Chapter 3

PARAMETRIC MODEL FOR A
SINGLE SAMPLE FROM A
HOMOGENEOUS POPULATION

3.1 Introduction

Under a univariate model, a distribution is fitted to the lifetimes without using any covariates.

The model must describe the basic underlying distribution of lifetimes.

Let 7" be a non-negative continuous random variable representing lifetime from a homoge-

neous population. Y = 1In(T) is used to represent the log-lifetime.

The standard way of fitting parametric models to an observed set of survival data is to use
the method of maximum likelihood (refer to [5, page 319-322]).

A new method of fitting parametric models to an observed set of survival data will be
introduced in this chapter and is called maximum likelihood estimation subject to con-

straints.
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3.2 Standard Method of Maximum Likelihood Estimation

3.2.1 Introduction

In the univariate case, a log-linear model (a linear model in log-lifetime) could be fitted to
a survival data set. This model is of the form

Y=InT =p+oW

where W is the error distribution, p is the location parameter and o is the scale parameter.

The standard way of fitting such a model to an observed set of survival data is to use the
method of maximum likelihood.

3.2.2 Likelihood function for the linear model in log-time

The likelihood function for this linear model in log-time may be derived as follows.
Consider the n pairs (y;,6;) 4= 1,2,...,n in the data set with y; = In(t;).

The basic form of the likelihood function for random right-censored continuous data is,
from Equation 2.6 .6, equal to

D) = TG [Srw)
n (5 1—5~
_ S L P bl
_ 1;1 [ a] [SW( . )] (3.2.1)
The log-likelihood function for random right-censored continuous data is then
InL(p,0) = 36 - In [fw(yl_ ]+Z (1=6)-1n [sw(yla ")] (3.2 2)

with

the first sum over observed lifetimes (uncensored observations)
the second sum over right-censored observations.

The basic form of the likelihood function for interval-censored data follows from Equa-
tion 2.6 .9 as

me==ﬁm@Ww&wm@ﬂ—&mﬁw&w-&wm@
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with b; the lower end of a censoring interval.

The log-likelihood function for interval-censored data is

InL(p,0) = Z&-ln[fW(yi— ]"‘Zl_ ' ln[Sw y’_ ]
Z((Si)-ln[l—s ]+Z 1-6 ln[Sw(b

Yi — K
S
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(3.2 4)
with
the first sum over observed lifetimes (uncensored observations)
the second sum over right-censored observations

the third sum over left-censored observations
the fourth sum over interval-censored observations.

3.2.3 Maximum likelihood estimators of the log-linear parameters

[5] shows how maximum likelihood estimators of the log-linear parameters 1 and o associated
with

e the extreme value distribution, the error distribution for the Weibull model
e the logistic distribution, the error distribution for the log-logistic model

e the normal distribution, the error distribution for the lognormal model

can be found numerically by the Newton-Raphson procedure (refer to [21]). When the
iterative procedure has converged, the variance-covariance matrix of the log-linear parameter
estimates can be approximated by the inverse of the information matrix, evaluated at the
parameter estimates. The square roots of the diagonal elements of this matrix are then the
standard errors of the estimated values of the log-linear parameters.

[4] shows how the LIFEREG procedure of the SAS statistical package computes these maxi-
mum likelihood estimators of the log-linear parameters p and o and explains how the SAS
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output must be interpreted. SAS allows for right-, left- and interval-censored data. The SAS
programs appear in Appendix A. The variance-covariance matrix of the log-linear parameters
u and o, obtained from the observed information matrix, are also available in the SAS
package.

The invariance property of the maximum likelihood estimator provides that the maximum
likelihood estimators of A and « at the Weibull and log-logistic are then given by

Q»

A —i 1
)\=exp{—éﬁ} and &= — (3.2 .5)

An application of this standard technique to a reallife insurance company data set is done
in chapter 5.

Applying the method of statistical differentials, also called delta method ([13, page 69-72]),
leads to formulaes for the standard errors of the estimates and the covariance between the
two estimates.

var(\) = exp <_?M> . {Umﬂ(#) +ﬂ2'ua7'(a) - 2@60"’{”’0)} (3.2 .6)
o)

G2 a4 o3
. var(4)
var(d) = =1 (3.2.7)
$ A — [ cov(ft,0) . var(o
cov(A\, &) = exp (%) . l ((}3 ) _ f &g )} (3.2 .8)

Once maximum likelihood estimates of the parameters p and o, or equivalently, A and «
are computed, estimates of the survivor function and the hazard function are available for
the distribution of T' (or Y = In(T')), that is the Weibull (or extreme value), log-logistic (or
logistic) and lognormal (or normal).

3.3 MLE subject to Constraints - A Fixed Censoring Time

3.3.1 Introduction

Proposition 1, which is proved in [11], provides a method of finding the ML estimate for the
mean vector of the exponential family, subject to certain constraints on the mean vector.
From the estimate of the mean vector the estimates of the parameters in the model are

computed.

Models can be easily formulated in terms of the implied constraints, which may be linear or

non-linear in p.
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Proposition 1

Consider a random vector y, with probability function belonging to the exponential family.
Let g(p) be a continuous vector valued function of u, for which the first order partial

derivatives exist.

Let G, = 99() be the derivative of g(p) with respect to p and G, = 89—“-)—
O ey
The ML estimate of i subject to the constraints g(u) = 0, is given by
.=y - (G.V,) (G V,.G,)"g(y) +olly — pl) (3:3.1)

This result implies that the MLE of 1 must be obtained iteratively.

The variance-covariance matrix V could be known, or it could be some function of u, say
V.. The iterative use of the estimation procedure thus depends on the form of G, and V..

The matrix GyV#GL in Equation 3.3 .1 should be non-singular, and therefore the inverse,
denoted by x, is any generalized inverse (refer to [31, page 123]).

An expression for the asymptotic variance-covariance matrix of the estimator fi, is given in

Proposition 2.

Proposition 2

The asymptotic variance-covariance matrix of fi, is given by
cov (fie) = Vi = (Gu V) (GuV,.G,) GV, (3.3 .2)

In [10] these propositions are applied to provide a method for fitting certain continuous prob-
ability distributions to an observed frequency distribution. The method requires that some
function of the cumulative distribution function must be written as a linear model. The
estimation algorithm described in [11] is applied to find the maximum likelihood estimates of
the parameters in this linear model. From these estimates, the estimates of the parameters
of the distribution can be found. This fitting method will be described in the notation of
the survival analysis problem under consideration, regarding the lapses of policies.

3.3.2 Notation for a fixed censoring time

Consider the simple experimental design, as described in [38], where all policies enter at the
same time with C the pre-assigned fixed censoring time. Instead of observing X, Xs, ..., X,
only Ty, T5, ..., T, are observed where
T X, if X;<C
’ c if X;>C.



I Parametric Model for a Single Sample from a Homogeneous Population l 32

The survival data, based on a sample of size n, can then be represented by pairs of random
variables (Tj,6;) where T1,T5, ..., T, are independent identically distributed random varia-
bles, each with distribution function F' and density function f. §; is the survival status of
the j® policy and indicates whether the lifetime for the j** policy corresponds to a lapse
(6; =1) or is censored (6; = 0).

A frequency distribution is formed when the observed values of the random variables 77,75, ..., T,
are grouped into k adjacent, non-overlapping fixed lifetime intervals [z;_1;2;) j=1,2,...,k
with g = 0, 24,1 = C and z; = oo, as shown in Table 3.1.

Table 3.1: Relative frequency distribution of survival data - fixed censoring time
Interval Lifetime Frequency | Relative Frequency | Probability | Vector of Upper
number Intervals Vector Vector Vector Class Boundaries

f D ™ x
first [0,21) fi P1 s! T

second [.’131, .’L‘Q) f2 D2 YD) T9

third (22, 23) f3 J2 LE T3
(k — 1) | [z5—2, Tp—1) Jr—1 Dk—1 Th—1 Tp-1

ki [xk—l, OO) fr Pk Tk
In Table 3.1, the last interval in the second column is an open interval containing all the
censored lifetimes. The z%s, j = 1,2,...,k — 1 represent the upper class boundaries and
f; denotes the observed frequency for the 4% lifetime interval with n the total number of
observations j=1,2,... k.
Define

x = (®,Z,...,2,-1) asthe (k—1)x1 vector of upper class boundaries,

f = (fi,fe,---, fx) asthe kx1 frequency vector and

p = Ji as the k x 1 relative frequency vector.

n

f is a discrete random vector with a multinomial(n, 7) distribution, where 7w = (71, g, ..., 7%)’

and 7; is the probability that an observed lifetime falls in the it" lifetime interval.
The relative frequency vector p is an observed probability vector from a multinomial popu-
lation with np = f being multinomial(n, ) distributed.

E(p) = = (3.3 .3)
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Cov(p) = V= % (diag(m) — 7] (3.3 4)

Note that p is the MLE of 7 in the case of no constraints.

The MLE of 7 should be determined in terms of constraints imposed by the survival distri-
bution to be fitted.

Note that f is a discrete random vector with a multinomial(n, 7) distribution and that the
multinomial distribution is a member of the exponential family. Therefore Equation 3.3 .1
of Proposition 1 in [11] can be reformulated in terms of the survival analysis problem under

consideration.

The MLE of 7 subject to the constraints g(7) = 0 is

F.=p— (G- V.) (G, V. G,)" g(p) (3.3 .5)
with 5 5
G, =29 4 g - 9g(m) (3.3 .6)
or o T=p

This result implies that the MLE of w must be obtained iteratively by means of double ite-
rations. The variance-covariance matrix V to be used is the estimated variance-covariance
matrix of the multinomial distribution as stated in Equation 3.3 .4.

A double iteration takes place over p and 7. For every value of 7 the iteration is performed

over p to obtain a new estimate for 7.

The observed relative frequency vector p = p, is used as an initial estimate for 7 and p.
In the first iteration over p, the p in Equation 3.3 .5 is replaced by this initial estimate,
while the V. in Equation 3.3 .5 is estimated by VPO = % [diag(py) — PoPy] and the G, in

Og(m . This results in a new estimate for 7.
T lw=p,
In the second iteration over p, only p in Equation 3.3 .5 is replaced to obtain the second

Equation 3.3 .5 is replaced by G,, =

- estimate for 7, while V. and G, are kept constant at /Vpo and G,,, since iteration at this
stage is over p. This is repeated until convergence is attained over p. The final estimate
for  at convergence during this first stage of iteration over p then becomes the second
estimate for 7 in G, and V. Once again iteration takes place over p, again starting with
the observed relative frequency vector p = p, as estimate for 7w and keeping V. and G,
constant at the estimated value at convergence. lteration over p gives the third estimate
for m in G, and V. and once again iteration takes place over p, again starting with the
initial p, vector as estimator for 7v and keeping V', and G, constant at the new estimated
value at convergence. This procedure continues and convergence will be attained when the
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final estimate for 7 in the iteration over p corresponds with the final estimate of 7 in the
iteration over 7. This value then will be the MLE for 7.

