Chapter 5

APPLICATION TO DATA FROM
THE INSURANCE INDUSTRY

5.1 Description of the Data Set

5.1.1 Introduction

An extensive data set from an insurance company, containing information on policies written
over the last few years, is available and permission has been given by this company to use

this data set to iliustrate the theoretical principles developed in the previous two chapters.

5.1.2 The raw data set of policies

A subgroup of policies is formed by selecting only mortgage protection policies written during
four selected months, namely March 1998, June 1998, November 1998 and March 1999.
This subgroup or smaller data set consists of the lifetimes of 10077 policies, together with
some concomitant information on other variables such as age of the policyholder, credit

turnover of his bankaccount and a score value, determined by the company.

Consider the following experimental design as illustrated in Figure 5.1. The 10077 policies
enter the study at four different times (staggered entry). The event to be occurred is
a lapse. The lifetime of a policy is measured from inception date up to the lapsing date.
If the lapsing date is prior to the pre-determined cut-off date of 15 April 2001, then the

140
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lifetime is observed (an uncensored observation). If a policy is still in force (alive) when
the termination point is reached, the lifetime of this policy is right-censored.

From the 2586 policies with entry date March 1998 (inception dates between 1 March
1998 and 31 March 1998), a total of 1666 policies have lifetimes 37 months and more and
thus were right-censored. From the 2809 policies with entry date June 1998 (inception
dates between 1 June 1998 and 30 June 1998), a total of 1924 policies have lifetimes 34
months and more and were censored. From the 2286 policies with entry date November
1998 (inception dates between 1 November 1998 and 30 November 1998), a total of 1674
policies have lifetimes 28 months and more and were censored. From the 2396 policies with
entry date March 1999 (inception dates between 1 March 1999 and 31 March 1999), a total
of 1848 policies have lifetimes 24 months and more and were censored.
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X Status = a lapse
¢ Observed lifetime
| ; ; ; of 20 months
Mar98 Nov98
 Jun98 V Mar99
Entry dates Cut off date: |5 April 2001
T Status = in force

Censored lifetime
of 28 months

Figure 5.1: Experimental design for illustrative data set
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5.1.3 The grouped data set of policies

The lifetimes of the policies that enter the study at March 1998 (called the first sample of
size 2586 ) can be grouped into seven adjacent, non-overlapping fixed intervals

[0;12), [12;17), [17; 24), [24; 28), [28; 34), [34;37) and  [37; c0).

The lifetimes of the policies that enter the study at June 1998 (called the second sample of
size 2809 ) can be grouped into six adjacent, non-overlapping fixed intervals

[0;12), [12;17), [17; 24), [24; 28), [28;34) and  [34;00).

The lifetimes of the policies that enter the study at November 1998 (called the third sample
of size 2286 ) can be grouped into five adjacent, non-overlapping fixed intervals

[0;12),[12;17),[17;24),[24;28) and [28;00).

The lifetimes of the policies that enter the study at March 1999 (called the fourth sample
of size 2396 ) can be grouped into four adjacent, non-overlapping fixed intervals

0;12),[12;17),[17;24) and [24;00).

The four samples are assumed to be independent samples from multinomial populations.
Four frequency distributions are formed when the observed and censored lifetimes of all the
policies are grouped into the different class intervals and are shown in Table 5.1.

Table 5.1: Frequency distributions of the four samples

Interval Class Intervals Frequency Vector Vector of Upper Bounds
number | March 98 | June 98 | Nov 98 | March 99 | f; foa | fs fa |z | 22| 23 T4
first [0,12) [0,12) [0,12) [0,12) 66 | 118 | 154 | 175 |12 | 12 | 12 12
second [12,17) (12,17) | [12,17) | [12,17) 158 | 166 99 166 | 17 | 17 | 17 17
third [17,24) (17,24) | [17,24) | [17,24) 254 | 229 | 242 | 207 | 24 | 24 | 24 24
fourth (24, 28) [24,28) | [24,28) | [24,00) 157 | 200 | 117 | 1848 | 28 | 28 | 28
fifth (28, 34) [28,34) | [28,00) 250 | 172 | 1674 34 | 34
sixth (34,37) [34, c0) 35 | 1924 37
seventh | [37,00) 1666

| Total | | | | | 2586 | 2809 | 2286 | 2396 |

Figure 5.2 shows the histograms of the four relative frequency distributions.
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Figure 5.2: Histograms of the four relative frequency distributions
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5.2 Fitting of a Lifetime Distribution

5.2.1 A fixed censoring time

Consider the June 1998 group of policies as an example of a data set with a pre-assigned
fixed censoring time at 15 April 2001. All these 2809 policies start at the same time. The
censored lifetimes are grouped into the open interval [34; 00), while the observed lifetimes
are grouped into intervals [0;12),[12;17),[17;24), [24;28),and  [28;34). Note that

x = (12,17,24,28,34) is a 5 x 1 vector of upper class boundaries,

f = (118,166,229, 200,172,1924)" is a 6 x 1 vector of frequencies and

p = (0.0420078,0.0590958, 0.0815237,0.0711997,0.0612318, 0.6849413)" is a 6 x 1 vector
of relative frequencies. This vector is used as starting value for the iterative process.

One survival model is fitted to this grouped data set under constraints imposed by the
Weibull /log-logistic/lognormal distribution. The double iterative procedure, as described
in section 3.3.2 of chapter three, is illustrated by the following computer output when a
Weibull model is fitted to the grouped data.

IJ P M| IJ P M| IJ P MIIJ P MIIJ P M
I | | |
1 1 0.0550538 0.0420078 | 2 1 0.0504223 0.0562540 | 3 1 0.0505730 0.0507667 | 4 1 0.0505685 0.0509455 | 5 1 0.0505686 0.0509401
0.0489497 0.0590958 | 0.0465755 0.0466379 | 0.0466658 0.0456550 | 0.0466631 0.0457035 | 0.0466632 0.0457021
0.0801283 0.0815237 | 0.0815332 0.0803011 | 0.0815189 0.0815789 | 0.0815195 0.0815707 | 0.0815195 0.0815712
0.0504270 0.0711997 | 0.0524268 0.0513481 | 0.0523893 0.0534019 | 0.0523906 0.0533565 | 0.0523905 0.0533581
0.0811157 0.0612318 | 0.0861566 0.0812418 | 0.0860254 0.0857363 | 0.0860296 0.0856221 | 0.0860295 0.0856258
0.6843255 0.6849413 | 0.6828866 0.6842171 | 0.6828276 0.6828612 | 0.6828286 0.6828017 | 0.6828286 0.6828027
| | | |
1 2 0.0562478 0.0420078 | 2 2 0.0507666 0.0562540 | 3 2 0.0509453 0.0507667 | 4 2 0.0509400 0.0509455 | 6 2 0.0509401 0.0509401
0.0466462 0.0590958 | 0.0456548 0.0466379 | 0.0457034 0.0456550 | 0.0457021 0.0457035 | 0.0457021 0.0457021
0.0803032 0.0815237 | 0.0815797 0.0803011 | 0.0815715 0.0815789 | 0.0815720 0.0815707 | 0.0815719 0.0815712
0.0513481 0.0711997 | 0.0534018 0.0513481 | 0.0533565 0.0534019 | 0.0533580 0.0533565 | 0.0533580 0.0533581
0.0812371 0.0612318 | 0.0857358 0.0812418 | 0.0856215 0.0857363 | 0.0856252 0.0856221 | 0.0856251 0.0856258
0.6842177 0.6849413 | 0.6828613 0.6842171 | 0.6828017 0.6828612 | 0.6828028 0.6828017 | 0.6828027 0.6828027
| I I |
1 3 0.0562540 0.0420078 | 2 3 0.0507667 0.0562540 | 3 3 0.0509455 0.0507667 | 4 3 0.0509401 0.0509455 | 5 3 0.0509403 0.0509401
0.0466379 0.0590958 | 0.0456550 0.0466379 | 0.0457035 0.0456550 | 0.0457021 0.0457035 | 0.0457022 0.0457021
0.0803011 0.0815237 | 0.0815789 0.0803011 | 0.0815707 0.0815789 | 0.0815712 0.0815707 | 0.0815712 0.0815712
0.0513481 0.0711997 | 0.0534019 0.0513481 | 0.0533565 0.0534019 | 0.0533581 0.0533565 | 0.0533580 0.0533581
0.0812418 0.0612318 | 0.0857363 0.0812418 | 0.0856221 0.0857363 | 0.0856258 0.0856221 | 0.0856257 0.0856258
0.6842171 0.6849413 | 0.6828612 0.6842171 | 0.6828017 0.6828612 | 0.6828027 0.6828017 | 0.6828027 0.6828027
| |
1 4 0.0562540 0.0420078 | |
0.0466379 0.0590958 | | MLE for M_c
0.0803011 0.0815237 | |
0.0513481 0.0711997 | | 0.0509403
0.0812418 0.0612318 | | 0.0457022
0.6842171 0.6849413 | | 0.0815712
| 0.053358
| 0.0856257
|

0.6828027



146

bpplication to a data set from the insurance industry'

The estimated parameters of the fitted survival models and the Wald test with the discrep-

ancy values are reported in Table 5.2.

Table 5.2: Maximum likelihood estimation subject to constraints: a fixed censoring

time
Survival model
Weibull Log-logistic Lognormal
Maximum likelihood | In A=-7.693382 In A=-8.243037 7 =3.8910773
estimates a=1.9084456 a@=1.9084456 & =0.8319341
Wald test 51.5 39.8 25.0
Discrepancy 0.0183 0.0142 0.0089

Figure 5.3 shows the histogram of the relative frequency distribution and the fitted survival

distributions. It is clear that the lognormal and log-logistic models fit very well.
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5.2.2 Staggered entry

Introduction

Consider Figure 5.2, the four histograms of the relative frequency distributions. Maximum

likelihood estimates are to be found in the following ways.

1. One survival model is fitted to the four histograms under constraints imposed by the

Weibull /log-logistic/lognormal distribution.

2. Four survival models (Weibull/log-logistic/lognormal models), one for each entry time,
are fitted under constraints imposed by the Weibull/log-logistic/lognormal distribution

and under further constraints that

e )\;'s are equal and o;'s are equal when fitting a Weibull or log-logistic

e 1;'s are equal and o;'s are equal when fitting a lognormal.

3. A joint histogram is fitted to the four histograms of the four relative frequency distri-

butions under constraints imposed by the experimental design.

The constraints imposed by the experimental design

Consider Figure 5.4, illustrating the constraints imposed by the experimental design.

