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Summary

Closed-loop system identification and fault detection and isolation are the two

fundamental building blocks of process monitoring. Efficient and accurate process

monitoring increases plant availability and utilisation.

This dissertation investigates a subspace system identification and fault de-

tection methodology for the Benfield process, used by Sasol, Synfuels in Secuda,

South Africa, to remove CO2 from CO2-rich tail gas.

Subspace identification methods originated between system theory, geometry

and numerical linear algebra which makes it a computationally efficient tool to

estimate system parameters. Subspace identification methods are classified as

Black-Box identification techniques, where it does not rely on a-priori process

information and estimates the process model structure and order automatically.

Typical subspace identification algorithms use non-parsimonious model formula-

tion, with extra terms in the model that appear to be non-causal (stochastic noise

components). These extra terms are included to conveniently perform subspace

projection, but are the cause for inflated variance in the estimates, and partially

responsible for the loss of closed-loop identifiably.

The subspace identification methodology proposed in this dissertation incor-

porates two successive LQ decompositions to remove stochastic components and

obtain state-space models of the plant respectively. The stability of the identified

plant is further guaranteed by using the shift invariant property of the extended

observability matrix by appending the shifted extended observability matrix by a

block of zeros. It is shown that the spectral radius of the identified system matri-

ces all lie within a unit boundary, when the system matrices are derived from the

newly appended extended observability matrix. The proposed subspace identifi-

cation methodology is validated and verified by re-identifying the Benfield process

operating in closed-loop, with an RMPCT controller, using measured closed-loop

process data.

 
 
 



Summary

Models that have been identified from data measured from the Benfield pro-

cess operating in closed-loop with an RMPCT controller produced validation data

fits of 65% and higher. From residual analysis results, it was concluded that the

proposed subspace identification method produce models that are accurate in pre-

dicting future outputs and represent a wide variety of process inputs.

A parametric fault detection methodology is proposed that monitors the esti-

mated system parameters as identified from the subspace identification method-

ology. The fault detection methodology is based on the monitoring of parame-

ter discrepancies, where sporadic parameter deviations will be detected as faults.

Extended Kalman filter theory is implemented to estimate system parameters,

instead of system states, as new process data becomes readily available. The ex-

tended Kalman filter needs accurate initial parameter estimates and is thus peri-

odically updated by the subspace identification methodology, as a new set of more

accurate parameters have been identified. The proposed fault detection method-

ology is validated and verified by monitoring process behaviour of the Benfield

process. Faults that were monitored for, and detected include foaming, flooding

and sensor faults.

Initial process parameters as identified from the subspace method can be

tracked efficiently by using an extended Kalman filter. This enables the fault

detection methodology to identify process parameter deviations, with a process

parameter deviation sensitivity of 2% or higher. This means that a 2% parameter

deviation will be detected which greatly enhances the fault detection efficiency

and sensitivity.

Keywords: Subspace identification, Extended Kalman filter, RMPCT, Ben-

field, Closed-loop identification, Fault detection, LQ decomposition, Black box,

Extended observability matrix, Shift invariant, Guaranteed Stability
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Samevatting

Geslotelus stelsel identifikasie en fout ontdekking en isolasie is die twee funda-

mentele boublokke van proses monitorering. Die effektiwiteit en akuraatheid

waarmee ’n aanleg gemoniteer word bepaal vervolgens die beskikbaarheid, asook

die ekonomiese volhoubaarheid van ’n aanleg.

Sub-ruimte identifikasie metodes is ’n samestelling van stelsel teorie, geometrie

en numeriese lineêre algebra wat lei tot wiskundige manipulasies en wiskundige

berekinge wat baie effektief is om stelsel veranderlikes af te lei. Sub-ruimte iden-

tifikasie metodes word gesien as Swart Boks identifikasie metodes omdat dit nie

vooropgestelde stelsel inligting nodig het nie. Die proses model struktuur asook

die orde word outomaties afgelei. Tipiese sub-ruimte identifikasie algoritmes ge-

bruik eintlik nie-spaarsame model formulasie, waar ekstra terme in die model as

nie-kousaal voorkom (dit sluit in stogastiese ruis). Die esktra terme help met die

sub-ruimte projeksies, maar is die oorsaak vir die vergroote variansies van die

geskatte stelsel vernaderlikes. Gevolglik lei dit tot ’n geslotelus stelsel wat nie

geidentifiseer kan word nie.

Die voorgestelde sub-ruimte identifiseerings metode in die verhandeling gebruik

twee opeenvolgende LQ ontbindings om sodoende ontslae te raak van stogastiese

ruis, asook om die stelsel matriks te bepaal. Die stabiliteit van die geidentifiseerde

proses word verder gewaarborg deur gebruik te maak van die skuif-variansie ein-

skap van die verlengde waarneembare matriks. ’n Blok nulle word by die verlengde

waarneembaarheids matriks gevoeg wat die spektrale radius van die stelsel matriks

binne die eenheid sirkel van stabiliteit hou. Die voorgestelde sub-ruimte metode

is getoets en geverifieer deur die Benfield proses in geslotelus, met ’n RMPCT

beheerded, te identifiseer.

Proses modelle is geidentifiseer van geslotelus data soos gemeet op die Benfield

aanleg. Validasiepassings van 65% en hoor toon dat die sub-ruimte identifikasie

metode doeltreffend is om stelsels effektief in geslotelus te identifiseer. Verdere

 
 
 



Samevatting

resultate van die residu analise toon dat die modelle geldig is vir ’n wye verskei-

denheid van insette en dat toekomstige uitsette baie goed geskat kan word.

’n Proses veranderlike gebaseerde fout ontdekkings metode is voorgestel wat die

veranderlikes, soos geskat deur die sub-ruimte stelsel identifikasie metode, monitor

vir verandering. Enige sporadiese veranderings sal geklasifiseer word as ’n fout.

Die verlengde Kalman filter teorie word gebruik om die proses veranderlikes te

skat soos wat nuwe prosesdata inkom. Die verlengde Kalman filter het akkurate

aanvanklike stelsel veranderlikes wat verkry word van die sub-ruimte indentifikasie

metode. Die voorgestelde metode is getoets en verifieer deur die Benfield proses

te monitor. Foute waarvoor gemonitor is, en wat opgetel is, sluit in: skuim skade,

vloed skade en sensor foute.

Die verlengde Kalman filter kan effektief gebruik word om die aanvanklike pros-

esveranderlikes te volg soos deur die sub-ruimte metode geidentifiseer is. Afwyk-

ings van so klein as 2% kan opegetel word. Die sensitiviteit maak die implementer-

ing van die foutopsporings metode ’n doeltreffende oplossing tot die monitering

van die Benfield proses.

Sleutelwoorde: Sub-ruimte identifikasie, Kalman filter, RMPCT, Benfield

proses, Geslotelus identifikasie, Fout ontdekking, LQ ontbindings, Swart Boks

identifikasie, Skuif variansie, Gewaarborgde stabiliteit
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Chapter 1

Introduction

1.1 Problem statement

Fault detection and isolation (FDI) is a scientific discipline that involves the early

detection and isolation of process disturbances, due to various process anomalies.

The ever increasing demand for productivity in process control requires the im-

plementation of more complex and sophisticated control solutions. The increasing

control complexity means that the probability of fault occurrences can be signifi-

cant, and an automatic supervisory control system should be used to detect and

isolate anomalous working conditions as early as possible [10].

On-line process monitoring with FDI can provide stability and efficiency for

a wide range of industrial processes. With continuous on-line FDI, it is possible

to detect and isolate abnormal and undesired process states, which ultimately in-

creases plant performance [11].

The benefits associated with FDI have given the industry enough motivation to

focus a large amount of attention on FDI in dynamic systems. Many model based

approaches have been proposed during the last two decades [12, 13]. Model based

fault detection methods monitor the dependencies between different measurable

signals, where the dependencies are expressed by mathematical process models.

The conceptional realisation of the mathematical process models of the plant can

vary according to the following approaches: the parity space approach [14], state

estimators [15], unknown input observers, Kalman filters [16], parameter identifi-

cation [15] and artificial intelligence methods [17]. Regardless of the developments

of various FDI approaches for linear and nonlinear plants, there is still a need for

robust FDI which is a topic open for further research [18].

The development of linear FDI techniques impose limitations on the detection
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and isolation of industrial process plants. The use of linear models not only re-

stricts its applicability to a narrow operating range, but also limits the diagnostic

abilities and FDI components to only linear additive fault types. As a consequence

nonlinear faults that afflicts the system dynamics, such as abrupt changes in sys-

tem parameters or unknown disturbances, will be approximated as linear additive

faults [19].

This dissertation addresses the problem of fault detection (FD) of the Benfield

chemical process at Sasol by investigating parameter identification as the fault

detection method. Emphasis will be placed on the effective fault detection of non-

linear plants using linear process models for FD. Fault isolation (FI) is a logical

next step in the FDI process, which will not be addressed in this dissertation.

The Benfield process is a thermally regenerated cyclical solvent process, which

is specifically used by Sasol Synfuels to extract and remove CO2, and other gas

components [20]. The Advanced Process Control (APC) solution used for the Ben-

field process must deal with significant nonlinearities due to the sensitivity of the

process. Robust Multivariable Predictive Control Technology (RMPCT) which is

a subclass of APC solutions of the Model-based Predictive Control (MPC) family

is used in controlling, e.g., the Benfield process [21]. Due to the complexity of

the process dynamics of the Benfield process and its associated APC solution it

is necessary to investigate the various methodologies and techniques of process

monitoring, and the implementation thereof; to ensure continuous process-control

stability and performance.

A background literature survey of FDI techniques will be provided in sec-

tion 1.2 where the emphasis will be placed on parameter identification as the fault

detection method. Section 1.2 will also discuss system identification principles and

recent contributions. The motivation for this dissertation is given in section 1.3.

Section 1.4 will elaborate on the objectives, where section 1.5 will provide a discus-

sion on the proposed approach to be followed. Section 1.6 provides a discussion on

the scientific contribution of this study, and lastly in section 1.7, the organisation

of the thesis is given.

Department of Electrical, Electronic and Computer Engineering 2
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1.2 Background

To monitor a process accurately and effectively, it is essential to have an accu-

rate model to represent the process, as well as a statistical methodology in how

to evaluate the process behaviour. There exists an abundance of literature on

system identification SID and FDI techniques, which will be the two fundamental

cornerstones used for process monitoring in this dissertation. It would thus be

insightful to study the different contributions in the field of system identification

and fault detection.

1.2.1 Fault Detection

Abnormal Event Management (AEM) involves the timely detection of an abnor-

mal event, isolating its causal origins, and then taking appropriate supervisory

control decisions and actions that can bring the process back to normal operation

(the term diagnosis is frequently used when referring to detection and isolation).

The automation of AEM systems would be advantageous as it would reduce the

complete reliance on human operators to cope with such abnormal events. The

automatic process of FDI forms the first step of AEM [22].

Due to the broad scope of process fault diagnosis problems, and the difficulties

in real-time solutions, various computer aided approaches have been developed

over the past years. They cover a wide variety of techniques which include early

attempts using fault trees and digraphs, analytical approaches, knowledge based

systems and neural networks [22]. From a modelling perspective there are methods

that require accurate process models, semi-quantitive models, or qualitive models

[23]. On the other side of the spectrum, there are methods that do not assume any

form of model information, and solely rely on process history information. Fault

diagnosing methods can broadly be classified into three parts: They are quantitive

model based methods, qualitive model based methods, and process history based

methods [22]. A comparative literature survey where the methods are compared

and evaluated based on a common set of desirable characteristics for fault diag-

nostic systems are given in [22, 24].

Basic a-priori knowledge that is needed for FDI is the set of failures (faults),

and the relationship between the observations (detection) and the set of failures.

This a-priory knowledge can be explicitly available (through e.g., lookup tables),

or it may be inferred from some source of domain knowledge based on historical

Department of Electrical, Electronic and Computer Engineering 3
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process behaviour. The a-priori domain knowledge can be obtained from a fun-

damental understanding of the process using first-principles. Such knowledge is

known as model based knowledge, which can further be expanded into quantitive

or qualitive model based knowledge. In contrast to model based methods, process

history based methods rely on the availability of large amounts of historical pro-

cess data which can be transformed and presented in a-priori knowledge [22].

This dissertation will focus on parameter identification as a means for FD. Pa-

rameter estimation methods are classified as a quantitive model based approach[22].

Many process faults appear as changes in process coefficients ρ. These coefficients

are contained in the process parameters θ of a process model. Process model pa-

rameters are constants or time dependant coefficients in the process, which appear

in the mathematical description of the relationship between the input and output

signals [25].

Iserman [26] proposed an approach where parameter estimation is used for

fault detection. The approach can be described as follows: obtain a process model

with only the measured inputs u(t) and outputs y(t) in the form:

y(t) = f(u(t),θ). (1.1)

Model parameters θ are estimated as measured y(t) and u(t) become readily

available. θ parameters in turn are related to physical parameters ϕ in the process

by

θ = g(ϕ), (1.2)

where g is a linear transformation function between the model parameters, θ, and

the physical parameters, ϕ. Changes in the parameter ϕ, denoted by ∆φ are

computed from this relationship, where the changes ∆φ relate to process faults.

Iserman [26] investigated different parameter estimation methods which include

Least Square (LS) methods, Instrumental Variable (IV) methods and estimation

via discrete time models. The most important issue in using parameter estima-

tion in fault diagnosis is the complexity of implementation. With nonlinear first

principle models, the parameter estimation method turns out to be a nonlinear op-

timisation problem. Real-time solutions of nonlinear optimisation problems prove

to be a serious bottleneck in the derivation of the model. Reduced order input-

output process models can be used, where robustness of the approach needs to be

addressed [22].
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A more recent literature survey on FDI techniques was conducted by Katipa-

mula and Brambley [27]. The survey focused primarily on the implementation of

FDI techniques on applications of heating, ventilation, air conditioning and refrig-

eration (HVAC&R). It was concluded that quantitive model based approaches have

an advantage in modelling the transient behaviour of the systems more precisely

than any other modelling technique. Models are based on sound physical or en-

gineering principles, and thus can be used to model normal and faulty operations

more precisely. Faulty operations can be distinguished from normal operations

with more ease. The weakness of quantitive models is the complex and computa-

tional intensity.

With qualitive models, the required accurate mathematical model as derived

from first principles can become extremely complicated for nonlinear processes

and is in some cases not even feasible. An alternative solution to the first princi-

ples modelling technique is to use artificial intelligence (e.g., neural networks and

adaptive genetic algorithms) methods [28]. Artificial neural networks provide an

excellent mathematical tool in dealing with nonlinear problems. Another attrac-

tive characteristic of artificial intelligence in system modelling is the self learning

capability. As a result, nonlinear systems can be modelled with great flexibility

and accuracy. The above mentioned features allow one to employ artificial neural

networks to model complex, unknown and nonlinear processes [29]. A disadvan-

tage of artificial intelligence methods comes in with determining both the optimal

network structure and the optimal neural-network parameters which are not trivial

problems and are extremely important from the point of view of the identification

quality [29].

1.2.2 System Identification

The open-loop system identification formulation in the early 80’s and 90’s was

centered on the prediction error method (PEM) paradigm of Ljung [30]. The late

90’s saw an extension to closed-loop system identification where Zhu [31] pro-

posed a multivariable identification methodology for the model predictive control

(MPC) application called the Asymptotic Model (ASYM) method. The shift of

interest from open-loop identification to closed-loop identification was due to the

following advantages experienced with closed-loop identification over open-loop

identification: [28]:

• the process used for identification may be unstable, where a feedback con-

troller is necessary to stabilise the process,

Department of Electrical, Electronic and Computer Engineering 5

 
 
 



Chapter 1 Introduction

• due to safety reasons, and product quality reasons, it is not permitted for

the process to run in open-loop,

• there may exists underlying feedback loops that cannot be manipulated or

removed.

The following three broad groups for closed-loop identification was identified

[30]:

• The Direct Approach: Apply the basis PEM in a straightforward manner by

using the process input u(t) and process output y(t), ignoring any possible

feedback. This results in an open-loop topology.

• The Indirect Approach: In this approach the closed-loop system is identified

from the reference input r(t) to the output y(t). The open-loop system is

retrieved from the latter by making use of the known controller.

• The Joint Input-Output Approach: In this approach the control inputs u(t)

and system outputs y(t) are both considered as outputs driven by a reference

signal r(t). Knowledge of the system can then be recovered form this joint

model.

De Klerk et. al., [7] proposed a direct approach methodology to identify a

multiple-input-multiple-output (MIMO) closed-loop system under MPC. The di-

rect identification method as proposed by De Klerk et. al., [7] showed that only

through structured identification tests, and with the use of persistent exciting

(PE) test signals, it is possible to identity a closed-loop MPC.

Van den Hof et. al., [32] considered the indirect identification approach. They

argued that the indirect identification approach had attractive properties in the

sense that the method does not suffer from bias effects caused by noise correlation

on the inputs. This is due to the fact that the input signal used for identification

is taken as an external reference signal. The critical part of the indirect identifica-

tion is the construction of the (open-loop) plant model in the second step, based

on the estimated closed-loop transfer. If the resulting plant model order is not

limited, this construction can be done exactly, provided the controller is known,

and the closed-loop transfer function has been identified. Van den Hof et. al., [32]

extended his argument on indirect identification as an identification methodology,

and proposed the dual-Youla parameterisations method as an extension to the

indirect method. The Youla method, additional to the indirect method, provides

models which are guaranteed to be stabilised by the controller.
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State-space based approaches are typically better suited to model MIMO sys-

tems. The state-space form is very convenient for optimal estimation, filtering

prediction, and control [?]. The main difficulty with the application of PEM

methods to state-space models is to find a numerical robust canonical realisation,

since the alternative, a full parameterisations of the state-space model, would in-

volve a huge number of parameters. The most prominent representatives of these

approaches in the early 90’s were se so called 4SID algorithms [28]. They extracted

the extended observability matrix form the input and output data or from the es-

timations from the impulse responses [33]. The early 90’s witnessed the birth of a

new type of linear system identification algorithms called subspace methods. Sub-

space methods originated between system theory, geometry and numerical linear

algebra [1]. Linear subspace identification methods are concerned with systems

and models that can be represented as state-space models. The state-space model

of the system can be recovered from the obtained extended observability matrix.

The main advantages of subspace identification techniques are [28]:

• they require low computational demand since they use linear algebra toolsets,

• they have the ability to deal with MIMO systems efficiently,

• and they show good numerical robustness.

A joint input-output subspace method was recently proposed by Katayama

[8]. The method of identifying a closed-loop system was based on the orthogonal

decomposition method. The proposed method can easily be applied to the MIMO

case by making use of the direct approach, and a model reduction step is not

needed, as which is often the case with joint-input methods.

There are two kinds of model parameter identification techniques: conventional

identification by implementing artificially excited signals or blind identification

where natural excitation signals are used. Traditional subspace methods have

trouble in identifying weak modes. These weak modes can be due to insufficient

exciting signals or improper measurement points. A solution to this problem is

the proposed blind subspace identification method of Zhang[34]. Based on the

covariance-driven subspace method, the block Hankel matrix is reshaped and the

signal subspace is changed accordingly, which leads to an increased participation

of weak components, and the improved identifiability of the weaker characteristics.
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1.2.3 Recent research contributions

A quantitive model based approach, in conjunction with the parameter estima-

tion approach proposed by Simani et. al., [35] is used for FDI. Simani et. al.,

[35] defined a methodology for sensor fault detection by using a state estimation

approach, in conjunction with a residual processing scheme which includes simple

threshold detection, in a deterministic case, as well as statistical analysis when

data are effected by noise. The suggested method does not require the physical

model process under observation, since the input-output links are obtained by

means of an identification scheme which uses AutoRegressive with eXogeneous

input (ARX) models. The identification method is based on the Frisch scheme

(traditionally used to analyze economic systems) which gives a reliable model of

the plant under investigation. The Frisch scheme estimates the input and out-

put noise variances accurately. By estimating the noise variances accurately, it is

possible to then determine the parameter vector θ precisely. It is required that

the input and output noise are uncorrelated in time for the Frisch scheme to be

applicable [36].

A diagnostic tool should be able to monitor and detect the deterioration of

a process, and as soon as it is significant, isolate the cause of deterioration,

and correct it [37]. A parametric statistical approach was proposed by Wu and

Campion[37]. The idea behind the methodology is to detect deterioration of sys-

tem parameters in a process based on hypothesis tests. Using adequate informa-

tion, all the faults considered can be reduced to that of detected changes in the

mean of the Gaussian variables. The key tool used for this approach is the Asymp-

totic Local Approach, where the Gaussian variables are obtained asymptotically

when the sample size tends to infinity and the magnitude of faults changes tend

to zero. An advantage of this approach with respect to parameter estimation and

system identification is that the problem of change detection may be less intensive

and demanding than continuous re-identification of the system model.

A fault diagnosis methodology based on nonlinear first principle methods,

which includes parameter uncertainty was introduced by Rajaraman et. al., [38].

The advantage of including fundamental models derived from first principles into

the procedure allows for accurate diagnosis even if operation conditions have

changed, while the online estimation of model parameters takes care of model-

plant mismatch. An augmented nonlinear observer is used for parameter observa-

tion. Robustness in the proposed methodology is assured by the implementation

of Kharitonov’s theory concept [38]. The Kharitonov’s theory concept deals with
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the stability of the designed observer under parametric uncertainty. Fault detec-

tion is accomplished by the computation of residuals ( i.e., the mismatch between

measured outputs and estimated outputs of the model ). The proposed method is

a robust feasible solution for fault detection of nonlinear processes. As discussed

by Katipamula and Brambley [27], the possible weakness of the proposed method

is in the complexity of the nonlinear process model derivation from first princi-

ples, which in this case is the corner stone of success for the proposed methodology.

In the work conducted by Simani et. al., [18], it is stressed that system com-

plexity may not indicate a requirement for a complex physical or thermodynamic

model. It was shown that a dynamic linear model identification method for FDI

can be successfully used, thus eliminating the requirement for physical models.

The concept was illustrated by implementing errors-in-variable (EIV) models and

related identification algorithms for FDI of an industrial gas turbine prototype.

The proposed method also designed linear output estimators, avoiding the com-

plexity that would otherwise be inevitable when nonlinear models are used. The

fault diagnosis is accomplished by using the linear models of the system under in-

vestigation, and residual methods. The paper suggested that under model-based

approaches, linear identification models should be exploited, although the system

considered is nonlinear. This is important to avoid complexities which are other-

wise inevitable when nonlinear models are being used.

A data driven approach to FDI is based directly on process data. The strength

of data driven techniques is the ability to transform higher dimensional data into

lower dimensional data, which is especially beneficial in large-scale systems that

produce large amounts of multivariate data. Well known data driven techniques

include principle component analysis (PCA), Fisher discriminant analysis (FDA),

partial least squares (PLS) and canonical variate analysis (CVA) [39]. A solu-

tion to FDI based on PCA was proposed by Palma et. al.,[39]. The proposed

methodology was implemented and tested under the assumptions that the plant

is a single-input, single-output (SISO), linear and time-invariant (LTI) system.

Modified recursive least squares (RLS) algorithms were used to perform on-line

identification of system parameters of the ARX model. The advantage of using

RLS is the computational efficiency. The RLS algorithm calculates a new update

of the parameter vector θ each time new data comes in. The RLS requires a con-

stant computation time for each parameter update, and therefore it is perfectly

suited for online use in real-time applications. PCA was directly applied to the

identified ARX parameters, where it was used to reduce the dimensionality of the
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ARX parameters. This allows a better visualization and understanding of the

system behaviour, and can thus result in the detection of process faults.

1.3 Motivation

An increased interest in model-based maintenance and process monitoring in a

large number of industrial applications [4] serves as a motivation for further inves-

tigation and research into FD methodologies. A possible FD solution is the early

detection of slight parametric deviations with respect to a parametric characteri-

sation of the system in its normal working condition, without or limited artificial

excitation or excessive controller switching used for parameter identification [4].

Indeed, if such an early detection can be performed while preserving robustness

with respect to changes in normal operating conditions, one can prevent larger

system deviations resulting from malfunction, fatigue, faults or hardware failure

before they happen, and consequently increase the availability of the system.

1.4 Objectives

The objectives of this research project are:

• conduct a literature survey on all relevant FD techniques where parameter

identification is used as the means to achieve FDI,

• conduct a literature survey on the different approaches to closed-loop system

identification where system models are realized by parameter identification

methods,

• develop or implement an existing closed-loop FD methodology based on

parameter identification methods,

• evaluate the proposed methodology using real plant data, and

• improve the developed methodology to work unassisted on a scaled down

portion of the Benfield Process.

1.5 Approach

The approach to the research are:
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• review all the relevant FD techniques where parameter identification is used

as a means to FDI,

• review closed-loop re-identification methods where parameter identification

is used to realise the process model,

• develop or implement an existing FD methodology which uses parameter

identification as a model identification method,

• use simulations to validate the developed methodology by assessing a simu-

lation of the modelled Benfield process, and

• validate the developed methodology by assessing real-time plant data of the

Benfield Process.

1.6 Contribution

A recent study conducted by Simani et. al., [18] has concluded that robust FDI is

regarded as a challenging problem open to further research. This research project

will contribute to the field of FD by developing a robust FD technique by means

of parameter identification. It would be advantageous if this robust FD technique

can be automated. The automation of an on-line FD solution would provide nec-

essary insight of the process and plant behaviour, which will reduce the reliance

on human operators to timely identify possible process failures and faults due to

abnormal process plant situations.

The advantages of using nonlinear first principle methods to derive process

models used in FD are discussed by Rajaraman et. al., [38] but the complexities

in deriving these models as mentioned by Simani et. al., [18] motivated for SID

methodology where the dynamics of nonlinear processes can be modelled accu-

rately without the complexities involved in the mathematical model derivation .

A contribution of this dissertation study is the investigation, and implementation

of linear subspace SID methods, to obtain an accurate black box model of sys-

tems with nonlinear process dynamics operating in a closed-loop environment, to

be used for parameter identification and estimation in the technique of on-line FD.

Last but not least, a third contribution would be the implementation and val-

idation and verification of the developed method using real proses data of the

Benfield Process.
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1.7 Organisation of Dissertation

Chapter 2 will cover the basic theory on closed-loop plant identification, parame-

ter identification and parameter estimation. Parameter identification used in FD

and different FD techniques with parameter identification will be discussed.

Chapter 3 includes a discussion on the Benfield Process. A discussion will

follow on the RMPCT being used to control the Benfield Process.

Chapter 4 will include the modelling of the Benfield Process , where a discus-

sion on the plant model will follow.

From the discussion on the different methods in FD with parameter identifi-

cation, and closed-loop identification theory in Chapter 2, the development of a

robust FD method by means of parameter identification will follow with a discus-

sion on the developed methodology in Chapter 5.

In Chapter 6, a discussion will follow on preliminary simulation results of the

developed methodology.

Chapter 7 will provide an overview on the results obtained where the devel-

oped methodology was used to assess real plant data.

In chapter 8, the proposed identification methodology and fault detection

methodology are verified. A discussion on the results will follow.

Chapter 9 will conclude the dissertation and direction for possible future re-

search will be suggested.
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Chapter 2

FD and SID Theory

2.1 Introduction

Sasol Synfuels in Secunda, South Africa has implemented a large number of ad-

vanced controllers (MPC algorithms) for their chemical processes. Philosophically,

MPC reflects human behaviour, where we select control actions which we think

will produce the best possible predicted outcome over a limited time horizon [40].

Model predictive control can be considered as the most prominent develop-

ment in the area of process control in the last two decades. Though the focus of

the research in this area was mainly focussed on the design and stability of con-

strained MPC controllers, there is a growing realisation that efficient and effective

monitoring of such advanced model based controllers is critical for its long term

success [41].

Future research directions in a review article on MPC [42], stressed the need to

incorporate a mechanism to detect and diagnose abnormality in process dynamics

under closed-loop MPC, in order to sustain the benefits of MPC over a prolonged

period of time.