Define 7g as the cumulative sum vector of the 7;'s. Hence
!

Ty + o

Tg=8S XmT=

T+ Tyt T

where S is a (k — 1) x k matrix of the form

1 0 0 --- 0 O
1
1 0 0 O
S=|11 1 0 0 and  w=|
1 1 1 1 0 T
Let
I
)
xr =
Tr-1
then the cumulative distribution function
Flz)=Sxm=mg (3.3.7)
It follows that
z=F(rg) (3.3 .8)

specifies the constraints on the elements of g and hence on 7.

By using Equation 3.3 .2 of Proposition 2, the asymptotic variance-covariance matrix of 7,

is
cov (7)) =V~ (G, V) (G, VG,) G,V (3.3.9)

Next it will be shown how the estimation procedure may be utilized to fit continuous survival
distributions, such as the Weibull, log-logistic and lognormal to grouped survival data.
For the Weibull and log-logistic survival distributions some function of the survival function
S(z) = 1 - F(z) = 1 — wg may be written in terms of a linear model, from which
the parameters of the survival distribution may be estimated. For the lognormal survival
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distribution some function of the cumulative distribution function of the standard normal
distribution may be expressed in terms of a linear model, from which the parameters of the

lognormal distribution may be estimated.

The procedure to find the ML estimates of these three survival distributions can be easily
implemented using a matrix algebra package, for example the SAS/IML procedure of the
SAS System.

3.3.3 Fitting of a Weibull distribution to grouped survival data

From Equation 2.4 .8 follows that

In(-InS(¢)) =InA+alnt (3.3 .10)

where ¢t denotes the continuous survival time.

In the current notation for grouped survival data in terms of the vector of upper class

boundaries, Equation 3.3 .10 becomes

In(—InS(z))=InA-14+a-lnx (3.3 .11)
or from S(z) =1 — F(x)
In{-In(l1-F(z))}=mA-1+a-Inz (3.3 .12)
or from Equation 3.3 .7
In{-ln(l—mg)} = InA-1+a-nz (3.3.13)
1 Inz,
1 1
= InA\- +a- v
1 Inzr_1
1 Inx
B 1 Inz, In A
o .« .. e a
1 Inxzr,

= (1,lnz)- ( lr;)\ )

S n{-lh-me)} = X -(1“> (3.3 .14)

(07
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Equation 3.3 .14 is a linear model in the parameters In A and «. According to the general
result for a linear model y = X3 + € where E(y) = X3 is equivalent to C- E(y) =0
with C =1 — X(X'X)~1X"’, Equation 3.3 .14 is equivalent to

(I- Xy(Xy/X1) "' Xy) In(-ln[l—7s]) = 0

N

v

C ‘In(-In[l—mg]) = O
0

N /

g(m) =

C is the projection matrix orthogonal to the columns of the design matrix X;. Note that
CXl = O

The function g(7) = 0 satisfies the conditions of Proposition 1 and the estimation algorithm
in [11] can be used to estimate the parameters A and « of the Weibull distribution.

To summarize, the constraints imposed by the Weibull distribution are specified by

g(m)=C.In{-In(1 —75)} = C.In{~-In(1-S-m)} =0 (3.3 .15)
with
C=1-X,(X/X,)'X, and X;=(1,Inz) . (3.3 .16)

The derivative of g(7) with respect to 7 is given by

- o oo () oo () 9
— _C.- diag (ﬁ)-dmg(l_ﬂs)-s (3.3 .17)
_ _C.D,"'.-D,'-S (3.3 .18)

where D and D, are diagonal matrices with the elements of In(1 — 7g) and (1 — 7g),

respectively, on the main diagonal and

1 0 0 0 O
1 1 0 0 O
S = 1 1 1 0 0
1 1 1 1 0

From Equation 3.3 .5 follows that the MLE of 7, the vector of probabilities, is
7.=p— (G, V) (G,VG,) - C.In{—In(1 - S - p)} (3.3 .19)
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with p = i where f = (f1, fo,..., fx) is the frequency vector being multinomial(n, 7)
distributed.

The variance-covariance matrix 'V to be used is the estimated variance-covariance matrix

of the multinomial distribution, which follows from Equation 3.3 .4 as

V =~ [diag(p) — pp] (3.3 20)

Since Equation 3.3 .19 is still a function of the unknown parameter 7, the double iterative
procedure in [11] must be implemented. Once the iterative procedure in Equation 3.3 .19
has converged, the estimated parameters of the Weibull distribution can be solved from

«

The estimated lambda parameter of the Weibull distribution then is
X = exp(In \)

and the estimated alpha parameter a.

The SAS/IML program to fit a Weibull distribution to grouped survival data with a fixed
censoring time appears in Appendix A.

3.3.4 Fitting of a log-logistic distribution to grouped survival data

From Equation 2.4 .17 follows that

In (%) =InA+alnt (3.3 .22)

where t denotes the continuous survival time.

In the current notation for grouped survival data in terms of the vector of upper class

boundaries, Equation 3.3 .22 becomes
1-S5(z)\ F(x)
1“( S(x) ) - ln(l——F(a:)
- n(75)
- ].—-ﬂ's

= In(wg) —In(1—7g)
= InA-1+4+a-lnz (3.3 .23)
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1 In z,
1
= InA- tao.| DT
1 Inxi_q
1 Inz
B 1 Inzx, In A
- ... a
1 Inzp
= (1,lnz)- ( A )
«
g In A
N ln( ) —ln(ms)—In(l—7s) = Xi - (3.3 .24)
1-— Ts (67

Equation 3.3 .24 is a linear model in the parameters In A and a.

Similar to the case of the Weibull distribution, Equation 3.3 .24 is equivalent to

(X000 (7 75) = o

V=

C -ln( s > =0
].—71'5

~ /

g(m) =0

The function g(7) = 0 satisfies the conditions of Proposition 1 and the estimation algorithm
can be used to estimate the parameters A and « of the log-logistic distribution.

To summarize, the constraints imposed by the log-logistic distribution are specified by

_ Ts ) _ _S7 |_ ) —In(l—S - 7)] =
g(w)_c.ln{l_ﬂs}_c.1nl1_s_7r]_C.[ln(s 7)—In(l—S-m)] =0
(3.3 .25)
with
C=1-X,(X/X,)'X,and X;=(1,Inz) . (3.3 .26)

The derivative of g(7) with respect to 7 is given by

_ 0g(m)
Gr = or

- oo () - (k) 9]
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= C- [diag (;‘_—1;) + diag (1 _17‘_5)] -S (3.3 .27)
= C.[Ds7'+ Dy S (3.3 .28)

where D3 and D, are diagonal matrices with the elements of g and 1 — 7rg, respectively,

on the main diagonal and

1 0 0 O
1 1 0 0 O
S = 1 1 1 0 0
1 1 1 1 0

The MLE of 7, the vector of probabilities, is in this case

* S-p
~ _ o ] A .
f.=p— (G:V) (G, VG,) C'ln{—_—l—S-p} (3.3 .29)

with p = 7 where f = (f1, f2,---, fx) is the frequency vector being multinomial(n, )
distributed. The variance-covariance matrix V to be used is again the estimated variance-

covariance matrix of the multinomial distribution, namely

V = = [diag(p) - pp] (3.3 .30)

Since Equation 3.3 .29 is still a function of the unknown parameter 7r, the double iterative
procedure must be implemented. Once the iterative procedure in Equation 3.3 .29 has
converged, the estimated parameters of the log-logistic distribution can be solved from

In\ S .7,
( ‘; >=(X1/X1)—1X1f.1n{ﬁ}. (3.3 .31)

The estimated lambda parameter of the log-logistic distribution then is
X = exp(In \)

and the estimated alpha parameter &.

The SAS/IML program to fit a log-logistic distribution to grouped survival data with a fixed
censoring time appears in Appendix A.

3.3.5 Fitting of a lognormal distribution to grouped survival data

From Equation 2.5 .10 follows that

T ~ lognormal(p,0?) <= In(T) ~ normal(y, c?). (3.3 .32)
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where T' denotes the continuous survival time.

In the current notation for grouped survival data in terms of the vector of upper class

boundaries, Equation 3.3 .32 becomes

x ~ lognormal(y,0?) <= Inz ~ normal(u,o?)

Inz—p-1
%—— ~ normal(0,1). (3.3 .33)

From Equation 3.3 .8 and Equation 3.3 .33 follow that

Inz —p.l
——t= =7 (mg)
o

specifies the constraints on the elements of wg = 7.5 and hence on 7 where ®(-) is the
cumulative distribution function of the standard normal distribution.

= o (mg) = — ‘Inz (3.3 .34)

=& (ms) = X,- ( - ) (3.3 .35)

. . . . 1
Equation 3.3 .35 is a linear model in the parameters -—/é and 7.

Equation 3.3 .35 is equivalent to

(I - X1 (X/X1)7'Xy) @7 (ms) = 0O

C 'CI>_1(71'5) =0
g(m) =0

The function g(m) = 0 satisfies the conditions of Proposition 1 and the estimation algorithm
can be used to estimate the parameters . and o2 of the lognormal distribution.

To summarize, the constraints imposed by the lognormal distribution are specified by

g(w)=C.d  (ms) =C.&27 (S -m) =0 (3.3 .36)
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with
C=1I-X,(X/X,)'X,and X, =(1,lnz) . (3.3 .37)

The derivative of g() with respect to 7 is

_0g(m) _ 0 o qq
Gr=—F—==C- s ®'(S-m)8 (3.3 .38)

In order to find %@‘1(5 - ) consider the scalar case. Let

m=® (M) = ®(z) .

g
Then &~ Y(m;) = ln(a:ia) — P — 4, so that
87'('1‘(1) (WZ) N _8—7;: - 671','/62,; a ¢(Z,) ’

with ¢(-) the probability density function of the standard normal distribution.

Applying this result to the vector of derivatives, Equation 3.3 .38 becomes

1

)

Since G, depends on u and o in the iterative procedure, these parameters will be estimated

G,=C- S. (3.3 .39)

within the iterative stages and the final estimates will be obtained on convergence.

The SAS/IML program to fit a lognormal distribution to grouped survival data with a fixed
censoring time appears in Appendix A.

3.3.6 A measure to compare the fit of survival distributions

A simple measure of discrepancy for comparing the fit of the survival distributions, is the
statistic

Xy
D,» = W (3.3 .40)

X
n
where X%, is the Wald goodness of fit statistic (refer to [1]).

The Wald statistic in the survival analysis context is defined as

Xw =9(p) - (G, VG,)" - g(p).
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with V = %[dz’ag(p) — pp'] the estimated variance-covariance matrix of the multinomial

distribution.

When fitting a Weibull distribution

9(p) = C.In{-In(1-S-p)}

and

. 1 , 1
Gp = -—C' dzag (m) . dzag (1——Sp) . S

When fitting a log-logistic distribution

g(p)=C.[In(S - p) —In(1 - S - p)]

. 1 _ 1
G,=C- [dwg (S—p) + diag (m)} - S.