® T, = To;= T3;= T4; j = 1,2, ,3
® Ty7+ e+ M5+ Tia = Toe+ To5+ Moy
= M35+ T34
= T4
® M5 = T25
T4 = T24
where 7;; = probability of an observation from sample ¢ will fall in the j** interval

= interval probability of j** interval from sample i i=1,2,3,4 j=1,2,..
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Figure 5.4: Constraints imposed by the experimental design
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Fitting of one survival model to the four histograms

One survival model is fitted to the four histograms under constraints imposed by the
Weibull/log-logistic/lognormal distribution. The estimated parameters and the Wald test

with the discrepancy values are reported in Table 5.3.

Table 5.3: Fitting of one survival model to the four histograms

Survival model
Weibull Log-logistic Lognormal
Maximum likelihood | In A=-7.39252 InA=-7.959399 [i =3.8727296
estimates &=1.8434286 ©:=2.0647366 & =0.8636028
Wald test 302.5 253.6 254.9
Discrepancy 0.0300 0.0252 0.0253

The invariance property of the maximum likelihood estimator provides that the MLE of In A

can be written as In ).

Fitting of four survival models

Four survival models are fitted, one for each entry time, under constraints imposed by the
Weibull/log-logistic/lognormal distribution and under further constraints that the parame-

ters are equal.

The estimated parameters and the Wald test with the discrepancy values are reported in

Table 5.4.
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Table 5.4: Fitting of one survival model to the four histograms

Survival model

Maximum likelihood Weibull Log-logistic Lognormal
estimates

March 1998 InA=-8.230773 InA=-8.960949 [i =3.8234358

6=2.0570424  &@=2.3273887 & =0.7219206

June 1998 In \=-7.693383 In\=-8.243037 [i =3.8910773

6=1.9084457  a=2.1214022 & =0.8319341

Nov 1998 InA=-7.172834 InA=-7.582113 [i =3.9182342

6=1.8026532 a=1.9727851 & =0.9624843

March 1999 InA=-6.781666 InA=-7.113033 [ =3.9521501

a=1.7103598  a=1.8569722 & =1.0417936

Over all four In A\=-7.39252 InA=-7.959399 [ =3.8727296

entry times 6=1.8434286  a=2.0647366 & =0.8636028

Wald test 302.5 253.6 254.9

Discrepancy 0.0300 0.0252 0.0253

A joint histogram to the four histograms is needed to make a graphical representation of

the fitted models.

Fitting of a joint histogram to the four histograms

A joint histogram is fitted to the four histograms under constraints imposed by the experi-

mental design. Table 5.5 gives the fitted joint relative frequencies to the four sets of relative

frequencies of the samples. A graphical representation of the joint histogram over the four

histograms appears in Figure 5.5.

Figure 5.6 shows the fitted joint histogram and the fitted survival distributions. The log-

normal and log-logistic models again fit the data very well.
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Table 5.5: Fitted joint relative frequency distribution to the four samples

Interval Lifetime Intervals Relative Frequency Vector Fitted Joint
number | March 98 | June 98 | Nov 98 | March 99 D1 D P Py Relative Frequencies
first [0,12) [0,12) | [0,12) [0,12) | 0.025522 | 0.042008 | 0.067367 | 0.073038 0.050908
second [12,17) ~ [12,17) ' [12,17) © [12,17) ~ 0.061098 ' 0.059096 0.043307 = 0.069282 0.058450

third [17,24)  [17,24) [17,24) [17,24) 0.098221 0.081524 0.105862 0.086394 0.092488

fourth [24,28)  [24,28) [24,28) [24,00) 0.060712 0.071200 0.051181 0.771286 0.064701

fifth (28,34)  [28,34) [28,00) 0.096674 0.061232 0.732284 0.076481

sixth [34,37)  [34,00) 0.013534 0.684941 0.013518

| seventh | [37,0) | l | 0.644238 l | | 0.643455 |
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Figure 5.5: Joint histogram over the four histograms
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Estimated survivor and hazard functions and percentiles

Once the parameters of the Weibull and log-logistic survival distributions have been es-
timated, estimated hazard rates and survivor functions and the odds of a lapse can be

calculated for time t. Percentiles of these survival distributions can also be estimated.

The formulaes and examples of calculations of the estimated hazard rates, survivor functions,
odds of a lapse and percentiles of the Weibull and log-logistic survival distributions are given

on the next page.

The survival curves and the graphs of the hazard rates of the fitted Weibull and log-logistic
models are shown respectively in Figure 5.7 and Figure 5.8. From Figure 5.7 is it clear that
the two survivor functions are equal for t—values up to 40 months, and then the probability
for a policy to survive longer than time ¢ with ¢ >40 becomes larger for the log-logistic
fitting than for the Weibull fitting. Note in Figure 5.8 the increasing trend of the Weibull

hazard rates as t increases.
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WEIBULL

Estimated hazard function

~

h(t)=X-a-t>!

R(t) = e~739252 . 1.8434286 - ¢1-8434286-1

h(12)
n(24)

= 0.0092323
= 0.0165655

Estimated survivor function

§(t) = exp(—/)\\ . ta)

5(t) = exp(—e 739252 418434286

5(12)
5(249)

= 0.9416719
0.806001

Estimated odds of a lapse

odds(t) = * Z‘j)(t)

= exp(X - ta"l)

1-5(t)

oTiEs(t) = — =exp(e

S(t)

odds(12) = 0.061941

odds(24)

Il

0.240693

Estimated percentiles

1
R 1 100 .=
tp= (=1 “
P ()\ n 100 - p)
1 100 1
tsp = (6_739252 +n 100 — 50)

—7.39252 t1.8434286—1)

Survival Model

LOG-LOGISTIC

Estimated hazard function

~ X -0 ta—l
h(t) = —%‘
(1+A-t=)
Ty = e—T-959399 . 9 1647366 - +2-0647366—1
(8) = (1 + 7959399 . 42.0647366)
h(12) = 0.0095996
h(24) = 0.0170517

Estimated survivor function

~ 1
S(t) = ——
14+ M-to
S 1
S(t) = 11 ¢ 7.950300 _ £2.0647366
S(12) = 0.9442083
S(24) = 0.8017956

Estimated odds of a lapse

Odds(t) — 6_7'959399 . t2.0647366

oddsp(12) = 0.0590884
oddso(24) = 0.2472006

Estimated percentiles

1.8434286 = 45.21

1

L 501210647366 — 47.22

ts0 = (=755039 ' 100 — 50
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Figure 5.7: Survival curves of fitted Weibull and log-logistic models
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The estimated percentiles of the Weibull and log-logistic survival distributions are reported

in Table 5.6.

Table 5.6: Percentiles estimated from Weibull and log-logistic regression models

Survival model

Percentile | Weibull Log-logistic
P5 11.01 11.34
P10 16.27 16.29
P20 24.45 24.13
P25 28.06 27.74
P30 3153 31.33
P40 38.31 38.80
P50 45.21 47.22
P60 52.60 57.47
P70 61.00 71.18
P75 65.85 80.40
P80 71.40 02.42
P90 86.71 136.88
P95 100.02 196.56

At the Weibull model, the median time to a lapse of a policy is estimated as 45.21 months
and the odds of a lapse at 45.21 months is 1, that means P(T >45.21 months)=P(1" <45.21
months). At the log-logistic model, the median time to a lapse of a policy is estimated as
47.22 months and the odds of a lapse at 47.22 months is 1, that means P(1" >47.22
months)=P(T <47.22 months).

It is evident from the estimates of the percentile lifetimes that 20% of the policies will not
lapse within 71 months under a Weibull model (see Weibull's P80), while 30% of the policies

will not lapse within 71 months under a log-logistic model (see log-logistic's P70).

Note again the equal percentile estimates for the two distributions up to 40 months, con-

firming the pattern that was detected in the survival curves in Figure 5.7.
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5.3 Fitting of Parametric Regression Models

5.3.1 Introduction

A survival model is fitted for each level of a risk factor or combination of levels of risk

factors by using maximum likelihood estimation of parameters subject to constraints.

The fitting of regression models is illustrated where the effect of the risk factors (covariates)
is to alter the scale parameter A, while the shape parameter o remains constant. Applications

are also done where both parameters alter.

The fitting of log-logistic regression models and Weibull regression models will be discussed

only for staggered entry of policies.

5.3.2 A survival model for each level of a risk factor

Consider one risk factor AGE on three levels [18;35), [35;45) and [45+) years. The 10077
observations are distributed in the three age groups as follows: 3644 in age group [18;35),
3425 in age group [35;45) and 3008 in age group [45+). A regression model is fitted to
the grouped survival data where each policy has information on the entry period as well
as the age level. The grouped lifetimes of the policies with staggered entry as well as the

concomitant information on AGE are given in Table 5.7.

The combined frequency vector f is defined as

fl = (f'u.f'zl,fél,fﬁu..f'lz,f'm.f§2.fﬁ12,f'13.f'23,f§3,fﬁ13 )

f . is the frequency vector for the i entry group and the I** AGE level,
1=1,2,3,4 and [=1,2,3.

= (29,59,95,73,108, 15, 642)’
f12 = (21,50,91,45,75,13, 553)’
f13 = (16,49,68,39,67,7,471)

fa1 = (41,75,103,92,83, 628)’
f 22 = (49,62,61, 66,54, 753)
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Table 5.7: Multi-dimensional frequency table of grouped data set with one risk factor

Entry Age Lifetime intervals
March 98 [0,12) [12,17) [17,24) [24,28) [28,34) [34,37) [37,00)
[18;35) 29 59 95 73 108 15 642
[35;45) 21 50 91 45 75 13 553
[45+) 16 49 68 39 67 7 471
June 98 [0,12) [12,17) [17,24) [24,28) [28,34) [34,00)
[18;35) 41 75 103 92 83 628
[35;45) 49 62 61 66 54 753
[45+) 28 29 65 42 35 543
Nov 98 [0,12) [12,17) [17,24) [24,28) [28,00)
[18;35) 68 34 99 57 570
[35;45) 40 44 83 33 533
[45+) 46 21 60 27 571
March 99 [0,12) [12,17) [17,24) [24,00)
[18;35) 71 60 69 573
[35;45) 54 61 68 616
[45+) 50 45 70 659

F a3 = (28,29, 65,42, 35,543)'

I3 = (68,34,99,57,570)'
f 32 = (40,44, 83,33,533)’
F a3 = (46,21, 60,27,571)

f 4 =(71,60,69,573)

F 1 = (54,61,68,616)
fas= (50, 45,70, 659)’

The vectors ; i=1,2,3,4 of upper class boundaries for the i** entry group are

12

12
17 17 12 19
24 17
T, = 9 = 24 T3 = and Ty = 17
28 28 24 24
34 34 28
37

From the estimated regression parameters, survival model parameters can be found for each

level of this risk factor as well as for the baseline distribution.