In this chapter the basic theory behind closed-loop system identification and

fault detection is discussed. The chapter starts with a discussion on the relevance

of fault detection in the chemical process industry. A discussion on the types of

faults that can occur is covered in section 2.3.2, where the emphasis is placed on

multiplicative faults associated with parameter discrepancies. In section 2.3, a

model-based approach to fault detection is discussed.

An overview of system identification theory is given in subsection 2.2, where

emphasis is placed on the advantages associated with a closed-loop identification
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approach. Closed-loop system identification methodologies in the Prediction Error

Method framework and Subspace framework are discussed, with a brief introduc-

tion to statistical methods used for parameter change detection.

2.2 System Identification

System Identification is a well-established field consisting of a number of method-

ologies which can broadly be classified into parametric methods and non-parametric

methods [28, 3]. Parametric methods determine a relatively small number of sys-

tem parameters, where these system parameters are optimised according to some

objective. Non-parametric methods are more flexible than parametric methods,

and can be used where less structure is imposed on the model [28]. Parametric

methods include approaches found in the predictor error family, as was introduced

by [30] and subspace approaches introduced by [43]. Non-parametric approaches

are statistical methods which include correlation and spectral analysis methods

[44]. Statistical methods like the Maximum Likelihood Estimation methods and

Bayesian Estimation methods have not found much use and implementation in in-

dustry. This is due to the lack of probability information, and the fact that these

complex methods reduce to the same least square calculation as used in prediction

error methods under commonly made probability assumptions [45].

2.2.1 A Closed-loop System Identification Approach

In the last decade, the industry has shown a renewed interest in closed-loop sys-

tem identification and control related identification [46]. Most practitioners of

closed-loop identification have assumed that the existing controller is linear and

the processes are SISO. These assumptions are not applicable for MPC applica-

tions, which are non-linear and often multivariate. The multivariate and nonlinear

nature of the problem was investigated by several authors, [47, 28], where the use

of closed-loop system identification was motivated for due to distinct advantages

over open-loop system identification.

Closed-loop system identification can be classified into three distinct approaches

[30]. These approaches are: the direct approach, the indirect approach and

the joint input-output approach. All closed-loop system identification methods,

whether they are parametric methods or non-parametric methods can be associ-

ated with one of the three approaches. In figure 2.1, the general setup of a typical
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Figure 2.1: Closed-loop system configuration [3].

Department of Electrical, Electronic and Computer Engineering 15

 
 
 



Chapter 2 FD and SID Theory

feedback system is depicted. The true plant in figure 2.1 can be defined as follows:

y(t) = G(q−1,θ)u(t) +H0(q−1,θ)e(t), (2.1)

where y(t) is defined as the plant output, u(t) the plant input, and e(t) the white

noise signal passed through some linear filter H0. Without loss of generality, we

will assume that H0 is stably invertible and monic i.e., H0(q) =
∞∑
k=0

h(k)q−k, h(0) =

1 [45], and the white noise signal, e(t), has a mean of zero, and a covariance of

Pe. The signal ra(t) is a designed external excitation signal, imposed on top of

the process input or the setpoint. The signal rb(t) can be an additional designed

external excitation signal, imposed on the controller. The symbol q−1 denotes the

discrete time shift operator, where q−1u(t) = u(t− 1). The parameter coefficients

which realise the dynamic characteristics of the system model are denoted by θ.

It is insightful to investigate the consistency and efficiency of the closed-loop

identification approaches as defined by Ljung [30]. The consistency of the ap-

proaches is concerned with the bias of the parameter estimates, while the efficiency

is concerned with the asymptotic variance of the plant estimate [48].

2.2.2 Variance Expressions of Plant Estimates

Variance expressions for plant estimates have been derived for both open-loop

systems and closed-loop systems respectively in [30, 49]. For systems operating in

open-loop, Ljung [30] has defined, for a plant estimate Ĝ(jω), the co-variance to

be:

cov
[
Ĝ(jω)

]
≈ nΦD(ω)

NΦu(ω)
, (2.2)

where ΦD(ω) is the spectrum of the disturbance, Φu(ω) is the spectrum of the in-

put, n is the model order and N is the number of data samples. Equation 2.2 shows

that the asymptotic variance of the plant estimate Ĝ(jω) is proportional to the

signal to noise ratio at any frequency. Equation 2.2 is asymptotic in both N and n.

A variance expression for the closed-loop plant estimate Ĝ(jω) was derived in

[49], and is defined as follows:

var
[
Ĝ(jω)

]
≈ nΦD(ω)

N |S(ω)|2 Φr(ω)
=
nΦD(ω)

NΦu(ω)
, (2.3)

where Φr
u(ω) = |S(ω)|2 Φr(ω) is the spectrum of the part of the input signal(s)

arising from external excitation i.e., ur = S0(q−1)r, and where
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S0(q−1) =
[
1 +G(q−1)C(q−1)

]−1
, (2.4)

is the sensitivity function. Gevers et. al. [49] have shown that equation 2.3 is

valid for both the direct and joint input-output approaches.

The above asymptotic results for open-loop and closed-loop systems have led

to the conclusion made by Esmaili et. al. [50] – when the output power is limited,

closed-loop identification will generally give better identification (lower var[Ĝ(jω)]

for the same output variance) than open-loop identification. This benefit of closed-

loop identification would realise, if we were to choose the spectrum of our designed

excitation signal, r, for closed-loop identification to be such that its contribution

to the input u is equal to the input signal applied in the open-loop situation i.e.,

Φr
u = |S|2 Φr = Φu|open−loop . (2.5)

2.2.3 Bias Distribution with Estimated System Parame-
ters

The consistency of the direct, indirect and joint input-output closed-loop identi-

fication approaches can be investigated by analysing estimated system parameter

biases. The parameter estimates are obtained by applying the well known predic-

tor error method proposed by Ljung [30] for bias analysis.

Direct Approach: It was shown by Forssell and Ljung [3] that the parameter

estimates for a system can be defined as follows by applying the direct approach

in closed-loop identification:

θ̂N→∞ = arg min
θ

1

2π

π∫
−π

{
|G(jω) +B(jω,θ)−Gθ(q,θ)|2 Φu(ω)

+ |H0(jω)−H(jω)|2 Φr
e(ω)

}
1

|H(jω)|2
dω,

(2.6)

where

B(jω,θ) = |H0(jω)−H(jω)|2 Φe
u(ω)

Φu(ω)
.
λ0

Φu(ω)
. (2.7)

It was concluded by Forssell and Ljung [3], by inspection of equation 2.6 and

equation 2.7 that the bias, B(jω,θ), experienced by implementing the direct ap-

proach in closed-loop systems, will be small in the frequency ranges where either

of the following conditions hold:
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• the estimated noise model, H(jω), is accurate, i.e., [σ̄ (H0 −H)] is small,

• the feedback noise contribution to the input spectrum,
[
σ̄(Φe

u)/̄σ(Φu)

]
, is

small, and,

• the signal-to-noise ratio is high i.e.,
[
λ0/Φu(ω)

]
, is small.

Indirect Approach: If the controller and some extra input or reference sig-

nals are known, then the indirect approach can be used for closed-loop system

identification [3]. This approach can be used with nonlinear feedback, but it has

been the standard assumption in literature so far that linear feedback is used. The

closed-loop system for the indirect approach can be defined as follows:

y(t) = Gc(q,θ)r(t) +H(q)e(t), (2.8)

where

Gc(q,θ) = G(q,θ) (1 +G(q,θ)C(q))−1 . (2.9)

If the controller C(q) is known, and the reference signal/excitation signal/set

point, r(t), is measurable, we can identify the closed-loop system, and compute

the estimate, ĜN(q,θ), of the open-loop system by solving the following equation

[3]:

Ĝc
N(q,θ) =

(
1 + ĜN(q,θ)C(q)

)−1

ĜN(q,θ). (2.10)

The parameter estimate expression for the indirect approach was derived by

Forssell and Ljung [3], and is:

θ̂N→∞ = arg min
θ

1

2π

π∫
−π

∣∣∣∣ Gc (jω)−Gc
θ (jω,θ)

1 +Gθ (jω,θ)C (jω)

∣∣∣∣ |S (jω)|2 Φr (ω)

|H (jω)|2
dω. (2.11)

It was concluded by Forssell and Ljung [3] by inspecting equation 2.11, that for

the indirect approach in closed-loop identification, the following conditions hold:

• the indirect approach can give constant plant estimates if the parameterisa-

tions is flexible enough, and,

• in the case of undermoddeling, where not al the plant dynamics were identi-

fied, the resulting plant estimate will try to minimise the mismatch between

the nominal plant and the plant estimate and at the same time try to min-

imise the model sensitivity function S.
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Joint Input-Output Approach: For the joint input-output approach, a

model structure was defined by Forssell and Ljung [3] as follows:[
y(t)
u(t)

]
=

[
Gc(q,θ)
Si(q,θ)

]
r(t) +H(q)

[
e(t)
d(t)

]
, (2.12)

where Si is the input sensitivity function, and d(t) and e(t) are independent noise

sources, where d(t) does not necessary have to be white [3].

The basic assumption behind the joint input-output approach is that the input,

u(t), is generated by an unknown controller, Cu(q), of the following form:

u(t) = r(t)− Cu(q)y(t). (2.13)

Forssell and Ljung [3] derived a parameter estimate expression for the joint

input-output approach with a model structure defined in equation 2.12, as follows:

θ̂N→∞ = arg min
θ

1

2π

π∫
−π

{
|G(jω) +B(jω)−Gc

θ(q,θ)|2
} Φu(ω)

|H(jω)|2
dω, (2.14)

where

B(jω) = G(ω)Φuu(ω)Φ−1
u (ω). (2.15)

For the parameter estimate equation 2.14, that was derived for the joint input-

output approach, Forssell and Ljung [3] stipulated the following conditions which

hold for equation 2.14:

• if the parameterisations of Gc and Si are flexible enough, then the joint

input-output approach will give consistent estimates of G(q),

• the controller need not to be known, and,

• the joint input-output approach gives consistent estimates of G(q) regardless

of the disturbance e(t).

2.3 Fault Detection

2.3.1 The Relevance of Fault Detection in a Chemical Pro-
cess Industry

Fault detection is a scientific discipline which is used to detect system faults early

and disturbances due to process anomalies. Undetected faults can lead to system
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failures and model-control plant mismatches. Undetected faults also prevent the

controller from operating near constraint boundaries due to process disturbances

which in effect will reduce the product quality of the process.

Fault detection is a scientific process monitoring discipline which has been

successfully applied to a variety of processes with diverse process dynamics. The

nature of the process to which the fault detection methodology is applied, deter-

mines the typical characteristics and nature of the fault detection methodology.

This dissertation will focus on the fault detection in processes in the Chemical

process industry. These processes exhibit the following characteristics which need

to be considered when developing a fault detection methodology [31]:

• System complexity and scale: A chemical process under MPC will typically

have 10 to 20 manipulated variables (MVs), and 20 to 40 controlled vari-

ables (CVs). Some CVs, such as product qualities, exhibit very slow process

dynamics (with dominant time constants ranging from 30 minutes to several

hours), while other CVs, such as valves, exhibit very fast process dynamics

(with time constants of a few minutes). The aforementioned results oscilla-

tions and process time delays.

• Dominant slow dynamics: The time to steady-state of a typical product

ranges from 1 hour to several hours. This dictates long identification tests,

and jeopardises the efficiency of fault detection methodologies which incor-

porate identified process parameters.

• Variety of unidentified disturbances: A variety of unidentified disturbances

can result in the use of unacceptable test signals with the parameter identi-

fication method in fault detection. This may lead to product quality specifi-

cation deviation, as well as the possible excitation of process nonlinearities.

Typical unidentified disturbances are feed composition variations, weather

changes and disturbances from other parts of the unit.

• Local unidentified process nonlinearity: Chemical process models are usually

impossible to derive from first principles. General black box models are

used for model representation. Although a general linear black box model

is relevant for MPC for this class of process for a given range of operation,

some nonlinear behaviour may still be excited. Examples are CVs that are

very pure product qualities, and valve positions close to their operational

limits.
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SISO control loop performance monitoring is well established in the process

industries [51]. The SISO loop performance monitoring approach has shortcom-

ings, however, because in the chemical process industries the control loops are not

isolated from each other. Specifically, the poor performance in one control loop

might be because that it is being upset and effected by a disturbance originating

elsewhere. The basic idea behind process control in the chemical process industry

is to divert process variability away from key process variables into places which

can accommodate the process variability such as buffer tanks and plant utilities

[52]. Unfortunately, process variability is often not sufficiently accounted for in the

chemical process industries, and it may just appear elsewhere. The reason for this

is that modern industrial chemical processes have reduced inventory, and make

use of the recycle streams and heat integration of various processes in a plant,

thereby increasing the economical feasibility and efficiency of a process plant [53].

A plant-wide approach for fault detection in the chemical process industry means

that the distribution of a disturbance is mapped out, and the detection, isolation

and nature of a disturbance can be determined with a high probability of being

right the first time. A list of key requirements for efficient and effective fault

detection [54, 55] are:

• detection of presence of one or more periodic disturbance oscillations,

• detection of non-periodic disturbances and process upsets,

• automated, non-invasive stick-slip detection in control valves,

• facility wide approaches including behaviour clustering,

• automated model free causal analysis for fault detection, and,

• incorporating the process knowledge such as the role of each controller.

Three types of fault detection problems may occur in practice, according to the

relative time constants/parameters of the process to be monitored, of the sampling

of the data, and of the events to be detected [4].

• Process Validation: Given, on one hand, a reference parameter value θ0 of

the nominal model, and on the other hand, a new data sample, the problem

is to decide whether the new data sample is still accurately described by the

nominal model parameter θ0. The problem might be either stated off-line,

where a fixed sample size N is used, or on-line, where a variable sample size

n is used;
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Figure 2.2: Three types of faults: input faults γi and output faults γo act addi-
tively, whereas system faults act as a change in system parameters θ [4].

• On-line change detection: At every time instant ti, the problem of detection

is to determine whether a significant parameter change has occurred, from

the nominal model value θ0 to the new value θ1, at an unknown time instant

ti−1;

• Off-line change detection: Given the fixed sample size N, the problem of

detection is to determine whether in this sample space, a significant param-

eter change has occurred, from the nominal model parameter θ0 to the new

parameter value θ1, at an unknown time instant t.

2.3.2 Classification of Faults for Detection

A fault is defined as the unwanted deviation of at least one characteristic prop-

erty of a variable or system parameter from an acceptable behaviour [56]. The

time dependency of faults can be distinguished between abrupt faults (stepwise),

incipient faults (drift) and intermitted faults [56]. Faults at an early stage are

referred to as incipient faults due to inherent difficulty in detection and isolation.

The presence of incipient faults is often unnoticeable in system measurements.

This means that traditional fault detection methods are less likely to successfully

detect and isolate incipient faults [10].

Basseville [4] studied several multidimensional parameterised stochastic pro-

cesses, which varied from static linear processes to dynamic nonlinear processes,

with a state-space or input-output representation given. In all cases, as depicted

in figure 2.2, the observed data Y are viewed as the system g parameterised by the

parameter vector θ, and having different kinds of inputs. Inputs can vary between
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structured step tests, sinusoidal inputs and stochastic white noise, where a input

is specifically designed to excite the dynamics of a process in a specific frequency

band. The system output Y can be written as [4]:

Y = g (θ,U + γi,W s) + γ0 +W 0 (2.16)

Input U is assumed to be known and can be measured. The unknown quan-

tity W s represents non-measured inputs, unknown non-stationary excitation or

perturbation of the system, and input noise. The unknown quantity W o is the

additive output noise. Basseville [4] distinguished between three types of faults.

The first type of fault, γo, occurs at the output of the system in an additive

manner. It has been agreed that these faults appropriately represent sensor faults

[4]. When considering the distribution of the observed output data Y , the first

type of fault only affect the mean value, which changes to a different value when

type one fault occurs.

The second type of fault, γi, are faults that occur on the input of the system

in an additive manner. The effect of these faults are also a shift of the mean

value of the output distribution. It has been agreed that system faults of type two

appropriately model actuator faults [4].

The third type of fault is modelled by any change on the parameter vector θ of

the system. Faults of type three affect the generating mechanisms themselves and

thus the variance, correlations, spectrum or higher order dynamics of the output

distribution. These type of faults are often referred to as system or component

faults [4]. In linear dynamic systems, this type of fault can be classified as a multi-

plicative fault, because this type of fault affect the input-output transfer function

in a multiplicative manner [4].

Type one and type two faults, which appropriately model sensor and actuator

faults accordingly, can further be classified as either hard faults or soft faults [41].

Hard faults occur due to sensor and/or actuator failures or process leaks, where

soft faults are due to process drift and biased measurements. Sensor bias, actuator

bias and bias states can lead to the degradation of closed-loop performance, where

the conventional MPC formulation can expect to encounter control difficulties [41].
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2.3.3 A Model-Based Approach

Fault detection methods can be classified into model-based methods, knowledge

based methods and history based methods [56]. The development of fault detec-

tion methods based on model-based methods began at various places in the early

1970’s [5]. A model-based approach in fault detection uses mathematical models

of the plant under monitoring. A mathematical model of the monitored system

can be obtained along two routes or a combination of them. The one route of

obtaining a mathematical model is to divide the system into appropriate subsys-

tems, where the properties of the subsystems are well understood from previous

experience and natural and physical laws. These subsystems can be joined math-

ematically to obtain a complete model of the system.

The other route is directly based on experimentation. Input-output signals

from the system are recorded, and subjected to data analysis in order to derive a

model [57]. Figure 2.3 illustrates the basic structure of model-based fault detec-

tion.

Model-based methods can further be classified as either quantitive models or

qualitive models [22, 58]. Quantitive models (differential equations, state-space

methods, transfer functions, etc.,) are used to generally utilize results from the

field of control theory [59]. Quantitive models use static and dynamic relations

among system variables and parameters in order to describe a system’s behaviour

in quantitive mathematical terms [5]. In qualitive models, the realisation between

variables to obtain the expected system behaviour is expressed in terms of qualitive

functions centered around different units in the process such as causal models and

abstraction hierarchy [58]. Qualitive model types are usually used with large sys-

tems, with highly nonlinear dynamics present in the process under monitoring [58].

The use of explicit models in fault detection has a great potential due to the

following advantages [58, 27]:

• higher fault detection performance can be obtained, where mode types of

faults can be detected, with shorter detection times,

• fault detection can be performed over a large operating range and

• fault detection can be performed passively without disturbing the process.

A disadvantage of model-based fault detection methods are the prerequisite of

accurate models of the process being monitored, and a possibly more complex de-
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Figure 2.3: Model-based fault detection structure [5]
.

sign procedure [58]. The model accuracy is usually the major performance limiting

factor for model-based fault detection [58]. The availability of a good model of the

monitored system can significantly improve the performance of diagnostic tools,

minimising the probability of false alarms [60]. Compared to model-based control,

the quality of the model is much more important in fault detection [58]. Apart

from deriving mathematical models of the process from first principles (which can

be notoriously difficult and complex for typical nonlinear chemical processes) and

in some cases even impossible, many different system identification methods can

be used to obtain accurate models of the process being monitored. Such methods

of system identification and system re-identification are discussed in section 2.2.

Model-based approaches to FD are normally performed in two steps: residual

generation and residual evaluation [58]. The inconsistency between the measured

data of the process, and the corresponding signals generated from the derived

model, is known as the residuals [60]. See figure 2.3

Department of Electrical, Electronic and Computer Engineering 25

 
 
 



Chapter 2 FD and SID Theory

Based on the measured input signalU , and measured output signal Y , the fault

detection method either generates residuals r, or parameter estimates θ̂, or state

estimates x̂, which are called features [56]. By comparing normal features (nom-

inal values as obtained from the initial nominal process model) with monitored

features the method is able to detect change, which leads to analytical symptoms,

s, used for fault detection. The residual generator model-based methods can gen-

erally be classified into three distinct categories; observer based approaches, parity

based approaches, and parameter estimation approaches. Parameter changes in a

process are regarded as multiplicative process faults. Changes of parameters can

be detected by implementing parameter estimation methods [56].

2.3.4 Identification via Prediction Error Framework

Background Theory

As stated earlier, identification formulations in the ’80s and ’90s have been tradi-

tionally been centered on the PEM paradigm, proposed by Ljung [30]. The ad-

vantage of PEM is that convergence and asymptotic variance are well established

[61], where the disadvantage of the PEM is a rather complex parameterisations

and a non-convex optimisation. The extension of PEM to closed-loop systems was

first introduced in the late ’90s by the proposed ASYM method developed by Zhu

[31].

The basic idea behind the PEM is to estimate system parameters, which in

effect will minimise a prediction error objective function defined as follows:

ε(t, θ) = y(t)− ŷ(t |θ ). (2.17)

When a data set, ZN , where

ZN =
{
y(1), u(1), . . . , y(N), u(N)

}
, (2.18)

is known, these prediction errors can be computed for t = 1, 2, . . . , N . An accurate

system model is a model that is accurate at predicting accurate outputs, thereby

minimising the prediction error [30]. There exists two general approaches that are

being used in minimising the prediction errors. The one approach is to from a

scalar-valued norm or criterion function that measures the size of ε(t,θ), and then

minimise this norm analytically. A well known criterion being used to minimise the

prediction error norm is the least-squares criterion. Another approach to minimise

the prediction error, is to demand that ε(t, θ̂N) be uncorrelated within a given data
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sequence. This requires that certain projections of ε(t, θ̂N) are zero [30]. In this

literature survey on the PEM, the associated least-squares estimation methodology

will be elaborated on further, and other criteria that involves prediction error norm

minimisation will be discussed.

Linear regression model structures are very useful in describing basic linear and

nonlinear system [30]. A predictor of a linear regression function, which is linear

in the system parameter, θ, can be defined as follows [30]:

ŷ(t |θ ) = φT (t)θ + µ(t), (2.19)

where φT , is the vector of regressors and µ(t) is a known dependant vector. From

the prediction error equation 2.17, it follows,

ε(t,θ) = y(t)− φT (t)θ, (2.20)

where, for notational simplicity, we shall take the known data-dependant vector,

µ(t) = 0. Assume a quadratic norm, 1
2
ε2(t, θ̂N), to measure the prediction error.

Then the least-squares criterion for the linear regression equation 2.19 can be

defined as follows [30]:

VN(θ,ZN) =
1

N

N∑
t=1

1

2

[
y(t)− φT (t)θ

]2
. (2.21)

The unique feature of this criterion developed from the linear parameterisations

and quadratic criterion, is that it is a quadratic function of θ. The least-squares

estimate can thus be obtained by minimising equation 2.21 analytically giving:

θ̂
LS

N = arg minVN(θ,ZN) =

[
1

N

N∑
t=1

φ(t)φT (t)

]−1

1

N

N∑
t=1

φ(t)y(t). (2.22)

Variants of the least squares estimation algorithm for parameter estimation in

the PEM framework exists. Recursive Least-Squares (RLS) with forgetting fac-

tors [62], Robust RLS (RRLS) [63] and Weighted LS [28] are typically used for

parameter estimation in the PEM framework.

Prediction Error Methodologies

The prediction error method (PEM) is concerned with the estimation of linear

system models by making direct use of the prediction error as a model performance

and quality norm. A general linear model used for system identification in the

PEM framework can be defined as follows [28]:
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A(q)y(k) =
B(q)

F (q)
u(k) +

C(q)

D(q)
v(k). (2.23)

Various model structures have been derived from the general linear model

structure in equation 2.23. The most commonly used model structures that are

concerned with output feedback are the Autoregressive with Exogenous Input

(ARX) models and Autoregressive Moving Average with Exogenous Input (AR-

MAX) models [30]. The ARX model is by far the most widely applied linear

dynamic model. The ARX model can match the structure of many real world

processes and is thus very valuable. The popularity with the ARX model comes

in the ease of computing its parameters. The parameters can be estimated by a

linear least squares technique since the prediction error is linear in the parameters

[28]. The parameter estimation of ARMAX models are more complicated. An

extended least squares algorithm is needed in solving the nonlinear optimisation

of the ARMAX model parameters [28]. The drawbacks of the nonlinear optimi-

sation approach used for solving model parameters are the high computational

demand and the existence of local optima. A suggested solution to this nonlinear

optimisation problem is to implement Recursive Least Squares Algorithms (RLS)

[28].

This section will focus on variations of LS algorithms used for estimating pa-

rameters in the PEM framework for different linear models used in system identifi-

cation as well as other parameter estimation methods used in the PEM framework.

RLS method with a static forgetting factor: A Recursive Least Squares

(RLS) method using the direct approach to closed-loop system identification was

proposed by Eker [64]. Eker [64] used an ARX model structure to model a three-

mass electromechanical system. The main benefits of RLS algorithms over Least

Square (LS) algorithms are easy numerical solutions and fast parameter conver-

gence. The RLS method gives a consistent modelling accuracy over a wide range

of operating conditions and is recommended as the best linear unbiased estimate

[64]. When the LS method is required to run online in real-time, the computa-

tional effort of the LS method grows with the number of samples collected. The

RLS algorithm requires a constant computation time for each parameter update,

and therefore is perfectly suited for online parameter estimation [28].

The estimated ARX model output can be defined as follows:

ŷ(k) = ϕT (k)θ̂(k − 1). (2.24)
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The RLS algorithm uses the prediction error to update the model parameters.

From equation 2.24, the prediction error can be defined as follows:

ε(k) = y(k)−ϕT (k)θ̂(k − 1). (2.25)

The prediction error in equation 2.25 is used in to update the system parameter

as

θ̂
RLS

(k) = θ̂(k − 1) + P (k)ϕ(k)ε(k), (2.26)

where the estimator covariance matrix, P (k), is updated using

P (k) =
1

λ
P (k − 1)

[
Ip −

ϕ(k)ϕT (k)P (k − 1)

λ−ϕT (k)P (k − 1)ϕ(k)

]
, (2.27)

and the subscript p is the rank of the identity matrix and λ is the static for-

getting factor used in the RLS algorithm. The forgetting factor λ determines

the convergence speed where decreasing values of λ results in an increase in pa-

rameter convergence. Making λ too small can lead to noise susceptibility. It is

recommended that λ is chosen in the range, 0.98 ≤ λ ≤ 0.995 [65]. Eker [64]

recommended choosing the initial values of P (0) and θ(0) as follows: P (0) = αIZ

where 0 ≤ α ≤ 107 and θ̂(0) = 0.

Eker [64] identified a fourth order ARX model where the parameters were esti-

mated via the RLS algorithm with a static forgetting factor. The tradeoff between

the parameter convergence speed and the noise susceptibility of the RLS algorithm

limited the performance of the proposed methodology.

BLFRLS method: A Bi-Loop Forgetting factor Recursive Least-Squares

(BLFRLS) algorithm was proposed by Yu and Shih [62]. The motivation behind

the proposed BLFRLS algorithm was to overcome the shortcomings of the RLS

algorithm with a static forgetting factor, which has a slow tracking capability and

high prediction errors [62]. The slow convergence of the RLS algorithm is due to

the large tracking errors at each sampling instant in time varying systems.

The proposed BLFRLS algorithm improves the tracking of time varying pa-

rameters, with the same sampling rate, as used in the RLS implementation, with-

out the need of additional measured data samples. The BLFRLS is in principle

two Forgetting factor Recursive Least-Square (FRLS) algorithms where the outer

loop FRLS algorithm computes parameter estimates at every sampling instant,

and where the inner loop FRLS (IFRLS) recursively recalculates and refines the
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parameter estimates an N amount of time, thereby reducing the large tracking

errors associated with the RLS algorithm. The IFRLS is in principle exactly the

same as the RLS method proposed by Eker [64]. The initial values of the IFRLS

algorithm at sampling interval t = k, are set as follows:

y0 = y(k),

x0 = x(k),

θ0(0) = θ(k),

P in(0) = P (k − 1).

