Chapter 1

INTRODUCTION

1.1 Background

Survival data consist of a response variable that measures the duration of time until a
specified event occurs, and a set of covariates that can be either discrete or continuous. Some
observations are right-censored, that is, the time until the event occurs, is not observed due
to withdrawal or termination of the study. Thus survival data consist of a response variable
(duration of time), as well as an additional variable indicating which responses are observed

survival times and which are censored times and some covariates.

In this thesis, a structured framework for the analysis of policy survival times has been
developed. Such a framework must be embedded in the experimental design. The lifetime
of a policy is measured from the inception date up to the lapsing date or a cut-off point.
If the lapsing date is prior to a cut-off point of the study, determined in advance, then the
lifetime is observed (an uncensored observation). If a policy is still in force (alive) when the
cut-off point is reached, the lifetime of this policy is said to be right-censored. This thesis
focuses on grouped data for lifetimes. This scenario has become extremely important, not

only for application in the actuarial context, but also in other fields.

In this thesis, the analysis takes account of the actual lifetime (duration) of the policy
rather than just recording the fact that the policy lapsed or was still alive after (say) twelve
months. In other words, the response variable, lifetime, is a continuous one, and the whole

distribution of lifetimes can be used. This is in contrast to a categorical response where a
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loglinear logit model can be used to express the relationship among the categorical response
and some covariates at a fixed time point of twelve months, conditional on a restricted
experimental design where all the policies must have an exposure of at least twelve months
when investigating the lapses of policies in the first year. There is no such restrictions in
the more general experimental design used in this thesis where all the policies can be used

in the analysis, even those policies with inception dates very close to the cut-off point.

All the policies that are written during a certain month and are recorded at the end of that
month as that month’s business, can be considered as a group of policies with a common
starting point or entry time. In this way policies written in different months or time-periods

have different entry times. This is called staggered entry of policies.

The policy lifetimes (observed and censored lifetimes) are typically of a discrete nature and
principles of grouped data have to be taken into account when fitting lifetime distributions
to such survival data. Statistical analysing techniques for this kind of grouped data are

currently insufficient.

1.2 The Research Problem

The aim of the research is the statistical modelling of parametric survival distributions of
grouped survival data of long- and shortterm policies in the insurance industry, by means
of a method of maximum likelihood estimation subject to constraints. The statistical
methodology is developed from previous research on maximum likelihood estimation subject
to constraints (refer to [11, 30]) and special attention is given to the staggered entry of

policies and the fitting of parametric regression models.

Much literature exist on the fitting of survival distributions, mainly in connection with
non-parametric analyses or the semi-parametric proportional hazards regression model of
Cox [6, 23, 41]. Theoretical results for continuous data of lifetimes are well developed.
Corresponding results for grouped data of lifetimes or the so-called interval-censored data
are available only in special cases, and then again mainly in the non-parametric and semi-
parametric case (refer to [33, 15, 14]). Only in recent years interval censoring in parametric
model fitting were addressed by [27, 22, 14, 36]. This was made possible by modern

computing power and sophisticated statistical programming languages.
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The standard method of estimation to be used in the literature is to maximize the partial
likelihood (at Cox’s model) or the full likelihood (at parametric regression models). The
estimates of the parameters are then found by maximizing the likelihood function numeri-
cally. The methodology of maximum likelihood estimation subject to constraints, used in
this thesis, leads to explicit expressions for the estimates of the parameters, as well as
for approximated variances and covariances of the estimates, which gives exact maximum
likelihood estimates of the parameters. This makes direct extension to more complex designs

feasible.

Once the parameters of the survival distributions have been estimated, estimated hazard
and survivor functions, odds of a lapse, odds ratios and hazard ratios at time t can
be directly calculated, as well as estimated percentiles for the fitted survival distributions.
These estimates form the statistical foundation for scientific decisionmaking with respect to

actuarial design, maintenance and marketing of insurance policies.

The intrinsic value of the methodology described in this thesis is of fundamental importance
to the actuarial science. The statistical modelling offers parametric models for survival
distributions, in contrast with non-parametric models that are used commonly in the actuarial
profession. This leads to more accurate estimation procedures. When the parametric models
provide a good fit to data, they tend to give more precise estimates of the quantities of
interest such as odds ratios, hazard ratios or median lifetimes. Estimates of these quantities
will tend to have smaller standard errors than they would in the absence of distributional

assumptions.