162

I Application to a data set from the insurance industry I

The shape parameter remains constant

The estimated regression coefficients of the regression model where the effect of the risk

factor AGE is to alter the scale parameter A, while the shape parameter a remains constant,

are reported in Table 5.8.

Table 5.8: Fitting a regression model (constant shape) to grouped data with one risk

factor

Regression model
Effect Maximum likelihood | Log-logistic ~ Weibull
estimates

Baseline mean InAg=1InXg -7.981750 -7.404312
Age [18;35) Ba, 0.180958  0.159090
Age [35;45) Ba, -0.034975  -0.033957
Age [45+) B -0.145983  -0.125133
Constant shape a 2.066384  1.8423341

The estimated lambda parameters of the three survival distributions for the three AGE levels

then are R PR
Aa, = exp(lnig+Ga,)

A, = exp(lnz\o + § 45)
/\A3 = exp(ln )\0 + ,8A3).
with the same estimated alpha parameter &. These parameters are summarized for each

AGE level in Table 5.9.

Table 5.9: Parameters of a survival model (constant shape) for each level of risk factor
AGE

Survival model
AGE level || Maximum likelihood | Log-logistic ~ Weibull
estimates

Age [18;35) In Ay, -7.800792 -7.245223
a 2.066384  1.842334
Age [35;45) In Ay, -8.016725 -7.438269
a 2.066384  1.842334
Age [45+) In A4, -8.127733  -7.529445
a 2.066384  1.842334
Baseline In A\ -7.981750 -7.404312
a 2.066384  1.842334
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The shape parameter alters

The fitting of regression models is illustrated where the effect of the risk factors (covariates)
is to alter both the scale parameter A and the shape parameter «.. The estimated regression

coefficients of this regression model are reported in Table 5.10.

Table 5.10: Fitting a regression model (shape alters) to grouped data with one risk

factor
Regression model
Effect Maximum likelihood | Log-logistic ~ Weibull
estimates

Baseline mean InXg=1n)g -7.943357 -7.381423
Age [18;35) Ba, -0.196012  -0.075175
Qa, 2.168064  1.904217

Age [35;45) BAQ 0.156976  0.119892
aa, 1.9974967 1.790610

Age [45+) Bas 0.039035  -0.044717
Qiaq 1.9995073 1.811986

The weighted mean of the &4.'s ¢ = 1,2,3 is used as an estimate for the shape parameter

of the baseline distribution.

The estimated lambda parameters of the three survival distributions for the three AGE levels
are calculated from Table 5.10 as

Ay, = exp(ln Z\o + /B:Al)

A, = exp(lnig+ Ba,)

Aa, = exp(lnig+ Ba,).

Each age group survival distribution has its own estimated alpha parameter.

These parameters for each AGE level are summarized in Table 5.11, together with the Wald

test and discrepancy value to compare the fitted survival distributions at each AGE level.
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Table 5.11: Parameters of a survival model (shape alters) for each level of risk factor

AGE

Survival model

AGE level || Maximum likelihood | Log-logistic ~ Weibull
estimates

Age [18;35) In Ay, -8.139369  -7.456598
04, 2.168064 1.904217

Wald test 128.5 144.2

Discrepancy 0.0353 0.0396
Age [35:45) In Ay, -7.786381 -7.261531
QA 1.997497 1.790610

Wald test 93.1 108.3

Discrepancy 0.0271 0.0316
Age [45+) InAa, -7.904321 -7.426139
O, 1.999507 1.811986

Wald test 95.5 109.5

Discrepancy 0.0317 0.0364
Baseline In g -7.943357  -7.381423
Qo 2.0597767 1.8380729

A joint histogram to the data of each AGE level over the four entry groups is needed to

make a graphical representation of the fitted models for each AGE level. Table 5.12 gives

the three sets of fitted joint frequencies for the three AGE levels. This fitting was done by

maximum likelihood estimation subject to constraints imposed by the experimental design.

The Wald test and discrepancy value measure the goodness-of-fit.
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Table 5.12: Fitted joint frequency distributions for the three AGE levels
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Interval Interval of Fitted Joint Frequencies

number survival times | Age [18;35) years | Age [35;45) years | Age [45+) years
first [0,12) 209 164 140
second [12,17) 228 217 144
third [17,24) 366 303 263
fourth [24,28) 285.65814 195.15779 165.56561
fifth [28, 34) 330.67093 226.805 208.49003
sixth [34,37) 50.791574 53.264105 30.561947
seventh [37, 00) 2173.8794 2265.7731 2056.3824
Wald 70.63 53.92 46.62
Discrepancy 0.0194 0.0157 0.0155

Figure 5.9 shows the fitted joint histogram and the fitted survival distributions for age group

[18;35).

Figure 5.10 shows the fitted joint histogram and the fitted survival distributions for age

3 group [35;45).

Figure 5.11 shows the fitted joint histogram and the fitted survival distributions for age

group [45+).

In all the cases the survival models fit very well, with the log-logistic model slightly better

than the Weibull model, as indicated by the discrepancy values in Table 5.11.
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Figure 5.9: Joint histogram and fitted survival distributions for age group [18;35)
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5.3.3 Deriving of indices and risk scores from log-logistic regression
model

Once the parameters of the log-logistic baseline distribution and log-logistic age group dis-
tributions have been estimated, estimated hazard and survivor functions, odds of a lapse,

odds ratios and hazard ratios at time ¢ can be calculated.

The odds ratio for age group [18;35) is the relative odds of a lapse at time t of a policy, with
the age of the policyholder in [18;35), compared to a policy with the baseline characteristics.
The odds ratios for the three age groups result in a set of indices, showing the effect of each

age group on the baseline odds of a lapse at time t.

The hazard ratio for age group [18;35) is the relative hazard rate of a lapse at time ¢ of a
policy, with the age of the policyholder in [18;35), compared to a policy with the baseline
characteristics. The hazard ratios for the three age groups result in a set of risk scores,

showing the effect of each age group on the baseline hazard rate of a lapse at time ¢.
Percentiles of the four log-logistic survival distributions can also be estimated.

The calculations of estimated hazard and survivor functions, odds of a lapse, odds ratios

and hazard ratios are illustrated on the following five pages.

The survival curves and the graphs of the hazard rates of the fitted log-logistic age group
models are shown in Figure 5.12 and Figure 5.13 with measure of comparison the baseline
curves. These survival curves can be described as graphs of the covariate-adjusted survivor

functions, and the other graphs as graphs of the covariate-adjusted hazard rates.

The effects of the agegroups on the baseline distribution are clearly depicted in these figures.
It is evident from these two figures that the policyholders in the age group 45+ have the
lowest risk for their policies to lapse. Note the the survival curve of this age group lies above
the baseline survival curve in Figure 5.12, while the curve of the hazard rates for this age
group lies the furthest distance beneath the baseline curve of hazard rates. Similarly age

group [18;35) has the highest risk for their policies to lapse.
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Estimated Hazard Function at log-logistic regression model

Shape remains constant Shape alters
~ No-a-ta-t ~ o - G - 01
ho(t) = /\Ooi—,\ ho(t) = -—O-"%'—
(T4 Xo-t*) (1+ Ao - too)
E _ 6_7'98175 . 2.0663843 - t2.0663843—1 ﬁ " 6_7'943357 .2.0597767 - t2‘0597767_1
o(t) = (1 + e~ 798175 . {2.0663843) o(t) = (1 + e 7-943357 _ {2.0507767)
ho(12) = 0.009443 ho(12) = 0.0096102
ho(24) = 0.0168323 ho(24) = 0.0170145
’i"lA (t) _ /):Al ° a . ta_l ’]_‘LA (t) — )\Al B aAl ° taAl_l
C (L4, - t®) ‘ (1+ X4, - to4)
ﬁ - e— 7800792 2.0663843 - t2.0663843—1 'H _ 6_8'139369 . 2.1680640 - $2.1680640—1
A, (t) = (1 + e 7-800792 . £2.0663843) 4, (t) = (1 + e 8139360 . 42.1680640)
ha,(12) = 0.0111944 ha,(12) = 00108363
ha,(24) = 0.0194182 ha (24) = 0.0201312
- A4, - & -1 - XA, - G, - to42 1
ha,(t) = A MR ha,(t) = 2 ,\A2 =
(1+ g, - t%) (1+)\A2-taA2)
% (t) = e—8:016725 . 9 )663843 . 12:0663843—1 2 B e~ 7786381 . 1 0974967 - t1.9974967—1
Az - (1 + 6—8.016725 . t2.0663843) As (t) — (1 n 6—7.786381 - t1'9974967)
EA2(12) = 0.0091356 EA2(12) = 0.0093391
ha,(24) = 0.0163637 hay(24) = 0.015965
-~ XA -a-ta_l -~ s - O .tz;A:.;"l
hay(t) = ——=—— hay(t) = 22— —
(1+ A4y - t) (1+ Mg, - t¥43)
ZA (t) = e—8:127733 . 9 1663843 . 12:0663843—1 z (0 = e—7:904321 |1 999573 . £1-9995073~1
? (1 + —8-127733 . 42.0663843) As\b) = (1 + e—7-904321 _ ¢1.9995073)
hag(12) = 0.0082216 has(12) = 0.0084005
has(24) = 0.0149428 has(24) = 0.0145896
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Estimated Survivor Function at log-logistic regression model

Shape remains constant Shape alters

= 1 = 1
So(t) = = So(t) = ——=——=
14 Xg-t2 14 Ao -t
So(t) = . Solt) = !
oft) = 1 + e—7-981750 . 2.066384 o(t) = 1 + o—7.043357 . 420597767
So(12) = 0.9451622 $5(12) = 09440121
S0(24) = 0.8045013 So(24) = 0.8017512
~ 1 = 1
Sa,(t) = ————= Sa,(t) = ——————
1+ Ay, - te 14 A4, -t%n
3. (1) 1 5 1
a(t) = 1 ¢—7.800792 _ 42.066384 Sa,(t) = 1 + ¢~8.139369 , £2.168064
54,(12) = 09349915 Sa,(12) = 09400224
Sa,(28) = 0.7744674 Sa,(29) = 07771517
~ 1 ~ 1
T4+ Ay, 8o 14 Xa, - £%42
~ 1 ~ 1
Say(t) = 1 + ¢—B.016725 . £2.066384 Saz(t) = 1t o—7-786381 . 41.997497
54,(12) = 0.046947 5a,(12) = 0.9438949
Sa,(24) = 0.809944 Sa,(24) = 0.8081802
~ 1 -~ 1
Sa5(t) = —=——= Sas(t) = —=———
14 Ay, - t@ 14Xy, - t%43
~ 1 ~ 1
Sas(t) = 14 ¢—8.127733 . +2.066384 Sas(t) = 1+ e—7.904321  1.999507
Sa3(12) = 0.9522551 Sa,(12) = 0.9495848
S4,(24) = 0.8264469 Sa,(24) = 0.8248819
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Estimated Odds at log-logistic regression model