(2.28)

With the initial values set in equation 2.28, the estimator covariance matrix,

P in and the parameter estimates, θ̂in, are calculated iteratively in exactly the

same manner as for the RLS algorithm in equations 2.26-2.27.

The proposed algorithm of Yu and Shih [62] was used for closed-loop parameter

estimation under the PEM framework. An ARX model structure was used, where

the efficiency of the proposed algorithm was simulated for three different scenar-

ios, which include: estimation of a fast varying dynamic parameter, estimation

of a slow varying dynamic parameter and the tracking of a sinusoidal parameter.

Yu and Shih [62] have shown that when the simulation settings are N = 10 and

λ = 0.98, the BLFRLS algorithm can handle abrupt parameter changes more ef-

ficiently and effectively than the RLS algorithm.

RRLS method: A Robust Recursive Least-Squares (RRLS) method was

proposed by Chao et. al., [63]. The RRLS method was proposed for on-line esti-

mation of time-varying parameters of an AR model using a weighted LS method

with forgetting factors. With conventional LS estimation, the sum of the squared

prediction errors is minimised, where the distribution of the prediction errors are

considered to be Gaussian in the LS procedure. However, with remote sensing, au-

tomatically obtained data inevitably carry some false data and gross errors which

will result in a different prediction error distribution. This will deteriorate the

efficiency of the LS procedure, since the LS procedure weights all the prediction

errors equally. A robust solution proposed by Chao et. al., [63], is to assign a

weight as a function to the prediction errors, where a loss function is used to as-

sign more weight to the bulk of small prediction errors, and less weight to gross

errors termed as outliers. The proposed RRLS algorithm differs from the con-

ventional RLS algorithm in that it inserts a nonlinear transformation function for

the prediction errors. By transforming large outliers, and assigning a small weight

to these outliers, the bias of the RRLS estimation can be reduced dramatically [63].
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With conventional LS estimation, the objective is to minimise a cost function

defined as follows:

J(θ̂) =
1

2
E
[
ε2 (t,θ(t))

]
. (2.29)

The nonlinear transformation of the outliers to ensure robust estimation leads

to the reformulation of the cost function as follows [63]:

J(θ̂) =
1

2
E
[
ρ
{
ε2 (t,θ(t))

}]
, (2.30)

where ρ(·) is a nonlinear loss function, which suppresses outliers. Chao et. al.,

[63] stated that the loss function, ρ(·), should resemble a quadratic function for

small prediction error values of the argument. Another requirement stated by

Chao et. al., [63], was that the derivative of ρ(·), ψ = ρ
′
(·) should be bounded

and continuous. If ψ = ρ
′
(·) is bounded, then no single observation can have an

arbitrary large influence on the parameter estimation, while continuity ensures

that rounding and quantisation errors will not have a major effect.

Chao et. al., [63] defined the loss function, ρ(·), the derivative of the loss

function, ψ, and the weighting factor, w, as follows:

ρ(εi) =


εi/2 |εi| ≤ k1σ
k1. |εi| k1σ < |εi| ≤ k2σ,
k2 |εi| > k2σ

(2.31)

ψ(εi) =


εi |εi| ≤ k1σ

k1.sgn(·) k1σ < |εi| ≤ k2σ,
0 |εi| > k2σ

(2.32)

w(εi) =


1 |εi| ≤ k1σ

k1/εi k1σ < |εi| ≤ k2σ,
0 |εi| > k2σ

(2.33)

where k1 and k2 are nonlinear tuning constants. Reasonably good values for

k1 = 1.5 and k2 = 2.5 were proposed by Zhou [66].

The effect of equation 2.33 is to assign less weight to outliers which can influ-

ence the accuracy of the parameter estimates.
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The weighting function, w, depends on the parameter variance, σ2, where σ

depends on θ determined by w. The weighting function, w, is thus determined by

iteration, where w(0) = 1 is equivalent to the RLS method [63].

Chao et. al., [63] proposed the inclusion of a dynamic forgetting weighting

factor, used for weighting more recent data more heavily in the computation of

parameter estimates. A dynamic forgetting factor was proposed as follows:

λ = βt−1. (2.34)

The estimator covariance matrix, P , and the parameter estimate , θ̂
RRLS

was

derived by Chao et. al., [63] and can be defined as follow:

θ̂
RRLS

(t+ 1) = θ̂
RRLS

(t) +w(t+ 1)P tX t+1

[
λ+w(t+ 1)XT

t+1P tX t+1

]−1

×
[
y(t+ 1)−XT

t+1θ̂
RRLS

(t)
]
,

(2.35)

P t+1 = λ
{
I −w(t+ 1)P tX t+1 ×

[
λ+w(t+ 1)XT

t+1P tX
T
t+1

]−1
XT

t+1

}
P t.

(2.36)

Chao et. al., [63] implemented the RRLS algorithm on real data in flood fore-

casting. The parameters of an AR model were estimated. It was concluded that

the RRLS algorithm produce less biased estimates than the conventional RLS al-

gorithm. The RRLS model further proved to be much more robust to outliers in

real-time data.

Kalman filtering method: Ghaffari et al. [57] proposed a closed-loop sys-

tem identification method using the direct approach in the PEM framework, where

the a Kalman filter was used to estimate the model parameters instead of con-

ventional state estimation. The Kalman filtering approach is very closely related

to the RLS algorithm. Kalman filtering is usually applied as an observer for the

estimation of states and not parameters [28]. However, the parameter estimation

problem can be formulated in the following state-space form:

θ(k + 1) = θ(k) + v(k) ,

y(k) = xT (k)θ(k) + e(k),
(2.37)

where v(k) is an n-dimensional vector representing white noise with an n × n

dimensional covariance matrix V , where n is the number of parameters. The

time variance of the parameters are modelled as a random walk or drift [67]. The
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covariance matrix is typically chosen to be diagonal. The diagonal entries can be

interpreted as the strength of time variance of the n individual parameters. The

corresponding entry for V should be chosen large if the parameters are known to

have a large variance and rapid movement [28]. The advantage of the Kalman filter

over the RLS algorithm is that each parameter has its own forgetting factor [57].

It is thus possible to control the convergence of individual parameters, where the

convergence of the each parameter is bounded by the statistical characteristics

of the parameter, by setting the forgetting factor accordingly. If no statistical

knowledge is available about the individual parameters, then V can be set to ζI

[28]. The forgetting factor λ = 1, is equivalent to the case where V = 0. The

Kalman filter algorithm for parameter estimation can be formulated as follows

[57]:

θ̂(k) = θ̂(k − 1) + γ(k)e(k)

e(k) = y(k)− xT (k)θ̂(k − 1)

γ(k) =
1

xT (k)P (k − 1)x(k) + 1/q(k)
P (k − 1)x(k),

P (k) =
(
I − γ(k)xT (k)

)
P (k − 1) + V

(2.38)

where the adaptation vector , γ(k), is known as the Kalman gain. In the Kalman

filter algorithm the matrix P does not increase exponentially as with the RLS

algorithm, but only linearly P (k) = P (k − 1) + V in the case of non-persistent

excitation. Persistent excitation is accomplished when the signal used for excita-

tion manages to excite the process dynamics of a plant over the entire frequency

band of operation.

Ghaffari et. al. [57] tested their proposed method, by identifying the AR

model of a nonlinear aerospace launch vehicle system. They concluded that the

proposed method of estimating system parameters by the implementation of a

Kalman filter increased the precision and convergence of the model parameters in

comparison to the conventional RLS algorithm.

A well known technique to identify system parameters of nonlinear (processes

with discontinuities in the model) dynamic systems is to use the extended Kalman

Filter (EKF). In the EKF approach, parameters are treated as states, similar to

the case study discussed by Ghaffari et. al. [57], where a nonlinear state equation

is used to compute the estimates. However, the EKF approach has the restriction

in that the nonlinear state equation needs to be differentiable with respect to each

state variable [68]. The EKF approach is also difficult to implement, difficult to
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tune, and only reliable for systems that are almost linear on the time scale of

the updated intervals [69]. The unscented Kalman Filter (UKF) was proposed

by Julier et. al. [69] for solving the problem of a nonlinear non-differentiable

process model. The UKF is a linear estimator with performance equivalent to

the Kalman filter for linear systems, yet the UKF method can be generalised ele-

gantly to nonlinear systems without the liberalisation steps necessary in the EKF

approach [69]. Unlike the EKF, the UKF does not approximate nonlinear func-

tions, but instead uses a set of deterministically chosen weighted sample points

to calculate the estimator of the state variables [68]. The UKF method is thus

applicable when a nonlinear system with discontinuities is used for estimation. In

the context of an industrial process, maintenance or unplanned plant shutdowns

can result in parametric discontinuities, which can result in the loss of accurate pa-

rameter tracking of the conventional Kalman filer and EKF estimation approaches.

Araki et. al. [68] implemented the UKF method for estimating unknown pa-

rameters of a 2-link underactuated acrobat robot, where the unknown parameters

were regarded as unknown states for estimation. Julier et. al. [69] developed the

UKF based on the intuition that it is easier to approximate a probability distribu-

tion than it is to approximate an arbitrary nonlinear function or transformation.

Based on the intuition, a nonlinear transformation function is applied to a set of

points whose sample mean and sample covariance are x̂(k |k − 1) and P (k |k − 1)

respectively. The transformation of this set results in a new set of predicted mean

and covariance values. Although the latter resembles a Monte Carlo method, the

samples are not chosen randomly, but in such a way that specific information is

captured about the distribution of the states. The UKF is minimum mean square

error (MMSE) state estimator for a nonlinear system, [70],

x(k + 1) = f [x(k),u(k), k] ,

z(k + 1) = h [x(k + 1),u(k + 1), k + 1] +w(k + 1),
(2.39)

where x(k) is the state of the system at time step k, u(k) is the input vector, z(k) is

the observation vector and w(k) is the additive measurement noise. The nonlinear

system and measurement functions are denoted f(·) and h(·) respectively. It is

assumed that the state vector, x(k), is augmented with the noise vector v(k) [69].

It is further assumed that the process noise, v(k), and measurement noise, w(k),

are zero mean [70] with covariances defined as follows:

E
[
v(k)vT (j)

]
= δkjQ(k)

E
[
w(k)wT (j)

]
= δkjR(k), ∀k, j.

E
[
v(k)wT (j)

]
= 0

(2.40)
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The UKF chooses 2n + 1 regression points, χi, in state-space with weights

W i(i = 1, .., n) as,

χ0(k |j ) = x̂(k |j )

W 0 =
2κ

2 (n+ κ)

χi(k |j ) = x̂(k |j ) +
(√

(n+ κ)P (k |j )
)
i

W i =
1

2 (n+ κ)

χi+n(k |j ) = x̂(k |j )−
(√

(n+ κ)P (k |j )
)
i

W i+n =
1

2 (n+ κ)
,

(2.41)

where
(√

(n+ κ)P (k |j )
)
i

is the i-th row or column of
(√

(n+ κ)P (k |j )
)

. κ

is an extra degree of freedom used to refine the higher order moments of the

approximation, with n + κ 6= 0, [69], in the choice of regression points χi. Given

the set of samples generated by (2.41), the prediction procedure is as follow [69]:

1. Each χ point is instantiated through the process model to yield a set of

transformed samples:

χi(k + 1 |k ) = f [χi(k |k − 1),u(k), k] . (2.42)

2. The predicted mean is computed as follows:

x̂(k + 1 |k ) =
2n∑
i=0

W iχi(k + 1 |k ). (2.43)

3. The predicted covariance is computed as follow:

P (k + 1 |k ) =
2n∑
i=0

W {χi(k + 1 |k )− x̂(k + 1 |k )}

×{χi(k + 1 |k )− x̂(k + 1 |k )}T .

(2.44)

The mean and covariance is calculated using standard vector and matrix op-

erations which means that the algorithm is suitable for any process model [69].

Discussion

System identification methodologies under the PEM framework were investigated

in this section. Numerous methods, in particular in parameter estimation, were in-

vestigated. The conventional LS method used for solving the parameter estimation
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problem under PEM framework is elegant but not efficient for online parameter

estimation.

A RLS algorithm was proposed for solving online parameter estimation, since

the computational effort of the LS method grows with the number of samples

collected [64]. The RLS requires a constant computational time for each parame-

ter update, and therefore is perfectly suited for online use in real-time applications.

A Bi-Loop RLS algorithm was proposed that addressed the tradeoff experi-

enced between the parameter convergence speed and the noise susceptibility of

the RLS method [62]. The forgetting factor, λ, used with parameter estimation to

reduce the weight of influence of past sampled data in the parameter estimation

process, can increase the convergence of the parameters to their true values. To

prevent the parameter estimation method from being too sensitive and susceptible

to noise, a second recursive RLS loop was proposed to recursively refine parameter

estimates.

A RRLS method was proposed which is robust in the sense that data outliers

will not affect the parameter estimation process [63]. The prediction errors used

with the parameter estimation process are weighted (transformed nonlinearly) ac-

cordingly, to prevent the influence of outliers. The Kalman filter approach used

for state estimation is similar to the RLS method. Ghaffari et. al. [57] proposed

a parameter estimation approach under the PEM framework where the Kalman

filter is used to estimate parameters instead of states.

An extension of the Kalman filter approach is the EKF approach used for es-

timating states as well as process parameters of a nonlinear system. The UKF

method was developed [69], to address the drawbacks of the EKF approach. Un-

like the EKF, the UKF does not approximate nonlinear functions, but uses a set

of deterministically chosen weighted sample points to calculate the estimator of

the state variables [68]. The UKF method can be generalised elegantly to non-

linear systems without the liberalisation steps necessary in the EKF approach [69].

2.3.5 Identification via Subspace Framework

Background Theory

The early ’90s witnessed the birth of a new type of linear system identification

algorithms known as subspace methods. Subspace methods originated between
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the fields of system theory, geometry and numerical linear algebra [1]. Linear

subspace identification methods are concerned with systems and models that can

be represented as state-space models. State-space based approaches are typically

better suited to model MIMO systems. The main difficulty with applying predictor

error methods to state-space models is to find a numerically robust canonical

realisation, since the alternative, a full parameterisations of the state-space model,

would involve a huge number of parameters [28]. State-space models used in linear

subspace identification can be defined as follows:[
xk+1

yk

]
=

[
A B
C D

] [
xk
uk

]
+

[
Kwk

vk

]
, (2.45)

with

E

[(
wk(t)
vk(t)

)(
wT
k (τ) vTk (τ)

)]
=

(
Q S
ST R

)
δt−τ ≥ 0. (2.46)

The vectors uk ∈ Rm×1 and yk ∈ Rl×1 are measurements taken at time in-

stants k of, respectively, the m inputs, and l outputs of a process.The vector xk is

the state vector of the system, where vk ∈ Rl×1 and wk ∈ Rn×1 are unobserved

vector signals. The vector vk is the measurement noise, while the vector wk is the

process noise. The matrix K is the Kalman gain.The system matrix is defined as

A ∈ Rn×n, B ∈ Rn×m is the input matrix, C ∈ Rl×n is the output matrix, while

D ∈ Rl×m is the direct feed through matrix. The matrices Q ∈ Rn×n, S ∈ Rn×l

and R ∈ Rl×l are the covariance matrices of the noise sequences wk and vk re-

spectively [1]. E denotes the expected operator,and δ the Kronecker delta.

The problem behind subspace identification is to determine the order n of the

unknown system, the system matrices, A,B,C,D, to a similarity transforma-

tion and to estimate the covariance matrices, Q,S,R, of the measurement and

process noise. A large number of measurements of the input, uk, and output, yk,

generated by an unknown system (2.45-2.46) are needed. It is generally assumed

that the amount of data points goes to infinity and that the data is ergodic [1].

All subspace methods consists of two basic steps in identifying a system. The

first step involves the projection of certain subspaces generated from the measured

data sets, {uk,yk}, to find an estimate of the extended observability matrix, Γ̂,

and/or an estimate of the states, X̂k, of the unknown system. The second step

involves the retrieving of system matrices, A,B,C,D from either the obtained

extended observability matrix or the estimated system states [1]. Figure 2.4 illus-

trates the two general steps associated with subspace algorithms.
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Figure 2.4: Basic steps to subspace identification methods [1].

The following input-output matrix equation (extended state-space model of

equation 2.45) played a very important role in the development of subspace iden-

tification [1]:

Y f = ΓiX i +Hd
iU f +Hs

iM f +N f . (2.47)

The term Γi is the extended observability matrix, where Hd
i and Hs

i are,

respectively, the deterministic lower block triangular Toeplitz matrix, and the

stochastic lower block triangular Toeplitz matrix. The future block Hankel ma-

trices formed with process noise, wk, and measurement noise, vk, are defined

respectively as M f and N f . All subspace methods start from the input-output

equation 2.47 [1]. It states that the block Hankel matrix containing the future

outputs Y f is related in a linear way to the future input block Hankel matrix,

U f , and the future state sequence, X i. The basic idea of subspace identification

is to recover the ΓiX i term of equation 2.47. The knowledge of Γi or X i leads to

the system parameters, where the singular value decomposition (SVD) of the term

ΓiX i gives the order of the system. This is possible due to the fact that ΓiX i is

rank deficient [1]. The extended observability or system states are estimated by

orthogonal projection, which is only possible under the assumption that the noise

is uncorrelated with the inputs.
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The first step in obtaining the estimate of the term ΓiX i is by projecting the

row space of Y f into the orthogonal complement of the row space of U f as follow

[1]:

Y f

(
U⊥f
)−1

= ΓiX i

(
U⊥f
)−1

+Hd
iU f

(
U⊥f
)−1

+Hs
iM f

(
U⊥f
)−1

+N f

(
U⊥f
)−1

,

(2.48)

where it follows,

Y f

(
U⊥f
)−1

= ΓiX i

(
U⊥f
)−1

+Hs
iM f +N f . (2.49)

The next step is in weighting equation 2.49 to the left and the right with

matrices W 1 and W 2 as follows:

W 1

[
Y f

(
U⊥f
)−1
]
W 2 = W 1

[
ΓiX i

(
U⊥f
)−1
]
W 2 +W 1 [Hs

iM f +N f ]W 2.

(2.50)

The chosen weight matrices W 1 and W 2 together with the input U f must be

chosen in such a way that the following conditions are satisfied [1]:

1.rank (W 1Γi) = rank (Γi)

2.rank
[
Y f

(
U⊥f
)−1

W
]

= rank (X i) .

3.W 1 [Hs
iM f +N f ]W 2 = 0

(2.51)

The first two conditions guarantee that the system rank, n (a property of ΓiX i)

is preserved after projection, where the third condition expresses the necessity of

weight W 2 to be uncorrelated with the noise sequences wk and vk [1]. From the

conditions stipulated, we have the weighed input-output matrix definition,

Oi
def
= W 1

[
Y f

(
U⊥f
)−1
]
W 2, (2.52)

where the SVD of equation 2.55 is defined as:

svd(Oi) =
(
U 1 U 2

)( S1 0
0 S2

)(
V T

1

V T
2

)
. (2.53)

where U 1 and U 2 are the unitary matrices of output singular vectors, V 1 and

V 2 are the unitary matrices of input singular vectors, and S1 and S2 are the

eigenvalues. From expression 2.53 the following results are obtained [1]:

n = rank (Oi) , (2.54)

Department of Electrical, Electronic and Computer Engineering 39

 
 
 



Chapter 2 FD and SID Theory

W 1Γi = U 1S
1,/2
1 (2.55)

X i

(
U⊥f
)−1

W 2 = S
1/2
1 V

T
2 . (2.56)

From equations 2.54-2.56, it is possible to obtain the system parameter esti-

mates by either using the extended observability matrix or the estimates system

states. The system parameters,

(
A B
C D

)
, can be obtained by using the esti-

mated system states and thereby solving equation 2.57 by using the least-squares

method. (
X̂ i+1

Y i

)
=

(
A B
C D

)(
X̂ i

U i

)
+

(
ρw

ρv

)
, (2.57)

where ρw and ρv are the residuals matrices of the estimation process.

The least-squares expression to be solved can be defined as follows [1]:

min
A,B,C,D

√
tr
(
EH
LSE

)
, (2.58)

where (
X̂ i+1

Y i

)
−
(
A B
C D

)(
X̂ i

U i

)
, (2.59)

and the trace tr is the sum of the diagonal elements, and EH
LS is the complex

conjugate transpose of ELS

.

The covariance matrices, Q,S,R, are estimated by using the residuals ρw and

ρv as follows [1]:

(
Q S
ST R

)
i

=
1

i

[(
ρw

ρv

)(
ρTw ρTv

)]
≥ 0 (2.60)

where i denotes an finite introduced bias which disappears as i→∞. Consult Fa-

voreel et. al.[1] for the solution the the system parameters by using the estimated

extended observability matrix.

Subspace Methodologies

Subspace identification methods is regarded as an alternative to PEM identi-

fication methods. Subspace identification yields a multivariable system model
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without the need for special parameterisations, which requires significant prior

knowledge and non-convex optimisation [45]. Most subspace methods can fail,

(when the unbiased estimate property of the subspace method is lost) when used

with closed-loop system data, even with large data sets [7, 45]. With closed-loop

data, consistency for the first least squares estimation (see equation 2.58) breaks

down. The most commonly used subspace identification methods that have been

developed over the last 20 years are numerical algorithms for subspace system

identification (N4SID) [71], multivariable output error state-space (MOESP) [72],

canonical variate analysis (CVA) [73] and the basic-4SID and IV-4SID [74]. Choos-

ing the appropriate weighting matrices, W 1 and W 2, all subspace algorithms for

LTI systems can be interpreted as one of the mentioned algorithms. Table 2.1 de-

fines the weighting matrices for the corresponding subspace identification methods.

Table 2.1: Different existing subspace identification algorithms in a unifying frame-
work [1]

Method W 1 W 2

N4SID I li
(
W p(U

⊥
f )−1

)†
W p

CVA
[(
Y f (U

⊥
f )−1

)] [(
Y f (U

⊥
f )−1

)T]−1/2 [(
W p(U

⊥
f )−1

)]† [(
W p(U

⊥
f )−1

)]
MOESP I li

[(
W p(U

⊥
f )−1

)]† [(
W p(U

⊥
f )−1

)]
Basic-4SID I li Ij

IV-4SID I li Φ

From Table 2.1, the first two algorithms use the state estimates X̂ i (the right

singular vectors) to find the system matrices while the last three algorithms are

based on the extended observability matrix Γ̂i (the left singular vectors). The ma-

trix Φ of the IV-4SID method is a matrix containing the instrumental variables.

†denotes the Moore-Penrose pseudo-inverse.

The subspace identification methods listed in Table 2.1 all work well in open-

loop identification, where the N4SID method proposed by Overschee and De Boor

[71] was modified for closed-loop system identification [75]. The aim of this section

is to conduct a survey of new subspace identification methodologies and results

for closed-loop systems. The interested reader can consult [71, 74] for a more in

depth discussion of open-loop subspace identification algorithms and the appli-

cable theory. The technical report of Bauer [76] is especially insightful where a

comparative subspace algorithm survey was done, focussing on weaknesses and

strengths of the subspace identification techniques listed in Table 2.1.
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A Free Model Reduction Algorithm: A free model reduction algorithm

for closed-loop subspace identification was proposed by Mathieu and Mohammed

[77]. The subspace identification method splits into three steps:

1. The first step consists of determining the Markov parameters of the control

systems sensitivity functions,Gcl. The control systems’ sensitivity functions,

Gcl, can be defined as follows:

Gcl =

(
Sr1u Sr2u
Sr1y Sr2y

)
=

(
(Im +CG)−1 (Im +CG)−1C

G (Im +CG)−1 G (Im +CG)−1C

)
,

(2.61)

where the sensitivity functions are defined for the closed-loop system be-

tween the reference signals r1, r2 and the inputs and outputs u,y for the

controller the C and plant G.

One determines the first 2i − 1 Markov parameters of Gcl, i.e. Hcl/2i [77].

The involved Markov parameters identification can be performed using the

PEM appropriately and can be initialized by the N4SID method [77].

2. In the second step, the impulse response of the system is identified from the

results obtained in the first step. The focus of step two is to estimate a

finite amount of Markov parameters of the system G, i.e. the product of

Γ∆G/i, where Γ and ∆ are the extended observability matrix and the reverse

extended controllability matrix. Mathieu and Mohammed [77] derived useful

expressions of Γcl/i, ∆cl/i and Hcl/i respectively, which can be defined as

follows:

Γcl/i = LTi

(
−W−1

i HC/iΓG/i W−1
i ΓC/i(

I ip −HG/iW
−1
i HC/i

)
ΓC/i HG/iW

−1
i ΓC/i

)
T−1, (2.62)

∆cl/i = T

(
∆G/iW

−1
i ∆G/iW

−1
i HC/i

−∆C/iHG/iW
−1
i ∆C/i

(
I ip −HG/iW

−1
i HC/i

) )Li,
(2.63)

Hcl/i = LTi

(
W−1

i W−1
i HC/i

HG/iW
−1
i HG/iW

−1
i HC/i

)
Li. (2.64)
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The matrix W i =
(
I im +HC/iHG/i

)
and T are non singular ncl × ncl

transformation matrices and Li is a non singular i(m+ p)× i(m+ p) matrix

[77]. From equation 2.62-2.63 it follows that [77]

(
Γ∆G/i 0

0 Γ∆C/i

)
=

(
−HG/i I ip
I im HC/i

)
LiΓ∆cl/iL

T
i

(
I ip −HC/i

HG/i I im

)
.

(2.65)

Mathieu and Mohammed [77] introduced the following form for LiΓ∆cl/iL
T
i

as follows:

LiΓ∆cl/iL
T
i =


H11 0 H13 0
H21 H11 H23 H13

H31 0 H33 0
H41 H31 H43 H33

 =

(
H1:2/1:2 H1:2/3:4

H3:4/1:2 H3:4/3:4

)
.

(2.66)

Depending on the composition of the external signal r(t), it is possible to

determine the Markov parameters, HG/2i, as follows [77]:

HG/2i =


H3:4/1:2H

−1
1:2/1:2 ∀ r1(t)

H3:4/3:4H
−1
1:2/3:4 ∀ r2(t)

H3:4/1:4H
−1
1:2/1:4 ∀ r1(t); r2(t)

. (2.67)

where r1, r2 are the reference signals acting on the outputs y and control

inputs u of the closed-loop system respectively.

The term Γ∆G/i can be extracted from HG/2i [77], or estimated from equa-

tion 2.65 as follows:

Γ∆G/i =
(
−HG/i I ip

)( H21 H23

H41 H43

)(
I ip

HG/i

)
. (2.68)

3. The third step consists in determining the order of the system, together with

a state-space realisation of the system. The order is determined using the

singular value decomposition method. See equation 2.53 and 2.54 to deter-

mine the system rank. The determination of the state-space realisation is

carried out by using available algorithms proposed by Zeiger and McEwen

[43] and Qin and Ljung [78].
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Mathieu and Mohammed [77] used the proposed closed-loop subspace iden-

tification method to identify a plant setup of two circular plates rotated by an

electrical servo motor with flexible shafts. The proposed method was compared

with the direct identification approach under the PEM algorithm, initialized with

N4SID estimate. The direct identification approach led to biased models while

the proposed subspace method performed very well for the identification of the

modes which were unbiased.

PARSIM-E algorithm: Qin and Ljung [79] revealed that typical subspace

identification algorithms actually use a non-parsimonious model formulation, with

extra terms in the model that appear to be non-causal. These extra terms are

included to conveniently perform subspace projection, but are the cause for inflated

variance in the estimates, and partially responsible for the loss of closed-loop

identifiably. Qin and Ljung [79] proposed a subspace method where these non-

causal terms are removed, making the model parsimonious. The proposed method

also addresses and removes the condition of no correlation between the future input

uk and the past innovation ek, which is not the case for closed-loop data. The idea

of the proposed method to exclude non-causal terms in the model is accomplished

by partitioning the extended state-space model (see 2.47) in a row wise sense[79].

