

# Chapter 3

# PARAMETRIC MODEL FOR A SINGLE SAMPLE FROM A HOMOGENEOUS POPULATION

# 3.1 Introduction

Under a univariate model, a distribution is fitted to the lifetimes without using any covariates. The model must describe the basic underlying distribution of lifetimes.

Let T be a non-negative continuous random variable representing lifetime from a homogeneous population.  $Y = \ln(T)$  is used to represent the log-lifetime.

The standard way of fitting parametric models to an observed set of survival data is to use the **method of maximum likelihood** (refer to [5, page 319-322]).

A new method of fitting parametric models to an observed set of survival data will be introduced in this chapter and is called **maximum likelihood estimation subject to con-straints**.



# 3.2 **Standard Method of Maximum Likelihood Estimation**

#### 3.2.1 Introduction

In the univariate case, a log-linear model (a linear model in log-lifetime) could be fitted to a survival data set. This model is of the form

$$Y = \ln T = \mu + \sigma W$$

where W is the error distribution,  $\mu$  is the location parameter and  $\sigma$  is the scale parameter.

The standard way of fitting such a model to an observed set of survival data is to use the method of maximum likelihood.

#### 3.2.2 Likelihood function for the linear model in log-time

The likelihood function for this linear model in log-time may be derived as follows.

Consider the *n* pairs  $(y_i, \delta_i)$  i = 1, 2, ..., n in the data set with  $y_i = ln(t_i)$ .

The basic form of the likelihood function for **random right-censored continuous data** is, from Equation 2.6 .6, equal to

$$L(\mu,\sigma) = \prod_{i=1}^{n} [f_Y(y_i)]^{\delta_i} \cdot [S_Y(y_i)]^{1-\delta_i}$$
  
$$= \prod_{i=1}^{n} \left[ f_W(\frac{y_i - \mu}{\sigma}) \cdot \frac{1}{\sigma} \right]^{\delta_i} \cdot \left[ S_W(\frac{y_i - \mu}{\sigma}) \right]^{1-\delta_i}$$
(3.2.1)

The log-likelihood function for random right-censored continuous data is then

$$lnL(\mu,\sigma) = \sum \delta_i \cdot ln \left[ f_W(\frac{y_i - \mu}{\sigma}) \cdot \frac{1}{\sigma} \right] + \sum (1 - \delta_i) \cdot ln \left[ S_W(\frac{y_i - \mu}{\sigma}) \right]$$
(3.2.2)

with

the first sum over observed lifetimes (uncensored observations) the second sum over right-censored observations.

The basic form of the likelihood function for **interval-censored data** follows from Equation 2.6 .9 as

$$L(\mu,\sigma) = \prod_{i=1}^{n} [f_Y(y_i)]^{\delta_i} \cdot [S_Y(y_i)]^{1-\delta_i} \cdot [1-S_Y(y_i)]^{\delta_i} \cdot [S_Y(b_i) - S_Y(y_i)]^{1-\delta_i}$$



$$= \prod_{i=1}^{n} \left[ f_{W}(\frac{y_{i}-\mu}{\sigma}) \cdot \frac{1}{\sigma} \right]^{\delta_{i}} \cdot \left[ S_{W}(\frac{y_{i}-\mu}{\sigma}) \right]^{1-\delta_{i}} \cdot \left[ 1 - S_{W}(\frac{y_{i}-\mu}{\sigma}) \right]^{\delta_{i}} \cdot \left[ S_{W}(\frac{b_{i}-\mu}{\sigma}) - S_{W}(\frac{y_{i}-\mu}{\sigma}) \right]^{1-\delta_{i}}$$

$$(3.2.3)$$

with  $b_i$  the lower end of a censoring interval.

The log-likelihood function for interval-censored data is

$$lnL(\mu,\sigma) = \sum \delta_{i} \cdot ln \left[ f_{W}(\frac{y_{i}-\mu}{\sigma}) \cdot \frac{1}{\sigma} \right] + \sum (1-\delta_{i}) \cdot ln \left[ S_{W}(\frac{y_{i}-\mu}{\sigma}) \right] + \sum (\delta_{i}) \cdot ln \left[ 1 - S_{W}(\frac{y_{i}-\mu}{\sigma}) \right] + \sum (1-\delta_{i}) \cdot ln \left[ S_{W}(\frac{b_{i}-\mu}{\sigma}) - S_{W}(\frac{y_{i}-\mu}{\sigma}) \right]$$

$$(3.2.4)$$

with

the first sum over observed lifetimes (uncensored observations) the second sum over right-censored observations the third sum over left-censored observations the fourth sum over interval-censored observations.

#### 3.2.3 Maximum likelihood estimators of the log-linear parameters

[5] shows how maximum likelihood estimators of the log-linear parameters  $\mu$  and  $\sigma$  associated with

- the extreme value distribution, the error distribution for the Weibull model
- the logistic distribution, the error distribution for the log-logistic model
- the normal distribution, the error distribution for the lognormal model

can be found numerically by the Newton-Raphson procedure (refer to [21]). When the iterative procedure has converged, the variance-covariance matrix of the log-linear parameter estimates can be approximated by the inverse of the information matrix, evaluated at the parameter estimates. The square roots of the diagonal elements of this matrix are then the standard errors of the estimated values of the log-linear parameters.

[4] shows how the LIFEREG procedure of the SAS statistical package computes these maximum likelihood estimators of the log-linear parameters  $\mu$  and  $\sigma$  and explains how the SAS



output must be interpreted. SAS allows for right-, left- and interval-censored data. The SAS programs appear in Appendix A. The variance-covariance matrix of the log-linear parameters  $\mu$  and  $\sigma$ , obtained from the observed information matrix, are also available in the SAS package.

The invariance property of the maximum likelihood estimator provides that the maximum likelihood estimators of  $\lambda$  and  $\alpha$  at the Weibull and log-logistic are then given by

$$\hat{\lambda} = \exp\left\{\frac{-\hat{\mu}}{\hat{\sigma}}\right\}$$
 and  $\hat{\alpha} = \frac{1}{\hat{\sigma}}$  (3.2.5)

An application of this standard technique to a reallife insurance company data set is done in chapter 5.

Applying the method of statistical differentials, also called delta method ([13, page 69-72]), leads to formulaes for the standard errors of the estimates and the covariance between the two estimates.

$$var(\hat{\lambda}) = \exp\left(\frac{-2\hat{\mu}}{\hat{\sigma}}\right) \cdot \left[\frac{var(\hat{\mu})}{\hat{\sigma}^2} + \hat{\mu}^2 \frac{var(\hat{\sigma})}{\hat{\sigma}^4} - 2\hat{\mu}\frac{cov(\hat{\mu},\hat{\sigma})}{\hat{\sigma}^3}\right]$$
(3.2.6)

$$var(\hat{\alpha}) = \frac{var(\hat{\sigma})}{\hat{\sigma}^4}$$
 (3.2.7)

$$cov(\hat{\lambda}, \hat{\alpha}) = \exp\left(\frac{-\hat{\mu}}{\hat{\sigma}}\right) \cdot \left[\frac{cov(\hat{\mu}, \hat{\sigma})}{\hat{\sigma}^3} - \hat{\mu}\frac{var(\hat{\sigma})}{\hat{\sigma}^4}\right]$$
(3.2.8)

Once maximum likelihood estimates of the parameters  $\mu$  and  $\sigma$ , or equivalently,  $\lambda$  and  $\alpha$  are computed, estimates of the survivor function and the hazard function are available for the distribution of T (or  $Y = \ln(T)$ ), that is the Weibull (or extreme value), log-logistic (or logistic) and lognormal (or normal).

3.3 MLE subject to Constraints - A Fixed Censoring Time

## 3.3.1 Introduction

Proposition 1, which is proved in [11], provides a method of finding the ML estimate for the mean vector of the exponential family, subject to certain constraints on the mean vector. From the estimate of the mean vector the estimates of the parameters in the model are computed.

Models can be easily formulated in terms of the implied constraints, which may be linear or non-linear in  $\mu$ .



#### **Proposition 1**

Consider a random vector y, with probability function belonging to the exponential family. Let  $g(\mu)$  be a continuous vector valued function of  $\mu$ , for which the first order partial derivatives exist.

Let  $G_{\mu} = \frac{\partial g(\mu)}{\partial \mu}$  be the derivative of  $g(\mu)$  with respect to  $\mu$  and  $G_{y} = \frac{\partial g(\mu)}{\partial \mu}\Big|_{\mu=y}$ . The ML estimate of  $\mu$  subject to the constraints  $g(\mu) = 0$ , is given by

$$\widehat{\boldsymbol{\mu}}_{c} = \boldsymbol{y} - (\boldsymbol{G}_{\mu} \boldsymbol{V}_{\mu})' (\boldsymbol{G}_{y} \boldsymbol{V}_{\mu} \boldsymbol{G}_{\mu}')^{*} \boldsymbol{g}(\boldsymbol{y}) + o(||\boldsymbol{y} - \boldsymbol{\mu}||)$$
(3.3.1)

This result implies that the MLE of  $\mu$  must be obtained iteratively.

The variance-covariance matrix V could be known, or it could be some function of  $\mu$ , say  $V_{\mu}$ . The iterative use of the estimation procedure thus depends on the form of  $G_{\mu}$  and  $V_{\mu}$ .

The matrix  $G_y V_{\mu} G'_{\mu}$  in Equation 3.3 .1 should be non-singular, and therefore the inverse, denoted by \*, is any generalized inverse (refer to [31, page 123]).

An expression for the asymptotic variance-covariance matrix of the estimator  $\hat{\mu}_c$  is given in Proposition 2.

#### **Proposition 2**

The asymptotic variance-covariance matrix of  $\widehat{\mu}_c$  is given by

$$cov\left(\widehat{\boldsymbol{\mu}}_{c}\right) = \boldsymbol{V}_{\mu} - (\boldsymbol{G}_{\mu}\boldsymbol{V}_{\mu})'(\boldsymbol{G}_{\mu}\boldsymbol{V}_{\mu}\boldsymbol{G}_{\mu}')^{*}\boldsymbol{G}_{\mu}\boldsymbol{V}_{\mu}$$
(3.3.2)

In [10] these propositions are applied to provide a method for fitting certain continuous probability distributions to an observed frequency distribution. The method requires that some function of the cumulative distribution function must be written as a **linear model**. The estimation algorithm described in [11] is applied to find the maximum likelihood estimates of the parameters in this linear model. From these estimates, the estimates of the parameters of the distribution can be found. This fitting method will be described in the notation of the survival analysis problem under consideration, regarding the lapses of policies.

#### 3.3.2 Notation for a fixed censoring time

Consider the simple experimental design, as described in [38], where all policies enter at the same time with C the pre-assigned fixed censoring time. Instead of observing  $X_1, X_2, ..., X_n$  only  $T_1, T_2, ..., T_n$  are observed where

$$T_j = \begin{cases} X_j & \text{if } X_j \le C \\ C & \text{if } X_j > C. \end{cases}$$



The survival data, based on a sample of size n, can then be represented by pairs of random variables  $(T_j, \delta_j)$  where  $T_1, T_2, ..., T_n$  are independent identically distributed random variables, each with distribution function F and density function f.  $\delta_j$  is the survival status of the  $j^{th}$  policy and indicates whether the lifetime for the  $j^{th}$  policy corresponds to a lapse  $(\delta_j = 1)$  or is censored  $(\delta_j = 0)$ .

A frequency distribution is formed when the observed values of the random variables  $T_1, T_2, ..., T_n$ are grouped into k adjacent, non-overlapping fixed lifetime intervals  $[x_{j-1}; x_j)$  j = 1, 2, ..., kwith  $x_0 = 0$ ,  $x_{k-1} = C$  and  $x_k = \infty$ , as shown in Table 3.1.

| Interval                                             | Lifetime                                                               | Frequency | Relative Frequency | Probability | Vector of Upper  |
|------------------------------------------------------|------------------------------------------------------------------------|-----------|--------------------|-------------|------------------|
| number                                               | Intervals                                                              | Vector    | Vector             | Vector      | Class Boundaries |
|                                                      |                                                                        | f         | p                  | $\pi$       | x                |
| first                                                | $[0, x_1)$                                                             | $f_1$     | $p_1$              | $\pi_1$     | $x_1$            |
| second                                               | $[x_1,x_2)$                                                            | $f_2$     | $p_2$              | $\pi_2$     | $x_2$            |
| third                                                | $[x_2,x_3)$                                                            | $f_3$     | $p_3$              | $\pi_3$     | $x_3$            |
| •••                                                  |                                                                        |           |                    |             |                  |
|                                                      |                                                                        |           |                    |             |                  |
| $\begin{vmatrix} (k-1)^{th} \\ k^{th} \end{vmatrix}$ | $\begin{array}{c} [x_{k-2}, x_{k-1}) \\ [x_{k-1}, \infty) \end{array}$ | $f_{k-1}$ | $p_{k-1}$          | $\pi_{k-1}$ | $x_{k-1}$        |
| $k^{th}$                                             | $[x_{k-1},\infty)$                                                     | $f_k$     | $p_k$              | $\pi_k$     |                  |

| Table 3.1: Relative frequency | / distribution of survival | data - | fixed censo | oring time |
|-------------------------------|----------------------------|--------|-------------|------------|
|-------------------------------|----------------------------|--------|-------------|------------|

In Table 3.1, the last interval in the second column is an open interval containing all the censored lifetimes. The  $x'_j s$ , j = 1, 2, ..., k - 1 represent the upper class boundaries and  $f_j$  denotes the observed frequency for the  $j^{th}$  lifetime interval with n the total number of observations j = 1, 2, ..., k.

Define

 $\boldsymbol{x} = (x_1, x_2, \dots, x_{k-1})'$  as the  $(k-1) \times 1$  vector of upper class boundaries,  $\boldsymbol{f} = (f_1, f_2, \dots, f_k)'$  as the  $k \times 1$  frequency vector and  $\boldsymbol{p} = \frac{\boldsymbol{f}}{n}$  as the  $k \times 1$  relative frequency vector.

f is a discrete random vector with a multinomial $(n, \pi)$  distribution, where  $\pi = (\pi_1, \pi_2, \dots, \pi_k)'$ and  $\pi_i$  is the probability that an observed lifetime falls in the  $i^{th}$  lifetime interval.

The relative frequency vector p is an observed probability vector from a multinomial population with np = f being multinomial $(n, \pi)$  distributed.

$$E(p) = \pi \tag{3.3.3}$$



$$Cov(\mathbf{p}) = \mathbf{V} = \frac{1}{n} \left[ diag(\mathbf{\pi}) - \mathbf{\pi}\mathbf{\pi}' \right]$$
(3.3.4)

Note that p is the MLE of  $\pi$  in the case of no constraints.

The MLE of  $\pi$  should be determined in terms of constraints imposed by the survival distribution to be fitted.

Note that f is a discrete random vector with a multinomial $(n, \pi)$  distribution and that the multinomial distribution is a member of the exponential family. Therefore Equation 3.3 .1 of Proposition 1 in [11] can be reformulated in terms of the survival analysis problem under consideration.

The MLE of  $\pi$  subject to the constraints  $g(\pi) = 0$  is

$$\widehat{\boldsymbol{\pi}}_{c} = \boldsymbol{p} - (\boldsymbol{G}_{\pi} \boldsymbol{V}_{\pi})' (\boldsymbol{G}_{p} \boldsymbol{V}_{\pi} \boldsymbol{G}_{\pi}')^{*} \boldsymbol{g}(\boldsymbol{p})$$
(3.3.5)

with

$$G_{\pi} = \frac{\partial g(\pi)}{\partial \pi}$$
 and  $G_{p} = \frac{\partial g(\pi)}{\partial \pi}\Big|_{\pi} = p$  (3.3.6)

This result implies that the MLE of  $\pi$  must be obtained iteratively by means of double iterations. The variance-covariance matrix  $V_{\pi}$  to be used is the estimated variance-covariance matrix of the multinomial distribution as stated in Equation 3.3 .4.

A double iteration takes place over p and  $\pi$ . For every value of  $\pi$  the iteration is performed over p to obtain a new estimate for  $\pi$ .

The observed relative frequency vector  $p = p_0$  is used as an initial estimate for  $\pi$  and p. In the first iteration over p, the p in Equation 3.3.5 is replaced by this initial estimate, while the  $V_{\pi}$  in Equation 3.3.5 is estimated by  $\widehat{V}_{p_0} = \frac{1}{\pi} [diag(p_0) - p_0 p'_0]$  and the  $G_{\pi}$  in Equation 3.3.5 is replaced by  $G_{p_0} = \frac{\partial g(\pi)}{\partial \pi} \Big|_{\pi = p_0}$ . This results in a new estimate for  $\pi$ . In the second iteration over p, only p in Equation 3.3.5 is replaced to obtain the second estimate for  $\pi$ , while  $V_{\pi}$  and  $G_{\pi}$  are kept constant at  $\widehat{V}_{p_0}$  and  $G_{p_0}$ , since iteration at this stage is over p. This is repeated until convergence is attained over p. The final estimate for  $\pi$  at convergence during this first stage of iteration over p then becomes the second estimate for  $\pi$  in  $G_{\pi}$  and  $V_{\pi}$ . Once again iteration takes place over p, again starting with the observed relative frequency vector  $p = p_0$  as estimate for  $\pi$  and keeping  $V_{\pi}$  and  $G_{\pi}$  constant at the estimated value at convergence. Iteration over p gives the third estimate for  $\pi$  in  $G_{\pi}$  and  $V_{\pi}$  and once again iteration takes place over p, again starting with the initial  $p_0$  vector as estimator for  $\pi$  and keeping  $V_{\pi}$  and  $G_{\pi}$  constant at the new estimate value at convergence. This procedure continues and convergence will be attained when the

33



final estimate for  $\pi$  in the iteration over p corresponds with the final estimate of  $\pi$  in the iteration over  $\pi$ . This value then will be the MLE for  $\pi_c$ .

Define  $\pi_S$  as the cumulative sum vector of the  $\pi_j$ 's. Hence

$$\boldsymbol{\pi}_{S} = \boldsymbol{S} \times \boldsymbol{\pi} = \begin{pmatrix} \pi_{1} \\ \pi_{1} + \pi_{2} \\ \cdots \\ \pi_{1} + \pi_{2} + \cdots + \pi_{k-1} \end{pmatrix}$$

where S is a  $(k-1) \times k$  matrix of the form

$$S = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 1 & 0 & \cdots & 0 & 0 \\ 1 & 1 & 1 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 1 & 1 & 1 & \cdots & 1 & 0 \end{pmatrix} \quad \text{and} \quad \pi = \begin{pmatrix} \pi_1 \\ \pi_2 \\ \cdots \\ \pi_k \end{pmatrix}$$

Let

$$oldsymbol{x} = egin{pmatrix} x_1 \ x_2 \ dots \ x_{k-1} \end{pmatrix}$$

then the cumulative distribution function

$$F(\boldsymbol{x}) = \boldsymbol{S} \times \boldsymbol{\pi} = \boldsymbol{\pi}_{\boldsymbol{S}} \tag{3.3.7}$$

It follows that

$$\boldsymbol{x} = F^{-1}(\boldsymbol{\pi}_S) \tag{3.3.8}$$

specifies the constraints on the elements of  $\pi_S$  and hence on  $\pi$ .

By using Equation 3.3 .2 of Proposition 2, the asymptotic variance-covariance matrix of  $\hat{\pi}_c$  is

$$cov\left(\widehat{\boldsymbol{\pi}}_{c}\right) = \boldsymbol{V} - \left(\boldsymbol{G}_{\pi}\boldsymbol{V}\right)'\left(\boldsymbol{G}_{\pi}\boldsymbol{V}\boldsymbol{G}_{\pi}'\right)^{*}\boldsymbol{G}_{\pi}\boldsymbol{V}$$
(3.3.9)

Next it will be shown how the estimation procedure may be utilized to fit continuous survival distributions, such as the Weibull, log-logistic and lognormal to **grouped survival data**. For the Weibull and log-logistic survival distributions some function of the survival function  $S(\mathbf{x}) = \mathbf{1} - F(\mathbf{x}) = \mathbf{1} - \pi_S$  may be written in terms of a **linear model**, from which the parameters of the survival distribution may be estimated. For the lognormal survival



distribution some function of the cumulative distribution function of the standard normal distribution may be expressed in terms of a **linear model**, from which the parameters of the lognormal distribution may be estimated.