Data from the insurance industry are extensive data sets with very large sample sizes. The
focus in this thesis will be on the estimation of lifetime distributions, based on a large sample
of lifetimes of policies that are grouped into intervals of lifetimes. The variance- covariance
matrix can be estimated as part of this maximum likelihood estimation procedure subject
to constraints, but no meaningful interpretation can be given to the exceedance probability
values that are associated with the very small standard errors of the parameter estimates due
to the large sample size. Therefore discrepancy values will be used to evaluate the fitting of

the lifetime distributions.
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1.3 Generalization of the Statistical Procedures

One important aspect of the research field of survival analysis is the wide range of types
of application. Although the methodology in this thesis is developed specifically for the
insurance industry, it may be applied in the normal context of research and scientific de-
cisionmaking, that includes for example survival distributions for the medical, biological,

engineering, econometric and sociological sciences.

1.4 Future Research

The potential for extending the methodology to other realistic practical application is un-
limited. This can be to the advance of the insurance industry in general. The models
should reflect an interactive adaptability for direct application in practice by salesforce (the

marketing people on ground level), as well as for actuarial planning.

1.5 Outlay of chapters

In chapter two, basic survival functions are defined and a description of the survival distribu-
tions that are used in this thesis, together with their properties, are given. The construction

of different likelihood functions is also discussed.

In chapter three, parametric models are fitted to a single sample of survival data. The
standard method of maximum likelihood estimation is reviewed. This is followed by the
methodology of maximum likelihood estimation subject to constraints, applied in two dif-
ferent scenarios: a fixed censoring time as well as staggered entry of policies. The chapter
is concluded with simulation studies to compare the estimates of the parameters obtained

by the standard and the proposed estimating procedures.

In chapter four parametric regression models are fitted and important indicators of the effect

of the covariates are defined such as risk scores (hazard ratios) and indices (odds ratios).

The developed theoretical results are applied in chapter five to a typical data set from an

insurance company.
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Chapter six concludes with a summary of the most important results in this thesis and

focuses on application of these results in practice, especially in the actuarial industry.

All computer programs that were written in the SAS/IML language to perform the new

methodology are given in appendix A.

The abstract appears at the end of the thesis, just after the references.



Chapter 2

SURVIVAL FUNCTIONS AND
DISTRIBUTIONS

2.1 Introduction

The aim of this chapter is to introduce notation and survival concepts and to summarize

properties of the survival distributions to be used in this thesis.

2.2 Notation

2.2.1 Right-censored continuous survival data

Let X be a nonnegative continuous random variable denoting the lifetime (or survival time)
of a policy. The lifetime of a policy is measured from inception date up to the lapsing
date. If the lapsing date is prior to a fixed termination date of the study, determined in
advance, then the lifetime is observed (an uncensored observation). If a policy is still in
force (alive) when the termination point is reached, the lifetime of this policy is said to be

right-censored.
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A fixed censoring time

Consider the simplest scenario where all policies enter the study at the same time. Let C
be the fixed termination date of the study, determined in advance. C is then the preassigned
fixed censoring time. Instead of observing X1, Xs, ..., X, only T1,T5, ..., T,, are observed
X; if X;<C
c if X;>C
The survival data, based on a sample of size n, can then be represented by pairs of random

where T; =

variables (7},8;) where T1,T5,...,T,, are independent identically distributed random vari-
ables, each with distribution function F' and density function f. §; is the survival status of
the ;% policy and indicates whether the lifetime for the j* policy corresponds to a lapse

(6; = 1) or is censored (§; = 0). This type of censoring is known as Type | right-censoring.

Staggered entry of policies

Staggered entry of policies occur when policies enter the study at different times.

Define C; as the potential censoring time for the j™ policy, associated with lifetime X;.
Ci1, Cs, ..., C,, are independent identically distributed random variables, each with distribution

function G and density function g.