The partitioned extended state-space model can be defined as follows:

Y fi = ΓfiXk +HfiU i +GfiEi ∀i = 1, 2, ..., f, (2.69)

where subscript f denotes the future horizon.

The above equation is guaranteed to be causal, resulting in a parsimonious

model representation [79]. By eliminating e(t) =

(
w(t)

v(t)

)
in the innovation

model, 2.45 -through iteration- it is possible to reformulate the partitioned ex-

tended state-space model as follows [79]:

Y fi = ΓfiLzXp + ΓfiA
p
KXk−p +HfiU i +GfiEi ∀i = 1, 2, ..., f, (2.70)

where subscript p denotes the past horizon and
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Lz
def
=
[

∆p (AK ,K) ∆p (AK ,BK)
]

∆p (A,B)
def
=
[
Ap−1B · · · AB B

]
AK

def
= A−KC

BK
def
= B −KD

Zp
def
=
[
Y T

p UT
p

]
.

(2.71)

The second term on the right hand side of equation 2.71 tends to zero as p

tends to infinity. The least squares estimates for the parsimonious model can be

defined as follows [79]:

[
Γ̂fiLz Ĥfi

]
= Y fi

[
Zp

U i

]
; ∀i = 1, 2, ..., f. (2.72)

The estimates obtained using equation 2.72 are biased for closed-loop identifi-

cation. Qin and Ljung [79] treat the estimated innovation as known data, which

results in the subsequent projections not requiring future inputs to be uncorrelated

with past innovations. Qin and Ljung [79] derived the least square estimate that

does not require the future input uk to be uncorrelated with the past innovation

ek as follows:

[
Γ̂fiLz Ĥfi Ĝfi

]
= Yfi

Zp

U i

Êi−1

 ,
Ĝfi =

[
CAi−2K CAi−3K · · · CK

]
.

(2.73)

The innovation data can be calculated recursively as follows [79]:

Êi =

[
Êi−1

Êfi

]
. (2.74)

Qin and Ljung [79] have done a comparative simulation study between the pro-

posed PARSIM-E algorithm and the well known MOESP algorithm. Simulations

were conducted for both open-loop and closed-loop data. It was concluded that

for open-loop data, both the PARSIM-E method and MOESP method performs

equally well with no observed difference for open-loop identification, while closed-

loop identification results are very different. The PARSIM-E algorithm gives the

best estimates without biases, while the MOESP algorithm fails with closed-loop

identification.
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SSARX algorithm: Jansson [80] proposed a Stacked Outputs ARX (SSARX)

algorithm for subspace identification. The proposed method combines CCA sub-

space identification theory with ARX modelling, and is able to handle data in

open-loop and closed-loop. A set of estimated Markov parameters are used to

enforce more structure into the data model used by the subspace identification

approaches.

The state-space equations in equation 2.45 can be reformulated as follows [80]:

x(t+ 1) = Ãx(t) + B̃u(t) +Ky(t)

y(t) = Cx(t) +Du(t) + e(t).
(2.75)

The matrices Ã and B̃ are defined as follows:

Ã = (A−KC)

B̃ = (B −KD).
(2.76)

From equation 2.75, the extended state-space equation 2.47 can be redefined

as follows:

yf (t) = Γ̂x(t) + Φ̂uf (t) + Ψ̂yf (t) + ef (t)), (2.77)

where subscript f denotes the future horizon.

The matrices Γ̂, Φ̂ and Ψ̂ are defined as follows [80]:

Γ̂ =


C

CÂ

...

CÂ
f−1

 , (2.78)

Φ̂ =


D 0 · · · 0

CB̂ D
...

...
. . . 0

CÂ
f−2
B̂ CB̂D

 , (2.79)

Ψ̂ =


0 0 · · · 0

CK 0
...

...
. . . 0

CÂ
f−2
K CK 0

 . (2.80)

Equation 2.77 is regarded as the stacked outputs of the ARX model, which in

general is of infinite order. However, given the assumption that the matrix Â is
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stable, it can be approximated by truncating the ARX model similarly to what

is done in the CCA method [80]. The main idea behind the proposed method

of Jansson [80] is to first estimate a high order ARX model to get estimates of

the impulse response coefficients D,CÂ
k
B̂ and CÂ

k
K for k = 0, 1, .., f − 2. If

the estimated impulse response coefficients to estimate Φ̂ and Ψ̂ are used, we can

write [80]

z(t)
def
= yf (t)− Φ̂uf (t)− Ψ̂yf (t) = Γ̂x̂(t) + ef (t), (2.81)

where x̂(t) is the state estimate which can be defined as

x̂(t) = ∆p(t), (2.82)

where ∆ is a matrix of unknown coefficients and p(t) a vector containing delayed

inputs and outputs p steps back [80]:

p(t) =
[
yT (t− 1) yT (t− 2) · · · yT (t− p)
uT (t− 1) uT (t− 2) · · · uT (t− p)

]
.

(2.83)

Similar to CCA, equation 2.81 can be regarded as a low linear regression in

Γ̂∆ [80]. The main interest in CCA lies in the estimation of ∆, so that the

state in equation 2.82 can subsequently be estimated. The latter can be done by

performing a correlation analysis on equation 2.81, z(t) and p(t) as follows [80]:

M = (Rzz)
−1/2 (Rzp) (Rpp)

−1/2 . (2.84)

The sample correlation matrix between two signals z(t) and p(t) are defined

as follows:

Rzp =
1

N

N∑
t=1

z(t)pT (N − t). (2.85)

The next step of CCA is to compute the singular value decomposition of M ,

USV T = M , where the CCA estimate of ∆ is then given by

∆̂ = V T
n (Rpp)

−1/2 , (2.86)

and the estimated state sequence is [80]

x̂(t) = V T
n (Rpp)

−1/2 p(t). (2.87)

The system matrices can be obtained accordingly by linear regression in the

state-space model equations 2.75 by replacing the true state with the estimated
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state in equation 2.87 [80].

The SSARX subspace identification method proposed by Jansson [80] outper-

formed many existing subspace identification methods (MOESP, CCA, N4SID),

with results very close to the performance of the PEM method. A comparative

simulation study between the system identification methods was done for both

open-loop and closed-loop data.

Virtual Closed Loop algorithm: Agüero and Goodwin [6] proposed a

method based on the indirect approach for closed-loop system identification. Typ-

ically, indirect procedures require knowledge of the true controller. Problems that

may arise with the use of a true controller is the fact that the controller is often

non-linear, e.g. MPC, and may have a high gain in critical areas, and thus mask

the plant response [6]. Agüero and Goodwin [6] developed a subspace identifi-

cation method that is based on virtual feedback by using a known linear virtual

controller in the analysis, irrespective of the true typical non-linear controller. The

virtual controller needs to have no dependence with the true controller. The key

assumption is that a linear controller is known that will stabilise the process [6].

Such a controller can be defined as follow:

C̄ =
P

L
. (2.88)

An observer polynomial, E, is introduced, where the expression of the virtual

closed-loop isN = E−L. The construction of the virtual closed-loop is illustrated

in figure 2.5, where the virtual controller is added an subtracted not to modify the

true closed-loop. A virtual controller is used when the system, G, to be estimated,

is open-loop unstable or marginally stable and a subspace method is used [6]. A

virtual reference for the system can be defined as follows [6]:

ūt =
L

E
ut +

P

E
yt = ut −

N

E
ut +

P

E
yt. (2.89)

From equation 2.89, and the system illustrated in figure 2.5, the following

relationship is satisfied [6]:

[
yt

ut

]
=


B0E

A0L+B0P
A0E

A0L+B0P

 ūt +


A0L

A0L+B0P

− A0P

A0L+B0P

vt = T̄ 0ūt + H̄
vcl
0 vt, (2.90)

where the process is given by G = B0/A0, and T̄ 0 =
[
T y

0 T u
0

]T
is the virtual

closed-loop function, and H̄
vcl
0 =

[
H̄0 H̄

u
0

]T
the noise transfer function [6]. P
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Figure 2.5: Virtual Closed Loop construction [6].

Department of Electrical, Electronic and Computer Engineering 49

 
 
 



Chapter 2 FD and SID Theory

and L are polynomials and E is an observer polynomial. Agüero and Goodwin

[6] state that a consistent estimate of T̄0 can be obtained by executing three con-

secutive steps. The first step involves the calculation of a matrix that contains

the d-step ahead predictions. By using singular value decomposition, the states

are then calculated accordingly. Finally in step three, the state-space matrices are

estimated as a linear regression.

For the direct approach, the process estimate can be calculated from either the

T̂
y

0 or T̂
u

0 estimates as follows:

Ĝ =
T̂
y
L̄

1− T̂ y
P̄

or Ĝ =
1− T̂ u

L̄

T̂
u
P̄

. (2.91)

An alternative to recover the process estimate is to use the joint input-output

approach as follows [6]:

Ĝ =
T̂
y

T̂
u . (2.92)

The method proposed by Agüero and Goodwin [6] allows the identification

of accurate models with long prediction horizons operating in closed-loop. The

restrictions usually associated with the indirect approach are avoided by the im-

plementation of a virtual closed-loop. Advantages of the proposed method are that

the true controller needs not to be known or used in the identification process.

The method consequently allows the use of subspace methods, avoiding numerical

difficulties [6].

Two Stage ORT-based subspace method: Katayama and Tanaka [8] pro-

posed a subspace method for identifying open-loop systems operating in closed-

loop. The proposed method is based on two successive orthogonal decompositions

(ORT). The first LQ decomposition, used for data processing, calculates the deter-

ministic components of the joint input-output process. The second decomposition

uses the ORT method to compute the system matrices. The proposed method is

a subspace version of the two-step projection method, and is consequently known

as the Two Stage Orthogonal Decomposition Subspace [TSODS] method.

Suppose we are given a finite amount of input-output data and exogenous

inputs. A subspace of finite history of second order variables of exogenous inputs

can be defined as < [8]. Since the measurement noise, vk, and the process noise,

wk, are orthogonal to the space <, the orthogonal projection of equation 2.45

onto the subspace < yields the following projected state-space result [8]:
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x̂pd(t+ 1) = Apdx̂pd(t) +Bpdû(t)

ŷ(t) = Cpdx̂pd(t) +Dpdû(t)

x̂pd(0) = Ê {xpd(0) |<} .
(2.93)

The orthogonal projections of the state vector, input and output are respec-

tively [8],

x̂pd(t) = Ê {xpd(t) |<}
û(t) = Ê {ud(t) |<}
ŷ(t) = Ê {yd(t) |<} ,

(2.94)

where the subscript d represents the deterministic portions after the projection

of the state-space onto <, and p denotes the past samples. From the projection

one notes that ŷ(t) is described by the same state-space matrices

(
Apd Bpd

Cpd Dpd

)
.

It is thus desirable to use the projected data which consist of deterministic val-

ues instead of the original data with stochastic components. The projected data

can easily be obtained by an LQ decomposition [8]. It should be noted, however,

that the projection cannot remove all the stochastic components from the joint

input-output process. The projected data will contain some residuals. It is thus

essential to apply the ORT method in the estimation of the state-space matrices

to cope with the residuals of the projected data [8].

The extended state input-output matrix (after LQ decomposition) equation

can be defined from equation 2.93 as,

Ŷ f = ΓkX̂k + ΨkÛ f , (2.95)

where f denotes the future. The matrices Γk and Ψk are the extended observability

matrix and Toeplitz matrix respectively [8]. The ORT-based method to identify

the state-space matrices

(
Apd Bpd

Cpd Dpd

)
can be described as follow given the block

Hankel matrices R,U and Y [8]:

1. Compute the LQ decomposition,

2. compute the LQ decomposition of the deterministic components,

3. estimate the extended observability matrix by singular value decomposition,

4. by using the shift-invariance property of the extended observability matrix,

compute the system matrices
[
Cpd Apd

]
respectively,
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5. the term Ψk

(
Bpd Dpd

)
is linear with respect to the parameters, so that

the parameters
[
Bpd Dpd

]
can easily be obtained.

The proposed method of Katayama and Tanaka [8] removes stochastic com-

ponents in the data by preprocessing. This results in an accurate estimate of the

model of the plant. An advantage of the Two Stage ORT method is that it can

easily be applied to multivariable systems in the manner of the direct approach,

where the algorithm is quite simple with little bias errors [8].

Discussion

This section highlighted some of the most prominent subspace algorithms used in

system identification. Subspace algorithms for both open-loop and closed-loop

data were considered where the emphasis was placed on closed-loop subspace

system identification algorithms. Conventional open-loop subspace algorithms

(N4SID, MOESP, CCA, IV-4SID) are not suitable for closed-loop system iden-

tification. Subspace identification methods are difficult to apply to closed-loop

process data, because of the use of an extended future horizon that introduces

correlation between past input data and noise [48]. A drawback of subspace algo-

rithms was revealed by Qin and Ljung [79], where added non-causal terms in the

system model used for subspace projection leads to inflated variances. Another

drawback experienced with closed-loop subspace algorithms is the required condi-

tion that inputs, uk(t), must be uncorrelated with noise, ek(t).

The proposed SSARX method of Jansson [80] and the PARSIM-E method pro-

posed by Qin and Ljung [79] addressed the problem of the required condition of no

correlation between the past inputs and noise by using pre-estimation and to sep-

arate these two terms. The Two Stage ORT-based subspace method proposed by

Katayama and Tanaka [8] used ORT projection to filter out stochastic noise com-

ponents. The indirect approach does not require accurate noise models, however,

a disadvantage is that a-priori controller information is required, which compli-

cates the implementation thereof [45]. The Virtual Feedback solution proposed by

Agüero and Goodwin [6] eliminates the requirement of a known controller model,

making the indirect approach feasible.

2.3.6 Statistical Approaches to Change Detection in Sys-
tem Parameters

This section considers the problem of detecting changes in the dynamics of a sys-

tem under surveillance in real-time, without being disturbed by changes in the
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dynamics of the input signal. Two statistical methods used for fault detection is

the Asymptotic Statistic Local Approach [4, 37] and Principle Component Anal-

ysis (PCA) [81, 82, 39]. Statistic based methods using PCA for fault detection

are regarded as knowledge-based fault detection methods [81]. The strength of

knowledge-based methods is that high dimensional data can be transformed into

lower dimensions, in which the important statistical data are captured and used

for process monitoring [39]. The PCA method will not be considered since it is

a model free fault detection approach, and does not explicitly focus on system

parameters for fault monitoring. However, Palma et. al. [39] have proposed a

method where PCA is used to reduce the dimensionality of system parameters in-

stead of the conventional input-output data to detect faulty parameter deviations.

The Asymptotic Local Approach is a methodology for parameter change detec-

tion based on hypothesis tests. Using adequate information, all the fault detection

problems can be reduced to that of detecting changes in the mean of a Gaussian

variable [4]. The Gaussian property is obtained asymptotically when the sample

size tends to infinity, and the magnitude of fault tends to zero [37]. The main

advantage of the Asymptotic Local Approach is the ability in assessing the level

of significance of parameter discrepancies with respect to uncertainties. The sta-

tistical tests based on the local approach also tells us if the relative size of the

parameter discrepancy of the monitored system is significant or not [4].

The Asymptotic Local Approach distinguishes between two residuals namely

primary residuals and improved residuals. A primary residual is a vector valued

function or process K (θ0,U i,Y i) whose mean value switches from zero, when

the process is operating normally, towards non zero when a fault occurs [4]. The

primary residual function can be defined as the gradient of the least squares pre-

diction error,

K (θ0,U i,Y i) =
∂

∂θ
fT (θ,U i,Y i) |θ=θ0 [Y i − f (θ0,U i,Y i)] , (2.96)

where θ0 denotes the nominal values of the parameters of the process f and

i indicates the sample corresponding to the time instant i [37]. The improved

residual is a vector valued function ζN (θ0) which builds on K (θ0,U i,Y i), with

a known distribution [4]. The improved residual can be defined as [37],

ζN (θ0) =
1√
N

N∑
i=1

K (θ0,U i,Y i), (2.97)
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where N denotes the sample size. The quantity ζN (θ0) is evaluated to perform

fault detection [37]. With N >> 0, ζN (θ0) has the following distribution [37],

ζN (θ0)→
{

N (0,Σ) ⇒ θ = θ0

N (M∆θ,Σ) ⇒ θ = θ0 + ∆θ
, (2.98)

where

M = E

{
∂

∂θ
fT (θ,U i,Y i)

∂

∂θ
f (θ,U i,Y i)

}
|θ=θ0 , (2.99)

denotes the incidence matrix, and Σ denotes the covariance matrix of the im-

proved residuals. The incidence matrix can be approximated according to the

local approach as follows [37]:

M ∼=
1

N

N∑
i=1

∂

∂θ
fT (θ,U i,Y i)

∂

∂θ
f (θ,U i,Y i) |θ=θ0 . (2.100)

Within the framework of hypothesis tests, the problem of fault detection can

be stated as testing the null hypothesis defined as follows:

H0 : θ = θ0 ⇒ no fault

H1 : θ = θ0 + ∆θ ⇒ fault.
(2.101)

The decision in this case can be taken on the basis of the Generalised Likelihood

Ratio which, for these hypothesis, can be defined as [37]:

t = 2 ln
max ∆θPH1 (ζN)

PH0 (ζN)
, (2.102)

which is the ratio between the probability that a fault may occur (max∆θ 6= 0)

and the probability that no fault has occurred (max∆θ = 0) for a given improved

residual vector ζN (θ0).

When the incidence matrix, M , is a non singular matrix, the t-test reduces to

t = ζTNΣ−1ζN . (2.103)

If t > λε then the alternative hypothesis H1 is accepted. The threshold λε

can be set accordingly to a false alarm probability PH0 (t > λε) = ε [37].

2.4 Conclusion

Fault detection and system re-identification are the fundamental building blocks

of process monitoring. System identification is an intensively computational ex-

ercise, and needs to be limited while fault detection is necessary to drive system
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performance to an optimal threshold near constraint boundaries.

The prevalent system identification approach used by industry is based on

the Prediction Error Method (PEM) framework. The method was developed for

closed-loop system identification, which can either be implemented by using the

direct, indirect or joint input-output approach. Work done by Ljung [30] con-

cluded that the PEM approach can successfully be implemented for system iden-

tification using closed-loop data, with consistent accurate parameter estimations.

However, it is required that data used for identification must be informative, and

the model set must contain the true system [7]. The prediction error approach

with a quadratic norm in estimating system parameters gives the least squares

method. The least squares method is an efficient and effective tool estimating the

system parameters. However, the estimation problem proves to be a non-linear

optimisation problem with more complex model structures used in system identi-

fication. A solution to this non-linear optimisation problem is the use of Recursive

Least Square (RLS) algorithms [28]. Weighting the RLS algorithm [63] and adding

variable forgetting factors [63, 64] makes the RLS algorithm more robust and ap-

plicable for real-time online parameter estimation. The Kalman filter is closely

related to the RLS algorithm with similar properties. However, the Kalman filter

is mainly used for estimating process states. The Kalman filter is usually imple-

mented as a state observer [28], but Ghaffari et. al. [57] proposed a methodology

where the Kalman filter is used in estimating system parameters in stead of states.

The extension of the Kalman filter to the Unscented Kalman Filter has led to the

solution of state estimations of a non-linear process, where Araki et al. [68] have

implemented the UKF method to estimate system parameters of a non-linear pro-

cess.

Subspace identification is regarded as an alternative to PEM identification

methods. Subspace identification yields a multivariable system model without the

need for special parameterisations, which requires significant prior knowledge and

non convex optimisation [45]. The conventional open-loop subspace system iden-

tification algorithms (N4SID, MOESP, CCA and IV-4SID) fail when implemented

with closed-loop data, but the advantages of subspace system identification over

PEM in closed-loop systems have led to the development of numerous advanced

closed-loop subspace algorithms which can be used with closed-loop system data.

Qin and Ljung [79] revealed that typical subspace algorithms use models that have

non-causal terms, used for subspace projection. The inclusion of these non-causal

terms make the model non-parsimonious, which leads to inflated variances. A
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subspace method proposed by Qin and Ljung [79] removes these extra non-causal

terms, making the model parsimonious, leading to more consistent and accurate

system identification results. The condition that past input data must be uncor-

related with noise is one of the prevalent conditions for successful subspace system

identification, but this condition is rarely met. Qin and Ljung [79] and Katayama

and Tanaka [8] proposed solutions in addressing and removing this condition.

The Asymptotic Local Approach is a mathematical statistics theory used to

monitor and detect changes in system parameters. This tool can be used to mon-

itor system parameters without the computational burden of re-identifying the

system parameters. The inclusion of a threshold for fault detection set to the false

alarm probability leads to a robust monitoring statistical tool.

Subspace methods are characterised by several advantages with respect to

PEMs [1]. The parameterisations problem, which is non-trivial for MIMO sys-

tems, is addressed by the subspace approach, where the model is parameterised

by a full state-space model, and the model order is determined during the identifi-

cation procedure. Subspace methods also experience no complication when SISO

system subspace methods are modified for MIMO systems. The non-zero initial

state poses no additional problems in terms of parameterisations, which is not the

case with PEMs. The price to be paid with subspace methods is that they are

suboptimal when compared to PEMs. A study conducted by Favoreel et. al. [1]

concludes from ten practical implementations of PEM and subspace methods re-

spectively, that subspace methods consistently have 15% higher estimation errors

with respect to PEMs. This is due to the fact that subspace algorithms search for

global optima where the PEM algorithm searches for local optima with increased

precision. The subspace approach can thus be regarded as a good initialisation

candidate for the PEM, but extensive use of such MIMO identification methods

in industry is not at all evident [45].
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The Benfield Process

3.1 Introduction

In this chapter, the Benfield process which requires closed-loop SID and fault de-

tection, is described. A brief overview of the industrial background on the Benfield

process and similar processes is given in section 3.2.1.

The Benfield process is a regenerated cyclical solvent process which uses Hot

Potassium Carbonate as an activator and inhibitor to remove CO2 gas. The Ben-

field operational process flow is discussed in section 3.2.2 where a discussion on

the methodology used by Sasol Sastech to identify the original process model is

given in section 3.3.1.

The Advanced Process Control (APC) solution used for the Benfield process is

the Robust Multivariable Predictive Control Technology (RMPCT). The RMPCT

is a subclass control solution of the MPC family, and is elaborated on further in

section 3.4.1-3.4.2.

3.2 Benfield Process

3.2.1 Industrial Background

The Benfield process is a thermally regenerated cyclical solvent process that uses

an activated inhibited Hot Potassium Carbonate solution to remove carbon diox-

ide (CO2), H2S and other acid gas components [83].

The recovery of carbon dioxide from flue gasses is being propelled by multiple

factors; the market shows renewed interest in Enhanced Oil Recovery (EOR), and
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is continuously seeking new ways to reduce greenhouse gas emissions [20]. Addi-

tional use of carbon dioxide is found in the food industry in carbonated beverages,

brewing, and flash drying. Industrial uses include EOR, welding, chemical feed-

stock, inert gas, firefighting and solvent extraction as a supercritical fluid. The

largest potential market for CO2 is in EOR. The most economical sources of CO2

are CO2 wells and natural gas sweetening or synthesis gas purification gas byprod-

ucts. The price of crude oil in 2008 ($120 per barrel) can justify flue gas derived

CO2 for EOR [20].

The Sasol group of companies specialises in diverse fuel, chemical and related

manufacturing and marketing operations. Sasol has interests in oil and gas explo-

ration and production, in crude oil refining and liquid fuels marketing [84]. The

efficient and economical recovery of CO2, used in various processes at Sasol, is

accomplished by utilizing the Benfield process for CO2 extraction.

The Benfield process is classified as an Activated Hot Potassium Carbonate

(AHPC) system. Processes similar to the Benfield process are the Catacarb pro-

cess, Exxon Flexorb HP process and the Glammarco-Vetrocoke process [20].

The Benfield process was introduced over 30 years ago, where as of January,

2000, over 700 Benfield units have been put into commercial service in the world.

The use of low cost chemicals available on the world market makes the Benfield

process an economically feasible solution for CO2 extraction [20].

3.2.2 Operational Process Flow

A Benfield process plant has been implemented by Sasol Synfuels for the sole pur-

pose of extracting CO2 from tail gas. Figure 3.1 illustrates a simplified version of

the Benfield Process.

The Benfield Process consists of two distinct process stages which involves the

extraction of CO2. The first stage is the potassium carbonate wash. The purpose

of the potassium carbonate wash stage is to remove the bulk of CO2 gas from the

CO2 rich tail gas as received from Sasol Synthol. The second stage of the Benfield

Process is the DEA solution wash. The purpose of the DEA solution wash stage

is to trim the CO2 levels further down (CO2 removal polishing unit) after the bulk

of CO2 gas has been removed in the Potassium Carbonate wash stage [2].

Department of Electrical, Electronic and Computer Engineering 58

 
 
 



Chapter 3 The Benfield Process

Figure 3.1: Benfield Process
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Both the Potassium Carbonate wash stage and the DEA solution wash stage

consist of a wash column and a regeneration column. The purpose of the wash

column is to absorb CO2 by a particular wash solution (Potassium Carbonate ab-

sorption medium). The particular wash solution in the Benfield process absorbs

large amounts of CO2 when Hot Potassium Carbonate (HPC) is added as a pro-

priety activator and inhibitor [20]. The regeneration column is responsible to strip

the CO2 gas, which has been absorbed in the wash solution in the wash column.

The stripping of CO2 in the regeneration column is accomplished by adding Ma-

nipulated Pressurised (MP) steam to the wash solution [2].

The CO2 absorption and extraction process flow through the potassium car-

bonate wash stage and the DEA solution wash stage is described next. CO2 rich

tail gas is directly received from the Sasol Synthol HP gas header, where the gas

passes through a knock-out drum and a filter to remove any liquid droplets from

the feed gas. This CO2 rich tail gas supply varies in supply demand, and can only

be controlled above a certain supply trip limit.

The cold CO2 rich tail gas from Synthol is heated to very high temperatures

by a heat exchanger, before being fed into the bottom bed of the wash column

of the Potassium Carbonate wash stage. Lean Potassium Carbonate is recircu-

lated to the wash column from the regeneration column in two separate streams.

A portion of the lean Potassium Carbonate liquid is cooled down before being

injected into the top bed of the wash column, where the second portion of the

lean potassium carbonate liquid is fed directly into the middle bed of the wash

column. The removal of CO2 in the wash column is controlled by manipulating

the wash flow rates (controlling the corresponding feeds on the bottom, middle

and top beds in the wash column). CO2 is absorbed into the wash solution by

adding HPC as propriety activators and inhibitors.

Cleaned gas passes from the Potassium Carbonate wash stage through a knock-

out drum into the DEA system. The DEA solution wash stage is similar to the

Potassium Carbonate wash stage where additional focus is placed on trimming

the CO2 tail gas down to acceptable limits before the CO2 free tail gas is being

fed to a cryogenic separation unit known as the Cold Separation unit. The CO2

content of the CO2 free tail gas is continuously being monitored. If CO2 content

of the treated gas from the Benfield process exceeds 80ppm (in the case of severe

CO2 loads or process upsets), the Cold Separation unit will be shut down. The

Benfield gas feed flow may be cut back to assist in keeping the CO2 slip below
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the trip limit. In such a case, the HP tail gas control system will transfer some of

the feed gas load from the affected phase to the other phase (either the Potassium

Carbonate wash stage or DEA solution wash stage depending on which phase is

effected), provided that it has additional capacity, or else allow the excess gas to

be flared.

The rich (loaded with CO2) Potassium Carbonate solution (in the wash col-

umn in both the Potassium Carbonate wash stage and the DEA solution wash

stage) is fed into the corresponding regeneration columns of each stage. The rich

solution is regenerated by flashing and boiling the solution in the regeneration

column by adding MP steam and heat. Lean Potassium Carbonate is recirculated

to the wash column.