Shape remains constant

— — Gt o~ o~
OddSO(t) = 1/\—50() =Ap- t*

So(t)

OddSO(t) — 6_7’981750 K 252,06(;',{-],84‘

oddso(12) = 0.0580194
oddso(24) = 0.243006

— — 80 <« -
OdCIZSA1 (t) - #;)() e /\Al -t
A

oddsa, (t) = o~ 7-800792 ,2.066384

oddsa,(12) = 0.0695284
oddsa, (24) = 0.2012099

— 1-84.(8) =~ -~
odds 4, (t) = ﬁz)() =4, - t°
Ay

Gdds a, () = e—$016725 _42.066384

oddsa,(12) = 0.056025
oddsa,(24) = 0.234654
— 1-54,0) <~ 2
Odd8A3(t) = —T—AS_() = A, -t
SA3 (t)

oddSA3 (t) — 8127733  42.066384

oddsay(12) = 0.0501388
oddsa,(24) = 0.2099991

Shape alters

— 1-5() ~ =
Odng(t)z—ﬁ:Ao-tao
0

OddSO(t) — 6_7‘943357 B t2.059777

oddso(12) = 0.0593084
s
oddsg(24) = 0.2472697

1~§A1(t):’): o

ogdngl (t) = 5 (t) L XA
Al

OddSAl (t) — 6_8'139369 A t2.168064

oddsa,(12) = 0.0638045
odds 4, (24) 0.2867500

1—§A2(t) :X -~

oTiEsAz(t)z B ) RN A
Az

odds 4, (t) — 7786381  41.997497

oddsa,(12) = 0.05944
oddsa,(24) = 0237348

o g (1) =+l _ 3, 45

= = Ay, -t%4s
SAa (t) ’

oddsa,(t) = o~ 7-904321 _ 41.999507

oddsay(12) = 0.0530918
——
oddsa, (24) = 0.2122948
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Estimated Odds Ratio at log-logistic regression model

Shape remains constant

Shape alters

o~

_ i Syt
oddsratioa, (t) = O/\SAl(t) = ):41 i
oddsg(t) Ao - ¢

oddsratios, (12) = 8:8‘5328%58)1

= 1.198365

oddsratios, (24) = _%_22941328(?(?

= 1.198365

_ s 4 (1) iyt
oddsratioga, (t) = o/—fAZ( ) = )}\42 =
oddso(t) Ao - t¥

oddsratioa,(12) = 2956025

= (.965629

oddsratios,(24) = %,22321%6050368

= 0.965629

_ ddsa,(t)  Aa, t0
oddsratio, (t) = O/\SAS( ) - {AS N
oddsg(t) Ao - t¥

oddg;"?ztiOAg (12) = gﬁgggéi’gi

v = 0.864172

oddsratios,(24) = %.‘22(11?%

= 0.864172

Odds ratio of an age group is constant over time

Odds ratio is called an index

One set of indices, irrespective of time

o Ti:i- t 0N .10,
oddsratiog, (t) = O/iAl( ) = )\ih t"
oddsg(t) Ag - t0

oddsratioa,(12) = §993%04

= 1.075808

oddsratios, (24) = "0%

= 1.159665

- ddsa, () A, - 194
oddsratioa, (t) = O:Az( ) = fz = :
oddsp(t) Ao - 0

oddsratios,(12) = SBUL

= 1.002219

oddsratioa,(24) = '00,'22437723?987

= (.959874

- dds s (t) A, - 104
oddsratioa, (t) = O/EAa( ) = fa = :
: oddsy(t) Ao - 0
oddsratios,(12) = 9530918

= 0.895182

oddsration,(24) = §4422048
= (.8585556

Odds ratio of an age group depends on time

Odds ratio is called an index
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Two sets of indices, one for t=12 and one for t=24
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Estimated Hazard Ratio at log-logistic regression model

Shape remains constant Shape alters

— ha,(t) A 1+ hot™ — ha () X 1+ Notoo
hazardratios, (t) = ,:4;() =24 m hazardratioa, (t) = f;() S (_’:\—OA)
ho(t) Ao (14 Aa,t%) ho(t) Ao (14 Ag,to)
hazardratioy, (12) = GYHEs hazardratios, (12) = 105888
= 1.1854696 = 1.1275801
hazardratiog (24) = % hazardratios, (24) = %
= 1.1536273 1.1831797
. hag®)  Aa, (14307 — R ) Aot™
hazardratioa,(t) = ,\A;() =4 L*-_:—E—,Z- hazardratioa, (t) = }E\L(t) = & . M
ho(%) Ao (1 + )\Azta) ho(t) Ao (1 + Ag,t%42)
hazardratio 4,(12) = S0087902 hazardratio 4,(12) = 308338l
= 0.967453 = 0.9717948
L _ 0.0157604 L 0.015965
hazardratioa,(24) = §oideses hazardratioa,(24) = goroids
= 0.9721618 0.9383156
— Pa) Aa. (14 Agt® . 0 h) ot
hazardratioa, (t) = ,14;() S (——-:-9—-;2- hazardratio, (t) = M = g : M
ho(t) Ao (14 Agyt™) ho(t) Ao (14 Aa,ts)
hazardratios, (12) = %‘% haza?a\ratioAs (12) = %‘é?gg
= 0.8706574 = (.8741186
hazardratios,(24) = £ILEL hazardratios,(24) = L oot
0.8877456 = (.8574789

Hazard ratio of an age group depends on time

Hazard ratio is called a risk score

Two sets of risk scores, one for =12 and one for

t=24

Hazard ratio of an age group depends on time

Hazard ratio is called a risk score

Two sets of risk scores, one for t=12 and one for

t=24
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Figure 5.12: Survival curves of fitted log-logistic age group models
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For a constant shape parameter in the log-logistic distributions, the indices (estimated
odds ratios) may be obtained also from the exponent of the B—values in the log-logistic
regression model, for example

eBay = 0180958  _ 1198365
efrz = 005 —  (.965629
ePas = 0145983 _— () 864172.

The indices of the three age groups, estimated from the log-logistic regression model, are

compared to the indices, obtained from the logit model, in Table 5.13.

Table 5.13: Comparison of indices: log-logistic regression model and logit model

Log-logistic regression model Logit model
Shape remains constant Shape alters
Effect n Index Index Index
t=12 t=24 t=12 t=24 t=12 t=24

Baseline odds | 10077 || 0.058019  0.243006 | 0.059308 0.247270 || 0.0543 0.2570

Age [18;35) 3644 || 1.198365  1.198365 | 1.075808 1.159665 || 1.1321 1.1370
Age [35;45) 3425 || 0.965629  0.965629 | 1.002219 0.959874 | 0.9679 0.9817
Age [45+) 3008 || 0.864172  0.864172 | 0.898556 0.858556 || 0.9126 0.8960

The index of age group [18;35) of 1.198365 shows the effect of this age group on the baseline
odds of a lapse. This effect is multiplicative on the baseline odds of a lapse. Thus the effect

of age group [18;35) is to increase the baseline odds of a lapse by a factor 1.198365

From Table 5.13 follows that one log-logistic regression model provides indices for any time
value, while a new logit model has to be built for a fixed time value, say t=12 months,
conditional on a restricted experimental design where all the policies must have an exposure
of at least one year when investigating the lapses of policies in the first year. There is
no such restrictions in the more general experimental design for the log-logistic regression
model where all the policies can be used in the analysis, even those policies with inception

dates very close to the cut-off point.

Predicted indices from the log-logistic regression model, for varying time values, are shown

in Table 5.14 (constant shape) and in Table 5.15 (shape alters).

Predicted risk scores from the log-logistic regression model, for varying time values, are

shown in Table 5.16 (constant shape) and in Table 5.17 (shape alters).
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Predicted indices from log-logistic regression model

Effect t=6 t=12 t=18 t=24 t=30 . t=36 t=42 t=48 t=54 t=60
Baseline odds | 0.013853 0.058019 0.134105 0.243006 0.385363 0.561680 0.772373 1.017796 1.298259 1.614039
Age [18;35) 1.198365 1.198365 1.198365 1.198365 1.198365 1.198365 1.198365 1.198365 1.198365 1.198365
Age [35;45) 0.965629 0.965629 0.965629 0.965629 0.965629 0.965629 0.965629 0.965629 0.965629 0.965629
Age [45+) 0.864172 0.864172 0.864172 0.864172 0.864172 0.864172 0.864172 0.864172 0.864172 0.864172
Table 5.14: Predicted indices from log-logistic regression model (shape alters)
Predicted indices from log-logistic regression model
Effect t=6 =12 t=18 t=24 t=30 t=36 t=42 t=48 t=5b4 t=60
Baseline odds | 0.014225 0.059308 0.136718 0.247270 0.391547 0.570006 0.783034 1.030921 1.313978 1.632444
Age [18;35) 0.998015 1.075808 1.124096 1.159665 1.188028 1.211716 1.232113 1.250058 1.266104 1.280632
Age [35;45) 1.046431 1.002219 0.977227 0.959874 0.946627 0.935939 0.926996 0.919319 0.912600 0.906631
Age [45+) 0.933371 0.898556 0.873571 0.858556 0.847086 0.837829 0.830081 0.823428 0.817603 0.812428
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Predicted risk scores from log-logistic regression model
Effect t=6 t=12 t=18 t=24 t=30 t=36 t=42 t=48 t=54 t=60
Baseline hazard rate | 0.004706 0.009443 0.013575 0.016832 0.01916 0.020645 0.021440 0.021715 0.021616 0.021265
Age [18;35) 1.195126 1.185470 1.170900 1.153627 1.135699 1.118561 1.103015 1.089366 1.077614 1.067604
Age [35;45) 0.966083 0.967453 0.969570 0.972162 0.974951 0.977716 0.980313 0.982666 0.984749 0.986566
Age [45+) 0.865779 0.870657 0.878279 0.887746 0.898105 0.908557 0.918542 0.927734 0.935988 0.943282

Table 5.16: Predicted risk scores from log-logistic regression model (shape alters)

Predicted risk scores from log-logistic regression model
Effect t=6 t=12 t=18 t=24 t=30 t=36 t=42 t=48 t=b54 t=60
Baseline hazard rate | 0.004815 0.009610 0.013763 0.017014 0.019319 0.020773 0.021537 0.021783 0.021660 0.021289
Age [18;35) 1.050512 1.127580 1.165792 1.183180 1.187651 1.184381 1.176920 1.167574 1.157727 1.148149
Age [35;45) 1.014131 0.971795 0.950282 0.938316 0.932001 0.929252 0.928743 0.929593 0.932223 0.933254
Age [45+) 0.906908 0.874119 0.861105 0.857479 0.859272 0.864196 0.870770 0.878032 0.885382 0.892466
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For a constant shape parameter in the log-logistic distributions, the p!* percentile of the

baseline lifetime distribution can be calculated from

1 D
X 100—p

and that of the age group distributions from

1 P a .
- =1,23.
()\Ai 100—]3) (3 ) 4y

Note that the latter is equal to the p* percentile of the baseline distribution multiplied by

|~

| =

the specific index to the power —31;.