Only pairs (T1,61), (T3, 62), ..., (Tn, 6») can be observed where
T; = min(X;,C;) for the % policy
1 if X;<C; ,thatis, X;is not censored

0; =
0 if X;>C; ,thatis, Xj is censored

Ty, Ty, ..., T, are independent identically distributed random variables with distribution func-
tion F if T; = X; and distribution function G if T; = Cj.

Random entries to the study are assumed. This type of censoring is known as random
right-censoring. Type | right-censoring is a special case of the random censoring model by
simply setting C;=C. With random censoring the crucial assumption that X; and C; are
independent, is made. This assumption means that censoring is not related to any factors
associated with the actual survival time. This is called non-informative censoring. A

graphical test to examine the assumption of non-informative censoring is given by [5, page
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274].

2.2.2 Discrete data

Sometimes the lifetime 7' is a discrete random variable. Discrete lifetimes arise due to
rounding off time measurements. Lifetimes of policies are usually measured on a discrete

time-scale (to the nearest month).

If the lifetimes of the policies are distinct and ¢; < t; < ... < t,, denotes the ordered lifetimes,
then R(¢t;) is the risk set at time ¢,, that is the set of policies that are still alive at a time

just priortot;, 1 =1,2,...,n.

To allow for possible ties in the data, suppose that the lapses occur at D distinct times

11 <ty <..<tp. Define

d; = number of lapses at time ¢;
g number of policies that are at risk at an instant just prior to time ¢;

number of policies that are still alive at time t; or lapse at time ¢;

= number of policies in the risk set R(t;)

2.2.3 Interval-censored data

Introduction

In the case where a large group of policies are followed from a common starting point
(the inception date) over certain periods of time, the data consist of only the number of
policies that lapse or are censored within various time-intervals. Interval censoring is used
to describe this situation where a policy’s lifetime is known only to lie between two values
(interval boundaries). Interval-censored data can involve left and right censoring, as being

outlayed in the scheme of [4, page 144-145].
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Notation

Assume that the lifetime for the j'* policy is bounded between two known values, denoted
b < T < ¢ and it is known whether the policy lapsed. The intervals do not necessarily
coincide and may be overlapping. Left- and right-censoring are special cases of interval-
censored data. Denote the left-censoring time by C; and the right-censoring time by C..
Observations that are left-censored have b; = 0, ¢; = C; and 6; = 1. Observations that are

right-censored have b; = C.., ¢; = oo and 4; = 0.

Grouped data

Grouped data arise due to the grouping of the continuous lifetimes of policies into k adjacent,

non-overlapping fixed intervals
Ij == [aj_l;aj) ]: 1,2,...,k
with ag = 0 and a;, = oc.

Thus grouped data consist of the numbers of observed and censored lifetimes falling into
each of the k intervals. In the case of the last interval I; = [ay; 00) the policies will lapse

some time in this open interval and all the lifetimes in this interval can be considered as

observed.
Define
d; = number of policies that lapsed in ;
Y] = number of policies entering interval J; that have not lapsed
W, = number of policies with censored lifetimes in I;
assuming that censored lifetimes are independent of the time those policies would have
had they been observed until the lapse
W
— ! J
)

= number of policies at risk of lapsing in I; (policies that are still alive at a;_1)

assuming that censored and observed lifetimes are uniformly distributed over the interva
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2.3 Basic Survival Functions

2.3.1 Introduction

Four functions characterize the distribution of 7', namely the survivor function, which is
the probability of a policy surviving beyond time ¢, the hazard rate function which is
the chance a policy, surviving up to time ¢, will lapse in the next instant, the probability
density (or mass) function which is the unconditional probability of a lapse at time ¢, and
the mean residual life at time ¢, which is the mean time to a lapse, given no lapse at ¢. If

any one of these four functions is known, the other three then can be uniquely determined.

2.3.2 Probability distribution and distribution function

For a continuous random variable 7" the probability density function of T is

Pt <T < t+dt) F(t+dt) — F(t)

==&  ~a%T  a 231
with cumulative distribution function
t
F(t)=P(T <t)= /O f(z) dz (2.3 .2)

f(t) is the unconditional probability of a lapse at time ¢ (probability per unit of time over a

small interval of time) and is called the unconditional lapse rate.