In the regeneration column of the Hot Potassium Carbonate wash stage, the

CO2 saturated wash solution that could not be stripped of CO2 by adding MP

steam, is being cooled down before being recirculated into the regeneration column

where the CO2 stripping by adding MP steam; will be executed again.

The DEA system works on the same principle as that of the Potassium Car-

bonate Wash stage. In the regeneration column, CO2 gas that could be stripped

of the rich potassium carbonate solution (received from the wash column), by

adding steam, is fed through to the regeneration column of the Potassium Car-

bonate Wash stage. Lean Potassium Carbonate is recirculated to the wash column

where further CO2 gas absorption is accomplished before the cleaned gas is passed

through to the Cold Separation unit. The difference between the DEA solution

wash stage and the Potassium Carbonate wash stage is that the Potassium Car-

bonate wash stage removes the bulk of CO2, where the DEA stage trims the CO2

levels further down to 40ppm by increasing the recirculation between the wash

and regeneration tower.

3.2.3 Process Economic Feasibility and Common Opera-
tional Problems

The gas circuit product quality of Sasol determines to a great extent the profit

feasibility of down-stream units. The current operating philosophy for the Ben-

field process is to keep it simultaneously hydraulic and loaded with CO2, as far as

possible; to meet optimal profit margins from the gas circuit operations [85]. The

hydraulic load is defined as the maximum volume of CO2 that can be processed
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for the Benfield process.

Analysis of the Benfield theoretical feed relationship between process through-

put and composition (done by Sastech [85])concluded that more would be gained

(in terms of future growth and plant economic feasibility) by hydraulically de-

bottlenecking (either by reducing Synthol tail gas or increasing the hydraulic ca-

pacity at Benfield), than to improve the chemical capacity of the Benfield unit.

The operating philosophy ideally requires 100% availability and utilisation which

implies that the Benfield process needs to remove the maximum possible amount

of CO2, with as little as possible process upsets and operational delays.

Various factors that can cause suboptimal process availability and utilisation

include the following [85]: foaming, corrosion, insufficient regeneration, poor mass

transfer, high or abnormally low bed differential pressures, pump cavitations and

CO2 slip concentration. Foaming due to high or abnormally low bed differential

pressures is a common recurring problem [21] where anti-foam dosing is used to

alleviate the problem. Regeneration efficiency has been identified as one of the

major efficiency measures by UOP (Benfield technology licensor). Regeneration

efficiency is a measure of how much steam is required per unit volume of CO2

removed and gives an indication of the unit cost, the overall pressure drop in the

regeneration column and the solution health [85].

3.3 Benfield Process Identification

3.3.1 Benfield Process Model

The Benfield process was modeled by Sastech [2], where the process model consists

of 20 dependant controlled variables (CV), six independent manipulated variables

(MV) and two feed-forward disturbance variables (DV) classifying it as a tall sys-

tem.

The identification of the Benfield process model has proven to be a very com-

plex and daunting task. The major challenge lies in identifying the non-linear

dynamics of the process. This task becomes very difficult with so few MVs avail-

able and so many CVs. The process dynamics also change on a regular basis due to

contaminants carried over from the Synthol unit tail gas into the Benfield process.

The contaminants leads to an increase in salt content which eventually lead to

crystallization in the fin fans. Some oxygenated components cause foaming in the
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carbonate solution, which is detrimental to the mass transfer and CO2 removal [2].

The MVs and CVs of the Benfield process are highly interactive. Sastech con-

cluded [2] that the complete process identification can only proceed by isolating

process portions, (select MV and CV pairs which are known to be interactive)

and locking good model fits and re-identify other isolated process portions using

different data sets [2].

3.3.2 Benfield Process Model Isolation

Measured disturbances acting on the Benfield process is the % CO2 concentration

deviation present in the tail gas from Synthol, as well as the gas feed flow-rate.

The maximum chemical capacity of the Benfield unit is 55 km3/h CO2 removal.

As the flow rate increases, the % CO2 should decrease to keep the maximum CO2

load at 55km3/h. The stochastic nature of these measured disturbances makes the

control of the Benfield process difficult; but a benefit associated with these distur-

bances is natural excitation of the process which helps the system identification

process.

Hydrocarbons which are heavier than C8 and some oxygenated components

cause foaming in the wash columns. Foaming is also caused by abnormally high

differential pressures on either the top, middle or bottom bed. Bed differential

pressures increase with increasing liquid and gas loads. High differential pressures

that change erratically indicates flooding or foaming, whereas high and stable dif-

ferential pressures indicate partial blockages in packed beds or liquid/gas distribu-

tors. Misaligned distributors, collapsed packed beds, channelling and other issues

related to internal column dynamics would manifest as either abnormally high

or abnormally low differential pressures [85]. CO2 absorption into the Potassium

Carbonate wash solution is controlled by manipulating the wash flows, which is

accordingly determined by valve manipulations either on the wash columns (used

for controlling wash flow) or valve manipulation on the regeneration column (used

for manipulating steam supply for extracting CO2 from the wash solution). Fail-

ure of any valve will obviously have severe implications: valve failure will lead to

irregular wash flow rates, which can consequently lead to unacceptable fluctua-

tions in the differential bed pressures, causing either foaming or flooding.

Regeneration efficiency is identified is one of the major efficiency measures for

the Benfield process [83]. This regeneration is directly dependant on the CO2
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absorption in the wash columns, which in its turn is again affected by the wash

flow-rates. Regular foaming and flooding diminishes the efficient CO2 absorption

into the Potassium Carbonate wash solution, resulting in inefficient regeneration.

The isolation and identification of the process dynamics associated with the wash

column of the Potassium Carbonate wash stage will be considered for validating

the system identification methodology. Possible plant faults that can occur in-

clude the failure of the valve which controls wash flows and abnormal differential

bed pressures causing flooding and foaming. The isolated process to be identified

will have four independent MVs and four dependant CVs and one feed through

disturbance DV. Table 3.1 defines the MVs,CVs and DV accordingly.

Table 3.1: CVs, MVs and DV definitions. [2]
Variable Type Tag Name

CO2 slip concentration CV C2A105A0.PV
Bottom bed differential pressure CV C2P1004B.PV
Middle bed differential pressure CV C2P1004C.PV

Top bed differential pressure CV C2P1004D.PV
CO2 feed flow MV C2F1001B.SP

Top carbonate wash flow MV C2F1002.SP
Mid carbonate wash flow MV C2F1003.SP

CO2 system steam pressure MV C2P1037.SP
CO2 gas feed concentration DV C2A101A0

3.4 Controller

3.4.1 Model Predictive Control Strategy

A Model Predictive Control (MPC) strategy involves a linear step or impulse re-

sponse model (convolutional model) of a process as part of an optimisation scheme

to predict future outputs based on future control actions [86]. The identification

of these process models must be done carefully, where persistent excitation is nec-

essary at all frequencies that are of interest for control purposes. Since all real

chemical processes exhibit some degree of nonlinear behaviour and are subjected

to unmeasured disturbances, there will be plant/model mismatch associated with

this linear modelling strategy [86].

Consider a single-input, single-output (SISO) process defined by
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Figure 3.2: MPC control law for a SISO process [7].

xk+1 = xk + uk

yk = CTxk ,
(3.1)

where y is the output, x ∈ Rn is the vector of states, and u is the system inputs

at each kth instant. Figure 3.2 illustrates the MPC control law for a SISO model

defined by equation 3.1.

All MPC formulations allow the forecasting of the process performance into

the future, which allows the controller to predict the future outputs and the cor-

responding optimal future control actions necessary to achieve these predicted

outputs.

With MPC the predicted future outputs ŷ(k+1|k), ŷ(k+2|k), · · · , ŷ(k+pk|k)

for the prediction horizon pk are calculated at each time instant using the process

model. These depend upon the known past inputs and outputs up to instance

t = k, including the current output (initial condition) y(t) and on the future con-

trol signals u(k + 1|k),u(k + 2|k), · · · ,u(k + mk|k) to be calculated (mk < pk

). The sequence of future control signals is computed to optimise a performance

criterion (see equation 3.2), often to minimise the error between a reference tra-

jectory and the predicted process output. Usually the control effort is included in

the performance criterion. Only the current control signal u(k) is transmitted to

the process. At the next sampling instant y(k+ 1|k) is measured where the calcu-
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lation of the control efforts and predicted outcomes is repeated and all sequences

brought up to date [7].

min
u(k|k),··· ,u(k+1|k)

pk∑
i=1

‖Γy
i [ŷ(k + i|k)− r(k + i)]‖2

+

mk∑
i=1

‖Γu
i [u(k + i− 1|k)]‖2,

(3.2)

where

‖x‖2 =

(
n∑
i=1

|xi|2
)1/2

. (3.3)

In equation 3.2 Γy
i and Γu

i are weighting matrices to penalise particular com-

ponents of y(t) or u(k) at certain time intervals. r(k + i) is the vector of future

reference values or set-points.

Quadratic Dynamic Matrix Control (QDMC) is one particular implementa-

tion of MPC. In QDMC, expression 3.1 is solved, subject to constraints on input,

output, and rate of change on the input; by minimizing a quadratic objective func-

tion that is composed of the error between the predicted output and actual output.

3.4.2 Robust Multivariate Predictive Control Technology

One particular MPC technology called Robust Multivariate Predictive Control

Technology (RMPCT), developed by Honeywell, is a control strategy used for sys-

tems that are known to be complex and difficult to control. Sasol, Synfuel has

implemented an RMPCT control philosophy to control the Benfield Process. The

advantages of RMPCT over QDMC is that the former permits the constraints

on some or all controlled variables to be de-activated during optimisation. This

allows the optimisation to find an unconstrained solution in a reasonable time.

The RMPCT control philosophy is based on the MPC principle, where it uses a

finite impulse (FIR) model from, one for each controlled-manipulated variable pair.

The test data collected are used to determine the FIR coefficients. RMPCT uses

two different kinds of optimisation functions namely error and profit optimisation.

The objective function of the error optimisation function can be defined as follows

[86]:
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Jerror =
∑
i

λi (yi − r0i)
2, (3.4)

where yi and r0i are the current process output and the reference or set-point

respectively.

The objective function of the profit optimisation function can be defined as

follows [86]:

Jprofit =
∑
i

biyi +
∑
i

ai (yi − y0i)
2 +

∑
j

bjuj +
∑
j

aj (ui − u0i)
2. (3.5)

Parameters λi,
{
ai, aj

}
,
{
bi, bj

}
are the weights and the linear objective

coefficients,
{
bi, bj

}
are the tuning parameters for maximizing the operating

profit.

RMPCT addresses the plant/model mismatch problem associated with ill-

defined process models using singular-value threshold (SVT) and min-max design

[86]. With the min-max design, the controller determines the control effort over

all possible plant realisations [86].

SVT is based on the condition number of the process models. A matrix with

a large condition number indicates that the matrix is ill-conditioned [87]. The

threshold value is specified in such a way that all models whose singular values

are smaller than the threshold is removed from the optimisation. This method

does not alter the usual tradeoff between the controller robustness and the system

performance [86].

A generic Advanced Process Control (APC) structure is used by Sasol Synfuels,

where a Profit Controller based on the RMPCT architecture is used for controlling

the Benfield process in a robust manner. The Benfield process has proven itself to

be ill-conditioned with nonlinear process dynamics, some of which cannot readily

be identified. The control objectives of the APC Profit Controller are [2]:

• Maintain the differential pressures over the top, middle and bottom beds in

the wash column in the Potassium Carbonate wash stage below acceptable

limits. Unacceptable differential pressures over the beds can lead to foaming

and flooding.
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• Maintain effective regeneration of Potassium Carbonate and DEA wash so-

lutions by controlling the boiling temperatures in the Potassium Carbonate

and DEA regeneration columns.

• Maintain the CO2 slip of the Potassium Carbonate and DEA stage at safe

and acceptable limits.

The optimisation objectives of the profit controller are [2]:

• Maximize the Benfield unit throughput up to acceptable constraint limits.

• Minimize the top bed and middle bed wash flows in co-ordination with car-

bonate regeneration steam up to acceptable slip limits.

• Minimize DEA wash flow in coordination with DEA regeneration steam up

to acceptable CO2 slip limits.

3.5 Conclusion

The Benfield process has been implemented by Sasol Synfuels solely for the purpose

of extracting CO2 from CO2 rich tail gas received from Synthol. The operating

philosophy of the Benfield process is to keep the process simultaneously hydraulic

and CO2 loaded, as far as possible, as to meet optimal profit margins from the

gas circuit operations. The operating philosophy ideally requires 100% availability

and utilisation.

The control solution used with the Benfield process is the Robust Multivari-

ate Predictive Control Technology (RMPCT). RMPCT is a subclass solution to

MPC. The advantage of RMPCT over MPC is that control optimisation is done

with deactivated constraints. This allows RMPCT to calculate a control solution

much faster, thereby being more responsive to process changes and demands. The

RMPCT control philosophy allows Sasol to control the Benfield process, which

exhibits highly nonlinear process dynamics, by making future control efforts and

process performance based on a linear process model.

The Benfield process model was identified by Sasol Sastech [2], where the pro-

cess consists of six independent MVs, 20 dependant CVs and two feed-through

DVs. The Benfield process CVs and MVs are highly interactive [2]. The latter

process characteristic has made the identification a challenging process. Process

isolation and partial process identification was used to obtain a complete Benfield
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process model.

The wash flow-rates responsible for CO2 absorption and the steam flow rates

responsible for CO2 regeneration will be isolated in the Potassium Carbonate so-

lution wash stage, and used to validate the system identification methodology.

The system to be modeled and identified will consists of four independent MVs

and four dependant CVs. Valve failure which can cause irregular fluctuation in

liquid/gas flow can cause abnormal differential bed pressures, leading to flooding,

foaming and regeneration inefficiency.
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Chapter 4

Nominal Process Modeling and
Analysis

4.1 Introduction

In this chapter the procedure followed to identify and validate the model of the

Benfield process using open-loop step-test data and closed-loop raw plant data,

is discussed. The different techniques that were used for data preprocessing are

discussed in section 4.2. Different parametric model structures with parameter

estimation methods that were considered for the estimation and identification

process are discussed in section 4.3, where the most applicable structure is used to

model the process. A portion of the preprocessed data is used to validate the iden-

tified system model. Section 4.4 discuses the process validation results. Finally,

the identified system model is analysed in terms of stability and controllability in

section 4.5.

4.2 Data Analysis and Preprocessing

Sampled and measured process data used for system identification are often not

suitable to be used directly for system identification. These raw data may exhibit

certain characteristics which will jeopardise the accurate system parameter esti-

mation process. There are several possible deficiencies in the raw data which need

to be addressed [30]:

• Portions of raw data may exhibit occasional bursts and outliers, missing data

and may be discontinuous,

• raw data measurements may experience drift and bias, low-frequency dis-

turbances, possibly of periodic character.
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4.2.1 Data detrending and drift removal

Trends, low frequency disturbances and periodic variations are not uncommon

in measured data sets. The cause of these phenomenons typically stem from an

external source such as process and measurement noise and environmental changes,

and is unavoidable. There exist basically two methods which are used to alleviate

these problems [30]:

• Removal of disturbances by explicit data pretreatment, and/or,

• estimate a noise model that takes care of the disturbances.

When noisy data are used in identification, a compact model with a known

model structure and properly selected model order will provide more accurate pa-

rameters in the estimation process. Moreover, a model with a disturbance model

will give a consistent estimate for closed-loop data, meaning that the effect of

the disturbance will decrease when test time increases; whereas a model without

a disturbance model will deliver a biased estimate when using closed-loop data [46].

The inclusion of a disturbance model in the identification process increases

the complexity of the identification process. An alternative to the inclusion of a

disturbance model is to pretreat the measured data and partially remove all dis-

turbances. LQ decomposition is a viable method to remove stochastic components

from noisy measured data [8].

4.2.2 Data outliers and discontinuous data

Data acquisition equipment in practice is not perfect. Faulty data acquisition

instrumentation typically leads to discontinuous data segment, which cannot be

used for system identification. It may also be that certain measured data values

are in obvious error due to measurement failures. These measured data values are

classified as outliers, and may have a substantial negative effect on the estimation

of the system parameters [30]. With discontinuous data segments and outliers, one

can remove these data discontinuities from the collected data record and only use

data segments that are continuous and do not contain obvious outliers observed

by data inspection. This method can limit the amount of data samples available

for system identification, where the possibility of isolating clean data segments in

multivariate systems becomes difficult.
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Isolated data segments which are continuous and do not contain obvious out-

liers can be merged so that more data samples are available for system identi-

fication. However, it is important to note that one cannot simply concatenate

the data segments, because the connection points can cause transients that may

destroy the estimate [30]. Missing input data can be regarded as unknown pa-

rameters, and can be estimated for a linear system using a linear regression (least

square) procedure. Missing output data can be obtained by using the time varying

Kalman filter to predict the system outputs. The above mentioned methods are

computationally intensive and should be avoided if possible.

4.2.3 Preprocessing of data

Sampled data segments of the Benfield process were obtained and provided by

Sasol Synfuels [2], where the individual manipulated and controlled variables were

sampled every 15 seconds. These data segments were obtained in open-loop (or

under limited feedback) where individual manipulated variable step-testing was

done on the Benfield process. Through visual inspection it was concluded that

there exist large portions of data that cannot be used for system identification

due to the obvious presence of data outliers and data discontinuities. The first

task was thus to isolate data segments that do not contain any data outliers or

discontinuities.

Data segments were preprocessed by removing means and trends in the mea-

sured variables. Trends can be seen as time varying equilibria. The removal of

means in the measured data variables are accomplished by letting the measured

outputs y(t) and measured inputs u(t) be deviations from a physical equilibrium

[30]. The deviations from the equilibrium point is defined as [30]:

y(t) = ym(t)− ȳ
u(t) = um(t)− ū,

(4.1)

where [30]:

ȳ =
1

N

N∑
t=1

ym(t)

ū =
1

N

N∑
t=1

um(t).

(4.2)

Trends in the measured data are removed by fitting a linear periodic function

to the measured variables and subtracting it from the measured variable segments.
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With step-testing it was only possible to step the manipulated variables asso-

ciated with the wash flows and steam pressure. The CO2 gas feed flow exhibits

stochastic behaviour which cannot be controlled below a certain limit, and acts as

an external disturbance on the system. Although this characteristic is helpful in

system identification as explained in Chapter 2, the effect of this disturbance on

the output needs to be considered when identifying manipulated and controlled

variable pairs. A band-reject filter was used to filter the slow time-varying data

signals (wash flow and steam pressure manipulations) from the fast time varying

(CO2) gas feed. By inspecting the fourier transform of the CO2 gas feed, it was

concluded that data in the frequency band 0.47Hz-3.65Hz needs to be filtered out

from the output to remove the disturbance of the CO2 gas feed.

Note that the input-output relation for a linear system will not be changed by

pre-filtering the input and the output data through the same filter [30]. This is

seen by inspecting equation 4.3.

y(t) = G0(q)u(t) +H0e(t)⇒ L(q)y(t) = G0(q)L(q)u(t) +H0L(q)e(t). (4.3)

4.3 Process Modeling

An initial model of the Benfield process, which will serve as a basis to work from,

will be used to validate the identified system model obtained by implementing the

Two Stage ORT-based subspace method proposed by Katayama and Tanaka [8] in

a closed-loop system environment.

The initial process model was identified by using the step-test data obtained

from open-loop step-tests conducted by Sasol Synfuels. Since the plant is operating

partially in an open-loop configuration, it was possible to use standard system

identification methods in the modeling process. Only parametric system modeling

methods were considered, since fault detection will be accomplished by the careful

monitoring of any deviations in the identified system parameters. The parametric

methods that were considered for system identification includes the:

• Autoregressive with Exogenous Input (ARX) structure where the least squares

(LS) or instrumental variables (IV) method is used to estimate the system

parameters,
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• Autoregressive Moving Average with Exogenous Input (ARMAX), Output

Error (OE) and Box Jenkins (BJ) structures where the Prediction Error

Method (PEM) are used to estimate the system parameters,

• state-space structures where either the PEM or N4SID method is used to

estimate the system parameters.

The methodology that was followed in identifying the process dynamics of the

Benfield process was to firstly isolate the individual MVs of the process and then

to model the corresponding MV-CV pairs. The MVs were isolated from each

other (only one MV was stepped while the other MVs were kept at steady-state),

where the MV-CV data segment pairs were pre-treated by removing trends and

means, and filtering out high frequency disturbances as discussed in section 4.2.3.

The final models of the Benfield process are all based on the ARX structure.

The ARX structure uses the PEM framework to estimate system parameters which

is the traditional and most efficient method used to identify process models [7].

This result is not surprising since the ARX structure is well suited for a wide va-

riety of processes with distinct process dynamics [28]. For simulation, validation

and analysis purposes, the identified process ARX structures were transformed to

state-space form which is better suited for analysis. The identified system dimen-

sions are as follows: state-space model with four outputs, four inputs, 154 states,

and 640 free parameters.

4.4 Process Validation

The process modeling and estimation procedure discussed in section 4.3 identifies

a model that represents the actual process dynamics most accurately. In pro-

cess validation, a different data set is being used to validate the identified process

model. It is necessary that this data set is sufficiently informative, representing

the process dynamics thoroughly. The problem with model validation is whether

the identified model agrees sufficiently well with the observed data. The degree

in which the identified model matches the actual process dynamics can be deter-

mined by considering the model residuals.

4.4.1 Identified Model Fit

The identified model and actual process fit can be calculated as,
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%FIT = 100×

(
1− yvo−yso

‖yvo−yso‖

)
(
yvo−ȳ
‖yvo−ȳ‖

) , (4.4)

where yvo,yso and ȳ are the validation data output, simulated model output and

the mean of the validation data output. %FIT represents the ratio between

the normalised value of the difference between the validation data and simulation

data, and the normalised value of the difference between the validation data and

the expected value of the system outputs. Accurate estimated system parameters

and process structure will result in simulated process outputs to converge to the

measured outputs used for validation, as the data samples, N tends to infinity,

resulting in a 100% validation fit.

Two data sets were used for validating the identified process. The first data

set was obtained from the open-loop step-tests done in the identification process.

The data segment was chosen in such a way that all the MV s were controlled

simultaneously. The second data set used for validation consisted of raw plant

data, where the plant was operating in closed-loop. Process models as identified

by Sasol Sastech was also validated with the same open-loop and closed-loop data,

where the validation fit results for these models were compared with validation

results obtained for the nominal identified process models. The data set consist-

ing of open-loop step-test data was chosen to have N = 1500 samples, where each

sample was sampled every Ts = 15 seconds. The data set consisting of closed-loop

raw plant data was chosen to have N = 700 samples. The data sets were chosen

to be as large as possible, without any outliers or abnormal process disturbances

visible in the measured data.

Figure 4.1 illustrates the fit between the simulated model output and the step-

test validation data. A 65% average fit was obtained. For the same sample horizon,

the models identified by Sasol [21] only gave an 58% average fit. Figure 4.2 illus-

trates the fit between the simulated model output and raw plant data where the

plant was operating in closed-loop. A 63% average fit was obtained. The identified

models of Sasol [21] obtained an average fit of 64%.In figures 4.1 and 4.2, GN rep-

resents the nominal model as identified, where CV1, CV2, CV3 and CV4 represents

the CO2 slip and the differential pressures of Bed1, Bed2 and Bed3 respectively.
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Figure 4.1: Validation fit of nominal process model with open-loop step-test data.
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Figure 4.2: Validation fit of nominal process model with closed-loop raw plant
data.
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4.4.2 Residual analysis

Residual analysis bears information about the quality of the identified model. The

quality of the identified model is determined by how accurate the model can predict

or estimate actual system outputs. The part of the data that the identified model

could not reproduce is called the residuals, and is simply the difference between

the model and the true outputs. For residual analysis it would be advantageous

to consider the maximum residual error that has occurred over a specific time

horizon for a validation data set or true data set, ZN . The average residual error

can also be considered. These basic statistics are defined as follows [30]:

S1 = max
t
|ε (t)| (4.5)

S2
2 =

1

N

N∑
t=1

ε2 (t), (4.6)

where ε is the residuals. By considering residual statistics for historical data,

it can then also be assumed that these statistics will hold for future data sets.

However, the use of these statistics has an implicit invariance assumption: the

residuals do not depend on measured process data that is likely to change [30].

The latter implies that the residuals must not be directly dependant and related to

the system inputs used in the data set, ZN . If the residuals were related to system

inputs, the equations 4.5-4.6 would not be accurate model validation statistics for

future data sets. The values of equations 4.5-4.6 would be limited, since the model

will only work for a range of possible inputs. To determine if there is any direct

relationship between past inputs and the model residuals, it would be pragmatic

to consider the covariance between the model residuals and the past inputs [30]:

R̂
N

εu (τ) =
1

N

N∑
t=1

ε (t)u (t− |τ |). (4.7)

Deficiency in the identified model can also be determined by considering the

correlation among the residuals themselves as defined by equation 4.8. If the

correlation among the residuals are not small for τ 6= 0, then part of ε (t) could

have been predicted from past data [30]. This implies that the model outputs

could have been better predicted.

R̂
N

ε (τ) =
1

N

N∑
t=1

ε (t) ε (t− τ) (4.8)

Figure 4.3 illustrates the auto-correlation between the residuals of CV1 output

(CO2 slip) and the cross-correlation between the residuals of CV1 and past inputs.
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Figure 4.3: The auto-correlation and cross-correlation of residuals and MV1 with
output CV1.

The remainder of the residual analysis results for the identified Benfield process

model are illustrated in Appendix A. The auto-correlation of the residuals of all

the system outputs are illustrated, where it can be concluded from the results that

the auto-correlation value is small for τ 6= 0, which implies that the model outputs

could not have been predicted from past data. The cross-correlation between the

residuals and the past inputs are also illustrated, where it is concluded that the

statistics defined by equations 4.5-4.6 are valid, and can be used to predict future

model residual characteristics.

4.5 Process Analysis

4.5.1 Singular Value Decomposition

Through singular value decomposition (SVD), it is possible to obtain better in-

formation about the gains of the plant. The SVD plot for the identified Benfield

process model is illustrated in figure 4.4. It is concluded by considering the con-

dition number of the process (see expression 4.9), that the process model is ill-

conditioned: that is, some combinations on the input have a strong effect on the

output. The latter are illustrated in figure 4.4 where the maximum and minimum

singular values have substantial different directional gains in the bandwidth region

ωB < 0.01rad/sec.
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Figure 4.4: The singular value decomposition of the identified Benfield process.

γ (G)
def
=
σ̄ (G)

σ− (G)
(4.9)

4.5.2 Poles and Zeros of Identified Process

Right half plane (RHP) zeros are common in many multivariate systems [87]. The

limitations these RHP zeros impose on MIMO systems are similar to SISO sys-

tems, however due to the input directionality, the limitations are not so severe. In

figure 4.5, the poles and the zeros of the identified Benfield process are illustrated.

The RHP zeros close to the origin will have a detrimental effect on the control

performance at low frequencies. It can thus be concluded that it will be inherently

difficult to obtain tight control around low frequencies which is typically the case

for the Benfield process.

The spectral radius ( RHP pole = 0.95) for CV1-MV1 lie within the unit circle

boundary which implies that the model identified for the CV1-MV1 pair is stable.

Similar conclusions are drawn for the other CV-MV pairs.
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4.5.3 Step and Impulse Response

The step and impulse response of the identified Benfield process are illustrated in

in figures 4.6-4.7. With the step response, it is observed that for a bounded input,

the identified process model produces a bounded output. The model is thus stable.

4.6 Conclusion

The identification, validation and analysis of a process model for the Benfield

process was discussed in this chapter. The identification process consists of three

steps which are executed sequentially as many times as necessary to provide a pro-

cess model suitable for further analysis and implementation. The identification

process first involves the preprocessing of data used for system identification and

validation. This data preprocessing involves the removal of trends and means, as

well as the removal of possible low- and high frequency disturbances, which may

influence the identification process. The second step in the identification process

is the estimation of system parameters for different model structures. The model

structure with associated estimated parameters, with the best validation results

(step three) in terms of percentage fit and residual analysis, is selected.