For a shape parameter that alters, the formulaes change to
1 1

1 P ao 1 D ar .
. d [—. -2 )% ;_123
(Ao 100—p> o (AA,. 100—p) T

The estimated percentiles of the baseline and the age group log-logistic distributions for a

constant shape parameter as well as for different shape parameters are reported in Table 5.18.

Table 5.18: Lifetime percentiles estimated from log-logistic regression model

Log-logistic regression model
Lifetime distribution: constant shape | Lifetime distribution: shape alters

Lifetime | Baseline Age group Baseline Age group

percentile [18;35) [35;45) [45+) [18;35) [35;45) [45+)
P5 11.45 10.49  11.04 12.28 11.32 1098  11.29 11.95
P10 16.43 15.05 16.71 17.64 16.27 1550 16.41 17.36
P20 24 .33 2229 2475 26.11 24.13 2253 2463 26.04

P25 27.97 25.62 28.44  30.01 27.74 25.73  28.45  30.07
P30 31.58 28.93 3212  33.89 31.34 28.89 3226 34.10
P40 39.11 35.83 39.78 4197 38.84 3542 40.25 4254
P50 47.59 43.60 48.40 51.07 47.29 4270 4931 52.10
P60 57.91 53.056 5890  62.15 57.58 5148 60.40 63.81
P70 71.71 65.70 7294  76.96 71.36 63.12 7536  79.59
P75 80.99 7420 8237  86.92 80.62 70.88 85.46  90.25
P80 93.09 85.28 9468  99.90 92.71 80.93 98.70 104.21
P90 137.82  126.27 140.18 14791 | 137.43 117.64 148.12 156.34
P95 197.87 181.27 201.24 21235 | 19753 166.05 215.32 227.17

The median time to a lapse of a policy, over all three age groups, is 47.59 months. The base-
line odds of a lapse at 47.59 months is 1, that means that P(T" >47.59 months)=P(T <47.59

months).
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5.3.4 Deriving of indices and risk scores from Weibull regression
model

Once the parameters of the Weibull baseline distribution and Weibull age group distributions
have been estimated, estimated hazard and survivor functions, odds of a lapse, odds ratios

and hazard ratios at time ¢ can be calculated.

The odds ratio for age group [18;35) is the relative odds of a lapse at time ¢ of a policy, with
the age of the policyholder in [18;35), compared to a policy with the baseline characteristics.
The odds ratios for the three age groups result in a set of indices, showing the effect of each

age group on the baseline odds of a lapse at time £.

The hazard ratio for age group [18;35) is the relative hazard rate of a lapse at time ¢ of a
policy, with the age of the policyholder in [18;35), compared to a policy with the baseline
characteristics. The hazard ratios for the three age groups result in a set of risk scores,

showing the effect of each age group on the baseline hazard rate of a lapse at time ¢.
Percentiles of the four Weibull survival distributions can also be estimated.

The calculations of estimated hazard and survivor functions, odds of a lapse, odds ratios

and hazard ratios are illustrated on the following five pages.

The survival curves and the graphs of the hazard rates of the fitted Weibull age group

models are shown in Figure 5.14 and Figure 5.15.
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Estimated Hazard Function at Weibull regression model

Shape remains constant

Fro(t) = ¢~ 7404312 . ] 849334 . 418423341

0.0090938

ho(12) =
= 0.0163048

To(24)

ha,(t) =24, @127

ha, (t) = e~7245223 .1 849334 . 11:842334~1

0.010662
0.0191164

EAl(lz)
ha, (24)

;\LA2(t) = XA2 Q- t‘;—l

EA2 (t) = 7438269 .1 849334 . ¢1.842334-1

0.0087902
0.0157604

EA'z 12) =
ha,(24)

I

/};Aa(t) :/XA3 .a,ta—l

hag(t) = e 7529445 . 1 849334 . 418423341

0.0080242

/’7;/\3(12) =
= 0.014387

hag (24)

Shape alters

ho(t) = Ao - Gpt™ !

ho(t) = e~"381423 . 1 838073 - ¢1-838075~1

ho(12)
Ro(24)

0.0091851
0.0164199

Ba,(t) = a, - @a, - to411

~

ha,(t) = e~T-456598 .1 94217 . 10042171

0.0104033
0.0194701

EAI (12) =
ha, (24)

TEAz(t) = XA;J 'aA2 L Gap—l

Tiay(t) = e~ 7438269 1 840334 . 418123341

0.0089654
0.0155084

’f_L\A2 (12)
hoa, (24)

TLAS(t) :XAs 'aA3 .toaz—1

~

ha,(t) = e 7426139 . 1 811986 - ¢1-811986-1
3 .

ﬁ/\a @1z =
hag(24) =

0.0081153
0.0142474
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Estimated Survivor Function

Shape remains constant

go(t) = exp(—/):o . tg)

So(t) = exp(—e~ 7404312 .

§0(12) =
So(24) =

t1‘842334)

0.9424876
0.8086397

§A1 (t) = exp(_}:Al . ta)

54, (t) = exp(—e~ 7245223

:9,:/*1 (12)
Sa,(24)

I

. tl .842334)

0.9329098
0.7795573

~

Saat) = exp(A, - %)

S, (t) = exp(—e 7438269

. t1'842334)

0.9443533
0.8143945

~

§A3 (t) = exp(_xﬁl3 . ta)

§A3(t) = exp(—e 7529445

Sas(12) =
Sag(24) =

. tl'842334)

0.9490768
0.8290963

Shape alters

§O(t) = eXp(—XO . tao)

at Weibull regression model

So(t) = exp(—e~7-381423 . 418380729

S0(12) = 0.9417969

So(24)

0.8070283

Sa, () = exp(—Aa, - 1°M)

§A1 (t) = exp(—e 7496598 . £1.904217)

54, (12)
Sa,(24)

9365433

0.
0.7823969

§A2 (t) = eXP('—S\\A2 . taAz)

S4,(t) = exp(—e~ 7261531, 41.790610)

8a,(12) =
Sa,(24) =

9416866

0
0.8123183

8, (t) = exp(—As, - t9)

§A3 (t) = exp(—6_7~426139 ) t1.811986)

gAa(IQ) =
Sag(24) =

0.9476747
0.8280275
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Estimated Odds at Weibull regression model

Shape remains constant

1—5(t)

= = exp(/)zg . tafl)
So (t)

oddso(t) =

o?i—iso(t) _ exp(e’7'404312 18423341y

Shape alters

OEES()(t) _ exp(e~7.381423 . t1.8380729—1)

oddso(12) = 0.0610219
oddsg(24) = 0.2366447
1- SA1 (t)

OECZSAI t) = = exp(/):Al - ta_l)

§A1 (t)

oddso(12) = 0.0618001

oddsp(24) = 0.2391139
— 1— 84, (t ~ =
odds 4, (t) = A—Al() =exp(Ay4, - taAl—l)

Gdds 4, (t) = exp(e™ 7245723 . 418423341

o?l-a?sAl (£) = exp(e™7-456598 , 419042171

oddsa, (12) = 0.071915
oddss, (24) = 02827793
1-— SA2 (t)

odds 4, (t) = = exp(ha, - 271

Sa,(t)

oddsa,(12) = 0.0677563
oddsa, (24) = 02781237
1-— SAQ (t)

033&42 (t) = = eXP(XAg i taAQ_-])

S, (1)

oEEsAQ(t) = exp(e~ 7438269 _ 18423341

oﬁc?sA? (t) = e)‘213(19—7.261531 _t1»790610—1)

oddsa,(12) = 0.0580258
oddss,(24) = 0.2279062
— 1—84,(t ~  a
odds ,(t) = ,\—AB()- = exp(Ag, - t*77)
SAS (t)

oddsa,(12) = 0.0619244
oddsa,(24) = 0.2310445
— 1 Sa,(t ~ =
odds 4, (t) == A—AS() = eXp()\A3 . taA3_1>
SA3 (t)

odds A5 (t) = exp(e—7-529445 _t1.842334—1)

oddsag(12) = 0.0536555
oddsa,(24) = 0.2061326

oTiEsAa () = exp(e~7-426139 . t1.811986—1)

oddsag(12) = 0.0552145
oddsay(24) = 0.2076894
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Estimated Odds Ratio at Weibull regression model

Shape remains constant Shape alters
- = T ga-1 . X N, L paa, -1
oddsratiog, (t) = O%Al(t) = eXp()Zh i ) oddsratioa, (t) = Oid\sA‘(t) = eXp()‘f‘ t,\ )
oddso(t) exp(Mo - t*71) oddso(t) exp(No - t*7 1)
oddsratioa, (12) = Qunais oddsratioy, (12) = 3091562
= 1.1785109 = 1.0963792
oddsratios, (24) = 028277193 oddsratioa, (24) = §35o1sas
1.1949532 = 1.1631435
— i T, o — i Aay 0271
oddsratioa,(t) = O/dez ® _ exp():\Az i ) oddsratioy, (t) = ocid\sAz ®) = exp()\f2 tA )
oddso(t)  exp(ho- ) oddso(t)  exp(lo- o)
oddsratios,(12) = Q0389258 oddsratios,(12) = $2819244
= 0.9656487 = 1.0020119
oddsration, (24) = $2210%2 oddsration,(24) = sz
= 0.9630732 = 0.9662529
— Sdds 4, (t A, -2 _ dd %, . 4oag-1
oddaration, (t) = O/\SAg( ) _ exp({:«ls ’i ) oddsration, (t) = O(Eles (t) _ exp()\fa tA s )
oddso(t) exp(Ao - t*71) oddso(t) exp(Ao - t*71)
oddsratios,(12) = 20536555 oddsratios,(12) = Q9552148
= 0.8792827 = 0.8934366
oddsratios,(24) = 32361328 oddsration,(24) = G§33500%
0.8710636 = 0.8685792
Odds ratio of an age group depends on time Odds ratio of an age group depends on time
Odds ratio is called an index Odds ratio is called an index