The procedure to find the ML estimates of these three survival distributions can be easily implemented using a matrix algebra package, for example the SAS/IML procedure of the SAS System.

## 3.3.3 Fitting of a Weibull distribution to grouped survival data

From Equation 2.4 .8 follows that

$$\ln\left(-\ln S(t)\right) = \ln\lambda + \alpha\ln t \tag{3.3.10}$$

where t denotes the **continuous** survival time.

In the current notation for **grouped survival data** in terms of the vector of upper class boundaries, Equation 3.3 .10 becomes

$$\ln\left(-\ln S(\boldsymbol{x})\right) = \ln\lambda \cdot \mathbf{1} + \alpha \cdot \ln\boldsymbol{x} \tag{3.3.11}$$

or from  $S(\boldsymbol{x}) = \mathbf{1} - F(\boldsymbol{x})$ 

$$\ln\left\{-\ln(\mathbf{1} - F(\mathbf{x}))\right\} = \ln\lambda \cdot \mathbf{1} + \alpha \cdot \ln\mathbf{x}$$
(3.3.12)

or from Equation 3.3 .7

$$\ln \{-\ln(1 - \pi_{S})\} = \ln \lambda \cdot \mathbf{1} + \alpha \cdot \ln \mathbf{x}$$

$$= \ln \lambda \cdot \begin{pmatrix} 1 \\ 1 \\ \cdots \\ 1 \end{pmatrix} + \alpha \cdot \begin{pmatrix} \ln x_{1} \\ \ln x_{2} \\ \cdots \\ \ln x_{k-1} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & \ln x_{1} \\ 1 & \ln x_{2} \\ \cdots & \cdots \\ 1 & \ln x_{k-1} \end{pmatrix} \cdot \begin{pmatrix} \ln \lambda \\ \alpha \end{pmatrix}$$

$$= \underbrace{(\mathbf{1}, \ln \mathbf{x})}_{1} \cdot \begin{pmatrix} \ln \lambda \\ \alpha \end{pmatrix}$$

$$\Rightarrow \ln \{-\ln(1 - \pi_{S})\} = \mathbf{X}_{1} \cdot \begin{pmatrix} \ln \lambda \\ \alpha \end{pmatrix}$$
(3.3.14)



Equation 3.3 .14 is a **linear model** in the parameters  $\ln \lambda$  and  $\alpha$ . According to the general result for a linear model  $y = X\beta + \epsilon$  where  $E(y) = X\beta$  is equivalent to  $C \cdot E(y) = 0$  with  $C = I - X(X'X)^{-1}X'$ , Equation 3.3 .14 is equivalent to

$$\underbrace{\begin{pmatrix} I - X_1 (X_1' X_1)^{-1} X_1' \\ C & \cdot \ln(-\ln[1 - \pi_S]) \\ g(\pi) &= 0 \\ g(\pi) &= 0 \\ \end{bmatrix}}_{g(\pi)}$$

C is the projection matrix orthogonal to the columns of the design matrix  $X_1$ . Note that  $CX_1 = 0$ .

The function  $g(\pi) = 0$  satisfies the conditions of Proposition 1 and the estimation algorithm in [11] can be used to estimate the parameters  $\lambda$  and  $\alpha$  of the Weibull distribution.

To summarize, the constraints imposed by the Weibull distribution are specified by

$$g(\boldsymbol{\pi}) = \boldsymbol{C} \cdot \ln\{-\ln(1-\boldsymbol{\pi}_S)\} = \boldsymbol{C} \cdot \ln\{-\ln(1-\boldsymbol{S}\cdot\boldsymbol{\pi})\} = \boldsymbol{0}$$
(3.3.15)

with

$$C = I - X_1 (X_1'X_1)^{-1} X_1'$$
 and  $X_1 = (1, \ln x)$  . (3.3.16)

The derivative of  $g(\boldsymbol{\pi})$  with respect to  $\boldsymbol{\pi}$  is given by

$$G_{\pi} = \frac{\partial g(\pi)}{\partial \pi}$$

$$= C \cdot \left[ diag \left( \frac{1}{-\ln(1 - S \cdot \pi)} \right) \right] \cdot diag \left( \frac{1}{-(1 - S \cdot \pi)} \right) \cdot (-S)$$

$$= -C \cdot diag \left( \frac{1}{\ln(1 - \pi_S)} \right) \cdot diag \left( \frac{1}{1 - \pi_S} \right) \cdot S \qquad (3.3.17)$$

$$= -C \cdot D_1^{-1} \cdot D_2^{-1} \cdot S \qquad (3.3.18)$$

where  $D_1$  and  $D_2$  are diagonal matrices with the elements of  $\ln(1 - \pi_S)$  and  $(1 - \pi_S)$ , respectively, on the main diagonal and

$$\boldsymbol{S} = \left( \begin{array}{ccccccccc} 1 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 1 & 0 & \cdots & 0 & 0 \\ 1 & 1 & 1 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & 1 & 1 & \cdots & 1 & 0 \end{array} \right).$$

From Equation 3.3 .5 follows that the MLE of  $\pi$ , the vector of probabilities, is

$$\widehat{\boldsymbol{\pi}}_{c} = \boldsymbol{p} - (\boldsymbol{G}_{\pi}\boldsymbol{V})' (\boldsymbol{G}_{p}\boldsymbol{V}\boldsymbol{G}_{\pi}')^{*} \cdot \boldsymbol{C} \cdot \ln\left\{-\ln(1-\boldsymbol{S}\cdot\boldsymbol{p})\right\}$$
(3.3.19)



with  $p = \frac{f}{n}$  where  $f = (f_1, f_2, \dots, f_k)'$  is the frequency vector being multinomial $(n, \pi)$  distributed.

The variance-covariance matrix V to be used is the estimated variance-covariance matrix of the multinomial distribution, which follows from Equation 3.3 .4 as

$$\widehat{\mathbf{V}} = \frac{1}{n} \left[ diag(\mathbf{p}) - \mathbf{p}\mathbf{p}' \right]$$
(3.3.20)

Since Equation 3.3 .19 is still a function of the unknown parameter  $\pi$ , the double iterative procedure in [11] must be implemented. Once the iterative procedure in Equation 3.3 .19 has converged, the estimated parameters of the Weibull distribution can be solved from

$$\begin{pmatrix} \widehat{\ln \lambda} \\ \widehat{\alpha} \end{pmatrix} = (\mathbf{X}_1' \mathbf{X}_1)^{-1} \mathbf{X}_1' \cdot \ln\left(-\ln(\mathbf{1} - \mathbf{S} \cdot \widehat{\boldsymbol{\pi}}_c)\right).$$
(3.3.21)

The estimated lambda parameter of the Weibull distribution then is

$$\widehat{\lambda} = \exp(\widehat{\ln \lambda})$$

and the estimated alpha parameter  $\hat{\alpha}$ .

The SAS/IML program to fit a Weibull distribution to grouped survival data with a fixed censoring time appears in Appendix A.

#### 3.3.4 Fitting of a log-logistic distribution to grouped survival data

From Equation 2.4 .17 follows that

$$\ln\left(\frac{1-S(t)}{S(t)}\right) = \ln\lambda + \alpha\ln t \tag{3.3.22}$$

where t denotes the **continuous** survival time.

In the current notation for **grouped survival data** in terms of the vector of upper class boundaries, Equation 3.3 .22 becomes

$$\ln\left(\frac{1-S(\boldsymbol{x})}{S(\boldsymbol{x})}\right) = \ln\left(\frac{F(\boldsymbol{x})}{1-F(\boldsymbol{x})}\right)$$
$$= \ln\left(\frac{\pi_S}{1-\pi_S}\right)$$
$$= \ln(\pi_S) - \ln(1-\pi_S)$$
$$= \ln\lambda \cdot \mathbf{1} + \alpha \cdot \ln \boldsymbol{x} \qquad (3.3.23)$$



$$= \ln \lambda \cdot \begin{pmatrix} 1 \\ 1 \\ \cdots \\ 1 \end{pmatrix} + \alpha \cdot \begin{pmatrix} \ln x_1 \\ \ln x_2 \\ \cdots \\ \ln x_{k-1} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & \ln x_1 \\ 1 & \ln x_2 \\ \cdots & \cdots \\ 1 & \ln x_{k-1} \end{pmatrix} \cdot \begin{pmatrix} \ln \lambda \\ \alpha \end{pmatrix}$$
$$= \underbrace{(\mathbf{1}, \ln x)}_{1} \cdot \begin{pmatrix} \ln \lambda \\ \alpha \end{pmatrix}$$
$$= \underbrace{(\mathbf{1}, \ln x)}_{1} \cdot \begin{pmatrix} \ln \lambda \\ \alpha \end{pmatrix}$$
$$\Rightarrow \ln \left(\frac{\pi_S}{\mathbf{1} - \pi_S}\right) = \ln (\pi_S) - \ln (\mathbf{1} - \pi_S) = \mathbf{X}_1 \cdot \begin{pmatrix} \ln \lambda \\ \alpha \end{pmatrix}$$
(3.3.24)

Equation 3.3 .24 is a **linear model** in the parameters  $\ln \lambda$  and  $\alpha$ .

Similar to the case of the Weibull distribution, Equation 3.3 .24 is equivalent to

$$\underbrace{\left(I - X_1 (X_1' X_1)^{-1} X_1'\right)}_{C} \cdot \ln\left(\frac{\pi_S}{1 - \pi_S}\right) = 0$$

$$\underbrace{C \qquad \cdot \ln\left(\frac{\pi_S}{1 - \pi_S}\right)}_{g(\pi)} = 0$$

The function  $g(\pi) = 0$  satisfies the conditions of Proposition 1 and the estimation algorithm can be used to estimate the parameters  $\lambda$  and  $\alpha$  of the log-logistic distribution.

To summarize, the constraints imposed by the log-logistic distribution are specified by

$$g(\boldsymbol{\pi}) = \boldsymbol{C} \cdot \ln\left\{\frac{\boldsymbol{\pi}_S}{1 - \boldsymbol{\pi}_S}\right\} = \boldsymbol{C} \cdot \ln\left[\frac{\boldsymbol{S} \cdot \boldsymbol{\pi}}{1 - \boldsymbol{S} \cdot \boldsymbol{\pi}}\right] = \boldsymbol{C} \cdot \left[\ln(\boldsymbol{S} \cdot \boldsymbol{\pi}) - \ln(1 - \boldsymbol{S} \cdot \boldsymbol{\pi})\right] = \boldsymbol{0}$$
(3.3.25)

with

$$C = I - X_1 (X_1' X_1)^{-1} X_1'$$
 and  $X_1 = (1, \ln x)$  . (3.3.26)

The derivative of  $g(\pi)$  with respect to  $\pi$  is given by

$$G_{\pi} = \frac{\partial g(\pi)}{\partial \pi}$$
  
=  $C \cdot \left[ diag \left( \frac{1}{S \cdot \pi} \right) \cdot S - diag \left( \frac{1}{1 - S \cdot \pi} \right) \cdot (-S) \right]$ 



$$= \mathbf{C} \cdot \left[ diag\left(\frac{1}{\boldsymbol{\pi}_S}\right) + diag\left(\frac{1}{1-\boldsymbol{\pi}_S}\right) \right] \cdot \mathbf{S}$$
(3.3.27)

$$= \boldsymbol{C} \cdot \left[ \boldsymbol{D}_3^{-1} + \boldsymbol{D}_2^{-1} \right] \cdot \boldsymbol{S}$$
(3.3.28)

where  $D_3$  and  $D_2$  are diagonal matrices with the elements of  $\pi_S$  and  $1 - \pi_S$ , respectively, on the main diagonal and

$$\boldsymbol{S} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 1 & 0 & \cdots & 0 & 0 \\ 1 & 1 & 1 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & 1 & 1 & \cdots & 1 & 0 \end{pmatrix}.$$

The MLE of  $\pi$ , the vector of probabilities, is in this case

$$\widehat{\boldsymbol{\pi}}_{c} = \boldsymbol{p} - (\boldsymbol{G}_{\pi}\boldsymbol{V})' (\boldsymbol{G}_{p}\boldsymbol{V}\boldsymbol{G}_{\pi}')^{*} \cdot \boldsymbol{C} \cdot \ln\left\{\frac{\boldsymbol{S} \cdot \boldsymbol{p}}{1 - \boldsymbol{S} \cdot \boldsymbol{p}}\right\}$$
(3.3.29)

with  $p = \frac{f}{n}$  where  $f = (f_1, f_2, \dots, f_k)'$  is the frequency vector being multinomial $(n, \pi)$  distributed. The variance-covariance matrix V to be used is again the estimated variance-covariance matrix of the multinomial distribution, namely

$$\widehat{\mathbf{V}} = \frac{1}{n} \left[ diag(\mathbf{p}) - \mathbf{p}\mathbf{p}' \right]$$
(3.3.30)

Since Equation 3.3 .29 is still a function of the unknown parameter  $\pi$ , the double iterative procedure must be implemented. Once the iterative procedure in Equation 3.3 .29 has converged, the estimated parameters of the log-logistic distribution can be solved from

$$\begin{pmatrix} \widehat{\ln \lambda} \\ \widehat{\alpha} \end{pmatrix} = (\mathbf{X}_1' \mathbf{X}_1)^{-1} \mathbf{X}_1' \cdot \ln \left\{ \frac{\mathbf{S} \cdot \widehat{\boldsymbol{\pi}}_c}{\mathbf{1} - \mathbf{S} \cdot \widehat{\boldsymbol{\pi}}_c} \right\}.$$
 (3.3.31)

The estimated lambda parameter of the log-logistic distribution then is

$$\widehat{\lambda} = \exp(\widehat{\ln \lambda})$$

and the estimated alpha parameter  $\hat{\alpha}$ .

The SAS/IML program to fit a log-logistic distribution to grouped survival data with a fixed censoring time appears in Appendix A.

## 3.3.5 Fitting of a lognormal distribution to grouped survival data

From Equation 2.5 .10 follows that

$$T \sim \log \operatorname{normal}(\mu, \sigma^2) \iff \ln(T) \sim \operatorname{normal}(\mu, \sigma^2).$$
 (3.3.32)

39



where T denotes the **continuous** survival time.

In the current notation for **grouped survival data** in terms of the vector of upper class boundaries, Equation 3.3 .32 becomes

$$x \sim \text{lognormal}(\mu, \sigma^2) \iff \ln x \sim \text{normal}(\mu, \sigma^2)$$
  
 $\iff \frac{\ln x - \mu \cdot \mathbf{1}}{\sigma} \sim \text{normal}(0, 1).$  (3.3.33)

From Equation 3.3 .8 and Equation 3.3 .33 follow that

$$\frac{\ln \boldsymbol{x} - \boldsymbol{\mu}. \boldsymbol{1}}{\sigma} = \Phi^{-1}(\boldsymbol{\pi}_S)$$

specifies the constraints on the elements of  $\pi_S = \pi \cdot S$  and hence on  $\pi$  where  $\Phi(\cdot)$  is the cumulative distribution function of the standard normal distribution.

$$\Rightarrow \Phi^{-1}(\pi_S) = -\frac{\mu}{\sigma} \cdot \mathbf{1} + \frac{1}{\sigma} \cdot \ln x \qquad (3.3.34)$$
$$= (\mathbf{1}, \ln x) \cdot \begin{pmatrix} -\frac{\mu}{\sigma} \\ \frac{1}{\sigma} \end{pmatrix}$$
$$\Rightarrow \Phi^{-1}(\pi_S) = \mathbf{X}_1 \cdot \begin{pmatrix} -\frac{\mu}{\sigma} \\ \frac{1}{\sigma} \end{pmatrix} \qquad (3.3.35)$$

Equation 3.3 .35 is a **linear model** in the parameters  $-\frac{\mu}{\sigma}$  and  $\frac{1}{\sigma}$ .

Equation 3.3 .35 is equivalent to

$$\underbrace{\begin{pmatrix} I - X_1 (X_1'X_1)^{-1} X_1' \\ C & \Phi^{-1}(\pi_S) = 0 \\ g(\pi) & = 0 \\ \end{bmatrix}}_{g(\pi)} \underbrace{\Phi^{-1}(\pi_S)}_{g(\pi)} = 0$$

The function  $g(\pi) = 0$  satisfies the conditions of Proposition 1 and the estimation algorithm can be used to estimate the parameters  $\mu$  and  $\sigma^2$  of the lognormal distribution.

To summarize, the constraints imposed by the lognormal distribution are specified by

$$g(\pi) = \mathbf{C} \cdot \Phi^{-1}(\pi_S) = \mathbf{C} \cdot \Phi^{-1}(\mathbf{S} \cdot \pi) = \mathbf{0}$$
 (3.3.36)



with

$$C = I - X_1 (X_1' X_1)^{-1} X_1'$$
 and  $X_1 = (1, \ln x)$  . (3.3.37)

The derivative of  $g(\boldsymbol{\pi})$  with respect to  $\boldsymbol{\pi}$  is

$$\boldsymbol{G}_{\pi} = \frac{\partial \boldsymbol{g}(\boldsymbol{\pi})}{\partial \boldsymbol{\pi}} = \boldsymbol{C} \cdot \frac{\partial}{\partial \boldsymbol{\pi}} \Phi^{-1} (\boldsymbol{S} \cdot \boldsymbol{\pi}) \cdot \boldsymbol{S}$$
(3.3.38)

In order to find  $\frac{\partial}{\partial \pi} \Phi^{-1}({m S}\cdot {m \pi})$  consider the scalar case. Let

$$\pi_i = \Phi\left(\frac{\ln(x_i) - \mu}{\sigma}\right) = \Phi(z_i) \;.$$

Then  $\Phi^{-1}(\pi_i) = \frac{\ln(x_i) - \mu}{\sigma} = z_i$ , so that  $\frac{\partial}{\partial \phi^{-1}(\pi_i)} = \frac{\partial z_i}{\sigma} = -\frac{\partial z_i}{\sigma}$ 

$$\frac{\partial}{\partial \pi_i} \Phi^{-1}(\pi_i) = \frac{\partial z_i}{\partial \pi_i} = \frac{1}{\partial \pi_i / \partial z_i} = \frac{1}{\phi(z_i)} ,$$

with  $\phi(\cdot)$  the probability density function of the standard normal distribution.

Applying this result to the vector of derivatives, Equation 3.3 .38 becomes

$$G_{\pi} = \mathbf{C} \cdot \left[ \frac{1}{diag \left\{ \phi \left( \frac{\ln \mathbf{x} - \mu \cdot \mathbf{1}}{\sigma} \right) \right\}} \right] \mathbf{S} . \tag{3.3.39}$$

Since  $G_{\pi}$  depends on  $\mu$  and  $\sigma$  in the iterative procedure, these parameters will be estimated within the iterative stages and the final estimates will be obtained on convergence.

The SAS/IML program to fit a lognormal distribution to grouped survival data with a fixed censoring time appears in Appendix A.

### 3.3.6 A measure to compare the fit of survival distributions

A simple **measure of discrepancy** for comparing the fit of the survival distributions, is the statistic

$$D_{\chi^2} = \frac{\chi_W^2}{n} \tag{3.3.40}$$

where  $\chi^2_W$  is the Wald goodness of fit statistic (refer to [1]).

The Wald statistic in the survival analysis context is defined as

$$\chi_W^2 = g(\boldsymbol{p})' \cdot (\boldsymbol{G}_p \boldsymbol{V} \boldsymbol{G}_p')^* \cdot g(\boldsymbol{p}).$$

41



42

with  $V = \frac{1}{n} [diag(p) - pp']$  the estimated variance-covariance matrix of the multinomial distribution.

When fitting a Weibull distribution

$$g(\boldsymbol{p}) = \boldsymbol{C} \cdot \ln \left\{ -\ln(1 - \boldsymbol{S} \cdot \boldsymbol{p}) \right\}$$

and

$$m{G}_p = -m{C} \cdot diag\left(rac{1}{\ln(1-m{S}\cdotm{p})}
ight) \cdot diag\left(rac{1}{1-m{S}\cdotm{p}}
ight) \cdot m{S}.$$

When fitting a log-logistic distribution

$$g(oldsymbol{p}) = oldsymbol{C}. \left[\ln(oldsymbol{S} \cdot oldsymbol{p}) - \ln(1 - oldsymbol{S} \cdot oldsymbol{p})
ight]$$

and

$$m{G}_p = m{C} \cdot \left[ diag\left(rac{1}{m{S} \cdot m{p}}
ight) + diag\left(rac{1}{m{1} - m{S} \cdot m{p}}
ight) 
ight] \cdot m{S}.$$

When fitting a lognormal distribution

$$g(\boldsymbol{p}) = \boldsymbol{C} \cdot \Phi^{-1}(\boldsymbol{S} \cdot \boldsymbol{\pi})$$

and

$$m{G}_p = m{C} \cdot \left[ rac{1}{diag \left\{ \phi \left( rac{\ln m{x} - \mu_p \cdot m{1}}{\sigma_p} 
ight) 
ight\}} 
ight] m{S}$$

with  $\mu_p$  and  $\sigma_p$  the estimated values of  $\mu$  and  $\sigma$  at the first iteration.