The identified system model was analysed. The step- and impulse responses

were considered, where it was concluded that the identified process is stable. Con-

sidering the poles and zeros of the identified system, it was concluded that tight

control will be difficult to achieve at low frequencies, due to the presence of RHP

zeros near the origin. The singular value decomposition of the identified system

indicates that the system is ill-conditioned at low frequencies. Different combina-

tions of inputs have a strong effect on the output, where the individual MV s and

CV s are highly interactive.
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Figure 4.5: The poles and zeros for the individual MV and CV pairs.
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Figure 4.6: The step response of the identified Benfield process model.
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Figure 4.7: The impulse response of the identified Benfield process model.
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Chapter 5

A Subspace SID and FD
Methodology for the Benfield
Process

5.1 Introduction

In this chapter, the relevance and development of a subspace linear system identi-

fication methodology, and a fault detection methodology for the Benfield process

are discussed.

This chapter introduces and elaborates on the subspace methodology imple-

mented to identify the Benfield process that operates in a closed-loop environment

under Robust Multivariate Predictive Control Technology (RMPCT). Additional

to the development of the subspace identification methodology is the development

and discussion of the fault detection methodology used to detect abrupt and in-

cipient faults based on system parametric discrepancies.

Prior to the development of the corresponding subspace system identification

methodology, and the fault detection methodology, the assumptions and require-

ments under which such methodologies are developed and implemented are stip-

ulated in section 5.3. Section 5.4.1 elaborates on the requirements of the fault

detection methodology. The successful implementation of these requirements will

contribute to the efficiency, effectiveness and robustness of the system identifica-

tion and fault detection methodologies. Section 5.4.1 also discusses the assump-

tions under which the fault detection methodology is developed.

Section 5.3.1 elaborates on the subspace identification methodology, where it

has been generalised for a multiple input, multiple output system. A discussion
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on how to guarantee stability of the identified multiple input, multiple output

system is found in section 5.3.2. A discussion on the developed fault detection

methodology is found in section 5.4.2, where the hypothesis test used to evaluate

parametric discrepancies is stated.

5.2 A Subspace Approach for System Identifica-

tion

State-space based approaches are typically better suited to model and represent

MIMO systems. It was concluded from the literature survey done in chapter 2

that the application of prediction error methods to state-space models becomes

very complex in terms of generating a numerically robust canonical realisation.

The alternative, a full parametrisation of the state-space model would involve a

huge amount of parameters [28].

Subspace identification approaches make use of state-space based representa-

tion, where the main advantage is their low computational demand since well-

defined and known linear algebra tools (QR and singular value decomposition)

are used in the identification process. Subspace based approaches are also able

to deal well with MIMO systems, where subspace approaches are known to have

good numerical robustness [28].

A main difficulty in the identification of systems that operate in closed-loop

lies in the fact that any correlation between the past inputs and the disturbances

results in biased estimates, which degrade model integrity. Conventional subspace

identification methods (N4SID, MOEPS and CVA) are inferior to prediction error

methods when the data used for system identification are obtained in closed-loop.

Non-parsimonious models used for projection is directly responsible for inflated

parameter variance estimates [79]. A solution to this problem is to transform

these non-parsimonious models into parsimonious models by removing the non-

causal terms in the model. This is accomplished by partitioning the state-space

model row wise, where the partitioned equations are guaranteed to be causal

[79]. This methodology was adopted by Katayama and Tanaka [8] to remove non-

causal terms. It was decided to implement the subspace methodology proposed

by Katayama and Tanaka [8] for SISO closed-loop identification. The proposed

method of Katayama and Tanaka [8] uses extended state-space models that are

guaranteed causal. The condition of no correlation between the past inputs and
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disturbances was also addressed by Katayama and Tanaka [8], where the condition

is made absolute by doing orthogonal decomposition on the data sets.

A merit of the proposed subspace method of Katayama and Tanaka [8] is that

it can easily be applied to MIMO systems in the manner of the direct approach,

and that it does not include a model reduction step, needed in the joint input-

output approach.

5.3 Generalization of the 2-Stage ORT Subspace

Method for MIMO Systems

The subspace closed-loop system identification method proposed by Katayama

and Tanaka [8] was developed and tested for SISO systems, so it necessary to gen-

eralise the methodology for MIMO systems. Figure 5.1 illustrates a closed-loop

system, which will be used in the subspace identification procedure.

Figure 5.1: Closed-loop system [8].

The plant depicted in figure 5.1 is expressed as [8]:

y(t) = P (z)u(t) +Hp(z)ηy(t), (5.1)

where P (z) and Hp(z) are the plant and measurement noise filter, respectively.

The input and the output of the plant P (z) are u ∈ <p and y ∈ <m respectively

where them×p is the input×output dimensions of the plant P (z). The control

effort exerted by the controller C(z) to control the plant P (z) is expressed as:

u(t) = r2(t) +C(z) [r1(t)− y(t)] +Hc(z)ηu(t), (5.2)
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where r1(t) ∈ <m is a reference or setpoint signal. The exogenous input r2(t) ∈ <p

is a dither signal used to excite the plant dynamics for system identification. A

minimum phase transfer matrix, Hc(z), filters a white noise source, which results

in coloured noise inflicted on the control effort signal expressed by equation 5.2.

Katayama and Tanaka [8] formulated the following assumptions, under which

the derived subspace approach is valid. These assumptions are as follows:

A1: The feedback system is well posed in the sense that (u,y) are determined

uniquely if all the external signals are given.

A2: The feedback system is internally stable.

A3: The exogenous inputs (r1, r2) are sufficiently persistently exciting, and are

uncorrelated with white noises ηu(t) and ηy(t).

A4: There is no feedback from (u,y) to (r1, r2).

A5: Exogenous inputs and noises (r1, r2,u,y) are second order jointly stationary

processes with zero mean.

Assumption A2 can be relaxed for the exogenous input r1, since we are only

interested in identifying the plant model P (z).

5.3.1 Subspace identification method

The subspace method proposed by Katayama and Tanaka [8] is based on the Two

Stage method originally proposed by Van den Hof and Scharma [88]. Based on

the Two Stage method, Katayama and Tanaka [8] developed a joint input-output

subspace method of identifying closed-loop systems based on the orthogonal de-

composition method (ORT), and is consequently called the Two stage ORT sub-

space method.

The Two stage ORT method uses two consecutive orthogonal decompositions

to identify a system in closed-loop. The first orthogonal decomposition is solely

used for data pretreatment. Instead of estimating unmeasured disturbances as

was done by Ljung and Qin [79], before estimating the plant model, the measured

data are projected on a Hilbert space, generated by second order random variables

of the exogenous inputs, and joint input-output signals. This projection filters out

the stochastic data components which is directly related to the unmeasured dis-

turbances. It is however noted that since the projection onto the finite data space
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<[0,T ] cannot completely remove the stochastic components from the joint input-

output process, the projected data do contain some stochastic residuals, or noise.

In order to cope with these residuals the orthogonal decomposition (ORT) method

is employed to identify the system matrices.

Subspace methods make use of three different types of matrices to compute

and estimate the extended observability matrix, Γ̂, and system states, X̂. The

first type of matrix used in subspace methods is the block Hankel matrix, which

is defined as follows for the exogenous inputs (r1, r2), inputs u and outputs y

respectively:

R =

[
Rpast

Rfuture

]
=



r(0) r(1) · · · r(N − 1)
r(1) r(2) · · · r(N)

...
...

. . .
...

r(k − 1) r(k) · · · r(k +N − 2)
r(k) r(k + 1) · · · r(k +N − 1)

r(k + 1) r(k + 2) · · · r(k +N)
...

...
. . .

...
r(2k − 1) r(2k) · · · r(2k +N − 2)


∈<2k(p+m)×N

,

(5.3)

U =

[
U future

U past

]
=



u(k) u(k + 1) · · · u(k +N − 1)
u(k + 1) u(k + 2) · · · u(k +N)

...
...

. . .
...

u(2k − 1) u(2k) · · · u(2k +N − 2)
u(0) u(1) · · · u(N − 1)
u(1) u(2) · · · u(N)

...
...

. . .
...

u(k − 1) u(k) · · · u(k +N − 2)


∈<2km×N

,

(5.4)

Y =

[
Y past

Y future

]
=



y(0) y(1) · · · y(N − 1)
y(1) y(2) · · · y(N)

...
...

. . .
...

y(k − 1) y(k) · · · y(k +N − 2)
y(k) y(k + 1) · · · y(k +N − 1)

y(k + 1) y(k + 2) · · · y(k +N)
...

...
. . .

...
y(2k − 1) y(2k) · · · y(2k +N − 2)


∈<2kp×N

, (5.5)

where k is defined as the depth of the Hankel matrix, and k is a predetermined
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value chosen such that k > n, where n is the order of the system [8]. The vari-

ables, p and m are the output and input dimensionality of the system respectively.

The second type of matrix used in subspace methods is the extended observ-

ability matrix, Γ̂ of kth order which is defined as follows:

Γk =


C
CA

...
CAk−1


∈<k×p

. (5.6)

When all states of a process are observable, then (A,C) is observable. For a

state to be observable it is assumed that the initial state x0 can be determined

uniquely assumed the input is completely known. By constructing a kth order

extended observability matrix, the estimation of the (A,C) matrices are more

accurate.

The third type of matrix used in subspace methods is known as the Toeplitz

matrix Ψk, defined as follows:

Ψk =


D 0 · · · 0
CB D · · · 0

...
. . . D 0

CAk−2B · · · CB D


∈<km×N

. (5.7)

The Toeplitz matrix is used to estimate the (B,D) matrices of the process.

The Hankel, extended observability and Toeplitz matrices can easily be derived

by extending the input-output matrix equation Y t = CX t + DU t for k-steps,

using the state matrix equation, X t+1 = AX t +BU t, under the assumption that

that the input remains relatively constant (U t=k ≈ U t=k+1) over the extended

period.

From equations 5.3-5.7, the estimated extended state input-output matrix

equation can be defined as follows [8]:

Y future = ΓkXk + ΨkU future, (5.8)

Given the block Hankel matrices, the extended observability matrix, Γ, is

determined by first computing the linear orthogonal decomposition of the Hankel

matrices as follows [8]:

Department of Electrical, Electronic and Computer Engineering 90

 
 
 



Chapter 5 A Subspace SID and FD Methodology for the Benfield Process

RU
Y

 =

 M 11 0 0
M 21 M 22 0
M 31 M 32 M 33



QT

1

QT
2

QT
3

 , (5.9)

where M 11 ∈ <2k(p+m)×2k(p+m),M 22 ∈ <2km×2km,M 33 ∈ <2kp×2kp are lower trian-

gular (this reduces the non-causal terms of the estimated system model [89] mak-

ing the model parsimonious), and where QT
i Qj = Iδij [8]. From QT

1 = M−1
11R

in equation 5.9 can be seen that the deterministic components ,(Y,U), which are

linearly related to the exogenous inputs R, are given by:

[
Ud

Yd

]
def
=


U fd

U pd

Y pd

Y fd

 =

[
M 21

M 31

]
QT

1 , (5.10)

where M 21 ∈ <2km×2k(p+m) and M 31 ∈ <2kp×2k(p+m) [8] and subscripts fd and pd

are the future and past deterministic values.

From a successive orthogonal decomposition of the deterministic data compo-

nents, 
U fd

U pd

Y pd

Y fd

 =


L11 0 0 0
L21 L22 0 0
L31 L32 L33 0
L41 L42 L43 L44



ST1

ST2

ST3

ST4

 , (5.11)

where L11,L22 ∈ <km×km,L33,L44 ∈ <kp×kp are lower triangular and Si, i = 1, .., 4

are STi Sj = Iδij, it follows from equations 5.8 and 5.11 that the future output

Y fd can be expressed as [8]:

Y fd = ΓkXk + ΨkL11S
T
1

= L41S
T
1 +L42S

T
2 +L43S

T
3 +L44S

T
4 .

(5.12)

From expression 5.12, post multiplying 5.12 by S2, we have L42 = ΓkXkS2,

and further assumingXkS2 has full rank (refer to [90] for theoretical justification),

the extended observability matrix can be defined as follows [8]:

Im(Γk) = Im(L42), (5.13)

where the singular value decomposition of L42,
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SV D(L42) =
[
U 1 U 2

] [ Σ1 0
0 Σ2

][
V T

1

V T
2

]
≈ U 1Σ1V

T
1 . (5.14)

leads to the estimation of the extended observability matrix defined as:

Γk = U 1

√
Σ1. (5.15)

Only the most significant singular values Σ1, up to the nth order, are consid-

ered to approximate the extended observability matrix defined by equation 5.15,

where the least significant singular values Σ2 are discarded in equation 5.14.

The estimated system matrices (Â, B̂, Ĉ, D̂) can be determined from the es-

timated extended observability matrix by making use of the shift-invariance prop-

erty of the extended observability matrix. Refer to Appendix B for an in depth

discussion of the shift-invariance property. The estimate of Ĉ can be determined

as follow:

Ĉ = Γk (1 : p, 1 : n) , (5.16)

where n is the order of the estimated plant (determined by the order of the most

significant singular values Σ1 ) and p the number of outputs. The estimate of Â

can be determined as follows:

Â = Γ†k−1Γk ↑, (5.17)

where the dagger † is the pseudo inverse, and ↑ denotes the shift invariance oper-

ator.

Since UT
2 Γk = 0, and UT

2L42 = 0, pre-multiplying equation 5.12 by UT
2 , and

post-multiplying by Ŝ1 yields [8]

UT
2 Ψk(B,D)L11 = UT

2L41. (5.18)

The term Ψk(B,D) is linear with respect to the (B,D) parameters, given

the estimate of the extended observability matrix. The estimates of the (B,D)

parameters can easily be obtained by the least squares method. Refer to Appendix

B for more algorithm theory on how the (B,D) parameters can be estimated by

first estimating the Toeplitz matrix.
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5.3.2 Guaranteed estimated plant stability

The system matrix, Â, is estimated by using the shift invariance property of the

estimated observability matrix. The system matrix is estimated as follow:

Â = Γ̂
†
k−1

(
Γ̂k ↑

)
. (5.19)

For the estimated system matrix to be stable, it is necessary that the spectral

radius must lie within the unit circle:

ρ
(
Â
)

∆
= max

i

[
λi

(
Â
)]
≤ 1. (5.20)

The spectral radius of the estimated system matrix is not guaranteed to lie

within the unit circle when the Two stage ORT method is used. The estimated

plant model may thus be unstable, which will render it inadequate for fault moni-

toring. A possible solution which guarantees a stable system matrix was proposed

by Maciejowski [91]. The proposed method of Maciejowski [91] guarantees the

estimation of a stable system matrix. However, the cost of this benefit is the loss

of accurate estimation results, but in some applications that is outweighed by the

advantage of guaranteed stability. Possible applications that can take advantage

of this guaranteed stability is subspace algorithms that run online and unsuper-

vised, such as adaptive control or fault monitoring [91].

Maciejowski [91] proves that, by using the shift invariance property of the ex-

tended observability matrix and appending a block of zeros to the shifted extended

observability matrix, the estimated system matrix is guaranteed to be stable. The

guaranteed stable system matrix can be estimated as follows [91]:

Â = Γ̂
†
k




Γ̂k ↑(
0

. . .
. . . 0

)
pk


 . (5.21)

5.4 A Parametric Fault Detection Methodology

The utilization of advanced methods for process supervision, fault detection and

fault diagnosis becomes increasingly important for many technical processes. The

efficiency in which these advanced process monitoring methods are implemented

results directly in the improvement of process control reliability, safety and process

control efficiency.
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Classic process monitoring approaches that have been used for process moni-

toring in the past include trend monitoring of measurable output variables. The

disadvantage of these classical methods are that they do not provide deeper insight

of the faults, and there is no possible way of isolating or detecting faults in advance

[12]. More recent solutions to fault detection and process monitoring are based

on model based platforms, where input and output signals and the dynamics of

process models are used to detect faults. Well known model based fault detection

methods include parameter estimation, parity equations and state observers [56].

This dissertation investigates and tests the hypothesis, which states that ef-

ficient and reliable fault detection of a process is possible by considering and

monitoring process parameters. It is necessary to define requirements of such a

developed parametric fault detection methodology, as well as assumptions under

which such a fault detection method will operate.

5.4.1 Assumptions and Requirements

Prior to the development of a fault detection methodology, it is necessary to

state some requirements and assumptions for such a fault detection method. The

requirements of such a method are as follows:

R1: The developed fault detection methodology must not be computationally

intensive because it must be able to run online in real time.

R2: The method must not be dependant on the acquisition of large data sample

bundles to detect a fault. It is thus required of the fault detection method

to monitor the process by recursively calculating the process states or pa-

rameters.

R3: The developed fault detection methodology must have a fast parameter

tracking and convergence capability. However,

R4: the parameter tracking and convergence capability must be robust enough

to such an extent that its efficiency and accuracy is not jeopardised by the

unwanted influence of unmeasured and measured disturbances.

R5: The time in which a fault is detected must be minimised. It is thus essential

to combine fault detection with event forecast and consider fault prediction

in scenarios where parameter drift causes slight or no obvious change on the

measured system outputs.
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The assumptions of such a method are as follows:

A1: A very accurate system model (at least 65% process output prediction accu-

racy) is available to serve as a model based platform to estimate and predict

process states and parameters used for fault detection.

A2: Process parameters are considered to be time invariant, where an abrupt

change of a system parameter, or continuous parameter drift will be consid-

ered and detected as a system fault.

A3: Measured and unmeasured noise models are either available, or the influence

on system behaviour of these noise sources are minimised. This assumption

limits the amount of false fault detection alarms.

5.4.2 A Parametric Fault Detection Method using Kalman
filtering

Process monitoring and fault detection methods using process parameters has

been studied extensively since the early ’80s [26]. However, due to the difficulty

of identifying accurate system models from engineering first principles, parameter

monitoring fault detection methods have not been the predominant choice in pro-

cess fault detection. The estimation of process parameters using the least squares

estimation method is also computationally intensive and is thus not a feasible so-

lution for online process parameter monitoring.

Subspace methods have proven to be computationally efficient where no a-

priori process knowledge is necessary to estimate a system model. Subspace sys-

tem identification methods thus allow the user to identify black box models, which

can be used to monitor processes. The challenge in fault detection with subspace

methods comes in how to monitor and evaluate the vast amount of system pa-

rameters efficiently and accurately. Re-identification of the process using subspace

methods, necessary to track parameter changes, is also not a feasible solution to

fault detection. The reason is due to the vast amounts of data samples that are

necessary and which must contain well excited process dynamics.

An elegant solution to the fault detection problem using subspace identifica-

tion methods would thus be to identify a system process model using a subspace

method where the parameters of the subspace model are updated periodically as

new data becomes available. By updating the process parameters, without com-

plete system re-identification, the user is able to track parameter changes, which
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contribute to the fault detection problem.

Unmeasured and Measured Noise Attenuation

A requirement of a reliable and effective fault detection methodology is that it

needs to be robust and not generate false fault detection alarms. A cause of false

fault detection alarms is due to unmeasured noise sources that are inflicted on the

process. These noise sources must either be estimated and incorporated into the

noise model, or the influence of these noise sources needs to be attenuated. An

elegant solution to partially diminish the influence of unmeasured disturbances is

to take the orthogonal projection of measured data on a Hilbert space [8], thus

partially removing the stochastic noise components in the data used for parame-

ter updates and fault detection. This solution is similar to the data preprocessing

proposed by Katayama and Tanaka [8].

Extension of Kalman filtering theory for Parameter Estimation

The re-identification of accurate system parameters for a process that operates

in steady-state is a very time consuming operation. For processes in the chem-

ical process industry, this can take hours, if not days, to fully identify all the

process dynamics through sufficient process excitation. A feasible solution to re-

identify the process is to incorporate previous process model structures and only

to update model parameters as new data becomes available. The least square es-

timation method is the preferred choice of parameter estimation in the Prediction

Error Method (PEM) [30, 7, 26]. Complementing alternatives to the least square

estimation method includes the recursive least square estimation method, which is

computational efficient and suited for real time process parameter estimation, as

well as the weighted least square estimation method, which caters for data outliers

and enhance the robustness of the parameter estimation process [44, 46]. Section

2.3.4 gives a complete overview of the mentioned methods with their correspond-

ing advantages and weaknesses.

The Kalman filter is very closely related to the recursive least squares esti-

mation method [28]. However, the primary use of the Kalman filter is to be

implemented as a process state observer, and not a parameter observer. Modifica-

tions and extensions of the Kalman filter algorithm includes the extended Kalman

filter (EKF) algorithm [57, 92] and the unscented Kalman filter (UKF)[69]. The

EKF appends the states of the process that need to be estimated, with uniden-
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tified process parameters for further additional estimation, where the UKF is the

extension of the EKF to nonlinear systems that have discontinuities. An in depth

discussion is found in section 2.3.4.

Although the primary use of the EKF is to enlarge the state vector with un-

known parameters for estimation, the estimation of the process states can become

a computational burden if not truly needed [92]. In this dissertation, only the

estimation of the system parameters needed for fault detection is considered. A

fault detection method, that incorporates the EKF is proposes, which only esti-

mates the system parameters as new data vectorsU i,Y i becomes readily available.

For completeness sake, the state-space system of a process can be defined as

[92]:

x(k + 1) = Ax(k) +Bu(k) + v(k)

y(k) = Cx(k) +Du(k) +w(k) ,
(5.22)

where u(k),y(k) and x(k) are the input, output and process states respectively,

and v(k),w(k) are independent stochastic variables which act as unmeasured noise

sources on the process dynamics. To reduce the probability of unmeasured distur-

bances causing false fault detection alarms, data vectors U i,Y i generated by the

system equation 5.22 is projected on a Hilbert space, generated by second order

random variables [8]. Since the stochastic components ys(k),us(k),v(k),w(k) are

orthogonal on the defined Hilbert space, equation 5.22 can be defined as follows:

xd(k + 1) = Axd(k) +Bud(k)

yd(k) = Cxd(k) +Dud(k) .
(5.23)

The deterministic system state-space equation 5.23 can formally be redefined

for the parameter estimation problem as follows [28]:

θ(k + 1) = θ(k) + V (k)

Y (k) = X(k)θ(k) ,
(5.24)

where V (k) is a n-dimensional matrix representing the time variance of the pa-

rameters, which is modelled as random walk or drift [28]. However, this drift or

random walk is regarded as static and time invariant over a short period of time

(at least by definition of the settling time of a process).

For the state-space representation (equation 5.23) the parameters estimated

by the EKF are defined as:
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θ(k) =

[
A(θ) B(θ)
C(θ) D(θ)

]
Y (k) =

[
xd(k + 1)

yd(k)

]

X(k) =

[
xd(k)

ud(k)

]
.

(5.25)

The extended Kalman filter used for estimating the process parameters can

formally be defined as follow [92, 28]:

θ̂(k) = θ̂(k − 1) + γ(k)e(k)

e(k) = Y (k)− θ̂(k − 1)X(k)

γ(k) =
1

X(k)†P (k − 1)X(k) + λ
P (k − 1)X(k)

P (k) =
(
I − γ(k)X†(k)

)
P (k − 1) + V ,

(5.26)

where θ̂(k), X(k) and e(k) are the system parameters, estimated system states

and error in parameter deviation respectively.

The variance matrix of the parameters, V is updated periodically as new esti-

mated parameters at time t = k, k + 1, k + 2, · · · becomes readily available. This

allows the EKF to track each parameter individually with its own forgetting fac-

tor, which is a significant advantage over the recursive least squares algorithm

[28]. If no knowledge about the speed of the time variant behaviour is available,

the covariance matrix V can simply be set to V = ςI; 0 < ς � 1 [28]. The

latter implies a uniform tracking speed for all the parameters until tracking speed

statistics have been determined for the parameters. The adaptation matrix γ(k),

which determines the amount of parameter adjustment, is known as the Kalman

gain.

Parameter Matrix Norm Measurement and Fault Detection Hypothesis

The system parameters θ(k) =

[
A(θ) B(θ)
C(θ) D(θ)

]
can be updated on line in real

time. This is accomplished by solving equation 5.26 for each new available data

sample, U i,Y i, recursively, until a new set of system parameters converge to an

updated system parameter set θ̂(k + 1) =

[
Â(θ) B̂(θ)

Ĉ(θ) D̂(θ)

]
. This parameter set

is in essence a prediction of what the parameters of the system will be in the
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following time step given the data sample, U i,Y i.

To detect a fault in the predicted parameter set, it is thus necessary to com-

pare the predicted parameter set, θ̂(k+ 1), with the previous parameter set, θ̂(k).

This can be accomplished by considering appropriate matrix measures, which will

accentuate any fundamental parameter matrix differences.

The ‖•‖∞ matrix norm is proposed for detecting discrepancies between con-

secutive parameter sets. The ‖•‖∞ matrix norm used on the parameter sets can

formally be defined as follows:

dθ̂

dt
=

∥∥∥θ̂(ki+1)− θ̂(ki)
∥∥∥
∞

ki+1 − ki
. (5.27)

From equation 5.27, the rate of change for a parameter set is calculated using

the ‖•‖∞ matrix norm, where an abrupt change or continuous drift will be clas-

sified as a fault. The rate of change for consecutive parameter set matrix norms

needs to be evaluated, before a sound decision can be made whether a fault has

occurred. This can be done by formulating a hypothesis test, which evaluates the

rate of change for the parametric matrix norm. The hypothesis test is defined as

follow:

H0 :
dθ̂

dt
' 0→ No fault

H1 :
dθ̂

dt
> ξ → Fault .

(5.28)

The threshold value, ξ, determines the aggressiveness of the fault detection

evaluation criteria, and is set accordingly to three (this depends on the unidenti-

fied measurement and process noise present). By choosing a large threshold value,

ξ, the fault detection method will be robust against false alarms caused by noise

interference. However, small changes in the process dynamics, reflected in the

process parameters, might not be detected. By choosing a small threshold value,

ξ, the fault detection method will be sensitive to parameter changes but the prob-

ability of false fault detection alarms will increase. The threshold value, ξ, is the

percentage change on the previous maximum system parameter deviation error.

A typical fault will thus be detected if there is a sudden error deviation of 3% or

more on the previous maximum calculated parameter error deviation.
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5.5 Conclusion

In this chapter, the development of a multivariable linear subspace identifica-

tion methodology for the Benfield process, operating in a closed-loop environ-

ment under Robust Multivariate Predictive Control Technology (RMPCT), was

discussed. The developed subspace identification methodology is based on the

work of Katayama and Tanaka [8], who have developed a subspace identification

methodology for SISO systems. The same assumptions under which the sub-

space identification methodology for SISO systems were developed for, stated by

Katayama and Tanaka [8], were used for the development of the multivariable

subspace identification methodology.

A weakness of the developed subspace identification methodology for SISO

systems proposed by Katayama and Tanaka [8], is that the stability of the iden-

tified system model cannot be guaranteed. This shortcoming was addressed by

implementing a solution proposed by Maciejowski [91], which guarantees system

stability. The solution proposed by Maciejowski [91] states that the system stabil-

ity of the identified system model can be guaranteed. This guaranteed stability is

achieved by first appending the estimated observability matrix by a block of zeros,

before using the shift invariance property of the estimated extended observability

matrix. The proposed method of Maciejowski [91] guarantees the estimation of

a stable system matrix, however the cost of this benefit is the lost of accurate

estimation results, but in some applications that is outweighed by the advantage

of guaranteed stability. Possible applications that can take advantage of this guar-

anteed stability is subspace algorithms that run online and unsupervised, such as

adaptive control or fault monitoring [91].

In this chapter a model based fault detection methodology, used to monitor

parametric discrepancies in the system model was also developed. The accu-

rate identification of a system using a multivariable linear subspace identification

methodology requires a vast amount of sampled data, where the data must be rich

and informative. It is thus not a feasible solution to re-identify a subspace model

of the Benfield process operating in steady-state, where the newly identified model

is used for fault detection.