Two sets of indices, one for t=12 and one for t=24 Two sets of indices, one for t=12 and one for t=24
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Estimated Hazard Ratio at Weibull regression model

Shape remains constant

ha,(t) _ Aa@- 7!

hazardratios )= — =
' hO(t) Ao - g1

hazardratio 4,(12) = (3 '(;)013)0696328
= 11724432
hazardratios, (24) = —3;8}2;},2;‘
= 1.1724432
- -~ N t’o?—l
hazardratiog, (t) = ]}\Az ®) = /\:12a =
ho(t) AoQ - ot
hazardratio 4,(12) = 8:88383%
= 0.9666133
hazardratios,(24) = —8:3}2582‘81
0.9666133
— ha. SV
hazardratioa,(t) = }E\Aa ®) = &430‘ =
ho(t) Aod -t 1
hazardratio 4,(12) = 8:8888333
= 0.8823795
hazardratios, (24) = ——(2 3)11613?(?478
= 0.8823795

Hazard ratio of an age group is constant over time

Hazard ratio is called a risk score

One set of risk scores, irrespective of time

Shape alters

_ D Aa,8a, 170
hazirdratios, (t) = AAl(t) _ )\AA]CYAl £
ho(t) Aodp -t
hazardratio 4,(12) = %
= 1.1326275
hazardratioa, (24) = 3;8}2;‘{83
1.1857647
- -~ N EA -1
hazardratioa,(t) = }E\Az ®) = )\143\204,42 i 2
ho(t) AoQp - gvo—1
hazardratioa,(12) = C T
= 0.9760801
hazardratioy,(24) = 8:8%22?83
0.9444907
_ hag(t)  Aag@a, - %45~
hazardratioa,(t) = AAa( ) = /\/EaAS i :
ho(t) Aodip - t*07!
hazardratio,(12) = 99081153
= 0.8835268
hazardratioy,(24) = 8;8{;‘3‘1‘33
0.8676945

Hazard ratio of an age group depends on time

Hazard ratio is called a risk score

Two sets of risk scores, one for t=12 and one for
t=24
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For a constant shape parameter in the Weibull distributions, the risk scores (estimated
hazard ratios) may be obtained also from the exponent of the 3—va|ues in the Weibull
regression model, for example

Par = 015908 _ 11724432

el = 7003397 — (9666133

efs = 0125133 — (.8823795.
The indices (estimated odds ratios) of the three age groups, estimated from the Weibull
regression model, are compared to the indices, obtained from the logit model, in Table 5.19.

The index of age group [45-+) of 0.879283 shows the effect of this age group on the baseline

Table 5.19: Comparison of indices: Weibull regression model and logit model

Weibull regression model Logit model
Shape remains constant Shape alters
Effect n Index Index Index
t=12 t=24 t=12 t=24 t=12 t=24

Baseline odds | 10077 || 0.061022  0.236645 | 0.061800 0.239114 || 0.0543 0.2570

Age [18;35) 3644 || 1.178511  1.194953 | 1.096379 1.163143 | 1.1321 1.1370
Age [35;45) 3425 | 0.965649  0.963073 | 1.002012 0.966253 || 0.9679 0.9817
Age [45+) 3008 | 0.879283  0.871064 | 0.893437 0.868579 | 0.9126 0.8960

odds of a lapse. This effect is multiplicative on the baseline odds of a lapse. Thus the effect

of age group [45+) is to decrease the baseline odds of a lapse by a factor 0.879283

From Table 5.19 follows that one Weibull regression model provides indices for any time
value, while a new logitmodel has to be built for a fixed time value, say t=12 months,
conditional on a restricted experimental design where all the policies must have an exposure
of at least one year when investigating the lapses of policies in the first year. There is no
such restrictions in the more general experimental design for the Weibull regression model
where all the policies can be used in the analysis, even those policies with inception dates

very close to the cut-off point.

Predicted indices from the Weibull regression model, for varying time values, are shown in
Table 5.20 (constant shape) and in Table 5.21 (shape alters).

Predicted risk scores from the Weibull regression model, for varying time values, are shown

in Table 5.22 (constant shape) and in Table 5.23 (shape alters).
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Predicted indices from Weibull regression model

Effect t=6 t=12 t=18 t=24 t=30 t=36 t=42 t=48 t=54 t=60
Baseline odds | 0.016655 0.061022 0.133171 0.236645 0.377685 0.565662 0.814022 1.141810 1.575977 2.154842
Age [18;35) 1.174119 1.178511 1.185439 1.194953 1.207213 1.222464 1.241024 1.263282 1.289700 1.320802
Age [35;45) | 0.966346 0.965649 0.964557 0.963073 0.961187 0.958881 0.956128 0.952901 0.94917 0.944903
Age [45+) 0.881521 0.879283 0.875789 0.871064 0.86509 0.857832 0.849241 0.839262 0.827842 0.814934
Table 5.20: Predicted indices from Weibull regression model (shape alters)
Predicted indices from Weibull regression model
Effect t=6 t=12 t=18 t=24 t=30 t=36 t=42 t=48 t=54 t=60
Baseline odds | 0.016913 0.061800 0.134678 0.239114 0.381412 0.571040 0.821586 1.152299 1.590420 2.174686
Age [18;35) | 1.044681 1.096379 1.131960 1.163143 1.194129 1.227247 1.264219 1.306589 1.355927 1.413938
Age [35;45) | 1.035773 1.002012 0.981769 0.966253 0.952697 0.939827 0.926922 0.913510 0.899255 0.883902
Age [45+) 0.911930 0.893437 0.880373 0.868579 0.856722 0.844171 0.830554 0.815621 0.799192 0.781140
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Predicted risk scores from Weibull regression model

Effect t=6 t=12 t=18 t=24 t=30 t=36 t=42 t=48 t=54 t=60
Baseline hazard rate | 0.005072 0.009094 0.012796 0.016305 0.019676 0.022943 0.026124 0.029234 0.032283 0.035279
Age [18;35) 1.172443 1.172443 1.172443 1.172443 1.172443 1.172443 1.172443 1.172443 1.172443 1.172443
Age [35;45) 0.966613 0.966613 0.966613 0.966613 0.966613 0.966613 0.966613 0.966613 0.966613 0.966613
Age [45+) 0.882380 0.882380 0.882380 0.882380 0.882380 0.882380 0.882380 0.882380 0.882380 0.882380
Table 5.22: Predicted risk scores from Weibull regression model (shape alters)
Predicted risk scores from Weibull regression model
Effect t=6 t=12 t=18 t=24 t=30 t=36 t=42 t=48 t=54 t=60
Baseline hazard rate | 0.005138 0.009185 0.012902 0.016420 0.019796 0.023065 0.026245 0.029353 0.032398 0.035389
Age [18;35) 1.081872 1.132627 1.163415 1.185765 1.203396 1.217996 1.230479 1.241395 1.251104 1.259853
Age [35;45) 1.008726 0.976080 0.957475 0.944491 0.934540 0.926488 0.919734 0.913924 0.908829 0.904295
Age [45+) 0.899648 0.883527 0.874231 0.867694 0.862658 0.858565 0.855119 0.852146 0.849532 0.847200
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For a constant shape parameter in the Weibull distributions, the p** percentile of the

baseline lifetime distribution can be calculated from

|~

1 100

—-In

Ao 100 —p
and that of the age group distributions from

)

Q|+~

1 100
—-In

)& i=1,2,3.

Note that the latter is equal to the p** percentile of the baseline distribution multiplied by

the specific index to the power —%7.

For a shape parameter that alters, the formulaes change to

1 1
1 100 .= 1 100 =
= -1 Qo d =—"1 a4 §=1,2,3.
" nlOO—p) an W nlOO—p) i=1,2,3

The estimated percentiles of the baseline and the age group Weibull distributions for a

~ constant shape parameter as well as for different shape parameters are reported in Table 5.24.

Table 5.24: Lifetime percentiles estimated from Weibull regression model

Welibull regression model
Lifetime distribution: constant shape | Lifetime distribution: shape alters

Lifetime | Baseline Age group Baseline Age group
percentile [18;35) [35;45) [45-+) [18;35) [35;45) [45+)
P5 11.10 10.18  11.30 11.88 11.02 1055 10.98 11.69
P10 16.40 15.05 16.71 17.56 16.31 1539 1642 17.40
P20 24.65 2261 25.11 26.38 24.53 2283 2497 26.32
P25 28.30 25.95 28.82 30.28 28.16 26.09 28.78 30.29

P30 31.80 29.17 3239  34.03 31.66 29.21 3245 34.10
P40 38.64 3545 3936 41.36 38.49 356.27 39.65 41.58
P50 45.61 41.83 46.45  48.81 4544 4140 47.02 49.21
P60 53.06 48.67 54.05 56.79 52.89 4794 5495 57.40
P70 61.54 56.45 62.69  65.87 61.36 5533 64.01 66.74
P75 66.44 60.94 67.67 71.11 66.26 59.58 69.25 72.14
P80 72.04 66.08 7338 77.11 71.86 64.44 7527 78.33
P90 87.50 80.26  89.13  93.65 87.32 77.77 9194 95.45
P95 100.94 9259 102.82 108.03 | 100.76 89.30 106.49 110.37

The median time to a lapse of a policy, over all three age groups, is 45.61 months. The base-
line odds of a lapse at 45.61 months is 1, that means that P(T" >45.61 months)=P(T <45.61
months). The lowest estimated percentile lifetime values in the third column of Table 5.24

again confirm the highest risk of a policy to lapse if the policyholder is in the youngest

agegroup.
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5.3.5 The fitting of a regression model with a continuous predictor

Consider AGE as a continuous predictor that can be categorized into three age groups. The

ordinal covariate Z takes on the values

z=1 for the age group [18;35)
z=2 for the age group [35;45)
z=3 for age group [45+).

The midpoints of the age group intervals can also be used as values of the continuous

predictor AGE, that means

z =183 =96 for age group [18;35)

z =341 =395 for age group [35;45)
45499 = 52 for age group [45+)

if 60 months is assumed to be an upper limit for the open interval.

Z =

A log-logistic as well as a Weibull regression model are fitted to the grouped survival data
with known z-values. From the estimated regression parameters, survival model parameters

can be found for each age group as well as for the baseline distribution.

The estimated regression coefficients of these two regression models are reported in Ta-

ble 5.25.