The number of degrees of freedom equals the number of independent constraints imposed by the model. In general, a value of  $D_{\chi^2}$  less than 0.05 may be regarded as a good fit.

The Pearson's  $\chi^2$  statistic and the maximum likelihood  $\chi^2$  statistic (refer to [38, page 16-18] are asymptotically equivalent to the Wald statistic.

The calculation of the Wald statistic and the associated discrepancy is shown in the SAS/IML programs in Appendix A.



# 3.4 MLE subject to Constraints - Staggered Entry

#### 3.4.1 Introduction

Consider the following experimental design as illustrated in Figure 3.1. Policies enter the study at different times (**staggered entry**). The event to be occurred is a lapse. The lifetime of a policy is measured from inception date up to the lapsing date. If the lapsing date is prior to a fixed termination date (cutoff date) of the study, determined in advance, then the lifetime is observed (an uncensored observation). If a policy is still in force (alive) when the termination point is reached, the lifetime of this policy is **right-censored**. Random entries to the study are assumed. This type of censoring is known as **random right-censoring**. The censoring is **noninformative** in that the lapse and censoring times are independent.

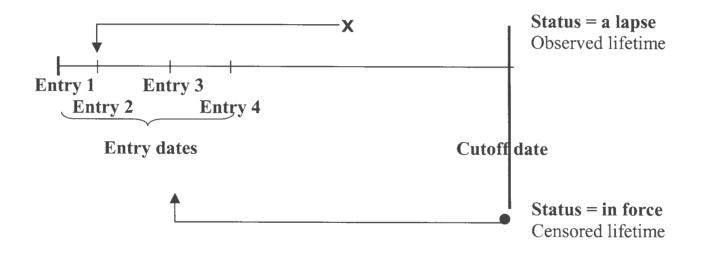
#### 3.4.2 Notation for staggered entry

 $C_j$  is the potential censoring time for the  $j^{th}$  policy, associated with lifetime  $X_j$ .  $C_1, C_2, ..., C_n$  are independent identically distributed random variables, each with distribution function G and density function g. A further assumption that  $X_i$  and  $C_i$  are independent is made.

The survival data, based on a sample of size n, can then be represented by pairs  $(T_1, \delta_1), (T_2, \delta_2), ..., (T_n, \delta_n)$  where

 $\begin{array}{rcl} T_j &=& \min(X_j, C_j) \text{ for the } j^{th} \text{ policy} \\ \delta_j &=& \left\{ \begin{array}{ll} 1 & \text{if } & X_j \leq C_j & \text{, that is, } X_j \text{ is not censored} \\ 0 & \text{if } & X_j > C_j & \text{, that is, } X_j \text{ is censored} \end{array} \right. \end{array}$ 

 $T_1, T_2, ..., T_n$  are independent identically distributed random variables with distribution function F if  $T_j = X_j$  and distribution function G if  $T_j = C_j$ .



UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI VA PRETORIA



To set notation for the staggered entry case, assume for illustration purposes four different entry times for the policies. The lifetimes of the  $n_1$  policies that enter the study at the first entry time (called the first sample of size  $n_1$ ) can be grouped into k adjacent, nonoverlapping fixed intervals

$$I_j = [x_{j-1}; x_j) \quad j = 1, 2, ..., k$$

with  $x_0 = 0$  and  $x_k = \infty$ . The last interval is an open interval containing all the censored lifetimes of the first sample.

The lifetimes of the  $n_2$  policies that enter the study at the second entry time (called the second sample of size  $n_2$ ) can be grouped into (k - 1) adjacent, non-overlapping fixed intervals

$$I_j = [x_{j-1}; x_j) \quad j = 1, 2, ..., k - 1$$

with  $x_0 = 0$  and  $x_{k-1} = \infty$ . The last interval is an open interval containing all the censored lifetimes of the second sample.

The lifetimes of the  $n_3$  policies that enter the study at the third entry time (called the third sample of size  $n_3$ ) can be grouped into (k-2) adjacent, non-overlapping fixed intervals

$$I_j = [x_{j-1}; x_j) \quad j = 1, 2, ..., k-2$$

with  $x_0 = 0$  and  $x_{k-2} = \infty$ . The last interval is an open interval containing all the censored lifetimes of the third sample.

The lifetimes of the  $n_4$  policies that enter the study at the last entry time (called the fourth sample of size  $n_4$ ) can be grouped into (k-3) adjacent, non-overlapping fixed intervals

$$I_j = [x_{j-1}; x_j) \quad j = 1, 2, ..., k - 3$$

with  $x_0 = 0$  and  $x_{k-3} = \infty$ . The last interval is an open interval containing all the censored lifetimes of the fourth sample.

Four frequency distributions are formed when the observed and censored lifetimes of all the policies are grouped into the different lifetime intervals. The total number of observations in the data set is  $n = n_1 + n_2 + n_3 + n_4$ .

The four vectors of upper class boundaries are defined as follows:

$$\begin{aligned} & \boldsymbol{x}_1 = (x_1, x_2, ..., x_{k-1})' \text{ is a } (k-1) \times 1 \text{ vector (sample 1)} \\ & \boldsymbol{x}_2 = (x_1, x_2, ..., x_{k-2})' \text{ is a } (k-2) \times 1 \text{ vector (sample 2)} \\ & \boldsymbol{x}_3 = (x_1, x_2, ..., x_{k-3})' \text{ is a } (k-3) \times 1 \text{ vector (sample 3)} \\ & \boldsymbol{x}_4 = (x_1, x_2, ..., x_{k-4})' \text{ is a } (k-4) \times 1 \text{ vector (sample 4)} \end{aligned}$$



The four relative frequency vectors are observed probability vectors from four independent multinomial populations. Let  $p_1, p_2, p_3$  and  $p_4$  be the four relative frequency vectors.

 $p_1 = (p_{1,1}, p_{1,2}, p_{1,3}, ..., p_{1,k})'$  is an observed probability vector (sample 1)  $p_2 = (p_{2,1}, p_{2,2}, p_{2,3}, ..., p_{2,k-1})'$  is an observed probability vector (sample 2)  $p_3 = (p_{3,1}, p_{3,2}, p_{3,3}, ..., p_{3,k-2})'$  is an observed probability vector (sample 3)  $p_4 = (p_{4,1}, p_{4,2}, p_{4,3}, ..., p_{4,k-3})'$  is an observed probability vector (sample 4)

Each sample is from a multinomial population i = 1, 2, 3, 4 with

$$E(\boldsymbol{p}_i) = \boldsymbol{\pi}_i$$
 $Cov(\boldsymbol{p}_i) = \boldsymbol{V}_i = rac{1}{n_i} \left[ diag(\boldsymbol{\pi}_i) - rac{1}{n_i} \boldsymbol{\pi}_i \boldsymbol{\pi}_i' 
ight]$ 

where  $\pi_1 = (\pi_{1,1}, \pi_{1,2}, \pi_{1,3}, ..., \pi_{1,k})'$  is a  $k \times 1$  probability vector  $\pi_2 = (\pi_{2,1}, \pi_{2,2}, \pi_{2,3}, ..., \pi_{2,k-1})'$  is a  $(k-1) \times 1$  probability vector  $\pi_3 = (\pi_{3,1}, \pi_{3,2}, \pi_{3,3}, ..., \pi_{3,k-2})'$  is a  $(k-2) \times 1$  probability vector  $\pi_4 = (\pi_{4,1}, \pi_{4,2}, \pi_{4,3}, ..., \pi_{4,k-3})'$  is a  $(k-3) \times 1$  probability vector

 $\pi_{i,j}$  is the probability that an observation from sample *i* will fall in the  $j^{th}$  interval, that is the interval probability of the  $j^{th}$  interval from sample i i = 1, 2, 3, 4 j = 1, 2, ..., k.

 $\Rightarrow \quad p_1, p_2, p_3 \; {
m and} \; p_4$  are four observed probability vectors corresponding to

 $n_i p_i$  being multinomial $(n_i; \pi_i)$ 

with  $n_i$  the number of observations in the  $i^{th}$  sample i = 1, 2, 3, 4.

Table 3.2 gives the relative frequency distributions of the four samples.

The vectors  $x_i$  i = 1, 2, 3, 4 of upper class boundaries for the  $i^{th}$  sample (entry group) are

$$\boldsymbol{x}_1 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \cdots \\ \cdots \\ \cdots \\ \vdots \\ x_{k-1} \end{pmatrix} \quad \boldsymbol{x}_2 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \cdots \\ \vdots \\ x_{k-2} \end{pmatrix} \quad \boldsymbol{x}_3 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \cdots \\ \vdots \\ x_{k-3} \end{pmatrix} \quad \text{and} \quad \boldsymbol{x}_4 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \cdots \\ x_{k-4} \end{pmatrix}.$$



Define the combined vector of relative frequencies (combined observed probability vector) as  $p' = (p'_1, p'_2, p'_3, p'_4)$  and the combined probability vector as  $\pi' = (\pi'_1, \pi'_2, \pi'_3, \pi'_4)$ .

Note that p is the MLE of  $\pi$  in the case of no constraints.  $\pi$  is to be estimated under certain constraints.

The MLE of  $\pi$  should be determined in terms of

- constraints imposed by the experimental design
- constraints imposed by the survival distribution to be fitted

| Table 3.2: <b>Rel</b> | ative frequency | distributions | of survival | data - | staggered entry |
|-----------------------|-----------------|---------------|-------------|--------|-----------------|
|-----------------------|-----------------|---------------|-------------|--------|-----------------|

| Interval     |                                                  | Lifetime I           | ntervals             | Obset              | Observed Probability Vector |                  |             |             | Probabili     | ty Vector     | Vector of Upper Boundarie |               |           |                  |           |           |
|--------------|--------------------------------------------------|----------------------|----------------------|--------------------|-----------------------------|------------------|-------------|-------------|---------------|---------------|---------------------------|---------------|-----------|------------------|-----------|-----------|
| number       | Entry 1                                          | Entry 2              | Entry 3              | Entry 4            | $p_1$                       | $p_2$            | $p_3$       | $p_4$       | $\pi_1$       | $\pi_2$       | $\pi_3$                   | $\pi_4$       | $x_1$     | $oldsymbol{x}_2$ | $x_3$     | $x_4$     |
| first        | $[0, x_1)$                                       | $[0, x_1)$           | $[0, x_1)$           | $[0, x_1)$         | $p_{1,1}$                   | p <sub>2,1</sub> | $p_{3,1}$   | $p_{4,1}$   | $\pi_{1,1}$   | $\pi_{2,1}$   | $\pi_{3,1}$               | $\pi_{4,1}$   | $x_1$     | $x_1$            | $x_1$     |           |
| second       | $[x_1, x_2)$                                     | $[x_1,x_2)$          | $[x_1, x_2)$         | $[x_1, x_2)$       | $p_{1,2}$                   | $p_{2,2}$        | $p_{3,2}$   | $p_{4,2}$   | $\pi_{1,2}$   | $\pi_{2,2}$   | $\pi_{3,2}$               | $\pi_{4,2}$   | $x_2$     | $x_2$            | $x_2$     |           |
| third        | $[x_2, x_3)$                                     | $[x_2,x_3)$          | $[x_2,x_3)$          | $[x_2, x_3)$       | $p_{1,3}$                   | p <sub>2,3</sub> | $p_{3,3}$   | $p_{4,3}$   | $\pi_{1,3}$   | $\pi_{2,3}$   | $\pi_{3,3}$               | $\pi_{4,3}$   | $x_3$     | $x_3$            | $x_3$     | $x_3$     |
|              |                                                  |                      |                      | • • •              |                             |                  |             |             |               |               |                           |               |           |                  |           |           |
|              |                                                  |                      |                      |                    |                             |                  |             |             |               |               |                           |               |           |                  |           | $x_{k-4}$ |
| $(k-3)^{th}$ | $\left  \left[ x_{k-4}, x_{k-3} \right) \right $ | $[x_{k-4}, x_{k-3})$ | $[x_{k-4}, x_{k-3})$ | $[x_{k-4},\infty)$ | $p_{1,k-3}$                 | $p_{2,k-3}$      | $p_{3,k-3}$ | $p_{4,k-3}$ | $\pi_{1,k-3}$ | $\pi_{2,k-3}$ | $\pi_{3,k-3}$             | $\pi_{4,k-3}$ | $x_{k-3}$ | $x_{k-3}$        | $x_{k-3}$ |           |
| $(k-2)^{th}$ | $[x_{k-3}, x_{k-2})$                             | $[x_{k-3}, x_{k-2})$ | $[x_{k-3},\infty)$   |                    | $p_{1,k-2}$                 | $p_{2,k-2}$      | $p_{3,k-2}$ |             | $\pi_{1,k-2}$ | $\pi_{2,k-2}$ | $\pi_{3,k-2}$             |               | $x_{k-2}$ | $x_{k-2}$        |           |           |
| $(k-1)^{th}$ | $[x_{k-2}, x_{k-1})$                             | $[x_{k-2},\infty)$   |                      |                    | $p_{1,k-1}$                 | $p_{2,k-1}$      |             |             | $\pi_{1,k-1}$ | $\pi_{2,k-1}$ |                           |               | $x_{k-1}$ |                  |           |           |
| $k^{th}$     | $[x_{k-1},\infty)$                               |                      |                      |                    | $p_{1,k}$                   |                  |             |             | $\pi_{1,k}$   |               |                           |               |           |                  |           |           |



## 3.4.3 **Definition of Constraints**

#### Constraints imposed by the survival distribution to be fitted

#### Constraints imposed by the Weibull distribution

A Weibull distribution with parameters  $\lambda$  and  $\alpha$  subject to the constraints  $\pi_S$  can be written from Equation 3.3 .13 as

 $\ln\left(-\ln(\mathbf{1}-\boldsymbol{\pi}_S)\right) = \ln\lambda\cdot\mathbf{1} + \alpha\cdot\ln\boldsymbol{x}$ 

#### Constraints imposed by the log-logistic distribution

A log-logistic distribution with parameters  $\lambda$  and  $\alpha$  subject to the constraints  $\pi_S$  can be written from Equation 3.3 .23 as

 $\ln \left( \boldsymbol{\pi}_{S} \right) - \ln \left( \boldsymbol{1} - \boldsymbol{\pi}_{S} \right) = \ln \lambda \cdot \boldsymbol{1} + \alpha \cdot \ln \boldsymbol{x}$ 

#### Constraints imposed by the lognormal distribution

A lognormal distribution with parameters  $\mu$  and  $\sigma^2$  subject to the constraints  $\pi_s$  can be written from Equation 3.3.34 as

$$\Phi^{-1}(\pi_S) = -\frac{\mu}{\sigma} \cdot \mathbf{1} + \frac{1}{\sigma} \cdot \ln \boldsymbol{x}$$



# Constraints imposed by the experimental design

Consider Figure 3.2, illustrating the constraints imposed by the experimental design.

- $\pi_{1,j} = \pi_{2,j} = \pi_{3,j} = \pi_{4,j}$  j = 1, 2, ..., k 4
- $\pi_{1,k} + \pi_{1,k-1} + \pi_{1,k-2} + \pi_{1,k-3} = \pi_{2,k-1} + \pi_{2,k-2} + \pi_{2,k-3}$ =  $\pi_{3,k-2} + \pi_{3,k-3}$ =  $\pi_{4,k-3}$
- $\pi_{1,k-2} = \pi_{2,k-2}$  $\pi_{1,k-3} = \pi_{2,k-3}$

where  $\pi_{i,j}$  = probability of an observation from sample *i* will fall in the *j*<sup>th</sup> interval = interval probability of *j*<sup>th</sup> interval from sample *i* i = 1, 2, 3, 4 j = 1, 2, ..., k

These constraints can be written as

- $1 \cdot \pi_{1,j} 1 \cdot \pi_{2,j} = 0$   $1 \cdot \pi_{1,j} - 1 \cdot \pi_{3,j} = 0$  $1 \cdot \pi_{1,j} - 1 \cdot \pi_{4,j} = 0$  j = 1, 2, ..., k - 4
- $1 \cdot \pi_{1,k} + 1 \cdot \pi_{1,k-1} + 1 \cdot \pi_{1,k-2} + 1 \cdot \pi_{1,k-3} 1 \cdot \pi_{2,k-1} 1 \cdot \pi_{2,k-2} 1 \cdot \pi_{2,k-3} = 0$   $1 \cdot \pi_{1,k} + 1 \cdot \pi_{1,k-1} + 1 \cdot \pi_{1,k-2} + 1 \cdot \pi_{1,k-3} - 1 \cdot \pi_{3,k-2} - 1 \cdot \pi_{3,k-3} = 0$  $1 \cdot \pi_{1,k} + 1 \cdot \pi_{1,k-1} + 1 \cdot \pi_{1,k-2} + 1 \cdot \pi_{1,k-3} - 1 \cdot \pi_{4,k-3} = 0$
- $1 \cdot \pi_{1,k-2} 1 \cdot \pi_{2,k-2} = 0$  $1 \cdot \pi_{1,k-3} - 1 \cdot \pi_{2,k-3} = 0$

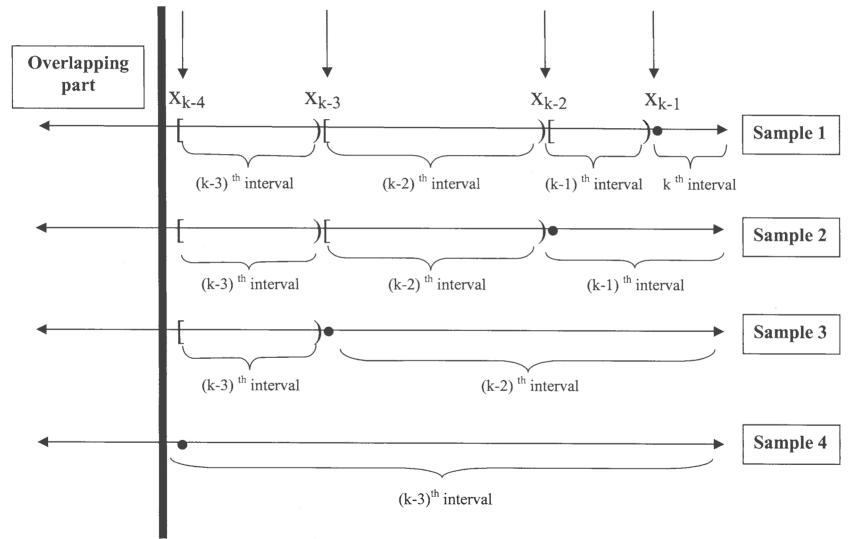


Figure 3.2: Constraints imposed by the experimental design



These constraints in matrix form are  $G \cdot \pi = 0$  with  $\pi' = (\pi'_1, \pi'_2, \pi'_3, \pi'_4)$  where

 $\pi_{1} = (\pi_{1,1}, \pi_{1,2}, \pi_{1,3}, \dots, \pi_{1,k})' \text{ is a } k \times 1 \text{ probability vector}$   $\pi_{2} = (\pi_{2,1}, \pi_{2,2}, \pi_{2,3}, \dots, \pi_{2,k-1})' \text{ is a } (k-1) \times 1 \text{ probability vector}$   $\pi_{3} = (\pi_{3,1}, \pi_{3,2}, \pi_{3,3}, \dots, \pi_{3,k-2})' \text{ is a } (k-2) \times 1 \text{ probability vector}$   $\pi_{4} = (\pi_{4,1}, \pi_{4,2}, \pi_{4,3}, \dots, \pi_{4,k-3})' \text{ is a } (k-3) \times 1 \text{ probability vector}$ and  $\begin{pmatrix} I & 0 & 0 & 0 & 0 & -I & 0 & 0 & 0 & 0 \end{pmatrix}$ 

|     | (I | 0 | 0 | 0 | 0 | -I           | 0       | 0  | 0  | 0            | 0  | 0  | 0            | 0   | 1 |
|-----|----|---|---|---|---|--------------|---------|----|----|--------------|----|----|--------------|-----|---|
|     | Ι  | 0 | 0 | 0 | 0 | 0            | 0       | 0  | 0  | -I           | 0  | 0  | 0            | 0   |   |
|     | I  | 0 | 0 | 0 | 0 | 0            | 0       | 0  | 0  | 0            | 0  | 0  | -I           | 0   |   |
|     |    |   |   |   |   |              |         |    |    |              |    |    |              |     |   |
| G = | 0′ |   |   |   | 1 | <b>0</b> '   | -1      | -1 | -1 | <b>0</b> '   | 0  | 0  | $0^{\prime}$ | 0   |   |
|     | 0′ | 1 | 1 | 1 | 1 | <b>0</b> '   | 0       | 0  | 0  | <b>0</b> '   | -1 | -1 | 0′           | 0   | • |
|     | 0′ | 1 | 1 | 1 | 1 | 0'           | 0       | 0  | 0  | 0′           | 0  | 0  | 0′           | -1  |   |
|     |    |   |   |   |   |              |         |    |    |              |    |    |              |     |   |
|     | 0′ | 0 | 1 | 0 | 0 | 0'           | 0       | -1 | 0  | $0^{\prime}$ | 0  | 0  | 0′           | 0   |   |
|     | 0′ | 1 | 0 | 0 | 0 | $0^{\prime}$ | $^{-1}$ | 0  | 0  | $0^{\prime}$ | 0  | 0  | $0^{\prime}$ | 0 / |   |

# 3.4.4 Method of maximum likelihood estimation subject to constraints: staggered entry

The technique of maximum likelihood estimation subject to constraints is implemented in the following way:

- 1. One survival model is fitted under constraints imposed by the Weibull/log-logistic/lognormal distribution over the four entry groups.
- 2. Four survival models (Weibull/log-logistic/lognormal models), one for each entry time, are fitted under constraints imposed by the Weibull/log-logistic/lognormal distribution and under **further constraints** that
  - $\lambda_i{'}{\rm s}$  are equal and  $\alpha_i{'}{\rm s}$  are equal when fitting a Weibull or log-logistic

or

- $\mu_i$ 's are equal and  $\sigma_i$ 's are equal when fitting a lognormal
- 3. A joint histogram is fitted to the four histograms of the four relative frequency distributions under constraints imposed by the experimental design.