A model based solution to fault detection proposed in this chapter makes use

of the extended Kalman filter to estimate the subspace parameters, instead of the

system states, as new measured system data Ui, Yi becomes available. The esti-

mated system parameters is thus updated periodically with each new data sample
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Ui, Yi, where discrepancies between the system parameters are monitored by con-

sidering the infinity matrix measure norm.

A fault detection hypothesis test was defined which evaluates the infinity ma-

trix measure norms, and determines whether a fault has occurred or not. A thresh-

old value, ξ, is used to adjust the aggressiveness of the fault detection methodology.

By choosing a large threshold value, ξ, the fault detection method will be robust

against false alarms caused by noise interference, but small changes in the process

dynamics, reflected in the process parameters, might not be detected. By choos-

ing a small threshold value, ξ = 3, the fault detection method will be sensitive to

parameter changes but the probability of false fault detection alarms will increase.

Preprocessing of measured data samples Ui, Yi was considered to reduce the

probability of false alarms. Preprocessing includes the projection of the measured

data on a defined Hilbert space, orthogonal to stochastic data components (dis-

turbances present in the data). This idea is similar to the data prepossessing

proposed by Katayama and Tanaka [8] prior to system identification.
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Chapter 6

Subspace SID and FD
Methodology Evaluation:
Simulations

6.1 Introduction

This chapter validates the developed subspace system identification and fault de-

tection methodology that was proposed and developed in chapter 5. The evalua-

tion and validation of these methodologies is accomplished by extensive simulation

and analysis of the simulation results.

Prior to the experimental results of each developed methodology, the exper-

imental setup of the simulation environment will be discussed. In section 6.2 a

discussion follows on the environmental factors that will dominantly determine the

experimental outcome of the subspace methodology testing. The environmental

factors include the controller dynamics, the nominal process, the measured and

unmeasured disturbances and the persistent excitation signals used for system

identification.

Four experiments will be conducted for the subspace methodology. These

experiments will determine the capability of the subspace identification method-

ology in identifying the model of a process operating in a closed-loop environment

with white noise (flat power spectrum; see section 6.3.1) interference, as well a

coloured noise interference (see section 6.3.2). Further experiments that verify the

robustness of the subspace identification methodology and stability of the identi-

fied models will be conducted where the results will be discussed in sections 6.3.3

to 6.3.4 respectively.
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For the fault detection methodology, the experimental environment is defined

prior to any experiments in section 6.4. A discussion on the types of faults and a

motivation on how these faults are applicable in a real operating process will be

discussed in section 6.4.1.

Experiments for the fault detection methodology include the fault detection

of abrupt faults (see section 6.5.1), fault detection of incipient faults (see section

6.5.2) and validation of the robustness of the fault detect methodology (see section

6.5.3).

6.2 Experimental Setup: Subspace Identification

To evaluate the subspace identification methodology, it is necessary to define a

closed-loop environment that can be used for the validation and evaluation process

of the proposed method. Figure 6.1 illustrates the closed-loop environment used

to test the proposed subspace methodology. From figure 6.1, it is necessary to

define and discuss the four principle factors that will determine the dynamics of

the environment and outcome of the experiment. These are:

• The RMPCT controller, C(G0/P,M), as discussed in section 3.4.2.

• The nominal plant model, G0(θ̂) that was identified and analysed in section

3.3.

• Unmeasured and measured disturbances that act on the measured and con-

trolled variables.

• The persistent excitation signals, PE1 and PE2, used for the identification

process.

6.2.1 Controller Dynamics and Simulation Configuration

One particular MPC technology called Robust Multivariate Predictive Control

Technology (RMPCT), developed by Honeywell, is a control strategy used for

systems that are known to be complex and difficult to control. Synfuel has im-

plemented an RMPCT control philosophy to control the Benfield Process. The

advantage of RMPCT is that it permits the constraints on some or all controlled

variables to be de-activated during optimisation. This allows the optimisation

process to find an unconstrained solution with in a reasonable time [85]. The
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Figure 6.1: Closed-loop environment used for subspace SID evaluation.

RMPCT control philosophy is based on the MPC principles, where it uses a fi-

nite impulse (FIR) model form, one for each controlled-manipulated variable pair.

RMPCT uses two different kinds of optimisation functions namely error and profit

optimisation.

Since RMPCT is closely related to MPC, an MPC controller will be used to

control the nominal plant model. Features of the MPC control algorithm that can

be configured for closed-loop control is the prediction horizon, P , and the control

horizon, M . Additional features which can be specified for the MPC control al-

gorithm includes structured weights on the inputs ,Υu
l and input increments and

weights on the outputs, Υy
l . The stability of the closed-loop system primarily de-

pends on the prediction horizon, P , the control horizon, M , and the input-output

weighting matrices ,Υu
l and Υy

l respectively. The aggressiveness of the control

action is decreased by decreasing the control horizon relative to the prediction

horizon. Tuning the input weighting matrix, Υu
l , also has the effect of making the

control action less aggressive [84].

For the simulation case study, the execution time of the controller will be 15s,

which is similar to what the controller used by Sasol, Synfuel is configured to [85].

The prediction horizon, P , and control horizon, M , will be chosen accordingly

which results in a stable closed-loop system. The real prediction horizon, P , and

control horizon, M , values used by Sasol will be different from the values chosen

since it is impossible to replicate a simulation environment which is subjected to

all the factors that has an influence on the control philosophy. Table 6.1 defines

the configuration parameters used in the simulation case study.
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Table 6.1: MPC configuration parameter settings.

Parameter Symbol Value

Prediction Horizon P 10 samples
Control Horizon M 2 samples
Execution Time Tk 15s
Input Weights Υu

l [1 1 1 1]
Output Weights Υy

l [1 1 1 1]

6.2.2 Nominal Model of Benfield Process

In Chapter 4, a nominal model of the Benfield process operating in a closed-loop

system was identified and validated by using raw plant data as well as open-loop

step response data. Only the Potassium Carbonate wash stage was identified and

modeled. The plant which will be used for simulation is a linear multivariable plant

with four controlled variables (four inputs), and four manipulated variables (four

outputs). The definition of the controlled variables and manipulated variables are

defined in table 3.1. The process model of the Potassium Carbonate wash stage,

that will be used for simulation:


yMV1

yMV2

yMV3

yMV4

 =


0.0275

10.3s+1
0.0535(1.59s+1)
2.04s2+3.35s+1
0.0541(1.38s+1)
0.855s2+2.54s+1
0.0538(2.44s+1)

(1.54s2+2.49s+1)

uCV1 +


−0.0129(89.7s2+11.7s+1)

345s3+92.5s2+18s+1
e−3s

0.0121
3.8s+1

e−8s

0.02
3.36s+1

e−6s

0.0159(2.29s+1)
1.43s2+3.08s+1

uCV2

+


−0.00511(33.4s2+5.74s+1)

166s3+42.2s2+10.9s+1
e−3s

0.00865
1.27s2+2.64s+1

0.0052
1.55s+1

0

uCV3 +


−0.0176
24.9s+1

e−5s

0
0
0

uCV4 .

(6.1)

Although the validation results of the identified model of the Potassium Car-

bonate wash stage (using raw plant data) was the same for both the identified

model obtained by Sasol (64% average fit), and the identified model obtained (see

section 4.4 for discussion) by using the System Identification Toolbox of MATLAB

(63% average fit), it was decided to use the identified model of Sasol. The system

model identified by Sasol had a 1% improvement on the validation fit.

6.2.3 Measured and Controlled Variable Disturbances

To create a realistic closed-loop simulation environment, it is important to in-

troduce applicable noise sources to the system. These noise sources can either

be measured disturbances or unmeasured disturbances. The properties of these
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noise spectrums can also vary between white noise spectrums or coloured noise

spectrums. It has been shown that the best linear unbiased estimate of the true

parameters, θ̂Opt, can be found when the noise afflicted on the system is white [67].

If the noise is not white, it is intuitively clear that the noise properties have to be

considered in the estimation. With the least square estimation method the system

parameters can be estimated when coloured noise is introduced to the system, as

follows [28]:

θ̂ =
(
X†Ω−1X

)
X†Ω−1y, (6.2)

where Ω is the covariance noise matrix of the coloured noise, and X and y are

the regression matrix and the output of the system respectively. Although 6.2 can

improve the estimation quality considerably if the noise is highly correlated, the

major problem in practice is to determine the noise covariance matrix, Ω [28].

The strength of the subspace identification methodology proposed in section

5.3.1 is that no a-priori information about the noise, even for coloured noise,

is necessary. The projection of measured variables on a subspace orthogonal to

stochastic noise components (proposed by Katayama and Tanaka [8]) partially

removes the deteriorating influence that noise has on the estimation procedure.

To further attenuate the influence of unwanted noise signals, the estimation of the

system parameters is accomplished by implementing the ORT method.

It would be beneficial to consider the influence of both coloured noise and white

noise on the closed-loop system. It is further assumed that all noise sources are

unmeasured, since any measured noise source will automatically be incorporated

into the modelling of the system as well as the control of the system. The coloured

noise models in figure 6.1 are given by [8]:

Hp(z) =
z3 − 1.56z2 + 1.045z − 0.3338

z3 − 2.35z2 + 2.09z − 0.6675
, (6.3)

where it is assumed that coloured noise is only present on the measured outputs.

Figure 6.2 illustrates the Bode plot of Hp(z), which shows that the noise spec-

trum has a sharp peak around 0.75rad/s. Figure 6.3 illustrates the FFT of the

coloured noise model, which clearly shows the influence of noise in the low fre-

quency band where the Benfield process is especially sensitive to noise interference.
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Figure 6.2: Bode plot of the coloured noise model.

Figure 6.3: FFT of the coloured noise model.
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6.2.4 Persistent Excitation Signals

Persistent exciting signals on the reference inputs are necessary (PE1, PE2 illus-

trated in figure 6.1) that excite all the plant dynamics sufficiently, so that the

measured data sets are informative enough for system identification. Multivariate

pseudo random binary signals (PRBS) have been proposed and used by De Klerk

[7]. However, PBRS is inappropriate for nonlinear dynamic systems [28]. The

amplitude of PBRS is uniform which is not suitable to excite all non-linear plant

dynamics. Since the subspace identification method is a linear SID method, PRBS

should suffice for process identification. However, an amplitude modulated PRBS

(APRBS) signal will be used for identifying the process dynamics. The objective

is to generate data sets as rich and informative as possible for identification. By

considering the cross correlation of the residuals, it can be determined whether

the subspace SID method is appropriate to model and identify the Benfield process.

Synfuel has used structured open-loop step tests to excite the plant dynamics

[21] similar to APRBS signals used for system identification in the simulation en-

vironment. The Benfield process is additionally naturally excited by disturbances

on the rich (loaded with CO2) Potassium Carbonate solution feed. However, this

will not be included in the simulation, since the amplitude modulated PRBS used

for identification will exhibit sufficient process excitation.

6.3 Validation of the Subspace Methodology: Sim-

ulations

Structured simulation tests were conducted in order to validate and test the 2-

ORT Subspace SID methodology. This section describes the different experiments

that were conducted for the closed-loop system illustrated by figure 6.1.

6.3.1 Experiment 1: System Identification with White Noise
Interference

Objective

The objective of this experiment is to investigate the robustness of the 2-ORT

subspace identification method, when the closed-loop system is subjected to white

noise interference. Persistently exciting signals (noise signals with zero mean) will

be applied to both reference inputs, where unmeasured white noise sources will
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be introduced on both the measured variables and controlled variables respectively.

Experimental parameters

Parameters that are of importance for experiment 1 are tabulated in table 6.2.

Table 6.2: Experiment 1: Parameter configuration setup.
Description Value Unit

PE1 -10 dB
PE2 -10 dB
ηu -30 dB
ηy -30 dB

Hp(z) 1 Gain
Hc(z) 1 Gain

From table 6.2 one will notice that the gain of Hc(z) is one. This allows an

additional white noise disturbance to be present on the controlled variables which

is not applicable in the simulation case study where a coloured noise source is used.

Graphs of measurement

Apart from only using the 2-ORT subspace method to identify the Benfield pro-

cess, it would be insightful to implement the well-known and used N4SID and

ARX system identification methods in order to compare these methods. Table

6.3 tabulates the validation fit results for the three identification methodologies

for a closed-loop system as illustrated in figure 6.1.

Table 6.3: Validation fit results for 2-ORT, N4SID and ARX with white noise
interference.

ARX N4SID 2-ORT

y1 75.85% 28.21% 71.60%
y2 75.86% 3.72% 77.04%
y3 75.70% 0.3897% 74.22%
y4 76.40% 0.6069% 77.84%

The validation fit for the 2-ORT subspace identification method is illustrated

in figure 6.4. This validation fit spans over 1000 samples, where the sampling is

exact to the controller execution rate, Ts = 15s.
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Figure 6.4: Validation fit for the 2-ORT subspace identification method.
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Residual analysis bears information about the quality of the identified model.

The quality of the identified model is determined in how accurate the model can

predict or estimate actual system outputs. The residual analysis results for the

identified Benfield process model are illustrated in Appendix C, where the auto-

correlation and cross correlation of the residuals were considered.

Description of results

From the validation fit results, tabulated in table 6.3, one concludes that the bias

estimation problem that is experienced with traditional subspace methods imple-

mented for closed-loop system identification was addressed.

The 2-ORT subspace method has managed to identify the Benfield process

operating in a closed-loop system environment, and has estimated system param-

eters that are accurate and unbiased in closed-loop plant operation.

The 2-ORT subspace method performed just as well as the traditional ARX

identification method where PEM was used to estimate the system parameters.

The advantage of using the 2-ORT subspace method is that it has much less of a

computational burden to estimate the system matrices. Also, no a-priori system

structure knowledge or system order is necessary, which is not the case with the

traditional system identification methods.

The residual analysis results of the identified Benfield process as illustrated in

figure 6.5 (see Appendix C for additional residual analysis results) clearly indi-

cates that the model that has been identified is a reasonably good representation

of the real process. This conclusion is drawn from the fact that the autocorrelation

and cross correlation results of the residuals all lie within or close to the 99.9%

confidence interval boundaries.

6.3.2 Experiment 2: System Identification with Coloured
Noise Interference

Objective

The objective of this experiment is to investigate the influence of coloured noise

in the system identification process.
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Figure 6.5: The auto-correlation and cross-correlation of residuals and MV1 with
output CV2.

In the discussion in section 6.2.3 it was stated that with white noise interference

it is possible to obtain unbiased parameter estimation results. Coloured noise will

lead to biased parameter estimates, and thus render the identified process model

not suitable for further use.

In practice it is usually assumed that the disturbances that are inflicted on the

system has a flat noise spectrum, but when coloured noise is present, further iden-

tification of accurate noise models is necessary for accurate system identification

results.

This experiment will verify the effectiveness of projecting the measured data on

a subspace which is orthogonal to stochastic noise components, thereby removing

the interference of any noise. Again it would be insightful to compare the 2-ORT

subspace identification method with the traditional ARX method, using PEM to

estimate system parameters, as well as the N4SID subspace method.

Experimental parameters

Parameters that are of importance for experiment 2 are tabulated in table 6.4. A

discussion on the coloured noise filter, Hp(z), is found in section 6.2.3. Coloured

noise is introduced in the frequency band where the Benfield process is the most
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sensitive to interference.

Table 6.4: Experiment 2: Parameter configuration setup.
Description Value Unit

PE1 -0.1 dB
PE2 -0.1 dB
ηu -25 dB
ηy -25 dB

Hp(z) z3−1.56z2+1.045z−0.3338
z3−2.35z2+2.09z−0.6675

Gain

Hc(z) 1 Gain

Graphs of measurements

Table 6.5 tabulates the validation fit results for the three identification method-

ologies, similar to Experiment 1, for a closed-loop system as illustrated in figure

6.1.

Table 6.5: Validation fit results for 2-ORT, N4SID and ARX with coloured noise
interference.

ARX N4SID 2-ORT

y1 (−∞,∞) (−∞,∞) 69.67%
y2 (−∞,∞) (−∞,∞) 64.67%
y3 (−∞,∞) (−∞,∞) 66.76%
y4 (−∞,∞) (−∞,∞) 67.13%

The validation fit for the 2-ORT subspace identification method, with coloured

noise interference, is illustrated in figure 6.6. This validation fit spans over 1000

samples, where the sampling is similar to the controller execution rate, Ts=15s.

The residual analysis results for the identified Benfield process model, where

coloured noise is present on the measured outputs, are illustrated in figure 6.7 (see

Appendix C for complete residual analysis results). The autocorrelation and cross

correlation of the residuals were considered.

Description of results

The results in table 6.5 clearly indicate the devastating effect that coloured noise

has on the identification process. In table 6.5, the power of the persistent ex-

citation signals has been increased. The power of the coloured noise source has
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Figure 6.6: Validation fit for the 2-ORT subspace identification method.
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Figure 6.7: The auto-correlation and cross-correlation of residuals and MV1 with
output CV2.

also been increased slightly, so that an acceptable signal to noise ratio is obtained

for simulation. The 2-ORT subspace identification method was able to produce

acceptable model validation results. The traditional system identification meth-

ods, N4SID and ARX, failed to produce any consistent or reliable results. The

coloured noise present resulted in biased estimates for the PEM framework used

with the ARX identification methodology. The N4SID methodology had increased

inflated variances and biased parameter estimates since closed-loop data were used

for identification, where the presence of coloured noise further deteriorated the pa-

rameter estimation results. Even with an increase in persistent excitation power

and a drastic decrease in the power of the coloured noise source, both the N4SID

and ARX methods were unable to produce stable models.

The coloured noise present on the measured outputs results in measured data

sets that produce biased parameter estimates. These biased parameters lead to

unstable systems. The only solution to prevent biased parameters is to introduce

white noise power levels that are substantially higher than the noise levels of the

coloured noise. This diminishes the effect of the coloured noise source, where one

portion of the frequency band of the plant dynamics is excited more, with higher

gains, than other sections of the frequency band. White noise leads to process

dynamic excitation over the entire frequency band of plant operation, thus pre-
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venting the estimation of biased parameters. The projection of measured data on

a subspace that is orthogonal to stochastic components in the measured data is

thus a feasible solution to prevent coloured noise producing biased parameters.

From the residual analysis results illustrated by figures C.16-C.30, the deterio-

rating effects of coloured noise can clearly be observed. The autocorrelation of the

residuals needs to have a flat spectrum, for an estimated model, to be unbiased.

It can thus be concluded that the estimated model is biased, since the autocorre-

lation of the residuals lies outside the 99.9% confidence boundaries. However, the

validation fit is still acceptable which indicated that the estimated model can be

used for fault detection.

The cross correlation of the residuals indicates the independence between resid-

uals and past inputs. The model estimated by the 2-ORT method is good, since

the cross correlation results of the residuals and past inputs that lie within the

99.9% confidence region.

6.3.3 Experiment 3: Signal-to-Noise Ratio Robustness

Objective

The objective of this experiment is to determine the robustness and efficiency of

the 2-ORT subspace identification method for the Benfield process operating in

closed-loop under different levels of persistent excitation power and noise levels.

In this experiment, it will be assumed that the noise levels will remain constant,

while the power levels of the reference signals will be adjusted accordingly.

Experimental parameters

The experimental parameters are tabulated in table 6.6. It is assumed that white

noise will act as a disturbance on both the measured variables, as well as the

controlled variables.

Graphs of measurement

Figure 6.8 illustrates the average percentage validation fit for the four measured

variable outputs,
[
yMV1 yMV2 yMV3 yMV4

]T
. The model to be identified, was

subjected to constant white noise interference on both the controlled variables

and measured variables, while the reference signals’ power used to excite the plant
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Table 6.6: Experiment 3: Parameter configuration setup.
Description Value Unit

PE1 [-20,9] dB
PE2 [-20,9] dB
ηu -30 dB
ηy -30 dB

Hp(z) 1 Gain
Hc(z) 1 Gain

dynamics was varied according to table 6.6.

Description of results

From figure 6.8 it can be concluded that the 2-ORT subspace identification method

is robust against white noise interference on both the controlled variables and mea-

sured variables respectively. The 2-ORT subspace identification method model

identify valid and stable process models consistently. It is further observed that

the 2-ORT subspace identification method is able to produce accurate model val-

idation fits, with a 50% validation fit, for signal to noise ratio’s (SNR) defined by

equation 6.4:

(
PEi
N0

)
SNR

> 4.5. (6.4)

6.3.4 Experiment 4: Identified System Stability Investiga-
tion

Objective

The objective of this experiment is to verify the stability of the identified sys-

tem. The identified system stability is guaranteed for the proposed method of

Maciejowski [91]. The stability of the system will be evaluated by considering the

spectral radius (see expression 5.20) of the system matrix.

Experimental parameters

In this experiment, the closed-loop system will be subjected to excessive levels

of unwanted unmeasured noise on both the controlled variables and measured

variables. Excessive noise can cause the 2-ORT subspace identification method
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Figure 6.8: Robustness and model identification consistency of the 2-ORT sub-
space identification method.
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to identify models that are unstable, rendering them unsuitable for fault detection.

The 2-ORT subspace identification method will be used to identify and update

a nominal identified model with each new available data set UN ,Y N . If there is

no improvement on the nominal model, then the new data set UN ,Y N will be

discarded since it is not informative enough to provide new insight into unidentified

dynamics. The eigenvalues of the system matrix of the nominal model will be

monitored for signs of unstable poles. The parameters used for experiment 4 are

tabulated in table 6.7.

Table 6.7: Experiment 4: Parameter configuration setup.
Description Value Unit

PE1 10 dB
PE2 10 dB
ηu -0.1 dB
ηy -0.1 dB

Hp(z) 1 Gain
Hc(z) 1 Gain

N 2000 Samples

Graphs of measurement

Figure 6.9 illustrates the spectral radius for the two case scenarios. Case 1 for the

case where no system matrix stability monitoring is done. In case 2 the extended

observability matrix was derived as proposed by Maciejowski [91] to guarantee

system stability.

Figure 6.10 illustrates the corresponding average validation fit percentage for

case 1 and case 2 respectively.

Description of results

From figure 6.9 it can be concluded that system stability is guaranteed when the

extended observability matrix is appended by a block of zeros as proposed by Ma-

ciejowski [91]. The spectral radius for case 1 indicates that unstable models are

unavoidable; but in case 2, the maximum pole location always lies within the unit

circle.
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Figure 6.9: Spectral radius inspection for nominal model updates.

The drawback of guaranteed stability can be observed in figure 6.10. For guar-

anteed system stability, the average validation fit is not as good compared to when

there is no restriction on pole locations.

In Case 1, where there is no restriction on pole locations, the results of valida-

tion fits are slightly better (78.172%), compared to validation fits when there is a

restriction on pole locations (77.796%) (case 2).

For fault detection and monitoring, the cost of this benefit is outweighed by

guaranteed system stability.

6.4 Experimental Setup: Fault Detection

Although the fault detection methodology was developed as a separate unit, it

relies and functions closely to the 2-ORT subspace identification methodology.

The 2-ORT subspace identification methodology needs a vast amount of mea-

sured data to estimate accurate system models, and it can take a considerable

amount of time for an identified model to be updated with system parameters

that are more accurate, which results in a better data validation fit. The fault

detection methodology on the other hand can update the system parameters -
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Figure 6.10: Average validation fit percentage for nominal model updates.

Figure 6.11: Fault detection and subspace SID system overview.

using the extended Kalman filter - with each new available measured data sample,

uk, yk. However, it is unable to accurately estimate the initial parameter values,

the system order and the structure structure.

The role of the 2-ORT subspace identification methodology is thus to identify

and determine accurate system parameters, system order and structure, and to

update the system parameters with each measured data validation fit improve-

ment. The task of the fault detection methodology is to track system parameters

between updates periodically by the 2-ORT subspace identification methodology.

Figure 6.11 illustrates the interconnected relationship between the fault detec-

tion methodology and the 2-ORT subspace identification methodology.
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6.4.1 Classification of Faults for Simulation

In order to test the proposed fault detection methodology, it is necessary to gen-

erate system faults artificially. As discussed in section 2.3.2, faults can be either

classified as abrupt faults (stepwise), incipient faults (drift) or intermittent faults

[56].

Faults at an early stage are referred to as incipient faults due to inherent

difficulty in detection and isolation. The presence of incipient faults is often un-

noticeable in system measurements. This means that traditional fault detection

methods are less likely to successfully detect and isolate incipient faults [10]. In-

cipient faults will most likely be detected by the 2-ORT subspace identification

methodology, since a substantial drift in parameters will only be picked up after

a while.

To simulate incipient faults, pole and zero locations will be adjusted in small

decrements or increments such that there is no immediate change on the mea-

sured system outputs. In practice, the poles and zeros of a process can deviate

from initial locations due to physical process deterioration. One example of phys-

ical process deterioration is due to the corrosive nature of the carbonate solution.

The Benfield plants have mainly been built from carbon steel and thus require

corrosive protection. However, over time the corrosive nature of the carbonate

solution changes the process dynamics that will influence the system control per-

formance [85]. More abrupt physical process deterioration is pipes that build up

with residue, constricting process flow.

Abrupt faults can either be sensors, valves or actuators that malfunction.

Valves that are also operating near their operating boundaries may result in un-

stable process dynamics. Biased sensors and biased actuators can also be a cause

for abrupt faults.

Abrupt faults can be introduced artificially by changing pole locations (repli-

cate the unpredictable and unstable dynamics of valves near operating bound-

aries). Sudden changes in the gain will also contribute to abrupt faults (biased

sensors and biased actuators).
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6.5 Validation of the Fault Detection Methodol-

ogy: Simulations

Structured simulation tests were conducted to validate and test the fault detection

methodology. This section describes the different experiments that were conducted

for the closed-loop system setup, illustrated by figure 6.1, and the fault detection

methodology using the configuration illustrated by figure 6.11.

6.5.1 Experiment 5: Fault detection of abrupt faults

Objective

The objective of this experiment is to introduce abrupt process faults to the plant

dynamics. Abrupt faults will be generated by a sudden change in pole or zero

locations, or an abrupt change in process gains. These abrupt faults will replicate

faults associated with valves that are operating near operational boundary limits

or valves and actuators that are biased.

Experimental parameters

In this experiment, the closed-loop system will be subjected to excessive levels

of unwanted unmeasured noise on both the controlled variables and measured

variables respectively. The aim is to determine how effective the fault detection

methodology is in presence of excessive levels of unwanted unmeasured noise. The

experimental parameters are tabulated in table 6.8.

Table 6.8: Experiment 5: Parameter configuration setup.
Description Value Unit

PE1 -1 dB
PE2 -1 dB
ηu -15 dB
ηy -19 dB

Hp(z) 1 -
Hc(z) 1 -
NSID 2000 -
KN 20 -
λ 0.9 -
V 10−5 -
ξ 100 ∆err%
terr 30; 75; 120 102s
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The threshold value, ξ, is configured to be robust against false alarms. A fault

will thus only be detected if there is an error deviation of at least 100% or more on

the previous maximum error between the nominal parameters and the estimated

parameters.

The parameter λ is configured to provide acceptable robustness against dis-

turbances but not set to the maximum of 1, thus allowing the extended Kalman

filter to track parameter changes fast.

The covariance properties of the parameters are initially unknown, thus an

initial small covariance factor, V = 10−5 is set accordingly.

For every NSID = 2000 consecutive sample, the 2-ORT subspace methodology

will attempt to identify and update the system parameters if it manages to identify

previously unidentified dynamics, resulting in more accurate model parameters.

In this re-identification process, the possibly of parameter drift which could not

be picked up by the Kalman filter will be detected.

The Kalman filter recursively (the amount if recursive steps is arbitrarily cho-

sen as KN = 20) calculates a new set of parameters with each new available set

of measured system variables, ui, yi, before determining the parameter deviation

via the infinity matrix norm measurement.