For a discrete random variable T' the probability mass function of T" at time ¢; is

(2.3 .3)

PT=t) i=1,2,..
0 elsewhere

The distribution of T' is characterized by either one of two equivalent functions, namely the

survivor function and the hazard rate function.
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2.3.3  Survivor function

The survivor function at time ¢ is the probability of a policy surviving beyond time ¢, also

called the survival rate at time ¢.

The survivor function for continuous 7" is defined as

S(t) = P(T > t) = /t“f(z) do=1—F(t) for ¢>0 (2.3 .4)

e The graph of S(t} versus t is called the survival curve

e S(t) is a continuous, strictly decreasing function with S(0) =1 and S(c0) =0

d

o [(t)=-5()

The survivor function for discrete T is defined as

S(t)=P(T>1t)=> p(t;) for t>0 (2.3 .5)

ti>t

e The graph of S(t) versus t is for discrete T' a nonincreasing step function with jumps

downward at tq, to, ...

2.3.4 Hazard rate function

The hazard rate function at time ¢ is the conditional probability of a lapse in the next
instant just beyond time ¢ given that the policy has survived up to time . This is also

called the instantaneous lapse rate assuming that the policy was alive up to time t.

For a continuous random variable T' the hazard rate function at time ¢ is defined as
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Pt<T<t+dt|T>t)

dt—0 dt
_ Pt <T <t+dt)N(T >1)]
= b P(T > t)dt
_ oy Pit<T <t+dt) 1
= dt CP(T > 1)
- 10 5

—_4g
= hlt) = égg - g‘t(t)(t) (2.3 .6)

For a discrete random variable T the hazard rate function at time ¢; is defined as

M) = P=g]T2y) - DESREE)
P(T = t;) _p(ty)
P(T > t;_1) -~ S(t-)
_ S-St o S)
a S(tj-1) a 5(t;-1)
= S =)
S(t:) S(t2) S()
Note that S(t) = m . m S S(tj_l)
_ S(t;)
= 8(t) = tgt o = tgu — h(t;)] (23.7)

The hazard rate is zero for a discrete random variable T except at points where a lapse

could occur.



I Survival Functions and Distributions I 13

2.3.5 Cumulative hazard function

For continuous T the cumulative hazard function is defined as

Ht) :‘[Mmdx

iMﬂ=%H@:—EMﬁﬂ (2.3 .8)

For discrete T the cumulative hazard function is defined as

H(t) = > hlt;)

t; <t

2.3.6 Median lifetime, mean lifetime and mean residual lifetime

The survivor function is used to determine the median lifetime (median time to a lapse) and

other percentiles.

median tsy = time point at which  S(ts0)isequalto0.5 (2.3.9)
100 —
ppercentile = t, sothat S(t,) = 100 L (2.3 .10)

The mean lifetime is represented as the area under the survival curve.

u=E(T) = /0°° S(t) dt (2.3 .11)

The variance of T is related to the survivor function by

wmmzzAwwmdp{Amﬂﬂmr (2.3 .12)
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The mean residual lifetime (mean amount of lifetime remaining after a particular time t) is
defined as

/ (@ —t)f(z) do / S(z) dz

t t

mrl(e) = B(T — ¢ | T > 1) = o = ey (2.3 .13)

2.4 Survival Models

2.4.1 Introduction

In this section analytical forms of survival distributions that are often used in fitting survival
data are given. Properties of the Weibull survival model are discussed by [2, 25, 26], while

[22] describes the log-logistic survival model and [34, 26] the lognormal survival model.

