• Another special case is when nc=O. The model structure then becomes 

A(q-1 )y(t) = B(q-1 )u(t) + e(t) 

e = (a1 ••• ana b1 .•• bnb)T 
(2.10) 

This is sometimes called an ARX (controlled autoregressive) model. 

The AR and ARMAX (reduced to an ARMA model because of the output only data) 

subroutines were the only models that could be used in the system identification 

toolbox of MATLAB. The AR model was substantially less expensive computationally 
but the ARMAX model outperformed the later in terms of accuracy and was chosen 

instead. Appendix C reviews initial studies done to establish the constraints of the 

ARMAX model. 

2.2 Finite Element Modelling 

As described in Chapter 1, the forward frequency problem was often solved with the 
help of mathematical models of the physical system. Since it is known that only lim­

ited success was achieved when frequency shifts has been used to detect damage, 

it was decided to create a mathematical model to ascertain the viability of using this 
technique. 

Finite element modelling has become a widely used tool in the field of vibration 
monitoring and damage detection. Various papers make use of FEM only to test 

damage identification techniques (see Chapter 1). It soon became apparent that the 
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number of elements used in the mesh, aspect ratio of the elements and element type 
used, made a substantial difference to the mode shapes corresponding natural fre­
quency. A study to determine the mesh refinement and element type that should be 

used was therefore undertaken. 

2.2.1 Mesh refinement 

In order to determine the required mesh refinement to produce accurate results, a 
simple beam was constructed . In this way the exact natural frequencies could be 
computed numerically. A summary of the analytical and finite element model results 
for different meshes and elements can be seen in Table 2.1. The natural frequencies 
could be analytically calculated as follows: 

For free vibration of a uniform beam, the natural frequencies are given by 

(2.11) 

The A, value change with different boundary conditions. These values were found in 
Barber (1992). 

The methodology to find an analytical formulation such as equation 2.11 can be 
found in a number of literature sources, Rao (1995) provides a good example. 

Interestingly enough, it was not possible to obtain accurate results using first order, 8 
node brick elements. Even when a refined, dense mesh was used, the natural fre­
quencies calculated still differed by as much as 15% from the analytically calculated 
frequencies. The situation deteriorated the higher the natural frequency was. This 
phenomenon was caused by the inherent stiffness of a first order element. The com­
plex shapes of the actual blades made the use of solid elements desirable. These 
elements also make the construction of a model simpler. 

Results for different mesh refinements and element types can be seen in Tables 2.1 
and 2.2. Only in-plane modes were analysed (horizontal and vertical in Figure 2.2). 

Basically the 8-node element uses a constant strain integration scheme through the 
element which causes this element to perform poorly in bending. Since most mode 
shapes show extensive bending in the vertical or horizontal plane, this made a huge 
difference when calculating the natural frequencies. 
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A second order 20-node brick element with mid-side nodes was tested next. This 
element assumes a linear distribution of strain throughout the element. This allows 

for an accurate representation of the strain fields in elastic analysis. As a result this 
element gives almost exact predictions of natural frequencies. Furthermore 27 -point 
Gaussian integration is used for the stiffness calculation, compared to the 8-point 
Gaussian integration used with the 8-node element. 

The reason why the horizontal natural frequencies (see Figure 2.2) were predicted 
much more accurately with 8-node brick element than the vertical natural frequen­
cies, can be explained as follows: Only about a fifth the amount of beams used 
through the horizontal cut of the beam were used through the vertical cut. In essence 
the mesh was more refined in the horizontal direction and it is known that the accu­
racy of the 8-node beam element increased when the mesh was refined (see Table 
2.2). 

Table 2.1: Comparison of natural frequencies found for 1 m aluminium hinged beam. 

Vertical natural frequencies 
Description Mode 1 Mode 2 Mode 3 Mode 4 

Analytical values 8.23 52.4 144.3 283.1 
8-node, course mesh (760 elements) 13.7 96.9 279.7 551.1 
8-node, very fine mesh (4400 elements) 11.3 74.6 211 .2 414.8 
8-node, good aspect ratio (2000 elements) 8.98 56.2 157.4 308.1 
20-node, course mesh (760 elements) 8.23 51.8 144.3 284.6 

Table 2.2: Comparison of natural frequencies found for 1 m aluminium hinged beam. 