When fitting a lognormal distribution

and

g(p) = C.27Y(S - 7)
and

1
G,=C- S

)
P

with 1, and o, the estimated values of x and ¢ at the first iteration.

The number of degrees of freedom equals the number of independent constraints imposed
by the model. In general, a value of D,2 less than 0.05 may be regarded as a good fit.

The Pearson's x? statistic and the maximum likelihood x? statistic (refer to [38, page 16-18]
are asymptotically equivalent to the Wald statistic.

The calculation of the Wald statistic and the associated discrepancy is shown in the SAS/IML
programs in Appendix A.
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3.4 MLE subject to Constraints - Staggered Entry

3.4.1 Introduction

Consider the following experimental design as illustrated in Figure 3.1. Policies enter the
study at different times (staggered entry). The event to be occurred is a lapse. The lifetime
of a policy is measured from inception date up to the lapsing date. If the lapsing date is
prior to a fixed termination date (cutoff date) of the study, determined in advance, then the
lifetime is observed (an uncensored observation). If a policy is still in force (alive) when the
termination point is reached, the lifetime of this policy is right-censored. Random entries
to the study are assumed. This type of censoring is known as random right-censoring.
The censoring is noninformative in that the lapse and censoring times are independent.

3.4.2 Notation for staggered entry

C; is the potential censoring time for the 7t policy, associated with lifetime X;.
C1,Cy, ..., C,, are independent identically distributed random variables, each with distribution
function G and density function g. A further assumption that X; and C; are independent is

made.

The survival data, based on a sample of size n, can then be represented by pairs
(T1,61),(T5,62), ..., (T, 6,) where

T; = min(X;, C;) for the 5% policy
5 = 1 if X; <C; ,thatis, Xj is not censored
10 if X;>0C; ,thatis, X; is censored

T1,T5, ..., T, are independent identically distributed random variables with distribution func-
tion F if T; = X and distribution function G if T; = Cj.
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X Status = a lapse
v Observed lifetime

[ 1 1 !

I T I T
Entry 1 Entry 3

_Entry 2 V Entry 4

Entry dates Cutoffldate

T Status = in force
Censored lifetime

Figure 3.1: Experimental design for staggered entry of policies
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To set notation for the staggered entry case, assume for illustration purposes four different
entry times for the policies. The lifetimes of the n; policies that enter the study at the
first entry time (called the first sample of size n; ) can be grouped into k adjacent, non-

overlapping fixed intervals
Ij = [wj_l;a:j) j'——_- 1,2,...,]{/‘
with zop = 0 and zx = oo. The last interval is an open interval containing all the censored

lifetimes of the first sample.

The lifetimes of the ny policies that enter the study at the second entry time (called the
second sample of size ny ) can be grouped into (k — 1) adjacent, non-overlapping fixed

intervals
IJ =[{I,‘J_1;x]) ]:1,2,.,k_1

with g = 0 and z;_; = co. The last interval is an open interval containing all the censored

lifetimes of the second sample .

The lifetimes of the ng policies that enter the study at the third entry time (called the third
sample of size ng ) can be grouped into (k — 2) adjacent, non-overlapping fixed intervals

Ij = [.’L‘j~1;$j) j = 1,2, ceny k—2

with g = 0 and x;_5 = co. The last interval is an open interval containing all the censored

lifetimes of the third sample.

The lifetimes of the n4 policies that enter the study at the last entry time (called the fourth
sample of size ny ) can be grouped into (k — 3) adjacent, non-overlapping fixed intervals

Ij = [fL’j_l;.'L'j) j = ].,2, ,k‘ -3

with o = 0 and z;_3 = co. The last interval is an open interval containing all the censored

lifetimes of the fourth sample.

Four frequency distributions are formed when the observed and censored lifetimes of all the
policies are grouped into the different lifetime intervals. The total number of observations

in the data set is n = ny + ng + n3 + ng4.
The four vectors of upper class boundaries are defined as follows:

k — 1) x 1 vector (sample 1)

(k-1)

"is a (k —2) x 1 vector (sample 2)
(k — 3) x 1 vector (sample 3)
(k—4)

k —4) x 1 vector (sample 4)
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The four relative frequency vectors are observed probability vectors from four independent
multinomial populations. Let p,, py, p; and p, be the four relative frequency vectors.

P1 = (p11,P12,P13,--»P1k) IS an observed probability vector (sample 1)
Dy = (P21,P22,D2.3, --,P2k—1) IS an observed probability vector (sample 2)
P31,DP32,P33, - D3 k—2) is an observed probability vector (sample 3)

p3 = (
Dy = (Paj,Pa2,P43, -, Pak—3) is an observed probability vector (sample 4)

Each sample is from a multinomial population ¢=1,2,3,4 with
E(p;) = m;
Cov(p,) = V; = 1 [diag(m-) - im‘rré]
n; n;

where 7y = (711,712,713, ...,T) is @ k x 1 probability vector
Ty = (21,22, 23, ..., T2 k1)  is @ (kK — 1) x 1 probability vector
3 = (731,732,733, ..., T3 k—2) is a (k — 2) x 1 probability vector
4 = (T4, T2, 743, ..., Tak—3) isa (k— 3) x 1 probability vector

m; ; is the probability that an observation from sample 7 will fall in the j* interval, that is
the interval probability of the ji* interval from sample i i=1,2,3,4 j=1,2,... k.

=  p;, Py, P3 and p, are four observed probability vectors corresponding to
n;p;, being multinomial(n;; ;)

with n; the number of observations in the i** sample i =1,2,3,4 .
Table 3.2 gives the relative frequency distributions of the four samples.

The vectors ¢; 3 =1,2,3,4 of upper class boundaries for the i** sample (entry group)

are
z
x1
Z2 z1
) T
x3 T2
T3 T2
oo .’DB
T = Ty = T3 = and Ty = T3
Tk—4
Tp-3
Tr—-2

Tr—-1
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Define the combined vector of relative frequencies (combined observed probability vector)
as p’ = (p!,ph.ps,p}) and the combined probability vector as ' = (7}, 75, 75, 7)).

Note that p is the MLE of 7r in the case of no constraints. 7 is to be estimated under
certain constraints.

The MLE of 7 should be determined in terms of

e constraints imposed by the experimental design

e constraints imposed by the survival distribution to be fitted



Table 3.2: Relative frequency distributions of survival data - staggered entry
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Interval Lifetime Intervals Observed Probability Vector Probability Vector Vector of Upper Boundaries
number Entry 1 Entry 2 Entry 3 Entry 4 Dy Pa ‘ D3 l Dy T ‘ ™9 ‘ w3 Ty T 5 T3 T4
first [0,21) [0,21) [0,21) 0,z1) D11 | D21 | P31 I D41 T3 | 2,1 | 3,1 | 4,1 zy I z1 z] | z
second [$1, 332) [131 , 1‘2) [561, $2) [331, 932) P12 P22 D32 P42 71,2 72,2 73,2 74,2 Z2 1)) T2 Z2
third [z2,23) [x2,3) [z, 23) [z2,23) P13 P2,3 P33 P43 71,3 2,3 3,3 T4,3 T3 T3 T3 T3
Tk—4
(k=3)"  [zk_s,7k-3) | [@k-a,Th-3) [Th—a,Pk—3) | [Th-a,00) P1,k—3 DP2k-3 P3,k—3 P4,k-3 | T1,k—3 T2k—3 T3 k-3 T4k-3 Tk-3 Lk-3 Tk-3
(k—2)" | [xp—3, Tp-2) | [@k—3, Th—2) [rg_3,00) DP1k—2 | P2,k—2 | P3,k—2 T1,k—2 | T2,k—2 | T3,k—2 Tk—2 | Th—2
(k- 1)th [Th_2,2k_1) [€—2,00) Pilk—1 | P2,k~1 T1k—1 | T2,k—1 Th—1
Kt [Tg—1,00) D1,k 1,k
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3.4.3 Definition of Constraints

Constraints imposed by the survival distribution to be fitted

Constraints imposed by the Weibull distribution

A Weibull distribution with parameters A and « subject to the constraints g can be written

from Equation 3.3 .13 as

In(—In(l—-mg)) = InA-1+a-lhe

Constraints imposed by the log-logistic distribution

A log-logistic distribution with parameters A and a subject to the constraints g can be

written from Equation 3.3 .23 as

In(mg) —In(l—-mg) = InA-1+a-lnzx

Constraints imposed by the lognormal distribution

A lognormal distribution with parameters p and o? subject to the constraints 7, can be

written from Equation 3.3 .34 as

¢ lmg) = —§-1+é-lnw
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Constraints imposed by the experimental design

Consider Figure 3.2, illustrating the constraints imposed by the experimental design.
o M, = M= m3;= m; Jj=12,..,k—4

® M+ Mg—1+T1he—2+T1 k-3 = Tokp-1+T2k-2+ T2k-3

= M3k—2+ M3k-3

= T4,k-3
® Tik-2 = T2k-2
T1,k—3 = T2k-3
where m;; = probability of an observation from sample 7 will fall in the 4t interval

interval probability of " interval from sample ¢ :=1,2,3,4 j=1,2,..

These constraints can be written as

o 1l:-m;—1-m,;=0
1'7T1,j_1'7r3,j:0
1'7T1,j_1'7r4,j:0 ]:1’2”k_4

ol -myp+1-mp1+1-mpo+l-mp3—1-mp1—1-mMopo—1-mp 3=0
1 mp+1-mpq+1-mp o+l -mp3—1-m3p20—1-m3;,3=0
lL-mp+1-mpa+1-mpot+l-mp3—1-mp3=0

ol -mpo—1-mp =0

1-mp—3—1-mp3=0

50
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(k-3) ™ interval (k-2) ™ interval (k-1) ™interval  k " interval
N AY
h ~ o NV — —~ ~
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< e >
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(k-3) ™ interval (k-2) ™ interval
< b
S— g

S
(k-3)™ interval

Figure 3.2: Constraints imposed by the experimental design

Sample 1

Sample 2

Sample 3

Sample 4
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These constraints in matrix form are G- 7w = 0 with 7’ = (w7}, =}, 7)) where

™y = (711, T2, M 3,...,T1k) IS @ k X 1 probability vector

3

o = (ma1,M22,M23,...,Mak—1)" is @ (k — 1) x 1 probability vector

(
(

3= (731,732,733, ..., T3 k—2)" is @ (k —2) x 1 probability vector
(

3

T4 = (T4, Ta,2,Ta3, ..., Tak—3) is a (k—3) x 1 probability vector

and

I 0 0 O O —I 0 0 0 0 0 0 0 0
I 0 0 O 0 0 0 0 —I 0 0 0 0
I 0 0 0 O 0 0 0 0 0 0 0 I 0

=)

001 1 1 1 0 -1 -1 -1 o 0 O 0 0
001 1 11 0 0 0 O 0 -1 -1 o 0
001 1 1 1 00 0 0 O o 0 0 0 -1

00 01 00 o0 0 -1 0 o 0 0 0 0
001 0 00 0 -1 0 O 0 0 0 0 0

3.4.4 Method of maximum likelihood estimation subject to constraints:
staggered entry

The technique of maximum likelihood estimation subject to constraints is implemented in

the following way:

1. One survival model is fitted under constraints imposed by the Weibull /log-logistic/lognormal
distribution over the four entry groups.