Table 5.25: Fitting a regression model (constant shape) to grouped data with one
continuous predictor

Regression model

Effect Maximum Log-logistic Weibull
likelihood z-values z-values z-values z-values

estimates 1 2 3 26 395 52|11 2 3 26 395 52

Baseline mean lﬁo =In XO -7.647250 -7.477800 -7.111259 -6.962854
Constant shape a 2.066059 2.066104 1.841998 1.842030
-0.166957 -0.012856 -0.146264  -0.011261

Q)

Age

The estimated lambda parameters of the three survival distributions for the three age groups
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then are
XAgel = exp(ln Xo + B % 1)
XAgez = exp(ln Do + B * 2)
XAQEB = exp(ln Do + B * 3)
or
XAgel = exp(ln Xo + B * 26)
XAQEQ = exp(ln Do + B * 39.5)
X ages = exp(ln Xo + B 52)

with the same estimated alpha parameter &. These parameters are summarized for each

age group in Table 5.26.

Table 5.26: Parameters of a survival model (constant shape) for each age group

Survival model
AGE group |[ Maximum Log-logistic Weibull
likelihood | z-values z-values z-values z-values
estimates | 1 2 3 26 395 52{1 2 3 26 395 52
Age [18;35) In A, -7.814208 -7.490656 | -7.257523  -7.800792
& 2.0660588  2.0661037 1.841998 1.8421299
Age [3545) | In), |-7.001165  -7.503511 |-7.403787  -8.016725
a 2.0660588  2.0661037 1.841998 1.8421299
Age [45+) In A, -8.148122 -7.516367 | -7.550051  -8.127733
) 2.0660588  2.0661037 1.841998 1.8421299
Baseline InXy |-7.647250  -7.477800 |-7.111259  -6.962854
a 2.0660588  2.0661037 1.841998 1.8421299
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5.3.6 A survival model for each combination of levels of two risk
factors

Consider two risk factors AGE and SCORE where AGE has three levels [18;35), [35;45) and
[45+) years and SCORE has three levels 'Low’, 'Medium' and 'High'.

A cross tabulation of AGE and SCORE for the 10077 observations are given in Table 5.27.

Table 5.27: Cross table of Age and Score

Score
Low Medium High | Total
Age [18;35) | 833 1758 1053 | 3644
Age [35;45) | 769 1546 1110 | 3425
Age [45+) | 813 1541 654 | 3008
Tota 2475 4845 2817 | 10077

A regression model is fitted to the grouped survival data where each policy has information
on the entry period, age level and score level. The grouped lifetimes of the policies with
staggered entry as well as the concomitant information on AGE and SCORE are given in
Table 5.28.

The combined frequency vector is

! ’
f’ = (fllll' f1211'fglllfiill'fllmvfgwl fgl2'f£112'f,113'-ff‘213'f313vf413' -f11211-ff'221v‘f’321'f:1211f1122'ff222'
’ ! ’ ! ’ ! / ’ ! ’ ’ ’ ’ i I / ! !
-f322'-f422'-f123'f223'-f323'f4231 f131'-f 231 '-f331’-f431 '-f 132'-f232' f332’f432'-f133'f233'f333’f433)'

£ 4 is the frequency vector for the it entry group, the {** AGE level and the m SCORE

level

1=1,2,3,4 and [=1,2,3 and m=1,23.
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Table 5.28: Multi-dimensional frequency table of grouped data set with two risk factors

Entry Age Score Lifetime intervals
March 98 [0,12) [12,17) [17,24) [24,28) [28,34) [34,37) [37,00)
[18;35) | Low 12 34 51 39 57 11 59
Medium 10 12 22 19 32 4 418
High 7 13 22 15 19 0 165
[35;45) | Low 13 14 45 27 33 4 66
Medium 4 22 22 8 25 4 297
High 4 14 24 10 17 5 190
[45+) | Low 10 25 29 17 46 2 116
Medium 6 13 28 16 16 5 273
High 0 11 11 6 5 0 82
June 98 [0,12) [12,17) [17,24) [24,28) [28,34) [34,00)
(18;35) | Low 22 25 58 53 40 45
Medium 10 26 32 20 29 379
High 9 24 13 19 14 204
[35;45) | Low 24 24 28 30 25 106
Medium 12 20 14 17 16 409
High 13 18 19 19 13 238
[45+) | Low 13 15 32 19 17 107
Medium 11 13 22 17 12 319
High 4 1 11 6 6 117
Nov 98 [0,12) [12,17) [17,24) [24,28) [28,00)
[18;35) | Low 34 16 50 23 54
Medium 19 2 32 24 317
High 15 16 17 10 199
[35;45) | Low 19 18 38 16 75
Medium 16 14 25 10 263
High 5 12 20 7 195
[45+) | Low 28 16 22 12 98
Medium 13 0 24 4 323
High 5 5 14 11 150
March 99 [0,12) [12,17) [17,24) [24,00)
[18;35) | Low 40 30 30 50
Medium 9 14 27 301
High 22 16 12 222
[35;45) | Low 24 30 29 81
Medium 14 15 12 307
High 16 16 27 228
[45+) | Low 20 22 28 119
Medium 19 12 26 369
High 11 11 16 171
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fll

fll
fus = (7,13,22,15,19,0,165)'

F1o1 = (13,14,45,27,33,4,66)’

(12,34,51,39,57,11,59)'
(
(
(
f 02 = (4,22,22,8,25,4,297)
(
(
(
(

10,12,22,19,32,4,418)’

f10s = (4,14,24,10,17,5,190)’
f1s = (10,25,29,17,46,2,116)’
£ 132 = (6,13,28,16, 16,5, 273)
f1ss = (0,11,11,6,5,0,82)'

fa1 = (22,25,58,53,40,45)’
fa12 = (10,26, 32,20, 29, 379)’
fo1s = (9,24,13,19, 14,204
Faor = (24,24,28,30,25,106)'
Fage = (12,20,14,17, 16, 409)'
faa3 = (13,18,19,19,13, 238)'
fos = (13,15,32,19,17,107)'
)

13,0,24, 4, 323)’
5,5,14,11,150)’

Fazo = (11,13,22,17,12, 319
Foss = (4,1,11,6,6,117)
fa11 = (34,16,50,23,54)
Fapo = (19,2,32,24,317)
£ 313 = (15,16,17,10,199)
f a9, = (19,18,38, 16, 75)’
f 390 = (16, 14,25, 10, 263)’
F 03 = (5,12,20,7,195)
f 331 = (28,16,22,12,98)’
= (
(

f333—

£ 1 = (40,30, 30,50)’

fao = (9,14,27,301)

fas = (22,16,12,222)'

4o = (24,30,29,81)
(

fa00 = (14,15,12,307)’
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F 103 = (16,16,27,228)’
F s = (20,22,28,119)
£ a3 = (19,12, 26, 369)
fas3 = (11,11,16,171)

/

The vectors z; ©=1,2,3,4

12

17 12 12
17

24 17
28

34 34 28

37

of upper class boundaries for the it* entry group are
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From the estimated regression parameters, survival model parameters can be found for each

combination of the levels of AGE and SCORE as well as for the baseline distribution. The

estimated regression coefficients of the regression model with two risk factors AGE and
SCORE are reported in Table 5.29.

Table 5.29: Fitting a regression model with two risk factors

Regression model
Effect Maximum likelihood | Log-logistic =~ Weibull
estimates

Baseline mean InXg =1In)g -8.550810 -7.709833
Age [18;35) Ba, 0.205367  0.212709
Age [35;45) Ba, -0.011853  -0.014725
Age [45+) Bas -0.193514  -0.197984
Score 'Low’ B, 1.047861  0.897721
Score 'Medium’ B, -0.714941  -0.612472
Score 'High'’ B, -0.332746  -0.285249
Constant shape a 2.249510  1.938292

The estimated lambda parameters of the nine survival distributions for the nine combinations

of AGE and SCORE levels are

AaB, = exp(lno + Ba, + Bs,)
Aayp, = exp(Ino+ B4, + Ba,)
A, = exp(lno + Ba, + Ba,)
Aap, = exp(Ino+ Ba, + Ba,)
AaB, = exp(In)o+ Ba, + BB,)
éAzBs = exp(ln 50 + /QA2 + gBa)
A, = exp(In)o+ Ba; + Bs,)
Aasp, = exp(Ino+ Ba; + Bs,)
/\A3B3 = eXp(ln Ao + ﬂAa + ﬁBs)
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with the same estimated alpha parameter &. These parameters are summarized for each

combination of AGE and SCORE levels in Table 5.30.

Table 5.30: Parameters of a survival model for each combination of AGE and SCORE

levels

Survival model
Combination of || Maximum likelihood | Log-logistic ~ Weibull
Age and Score estimates

Age [18;35) In A4, B, -7.297757 -6.599403
and Low score Qa 2.249510 1.938292
Age [18;35) In A4, B, -0.060383 -8.109596
and Medium score a 2.249510 1.938292
Age [18;35) In A4, B, -8.678188 -7.782373
and High score a 2.249510  1.938292
Age [35:45) In Ay, B, -7.514976  -6.826837
and Low score a 2.249510 1.938292
Age [35:45) In Ay, B, -9.277603 -8.337030
and Medium score Q 2.249510 1.938292
Age [35;45) In 4,5, -8.895408 -8.009807
and High score a 2.249510  1.938292
Age [45+) In Ay, -7.696638 -7.010096
and Low score Q 2.249510 1.938292
Age [45+) In Ay, B, -0.450265 -8.520288
and Medium score a 2.249510 1.938292
Age [45+) InAg,B, -0.077070 -8.193066
and High score a 2249510  1.938292
Baseline In )\ -8.55081  -7.709833

a 2.249510  1.938292

A joint histogram to the data of each combination of AGE and SCORE levels over the

four entry groups is needed to make a graphical representation of the fitted models for
each combination of AGE and SCORE levels. Table 5.31 gives the nine sets of fitted joint
frequencies for the nine combinations of AGE and SCORE levels. This fitting was done by

maximum likelihood estimation subject to constraints imposed by the experimental design.