Horizontal natural frequencies 
Description Mode 1 Mode 2 Mode 3 Mode 4 

Analytical values 74.1 472 1299 2548 
8-node, course mesh (760 elements) 70.4 425 1127 2277 
8-node, very fine mesh (4400 elements) 70.3 425 1128 2300 
8-node, good aspect ratio (2000 elements) 74.0 447 1189 2370 
20-node, course mesh (760 elements) 74.1 447 1190 2400 

Clearly, it was also of paramount importance that a good aspect ratio was used 
throughout. Even though a very fine mesh of 4400 elements was used at one stage, 
a mesh with only half that number of elements gave much closer results to the ana­
lytical solution because the aspect ratio was kept within the guidelines of good 
meshing. The quadratic element was not effected as much by a bad aspect ratio be­
cause of the linear distribution of strain used for this element. 
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A graphical presentation of Table 2.1 and 2.2 can be seen in Figures 2.3 and 2.4 re­
spectively. Clearly a FEM can give grossly inaccurate results if meshing and element 
choice are not done with care. Predicted natural frequencies were in error by up to 
90% when a coarse mesh with a bad aspect ratio was used. This was largely due to 
the linear strain distribution used for an eight-node brick element. Very accurate pre­
dictions regarding natural frequencies could be made even when a coarse mesh with 
a bad aspect ratio was used and the quadratic element was used. 

Chaoter 2 

Figure 2.2: Schematic representation of test beam used for FEM testing 
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Figure 2.3: Graphical presentation of Table 2.1 
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The 20-node brick element was substantially more expensive computationally. This 
was because of the triquadratic interpolation used by the second order element to­
gether with the 27 point Gaussian integration for the stiffness of the element. The 8-
node brick element use trilinear interpolation functions and 8-point Gaussian integra­
tion . In order to get the same accuracy for the mode shape frequencies , the mesh 
had to be so much refined that computational time actually became unacceptably 
high and the analysis was stopped before completion . 
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Figure 2.4: Graphical representation of Table 2.2 
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2.2.2 Modelling of experimental fan blade damage simulator 

After guidelines for the accurate modelling of blade like structures had been estab­
lished , a model of one blade of the experimental fan blade damage simulator was 
constructed . An important difference between the stationary beams analysed in the 
previous section and a fan blade, is the centrifugal acceleration imposed on the 
blade. Fortunately, modern Finite Element (FE) software allows these boundary con­
ditions to be added with relative ease. For accurate results it is however, necessary 
to use load steps since an iterative approach to finding the updated stiffness matrix 
for a centrifugal load is used by most software. Five consecutive analyses were 
therefore performed starting at one fifth the rotational velocity. 
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As a first attempt, a very simple clamped beam with the same dimension as the ac­
tual blade was modelled. Natural frequencies found by means of the FEM are com­
pared to the frequencies found experimentally in Table 2.3. The fifth mode shape 
can be seen in Figure 2.5. 

1= ~ 5 T... ~ ooo .. oo ~ M" 
Free; 5 702 .... 002 

1 217,..000 

I a4 ... 001 

, IS .... OOI 

I 521 .... 002 

_1 IS h ._(l1I1 

-? t6c..-OOI 

I 117,,+000 

-I 587.,.000 

Figure 2.5: Simple FEM used as first iteration. 

Table 2.3: First FEM results compared to experimental results. 

Mode number FEM value Experimental value 
1 36.63 33.41 
2 205.4 203.3 
3 319.6 285.5 
4 441 .9 447.3 
5 572.9 563.5 

While reasonable accuracy was obtained, even better overall results were found 
when the FEM was slightly modified to more accurately resemble the experimental 
fan blade damage simulator. An example of this model can be seen if Figure 2.6. 
Results for the natural frequencies found can be seen in Table 2.4 . 

The purple areas at the base of the blade in Figure 2.6, represent the boundary con­
straints that was imposed. These nodes were constrained in the x, y and z direc­
tions . The experimental and FEM results can be seen in Table 2.4 
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Table 2.4: More accurate FEM results compared to experimental results. 

Mode number FEM value Experimental value 
1 34 .53 33.41 
2 202.4 203.3 
3 285.2 285.5 
4 435.1 447.3 
5 562.8 563.5 

Fig 2.6: More accurate FEM for fan blade damage simulator. 

While some difference still existed between the finite element model and the experi­
mentally obtained results , the prediction was fairly good overall. The results obtained 
in all Finite Element Analyses (FEA) were at 750 r.p.m. as were the results obtained 
during experimental measurements. The reason for the inaccuracy of the fourth (first 
torsional) mode shape were the inconsistency of welds found in the EFBDS. Figure 
2.7 shows a close up of the root of the blades used in the EFBDS. 