## 3.4.5 **Fitting of one survival distribution to the four histograms**

#### Fitting of one Weibull distribution to the four histograms

Recall that a Weibull distribution with parameters  $\lambda$  and  $\alpha$  under the constraints  $\pi_S$  can be written as

$$\ln\left\{-\ln(\mathbf{1}-\boldsymbol{\pi}_S)\right\} = \ln\lambda \cdot \mathbf{1} + \alpha \cdot \ln \boldsymbol{x}$$
(3.4.1)

or

$$\ln \{-\ln(1-\pi_{S})\} = \ln \lambda \cdot \begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix} + \alpha \cdot \begin{pmatrix} \ln x_{1}\\\ln x_{2}\\\ln x_{3}\\\ln x_{4} \end{pmatrix}$$
$$= \underbrace{\begin{pmatrix} 1 & \ln x_{1}\\1 & \ln x_{2}\\1 & \ln x_{3}\\1 & \ln x_{4} \end{pmatrix}}_{\Rightarrow \ln \{-\ln(1-\pi_{S})\}} = X_{1} \cdot \begin{pmatrix} \ln \lambda\\\alpha \end{pmatrix}$$
(3.4.2)

where

$$m{x}_1 = egin{pmatrix} x_1 \ x_2 \ x_3 \ \cdots \ \cdots \ \cdots \ x_{k-1} \end{pmatrix}$$
  $m{x}_2 = egin{pmatrix} x_1 \ x_2 \ x_3 \ \cdots \ \cdots \ x_{k-2} \end{pmatrix}$   $m{x}_3 = egin{pmatrix} x_1 \ x_2 \ x_3 \ \cdots \ x_{k-3} \end{pmatrix}$  and  $m{x}_4 = egin{pmatrix} x_1 \ x_2 \ x_3 \ \cdots \ x_{k-4} \end{pmatrix}$ .

Equation 3.4 .2 is a **linear model** in the parameters  $\ln \lambda$  and  $\alpha$ . This model is equivalent to

$$\underbrace{\begin{pmatrix} I - X_1 (X_1'X_1)^{-1} X_1' \\ C & \cdot \ln \{ -\ln(1 - \pi_S) \} \\ g(\pi) &= 0 \\ g(\pi) &= 0 \\ \end{bmatrix}}_{g(\pi)}$$



C is the projection matrix orthogonal to the columns of the design matrix  $X_1$ . Note that  $CX_1 = 0$ .

The function  $g(\pi) = 0$  satisfies the conditions of Proposition 1 and the estimation algorithm can be used to estimate the  $\lambda$  and  $\alpha$  of the Weibull distribution.

To summarize, the constraints imposed by the Weibull distribution are specified by

$$g(\boldsymbol{\pi}) = \boldsymbol{C} \cdot \ln\{-\ln(1-\boldsymbol{\pi}_S)\} = \boldsymbol{C} \cdot \ln\{-\ln(1-\boldsymbol{S}\cdot\boldsymbol{\pi})\} = \boldsymbol{0}$$
(3.4.3)

with

$$C = I - X_1 (X_1' X_1)^{-1} X_1' \quad . \tag{3.4.4}$$

The derivative of  $g(\boldsymbol{\pi})$  with respect to  $\boldsymbol{\pi}$  is

$$G_{\pi} = \frac{\partial g(\pi)}{\partial \pi}$$
  
=  $-\mathbf{C} \cdot diag\left(\frac{1}{\ln(1-\pi_S)}\right) \cdot diag\left(\frac{1}{1-\pi_S}\right) \cdot \mathbf{S}$  (3.4.5)

$$= -\boldsymbol{C} \cdot \boldsymbol{D}_1^{-1} \cdot \boldsymbol{D}_2^{-1} \cdot \boldsymbol{S}$$
(3.4.6)

where

 $D_1$  and  $D_2$  are diagonal matrices with the elements of  $\ln(1-\pi_S)$  and  $(1-\pi_S)$ , respectively, on the main diagonal and S is a block-diagonal matrix created from four matrices  $S_1, S_2, S_3$  and  $S_4$  associated with the four entry periods.

The estimated vector of probabilities is in this case

$$\widehat{\boldsymbol{\pi}}_{c} = \boldsymbol{p} - (\boldsymbol{G}_{\pi}\boldsymbol{V})' (\boldsymbol{G}_{p}\boldsymbol{V}\boldsymbol{G}_{\pi}')^{*} \cdot \boldsymbol{C}.\ln\left\{-\ln(1-\boldsymbol{S}\cdot\boldsymbol{p})\right\}$$
(3.4.7)

with  $p' = (p'_1, p'_2, p'_3, p'_4)$  where  $p_1 = (p_{1,1}, p_{1,2}, p_{1,3}, ..., p_{1,k})'$   $p_2 = (p_{2,1}, p_{2,2}, p_{2,3}, ..., p_{2,k-1})'$  $p_3 = (p_{3,1}, p_{3,2}, p_{3,3}, ..., p_{3,k-2})'$  and  $p_4 = (p_{4,1}, p_{4,2}, p_{4,3}, ..., p_{4,k-3})'$  are four relative frequency vectors corresponding to  $n_i p_i$  being multinomial $(n_i; \pi_i)$  i = 1, 2, 3, 4 distributed.

The variance-covariance matrix V to be used is the estimated variance-covariance matrix of the multinomial distribution for each entry period.

$$\implies \widehat{\mathbf{V}} = \mathsf{block}(\widehat{\mathbf{V}}_1, \widehat{\mathbf{V}}_2, \widehat{\mathbf{V}}_3, \widehat{\mathbf{V}}_4)$$

and

$$\widehat{\mathbf{V}}_i = rac{1}{n_i} \left[ diag(\mathbf{p}_i) - \mathbf{p}_i \mathbf{p}'_i 
ight] \quad i = 1, 2, 3, 4$$



55

In the notation for staggered entry of policies, as described in Table 3.2 with four entry periods and k, the number of class intervals, for illustration purposes equal to seven,

 $\begin{aligned} & p_1 = (p_{1,1}, p_{1,2}, p_{1,3}, p_{1,4}, p_{1,5}, p_{1,6}, p_{1,7})' \text{ is a } 7 \times 1 \text{ relative frequency vector} \\ & p_2 = (p_{2,1}, p_{2,2}, p_{2,3}, p_{2,4}, p_{2,5}, p_{2,6})' \text{ is a } 6 \times 1 \text{ relative frequency vector} \\ & p_3 = (p_{3,1}, p_{3,2}, p_{3,3}, p_{3,4}, p_{3,5})' \text{ is a } 5 \times 1 \text{ relative frequency vector} \\ & p_4 = (p_{4,1}, p_{4,2}, p_{4,3}, p_{4,4})' \text{ is a } 4 \times 1 \text{ relative frequency vector} \end{aligned}$ 

 $\begin{aligned} \pi_1 &= (\pi_{1,1}, \pi_{1,2}, \pi_{1,3}, \pi_{1,4}, \pi_{1,5}, \pi_{1,6}, \pi_{1,7})' \text{ is a } 7 \times 1 \text{ probability vector} \\ \pi_2 &= (\pi_{2,1}, \pi_{2,2}, \pi_{2,3}, \pi_{2,4}, \pi_{2,5}, \pi_{2,6})' \text{ is a } 6 \times 1 \text{ probability vector} \\ \pi_3 &= (\pi_{3,1}, \pi_{3,2}, \pi_{3,3}, \pi_{3,4}, \pi_{3,5})' \text{ is a } 5 \times 1 \text{ probability vector} \\ \pi_4 &= (\pi_{4,1}, \pi_{4,2}, \pi_{4,3}, \pi_{4,4})' \text{ is a } 4 \times 1 \text{ probability vector.} \end{aligned}$ 

 $\boldsymbol{S}$  is a  $18\times22$  block-diagonal matrix, that is

$$S = block(S_1, S_2, S_3, S_4)$$

with

$$\boldsymbol{S}_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$
$$\boldsymbol{S}_{4} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}.$$



The matrix S is given below.

|     | / 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
|-----|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----------|---|---|---|---|---|---|---|
|     |     | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 |   |
|     | 1   | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 |   |
|     | 1   | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 |   |
|     | 1   | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 |   |
|     | 1   | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 |   |
|     |     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |          |   |   |   |   |   |   |   |
|     | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 |   |
|     | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 |   |
|     | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 |   |
| S = | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 |   |
|     | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 |   |
|     |     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |          |   |   |   |   |   |   |   |
|     | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 |   |
|     | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0        | 0 | 0 | 0 | 0 | 0 | 0 |   |
|     | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | <b>1</b> | 0 | 0 | 0 | 0 | 0 | 0 |   |
|     | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1        | 1 | 0 | 0 | 0 | 0 | 0 |   |
|     |     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |          |   |   |   |   |   |   |   |
|     | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0 | 0 | 1 | 0 | 0 | 0 |   |
|     | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0 | 0 | 1 | 1 | 0 | 0 |   |
|     | 0 / | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0 | 0 | 1 | 1 | 1 | 0 | / |

Note that  $\widehat{\mathbf{V}}_1$  is a 7 × 7,  $\widehat{\mathbf{V}}_2$  is a 6 × 6,  $\widehat{\mathbf{V}}_3$  is a 5 × 5 and  $\widehat{\mathbf{V}}_4$  is a 4 × 4 matrix so that  $\widehat{\mathbf{V}}$  is a 22 × 22 matrix.

Since Equation 3.4 .7 is still a function of the unknown parameter  $\pi$ , the double iterative procedure must be implemented. Once the iterative procedure in Equation 3.4 .7 has converged, the estimated parameters of the Weibull distribution can be solved from

$$\begin{pmatrix} \widehat{\ln \lambda} \\ \widehat{\alpha} \end{pmatrix} = (\mathbf{X}_1' \mathbf{X}_1)^{-1} \mathbf{X}_1' \cdot \ln \{-\ln(1 - \mathbf{S} \cdot \widehat{\pi}_c)\}.$$
(3.4.8)

The estimated lambda parameter of the Weibull distribution then is

$$\widehat{\lambda} = \exp(\widehat{\ln \lambda})$$

and the estimated alpha parameter  $\hat{\alpha}$ .

The SAS/IML program to fit a Weibull model to grouped survival data with staggered entry of policies appears in Appendix A.

#### Fitting of one log-logistic distribution to the four histograms

Recall that a log-logistic distribution with parameters  $\lambda$  and  $\alpha$  under the constraints  $\pi_S$  can be written as

$$\ln(\boldsymbol{\pi}_S) - \ln(\mathbf{1} - \boldsymbol{\pi}_S) = \ln\lambda \cdot \mathbf{1} + \alpha \cdot \ln \boldsymbol{x}$$
(3.4.9)



or

$$\ln\left(\frac{\pi_{S}}{1-\pi_{S}}\right) = \ln(\pi_{S}) - \ln(1-\pi_{S})$$

$$= \ln\lambda \cdot \begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix} + \alpha \cdot \begin{pmatrix} \ln x_{1}\\\ln x_{2}\\\ln x_{3}\\\ln x_{4} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & \ln x_{1}\\1 & \ln x_{2}\\1 & \ln x_{3}\\1 & \ln x_{4} \end{pmatrix} \cdot \begin{pmatrix} \ln\lambda\\\alpha \end{pmatrix}$$

$$\Rightarrow \ln\left(\frac{\pi_{S}}{1-\pi_{S}}\right) = X_{1} \cdot \begin{pmatrix} \ln\lambda\\\alpha \end{pmatrix} \qquad (3.4.10)$$

where

$$\boldsymbol{x}_{1} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \cdots \\ \cdots \\ \cdots \\ x_{k-1} \end{pmatrix} \quad \boldsymbol{x}_{2} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \cdots \\ \cdots \\ x_{k-2} \end{pmatrix} \quad \boldsymbol{x}_{3} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \cdots \\ \cdots \\ x_{k-3} \end{pmatrix} \quad \text{and} \quad \boldsymbol{x}_{4} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \cdots \\ x_{k-4} \end{pmatrix}.$$

Equation 3.4 .10 is a **linear model** in the parameters  $\ln \lambda$  and  $\alpha$ . This model is equivalent to

$$\underbrace{\begin{pmatrix} I - X_1 (X_1'X_1)^{-1} X_1' \\ \hline \\ C \\ g(\pi) \end{pmatrix} \cdot \ln \left( \frac{\pi_S}{1 - \pi_S} \right) = 0$$

 $m{C}$  is the projection matrix orthogonal to the columns of the design matrix  $m{X}_1$ . Note that  $m{C}m{X}_1=m{0}.$ 

The function  $g(\pi) = 0$  satisfies the conditions of Proposition 1 and the estimation algorithm can be used to estimate the  $\lambda$ 's and  $\alpha$ 's of the log-logistic distribution.



To summarize, the constraints imposed by the log-logistic distribution are specified by

$$g(\boldsymbol{\pi}) = \boldsymbol{C} \cdot \ln\left\{\frac{\boldsymbol{\pi}_S}{1 - \boldsymbol{\pi}_S}\right\} = \boldsymbol{C} \cdot \ln\left[\frac{\boldsymbol{S} \cdot \boldsymbol{\pi}}{1 - \boldsymbol{S} \cdot \boldsymbol{\pi}}\right] = \boldsymbol{C} \cdot \left[\ln(\boldsymbol{S} \cdot \boldsymbol{\pi}) - \ln(1 - \boldsymbol{S} \cdot \boldsymbol{\pi})\right] = \boldsymbol{0}$$
(3.4.11)

with

$$C = I - X_1 (X_1' X_1)^{-1} X_1' \quad . \tag{3.4.12}$$

The derivative of  $g(\boldsymbol{\pi})$  with respect to  $\boldsymbol{\pi}$  is

$$G_{\pi} = \frac{\partial g(\pi)}{\partial \pi}$$
  
=  $C \cdot \left[ diag\left(\frac{1}{\pi_{S}}\right) + diag\left(\frac{1}{1-\pi_{S}}\right) \right] \cdot S$  (3.4.13)

$$= C \cdot D_3^{-1} + D_2^{-1} \cdot S$$
 (3.4.14)

where

 $D_3$  and  $D_2$  are diagonal matrices with the elements of  $\pi_S$  and  $1 - \pi_S$ , respectively, on the main diagonal. The matrix S is the same S matrix that was used when fitting a Weibull model.

The estimated vector of probabilities in this case is

$$\widehat{\boldsymbol{\pi}}_{c} = \boldsymbol{p} - (\boldsymbol{G}_{\pi}\boldsymbol{V})' \left(\boldsymbol{G}_{p}\boldsymbol{V}\boldsymbol{G}_{\pi}'\right)^{*} \cdot \boldsymbol{C} \cdot \ln\left\{\frac{\boldsymbol{S}\cdot\boldsymbol{p}}{1-\boldsymbol{S}\cdot\boldsymbol{p}}\right\}$$
(3.4.15)

with  $p' = (p'_1, p'_2, p'_3, p'_4)$  where  $p_1 = (p_{1,1}, p_{1,2}, p_{1,3}, ..., p_{1,k})'$   $p_2 = (p_{2,1}, p_{2,2}, p_{2,3}, ..., p_{2,k-1})'$  $p_3 = (p_{3,1}, p_{3,2}, p_{3,3}, ..., p_{3,k-2})'$  and  $p_4 = (p_{4,1}, p_{4,2}, p_{4,3}, ..., p_{4,k-3})'$  are four relative frequency vectors corresponding to  $n_i p_i$  being multinomial $(n_i; \pi_i)$  i = 1, 2, 3, 4 distributed. The variance-covariance matrix V to be used is the estimated variance-covariance matrix of the multinomial distribution for each entry period.

Since Equation 3.4 .15 is still a function of the unknown parameter  $\pi$ , the double iterative procedure must be implemented. Once the iterative procedure in Equation 3.4 .15 has converged, the estimated parameters of the log-logistic distribution can be solved from

$$\begin{pmatrix} \widehat{\ln \lambda} \\ \widehat{\alpha} \end{pmatrix} = (\mathbf{X}_1' \mathbf{X}_1)^{-1} \mathbf{X}_1' \cdot \ln \left\{ \frac{\mathbf{S} \cdot \widehat{\boldsymbol{\pi}}_c}{\mathbf{1} - \mathbf{S} \cdot \widehat{\boldsymbol{\pi}}_c} \right\}.$$
 (3.4.16)

The estimated lambda parameter of the log-logistic distribution then is

$$\widehat{\lambda} = \exp(\widehat{\ln \lambda})$$

58



and the estimated alpha parameter  $\hat{\alpha}$ .

The SAS/IML program to fit a log-logistic model to grouped survival data with staggered entry of policies appears in Appendix A.

#### Fitting of one lognormal distribution to the four histograms

Recall that a lognormal distribution with parameters  $\mu$  and  $\sigma^2$  under the constraints  $\pi_s$  can be written as

$$\Phi^{-1}(\pi_S) = -\frac{\mu}{\sigma} \cdot \mathbf{1} + \frac{1}{\sigma} \cdot \ln \mathbf{x}$$

$$= -\frac{\mu}{\sigma} \cdot \begin{pmatrix} \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{pmatrix} + \frac{1}{\sigma} \cdot \begin{pmatrix} \ln \mathbf{x}_1 \\ \ln \mathbf{x}_2 \\ \ln \mathbf{x}_3 \\ \ln \mathbf{x}_4 \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{1} & \ln \mathbf{x}_1 \\ \mathbf{1} & \ln \mathbf{x}_2 \\ \mathbf{1} & \ln \mathbf{x}_3 \\ \mathbf{1} & \ln \mathbf{x}_4 \end{pmatrix} \cdot \begin{pmatrix} -\frac{\mu}{\sigma} \\ \frac{1}{\sigma} \end{pmatrix}$$

$$\Rightarrow \Phi^{-1}(\pi_S) = \mathbf{X}_1 \cdot \begin{pmatrix} -\frac{\mu}{\sigma} \\ \frac{1}{\sigma} \end{pmatrix}$$
(3.4.18)

where

$$\boldsymbol{x}_{1} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \cdots \\ \cdots \\ \cdots \\ \cdots \\ x_{k-1} \end{pmatrix} \quad \boldsymbol{x}_{2} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \cdots \\ \cdots \\ x_{k-2} \end{pmatrix} \quad \boldsymbol{x}_{3} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \cdots \\ \cdots \\ x_{k-3} \end{pmatrix} \quad \text{and} \quad \boldsymbol{x}_{4} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \cdots \\ x_{k-4} \end{pmatrix}$$

Equation 3.4 .18 is a **linear model** in the parameters  $-\frac{\mu}{\sigma}$  and  $\frac{1}{\sigma}$ .