2.4.2 Weibull distribution

Consider T' ~ Weib(\, @) A = scale parameter A >0

a = shape parameter a >0
density function ft) = dat* ' exp{-Mt} t>0 (2.4 .1)
1 -
expected value ET) = T(1+ E) AT (2.4 .2)
2 1 -2
variance  war(T) = [F(l + a) —T?(1+ E)] ‘A= (2.4 .3)
survivor function S(t) = exp(—At?) (2.4 .4)
hazard function h(t) = Aat*? (2.4 .5)
1
1 100 o
p™ percentile  t, = [X In (100 — p)] p=12,..99

Q=

=3 dian lifetime tsg = [l In (——100—)]
median fiet 0 = 100 — 50

_ [; 1n(2)] : (24 .7)
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Note that
—InS(t) = AXt°
= In(—InS(t)) =InA+ alnt (2.4 .8)
2.4.3 The log-logistic distribution
Consider T' ~ log-logistic(\, @) A = scale parameter A >0
a = shape parameter a >0
density function f(&) rate ith t>0 (2.4 .9)
ensity functi = T/ Wi 4.
i (L M=)
weset
expected value E(T) = 2 if a>1 (2.4 .10)
QA
9 2m
variance  var(l) = Wcj;a —B(T?) if o>2(24.11)
XA«
surviver function  S(t) = (1+ M%)~ (2.4 .12)
hazard function  A(%) Aot (2.4 .13)
azard functi = — 4.
(L+At2)
- S(t
odds of a lapse at time t S(t)( ) = At° (2.4 .14)
1 a
p"  percentile  t, = [X 100p_p} (2.4 .15)
1\ 2
= median lifetime tso = (X) (2.4 .16)
Note that 5
1-5(t
ln( S(t)( )> =InA+ alnt (2.4 .17)
2.4.4 The lognormal distribution
Consider T ~ lognormal(u, o?).
. exp{-j(He)
density function ft) = — : with ¢>0 (2.4 .18)
to(2m)z
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expected value E(T) = exp(u+0.50%) (2.4 .19)

variance  var(T) = exp(2u+ o?) - [exp(c?) — 1] (2.4 .20)

survivor function Sit) = 1- @[M)———N] (2.4 .21)
g

with @& the standard normal distribution function

hazard function h(t) = f(t)/S(t)

p'" percentile  t, = exp(u+oz,) (2.4 .22)

withz, the p' percentile of the n(0;1) distribution.

2.4.5 Location-scale parameter survival models

Introduction

A univariate location-scale parameter distribution is described by [13] as a distribution with

a probability density function of the form

I y—p
flyimo) = ~-9(==) —oo<y<o (24 .23)
where
i = location parameter — oo < pu < o0
o = scale parameter o >0

= a fully specified probability density function defined on (—o0,00)

The survivor function corresponding to Equation 2.4 .23 is

o0

G[y—;’“‘- where G(z) = / g(z) dz (2.4 .24)

T

The extreme value, logistic and normal distributions are examples of location-scale parameter

distributions that are used in fitting survival models to survival data.

The extreme value distribution

Consider Y =~ EV(o, i) p = location parameter

o = scale parameter o >0
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density function fly) = % - exp {(%) — exp (%)} —00 <Y <00

(2.4 .25)

expected value EY) = pu—0.57720 Euler's constant = 0.5772 (2.4 .26)
2 2

variance  wvar(Y) = Wﬁa (2.4 .27)

The extreme value distribution with 4 =0 and o = 1 is termed the standard extreme value

distribution. A discussion of the exreme value distribution is given by [34].

The logistic distribution

Consider Y ~ logistic(u, o) = location parameter

o = scale parameter o >0

exp (__y - “)

1
density function fly) = —- — 5 —00<y< oo
" {rree (5]
(2.4 .28)
expected value EY) = pu (2.4 .29)
2.2
variance var(Y) = ﬂ-; (2.4 .30)

The logistic distribution is a symmetrical distribution whose probability density function is

very similar to that of the normal distribution.

The logistic distribution with g =0 and o = 1 is termed the standard logistic distribution.

The properties of the logistic distribution are discussed by [2].

The normal distribution

Consider Y ~ normal(u, o) i = location parameter

o = scale parameter o >0
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. . 1 1/y—p 2}
density function = - - exXpl —— ( > —00 <Yy <00
y f) )} p{ 575 Y
(2.4 .31)
expected value EY) = p (2.4 .32)
variance  wvar(Y) = o? (2.4 .33)

The normal distribution with . = 0 and o = 1 is termed the standard normal distribution.

2.5 Relationships between Survival Distributions

2.5.1 Introduction

In analyzing survival data it is often convenient to work with Y = In(T’), the logarithm of

the lifetimes.