The Wald test and discrepancy value measure the goodness-of-fit.
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Table 5.31: Fitted joint frequency distributions for the nine combinations of AGE and

SCORE levels

Interval Interval of Fitted Joint Frequencies
number survival | Age [18;35) | Age [35;45) | Age [45+)
times Low score Low score | Low score
first [0,12) 108 80 71
second [12,17) 105 86 78
third [17,24) 189 140 111
fourth (24, 28) 130.43421 | 90.690721 | 61.44444
fifth [28,34) 137.52303 | 92.281787 | 107.52778
sixth [34,37) 25.621006 | 16.001571 | 6.508945
seventh [37,00) 137.42176 | 264.02592 | 377.51883
Wald 87.06 38.99 35.20
Discrepancy 0.1045 0.0507 0.0432974
Interval Interval of Fitted Joint Frequencies
number survival Age [18;35) Age [35;45) Age [45+)
times Medium score | Medium score | Medium score
first [0,12) 48 46 49
second (12,17) 54 71 38.000364
third (17,24) 113 73 100
fourth [24,28) 66.789123 43.685567 67.905775
fifth [28,34) 104.46504 71.64433 57.617021
sixth [34,37) 13.00233 16.48731 22.094914
seventh [37, 00) 1358.7435 1224.1828 1206.3823
Wald 34.26 31.51 20.50
Discrepancy 0.0195 0.0204 0.0133
Interval Interval of Fitted Joint Frequencies
number survival | Age [18;35) | Age [35;45) | Age [45+)
times High score | High score | High score
first [0,12) 53 38 20.000115
second (12,17) 69 60 28
third [17,24) 64 90 52
fourth [24,28) 67.610092 | 54.345528 | 29.945937
fifth [28,34) 65.62156 56.219512 | 27.450442
sixth [34,37) 0 20.806025 | 0.0006965
seventh [37,00) 733.76835 | 790.62893 | 496.60304
Wald 20.07 14.81 22.08
Discrepancy 0.0191 0.0133428 0.0338
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Figure 5.16 shows the fitted joint histogram and

group [18;35) and low score.

Figure 5.17 shows the fitted joint histogram and

group [18;35) and medium score.

Figure 5.18 shows the fitted joint
group [18;35) and high score.

histogram

and

Figure 5.19 shows the fitted joint histogram and

group [35;45) and low score.

Figure 5.20 shows the fitted joint
group [35;45) and medium score.

Figure 5.21 shows the fitted joint
group [35;45) and high score.

Figure 5.22 shows the fitted joint
group [454+) and low score.

Figure 5.23 shows the fitted joint

group [45+) and medium score.

Figure 5.24 shows the fitted joint
group [45+) and high score.
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Figure 5.16: Joint histogram and fitted survival distributions for age group [18;35) and low score
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Figure 5.17: Joint histogram and fitted survival distributions for age group [18;35) and medium score
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Figure 5.18: Joint histogram and fitted survival distributions for age group [18;35) and high score

160



DENSITY FUNCTION

205

STAGGERED ENTRY - AGEGR 35-44, LOW SCORE

0.030 - —

0.025 -
/A7<\
0.020 - / |

0.015 -

|
|
0.010 - |
|

0.005 - ~_
——

0.000 , . ] B—— e — e

0 20 40 60 80 100 120 140 160
SURVIVAL TIME (in months)
— jointhist — Log-logistic Weibull

Figure 5.19: Joint histogram and fitted survival distributions for age group [35;45) and low score
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Figure 5.20: Joint histogram and fitted survival distributions for age group [35;45) and medium score
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Figure 5.21: Joint histogram and fitted survival distributions for age group [35;45) and high score
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Figure 5.22: Joint histogram and fitted survival distributions for age group [45+) and low score
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Figure 5.23: Joint histogram and fitted survival distributions for age group [45+) and medium score
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Figure 5.24: Joint histogram and fitted survival distributions for age group [45+) and high score
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5.3.7 Relationship between the indices of the regression and logit
model

Once the parameters of the baseline survival distribution and the nine age-score distributions
have been estimated, estimated hazard and survivor functions, odds of a lapse, odds ratios
and hazard ratios at time ¢ can be calculated in a similar way as at the regression model

with one risk factor (constant shape).

The odds ratio for age group [35;45) and a medium score is the relative odds of a lapse at
time t of a policy, where the age of the policyholder is in [35;45) years and the policyholder

has a medium score , compared to a policy with the baseline characteristics.

As an example , the odds ratio for a lapse of a policy at time ¢ is calculated if the age of

the policyholder is in the age group [18;35) years and the policyholder has a low score.

o dd. ¢
oddsratio, p, () = 05 a B Y /S\AlBl( )
oddsp(t)
where
— 1-S45(0) < ~
odds B = —— L ) -t
A1 B ( ) SAlBl (t) A1B

= odds p, p, (12) = e 7297757 . 122249510 — (181240

o 0.181240
= oddsratios, g, (12) = 0.051768
= 3.501004

This odds ratio of 3.5 is called an index and shows the effect of age group [18;35) and a low
score on the baseline odds of a lapse at time ¢. This effect is multiplicative on the baseline
odds of a lapse. Thus the effect of the combination of this age group and this score group

is to increase the baseline odds of a lapse by a factor 3.5
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The other eight indices for the log-logistic regression model can be calculated in a similar

way.

The relationship between the indices of the nine age-score combinations, obtained from the
log-logistic model, must be compared to the six 'indices’, obtained from the loglinear logit

model for the three age levels and the three score levels.

Recall that the loglinear logit model models

In(odds of a lapse) = p 4 A\AYE 4 A 5CORE

where
U = the overall mean effect, over all AGE levels and SCORE levels
\ACE = effect of the *" level of AGE
A 5CORE —  effect of the j™ level of SCORE.

The odds of a lapse then can be modelled as

e/'L+)‘i AGE+)‘J, SCORE

AiAGE . eAjSCORE

odds of lapse =
= et.e
= geometric mean odds - index4gg; - indexscore;

i=1,2,3 and j=1,2,3.

The six 'indices’ obtained from the logit model for each age level and for each score level

are given in Table 5.32.

Table 5.32: Logit model indices for three age levels and three score levels obtained
from the logit model

Logit model
Effect n Index
t=12 t=24
Baseline odds | 10077 | 0.0537 0.2694
Age [18;35) 3644 | 1.1558 1.1745
Age [35;45) 3425 | 0.9844 0.9981
Age [45+), 3008 | 0.8790 0.8530
Low score 2415 | 2.2622 2.5756
Medium score | 4845 | 0.5757 0.5234
High score 2817 | 0.7678 0.7418

The odds of a lapse of a policy in the first year , with the policyholder in the age group

[18;35) and a low score, is calculated from the logit model as the product of the baseline
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odds and the index of age group [18;35) of 1.1558 and the index of score group 'Low’ of
2.2622 for the first year (t=12), this means

odds 4,5, (12) = 0.0537 x 1.1558 x 2.2622 = 0.1404

odds 0.1404

1+ odds — 1.1doa ~ 1%t

= P(lapse of this policy) =

Thus the odds ratio (relative odds of a lapse of this policy) is calculated by

.1404
oddsratios, g, (12) = odds s, ,(12)  0.140

= basclincodds  0.0537 0102

It is clear that this odds ratio can easily be found by multiplication of the two indices from

the logit model, that is

oddsratioa, g, (12) = index 41(12) X indezp(12) = 1.1558 x 2.2622 = 2.614651

The odds ratio shows the effect of the combination of this age group and this score group
on the baseline odds of a lapse. This effect is multiplicative on the baseline odds of a lapse.
Thus the effect of the combination of this age group and this score group is to increase the

baseline odds of a lapse by a factor 2.614

In the context of survival analysis, this odds ratio can be called an index for age group
[18;35) and a low score. The odds ratios for the nine age-score combinations result in a set
of indices, showing the effect of each combination of age group and score on the baseline

odds of a lapse at time .

The odds ratios (indices) of the nine age-score groups, estimated from the log-logistic or
Weibull regression model, are compared to the odds ratios, obtained from the logit model,
in Table 5.33.



Table 5.31: Comparison of odds ratios (indices): log-logistic and Weibull regression models and logit model

Log-logistic regression model Weibull regression model Logit model
Effect n Odds ratio Odds ratio Odds ratio
t=6 t=12 t=24 t=36 t=60|t=6 t=12 t=24 t=36 t=60 || t=12 t=24
Baseline odds 10077 | 0.01 005 025 062 193 001 006 024 059 25 || 0.05 0.27
Age [18;35), Low score 833 35 35 3.5 3.5 35 {308 322 383 525 176 2.6 3.0
Age [35;45), Low score 769 28 28 28 28 28 244 252 284 351 788 22 26
Age [45+), Low score 813 23 23 23 23 23 203 207 225 262 459 20 22
Age [18;35), Medium score 1758 06 06 06 06 06 0.67 066 065 062 053 07 06
Age [35;45), Medium score 1546 05 05 05 05 05 053 053 051 048 038 06 06
Age [45+), Medium score | 1541 | 0.4 04 04 04 04 |044 044 042 039 030 05 05
Age [18;35), High score 1053 | 09 09 09 09 09 {093 093 092 091 088 | 09 09
Age [35;45), High score 1110 | 0.7 0.7 0.7 0.7 07 1074 074 072 069 0.61 0.8 0.7
Age [45+), High score 654 | 06 06 06 06 06 {062 061 059 056 047 | 07 06

214
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It is clear from Table 5.33 that the odds ratios are constant over time at the log-logistic
regression model, but the odds ratios do not remain constant over time at the Weibull

regression model.

From Table 5.33 follows that one log-logistic regression model provides odds ratios (indices)
for any time value, while a new logitmodel has to be built for a fixed time value, say t=12
months, conditional on a restricted experimental design where all the policies must have an
exposure of at least one year when investigating the lapses of policies in the first year. There
is no such restrictions in the more general experimental design for the log-logistic regression
model where all the policies can be used in the analysis, even those policies with inception

dates very close to the cut-off point.

The same argument holds for the Weibull regression model, except that the odds ratios do

not remain constant over time.

5.3.8 Median lifetimes of the nine survival distributions

The median lifetimes (in months) of the nine survival distributions can also be estimated

and compared with the baseline median. The medians are reported in Table 5.34. It is

Table 5.34: Median lifetimes of the nine survival distributions

Regression miodel

Log-logistic Weibull
Effect median lifetime | median lifetime
Baseline 44,75 4419
Age [18;35), Low score 25.64 24.92
Age |35;45), Low score 28.24 28.02
Age [45+), Low score 30.61 30.80
Age |18;35), Medium score 56.13 54.31
Age |35;45), Medium score 61.82 61.08
Age [45+), Medium score 67.02 67.13
Age (18;35), High score 47.36 45 .88
Age [35;45), High score 52.16 51.59
Age [45+), High score 56.55 56.70

evident from Table 5.34 that the log-logistic and Weibull models deliver the same results.
The estimated median values of the nine combinations of age and score levels suggest that
the policy of a policyholder with a low score, coming from any zge group, has a high risk
to lapse. The policy of a policyholder in agegroup 45+ with a medium score has the lowest

risk to lapse, lower than the combination 45+ and a high score.
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