Equation 3.3 .35 is equivalent to

$$\underbrace{\left(\boldsymbol{I}-\boldsymbol{X}_{1}(\boldsymbol{X}_{1}'\boldsymbol{X}_{1})^{-1}\boldsymbol{X}_{1}'\right)}_{\boldsymbol{V}}\cdot\Phi^{-1}(\boldsymbol{\pi}_{S}) = \boldsymbol{0}$$



$$C ext{ } \cdot \Phi^{-1}(\pi_S) = 0$$
 $g(\pi) = 0$ 

C is the projection matrix orthogonal to the columns of the design matrix  $X_1$ . Note that  $CX_1 = 0$ .

The function  $g(\pi) = 0$  satisfies the conditions of Proposition 1 and the estimation algorithm can be used to estimate the parameters  $\mu$  and  $\sigma^2$  of the lognormal distribution.

To summarize, the constraints imposed by the lognormal distribution are specified by

$$g(\boldsymbol{\pi}) = \boldsymbol{C}.\Phi^{-1}(\boldsymbol{\pi}_S) = \boldsymbol{C}.\Phi^{-1}(\boldsymbol{S}\cdot\boldsymbol{\pi}) = \boldsymbol{0}$$
 (3.4.19)

with

$$C = I - X_1 (X_1' X_1)^{-1} X_1' \quad . \tag{3.4.20}$$

The derivative of  $g(\boldsymbol{\pi})$  with respect to  $\boldsymbol{\pi}$  is

$$\boldsymbol{G}_{\pi} = \frac{\partial \boldsymbol{g}(\boldsymbol{\pi})}{\partial \boldsymbol{\pi}} = \boldsymbol{C} \cdot \frac{\partial}{\partial \boldsymbol{\pi}} \Phi^{-1} (\boldsymbol{S} \cdot \boldsymbol{\pi}) \cdot \boldsymbol{S}$$
(3.4.21)

that is equal to

$$\boldsymbol{G}_{\pi} = \boldsymbol{C} \cdot \left[ \frac{1}{diag \left\{ \phi \left( \frac{\ln \boldsymbol{x} - \mu \cdot \boldsymbol{1}}{\sigma} \right) \right\}} \right] \boldsymbol{S} . \tag{3.4.22}$$

The matrix S to be used is the same matrix as defined at the fitting of the Weibull or the log-logistic model.

Since  $G_{\pi}$  depends on  $\mu$  and  $\sigma$  in the iterative procedure, these parameters will be estimated within the iterative stages and the final estimates will be obtained on convergence.

The SAS/IML program to fit a lognormal model to grouped survival data with staggered entry of policies appears in Appendix A.

#### 3.4.6 Fitting of four survival distributions to the four histograms

#### Fitting of four Weibull distributions

Four Weibull distributions are to be fitted to the four histograms.

60



Consider four Weibull distributions with parameters  $(\lambda_1, \alpha_1)$ ,  $(\lambda_2, \alpha_2)$ ,  $(\lambda_3, \alpha_3)$  and  $(\lambda_4, \alpha_4)$  respectively.

Maximum likelihood estimation of the parameters is done subject to constraints imposed by the four Weibull distributions and further constraints that the  $\lambda_i$ 's are equal and  $\alpha_i$ 's are equal.

The four Weibull models under constraints  $\pi_{S1}$ ,  $\pi_{S2}$ ,  $\pi_{S3}$ ,  $\pi_{S4}$ , can be written from Equation 3.3 .14 as follows:

$$\begin{pmatrix} \ln \{-\ln(1-\pi_{S1})\} \\ \ln \{-\ln(1-\pi_{S2})\} \\ \ln \{-\ln(1-\pi_{S3})\} \\ \ln \{-\ln(1-\pi_{S4})\} \end{pmatrix} = \begin{pmatrix} 1 & \ln x_1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & \ln x_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & \ln x_3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \ln x_4 \end{pmatrix} \cdot \begin{pmatrix} \ln \lambda_1 \\ \alpha_1 \\ \ln \lambda_2 \\ \alpha_2 \\ \ln \lambda_3 \\ \alpha_3 \\ \ln \lambda_4 \\ \alpha_4 \end{pmatrix}$$
(3.4.23)

where

$$\boldsymbol{x}_1 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \cdots \\ \cdots \\ \cdots \\ x_{k-1} \end{pmatrix} \quad \boldsymbol{x}_2 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \cdots \\ \cdots \\ x_{k-2} \end{pmatrix} \quad \boldsymbol{x}_3 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \cdots \\ \cdots \\ x_{k-3} \end{pmatrix} \quad \text{and} \quad \boldsymbol{x}_4 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \cdots \\ x_{k-4} \end{pmatrix}.$$

Equation 3.4 .23 is a **linear model** in the parameters  $\ln \lambda_1, \alpha_1, \ln \lambda_2, \alpha_2, \ln \lambda_3, \alpha_3, \ln \lambda_4$  and  $\alpha_4$ .

Maximum likelihood estimation of these parameters subject to further constraints that the  $\lambda_i$ 's are equal and the  $\alpha_i$ 's are equal can be done similar to the fitting of one Weibull to the four histograms, when the following changes are made.

From Equation 3.4 .23 follows that the design matrix for the fitting of four Weibull distri-



butions is

$$m{X}_1 = egin{pmatrix} 1 & \ln x_1 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & \ln x_2 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & \ln x_3 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \ln x_4 \end{pmatrix}$$

The four Weibull models in Equation 3.4 .23 are equivalent to

$$\underbrace{\left(I - X_{1}(X_{1}'X_{1})^{-1}X_{1}'\right)}_{C} \cdot \begin{pmatrix} \ln \{-\ln(1 - \pi_{S1})\} \\ \ln \{-\ln(1 - \pi_{S2})\} \\ \ln \{-\ln(1 - \pi_{S3})\} \\ \ln \{-\ln(1 - \pi_{S4})\} \end{pmatrix} = 0$$

$$C \cdot \begin{pmatrix} \ln \{-\ln(1 - \pi_{S1})\} \\ \ln \{-\ln(1 - \pi_{S2})\} \\ \ln \{-\ln(1 - \pi_{S3})\} \\ \ln \{-\ln(1 - \pi_{S3})\} \\ \ln \{-\ln(1 - \pi_{S4})\} \end{pmatrix} = 0$$

$$g(\pi) = 0$$

C is the projection matrix orthogonal to the columns of the design matrix  $X_1$ . Note that  $CX_1 = 0$ .

The constraints that the  $\lambda_i{'}{\rm s}$  are equal and the  $\alpha_i{'}{\rm s}$  are equal are specified by

$$\boldsymbol{H}.\begin{pmatrix} \ln\lambda_{1} \\ \alpha_{1} \\ \ln\lambda_{2} \\ \alpha_{2} \\ \ln\lambda_{3} \\ \alpha_{3} \\ \ln\lambda_{4} \\ \alpha_{4} \end{pmatrix} = \boldsymbol{0}$$
(3.4.24)

where

$$\boldsymbol{H} = \begin{pmatrix} 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 \end{pmatrix}.$$



Equation 3.4 .24 is equivalent to

$$\begin{array}{c} \ln \lambda_{1} \\ \alpha_{1} \\ \ln \lambda_{2} \\ \alpha_{2} \\ \ln \lambda_{3} \\ \alpha_{3} \\ \alpha_{3} \\ \alpha_{4} \end{array} \right) = (X_{1}'X_{1})^{-1}X_{1}' \cdot \begin{pmatrix} \ln \{-\ln(1-\pi_{S1})\} \\ \ln \{-\ln(1-\pi_{S2})\} \\ \ln \{-\ln(1-\pi_{S3})\} \\ \ln \{-\ln(1-\pi_{S4})\} \end{pmatrix}$$
(3.4.25)

that is

or

$$H \cdot \begin{pmatrix} \ln \lambda_{1} \\ \alpha_{1} \\ \ln \lambda_{2} \\ \alpha_{2} \\ \ln \lambda_{3} \\ \alpha_{3} \\ \ln \lambda_{4} \\ \alpha_{4} \end{pmatrix} = H \cdot (X_{1}'X_{1})^{-1}X_{1}' + \begin{pmatrix} \ln \{-\ln(1-\pi_{S1})\} \\ \ln \{-\ln(1-\pi_{S2})\} \\ \ln \{-\ln(1-\pi_{S3})\} \\ \ln \{-\ln(1-\pi_{S4})\} \end{pmatrix}$$

$$0 = D + \begin{pmatrix} \ln \{-\ln(1-\pi_{S1})\} \\ \ln \{-\ln(1-\pi_{S2})\} \\ \ln \{-\ln(1-\pi_{S3})\} \\ \ln \{-\ln(1-\pi_{S3})\} \\ \ln \{-\ln(1-\pi_{S4})\} \end{pmatrix}$$
(3)

Equation 3.4 .26 specifies the further constraints of equal parameters for the four histograms.

In the notation for staggered entry of policies, as described in Table 3.2 with four entry periods and k, the number of class intervals, equal to seven, matrix D is a  $6 \times 18$  matrix.

A new matrix is formed that takes the further constraints into account. This matrix is created by concatenating the six rows of D to the 18 rows of C. This new matrix is then used instead of the matrix C in further calculations.

#### Fitting of four log-logistic distributions

Four log-logistic distributions are to be fitted to the four histograms.

(3.4.26)



Consider four log-logistic distributions with parameters  $(\lambda_1, \alpha_1)$ ,  $(\lambda_2, \alpha_2)$ ,  $(\lambda_3, \alpha_3)$  and  $(\lambda_4, \alpha_4)$  respectively.

Maximum likelihood estimation of the parameters is done subject to constraints imposed by the four log-logistic distributions and further constraints that the  $\lambda_i$ 's are equal and  $\alpha_i$ 's are equal.

The four log-logistic models under constraints  $\pi_{S1}$ ,  $\pi_{S2}$ ,  $\pi_{S3}$ ,  $\pi_{S4}$ , can be written from Equation 3.3 .24 as follows:

$$\begin{pmatrix} \ln \{\pi_{S1}\} - \ln \{1 - \pi_{S1}\} \\ \ln \{\pi_{S2}\} - \ln \{1 - \pi_{S2}\} \\ \ln \{\pi_{S3}\} - \ln \{1 - \pi_{S3}\} \\ \ln \{\pi_{S4}\} - \ln \{1 - \pi_{S4}\} \end{pmatrix} = \begin{pmatrix} 1 & \ln x_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & \ln x_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & \ln x_3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \ln x_4 \end{pmatrix} \cdot \begin{pmatrix} \ln \lambda_1 \\ \alpha_1 \\ \ln \lambda_2 \\ \alpha_2 \\ \ln \lambda_3 \\ \alpha_3 \\ \ln \lambda_4 \\ \alpha_4 \end{pmatrix}$$
(3.4.27)

where

$$\boldsymbol{x}_1 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \cdots \\ \cdots \\ \cdots \\ x_{k-1} \end{pmatrix} \quad \boldsymbol{x}_2 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \cdots \\ \cdots \\ x_{k-2} \end{pmatrix} \quad \boldsymbol{x}_3 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \cdots \\ \cdots \\ x_{k-3} \end{pmatrix} \quad \text{and} \quad \boldsymbol{x}_4 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \cdots \\ x_{k-4} \end{pmatrix}.$$

Equation 3.4 .27 is a **linear model** in the parameters  $\ln \lambda_1, \alpha_1, \ln \lambda_2, \alpha_2, \ln \lambda_3, \alpha_3, \ln \lambda_4$  and  $\alpha_4$ .

Maximum likelihood estimation of these parameters subject to further constraints that the  $\lambda_i$ 's are equal and the  $\alpha_i$ 's are equal can be done similar to the fitting of one log-logistic to the four histograms, when the following changes are made.

From Equation 3.4 .27 follows that the design matrix for the fitting of four log-logistic



distributions is

The four log-logistic models in Equation 3.4 .27 are equivalent to

$$\underbrace{\left(I - X_{1}(X_{1}'X_{1})^{-1}X_{1}'\right)}_{C} \cdot \begin{pmatrix} \ln \{\pi_{S1}\} - \ln \{1 - \pi_{S1}\} \\ \ln \{\pi_{S2}\} - \ln \{1 - \pi_{S2}\} \\ \ln \{\pi_{S3}\} - \ln \{1 - \pi_{S3}\} \\ \ln \{\pi_{S4}\} - \ln \{1 - \pi_{S4}\} \end{pmatrix} = 0$$

$$C \cdot \begin{pmatrix} \ln \{\pi_{S1}\} - \ln \{1 - \pi_{S1}\} \\ \ln \{\pi_{S2}\} - \ln \{1 - \pi_{S2}\} \\ \ln \{\pi_{S3}\} - \ln \{1 - \pi_{S3}\} \\ \ln \{\pi_{S4}\} - \ln \{1 - \pi_{S4}\} \end{pmatrix} = 0$$

$$g(\pi) = 0$$

 $m{C}$  is the projection matrix orthogonal to the columns of the design matrix  $m{X}_1$ . Note that  $m{C}m{X}_1=m{0}.$ 

The constraints that the  $\lambda_i{'}{\rm s}$  are equal and the  $\alpha_i{'}{\rm s}$  are equal are specified by

$$\boldsymbol{H} \begin{pmatrix} \ln \lambda_{1} \\ \alpha_{1} \\ \ln \lambda_{2} \\ \alpha_{2} \\ \ln \lambda_{3} \\ \alpha_{3} \\ \ln \lambda_{4} \\ \alpha_{4} \end{pmatrix} = \boldsymbol{0}$$
(3.4.28)

where

$$\boldsymbol{H} = \begin{pmatrix} 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & -1 \end{pmatrix}.$$



Equation 3.4 .28 is equivalent to

$$\begin{array}{c} \ln \lambda_{1} \\ \alpha_{1} \\ \ln \lambda_{2} \\ \alpha_{2} \\ \ln \lambda_{3} \\ \alpha_{3} \\ \ln \lambda_{4} \\ \alpha_{4} \end{array} \right) = (X_{1}'X_{1})^{-1}X_{1}' \cdot \begin{pmatrix} \ln \{\pi_{S1}\} - \ln \{1 - \pi_{S1}\} \\ \ln \{\pi_{S2}\} - \ln \{1 - \pi_{S2}\} \\ \ln \{\pi_{S3}\} - \ln \{1 - \pi_{S3}\} \\ \ln \{\pi_{S4}\} - \ln \{1 - \pi_{S4}\} \end{pmatrix}$$
(3.4.29)

that is

or

$$H \cdot \begin{pmatrix} \ln \lambda_{1} \\ \alpha_{1} \\ \ln \lambda_{2} \\ \alpha_{2} \\ \ln \lambda_{3} \\ \alpha_{3} \\ \ln \lambda_{4} \\ \alpha_{4} \end{pmatrix} = \underbrace{H \cdot (X_{1}'X_{1})^{-1}X_{1}'}_{D} \cdot \begin{pmatrix} \ln \{\pi_{S1}\} - \ln \{1 - \pi_{S1}\} \\ \ln \{\pi_{S2}\} - \ln \{1 - \pi_{S2}\} \\ \ln \{\pi_{S3}\} - \ln \{1 - \pi_{S3}\} \\ \ln \{\pi_{S4}\} - \ln \{1 - \pi_{S4}\} \end{pmatrix}$$

$$0 = D \cdot \begin{pmatrix} \ln \{\pi_{S1}\} - \ln \{1 - \pi_{S1}\} \\ \ln \{\pi_{S2}\} - \ln \{1 - \pi_{S2}\} \\ \ln \{\pi_{S2}\} - \ln \{1 - \pi_{S2}\} \\ \ln \{\pi_{S3}\} - \ln \{1 - \pi_{S3}\} \\ \ln \{\pi_{S3}\} - \ln \{1 - \pi_{S3}\} \\ \ln \{\pi_{S4}\} - \ln \{1 - \pi_{S4}\} \end{pmatrix}$$

$$(3.4.30)$$

Equation 3.4 .30 specifies the further constraints of equal parameters for the four histograms.

If k, the number of class intervals, is equal to seven, then matrix D is a  $6 \times 18$  matrix.

A new matrix is formed that takes the further constraints into account. This matrix is created by concatenating the six rows of D to the 18 rows of C. This new matrix is then used instead of the matrix C in further calculations.

#### Fitting of four lognormal distributions

Four lognormal distributions are to be fitted to the four histograms.



Consider four lognormal distributions with parameters  $(\mu_1, \sigma_1^2)$ ,  $(\mu_2, \sigma_2^2)$ ,  $(\mu_3, \sigma_3^2)$  and  $(\mu_4, \sigma_4^2)$  respectively.

Maximum likelihood estimation of the parameters is done subject to constraints imposed by the four lognormal distributions and further constraints that the  $\mu_i$ 's are equal and  $\sigma_i$ 's are equal.

The four lognormal models under constraints  $\pi_{S1}$ ,  $\pi_{S2}$ ,  $\pi_{S3}$ ,  $\pi_{S4}$ , can be written from Equation 3.3 .35 as follows:

$$\begin{pmatrix} \ln \{\Phi^{-1}(\pi_{S1})\} \\ \ln \{\Phi^{-1}(\pi_{S2})\} \\ \ln \{\Phi^{-1}(\pi_{S3})\} \\ \ln \{\Phi^{-1}(\pi_{S4})\} \end{pmatrix} = \begin{pmatrix} 1 & \ln x_1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & \ln x_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & \ln x_3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \ln x_4 \end{pmatrix} \cdot \begin{pmatrix} -\frac{\mu_1}{\sigma_1} \\ \frac{1}{\sigma_2} \\ -\frac{\mu_3}{\sigma_3} \\ \frac{1}{\sigma_3} \\ -\frac{\mu_4}{\sigma_4} \\ \frac{1}{\sigma_4} \end{pmatrix}$$

$$(3.4.31)$$

where

$$m{x}_1 = egin{pmatrix} x_1 \ x_2 \ x_3 \ \cdots \ \cdots \ \cdots \ \cdots \ x_{k-1} \end{pmatrix}$$
  $m{x}_2 = egin{pmatrix} x_1 \ x_2 \ x_3 \ \cdots \ \cdots \ x_{k-2} \end{pmatrix}$   $m{x}_3 = egin{pmatrix} x_1 \ x_2 \ x_3 \ \cdots \ x_{k-3} \end{pmatrix}$  and  $m{x}_4 = egin{pmatrix} x_1 \ x_2 \ x_3 \ \cdots \ x_{k-4} \end{pmatrix}$ .

Equation 3.4 .31 is a linear model in the parameters  $\mu_1, \sigma_1^2, \mu_2, \sigma_2^2, \mu_3, \sigma_3^2, \mu_4$  and  $\sigma_4^2$ .

Maximum likelihood estimation of these parameters subject to further constraints that the  $\mu_i$ 's are equal and the  $\sigma_i$ 's are equal can be done similar to the fitting of one lognormal to the four histograms, when the following changes are made.