2.5.2 Relationship between the Weibull and extreme value distribu-
tions

The extreme value distribution arises when lifetimes are taken to be Weibull distributed.

The following relationship between the Weibull and extreme value distributions exists:

T ~ Weib(}, ) «— Y=IT)~ EV (l,_il“) (2.5 .1)
«

This result can be proved in the following way. If T ~ Weib(\, ) with density function
fr(t) = dat*™ exp{-Xt*} ¢t>0

and survivor function
Sr(t) = exp { =t}

then, by using the transformation technique, Y = In(T") has density function

frly) = ﬁ(t)-lj—;
— Aa(e)* T exp{-A)} | &
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= dae® exp{—IAe®} —oco<y<oo (2.5 .2)
= exp{—Ae®}  (—=Ae™) - (—1). (2.5 .3)
: o d .
From Equation 2.5 .3 and the relationship fy(y) = —-d—ySy(y) follow that the survivor
function of Y is
Sy (y) = exp {—Ae®}. (2.5 .4)

Equation 2.5 .2 implies that

fr(y) = Aaexp{oay — e}
= exp{ln(\)}-a-exp{ay —exp {In())} exp {ay}}
= aexp{ay+In(A\) —exp{ay+in(A)}}

— aexp {a ly . _h;()‘)] — exp {a ly = _ZZ(A)] }} . (25.5)
—In())

l 1
Let p= ( and ¢ = — in Equation 2.5 5.
e o

ify(y)z—;—exp{gg—'u—exp{y_'u}}. (2.5 .6)

g

Equation 2.5 .6 is the density of the extreme value distribution with parameters o and

=Y ~ EV(o,p) = EV (é 42}”) . (2.5 .7)

This leads to the relationship between the Weibull distribution and the extreme value dis-

tribution:

1 —1
T ~ Weib(A, o) <= Y = In(T) ~ EV (—, nA) (2.5 .8)

(83 (67

2.5.3 Relationship between the log-logistic and logistic distributions

The log-logistic distribution is related to the logistic distribution by the relationship

1
T ~ log-logistic(A, o) = Y =In(T) ~ logistic(In A, —). (2.5 .9)
&



I Survival Functions and Distributionsl 20

2.5.4 Relationship between the lognormal and normal distributions

The lognormal distribution is related to the normal distribution by the relationship

T ~ lognormal(u, o?) = Y = In(T) ~ normal(u, o?). (2.5 .10)

In view of the similarity of the normal and logistic distributions, the lognormal model will

tend to be very similar to the loglogistic model.

2.5.5 A linear model representation in log-time

Consider the following log-linear model that describes the basic underlying distribution of

lifetimes:

Y=InT=p+ocW

where W is the error distribution, y is the location parameter and o is the scale parameter.
A variety of distributions for W can be assumed, for example the standard extreme value
distribution, the standard logistic distribution or the standard normal distribution.

e If this linear model format Y = InT = p + oW is used where W has the standard
extreme value distribution, that is W ~ EV/(1,0), with density

f(w) =exp{w —exp(w)} —o0o<w< oo

1 —InA
then Y = In(T) has an extreme value EV (E’ =

underlying Weibull()\, ) distribution with parameters

) distribution and T has an

— 1
A = exp {—?‘ﬁ} and a= = (2.5 .11)

e If this linear model format Y = InT = p + oW is used where W has the standard
logistic distribution with density

flu) = 2P0)

—_— - < <
Itexpw))? 0%

1 —In)
then Y = In(T) has a logistic (a, ) distribution and 7" has an underlying log-

a
logistic(\, ) distribution also with parameters

- 1
)\:exp{——'tf} and a=—. (2.5 .12)
o
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e If this linear model format Y = InT = p + oW is used where W has the standard

normal distribution with density

2
flw) = exp(wl) —o0o<w< 0o
(27)2
then Y = In(T) has a normal(u, o?) distribution and 7" has an underlying lognormal(y, o2)

distribution.

The first of the three results is now proven. The other two results follow in a similar way.