2. Four survival models (Weibull /log-logistic/lognormal models), one for each entry time,
are fitted under constraints imposed by the Weibull/log-logistic/lognormal distribution
and under further constraints that

e )\;'s are equal and «;'s are equal when fitting a Weibull or log-logistic
or
e 1;'s are equal and o;'s are equal when fitting a lognormal

3. A joint histogram is fitted to the four histograms of the four relative frequency distri-
butions under constraints imposed by the experimental design.
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3.4.5 Fitting of one survival distribution to the four histograms
Fitting of one Weibull distribution to the four histograms

Recall that a Weibull distribution with parameters A and « under the constraints g can be

written as
In{—-In(l—-7mg)}=InA-1+a-lnz (3.4 .1)
or
1 Inxz,
1 In o
In{-In(1—-mg)} = Ini- +a-
1 In x5
1 Inzy
1 Inz,
B 1 Inz, In X
N 1 Inxzs o
1 Inzy
| S S ——
In A
= In{-In(l -=wg)} = X, : ( N ) (3.4 .2)
Q
where
A
T
i) T
To I
T3 4
T3 T2
.« e x3
T, = Ty = T3 = and Ty = T3
T4
Tp-3
Tp—2
Tr—1

Equation 3.4 .2 is a linear model in the parameters In A and a. This model is equivalent to

(I - Xy (X/X1)7'Xy') - In{~In(1 - 75)} = O

.

C ‘In{-In(1-mg)} = 0

J

g(m) = 0
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C is the projection matrix orthogonal to the columns of the design matrix X;. Note that
CX,;=0.

The function g(7r) = 0 satisfies the conditions of Proposition 1 and the estimation algorithm
can be used to estimate the A and a of the Weibull distribution.

To summarize, the constraints imposed by the Weibull distribution are specified by

gr)=C.In{—-In1—-7g)} =C.In{-In(1-S-m)} =0 (3.4 .3)

with
C = I = X]_(X]_,X]_)_lxll . (34 4)

The derivative of g{m) with respect to 7 is

_ Og(m)

Cr = om
_ _C diag[——— ) . ai ( ! ) s (3.4 .5)
B 1ed In(1 - mg) g 1-mg o
- —-C-D;7'-Dy!-8 (3.4 .6)

where

D; and D, are diagonal matrices with the elements of In(1 —7r5) and (1—ms), respectively,
on the main diagonal and 8 is a block-diagonal matrix created from four matrices §,, S5, S5
and S, associated with the four entry periods.

The estimated vector of probabilities is in this case
#.=p— (G, V) (G,VG,) -C.In{—-In(1 - S - p)} (3.4.7)

with p/ = (p'l,p'g.pé.pﬁl) where p, = (Pl,l,p1,2,p1,3, --.,Pl,k)' by = (P2,13p2,2,P2,3,---,PQ,k—l)'
D3 = (P3,1,p3,2,P3,3a ---,Ps,k—Q)' and p, = (P4,1,p4,2,]34,3, ---,P4,k—3)' are four relative frequency
vectors corresponding to n;p; being multinomial(n;;7;) @ =1,2,3,4 distributed.

The variance-covariance matrix V to be used is the estimated variance-covariance matrix
of the multinomial distribution for each entry period.

— V= block(vl, /‘72, /‘73, /‘74)

and |
"71' = —_— [dzag(pz) — pZP;] 1= 17 273’4
n;
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In the notation for staggered entry of policies, as described in Table 3.2 with four entry
periods and k, the number of class intervals, for illustration purposes equal to seven,

Py = (P1,1,P1,2,P1,3, P14, P15, P16, P1,7) 1S @ 7 x 1 relative frequency vector
P2.1,P2,2,P2.3, P24, D25, P2,6) is a 6 x 1 relative frequency vector

Py = (
Ps = (P31,P32,P3,3,P34,P35) is a b x 1 relative frequency vector
DPs = (Pa,1,Pa,2,Pa,3,P14) is a 4 x 1 relative frequency vector

7y = (m11, 71,2, 1,3, T1,4, 1,5, T1,6,T1,7) 15 @ 7 x 1 probability vector

(71'2,1, 72,2, 723,724, T2 5, 71’2,6)/ isabxl probability vector
(731, 32,733,734, 735)" is @ b x 1 probability vector

)
3
74 = (T41,Ta2,Ta3,Ta4) is a 4 x 1 probability vector.

S is a 18 x 22 block-diagonal matrix, that is

S= blOCk(Sl, Sg, S3, S4)

with
1000000
1100000
1110000

S. —

: 1111000
1111100
1111110
100000
110000

S:=] 111000
111100
111110
10000
11000

S; =
11100
11110
1000

Ss=|1100].
1110
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The matrix S is given below.

10 0 0 0 0 O 0 0 0 0O O O 0 0 0 0 O 0O 0 0 O
11 0 0 0 O O 0O 0 0 0O O O 0O 0 0 0 O 0O 0 0 O
11 1 0 0 0 O 0 0 0 0 0 O 0O 0 0 0 O 0O 0 0 O
11 1 1 0 0 O 0o 0 0 0O 0 O 0O 0 0 0 O 0O 0 0 O
11 1 1 1 0 O 0O 0 0 0 O O 0O 0 0 0 O 0 0 0 O
11 1 1 1 1 0 o 0 0 0 0 O 0 0 0 0 O 0 0 0 O
0O 0 0 0 0 0 O 1 0 0 0 0 O 0 0 0 0 O 0 0 0 O
0 0 0 0 0 O O 1 1. 0 0 0 O 0 0 0 0 O 0O 0 0 O
0O 0 0 0 0 0 O 11 1 0 0 O 0 0 0 0 O 0O 0 0 O
S = o 0 0 0o O O O 11 1 1 0 0 0 0 0 0 O 0O 0 0 O
0O 0 0 0 0 0 O 11 1 1 1 0 0O 0 0 0 O 0 0 0 O
0O 0 0 0 0 0 O 0O 0 0 0 O O 1 0 0 0 O 0 0 0 O
0O 0 0 0 0O 0 O 0 0 0 0 0 O 11 0 0 O 0O 0 0 O
0O 0 0 0 0 0 O 0O 0 0 0 0 O 11 1 0 O 0o 0 0 O
0O 0 0 0 0O o0 O 0O 0 0 0 O O 11 1 1 0 0O 0 0 O
0O 0 0 0 0O 0 O 0O 0 0 0 0 O 0 0 0 0 O 1 0 0 O
0O 0 0 0 0 0 O 0o 0 0 0 0 O 0O 0 0 0 O 1 1 0 O
0O 0 0 0 O O O 0O 0 0 0 0 O 0O 0 0 0 O 1 1 0

Notethatvl isa’7x7, /‘72 isa 6 x 06, Vg isabxband /V4 is a 4 x 4 matrix
so that V is a 22 X 22 matrix.

Since Equation 3.4 .7 is still a function of the unknown parameter 7, the double iterative
procedure must be implemented. Once the iterative procedure in Equation 3.4 .7 has
converged, the estimated parameters of the Weibull distribution can be solved from

In\

(67

= (XXX, In{-In(1 -8 - &)} (3.4 .8)

The estimated lambda parameter of the Weibull distribution then is

~

X = exp(In\)
and the estimated alpha parameter &.

The SAS/IML program to fit a Weibull model to grouped survival data with staggered entry
of policies appears in Appendix A.

Fitting of one log-logistic distribution to the four histograms

Recall that a log-logistic distribution with parameters A and « under the constraints g can

be written as
In(wg) —In(l—mg)=InA-1+a-lnz (3.4.9)
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or
s
1 = | —In(1-
n(l_ﬂ_s> n(mg) —In(1—mg)
1 Inx;
1 1
— In\- fao-| 172
1 In x5
1 Inxzy
1 Inz,
B 1 Inxzy In\
B 1 Inz; «a
1 Inzy
———————
In A
:>ln( T ) _ X, - ( " ) (3.4 .10)
1-— s «
where
T
x
Zo T
To I
I3 )
T3 Z2
e T3
T, = Ty = T3 = and Ty = T3
Tp—4
Tp—3
Tr—2
T

Equation 3.4 .10 is a linear model in the parameters In A and a. This model is equivalent

to

(N J

C is the projection matrix orthogonal to the columns of the design matrix X;. Note that
CX,=0.

The function g(7r) = 0 satisfies the conditions of Proposition 1 and the estimation algorithm
can be used to estimate the \'s and a's of the log-logistic distribution.
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To summarize, the constraints imposed by the log-logistic distribution are specified by

glm) = C.ln{ s }: C.In [—S-L} — C.[In(S-7)—In(1l—S-m)] =0

1—mg 1-S- -«
(3.4 .11)
with
C=1-X,(X/X)'X,/ . (3.4 .12)
The derivative of g(7) with respect to 7 is
_ Og(m)
Gr = on
, 1 . 1
= C. [dzag (ﬂ'_s) + diag (1 — 7"5)] -8 (3.4 .13)
= C-D;7'+D,'-8S (3.4 .14)

where

D3 and D, are diagonal matrices with the elements of 7rg and 1 — 7rg, respectively, on the
main diagonal. The matrix S is the same S matrix that was used when fitting a Weibull

model.

The estimated vector of probabilities in this case is

7. =p— (G, V) (G, VG,)" - C.ln{ﬁ} (3.4 .15)
1-S-p
with p' = (p).ph,ps.py) where p; = (P11,P1,2,P13, -, P1k) P2 = (P2,1,P2,2:P2,35 -y P2,k—1)"
D3 = (P3,1,D3,2,P3,3, -, D3,k—2) and Dy = (P4,1,P4,2,P4,3, .., Pak—3)" are four relative frequency
vectors corresponding to m;p; being multinomial(n;;7;) ¢ = 1,2,3,4 distributed. The
variance-covariance matrix V to be used is the estimated variance-covariance matrix of the
multinomial distribution for each entry period.

Since Equation 3.4 .15 is still a function of the unknown parameter 7, the double iterative
procedure must be implemented. Once the iterative procedure in Equation 3.4 .15 has
converged, the estimated parameters of the log-logistic distribution can be solved from

In A ’ —1~ ! S - 7.
( a )—(Xlxl) X1~ln{1_s.ﬁ_c}. (3.4 .16)

The estimated lambda parameter of the log-logistic distribution then is

X = exp(In \)
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and the estimated alpha parameter &.