From Equation 3.4 .31 follows that the design matrix for the fitting of four lognormal



distributions is

$$m{X}_1 = egin{pmatrix} 1 & \ln x_1 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & \ln x_2 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & \ln x_3 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \ln x_4 \end{pmatrix}$$

The four lognormal models in Equation 3.4 .31 are equivalent to

$$\underbrace{\begin{pmatrix} I - X_1(X_1'X_1)^{-1}X_1' \\ & \left[ \ln \{\Phi^{-1}(\pi_{S1})\} \\ & \ln \{\Phi^{-1}(\pi_{S2})\} \\ & \ln \{\Phi^{-1}(\pi_{S3})\} \\ & \ln \{\Phi^{-1}(\pi_{S4})\} \end{pmatrix} = 0$$

$$C \qquad \cdot \begin{pmatrix} \ln \{\Phi^{-1}(\pi_{S1})\} \\ & \ln \{\Phi^{-1}(\pi_{S2})\} \\ & \ln \{\Phi^{-1}(\pi_{S3})\} \\ & \ln \{\Phi^{-1}(\pi_{S4})\} \end{pmatrix} = 0$$

$$g(\pi) \qquad = 0$$

C is the projection matrix orthogonal to the columns of the design matrix  $X_1$ . Note that  $CX_1=0.$ 

The constraints that the  $\mu_i{'}{\rm s}$  are equal and the  $\sigma_i{'}{\rm s}$  are equal are specified by

$$\boldsymbol{H}.\begin{pmatrix} -\frac{\mu_{1}}{\sigma_{1}} \\ \frac{1}{\sigma_{1}} \\ -\frac{\mu_{2}}{\sigma_{2}} \\ \frac{1}{\sigma_{2}} \\ -\frac{\mu_{3}}{\sigma_{3}} \\ \frac{1}{\sigma_{3}} \\ -\frac{\mu_{4}}{\sigma_{4}} \\ \frac{1}{\sigma_{4}} \end{pmatrix} = \boldsymbol{0}$$
(3.4.32)

where

$$\boldsymbol{H} = \begin{pmatrix} 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & -1 \end{pmatrix}.$$



 $\mu_1 \setminus$ 

#### Equation 3.4 .32 is equivalent to

$$\begin{pmatrix} -\overline{\sigma_{1}} \\ \frac{1}{\sigma_{1}} \\ -\frac{\mu_{2}}{\sigma_{2}} \\ \frac{1}{\sigma_{2}} \\ -\frac{\mu_{3}}{\sigma_{3}} \\ \frac{1}{\sigma_{3}} \\ -\frac{\mu_{4}}{\sigma_{4}} \\ \frac{1}{\sigma_{2}} \end{pmatrix} = (X_{1}'X_{1})^{-1}X_{1}' \cdot \begin{pmatrix} \ln \{\Phi^{-1}(\pi_{S1})\} \\ \ln \{\Phi^{-1}(\pi_{S2})\} \\ \ln \{\Phi^{-1}(\pi_{S3})\} \\ \ln \{\Phi^{-1}(\pi_{S4})\} \end{pmatrix}$$
(3.4.33)

that is

or

$$H \cdot \begin{pmatrix} -\frac{\mu_{1}}{\sigma_{1}} \\ \frac{1}{\sigma_{1}} \\ -\frac{\mu_{2}}{\sigma_{2}} \\ -\frac{\mu_{3}}{\sigma_{3}} \\ \frac{1}{\sigma_{3}} \\ -\frac{\mu_{4}}{\sigma_{4}} \\ \frac{1}{\sigma_{4}} \end{pmatrix} = \underbrace{H \cdot (X_{1}'X_{1})^{-1}X_{1}'}_{D} \cdot \begin{pmatrix} \ln \{\Phi^{-1}(\pi_{S1})\} \\ \ln \{\Phi^{-1}(\pi_{S3})\} \\ \ln \{\Phi^{-1}(\pi_{S4})\} \end{pmatrix}$$

$$0 = D \cdot \begin{pmatrix} \ln \{\Phi^{-1}(\pi_{S1})\} \\ \ln \{\Phi^{-1}(\pi_{S2})\} \\ \ln \{\Phi^{-1}(\pi_{S2})\} \\ \ln \{\Phi^{-1}(\pi_{S3})\} \\ \ln \{\Phi^{-1}(\pi_{S3})\} \\ \ln \{\Phi^{-1}(\pi_{S4})\} \end{pmatrix}$$

Equation 3.4 .34 specifies the further constraints of equal parameters for the four histograms.

If k, the number of class intervals, is equal to seven, then matrix D is a  $6 \times 18$  matrix.

A new matrix is formed that takes the further constraints into account. This matrix is created by concatenating the six rows of D to the 18 rows of C. This new matrix is then used instead of the matrix C in further calculations.

### 3.4.7 Fitting of a joint histogram to the four histograms

A joint histogram is to be fitted to the four histograms of the four relative frequency distributions under constraints imposed by the experimental design.

(3.4.34)



These constraints in matrix form are  $G\cdot\pi=0$  with  $\pi'=(\pi'_1,\pi'_2,\pi'_3,\pi'_4)$  where

 $\begin{aligned} \pi_1 &= (\pi_{1,1}, \pi_{1,2}, \pi_{1,3}, ..., \pi_{1,k})' \text{ is a } k \times 1 \text{ probability vector} \\ \pi_2 &= (\pi_{2,1}, \pi_{2,2}, \pi_{2,3}, ..., \pi_{2,k-1})' \text{ is a } (k-1) \times 1 \text{ probability vector} \\ \pi_3 &= (\pi_{3,1}, \pi_{3,2}, \pi_{3,3}, ..., \pi_{3,k-2})' \text{ is a } (k-2) \times 1 \text{ probability vector} \\ \pi_4 &= (\pi_{4,1}, \pi_{4,2}, \pi_{4,3}, ..., \pi_{4,k-3})' \text{ is a } (k-3) \times 1 \text{ probability vector} \\ \text{and} \end{aligned}$ 

|     | ( I | 0 | 0 | 0 | 0 | -I           |    |    |    |              |    |    |            |     |
|-----|-----|---|---|---|---|--------------|----|----|----|--------------|----|----|------------|-----|
|     | Ι   | 0 | 0 | 0 | 0 | 0            | 0  | 0  | 0  | -I           | 0  | 0  | 0          | 0   |
|     | Ι   | 0 | 0 | 0 | 0 | 0            | 0  | 0  | 0  | 0            | 0  | 0  | -I         | 0   |
|     |     |   |   |   |   |              |    |    |    |              |    |    |            |     |
| C = | 0′  |   |   |   | 1 | 0′           | -1 | -1 | -1 | 0′           | 0  | 0  | <b>0</b> ' | 0   |
| G – | 0′  | 1 | 1 | 1 | 1 | $0^{\prime}$ | 0  | 0  | 0  | 0′           | -1 | -1 | <b>0</b> ' | 0   |
|     | 0′  | 1 | 1 | 1 | 1 | 0′           | 0  | 0  | 0  | $0^{\prime}$ | 0  | 0  | <b>0</b> ' | -1  |
|     |     |   |   |   |   |              |    |    |    |              |    |    |            |     |
|     | 0′  | 0 | 1 | 0 |   | 0′           |    |    |    |              |    | 0  | 0′         | 0   |
|     | 0′  | 1 | 0 | 0 | 0 | 0′           | -1 | 0  | 0  | $0^{\prime}$ | 0  | 0  | <b>0</b> ' | 0 / |

The function  $g(\pi) = 0$  satisfies the conditions of Proposition 1 and the estimation algorithm can be used to estimate the relative frequencies of the joint relative frequency distribution.

Note that the constraints  $G \cdot \pi = g(\pi)$  is a **linear** function of  $\pi$ . This implies that  $G = \frac{\partial g(\pi)}{\partial \pi}$  and only a **single iteration** is needed in the iterative procedure to determine the MLE of  $\pi$  under the constraints  $g(\pi) = 0$ .

This MLE of  $\pi$  is

 $\widehat{\pi}_{c}=p-\left(old V
ight)^{\prime}\left(old Vold G^{\prime}
ight)^{st}old g(p)$ 

with asymptotic variance-covariance matrix

$$cov\left(\widehat{\boldsymbol{\pi}}_{c}\right) = \boldsymbol{V} - \left(\boldsymbol{G}\boldsymbol{V}\right)^{\prime}\left(\boldsymbol{G}\boldsymbol{V}\boldsymbol{G}^{\prime}\right)^{*}\boldsymbol{G}\boldsymbol{V}.$$

The variance-covariance matrix V to be used is the estimated variance-covariance matrix of the multinomial distribution for each entry period.

$$\implies \quad \widehat{oldsymbol{V}} = \mathsf{block}(\widehat{oldsymbol{V}}_1, \widehat{oldsymbol{V}}_2, \widehat{oldsymbol{V}}_3, \widehat{oldsymbol{V}}_4)$$

and

$$\widehat{oldsymbol{V}}_i = rac{1}{n_i} \left[ diag(oldsymbol{p}_i) - oldsymbol{p}_i oldsymbol{p}_i' 
ight] \quad i = 1, 2, 3, 4$$

Once the iterative procedure has converged, the estimated joint relative frequencies can be

70



read off from the estimated vector of probabilities  $\hat{\pi}_c$ . The histogram of the fitted joint relative frequency distribution is a representative image of the four histograms.

The SAS/IML program to fit a joint histogram to the four histograms of the entry groups appears in Appendix A.

### 3.4.8 Estimated survivor and hazard functions and percentiles

Once the parameters of the Weibull and log-logistic survival distributions have been estimated, estimated hazard and survivor functions and the odds of a lapse can be calculated for time t. Percentiles of these survival distributions can also be estimated.

# Survival distribution

Weibull

#### Estimated hazard function

 $\widehat{h}(t) = \widehat{\lambda} \cdot \widehat{\alpha} \cdot t^{\widehat{\alpha} - 1}$ 

**Estimated survivor function** 

 $\widehat{S}(t) = \exp(-\widehat{\lambda} \cdot t^{\widehat{\alpha}})$ 

### Estimated odds of a lapse

$$\widehat{odds}(t) = \frac{1 - \widehat{S}(t)}{\widehat{S}(t)} = \exp(\widehat{\lambda} \cdot t^{\widehat{\alpha} - 1})$$

#### **Estimated percentiles**

$$\widehat{t_p} = (\frac{1}{\widehat{\lambda}} \cdot \ln \frac{100}{100 - p})^{\frac{1}{\widehat{\alpha}}}$$

Log-logistic

**Estimated hazard function** 

$$\widehat{h}(t) = \frac{\widehat{\lambda} \cdot \widehat{\alpha} \cdot t^{\widehat{\alpha} - 1}}{(1 + \widehat{\lambda} \cdot t^{\widehat{\alpha}})}$$

PRETORIA

**Estimated survivor function** 

$$\widehat{S}(t) = \frac{1}{1 + \widehat{\lambda} \cdot t^{\widehat{\alpha}}}$$

Estimated odds of a lapse

$$\widehat{odds}(t) = \frac{1 - \widehat{S}(t)}{\widehat{S}(t)} = \widehat{\lambda} \cdot t^{\widehat{\alpha}}$$

**Estimated percentiles** 

$$\hat{t_p} = (\frac{1}{\hat{\lambda}} \cdot \frac{p}{100 - p})^{\frac{1}{\hat{\alpha}}}$$



# 3.5 Simulation Studies

Simulations are used to compare the maximum likelihood estimation under constraints procedure with the standard maximum likelihood estimation procedure that is used by SAS.

A thousand sets of right-censored data with a fixed censoring time are simulated from each of three survival distributions, namely the Weibull, the log-logistic and the lognormal distributions. The percentage censoring is about 35% and censoring at continuous data as well as censoring at grouped data, the special case of interval-censored data, are considered.

For the **continuous case**, three groups of 20, 50, 100 and 200 observations are generated from each of three survival distributions, with different scale and shape parameters for the three groups. A scale parameter of  $\lambda$ =0.15 and a shape parameter of  $\alpha$ =0.5 are selected for the first group generated from the Weibull( $\lambda, \alpha$ ) and the log-logistic( $\lambda, \alpha$ ) distributions, while a  $\mu$ -value of 2 and a  $\sigma$ -value of 0.5 are used for the generation from the lognormal( $\mu, \sigma$ ) distribution. The second and third groups use extreme  $\lambda$ -values of 10 and 30 and extreme  $\alpha$ -values of 3 and 1.8 for generation from the Weibull and log-logistic distributions and  $\mu$ -values of 5 and 3 and  $\sigma$ -values of 0.2 and 0.03 for generation from the lognormal distribution. In order to be able to apply the IML program for maximum likelihood estimation subject to constraints, the continuous data are grouped into intervals with boundaries the means of two adjacent observed survival times with frequency 1 in each interval. The frequency of the last open interval is equal to the number of censored survival times. The standard method of maximum likelihood estimation used by PROC LIFEREG of SAS is applied to the continuous data without grouping into such intervals.

For the **grouped data case**, three groups of 100 observations (grouped into five intervals), 200 observations (grouped into five intervals), 2000 observations (grouped into five intervals) and 2000 observations (grouped into ten intervals) are generated from each of the three survival distributions, with parameters similar to the continuous **case**.

Programs to generate lifetime data and to run simulations with the technique of maximum likelihood estimation under constraints, appear in Appendix A. Maximum likelihood estimates by the standard method are also found using PROC LIFEREG of SAS. For comparison purposes, both estimation techniques are performed on the same set of simulated data in the same program. The means of the thousand simulated  $\hat{\lambda}$ - and  $\hat{\alpha}$ -values are computed as maximum likelihood **e**stimators of the model parameters  $\lambda$  and  $\alpha$ .



These estimators of the model parameters are considered to be significantly biased if the absolute difference between the model parameter and the estimator is greater than three standard errors of the mean. This criterium can be motivated as follows. For large sample sizes, the sampling distribution of the mean is approximately normally distributed and then the probability that the absolute difference between the model parameter and the estimator will lie within three standard errors of the mean, is 0.9999 . For small sample sizes (not assuming normality) the inequality of Chebyshev specifies that this probability is at least 0.8889 . Thus the confidence coefficient in this case will be between 0.8889 and 0.9999. A significantly biased estimator over-estimates the model parameter if its value is more than three standard errors of the mean to the right of the mean to the left of the model parameter.

Table 3.3 represents the simulation results for the continuous case for samples of various sizes when generating from a Weibull model.

Table 3.4 represents the simulation results for the grouped data case for **s**amples of various sizes, classified in five or ten intervals, when generating from a Weibull model.

Table 3.5 represents the simulation results for the continuous case for samples of various sizes when generating from a log-logistic model.

Table 3.6 represents the simulation results for the grouped data case for samples of various sizes, classified in five or ten intervals, when generating from a log-logistic model.

Table 3.7 represents the simulation results for the continuous case for samples of various sizes when generating from a lognormal model.

Table 3.8 represents the simulation results for the grouped data case for samples of various sizes, classified in five or ten intervals, when generating from a lognormal model.

For generation from the Weibull and log-logistic distributions, the maximum likelihood estimates of the IML method compare very well to the maximum likelihood estimates of the SAS method. The biasness of these estimates is very small for values of  $\lambda$  and  $\alpha$  that are usually used in practice, namely  $\lambda$ =0.15 and  $\alpha$ =0.5 . For larger values of  $\lambda$  and  $\alpha$ , the model parameters seem to be overestimated. The biasness of the estimates reduces when the sample size increases, as can be expected from maximum likelihood estimates which are asymptotically unbiased. The same conclusions can be made for generation from the lognormal distribution.



| Sample | Group  | Model            | Maximum Likelihood                 | Absolute difference | <b>3</b> × | Significantly |
|--------|--------|------------------|------------------------------------|---------------------|------------|---------------|
| Size   | Group  | Parameter        | Estimator                          | parameter-estimator | Std Error  | Biased        |
| n=20   | first  | $\lambda = 0.15$ | $\hat{\lambda}_{SAS} = 0.14996619$ | 0.00003381          | 0.0069663  | No            |
|        |        |                  | $\hat{\lambda}_{IML} = 0.14668896$ | 0.00331104          | 0.0068990  | No            |
|        |        | <i>α=</i> 0.5    | $\hat{\alpha}_{SAS} = 0.54013638$  | 0.04013638          | 0.0140021  | Yes Over      |
|        |        |                  | $\hat{\alpha}_{IML}$ =0.54593890   | 0.0459389           | 0.0140514  | Yes Over      |
|        | second | $\lambda = 10$   | $\hat{\lambda}_{SAS}$ =14.5457664  | 4.5457664           | 1.1514872  | Yes Over      |
|        |        |                  | $\hat{\lambda}_{IML}$ =13.4422577  | 3.4422577           | 1.0386621  | Yes Over      |
|        |        | $\alpha = 3$     | $\hat{\alpha}_{SAS}$ =3.18959524   | 0.18959524          | 0.0717345  | Yes Over      |
|        |        |                  | $\hat{\alpha}_{IML}$ =3.09723538   | 0.09723538          | 0.0701570  | Yes Over      |
|        | third  | $\lambda = 30$   | $\hat{\lambda}_{SAS}$ =120.665220  | 90.66522            | 48.796461  | Yes Over      |
|        |        |                  | $\hat{\lambda}_{IML}$ =101.053564  | 71.053564           | 36.689586  | Yes Over      |
|        |        | $\alpha = 1.8$   | $\hat{lpha}_{SAS}$ =1.95511189     | 0.15511189          | 0.0537395  | Yes Over      |
|        |        |                  | $\hat{lpha}_{IML}$ =1.90197261     | 0.10197261          | 0.0527703  | Yes Over      |
| n=50   | first  | $\lambda$ =0.15  | $\hat{\lambda}_{SAS}$ =0.14816260  | 0.0018374           | 0.0044372  | No            |
|        |        |                  | $\hat{\lambda}_{IML}$ =0.14813664  | 0.00186336          | 0.0029639  | No            |
|        |        | $\alpha$ =0.5    | $\hat{\alpha}_{SAS}$ =0.51746332   | 0.01746332          | 0.0044459  | Yes Over      |
|        |        |                  | $\hat{\alpha}_{IML}$ =0.51743153   | 0.01743153          | 0.0079694  | Yes Over      |
|        | second | $\lambda$ =10    | $\hat{\lambda}_{SAS} = 11.9257535$ | 1.9257535           | 0.5200346  | Yes Over      |
|        |        |                  | $\hat{\lambda}_{IML}$ =11.5073420  | 1.5073420           | 0.4952037  | Yes Over      |
|        |        | $\alpha = 3$     | $\hat{lpha}_{SAS}=$ 3.10165140     | 0.10165140          | 0.0447723  | Yes Over      |
|        |        |                  | $\hat{\alpha}_{IML}$ =3.05756831   | 0.05756831          | 0.0442101  | Yes Over      |
|        | third  | $\lambda = 30$   | $\hat{\lambda}_{SAS}$ =41.4510357  | 11.4510357          | 3.4742741  | Yes Over      |
|        |        |                  | $\hat{\lambda}_{IML}$ =39.5947272  | 9.5947272           | 3.3339734  | Yes Over      |
|        |        | $\alpha = 1.8$   | $\hat{lpha}_{SAS}$ =1.85067820     | 0.0506782           | 0.0292124  | Yes Over      |
|        |        |                  | $\hat{\alpha}_{IML} = 1.82857605$  | 0.02857605          | 0.0289569  | No            |