If the error distribution W ~ EV(1,0), with density

f(w) = exp{w — exp(w)} —oo<w <00
In(T) —

g

then, by using the transformation technique and the fact that W = , the density

function of T is

frt) = fww)-|—

_ exp{M—_ﬂ_exp{ln(t)_ﬂ}}_ll|
g o ot

o2

—Gﬂ) . exp (—t% .exp{%“})

= exp(%ﬂ) L £2=1 . exp (— exp{ } -t%) (2.5 .13)

o
Equation 2.5 .13 is the density of the Weibull distribution with parameters

— 1
)\zexp{T’u} and az;

Il
4~
M|
~~
|
-
Q|+
2
o
|
q|'
=

= T ~ Weibull(}, a)

In a similar way, if W ~ EV(1,0), with density

f(w) =exp{w—expw} —o0<w< o0

—p
g

then, by using the transformation technique and the fact that W = , the density

function of Y is

friy) = fw(w) | W

—00 < Y < 00 (2.5 .14)

1i199% 2627
‘"%391 b
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Equation 2.5 .14 is the density of the extreme value distribution with parameters o and
1

o «

— Y ~EV(o,p) = EV (l, —l"(A))

To summarize, if the general linear model format Y =1In7 = p + oW is used, where the
error distribution W is the standard extreme value EV/(1,0) distribution, then Y = In(T)

1 —In)
has an extreme value EV | —, - ) distribution and T has an underlying Weibull(\, @)
o

o
distribution with parameters

- 1
Azexp{—ﬁ} and a=—.
a

2.6 Construction of Likelihood Functions

2.6.1 Introduction

The standard method of fitting survival models, specified in section 2.4, to survival data
is the method of Maximum Likelihood Estimation (MLE). The first step is to create the
specific likelihood function to be maximized. Likelihoods for different scenarios are now

given.

2.6.2 Likelihood function for random right-censored continuous data

Assume the random right-censoring model where 13,75, ..., T;, are independent identically
distributed random variables, each with distribution function F' and density function f. §;
is the survival status of the j** policy and indicates whether the lifetime for the j* policy

corresponds to a lapse (6; = 1) or is censored (6; = 0).

Consider the pair (T}, ;) for the it* policy. The likelihood function is constructed by con-
sidering the contribution to the likelihood of the pairs (¢;,6; = 1) and (¢;,6; = 0) separately
(refer to [25]).

e The contribution to the likelihood of the pair (¢;,6; = 1) is the probability that the '
policy lapses at time t; = x;. This probability is
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= f(t)dti - [1 = G(t:)] (2.6 .2)

Equation 2.6 .1 follows from the fact that the observed survival times are independent

of the censoring times.

e The contribution to the likelihood of the pair (¢;,6; = 0) is the probability that the i*"
policy survives at least time t; = C;. This probability is

= g(t:)dt; - S(t:) (2.6 .3)

The complete likelihood for the i** policy under random censoring is

L(t, 6:) = {F(t)dt]L — Gt} - {g(t:)dt:S(t:)} 0 (2.6 .4)

Under the assumption of n independent censored and observed survival times, the full
likelihood function is obtained by multiplying the respective contributions of the n pairs
(t;,6;) ©=1,2,...,n in the data set. This likelihood function of the full sample is

n

L(tl,tg, ...,tn; 61,62, ceey (Sn) = H L(t,,&)

= Tl = Gl - s (e~
= f[l{[f(ti)dti]éi [S(ti)]l—&'} . {[1 _ G(ti)]éi [g(ti)dti]l_(si}

(2.6 .5)

Let 8 be the vector of parameters of the survival model. The survival model specifies the
distribution of T;, independent from the distribution of C;. Only the first term of the product
in Equation 2.6 .5 involves the unknown lifetime parameters 8, so that the last term of the

product, namely
61 —6i
(-G o(e)ae=*}
can be treated like constants when maximizing L(t1, %2, ..., tn; 61, 62, ..., 65). Thus the likeli-
hood function, up to a multiple constant, is

1(9) = H )% - St (2.6 6)

The log-likelihood function

n

In L(6) = i - In[f (t)] + (1 = 6) - In[S ()] (26 7)

1=1
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is maximized to obtain the maximum likelihood estimators of the unknown parameters 6.
The procedure to obtain the values of the MLE involves taking derivatives of inL(8) with
respect to 0, setting these equations equal to zero, and solving for 6.