The SAS/IML program to fit a log-logistic model to grouped survival data with staggered
entry of policies appears in Appendix A.

Fitting of one lognormal distribution to the four histograms

Recall that a lognormal distribution with parameters p and o2 under the constraints 7, can
be written as

1
1 In Ty
_ B 1 +_1_' In x4
o 1 o In 23
1 Inxzy
1 Inz,
- 1 In o —g
N 1 In 3 %
1 In Ty
N e’
_£
= & Y(mg) = X, : ( Iy ) (3.4 .18)
[
where
€
T
Zo ' T
T T
I3 2 T2 '
T3 T2
T, = Ty = Ty = T3 and Ty = I3
Tk—4
Tr—3
Tk—-2
Tr—1

1

Equation 3.4 .18 is a linear model in the parameters —{E} and =.

Equation 3.3 .35 is equivalent to

(I - X1(X)'X1)7'Xy') &7 (ws) = 0
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C is the projection matrix orthogonal to the columns of the design matrix X ;. Note that
CX, =0.

The function g(m) = 0 satisfies the conditions of Proposition 1 and the estimation algorithm
can be used to estimate the parameters p and o of the lognormal distribution.

To summarize, the constraints imposed by the lognormal distribution are specified by
g(m) = C.¢7}(ms) = C.27H(S-m) =0 (3.4 .19)
with

C=I-X,(X/X)'X, . (3.4 .20)

The derivative of g(m) with respect to 7 is

_09(m) _ ~. 0 g
G, = e C 6‘7rq) (S-m)-8S (3.4 .21)
that is equal to
1
G,=C- S . (3.4 .22)

son [s [22ET)]

The matrix S to be used is the same matrix as defined at the fitting of the Weibull or the
log-logistic model.

Since G, depends on p and o in the iterative procedure, these parameters will be estimated
within the iterative stages and the final estimates will be obtained on convergence.

The SAS/IML program to fit a lognormal model to grouped survival data with staggered
entry of policies appears in Appendix A.

3.4.6 Fitting of four survival distributions to the four histograms
Fitting of four Weibull distributions

Four Weibull distributions are to be fitted to the four histograms.
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Consider four Weibull distributions with parameters (A1, 1), (A2, @2), (A3, 3) and (Ay, )
respectively.

Maximum likelihood estimation of the parameters is done subject to constraints imposed
by the four Weibull distributions and further constraints that the A;'s are equal and «;'s are

equal.

The four Weibull models under constraints 7g1, g2, g3, Wsa, can be written from Equa-
tion 3.3 .14 as follows:

].Il)\l
851
In{—In(1—mg)} 1 nz; 0 0 0O O O O In Ay
lIl{—lIl(].—ﬂ'SQ)} . 0 0 1 ln:L'Q 0 0 0 0 (6]
In{-ln1-mgs)} | |0 0 0 0 1 lnzz 0 O || In)
In{—1In(1 —7mg4)} 0 0 O O O O 1 Inmzy o
1I1)\4
Oy
(3.4 .23)
where
T
I
T2 1
T2 z
X3 T3
I3 T2
PRI :1‘,'3
r] = o9 = o T3 = and LTy = T3
Tk—4
Tk-3
Tr—2
T—-1

Equation 3.4 .23 is a linear model in the parameters In A\;, o, In A9, e, In A3, 3, In A4 and

QY.

Maximum likelihood estimation of these parameters subject to further constraints that the
\;'s are equal and the o;'s are equal can be done similar to the fitting of one Weibull to the
four histograms, when the following changes are made.

From Equation 3.4 .23 follows that the design matrix for the fitting of four Weibull distri-
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butions is
1 nz 0 0 0 O 0 O
0 0 1 Inzy 0 O O O
X =
0O 0 o0 O 1 Inzz3 0 O
o 0 o o o0 o 1 Inxzy

The four Weibull models in Equation 3.4 .23 are equivalent to

In{—In(1 — mg1)}
o 1w | M{=Im(1-7s)} |
\(I—X1(X‘1'X1) Xl)' In{—In(1 —mgss3)} -0
In{—In(1 —7g4)}
In{—In(1 —mg)}
In{-In(1—-7ms)} |
& In{-In(1—ms)} | ’
\ In{-In(1 - 7ss)}
g(m) =0

C is the projection matrix orthogonal to the columns of the design matrix X ;. Note that
CX,=0.

The constraints that the )\;'s are equal and the «;'s are equal are specified by

h’l)\l
(&3]
111)\2
H| “ | =0 (3.4 .24)
111)\3
a3
111)\4

(67

where

I
—
O O O O O

O O O = = =
— = =0 O O
o O O O O
|

O =
o O O O

|

[y

(e}
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Equation 3.4 .24 is equivalent to

].11).1
Qi
Inn Ay In{-In(1 —7s1)}
In{—In(1 -
o = (XXX n{=In(l=ms)} (3.4 .25)
ll’l)\g ln{—ln(l 71'53)}
g ln{ ln(l 71’54)}
11'1)\4
&7}
that is
hl)\l
1441
In Az In{—In(1 —7g)}
1
H| | = HX/X)'X/ n{=In(l - ms2)}
In A3 . — . In{—In(1 — mgs3)}
Qg 111{ 111(1—71'34)}
111)\4
7]
or
In{—In(1—-7s)}
0 = D In{—In(1 —mg2)}
In{—In(1—7ms3)}
In{—In(1 —7mg4)}
(3.4 .26)

Equation 3.4 .26 specifies the further constraints of equal parameters for the four histograms.

In the notation for staggered entry of policies, as described in Table 3.2 with four entry
periods and k, the number of class intervals, equal to seven, matrix D is a 6 x 18 matrix.

A new matrix is formed that takes the further constraints into account. This matrix is
created by concatenating the six rows of D to the 18 rows of C. This new matrix is then

used instead of the matrix C in further calculations.

Fitting of four log-logistic distributions

Four log-logistic distributions are to be fitted to the four histograms.
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Consider four log-logistic distributions with parameters (A1, 1), (A2, @2), (A3, a3) and (A4, )

respectively.

Maximum likelihood estimation of the parameters is done subject to constraints imposed by

the four log-logistic distributions and further constraints that the \;'s are equal and ¢;'s are

equal.

The four log-logistic models under constraints g1, Tgo, Ts3, g4, can be written from

Equation 3.3 .24 as follows:

In{ms;} —In{1 —mgs}
In{mwsz} —In{1 — mwgy}
In{mgs} —In{1 — mg3}
In{mgs} —In{1l —mwg4}

where
Zy
T2
T3
r =
Tr—1

L9 =

T
)

T3

Tr—2

o O O =

Inx,
0
0
0

Ir3 =

0

1 ln:z:z

0
0

z
T2

x3

Tk—3

0

0
0

O = O O

In A\
aq
0O 0 O In A,
o 0 O Qo
Inzs 0 O | In);
0 1 Inzy Qs
In \4
QY
(3.4 .27)
T
)
and Ty = T3
Tk—4

Equation 3.4 .27 is a linear model in the parameters In Ay, a1, 1n A9, ag,In A3, a3, In A4 and

QY.

Maximum likelihood estimation of these parameters subject to further constraints that the

A:'s are equal and the o;'s are equal can be done similar to the fitting of one log-logistic to

the four histograms, when the following changes are made.

From Equation 3.4 .27 follows that the design matrix for the fitting of four log-logistic
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distributions is

1 nz; 0 0 O O O O

0 0 1 lnz, 0 0 O O
X] =

0O 0 0 O 1 Inzz O O

0O 0 O O O O 1 Inzy

The four log-logistic models in Equation 3.4 .27 are equivalent to

In{mwg1} —In{l —mg}
, 1 ! In{mwgy} —In{l — g
\(I—Xl(xixl) Xl)l- m}ﬂ;i_lnil_ﬂzj =0

In{mgs} —In{l — g4}
1n{7T51}—1n{1—7751}
ln{ﬂ'sg}—ln{l—ﬂgz}
11’1{71'53}—1I1{1—7l’53}
11’1{71'54}—11’1{1—71'54}

i g(m) =0

C is the projection matrix orthogonal to the columns of the design matrix X ;. Note that
CXl = 0

The constraints that the );'s are equal and the o;'s are equal are specified by

In )\
aq
In Ag
H| ® | =0 (3.4 .28)
In A3
Qs
In My

Qy

where

[
—
S O O o O

O O O ===
=== O O O
O O O O O
|
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o O O O
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Equation 3.4 .28 is equivalent to

In )\1
(631
ln)\z lIl{ﬂ'Sl}—ll’l{l —71'51}
1 —In{1 -
@ | (xyx )Xy | P il el (3.4 .29)
In \s In{mgs} —In{1 — mg3}
Qg ln{7r54}—ln{1—7r54}
In )\4
Oy
that is
11’1)\1
gy
In A, In{rsi} —In{l —7s}
| ® _ H(X X)X In{me} —In{1 — mwgo}
In s N .~ . In{mwgs} —In{1 — mgs}
as In{msy} — In{1 — mwg4}
lIl>\4
87]
or
In{ms;} —In{1l—mws}
0 D In{mwso} —In{1 — 7wgo}
In{mgs} —In{1 — mwgs}
In{mss} —In{1 — g4}
(3.4 .30)

Equation 3.4 .30 specifies the further constraints of equal parameters for the four histograms.
If k, the number of class intervals, is equal to seven, then matrix D is a 6 X 18 matrix.

A new matrix is formed that takes the further constraints into account. This matrix is
created by concatenating the six rows of D to the 18 rows of C. This new matrix is then

used instead of the matrix C in further calculations.

Fitting of four lognormal distributions

Four lognormal distributions are to be fitted to the four histograms.
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Consider four lognormal distributions with parameters (u1,012), (u2,02?), (us,03?) and

(114, 04%) respectively.

Maximum likelihood estimation of the parameters is done subject to constraints imposed by
the four lognormal distributions and further constraints that the p;'s are equal and o;'s are

equal.

The four lognormal models under constraints mg;, g2, g3, W4, can be written from

Equation 3.3 .35 as follows:

_H
o1
o1
In{®1(rg;)} 1lnz;, 0 0 0 0 O O —&2
In{®Yms)} | [0 O 1 Inz, 0 0 0 O o
In{®émss)} | |0 0 0 0O 1 lnzz O O —52
In{®~1(mwg4)} 0 0 0 0 O O 1 Inz, ?71_3
_ M4
04
1
04
(3.4 .31)
where
z
Z1
Z9 I
T2 I
xs3 Z2
I3 Z2
“ .. x3
T, = Ty = oo Ty = and Ty = T3
T4
Tg—-3
Tr—2
Tp—1

Equation 3.4 .31 is a linear model in the parameters iy, 012, 12, 092, 13, 03, g and o4,

Maximum likelihood estimation of these parameters subject to further constraints that the
w;'s are equal and the o;'s are equal can be done similar to the fitting of one lognormal to

the four histograms, when the following changes are made.