### Table 3.3: Weibull Simulation - Continuous Data



| Sample | Group  | Model            | Maximum Likelihood                 | Absolute difference | <b>3</b> × | Significantly |
|--------|--------|------------------|------------------------------------|---------------------|------------|---------------|
| Size   |        | Parameter        | Estimator                          | parameter-estimator | Std Error  | Biased        |
| n=100  | first  | $\lambda$ =0.15  | $\hat{\lambda}_{SAS} = 0.15177147$ | 0.00177147          | 0.0032904  | No            |
|        |        |                  | $\hat{\lambda}_{IML}$ =0.15250267  | 0.00250267          | 0.0021865  | Yes Over      |
|        |        | $\alpha$ =0.5    | $\hat{\alpha}_{SAS} = 0.50761848$  | 0.00761848          | 0.0032798  | Yes Over      |
|        |        |                  | $\hat{\alpha}_{IML}$ =0.50625014   | 0.00625014          | 0.0055814  | Yes Over      |
|        | second | $\lambda {=}$ 10 | $\hat{\lambda}_{SAS}$ =10.5995925  | 0.5995925           | 0.3027174  | Yes Over      |
|        |        |                  | $\hat{\lambda}_{IML}$ =10.3895455  | 0.3895455           | 0.2970639  | Yes Over      |
|        |        | $\alpha = 3$     | $\hat{\alpha}_{SAS} = 3.02213801$  | 0.02213801          | 0.0304752  | No            |
|        |        |                  | $\hat{\alpha}_{IML}$ =2.99591283   | 0.00408717          | 0.0305282  | No            |
|        | third  | $\lambda$ =30    | $\hat{\lambda}_{SAS}$ =35.3120154  | 5.3120154           | 1.8132791  | Yes Over      |
|        |        |                  | $\hat{\lambda}_{IML}$ =34.3043403  | 4.3043403           | 1.7604518  | Yes Over      |
|        |        | $\alpha = 1.8$   | $\hat{lpha}_{SAS}$ =1.82845863     | 0.02845863          | 0.0201914  | Yes Over      |
|        |        |                  | $\hat{lpha}_{IML}$ =1.81352486     | 0.01352486          | 0.0202521  | No            |
| n=200  | first  | $\lambda$ =0.15  | $\hat{\lambda}_{SAS}$ =0.15180449  | 0.00180449          | 0.0023565  | No            |
|        |        |                  | $\hat{\lambda}_{IML}$ =0.15250004  | 0.00250004          | 0.0002381  | Yes Over      |
|        |        | $\alpha=$ 0.5    | $\hat{lpha}_{SAS}$ =0.50087100     | 0.00087100          | 0.0038819  | No            |
|        |        |                  | $\hat{\alpha}_{IML}$ =0.49973979   | 0.00026021          | 0.0039027  | No            |
|        | second | $\lambda$ =10    | $\hat{\lambda}_{SAS}$ =10.1859060  | 0.185906            | 0.1980131  | No            |
|        |        |                  | $\hat{\lambda}_{IML}$ =10.0588244  | 0.0588244           | 0.1955345  | No            |
|        |        | $\alpha = 3$     | $\hat{\alpha}_{SAS}$ =2.99899145   | 0.00100855          | 0.0215052  | No            |
|        |        |                  | $\hat{\alpha}_{IML}$ =2.98236429   | 0.01763571          | 0.0214703  | No            |
|        | third  | $\lambda = 30$   | $\hat{\lambda}_{SAS}$ =32.2848790  | 2.284879            | 1.0252172  | Yes Over      |
|        |        |                  | $\hat{\lambda}_{IML}=$ 31.6653840  | 1.665384            | 1.0081139  | Yes Under     |
|        |        | $\alpha = 1.8$   | $\hat{\alpha}_{SAS}$ =1.85067820   | 0.0506782           | 0.0292124  | Yes Over      |
|        |        |                  | $\hat{\alpha}_{IML}$ =1.80067207   | 0.00067207          | 0.0141369  | No            |

### Table 3.3 (continued)



| Sample    | Group  | Model           | Maximum Likelihood                | Absolute difference | <b>3</b> × | Significantly |
|-----------|--------|-----------------|-----------------------------------|---------------------|------------|---------------|
| Size      |        | Parameter       | Estimator                         | parameter-estimator | Std Error  | Biased        |
| n=100     | first  | $\lambda$ =0.15 | $\hat{\lambda}_{SAS}$ =0.15535337 | 0.00535337          | 0.0049053  | Yes Over      |
| 5 classes |        |                 | $\hat{\lambda}_{IML}$ =0.15535344 | 0.00535344          | 0.0049053  | Yes Over      |
|           |        | <i>α=</i> 0.5   | $\hat{\alpha}_{SAS}$ =0.50497058  | 0.00497058          | 0.0083862  | No            |
|           |        |                 | $\hat{\alpha}_{IML}$ =0.50497044  | 0.00497044          | 0.0083862  | No            |
|           | second | $\lambda = 10$  | $\hat{\lambda}_{SAS}$ =10.8529348 | 0.8529348           | 0.3285815  | Yes Over      |
|           |        |                 | $\hat{\lambda}_{IML}$ =10.8529223 | 0.8529223           | 0.3285812  | Yes Over      |
|           |        | $\alpha = 3$    | $\hat{\alpha}_{SAS}$ =3.04895140  | 0.04895140          | 0.0335870  | Yes Over      |
|           |        |                 | $\hat{lpha}_{IML}=$ 3.04895031    | 0.04895031          | 0.0335870  | Yes Over      |
|           | third  | $\lambda$ =30   | $\hat{\lambda}_{SAS}$ =36.3075637 | 6.3075637           | 2.4547211  | Yes Over      |
|           |        |                 | $\hat{\lambda}_{IML}$ =36.3075006 | 6.3075006           | 2.4547164  | Yes Over      |
|           |        | $\alpha$ =1.8   | $\hat{lpha}_{SAS}$ =1.80779115    | 0.00779115          | 0.0257724  | No            |
|           |        |                 | $\hat{\alpha}_{IML}$ =1.80779049  | 0.00779049          | 0.0257723  | No            |
| n=200     | first  | $\lambda$ =0.15 | $\hat{\lambda}_{SAS}$ =0.15331594 | 0.00331594          | 0.0033041  | Yes Over      |
| 5 classes |        |                 | $\hat{\lambda}_{IML}$ =0.15331603 | 0.00331603          | 0.0033041  | Yes Over      |
|           |        | $\alpha$ =0.5   | $\hat{\alpha}_{SAS}$ =0.50052889  | 0.00052889          | 0.0056775  | No            |
|           |        |                 | $\hat{\alpha}_{IML}$ =0.50052873  | 0.00052873          | 0.0056528  | No            |
|           | second | $\lambda$ =10   | $\hat{\lambda}_{SAS}$ =10.3602667 | 0.3602667           | 0.2201871  | Yes Over      |
|           |        |                 | $\hat{\lambda}_{IML}$ =10.3602529 | 0.3602529           | 0.2201864  | Yes Over      |
|           |        | $\alpha = 3$    | $\hat{\alpha}_{SAS}$ =3.01886552  | 0.01886552          | 0.0237776  | No            |
|           |        |                 | $\hat{\alpha}_{IML}$ =3.01886427  | 0.01886427          | 0.0237774  | No            |
|           | third  | $\lambda = 30$  | $\hat{\lambda}_{SAS}$ =33.6583074 | 3.6583074           | 1.4001587  | Yes Over      |
|           |        |                 | $\hat{\lambda}_{IML}$ =33.6582478 | 3.6582478           | 1.4001549  | Yes Over      |
|           |        | $\alpha$ =1.8   | $\hat{lpha}_{SAS}$ =1.81684031    | 0.01684031          | 0.0183728  | No            |
|           |        |                 | $\hat{\alpha}_{IML} =$ 1.81683962 | 0.01683962          | 0.0183728  | No            |

## ${\rm Table \ 3.4:} \ \textbf{Weibull \ Simulation - Grouped \ Data}$



| Sample     | Group  | Model           | Maximum Likelihood                | Absolute difference | <b>3</b> × | Significantly |
|------------|--------|-----------------|-----------------------------------|---------------------|------------|---------------|
| Size       |        | Parameter       | Estimator                         | parameter-estimator | Std Error  | Biased        |
| n=2000     | first  | $\lambda$ =0.15 | $\hat{\lambda}_{SAS}$ =0.14992101 | 0.00007899          | 0.0010535  | No            |
| 5 classes  |        |                 | $\hat{\lambda}_{IML}$ =0.14992104 | 0.00007896          | 0.0010535  | No            |
|            |        | $\alpha$ =0.5   | $\hat{\alpha}_{SAS}$ =0.50057904  | 0.00057904          | 0.0018729  | No            |
|            |        |                 | $\hat{\alpha}_{IML}$ =0.50057897  | 0.00057897          | 0.0018729  | No            |
|            | second | $\lambda{=}10$  | $\hat{\lambda}_{SAS}$ =10.0365052 | 0.0365052           | 0.0601692  | No            |
|            |        |                 | $\hat{\lambda}_{IML}$ =10.0364959 | 0.0364959           | 0.0601688  | No            |
|            |        | $\alpha = 3$    | $\hat{lpha}_{SAS}=$ 3.00197758    | 0.00197758          | 0.0069176  | No            |
|            |        |                 | $\hat{lpha}_{IML}$ =3.00197667    | 0.00197667          | 0.0069176  | No            |
|            | third  | $\lambda =$ 30  | $\hat{\lambda}_{SAS}$ =30.3212508 | 0.3212508           | 0.3504578  | No            |
|            |        |                 | $\hat{\lambda}_{IML}$ =30.3212202 | 0.3212202           | 0.3504531  | No            |
|            |        | $\alpha = 1.8$  | $\hat{\alpha}_{SAS}$ =1.80186572  | 0.00186572          | 0.0055631  | No            |
|            |        |                 | $\hat{\alpha}_{IML}$ =1.80186532  | 0.00186532          | 0.0055631  | No            |
| n=2000     | first  | $\lambda$ =0.15 | $\hat{\lambda}_{SAS}$ =0.15028167 | 0.00028167          | 0.0008550  | No            |
| 10 classes |        |                 | $\hat{\lambda}_{IML}$ =0.15028175 | 0.00028175          | 0.0008550  | No            |
|            |        | $\alpha = 0.5$  | $\hat{lpha}_{SAS}$ =0.49991711    | 0.00008289          | 0.0014807  | No            |
|            |        |                 | $\hat{\alpha}_{IML}$ =0.49991693  | 0.00008307          | 0.0014807  | No            |
|            | second | $\lambda$ =10   | $\hat{\lambda}_{SAS}$ =10.0448501 | 0.0448501           | 0.0635568  | No            |
|            |        |                 | $\hat{\lambda}_{IML}$ =10.0448461 | 0.0448461           | 0.0635568  | No            |
|            |        | $\alpha = 3$    | $\hat{lpha}_{SAS}$ =3.00247119    | 0.00247119          | 0.0072035  | No            |
|            |        |                 | $\hat{\alpha}_{IML}$ =3.00247076  | 0.00247076          | 0.0072035  | No            |
|            | third  | $\lambda = 30$  | $\hat{\lambda}_{SAS}$ =30.1459685 | 0.1459685           | 0.3150615  | No            |
|            |        |                 | $\hat{\lambda}_{IML}$ =30.1459519 | 0.1459519           | 0.3150614  | No            |
|            |        | $\alpha = 1.8$  | $\hat{\alpha}_{SAS}$ =1.80002906  | 0.00002906          | 0.0049601  | No            |
|            |        |                 | $\hat{lpha}_{IML}=$ 1.80002879    | 0.00002879          | 0.0049601  | No            |

### Table 3.4 (continued)



| Sample | Group  | Model           | Maximum Likelihood                | Absolute difference | <b>3</b> × | Significantly |
|--------|--------|-----------------|-----------------------------------|---------------------|------------|---------------|
| Size   |        | Parameter       | Estimator                         | parameter-estimator | Std Error  | Biased        |
| n=20   | first  | $\lambda$ =0.15 | $\hat{\lambda}_{SAS}$ =0.15145327 | 0.00145327          | 0.0079043  | No            |
|        |        |                 | $\hat{\lambda}_{IML}$ =0.14796354 | 0.00203646          | 0.0075909  | No            |
|        |        | <i>α</i> =0.5   | $\hat{\alpha}_{SAS} = 0.53723029$ | 0.03723029          | 0.0123594  | Yes Over      |
|        |        |                 | $\hat{\alpha}_{IML}$ =0.53770964  | 0.03770964          | 0.0121689  | Yes Over      |
|        | second | $\lambda$ =10   | $\hat{\lambda}_{SAS}$ =20.1335459 | 10.1335459          | 3.2219037  | Yes Over      |
|        |        |                 | $\hat{\lambda}_{IML}$ =18.2308334 | 8.2308334           | 3.1020546  | Yes Over      |
|        |        | $\alpha = 3$    | $\hat{\alpha}_{SAS}$ =3.28465392  | 0.28465392          | 0.0866151  | Yes Over      |
|        |        |                 | $\hat{\alpha}_{IML}$ =3.18022776  | 0.18022776          | 0.0841209  | Yes Over      |
|        | third  | $\lambda=$ 30   | $\hat{\lambda}_{SAS}$ =89.9665445 | 59.9665445          | 27.531053  | Yes Over      |
|        |        |                 | $\hat{\lambda}_{IML}$ =86.0467171 | 56.0467171          | 34.960206  | Yes Over      |
|        |        | $\alpha = 1.8$  | $\hat{lpha}_{SAS}$ =1.96003040    | 0.1600304           | 0.0475061  | Yes Over      |
|        |        |                 | $\hat{\alpha}_{IML}$ =1.91475105  | 0.11475105          | 0.0467700  | Yes Over      |
| n=50   | first  | $\lambda$ =0.15 | $\hat{\lambda}_{SAS}$ =0.14899903 | 0.00100097          | 0.0050486  | No            |
|        |        |                 | $\hat{\lambda}_{IML}$ =0.1485948  | 0.0014052           | 0.0050454  | No            |
|        |        | $\alpha$ =0.5   | $\hat{lpha}_{SAS}$ =0.51827824    | 0.01827824          | 0.0074885  | Yes Over      |
|        |        |                 | $\hat{\alpha}_{IML}$ =0.51851833  | 0.01851833          | 0.0075098  | Yes Over      |
|        | second | $\lambda$ =10   | $\hat{\lambda}_{SAS}$ =12.8922606 | 2.8922606           | 0.7619717  | Yes Over      |
|        |        |                 | $\hat{\lambda}_{IML}$ =12.3350982 | 2.3350982           | 0.7227566  | Yes Over      |
|        |        | $\alpha = 3$    | $\hat{lpha}_{SAS}=$ 3.13906180    | 0.13906180          | 0.0242147  | Yes Over      |
|        |        |                 | $\hat{\alpha}_{IML}$ =3.08961706  | 0.08961706          | 0.0497274  | Yes Over      |
|        | third  | $\lambda$ =30   | $\hat{\lambda}_{SAS}$ =41.9117887 | 11.9117887          | 3.4527255  | Yes Over      |
|        |        |                 | $\hat{\lambda}_{IML}$ =40.1049803 | 10.1049803          | 3.2656557  | Yes Over      |
|        |        | $\alpha = 1.8$  | $\hat{lpha}_{SAS}$ =1.85576484    | 0.05576484          | 0.0278412  | Yes Over      |
|        |        |                 | $\hat{\alpha}_{IML} = 1.83471490$ | 0.03471490          | 0.0276355  | Yes Over      |

## Table 3.5: Log-logistic Simulation - Continuous Data



| Sample | Group  | Model                 | Maximum Likelihood                | Absolute difference | <b>3</b> × | Significantly |
|--------|--------|-----------------------|-----------------------------------|---------------------|------------|---------------|
| Size   |        | Parameter             | Estimator                         | parameter-estimator | Std Error  | Biased        |
| n=100  | first  | $\lambda$ =0.15       | $\hat{\lambda}_{SAS}$ =0.14829547 | 0.00170453          | 0.0036117  | No            |
|        |        |                       | $\hat{\lambda}_{IML}$ =0.14868802 | 0.00131198          | 0.0036063  | No            |
|        |        | <i>α</i> <b>=</b> 0.5 | $\hat{\alpha}_{SAS} = 0.50958388$ | 0.00958388          | 0.0053112  | Yes Over      |
|        |        |                       | $\hat{lpha}_{IML}$ =0.50898401    | 0.00898401          | 0.0052796  | Yes Over      |
|        | second | $\lambda = 10$        | $\hat{\lambda}_{SAS}$ =11.2448956 | 1.2448956           | 0.4224530  | Yes Over      |
|        |        |                       | $\hat{\lambda}_{IML}$ =10.9567399 | 0.9567399           | 0.4093430  | Yes Over      |
|        |        | $\alpha = 3$          | $\hat{\alpha}_{SAS}$ =3.06515628  | 0.06515628          | 0.0349263  | Yes Over      |
|        |        |                       | $\hat{\alpha}_{IML}$ =3.03466202  | 0.03466202          | 0.0346883  | No            |
|        | third  | $\lambda=$ 30         | $\hat{\lambda}_{SAS}$ =34.5809933 | 4.5809933           | 1.5117978  | Yes Over      |
|        |        |                       | $\hat{\lambda}_{IML}=$ 33.6560830 | 3.6560830           | 1.4586887  | Yes Over      |
|        |        | $\alpha$ =1.8         | $\hat{\alpha}_{SAS}$ =1.82539203  | 0.02539203          | 0.0178437  | Yes Over      |
|        |        |                       | $\hat{lpha}_{IML}$ =1.81188676    | 0.01188676          | 0.0176387  | No            |
| n=200  | first  | $\lambda$ =0.15       | $\hat{\lambda}_{SAS}$ =0.15012895 | 0.00012895          | 0.0025574  | No            |
|        |        |                       | $\hat{\lambda}_{IML}$ =0.15073248 | 0.00073248          | 0.0025749  | No            |
|        |        | $\alpha$ =0.5         | $\hat{\alpha}_{SAS}$ =0.50478209  | 0.00478209          | 0.0035717  | Yes Over      |
|        |        |                       | $\hat{\alpha}_{IML}$ =0.50392805  | 0.00392805          | 0.0035856  | Yes Over      |
|        | second | $\lambda$ =10         | $\hat{\lambda}_{SAS}$ =10.5491323 | 0.5491323           | 0.2693544  | Yes Over      |
|        |        |                       | $\hat{\lambda}_{IML}$ =10.3753797 | 0.3753797           | 0.2650004  | Yes Over      |
|        | 1      | $\alpha = 3$          | $\hat{\alpha}_{SAS}$ =3.02213542  | 0.02213542          | 0.0236147  | No            |
|        |        |                       | $\hat{lpha}_{IML}=$ 3.00137177    | 0.00137177          | 0.0236348  | No            |
|        | third  | $\lambda =$ 30        | $\hat{\lambda}_{SAS}$ =32.4239353 | 2.4239353           | 0.9744693  | Yes Over      |
|        |        |                       | $\hat{\lambda}_{IML}=$ 31.8716829 | 1.8716829           | 0.9617250  | Yes Over      |
|        |        | $\alpha = 1.8$        | $\hat{\alpha}_{SAS}$ =1.81737307  | 0.01737307          | 0.0132893  | Yes Over      |
|        |        |                       | $\hat{\alpha}_{IML} = 1.80795453$ | 0.00795453          | 0.0133557  | No            |

### Table 3.5 (continued)



| Sample    | Group  | Model           | Maximum Likelihood                | Absolute difference | <b>3</b> × | Significantly |
|-----------|--------|-----------------|-----------------------------------|---------------------|------------|---------------|
| Size      |        | Parameter       | Estimator                         | parameter-estimator | Std Error  | Biased        |
| n=100     | first  | $\lambda$ =0.15 | $\hat{\lambda}_{SAS}$ =0.16521023 | 0.01521023          | 0.0094249  | Yes Over      |
| 5 classes |        |                 | $\hat{\lambda}_{IML}$ =0.16521040 | 0.01521040          | 0.0094250  | Yes Over      |
|           |        | $\alpha$ =0.5   | $\hat{\alpha}_{SAS}$ =0.55605556  | 0.05605556          | 0.0124358  | Yes Over      |
|           |        |                 | $\hat{\alpha}_{IML}$ =0.55605532  | 0.05605532          | 0.0124358  | Yes Over      |
|           | second | $\lambda$ =10   | $\hat{\lambda}_{SAS}$ =11.4755280 | 1.475528            | 0.4744770  | Yes Over      |
|           |        |                 | $\hat{\lambda}_{IML}$ =11.4755188 | 1.4755188           | 0.4744766  | Yes Over      |
|           |        | $\alpha = 3$    | $\hat{\alpha}_{SAS}$ =3.05054222  | 0.05054222          | 0.0386571  | Yes Over      |
|           |        |                 | $\hat{\alpha}_{IML}$ =3.05054135  | 0.05054135          | 0.0386571  | Yes Over      |
|           | third  | $\lambda = 30$  | $\hat{\lambda}_{SAS}$ =35.5083302 | 5.5083302           | 1.8496092  | Yes Over      |
|           |        |                 | $\hat{\lambda}_{IML}$ =35.5082841 | 5.5082841           | 1.8496053  | Yes Over      |
|           |        | $\alpha = 1.8$  | $\hat{lpha}_{SAS}$ =1.82348176    | 0.02348176          | 0.0213981  | Yes Over      |
|           |        |                 | $\hat{\alpha}_{IML} = 1.82348122$ | 0.02348122          | 0.0213981  | Yes Over      |
| n=200     | first  | $\lambda$ =0.15 | $\hat{\lambda}_{SAS}$ =0.15312020 | 0.0031202           | 0.0061112  | No            |
| 5 classes |        |                 | $\hat{\lambda}_{IML}$ =0.15312036 | 0.00312036          | 0.0061112  | No            |
|           |        | $\alpha = 0.5$  | $\hat{lpha}_{SAS}=$ 0.55197887    | 0.05197887          | 0.0089604  | Yes Over      |
|           |        |                 | $\hat{\alpha}_{IML}$ =0.55197863  | 0.05197863          | 0.0089604  | Yes Over      |
|           | second | $\lambda = 10$  | $\hat{\lambda}_{SAS}$ =10.4917160 | 0.4917160           | 0.2787344  | Yes Over      |
|           |        |                 | $\hat{\lambda}_{IML}$ =10.4917107 | 0.4917107           | 0.2787339  | Yes Over      |
|           |        | $\alpha = 3$    | $\hat{lpha}_{SAS}=$ 3.01591703    | 0.01591703          | 0.0260622  | No            |
|           |        |                 | $\hat{\alpha}_{IML}$ =3.01591651  | 0.01591651          | 0.0260621  | No            |
|           | third  | $\lambda = 30$  | $\hat{\lambda}_{SAS}$ =33.0284088 | 3.0284088           | 1.1623553  | Yes Over      |
|           |        |                 | $\hat{\lambda}_{IML}$ =33.0283646 | 3.0283646           | 1.1623533  | Yes Over      |
|           |        | $\alpha$ =1.8   | $\hat{\alpha}_{SAS}$ =1.81587417  | 0.01587417          | 0.0157598  | Yes Over      |
|           |        |                 | $\hat{\alpha}_{IML}$ =1.81587357  | 0.01587357          | 0.0157598  | Yes Over      |