The next step was to introduce artificial damage to the finite element model that 
would be representative of the damage induced on the EFBDS. 

2.2.3 Damage modelling using FEM 

During recent years finite element modelling has become a very attractive method 
for simulating real life systems. This is mostly due to the fact that very fast, relatively 
inexpensive desktop computers can now be used to run the packages. MSC Marc 
can for example model the very complicated behaviour of fatigue cracking . While 
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these modelling tools can never replace experimental measurements and do not 
give exact answers , it can save a substantial amount of time and money. 

In th is specific case , the object was not to compute the exact stress concentration 
and fatigue life of the blade. If this could be done with any degree of accuracy, a 
monitoring technique would not be necessary, provided no external influences that 
could damage the blade (such as debris) are present. Due to the nature of the dam­
age induced by a fine hack saw (see Figure 2.7) stress concentration factors and 
other fatigue information for the material are not required . This method of inducing 
damage does provide near crack like behaviour for the dynamics of the system 
(Cawley and Ray 1988). Basically there are three methods with which the damage 
done to the EFBDS can be modelled: 

• Nodes can be untied from each other on the cut surface. 

• The modulus of elasticity can be decreased in the neighbouring elements 
• Elements can be removed . This requires a very fine mesh however and is not 

a practical option . 

Figure 2.7: 15% Damage inflicted by using a fine hack saw. 

The first two options provided simple and effective solutions to the problem. Since 
the actual damage induced on the EFBDS consisted of using a fine hacksaw to saw 
through part of the blade at the root , disconnecting the nodes provided an accurate 
representation of the damage. The exaggerated movement of the FEM model can be 
seen in Figure 2.8. Disconnecting the nodes allow the faces to move through each 
other. While it did not model an actual crack well , it was an accurate depiction of 

EFBDS. 

When the modulus of elasticity was adjusted for damage it was found that although 
the model could be optimised to give very close to the same results as were found 
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experimentally, the general trend with increasing damage was substantially worse. 
For the case of modelling an opening and closing crack, this method could work very 
well since a non-linear modulus of elasticity with a normal modulus in the closing di­
rection and a reduced modulus in the opening direction could be used. 
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Figure 2.8: Exaggerated movement of FEM model with a 30% crack. 

When the model was optimised as far as possible to give results very close to the 
undamaged experimental frequencies found , nodes were untied and modal extrac­
tion performed . The results for various damage levels are shown in Figure 2.9. 
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Figure 2. 9: FEM results for increasing damage levels at different natural frequencies. 

As can be expected , the shift showed an exponential trend as more damage was in­
duced . Although the first frequency seemed to be a relatively good choice, it had to 
be remembered that a frequency shift of 2.5% means that the frequency change 
from around 34.5 Hz, to 33.6 Hz. Due to electrical noise, drift and other external in­
fluences some measurement error can be expected. Furthermore the resolution with 
which frequencies were measured was generally about 0.33 Hz due to the discrete 
nature of peak picking algorithms. This represents a 1 % error at 34 Hz but only 0.1 % 
at 280 Hz. The obvious frequency to use would be the one found at 280 Hz. 

The second natural frequency showed very little promise as a damage indicator and 
was not used at all. This turned out to be the case for the EFBDS as well. The ex­
perimental results can be seen in Chapter 4. 

2.2.4 Results for curved blade 

For various reasons described in Chapter 1, it was decided to use an EFBDS to de­
velop a damage detection method. Since this project may be expanded to include 
the FD and ID fans found at the Majuba power plant, it was decided that a FEM 
would be used to show that the techniques used for a simple blade on the EFBDS 
also apply to more complex curved blades which is found more often in practice. 

A single blade with very close to the same dimensions as that found on an actual 
blade on a FD fan was modelled using MSC MARC. The boundary constraints used 
for this model can be seen in Figure 2.10. 

Chaoter 2 Model Identification Strateaies 47 

 
 
 



·" 

• 
~, 

Figure 2.10: Boundary conditions (purple) for the FEM of the FD-fan blade. 

The crack can propagate from the trailing edge of the blade or from the leading 
edge. Both these scenarios were modelled using suitable FEM models . While the 
computer time for the simple T-blade given in the previous section was typically 
seven minutes, the curved blade took around 70 minutes. The results for the trail ing 
edge crack can be seen in Table 2.5 and the leading edge in Table 2.6. The reason 
for choosing 16%, 23% and 33% for the tra iling edge and 12%, 21 % and 31 % for the 
leading edge is the discrete nature of the FEM. Since nodes were untied to simulate 
damage and the airfoil section is not symmetrical, different areas are effectively 
damaged . 