From Equation 3.4 .31 follows that the design matrix for the fitting of four lognormal
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distributions is

1 nzy 0 0 O O O O

0O 0 1 Inzy, O O O O
X:=

0 0 0O O 1 Inz3 0 O

0O 0 O O O 0 1 Inzy

The four lognormal models in Equation 3.4 .31 are equivalent to

In {(I)_l ™31
In{®1

(I - XXy X)X ) 12%@-1 i
In {®~(mwgy

(7s1)
(7rs2)
(7s3)
(7r54)
In{®(ms)
(7s2)
(7rs3)
(7r54)

Ts3

In {(I)_l IFD)
In {(I)—l 33
In {(I)—l TS4

g(m) =0

}
}
}
}
}
}
}
}

C is the projection matrix orthogonal to the columns of the design matrix X ;. Note that
CX,=0.

The constraints that the y;'s are equal and the o;'s are equal are specified by

H.| 9 =0 (3.4 .32)

where

=== O O O
I
—

S O O O O

O O O = =

S O O O©O O
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Equation 3.4 .32 is equivalent to

01
1
01
— &2 In{®~!(ms1)}
e In{®d!
B = (X/X)7' X o _1(7732)} (3.4 .33)
— o3 In{® *(mwgs3)}
0L3 In{® (mrsys)}
-
1
04
that is
_
01
1
g1
—£2 In {®(mg;)}
L ln{q)_l(ﬂ'sg)}
H. o2 = H.(Xl'Xl)_le'
—'g—g / In {<I>_1(7r53)}
UL?) In{®(7s4)}
_Ha
04
1
04
or
In{®~!(mgs1)}
-1
0 — D ln{@_l(ﬂ'sg)}
In{®*(ms3)}
ln{<I)‘1(7rS4)}
(3.4 .34)

Equation 3.4 .34 specifies the further constraints of equal parameters for the four histograms.
If k, the number of class intervals, is equal to seven, then matrix D is a 6 x 18 matrix.

A new matrix is formed that takes the further constraints into account. This matrix is
created by concatenating the six rows of D to the 18 rows of C. This new matrix is then

used instead of the matrix C in further calculations.

3.4.7 Fitting of a joint histogram to the four histograms

A joint histogram is to be fitted to the four histograms of the four relative frequency

distributions under constraints imposed by the experimental design.



[Parametric Model for a Single Sample from a Homogeneous Population I 70

These constraints in matrix form are G- 7 = 0 with ' = (7}, 7}, 75,7) where

= (m1,m,2,M3,...,T1,k) is a k x 1 probability vector

Il

™
™2
T3

(
(7,1, 2,2, 2,3, ..., Mo k—1)" is @ (k— 1) x 1 probability vector
(73,1, 3,2, 3,3, ..., M3 k—2)" is a (k —2) x 1 probability vector
g = (41, a2, Ta,3, ..., Tak—3) is a (k—3) x 1 probability vector

and

I ooo00 -I O O O 0 0 O 0O O
o o o O -—-I O O 0 O
I 00O0DO O 0 o0 o o 0 o -1 O

~
o
en)
en)
o)

01111 o0 -1 -1 -1 o0 0 0 0 0
01111 o0 0 0 0 0 -1 -1 0 0
01111 00 0 0 0 o0 0 0 0 -1

00 0100 o0 0 -1 0 0 0 O o0 0
001000 o0 -1 0 O o0 0 O 0 0

The function g(m) = 0 satisfies the conditions of Proposition 1 and the estimation algorithm
can be used to estimate the relative frequencies of the joint relative frequency distribution.

Note that the constraints G - w = g(m) is a linear function of 7. This implies that

G= @57‘_12 and only a single iteration is needed in the iterative procedure to determine
the MLE of 7 under the constraints g(m) = 0.

This MLE of 7 is
#.=p—(GV)(GVG) g(p)

with asymptotic variance-covariance matrix

cov (@) =V - (GV) (GVG) GV.

The variance-covariance matrix V to be used is the estimated variance-covariance matrix
of the multinomial distribution for each entry period.

— V= block(/Vl, /‘72, Vs, /‘74)
and

—~ 1
Vi=— [diag(p;) — p;pi] ©=1,2,3,4

Once the iterative procedure has converged, the estimated joint relative frequencies can be
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read off from the estimated vector of probabilities 7.. The histogram of the fitted joint
relative frequency distribution is a representative image of the four histograms.

The SAS/IML program to fit a joint histogram to the four histograms of the entry groups
appears in Appendix A.

3.4.8 [Estimated survivor and hazard functions and percentiles

Once the parameters of the Weibull and log-logistic survival distributions have been esti-
mated, estimated hazard and survivor functions and the odds of a lapse can be calculated
for time t. Percentiles of these survival distributions can also be estimated.
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Weibull

Estimated hazard function

Estimated survivor function

~ ~

S(t) = exp(—\ - t%)

Estimated odds of a lapse

odds(t) = ! _§(t)(t) =exp(A-t

Estimated percentiles

Q)| —

1 100
=(=-1

Survival distribution

a—-l)

Log-logistic

Estimated hazard function

Estimated survivor function
~ 1
1+ M -te

Estimated odds of a lapse

1—-5(t)

_ =X-t°
S(t)

odds(t) =

Estimated percentiles

72
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3.5 Simulation Studies

Simulations are used to compare the maximum likelihood estimation under constraints pro-
cedure with the standard maximum likelihood estimation procedure that is used by SAS.

A thousand sets of right-censored data with a fixed censoring time are simulated from
each of three survival distributions, namely the Weibull, the log-logistic and the lognormal
distributions. The percentage censoring is about 35% and censoring at continuous data as
well as censoring at grouped data, the special case of interval-censored data, are considered.

For the continuous case, three groups of 20, 50, 100 and 200 observations are generated
from each of three survival distributions, with different scale and shape parameters for the
three groups. A scale parameter of A=0.15 and a shape parameter of a=0.5 are selected
for the first group generated from the Weibull(\, &) and the log-logistic(A, &) distributions,
while a p-value of 2 and a o-value of 0.5 are used for the generation from the lognormal(y, o)
distribution. The second and third groups use extreme A-values of 10 and 30 and extreme
a-values of 3 and 1.8 for generation from the Weibull and log-logistic distributions and p-
values of 5 and 3 and o-values of 0.2 and 0.03 for generation from the lognormal distribution.
In order to be able to apply the IML program for maximum likelihood estimation subject
to constraints, the continuous data are grouped into intervals with boundaries the means
of two adjacent observed survival times with frequency 1 in each interval. The frequency
of the last open interval is equal to the number of censored survival times. The standard
method of maximum likelihood estimation used by PROC LIFEREG of SAS is applied to
the continuous data without grouping into such intervals.

For the grouped data case, three groups of

100 observations (grouped into five intervals),

200 observations (grouped into five intervals),

2000 observations (grouped into five intervals) and

2000 observations (grouped into ten intervals)

are generated from each of the three survival distributions, with parameters similar to the

continuous case.

Programs to generate lifetime data and to run simulations with the technique of maxi-
mum likelihood estimation under constraints, appear in Appendix A. Maximum likelihood
estimates by the standard method are also found using PROC LIFEREG of SAS. For compa-
rison purposes, both estimation techniques are performed on the same set of simulated data
in the same program. The means of the thousand simulated A- and G-values are computed

as maximum likelihood estimators of the model parameters A and a.
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These estimators of the model parameters are considered to be significantly biased if the
absolute difference between the model parameter and the estimator is greater than three
standard errors of the mean. This criterium can be motivated as follows. For large sample
sizes, the sampling distribution of the mean is approximately normally distributed and then
the probability that the absolute difference between the model parameter and the estimator
will lie within three standard errors of the mean, is 0.9999 . For small sample sizes (not
assuming normality) the inequality of Chebyshev specifies that this probability is at least
0.8889 . Thus the confidence coefficient in this case will be between 0.8889 and 0.9999.
A significantly biased estimator over-estimates the model parameter if its value is more than
three standard errors of the mean to the right of the model parameter, and is an under-
estimator if its value is more than three standard errors of the mean to the left of the model

parameter.

Table 3.3 represents the simulation results for the continuous case for samples of various

sizes when generating from a Weibull model.

Table 3.4 represents the simulation results for the grouped data case for samples of various
sizes, classified in five or ten intervals, when generating from a Weibull model.

Table 3.5 represents the simulation results for the continuous case for samples of various

sizes when generating from a log-logistic model.

Table 3.6 represents the simulation results for the grouped data case for samples of various
sizes, classified in five or ten intervals, when generating from a log-logistic model.

Table 3.7 represents the simulation results for the continuous case for samples of various

sizes when generating from a lognormal model.

Table 3.8 represents the simulation results for the grouped data case for samples of various
sizes, classified in five or ten intervals, when generating from a lognormal model.

For generation from the Weibull and log-logistic distributions, the maximum likelihood es-
timates of the IML method compare very well to the maximum likelihood estimates of the
SAS method. The biasness of these estimates is very small for values of A and « that are
usually used in practice, namely A=0.15 and a=0.5 . For larger values of XA and «, the
model parameters seem to be overestimated. The biasness of the estimates reduces when
the sample size increases, as can be expected from maximum likelihood estimates which
are asymptotically unbiased. The same conclusions can be made for generation from the