# Table 3.6: Log-logistic Simulation - Grouped Data



| Sample     | Group                                        | Model           | Maximum Likelihood                | Absolute difference | <b>3</b> × | Significantly |
|------------|----------------------------------------------|-----------------|-----------------------------------|---------------------|------------|---------------|
| Size       | <u>                                     </u> | Parameter       | Estimator                         | parameter-estimator | Std Error  | Biased        |
| n=2000     | first                                        | $\lambda$ =0.15 | $\hat{\lambda}_{SAS}$ =0.14345146 | 0.00654854          | 0.0017930  | Yes Under     |
| 5 classes  | /                                            |                 | $\hat{\lambda}_{IML}$ =0.14345176 | 0.00654824          | 0.0017930  | Yes Under     |
|            |                                              | <i>α</i> =0.5   | $\hat{\alpha}_{SAS}$ =0.54985916  | 0.04985916          | 0.0028193  | Yes Over      |
| <br>       | !                                            | I!              | $\hat{lpha}_{IML}=$ 0.54985868    | 0.04985868          | 0.0028193  | Yes Over      |
|            | second                                       | $\lambda{=}10$  | $\hat{\lambda}_{SAS}$ =10.0348477 | 0.0348477           | 0.0871307  | No            |
|            |                                              | 1               | $\hat{\lambda}_{IML}$ =10.0348476 | 0.0348476           | 0.0871307  | No            |
|            |                                              | $\alpha = 3$    | $\hat{lpha}_{SAS}=$ 3.00041664    | 0.00041664          | 0.0089861  | No            |
|            |                                              | []              | $\hat{lpha}_{IML}=$ 3.00041662    | 0.00041662          | 0.0089861  | No            |
|            | third                                        | $\lambda$ =30   | $\hat{\lambda}_{SAS}=$ 30.1441862 | 0.1441862           | 0.3068751  | No            |
|            |                                              | 1               | $\hat{\lambda}_{IML}$ =30.1441400 | 0.1441400           | 0.3068718  | No            |
|            |                                              | $\alpha$ =1.8   | $\hat{lpha}_{SAS}$ =1.80061919    | 0.00061919          | 0.0046998  | No            |
|            |                                              |                 | $\hat{\alpha}_{IML} = 1.80061848$ | 0.00061848          | 0.0046998  | No            |
| n=2000     | first                                        | $\lambda$ =0.15 | $\hat{\lambda}_{SAS}$ =0.14345099 | 0.00654901          | 0.0016850  | Yes Under     |
| 10 classes |                                              |                 | $\hat{\lambda}_{IML}$ =0.14345135 | 0.00654865          | 0.0016850  | Yes Under     |
|            |                                              | α=0.5           | $\hat{\alpha}_{SAS} = 0.54915511$ | 0.04915511          | 0.0026267  | Yes Over      |
|            |                                              |                 | $\hat{\alpha}_{IML}$ =0.54915455  | 0.04915455          | 0.0026267  | Yes Over      |
|            | second                                       | $\lambda = 10$  | $\hat{\lambda}_{SAS}$ =10.0650169 | 0.0650169           | 0.0885605  | No            |
|            |                                              |                 | $\hat{\lambda}_{IML}$ =10.0650121 | 0.0650121           | 0.0885596  | No            |
|            |                                              | $\alpha = 3$    | $\hat{\alpha}_{SAS} =$ 3.00168243 | 0.00168243          | 0.0084723  | No            |
|            |                                              | !               | $\hat{\alpha}_{IML}$ =3.00168201  | 0.00168201          | 0.0084722  | No            |
|            | third                                        | $\lambda=$ 30   | $\hat{\lambda}_{SAS}$ =30.3229680 | 0.3229680           | 0.2967881  | Yes Over      |
|            |                                              | I               | $\hat{\lambda}_{IML}$ =30.3229672 | 0.3229672           | 0.2967879  | Yes Over      |
|            |                                              | $\alpha$ =1.8   | $\hat{\alpha}_{SAS} =$ 1.80166754 | 0.00166754          | 0.0049601  | No            |
|            |                                              | 1               | $\hat{\alpha}_{IML} = 1.80166752$ | 0.00166752          | 0.0049601  | No            |

### Table 3.6 (continued)



| Sample | Group  | Model           | Maximum Likelihood               | Absolute difference | <b>3</b> × | Significantly |
|--------|--------|-----------------|----------------------------------|---------------------|------------|---------------|
| Size   |        | Parameter       | Estimator                        | parameter-estimator | Std Error  | Biased        |
| n=20   | first  | μ=2             | $\hat{\mu}_{SAS} = 2.01370552$   | 0.01370552          | 0.0132221  | Yes Over      |
|        |        |                 | $\hat{\mu}_{IML}$ =2.01849401    | 0.01849401          | 0.0138065  | Yes Over      |
|        |        | $\sigma$ =0.5   | $\hat{\sigma}_{SAS}$ =0.48826184 | 0.01173816          | 0.0114902  | Yes Over      |
|        |        |                 | $\hat{\sigma}_{IML}$ =0.50773538 | 0.00773538          | 0.0124704  | No            |
|        | second | $\mu = 5$       | $\hat{\mu}_{SAS}$ =5.00535672    | 0.00535672          | 0.0053853  | No            |
|        |        |                 | $\hat{\mu}_{IML}$ =5.0081579     | 0.0081579           | 0.0057089  | Yes Over      |
|        |        | $\sigma$ =0.2   | $\hat{\sigma}_{SAS}$ =0.19530672 | 0.00469328          | 0.0047150  | No            |
|        |        |                 | $\hat{\sigma}_{IML}$ =0.20488857 | 0.00488857          | 0.0051035  | No            |
|        | third  | $\mu=3$         | $\hat{\mu}_{SAS} = 3.00032999$   | 0.00032999          | 0.0009290  | No            |
|        |        |                 | $\hat{\mu}_{IML}=$ 3.00101803    | 0.00101803          | 0.0009774  | Yes Over      |
|        |        | $\sigma$ =0.03  | $\hat{\sigma}_{SAS}$ =0.02910627 | 0.00089373          | 0.0007827  | Yes Under     |
|        |        |                 | $\hat{\sigma}_{IML}$ =0.03096809 | 0.00096809          | 0.0008820  | Yes Over      |
| n=50   | first  | μ=2             | $\hat{\mu}_{SAS} = 1.99992428$   | 0.00145327          | 0.0078302  | No            |
|        |        |                 | $\hat{\mu}_{IML}$ =2.0009279     | 0.0009279           | 0.0079442  | No            |
|        |        | $\sigma$ =0.5   | $\hat{\sigma}_{SAS}$ =0.49328237 | 0.00671763          | 0.0070923  | No            |
|        |        |                 | $\hat{\sigma}_{IML}$ =0.50120403 | 0.00120403          | 0.0072662  | No            |
|        | second | $\mu=5$         | $\hat{\mu}_{SAS}=$ 5.00275189    | 0.00275189          | 0.0033918  | No            |
|        |        |                 | $\hat{\mu}_{IML}=$ 5.00361253    | 0.00361253          | 0.0034631  | Yes Over      |
|        |        | <i>σ</i> =0.2   | $\hat{\sigma}_{SAS}$ =0.19899201 | 0.00100799          | 0.0031028  | No            |
|        |        |                 | $\hat{\sigma}_{IML}$ =0.20325814 | 0.00325814          | 0.0032217  | Yes Over      |
|        | third  | μ=3             | $\hat{\mu}_{SAS} = 3.00035126$   | 0.00035126          | 0.0005712  | No            |
|        |        |                 | $\hat{\mu}_{IML}$ =3.00060422    | 0.00060422          | 0.0005883  | Yes Over      |
|        |        | $\sigma = 0.03$ | $\hat{\sigma}_{SAS}$ =0.0295653  | 0.0004347           | 0.0005112  | No            |
|        |        |                 | $\hat{\sigma}_{IML}$ =0.03032833 | 0.00032833          | 0.0005343  | No            |

## Table 3.7: Lognormal Simulation - Continuous Data



| Sample | Group  | Model          | Maximum Likelihood               | Absolute difference | 3×        | Significantly |
|--------|--------|----------------|----------------------------------|---------------------|-----------|---------------|
| Size   | Croup  | Parameter      | Estimator                        | parameter-estimator | Std Error | Biased        |
| n=100  | first  | μ=2            | $\hat{\mu}_{SAS} = 1.99791343$   | 0.00208657          | 0.0056862 | No            |
|        |        |                | $\hat{\mu}_{IML} = 1.99824256$   | 0.00175744          | 0.0057267 | No            |
|        |        | $\sigma$ =0.5  | $\hat{\sigma}_{SAS}$ =0.49740803 | 0.00259197          | 0.0050457 | No            |
|        |        |                | $\hat{\sigma}_{IML}$ =0.50205305 | 0.00205305          | 0.0051075 | No            |
|        | second | $\mu=5$        | $\hat{\mu}_{SAS}=$ 5.00073008    | 0.00073008          | 0.0023390 | No            |
|        |        |                | $\hat{\mu}_{IML}$ =5.00106256    | 0.00106256          | 0.0023610 | No            |
|        |        | <i>σ</i> =0.2  | $\hat{\sigma}_{SAS}$ =0.19929321 | 0.00070679          | 0.0020387 | No            |
|        |        |                | $\hat{\sigma}_{IML}=$ 0.20155982 | 0.00155982          | 0.0020783 | No            |
|        | third  | μ=3            | $\hat{\mu}_{SAS} =$ 3.00029441   | 0.00029441          | 0.0003854 | No            |
|        |        |                | $\hat{\mu}_{IML}=$ 3.00041118    | 0.00041118          | 0.0003908 | Yes Over      |
|        |        | <i>σ</i> =0.03 | $\hat{\sigma}_{SAS}$ =0.02996311 | 0.00003689          | 0.0003504 | No            |
|        |        |                | $\hat{\sigma}_{IML}$ =0.03038029 | 0.00038029          | 0.0035913 | No            |
| n=200  | first  | μ=2            | $\hat{\mu}_{SAS} = 1.99963933$   | 0.00036067          | 0.0038171 | No            |
|        |        |                | $\hat{\mu}_{IML}$ =1.99974197    | 0.00025803          | 0.0038318 | No            |
| 1 A    |        | $\sigma$ =0.5  | $\hat{\sigma}_{SAS}$ =0.49820589 | 0.00179411          | 0.0034412 | No            |
|        |        |                | $\hat{\sigma}_{IML}$ =0.50103108 | 0.00103108          | 0.0034835 | No            |
|        | second | $\mu = 5$      | $\hat{\mu}_{SAS} = 5.00034985$   | 0.00034985          | 0.0016695 | No            |
|        |        |                | $\hat{\mu}_{IML}$ =5.00050944    | 0.00050944          | 0.0016796 | No            |
|        |        | <i>σ</i> =0.2  | $\hat{\sigma}_{SAS}$ =0.19992307 | 0.00007693          | 0.0014759 | No            |
|        |        |                | $\hat{\sigma}_{IML}$ =0.20115462 | 0.00115462          | 0.0014906 | No            |
|        | third  | μ=3            | $\hat{\mu}_{SAS} = 3.00001599$   | 0.00001599          | 0.0002696 | No            |
|        |        |                | $\hat{\mu}_{IML}=$ 3.00007712    | 0.00007712          | 0.0002721 | No            |
|        |        | <i>σ</i> =0.03 | $\hat{\sigma}_{SAS}$ =0.02994986 | 0.00005014          | 0.0002402 | No            |
|        |        |                | $\hat{\sigma}_{IML}$ =0.03019125 | 0.00019125          | 0.0002436 | No            |

### Table 3.7 (continued)



| Sample    | Group  | Model           | Maximum Likelihood               | Absolute difference | <b>3</b> × | Significantly |
|-----------|--------|-----------------|----------------------------------|---------------------|------------|---------------|
| Size      |        | Parameter       | Estimator                        | parameter-estimator | Std Error  | Biased        |
| n=100     | first  | μ=2             | $\hat{\mu}_{SAS}$ =2.00192369    | 0.00192369          | 0.0055787  | No            |
| 5 classes |        |                 | $\hat{\mu}_{IML}$ =2.00192375    | 0.00192375          | 0.0055787  | No            |
|           |        | $\sigma$ =0.5   | $\hat{\sigma}_{SAS}$ =0.50117455 | 0.00117455          | 0.0060003  | No            |
|           |        |                 | $\hat{\sigma}_{IML}$ =0.5011747  | 0.0011747           | 0.0060003  | No            |
|           | second | $\mu = 5$       | $\hat{\mu}_{SAS}$ =5.00401992    | 0.00401992          | 0.0024615  | Yes Over      |
|           |        |                 | $\hat{\mu}_{IML}$ =5.00401995    | 0.00401995          | 0.0024615  | Yes Over      |
|           |        | <i>σ</i> =0.2   | $\hat{\sigma}_{SAS}$ =0.20294216 | 0.00294216          | 0.0028697  | Yes Over      |
|           |        |                 | $\hat{\sigma}_{IML}$ =0.20294222 | 0.00294222          | 0.0028697  | Yes Over      |
|           | third  | μ=3             | $\hat{\mu}_{SAS} = 3.00033514$   | 0.00033514          | 0.0004122  | No            |
|           |        |                 | $\hat{\mu}_{IML}$ =3.00033514    | 0.00033514          | 0.0004122  | No            |
|           |        | $\sigma = 0.03$ | $\hat{\sigma}_{SAS}$ =0.03061107 | 0.00061107          | 0.0005295  | Yes Over      |
|           |        |                 | $\hat{\sigma}_{IML}$ =0.03061108 | 0.00061108          | 0.0005295  | Yes Over      |
| n=200     | first  | μ=2             | $\hat{\mu}_{SAS} = 2.00140175$   | 0.00140175          | 0.0039281  | No            |
| 5 classes |        |                 | $\hat{\mu}_{IML}$ =2.00140179    | 0.00140179          | 0.0039281  | No            |
|           |        | $\sigma$ =0.5   | $\hat{\sigma}_{SAS}$ =0.5032537  | 0.0032537           | 0.0042402  | No            |
|           |        |                 | $\hat{\sigma}_{IML}$ =0.50325377 | 0.00325377          | 0.0042402  | No            |
|           | second | $\mu=5$         | $\hat{\mu}_{SAS}$ =4.99932522    | 0.00067478          | 0.0016349  | No            |
|           |        |                 | $\hat{\mu}_{IML}$ =4.99932524    | 0.00067476          | 0.0016349  | No            |
|           |        | $\sigma$ =0.2   | $\hat{\sigma}_{SAS}$ =0.19964898 | 0.00035102          | 0.0018044  | No            |
|           |        |                 | $\hat{\sigma}_{IML}$ =0.19964903 | 0.00035097          | 0.0018044  | No            |
|           | third  | μ=3             | $\hat{\mu}_{SAS} = 3.00019211$   | 0.00019211          | 0.0002874  | No            |
|           |        |                 | $\hat{\mu}_{IML}$ =3.00019211    | 0.00019211          | 0.0002874  | No            |
|           |        | $\sigma = 0.03$ | $\hat{\sigma}_{SAS}$ =0.03033419 | 0.00033419          | 0.0003491  | No            |
|           |        |                 | $\hat{\sigma}_{IML}$ =0.0303342  | 0.0003342           | 0.0003491  | No            |

## Table 3.8: Lognormal Simulation - Grouped Data



### Table 3.8 (continued)

| Sample     | Group  | Model           | Maximum Likelihood                | Absolute difference | <b>3</b> × | Significantly |
|------------|--------|-----------------|-----------------------------------|---------------------|------------|---------------|
| Size       |        | Parameter       | Estimator                         | parameter-estimator | Std Error  | Biased        |
| n=2000     | first  | μ=2             | $\hat{\mu}_{SAS} = 1.99936468$    | 0.00063532          | 0.0012531  | No            |
| 5 classes  |        |                 | $\hat{\mu}_{IML}$ =1.99936468     | 0.00063532          | 0.0012531  | No            |
|            |        | $\sigma$ =0.5   | $\hat{\sigma}_{SAS}$ =0.49931475  | 0.00068525          | 0.0013452  | No            |
|            |        |                 | $\hat{\sigma}_{IML}$ =0.49931475  | 0.00068525          | 0.0013452  | No            |
|            | second | $\mu = 5$       | $\hat{\mu}_{SAS}$ =4.99993747     | 0.00006253          | 0.0005217  | No            |
|            |        |                 | $\hat{\mu}_{IML}$ =4.99993747     | 0.00006253          | 0.0005217  | No            |
|            |        | <i>σ</i> =0.2   | $\hat{\sigma}_{SAS}=$ 0.1999748   | 0.0000252           | 0.0005898  | No            |
|            |        |                 | $\hat{\sigma}_{IML}$ =0.1999748   | 0.0000252           | 0.0005898  | No            |
|            | third  | μ=3             | $\hat{\mu}_{SAS} = 3.00004037$    | 0.00004037          | 0.0000872  | No            |
|            |        |                 | $\hat{\mu}_{IML}$ =3.00004038     | 0.00004038          | 0.0000872  | No            |
|            |        | <i>σ</i> =0.03  | $\hat{\sigma}_{SAS}$ =0.02997699  | 0.00002301          | 0.0001070  | No            |
|            |        |                 | $\hat{\sigma}_{IML}$ =0.02997701  | 0.00002299          | 0.0001070  | No            |
| n=2000     | first  | μ=2             | $\hat{\mu}_{SAS}$ =1.99950829     | 0.00049171          | 0.0012132  | No            |
| 10 classes |        |                 | $\hat{\mu}_{IML}$ =1.99950833     | 0.00049167          | 0.0012132  | No            |
|            |        | $\sigma$ =0.5   | $\hat{\sigma}_{SAS}$ =0.50012979  | 0.00012979          | 0.0012959  | No            |
|            |        |                 | $\hat{\sigma}_{IML}$ =0.50012988  | 0.00012988          | 0.0012959  | No            |
|            | second | $\mu = 5$       | $\hat{\mu}_{SAS} = 5.00003176$    | 0.00003176          | 0.0000509  | No            |
|            |        | - a             | $\hat{\mu}_{IML}$ =5.00003186     | 0.00003186          | 0.0000509  | No            |
|            |        | <i>σ</i> =0.2   | $\hat{\sigma}_{SAS}$ =0.20016008  | 0.00016008          | 0.0005625  | No            |
|            |        |                 | $\hat{\sigma}_{IML}$ =0.20016027  | 0.00016027          | 0.0005625  | No            |
|            | third  | <i>μ</i> =3     | $\hat{\mu}_{SAS} = 3.00003361$    | 0.00003361          | 0.0000870  | No            |
|            |        |                 | $\hat{\mu}_{IML}$ =3.00003362     | 0.00003362          | 0.0000870  | No            |
|            |        | $\sigma = 0.03$ | $\hat{\sigma}_{SAS}$ =0.03008051  | 0.00008051          | 0.0001053  | No            |
|            |        |                 | $\hat{\sigma}_{IML} = 0.03008052$ | 0.00008052          | 0.0001053  | No            |