Table 2.5: Frequency shifts due to trailing edge cracks. 

Mode number 0% damage 16% damage 23% damage 33% damage 

1 23.67 23.35 23 .17 22 .92 
2 100.7 96 .94 91.49 81.49 

3 111 .1 106.8 104.1 101.3 
4 141.3 140.5 140.1 139.9 

5 262.4 259.6 258.7 256.8 

6 409.8 407.6 405.8 402.3 

7 492.9 488.1 485.8 482.0 

8 666.0 652.8 639.8 619.6 

9 697.1 691 .7 686.9 678.6 

10 783.2 777.4 774 .3 767.2 
11 982.2 975.9 969.9 957.6 
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Table 2.6: Frequency shifts due to leading edge cracks. 

Mode number 0% damage 12% damage 21% damage 31% damage 

1 23 .67 23.51 23.28 22 .86 
2 100.7 100.2 99.0 90.64 
3 111 .1 108.1 103.0 98.83 
4 141 .3 140.4 139.2 136.7 
5 262.4 260.5 258.0 254.7 
6 409.8 408.2 405.4 399.9 
7 492.9 490.4 487.1 481.6 

8 666.0 658.1 646.4 625.3 
9 697.1 693.8 688.2 677.9 
10 783.2 779.7 775.8 770.0 
11 982.2 977.8 970.9 957.0 

A comparison of the crack locations can be seen in Figure 2.11. 
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Figure 2.11: The leading edge can be seen on the left while the trailing edge van be seen on the right. 

Again, some of the modes were more susceptible to damage than others. The obvi­
ous choices here would be the second, third or eighth mode shapes. The accuracy 
with which the various mode shapes can be measured and the potentially global 
nature of some of the mode shapes will make it necessary to create a more detailed 
finite element in conjunction with preliminary measurements on the actual blades to 
determine the accuracy of the FEM model. 

Some of the mode shapes found during the FEA can be seen in Figures 2.12 and 
2.13. Because of the airfoil cross-section of the blade, it was not easy to intuitively 
decide what shapes would be found. The placement of sensors for optimal sensitivity 
with regard to two or more mode shapes could be done by studying these findings. 
Chapter 5 deals with the phenomenon of global and local mode shapes. 
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Figure 2. 12: The fourth (left) and sixth (right) mode shapes for a curved blade. 
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Figure 2. 13: The eighth (left) and tenth (right) mode shape for a curved blade. 

The contour bands in Figure 2.12 and 2.13 represent scalar displacement of the 
blade. These displacement plots could be used to determine the optimal location for 
the placement of accelerometers . This was not necessary for the simple blade used 
by the EFBDS since both the mode shapes used (first sideways, Figure 2.8 and first 
torsional) for damage level detection caused maximum strain and movement at the 
same location. If a high number of frequencies are to be used however, this situation 
may change and an optimal location can then be found by mathematical optimisa­

tion . 
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2.3 Conclusion 

A model identification strategy that would provide modal parameters (natural fre­
quencies) was selected in this chapter. Furthermore a FEM of the fan blade damage 
simulator used to develop a damage detection technique for fan blades was devel­
oped . FEA showed that the frequency shifts due to simulated damage should be sig­
nificant enough to detect using natural frequencies only as a damage indicator. 

It was also found that FEM packages such as MSC MARC gave very good correla­
tion with both analytical results and experimental results. A model that closely re­
sembles the blades found on the FD fan at the Majuba power generation plant was 
also developed . This model showed similar trends regarding freq uency shifts with 
increasing levels of damage. The following were the most interesting : 

• Although the asymmetric nature of the airfoil section does not lend itself to a 
sideways mode shape, the nearest comparable mode shape was also very 
sensitive to damage. 

• Sensitivity differed depending on whether the crack was introduced on the 
lead ing or tra iling edge, this could complicate experimental classification of 

damage. 

• Because the actual FD blades are physically larger than the EFBDS blades, 
the natural frequencies are a lot lower. This implies that a lower sampling fre­
quency can be used . A lower sampling frequency means less data needs to 
be processed and lower order ARMAX models can be used. 

Provided good experimental results could be found , there was every reason to be­
lieve that a damage detection technique for fan blades could be developed both for 

the EFBDS and actual fan blades in industry. 
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