lognormal distribution.
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Table 3.3: Weibull Simulation - Continuous Data
Sample | Group Model Maximum Likelihood | Absolute difference 3x Significantly
Size Parameter Estimator |parameter—estimator| Std Error Biased
n=20 first A=0.15 Asa5=0.14996619 0.00003381 0.0069663 No
;\IML=0.14668896 0.00331104 0.0068990 No
a=05 Ggas =0.54013638 0.04013638 0.0140021 Yes Over
Gypr =0.54593890 0.0459389 0.0140514 Yes Over
second A=10 Asa5=14.5457664 4.5457664 1.1514872 Yes Over
S\IML=13.4422577 3.4422577 1.0386621 Yes Over
=3 Ggas =3.18959524 0.18959524 0.0717345 Yes Over
arprr =3.09723538 0.09723538 0.0701570 Yes Over
third A=30 Ag45=120.665220 90.66522 48796461 |  Yes Over
S\IML=101.053564 71.053564 36.689586 Yes Over
a=1.8 G545 =1.95511189 0.15511189 0.0537395 Yes Over
G =1.90197261 0.10197261 0.0527703 Yes Over
n=50 first A=0.15 Ag45=0.14816260 0.0018374 0.0044372 No
)A\IML=O.14813664 0.00186336 0.0029639 No
a=0.5 dsas =051746332 '0.01746332 0.0044459 Yes Over
Gy =0.51743153 0.01743153 0.0079694 Yes Over
second A=10 Ag45=11.9257535 1.9257535 0.5200346 Yes Over
b v =11.5073420 1.5073420 0.4952037 Yes Over
=3 Ggas =3.10165140 0.10165140 0.0447723 Yes Over
G =3.05756831 0.05756831 0.0442101 Yes Over
third A=30 g 45=41.4510357 11.4510357 3.4742741 |  Yes Over
A121=39.5047272 0.5047272 33330734 |  Yes Over
a=1.8 Ggag =1.85067820 0.0506782 0.0292124 Yes Over
Grarr =1.82857605 0.02857605 0.0289569 No
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Table 3.3 (continued)
Sample | Group Model Maximum Likelihood | Absolute difference 3x Significantly
Size Parameter Estimator |parameter—estimator| Std Error Biased
n=100 first A=0.15 Asas5=0.15177147 0.00177147 0.0032904 No
A 17 1,=0.15250267 0.00250267 0.0021865 Yes Over
a=0.5 Gsas =0.50761848 0.00761848 0.0032798 Yes Over
Qrarr, =0.50625014 0.00625014 0.0055814 Yes Over
second A=10 As45=10.5995925 0.5995925 0.3027174 Yes Over
A 1M 1,=10.3895455 0.3895455 0.2970639 Yes Over
a=3 &g ag =3.02213801 0.02213801 0.0304752 No
Qs =2.99591283 0.00408717 0.0305282 No
third A=30 Ag45=35.3120154 5.3120154 1.8132791 |  Yes Over
A7r1,=34.3043403 43043403 1.7604518 |  Yes Over
o=1.8 Ggags =1.82845863 0.02845863 0.0201914 Yes Over
Gryr =1.81352486 0.01352486 0.0202521 No
n=200 first A=0.15 As45=0.15180449 0.00180449 0.0023565 No
A 1m1,=0.15250004 0.00250004 0.0002381 Yes Over
a=0.5 &s4s =0.50087100 0.00087100 0.0038819 No
Qrarr, =0.49973979 0.00026021 0.0039027 No
second | A=10 \s5.45=10.1859060 0.185906 0.1980131 No
A122=10.0588244 0.0588244 0.1955345 No
a=3 &g a5 =2.99899145 0.00100855 0.0215052 No
Qrprr =2.98236429 0.01763571 0.0214703 No
third A=30 Ag45=32.2848790 2.284879 1.0252172 | Yes Over
A 1M L=31.6653840 1.665384 1.0081139 | Yes Under
a=1.8 Gisag =1.85067820 0.0506782 0.0292124 Yes Over
&, =1.80067207 0.00067207 0.0141369 No
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Table 3.4: Weibull Simulation - Grouped Data

77

Sample | Group Model Maximum Likelihood | Absolute difference 3x Significantly
Size Parameter Estimator |parameter—estimator| Std Error Biased
n=100 first A=0.15 Asa5=0.15535337 0.00535337 0.0049053 Yes Over
5 classes A 1M1, =0.15535344 0.00535344 0.0049053 Yes Over

a=05 agas =0.50497058 0.00497058 0.0083862 No

G =0.50497044 0.00497044 0.0083862 No
second A=10 A545=10.8529348 0.8529348 0.3285815 Yes Over
/A\]ML=10‘8529223 0.8529223 0.3285812 Yes Over
=3 Gsas =3.04895140 0.04895140 0.0335870 Yes Over
Grarr =3.04895031 0.04895031 0.0335870 Yes Over
third A=30 A549=36.3075637 6.3075637 2.4547211 Yes Over
A7 34,=36.3075006 6.3075006 24547164 |  Yes Over

«a=1.8 Qgas =1.80779115 0.00779115 0.0257724 No

Grar =1.80779049 0.00779049 0.0257723 No
n=200 first A=0.15 AgA5=0.15331594 0.00331594 0.0033041 Yes Over
5 classes XIML=O.15331603 0.00331603 0.0033041 Yes Over

a=0.5 Gsas =0.50052889 0.00052889 0.0056775 No

Grarr, =0.50052873 0.00052873 0.0056528 No
second A=10 As45=10.3602667 0.3602667 0.2201871 Yes Over
A mr=10.3602529 0.3602529 0.2201864 Yes Over

=3 Qg4 =3.01886552 0.01886552 0.0237776 No

Grarr, =3.01886427 0.01886427 0.0237774 No
third A=30 As45=33.6583074 3.6583074 1.4001587 Yes Over
A1nL=33.6582478 3.6582478 1.4001549 |  Yes Over

a=1.8 Ggag =1.81684031 0.01684031 0.0183728 No

Gy =1.81683962 0.01683962 0.0183728 No
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Table 3.4 (continued)

78

Sample | Group Model Maximum Likelihood Absolute difference 3x Significantly
Size Parameter Estimator |parameter-estimator| | Std Error Biased
n=2000 first A=0.15 As45=0.14992101 0.00007899 0.0010535 No
5 classes A1y1=0.14992104 0.00007896 0.0010535 No
a=0.5 Qgas =0.50057904 0.00057904 0.0018729 No
& rprr, =0.50057897 0.00057897 0.0018729 No
second A=10 As45=10.0365052 0.0365052 0.0601692 No
A7 =10.0364959 0.0364959 0.0601688 No
a=3 Qgsas =3.00197758 0.00197758 0.0069176 No
&g =3.00197667 0.00197667 0.0069176 No
third A=30 As45=30.3212508 0.3212508 0.3504578 No
A 1ML=30.3212202 0.3212202 0.3504531 No
a=1.8 Ggas =1.80186572 0.00186572 0.0055631 No
aryr =1.80186532 0.00186532 0.0055631 No
n=2000 first A=0.15 As45=0.15028167 0.00028167 0.0008550 No
10 classes A 1m1.=0.15028175 0.00028175 0.0008550 No
a=05 Ggas =0.49991711 0.00008289 0.0014807 No
&rprr, =0.49991693 0.00008307 0.0014807 No
second A=10 As45=10.0448501 0.0448501 0.0635568 No
A1142=10.0448461 0.0448461 0.0635568 No
a=3 G5 =3.00247119 0.00247119 0.0072035 No
Gz =3.00247076 0.00247076 0.0072035 No
third A=30 As45=30.1459685 0.1459685 0.3150615 No
S\IML=30.1459519 0.1459519 0.3150614 No
a=1.8 dsas =1.80002906 0.00002906 0.0049601 No
&y =1.80002879 0.00002879 0.0049601 No
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Table 3.5: Log-logistic Simulation - Continuous Data
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Sample | Group Model Maximum Likelihood | Absolute difference 3X Significantly
Size Parameter Estimator |parameter-estimator’ Std Error Biased
n=20 | first A=0.15 Ag45=0.15145327 0.00145327 0.0079043 No

A 12s1.=0.14796354 0.00203646 0.0075909 No
a=0.5 Gugag =0.53723029 0.03723029 0.0123594 |  Yes Over
&arr =0.53770964 0.03770964 0.0121689 |  Yes Over
second A=10 AsA5=20.1335459 10.1335459 3.2219037 Yes Over
Arar=18.2308334 8.2308334 3.1020546 | Yes Over
=3 Gigag =3.28465392 0.28465392 0.0866151 |  Yes Over
AL =3.18022776 0.18022776 0.0841209 |  Yes Over
third A=30 AgA5=89.9665445 59.9665445 27.531053 |  Yes Over
Arns=86.0467171 56.0467171 34.960206 |  Yes Over
a=18 &gas =1.96003040 0.1600304 0.0475061 |  Yes Over
Grpr =1.91475105 0.11475105 0.0467700 |  Yes Over
n=50 | first A=0.15 AsA5=0.14899903 0.00100097 0.0050486 No
Ara2.=0.1485048 0.0014052 0.0050454 No
a=0.5 Qgag =0.51827824 0.01827824 0.0074885 |  Yes Over
&rpr =0.51851833 0.01851833 0.0075098 |  Yes Over
second | A=10 Asas=12.8922606 2.8922606 0.7619717 |  Yes Over
N rren=12.3350082 2.3350082 0.7227566 |  Yes Over
a=3 dgag =3.13906180 0.13906180 0.0242147 | Yes Over
&, =3.08961706 0.08961706 0.0497274 |  Yes Over
third A=30 Asas=41.9117887 11.9117887 3.4527255 Yes Over
A7vr1=40.1040803 10.1049803 3.2656557 | Yes Over
=18 Agag =1.85576484 0.05576484 0.0278412 |  Yes Over
Qrarr =1.83471490 0.03471490 0.0276355 |  Yes Over
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Table 3.5 (continued)
Sample | Group Model Maximum Likelithood Absolute difference 3x Significantly
Size Parameter Estimator |parameter—estimatorl Std Error Biased
n=100 first A=0.15 A545=0.14829547 0.00170453 0.0036117 No
;\IML=0.14868802 0.00131198 0.0036063 No
a=0.5 Ggas =0.50958388 0.00958388 0.0053112 Yes Over
&1y =0.50898401 0.00898401 0.0052796 Yes Over
second A=10 Asa5=11.2448956 1.2448956 0.4224530 Yes Over
A722,=10.9567399 0.9567399 0.4093430 |  Yes Over
a=3 Asag =3.06515628 0.06515628 0.0349263 |  Yes Over
Grarr =3.03466202 0.03466202 0.0346883 No
third A=30 Asa5=34.5809933 4.5809933 1.5117978 Yes Over
A1011,=33.6560830 3.6560830 1.4586887 |  Yes Over
=18 Ggas =1.82539203 0.02539203 0.0178437 Yes Qver
Geyprr, =1.81188676 0.01188676 0.0176387 No
n=200 first A=0.15 As45=0.15012895 0.00012895 0.0025574 No
A 1:m1,=0.15073248 0.00073248 0.0025749 No
a=0.5 Gsas =0.50478209 0.00478209 0.0035717 Yes Over
Gz =0.50392805 0.00392805 0.0035856 Yes Over
second A=10 Aga5=10.5491323 0.5491323 0.2693544 Yes Over
A v =10.3753797 0.3753797 0.2650004 Yes Over
a=3 Ggag =3.02213542 0.02213542 0.0236147 No
arpr =3.00137177 0.00137177 0.0236348 No
third A=30 Asa5=32.4239353 2.4239353 0.9744693 Yes Over
XIML:31.8716829 1.8716829 0.9617250 Yes Over
a=1.8 Ggas =1.81737307 0.01737307 0.0132893 Yes Over
Gerprr =1.80795453 0.00795453 0.0133557 No
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Table 3.6: Log-logistic Simulation - Grouped Data
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Sample | Group Model Maximum Likelihood | Absolute difference 3x Significantly
Size Parameter Estimator |parameter—estimator| Std Error Biased
n=100 first A=0.15 As45=0.16521023 0.01521023 0.0094249 Yes Over
5 classes S\IML=O.16521040 0.01521040 0.0094250 Yes Over

a=0.5 Ggas =0.55605556 0.05605556 0.0124358 Yes Over
G =0.55605532 0.05605532 0.0124358 Yes Over
second A=10 Asas=11.4755280 1.475528 0.4744770 Yes Over
:\IML=11.4755188 1.4755188 0.4744766 Yes Over
a=3 Gsas =3.05054222 0.05054222 0.0386571 Yes Over
Gy =3.05054135 0.05054135 0.0386571 Yes Over
third A=30 Ag45=35.5083302 5.5083302 1.8496092 Yes Over
A rmr=35.5082841 5.5082841 1.8496053 Yes Over
a=18 (gas =1.82348176 0.02348176 0.0213981 Yes Over
Gy =1.82348122 0.02348122 0.0213981 Yes Over
n=200 first A=0.15 As45=0.15312020 0.0031202 0.0061112 No
5 classes S\IML=O.15312036 0.00312036 0.0061112 No
a=0.5 Ggas =0.55197887 0.05197887 0.0089604 Yes Over
Gy =0.55107863 0.05197863 0.0089604 Yes Over
second A=10 As4s=10.4917160 0.4917160 0.2787344 Yes Over
;\IML=10-4917107 0.4917107 0.2787339 Yes Over
a=3 Ggag =3.01591703 0.01591703 0.0260622 No
Gy =3.01591651 0.01591651 0.0260621 No
third A=30 Ag45=33.0284088 3.0284088 1.1623553 Yes Over
ArnsL=33.0283646 3.0283646 1.1623533 |  Yes Over
a=1.8 Ggas =1.81587417 0.01587417 0.0157598 Yes Over
Qrprr, =1.81587357 0.01587357 0.0157598 Yes Over
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Table 3.6 (continued)