2.6.3 Likelihood function for interval-censored data

Consider the lifetime of the j* policy that is bounded between two known values, that is
b; <Tj < ¢j. Itis also known whether this policy lapsed. Observations that are left-censored
have b; = 0, ¢; = C; and §; = 1, while observations that are right-censored have b; = Cy,
¢; = oo and §; =0, with C; and C; the left- and right-censoring times respectively.

In constructing a likelihood function for interval-censored data, the information each ob-
servation provides, needs to be considered as the contribution of that observation to the
likelihood (refer to [4]).

e An observation corresponding to an exact lifetime t; provides information on the
probability that the lapse occurs at this time t;, which is approximately equal to the
density function of T at this time. This probability is f(¢;).

e For a right-censored observation, it is known that the lifetime is larger than C; with
C, the right-censoring time. Thus the information provided is the survival function
evaluated at C,, that is S(C,).

e For a left-censored observation, it is known that the lapse has already occurred, so
that the contribution to the likelihood is the cumulative distribution function evaluated
at (), that is F(C)) =1 — S(C}) with C; the left-censoring time.

e For interval-censored data, it is known that the lapse occurred within the interval,
so that the information is the probability that the lifetime is in this interval. This
probability is S(b;) — S(c:).

The likelihood function may be constructed by putting together the above-mentioned com-

ponents.

L) o« [[f)- 11 SC)- TT I =S@)-]]IS(®:) = S(e)] (2.6 8)

i€D 1€RC i€ LC el
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D is the set of observed lifetimes (lapses)
RC is the set of right-censored observations
LC is the set of left-censored observations
I is the set of interval-censored observations

Consider the n pairs (¢;,6;) ¢ = 1,2,...,n in the data set. Some of the responses are
observed, while other responses are left, right or interval-censored. By making use of the
principles of construction of the likelihood for interval-censored data in Equation 2.6 .8 it

follows that

n

£(0) = TTIF )% - [0 - [1 = S - [S(Bi) — S(ta))*% (2.6 .9)

i=1

with b; the lower end of a censoring interval.

2.6.4 Likelihood function for right-censored grouped data

Consider the grouped data case as a special case of interval-censored data where the n
lifetimes of policies are grouped into k adjacent, non-overlapping fixed intervals

Ij = [aj_l;aj) ]: 1,2,...,]{5
with ag = 0 and a; = .
The likelihood function for right-censored grouped data is stated by [24].

For complete data with no censored lifetimes, the n observed lifetimes are grouped into k
intervals so that
n=dy + dy + ... + di, with d;=number of lapses in I;.

The unconditional probability of a lapse in I; is
Ty = S(aj_l) - S(a]’) ] = 1,2, ,k)

. Then (dy,ds, ..., di) has a multinomial probability function

n!
dilds!...dg!

. The likelihood function can thus be taken as

7r1d1 7r2d2 T

L(9) =n! 1_11 { [S(aj‘l)d

|
it

S(a]® } (2.6 .10)
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For incomplete data, where the n censored and observed lifetimes are grouped into &
intervals, it is further assumed that the W, censored lifetimes in I; occur at the midpoint
of the interval a} = a;_1 + $h; with hj = a; — a;_, the length of interval I;.

For interval I; = [a;_1;a;), conditional on surviving till a;_1,

e the probability of a lapse is
S(a;j-1) — S(a))

S(a;-1)

q; =

e the probability of surviving until a7 is

S(aj-1) — S(a3)

* J

B T S(a)

e the probability of surviving the full interval I; is

P = 1—g
_ 4 S1) ~5(a))
S(aj-1)
_ _S(ay)
S(a;-1)
The conditional likelihood for interval I; is
Li®) o (g [ (2.6 .11)

where Y} is the number of policies at risk of lapsing in I;, that is policies that are still alive
at aj—1.

The overall likelihood function is

L(®) =[] L;(6) (2.6 .12)

If class intervals are narrow, another possibility is to treat the data as continuous and assume
that all lifetimes in interval I; occur at the interval midpoint.
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