Sample | Group Model Maximum Likelihood | Absolute difference 3X Significantly
Size Parameter Estimator |parameter—estimatorf Std Error Biased
n=2000 first A=0.15 Asa5=0.14345146 0.00654854 0.0017930 Yes Under
5 classes S\IML=O.14345176 0.00654824 0.0017930 | Yes Under

a=0.5 Ggas =0.54085916 0.04985916 0.0028193 Yes Over
Grparr =0.54985868 0.04985868 0.0028193 Yes Over
second A=10 Asa5=10.0348477 0.0348477 0.0871307 No
A 1M L=10.0348476 0.0348476 0.0871307 No
a=3 Qgas =3.00041664 0.00041664 0.0089861 No
Qrprr =3.00041662 0.00041662 0.0089861 No
third A=30 As45=30.1441862 0.1441862 0.3068751 No
S\IML:3O.14414OO 0.1441400 0.3068718 No
a=1.8 Qg5 =1.80061919 0.00061919 0.0046998 No
Gy =1.80061848 0.00061843 0.0046998 No
n=2000 first A=0.15 Aga5=0.14345099 0.00654901 0.0016850 | Yes Under
10 classes : S\IML:0-14345135 0.00654865 0.0016850 | Yes Under
a=0.5 (g5a5 =0.54915511 0.04915511 0.0026267 Yes Over
&rprr =0.54915455 0.04915455 0.0026267 Yes Over
second A=10 As45=10.0650169 0.0650169 0.0885605 No
Arar2=10.0650121 0.0650121 0.0885596 No
a=3 Qgag =3.00168243 0.00168243 0.0084723 No
Qrarr, =3.00168201 0.00168201 0.0084722 No
third A=30 As45=30.3229680 0.3229680 0.2967881 Yes Over
A 1m1=30.3229672 0.3229672 0.2967879 Yes Over
a=1.8 Ggas =1.80166754 0.00166754 0.0049601 No
&ryr =1.80166752 0.00166752 0.0049601 No
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Table 3.7: Lognormal Simulation - Continuous Data
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Sample | Group Model Maximum Likelihood Absolute difference 3x Significantly
Size Parameter Estimator Iparameter—estimator’ Std Error Biased
n=20 first n=2 itsas =2.01370552 0.01370552 0.0132221 Yes Over

frarr =2.01849401 0.01849401 0.0138065 Yes Over
0=0.5 Osas =0.48826184 0.01173816 0.0114902 Yes QOver

Oramp =0.50773538 0.00773538 0.0124704 No

second H=b {545 =5.00535672 0.00535672 0.0053853 No
ftrarr, =5.0081579 0.0081579 0.0057089 Yes Over

=02 Gsas =0.19530672 0.00469328 0.0047150 No

G1pm1 =0.20488857 0.00488857 0.0051035 No

third u=3 fisas =3.00032999 0.00032999 0.0009290 No
frarr =3.00101803 0.00101803 0.0009774 Yes Over
o=0.03 Gsas =0.02910627 0.00089373 0.0007827 | Yes Under
Oz =0.03096809 0.00096809 0.0008820 Yes Over

n=>50 first n=2 flsas =1.99992428 0.00145327 0.0078302 No

frvr =2.0009279 0.0009279 0.0079442 No

0=0.5 O0sas =0.49328237 0.00671763 0.0070923 No

o1y =0.50120403 0.00120403 0.0072662 No

second u=5 ftsas =5.00275189 0.00275189 0.0033918 No
frar =5.00361253 0.00361253 0.0034631 |  Yes Over

0=0.2 Tsas =0.19899201 0.00100799 0.0031028 No
O =0.20325814 0.00325814 0.0032217 Yes Qver

third H= fisas =3.00035126 0.00035126 0.0005712 No
[y =3.00060422 0.00060422 0.0005883 Yes Over

0=0.03 G545 =0.0295653 0.0004347 0.0005112 No

O =0.03032833 0.00032833 0.0005343 No
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Table 3.7 (continued)
Sample | Group Model Maximum Likelihood | Absolute difference 3x Significantly
Size Parameter Estimator [parameter—estimatorl Std Error Biased
n=100 first u=2 ftsas =1.99791343 0.00208657 0.0056862 No
[rarr =1.99824256 0.00175744 0.0057267 No
0=0.5 Gsas =0.49740803 0.00259197 0.0050457 No
Oz, =0.50205305 0.00205305 0.0051075 No
second H=5 ftsas =5.00073008 0.00073008 0.0023390 No
fernr =5.00106256 0.00106256 0.0023610 No
0=0.2 0545 =0.19929321 0.00070679 0.0020387 No
G =0.20155982 0.00155982 0.0020783 No
third n=3 flsas =3.00029441 0.00029441 0.0003854 No
[y =3.00041118 0.00041118 0.0003908 Yes Over

0=0.03 0sas =0.02996311 0.00003689 0.0003504 No
vz =0.03038029 0.00038029 0.0035913 No
n=200 first pu=2 s as =1.99963933 0.00036067 0.0038171 No
i =1.99974197 0.00025803 0.0038318 No
0=0.5 Osag =0.49820589 0.00179411 0.0034412 No
Oy =0.50103108 0.00103108 0.0034835 No
second u=5 ftsas =5.00034985 0.00034985 0.0016695 No
firarr =5.00050944 0.00050044 0.0016796 No
0=0.2 0sas =0.19992307 0.00007693 0.0014759 No
G =0.20115462 0.00115462 0.0014906 No
third n=3 [tsas =3.00001599 0.00001599 0.0002696 No
firarr =3.00007712 0.00007712 0.0002721 No
0=0.03 Gsas =0.02994986 0.00005014 0.0002402 No
O mr =0.03019125 0.00019125 0.0002436 No
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Table 3.8: Lognormal Simulation - Grouped Data
Sample | Group Model Maximum Likelihood | Absolute difference 3x Significantly
Size Parameter Estimator |parameter—estimator| Std Error Biased
n=100 first p=2 fsas =2.00192369 0.00192369 0.0055787 No
5 classes frarr, =2.00192375 0.00192375 0.0055787 No
=05 dsas =0.50117455 0.00117455 0.0060003 No
01 =0.5011747 0.0011747 0.0060003 No
second [1=5 [tsAg =5.00401992 0.00401992 0.0024615 |  Yes Over
ferarr =5.00401995 0.00401995 0.0024615 |  Yes Over
0=0.2 0545 =0.20294216 0.00294216 0.0028697 Yes Over
Orar =0.20294222 0.00294222 0.0028697 Yes Over
third u=3 [Lsas =3.00033514 0.00033514 0.0004122 No
frpr =3.00033514 0.00033514 0.0004122 No
0=0.03 Gsas =0.03061107 0.00061107 0.0005295 Yes Over
oramr =0.03061108 0.00061108 0.0005295 Yes Over
n=200 first =2 ftsas =2.00140175 0.00140175 0.0039281 No
5 classes frarr =2.00140179 0.00140179 0.0039281 No
0=0.5 0sas =0.5032537 0.0032537 0.0042402 No
&rarr, =0.50325377 0.00325377 0.0042402 No
second = ftsas =4.99932522 0.00067478 0.0016349 No
21 =4.99932524 0.00067476 0.0016349 No
0=0.2 0sas =0.19964898 0.00035102 0.0018044 No
Gz =0.19964903 0.00035097 0.0018044 No
third p=3 figas =3.00019211 0.00019211 0.0002874 No
firarr =3.00019211 0.00019211 0.0002874 No
0=0.03 0545 =0.03033419 0.00033419 0.0003491 No
Ornrr =0.0303342 0.0003342 0.0003491 No
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Table 3.8 (continued)
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Sample | Group Model Maximum Likelihood | Absolute difference 3x Significantly
Size Parameter Estimator ‘parameter-estimatorl Std Error Biased
n=2000 first pu=2 ftsas =1.99936468 0.00063532 0.0012531 No
5 classes firavrr, =1.99936468 0.00063532 0.0012531 No
0=0.5 Gsas =0.49931475 0.00068525 0.0013452 No
Ormr =0.49931475 0.00068525 0.0013452 No
second HU=5 ftsas =4.99993747 0.00006253 0.0005217 No
prpr =4.99993747 0.00006253 0.0005217 No
0=0.2 0545 =0.1999748 0.0000252 0.0005898 No
Orpr, =0.1999748 0.0000252 0.0005898 No
third n=3 [isas =3.00004037 0.00004037 0.0000872 No
firarr, =3.00004038 0.00004038 0.0000872 No
0=0.03 G545 =0.02997699 0.00002301 0.0001070 No
6rarr, =0.02997701 0.00002299 0.0001070 No
n=2000 first pu=2 fisAs =1.99950829 0.00049171 0.0012132 No
10 classes frarr =1.99950833 0.00049167 0.0012132 No
o=0.5 6545 =0.50012979 0.00012979 0.0012959 No
oy =0.50012988 0.00012988 0.0012959 No
second U=5 flsas =5.00003176 0.00003176 0.0000509 No
© firprr, =5.00003186 0.00003186 0.0000509 No
0=0.2 0545 =0.20016008 0.00016008 0.0005625 No
Orarr =0.20016027 0.00016027 0.0005625 No
third Hu=3 flsas =3.00003361 0.00003361 0.0000870 No
frarr =3.00003362 0.00003362 0.0000870 No
0=0.03 Gsas =0.03008051 0.00008051 0.0001053 No
& 1m1, =0.03008052 0.00008052 0.0001053 No
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