The simulation time, t=15000s, results in 1000 samples to be analysed for

faults with a sampling time of Ts = 15s. An artificial process fault will be gener-

ated at terr = 3000s, which will replicate a 50% gain attenuation due to a biased

actuator or valve on the CO2 (CV1) feed. At terr = 7500s, a process pole will

move from p = −3.8 to p = −4.3, and at terr = 12000s, a process zero will move

from z = −0.54 to z = −0.41.

Graphs of measurement

Figure 6.12 illustrates fault detection when process dynamics have deviations in

terms of gain, pole and zero locations. Figures 6.13 and 6.14 are the measured

output variable behaviours of the process as abrupt process faults occur, and the

corresponding states of the system used for the parameter estimation respectively.
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Figure 6.12: Infinity matrix norm error detection with abrupt process faults.

Figure 6.13: Measured system output behaviour with abrupt faults.
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Figure 6.14: Process state behaviour with abrupt process faults.

Description of results

From figure 6.12, it can be concluded that the fault detection methodology is

successful in picking up abrupt changes in pole/zero locations as well as process

gain changes. However, it is important to note that faults that affect the process

dynamics more will be detected earlier and easier. An example is seen by the

detection of gain changes at terr = 3000s. Abrupt gain changes in the CO2 (CV1)

feed results in erratic behaviour in both the measured outputs as well as the states.

However, pole/zero locations that deviate a little are in some cases unnoticeable.

This reduces the efficiency in which an abrupt fault can be detected. The risk in

pole/zero location changes is that the system can become unstable which results

in a loss of product quality. In the simulation case study abrupt faults were gen-

erated at terr = 3000s, 7500s, 12000s, where the plant was configured to be fault

free again after each abrupt process fault. This is necessary only for illustration

purposes to vividly illustrate process faults.

Two major contributing factors that determine the efficiency and accuracy of

the fault detection methodology is the influence of unmeasured disturbances, and

the accuracy of the nominal model that is used for fault detection. A nominal

model that does not represent all the applicable system dynamics of the process

plant will be insensitive to process changes, thus rendering the fault detection

methodology useless. Sporadically high power levels of unmeasured disturbances
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can cause the process to behave abnormally temporarily, which can be the cause

of a false alarm. Through trial and error and by investigating previous process

behaviour, it is necessary to optimally configure the threshold value, ξ, to limit the

amount of false alarms, but still be sensitive enough to slight process parameter

deviations.

6.5.2 Experiment 6: Fault detection of incipient faults

Objective

The objective of this experiment is to evaluate the effectiveness of the proposed

fault detection methodology in detecting incipient faults. Incipient faults are clas-

sified as faults that have a small effect on the measured output variables and

states of a system operating in steady-state. It is thus very difficult to detect

these faults, since both the output and state estimates are used in estimating new

process parameters used for fault detection.

The robustness of the fault detection methodology is also addressed, where it is

necessary to distinguish between disturbances resulting in momentarily measured

variable deviation and true incipient faults.

Foaming and flooding is due to differential pressure deviations. To prevent

foaming and flooding, the fault detection methodology must be sensitive enough

to detect small unwanted deviations in the differential bed pressures.

Experimental parameters

In this experiment it is necessary to distinguish between true incipient faults and

the effects of unmeasured disturbances on the measured output variables. It is

thus essential for this experiment that the nominal model used for estimating sys-

tem parameters with newly available data sets, ui,yi, to be very accurate. Table

6.9 tabulates the parameters used for this experiment.

From table 6.9, a fault will be artificially generated at terr = 10500s. The aim

of the fault is to cause slight deviations of the differential bed pressures which is

the major cause for flooding and foaming.
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Table 6.9: Experiment 6: Parameter configuration setup.
Description Value Unit

PE1 1 dBW
PE2 1 dBW
ηu -35 dBW
ηy -10 dBW

Hp(z) 1 -
Hc(z) 1 -
NSID 2000 -
KN 20 -
λ 0.9 -
V 10−5 -
ξ 65 ∆err%
terr 105 x10−2s

Graphs of measurement

Figure 6.15 illustrates the detection of an incipient fault resulting from slight de-

viations of the differential bed pressures. The slight deviations of the differential

bed pressures (CV1-CV3) are illustrated in figure 6.16, where figure 6.17 illustrates

the system states of the process.

Description of results

An incipient error was generated at terr = 10500s. It is observed from figures 6.16

and 6.17 that the effects of the incipient fault at terr = 10500s is visible in the

measured system outputs and states of the process.

The deviations of the differential bed pressures as observed from figure 6.16

are very small, where the CO2 slip (CV1) was not even visibly affected; however,

this may cause unwanted flooding and foaming.

The difficulty of detecting incipient faults is illustrated by figure 6.15. The

threshold value, ξ, used for detecting incipient faults needs to be much smaller to

detect abrupt faults. With severe noise interference, it might become impossible

to differentiate between a fault and temporary disturbances on the system param-

eters.
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Figure 6.15: Infinity matrix norm error detection with incipient process faults.

Figure 6.16: Measured system output behaviour with incipient faults.
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Figure 6.17: Process states behaviour with incipient process faults.

6.5.3 Experiment 7: False alarm robustness test

Objective

The objective of this experiment is to determine how robust the fault detection

methodology is against false alarms. A factor that will contribute to false alarms

is inaccurate nominal process models used for parameter estimation. Sporadic

unmeasured disturbances, which have not been accounted for, can force the pro-

cess into unstable states temporarily, causing false alarms. It is also necessary

to consider the threshold value, ξ, which serves as a tradeoff between false alarm

robustness and sensitivity to incipient faults.

Experimental parameters

The simulation parameters are tabulated in table 6.10. The interference of unmea-

sured disturbances on the measured outputs and controlled variables is limited.

The reference signal is adjusted to be able to inspect the behaviour of the fault

detection methodology under severe system state and measured variable fluctua-

tions in system execution.
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Table 6.10: Experiment 7: Parameter configuration setup.
Description Value Unit

ηu -35 dBW
ηy -15 dBW

Hp(z) 1 -
Hc(z) 1 -
NSID 2000 -
KN 20 -
λ 0.9 -
V 10−5 -
ξ 100 ∆err%

Figure 6.18: Infinity matrix norm error detection.

Graphs of measurement

Figure 6.18 illustrates the infinity matrix parametric norm for reference adjust-

ments applied to the process. The measured output variables are illustrated in

figure 6.19, where the reference setpoint for each CVi is adjusted every 300 seconds.

Figure 6.20 illustrates the process states of the system as it returns to steady-state

after each reference adjustment.
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Figure 6.19: Measured system outputs.

Figure 6.20: Process states.
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Description of results

From figure 6.18, a flat error time graph is observed, even under severe normal

measured output and system state fluctuations. The fault detection methodology

is thus robust against normal process output and state fluctuations as expected.

It should however be noted that the nominal model that was used for estimating

system parameters had a validation fit of 80%. A lesser fit would reduce the ac-

curacy of the newly updated system parameters. The use of inaccurate process

parameters will be inefficient for accurate parameter tracking, increasing the prob-

ability of false fault detection alarms.

For the simulated scenario a choice of threshold value of ξ = 100 should be

sufficient and robust against possible sporadic false alarms. This threshold value

indicates that any matrix norm measurement over 100% of the previous maximum

error value will cause an alarm. In the case of figure 6.18 a fault will typically be

detected for norm amplitudes exceeding 2.5. With decreasing nominal modal accu-

racy, the threshold value needs to be increased, since parametric fluctuations due

to poor parametric estimation models may result in false fault detection scenarios.

The appropriate configuration of the threshold value guarantees that the fault

detection system is robust against temporary sporadic process behaviour. It thus

increases the tolerance of false process faults caused by unmeasured disturbances

inflicted on the system temporarily, or severe controller switching (which is typ-

ical for MPC applications). False process faults can typically be abrupt process

stepping on the process inputs. An inaccurate model would not be able to update

accurate process parameters from the data measured when the process is not in

steady state. However, this fault is temporarily and will be detected as a false

alarm with the incorporation of a threshold value.

6.6 Conclusion

In this chapter, experiments were conducted to validate and evaluate the efficiency

of the proposed 2-ORT subspace identification methodology and fault detection

methodology that were proposed in Chapter 5.

Simulation environments were defined for both the 2-ORT subspace identifi-

cation methodology and fault detection methodology that replicates the real-time

environmental conditions of an operational plant as close as possible.
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From simulation experiments for the 2-ORT subspace identification method-

ology, it was concluded that the proposed subspace methodology outperforms

classic subspace identification methods (N4SID). Classic subspace identification

methods fail to identify and produce stable and accurate models of plants operat-

ing in closed-loop environments. The prediction error method, traditionally used

for closed-loop system identification, estimated accurate unbiased system param-

eters but was unable to outperform the proposed 2-ORT subspace identification

methodology in terms of closed-loop validation data fits. The identification results

for both the PEM and 2-ORT subspace method were almost identical. However,

the computational burden of estimating system parameters by using the PEM

methodology outweighed that of the 2-ORT subspace methodology.

A strength of the 2-ORT subspace identification methodology is the ability of

the method to produce guaranteed stable models. This is a major advantage over

the traditional PEM method when the closed-loop system is subjected to unmea-

sured coloured noise interference. It was observed from experiment 6.3.2 that the

traditional PEM methodology failed to produce any stable models due to coloured

noise interference. In contrast, the 2-ORT subspace identification methodology

still managed to produce stable models.

The proposed fault detection methodology proves to be robust against unmea-

sured disturbances; and through various experiments, it was concluded that the

fault detection methodology is able to detect both abrupt and incipient faults.

The extended Kalman filtering method is an effective and efficient way to track

the estimated system parameters, obtained by the 2-ORT subspace identification

methodology, by using newly available data sets ui,yi. The drift of system param-

eters, which is too subtle to be directly detected by the fault detection method, is

addressed by re-identifying system parameters (using the 2-ORT subspace iden-

tification methodology), and to update the initial parameters used by the fault

detection method. The updating of system parameters is done periodically as the

2-ORT subspace identification methodology manages to estimate system param-

eters that result in improved data validation fits.

Experimental outcomes for both the 2-ORT subspace identification method-

ology and fault detection methodology proved to be very favourable. However, it

should be noted that in practice, the possibility of obtaining similar results and

conditions are very rare. Challenges and requirements that need to be addressed
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are the availability of measured data sets of reference inputs, and the persistent ex-

citation signals used on these reference inputs. Sporadic unmeasured disturbances

can also result in poor identification results and false fault detection alarms, when

exceeding critical threshold values. The next chapter deals with the identification

and process monitoring using real time process data.
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Chapter 7

Subspace SID and FD
Methodology Validation: Real
Process Data

7.1 Introduction

This chapter evaluates and validates the 2-ORT subspace identification method-

ology and fault detection methodology as proposed in Chapter 5. Real process

data from the Benfield East process, operational at Secunda, South Africa, were

obtained, where the process was operating under normal process conditions in a

closed-loop environment.

The objective of this chapter is thus to evaluate how capable the 2-ORT sub-

space identification methodology is in identifying an accurate and reliable process

model when limited process excitation is available, and where the process is oper-

ating in the closed-loop environment. Another objective is to implement the iden-

tified process model as a prediction model used for fault detection, and validate

the efficiency of the fault detection methodology to detect faults by monitoring

parametric discrepancies.

Validation of the 2-ORT subspace identification methodology is accomplished

by using the 2-ORT method to identify two process models. The one process model

will be identified using open-loop test data, where the second process model will

be identified using closed-loop data. The identified models will be compared to

each other by considering validation fits and residual analysis of each model in

section 7.2.2.

Analysis of the process models is discussed in section 7.2.3, where the pole
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and zero locations of the models as well as the step response and Bode plots are

considered.

The fault detection methodology is evaluated and validated by monitoring real-

time measured process data, also obtained from the Benfield East process. These

data were measured in the month of August and September, 2004. Scenarios that

depict process foaming (section 7.3.1) and process flooding (section 7.3.1) which

are each deemed as operational problems, and the efficiency in which the fault

detection methodology detects these faults, are investigated.

7.2 Subspace Identification Methodology Vali-

dation

This section evaluates and validates the developed 2-ORT subspace identifica-

tion methodology, as proposed in Chapter 5. Directly measured raw plant data

were used for the identification process. Both measured open-loop data as well as

measured closed-loop data were used for the identification of two separate process

models; which will be compared. The measured open-loop data were obtained from

the process, where structured step-testing was conducted to excite the appropriate

plant dynamics. No structured step-testing was allowed for the process operating

in a closed-loop environment, thus resulting in limited process dynamic excitation.

From Chapter 4, it was concluded that the best and most appropriate way

to identify the process dynamics is to isolate each individual MV-CV pair, and

identify each pair separately. It was further noted in Chapter 4 that the corre-

sponding MVs must be isolated in reference to each other. This is necessary since

the process that needs to be identified is not decoupled, which implies that the

corresponding CVs are excited by all the MVs simultaneously. The mentioned ap-

proach works well when structured open-loop step-testing is conducted, since only

one MV is adjusted and controlled. In the closed-loop process environment, all the

MVs are adjusted simultaneously in order to control the process optimally. A huge

data set thus needs to be incorporated for the identification process in closed-loop.

The persistently excitated exogenous inputs, (r1, r2), are set-points or test sig-

nals used for identification and were previously defined in section 5.3.1. Katayama

and Tanaka [8] required that these exogenous inputs must satisfy persistent ex-

citation conditions, and must also be uncorrelated with white noise. For the

Department of Electrical, Electronic and Computer Engineering 137

 
 
 



Chapter 7 Subspace SID and FD Methodology Validation: Real Process Data

simulation case study conducted in Chapter 6, it was possible to adhere to the

mentioned requirements, but unfortunately the mentioned requirements are not

met with a real operating process plant. The Benfield process operates in steady

state for long periods of time, where natural excitation due to unmeasured dis-

turbances, are limited. Further, no or limited structured step-testing is allowed

for the Benfield process, since the latter will influence the product quality. Not

adhering to the exogenous input requirements implies that it is not possible to

fully identify the non-linear process dynamics of the process. However, since a lin-

ear subspace identification methodology is used, identifying non-linear dynamics

will not contribute to the system model since it cannot be accurately modelled

by using a linear structure. The question that thus arises is what the purpose of

the identified process model is and how will the process model be used. In this

case, the identified process model will be used for predicting process behaviour

which will be used for fault detection. The latter implies that the accuracy of the

identified process model is not as critical as for the case when the model is used

for control purposes, however this statement can only be confirmed when the fault

detection results are analysed.

7.2.1 Subspace Identification using the 2-ORT subspace
methodology

Structured step-testing on open-loop process operation

The data segments that were used in identifying the initial process model in section

4.4, as well as the data segments used for validating the identified initial process

model, as well as models obtained from Sasol will also be used in this section.

The motivation for this choice is to prevent biased results, which can result due

to data sets that are more or less informative (the information content of a data

set depends on how well the process dynamics were excited).

It would also further be insightful to compare the 2-ORT subspace identifi-

cation results of the corresponding MV-CV pairs, with the results obtained from

traditional identification procedures used in the MATLAB Identification Toolbox.

Parameters which can be configured for the 2-ORT subspace identification

methodology are the Hankel matrix depth, k, and the order of the identified sys-

tem model, n. The order of the identified model is determined automatically when

only the most significant singular values, up to the (nth) order, of the extended

observability matrix are used to determine the final system matrices (for a more
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in-depth explanation refer to section 5.3.1). The Hankel matrix depth, k, is a user

defined value [8]. To obtain the best possible identification results, the Hankel

matrix depth k will be iteratively adjusted until an optimal validation fit was ob-

tained for each corresponding identified MV-CV pair.

Table 7.1: MV-CV Identification results.
MV1 MV2 MV3 MV4

CV1

47/10

56%/44%

42/10

6.3%/6.2%

43/18

16.6%/0%

40/13

4.8%/8.5%

CV2

45/15

65%/63%

50/13

2.9%/2.6%

46/9
33%/26%

40/9
2.8%/1%

CV3

45/11

60%/53%

43/19

0.4%/0%

41/14

30%/22.2%

45/12

7.4%/1.6%

CV4

44/14

60%/51%

50/20

4.2%/7.8%

43/18

22%/7.9%

37/20

4.2%/1.1%

Table 7.1 tabulates the results which contains the choice of Hankel matrix

depth, k, optimal system order, n, as well as the validation fit obtained by using

the 2-ORT subspace method, SID2-ORT, and system identification procedures of

the Matlab Identification Toolbox, SIDMatlab. The results in each corresponding

identified MV-CV block is interpreted as follow:∣∣∣∣∣ k/nSID2-ORT/SIDMatlab

∣∣∣∣∣ . (7.1)

From table 7.1 the 2-ORT subspace identification method produces models of

higher model accuracy than those models that have been identified by using the

Matlab System Identification Toolbox (represents standard system identification

and parameter estimation methods like N4SID, ARX, ARMAX, PEM ). It should

also be mentioned that no additional data preprocessing was necessary for the

data sets used with the 2-ORT subspace identification method, except for the

orthogonal projection used for projecting out stochastic disturbances. The data

sets used for the Matlab System Identification Toolbox, however, needed extensive

data preprocessing (removal of periodic trends, means and appropriate filtering).

The effect of not including exogenous signals in the 2-ORT subspace identi-

fication process did not have a severely detrimental effect on the identification

process as had been expected. However, this is only due to the fact that struc-

tured step-tests were used that were sufficient enough in exciting process dynamics.
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Closed-loop process operation

No structured step-testing was conducted on the process operating in a closed-loop

environment. No structured step-testing implies that it can take very long for the

process to be excited sufficient and to generate data sets that are informative

enough for identification purposes. It is due to the large data sets that are neces-

sary for system identification, that traditional system identification methodologies

are incapable and insufficient to identify the process. However, the 2-ORT sub-

space identification methodology is well suited to handle large data sets efficiently.

Parameters which can be configured for the 2-ORT subspace identification

methodology are the Hankel matrix depth, k, and the order of the identified sys-

tem model, n. For closed-loop identification, a Snapshot Identification procedure

was used in identifying the process. Snapshot Identification implies that portions

of the identified plant that produce acceptable validation results are isolated and

used to build up the final process model. Data blocks that were used for identifica-

tion consisted each of 10000 samples, which is equivalent to two days of full-time

process operation.

7.2.2 Validation of the identified model

Open-loop process operation

The evaluation of the identified model is accomplished by considering the vali-

dation fit using step-test data and raw plant data of the process under normal

operating conditions. Further is also further insightful to investigate the auto-

correlation between the residuals, and the cross-correlation between the residuals

and past inputs. As mentioned previously; to prevent the validation results to be

biased, it will be required that the validation data that are being used to evaluate

the identified system model is the same as the data that has been used with the

validation process of the initial identified process model in Chapter 4.

For evaluation purposes, it is necessary to consider the validation fit results

obtained for the initial Benfield process model, as discussed previously in section

4.4. It was concluded in section 4.4 that the validation fit obtained for the initial

Benfield process model, using open-loop step-test data, had a 7% improvement on

a similar validation fit using the process models produced by Synfuel. However,

the identified initial Benfield process model was not able to produce validation

fit results as good as those produced by the process models provided by Synfuel,
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using closed-loop process data.

A reason for the discrepancy in the validation results, using closed-loop raw

plant data, can be contributed to the fact that even though step-testing was con-

ducted in open-loop, it is impossible to remove partial process feedback. This

partial feedback results in biased parameter estimates and inflated parameter

variances when traditional subspace (N4SID,CVA,MOESP) identification meth-

ods and parameter estimation (PEM ) methods are implemented.

Figure 7.1 illustrates the validation fit between the predicted outputs obtained

from the identified 2-ORT subspace model and real process data. The average

validation fit (64%) that was obtained, using open-loop step-test data with par-

tial process feedback, is the same as the result that was obtained (see section 4.4)

when identifying the Benfield process using traditional identification and param-

eter estimation methods. However, the traditional methods proved to be inferior

to identify and estimate accurate system parameters, which is confirmed when

closed-loop raw process data are being used to validate the identified model.

Figure 7.2 illustrates the validation fit results obtained using closed-loop vali-

dation data. An average validation fit of 64% was obtained. The 2-ORT subspace

methodology produced validation fits that are superior to those fits obtained from

the initial identified Benfield process model. The 2-ORT subspace methodology

is thus capable of identifying and estimating accurate system parameters when

closed-loop system data are used.

Residual analysis bears information about the quality of the identified model.

As discussed in section 4.4.2, it is pragmatic to consider the relationship between

the residuals of the identified model and the past inputs. The auto-correlation

results between the past inputs and process residuals gives an indication whether

the model that has been identified is only applicable to a certain set of inputs, or if

the identified model is an accurate universal true representation of the real process.

The cross-correlation between the past inputs and process residuals are illus-

trated in figure 7.3 (see furthermore Appendix D, figures D.1-D.15). From figure

7.3, it is concluded that the 2-ORT subspace identification methodology managed

to identify an accurate system model which is valid for a wide variety of system

inputs. This conclusion is based on the fact that the auto-correlation results all

lie within the 95% confidence boundary region.
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Figure 7.1: Validation fit using open-loop step-test data with partial process feed-
back.
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Figure 7.2: Validation fit using closed-loop raw process data.
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Figure 7.3: The auto-correlation and cross-correlation of residuals and MV1 with
output CV1.

Deficiency in the identified model can also be found by considering the auto-

correlation among the residuals as defined by expression 4.8. If the correlation

among the residuals is not small for τ 6= 0, then part of ε (t) could have been pre-

dicted from past data [30]. From figure 7.3 (see furthermore Appendix D, figures

D.1-D.15), it is observed that the auto-correlation among the residuals are small

for τ 6= 0, but since the correlation of the residuals does not lie within the 95%

confidence boundary region, the latter implies that the outputs could have been

predicted better.

Closed-loop process operation

Similar to the open-loop model validation tests, validation data fits were also

conducted on the models, which were identified using measured closed-loop data.

Residual analysis tests were also conducted; where the auto-correlation of process

residuals and cross-correlation between residuals and past inputs were considered.

Figure 7.4 illustrates the closed-loop validation fit on the model which was

identified in a closed-loop environment. If one compares the average percentage

validation fit with that of the open-loop validation fit in figure 7.2, one observes

a 2% validation fit improvement (66%). However, the identified CO2-slip (CV1)

produced models that are less accurate than those that have been obtained in the

open-loop identification. It is important to elaborate on the discrepancy between

Department of Electrical, Electronic and Computer Engineering 144

 
 
 



Chapter 7 Subspace SID and FD Methodology Validation: Real Process Data

Figure 7.4: Validation fit using closed-loop raw process data.
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the process prediction and real process output, CV1, at t=10000s. It is this dis-

crepancy that resulted in a poor validation fit for CV1. As mentioned earlier, it

is not possible to isolate MV-CV pairs. In other words, the data segments where

only one MV is controlled is isolated when closed-loop process data are used for

identification. The use of large data sets to identify a complete process model can

result in process dynamics to be modelled and included in incorrect sections of the

process models; this is the risk of modelling a non-diagonal system. From figure

7.4 some of the process dynamics of CV2−CV4 have been included in the models

obtained for CV1, which resulted in spurious behaviour for CV1 around t=10000s.

In the closed-loop environment the only possible excitation that is present for

identifying the CO2-slip dynamics is the natural disturbance excitation as pro-

duced by the raw CO2 gas feed. It would thus be very difficult to obtain accurate

CO2-slip models if no additional excitation is introduced into the closed-loop en-

vironment. A measured closed-loop data sample with a size of 1000 was used

in validating the identified models (which is approximately 4-hours of operating

process time).

To validate the quality of the models that have been identified, it is further

necessary to consider the auto-correlation between the process residuals, as well

as the cross-correlation between the process residuals and past inputs. The auto-

correlation between the process residuals are illustrated in figure 7.5 (furthermore

see Appendix D, figures D.16-D.30). The cross-correlation between the process

residuals and past inputs are illustrated in figure 7.5 (furthermore see Appendix

D, figures D.16-D.30).

From figure 7.5 the cross-correlation results are acceptable, considering the

lack of process excitation. Almost all the cross-correlation results lie within the

95% confidence boundary region, which implies that the identified model is valid

for a variety of process inputs.

Deficiency in the identified model can also be determined by considering the

auto-correlation among the residuals themselves. The auto-correlation between

the residuals, as depicted by figure 7.5, shows that the process outputs could have

been predicted better. The only possible way to better predict the outputs is to

excite the plant dynamics more thoroughly and model the process dynamics more

accurately. However, for fault detection the validation fit results and the residuals

analysis results are acceptable, and in some cases very good, which implies that
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Figure 7.5: The auto-correlation and cross-correlation of residuals and MV1 with
output CV1.

the models that have been identified should be sufficient for fault detection. The

latter will be confirmed in section 7.3.

7.2.3 Analysis of the identified model

Poles and Zeros of the Identified Process

RHP zeros, and RHP poles are common in many multivariable systems [87]. Fig-

ure 7.6 illustrates the pole and zero locations of the identified Benfield process for

both the models that have been identified by using closed-loop data and open-loop

data respectively.

From figure 7.6 one notices that fewer poles and zeros were used to model the

process where closed-loop data were used; with limited process excitation. This

explains and confirms the auto-correlation results between the process residuals

(D.16-D.30), where it was concluded that the process outputs could have been

better predicted. Naturally, better prediction models would include more poles

and zeros to describe the process dynamics more accurately.

From the pole locations for both open-loop and closed-loop models in figure

7.6, it can be concluded that model stability is guaranteed, where all the identified

poles lie within the unit circle boundary region.
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Figure 7.6: The poles and zeros for the identified process model.
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One can also conclude from the right half plane zeros on the unit boundary

that the process delays have been identified as previously in the initial Benfield

process model in Chapter 4.

Step Response of the Identified Process

The step response of the identified Benfield process is illustrated in figure 7.7.

With the step response, it is observed that for a bounded input, the identified

process model produces a bounded output. The model is thus stable.

Bode Plots

It would be insightful to compare the Bode plots of the models that have been

identified using closed-loop data and open-loop data. Figure 7.8 illustrates the

magnitude Bode plots for the corresponding models. The Bode plots for both the

models are surprisingly close, where the only discrepancy in the Bode plots can be

observed for MV3-CV1 and MV3-CV4 where the low frequency gains are different.

This explains the validation fit difference between CV1 andd CV4 in figures 7.2

and 7.4.
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Figure 7.7: Step response of the identified process model.
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Figure 7.8: Bode plot of the identified process model.
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7.3 Fault Detection Validation

This section evaluates the fault detection methodology as proposed in section 5.4.

To validate the efficiency and effectiveness of the fault detection methodology,

real-time process data taken from the Benfield process operating in a closed-loop

environment will be used to monitor the process behaviour. The process model

that was identified and validated in section 7.2 from real-time, closed-loop mea-

sured process data will be used to predict process behaviour.

The proposed fault detection methodology will be validated by how well it

can detect both flooding and foaming faults. Foaming is deemed an operational

problem, because it limits mass transfer and thereby leads to CO2 slip run-away

[85]. It is difficult to distinguish between flooding and foaming by just looking

at operational data. However, it has been concluded through observation stud-

ies that foaming typically occurs when one of the bed’s differential pressure starts

fluctuating rapidly. On the other hand, flooding is usually associated with a severe

differential pressure increase over two or more of the process beds. A threshold

value which can also indicate the possibility of severe flooding and foaming is when

differential bed pressures exceed, or tend to bed pressures of 20kPa [2].

7.3.1 Detection of Process Foaming

Foaming occurs when the differential bed pressure of only one of the beds rises

sharply compared to the other differential pressures. Figure 7.9 illustrates a sce-

nario where foaming has occurred while the Benfield process was under normal

operation. This foaming is due to excessive fluctuations in the differential bed pres-

sure, as observed from CV3. Differential bed pressure fluctuations start around

t=2700s which can already be a risk for potential foaming. At t=4200s foaming

occurs since the early warnings were ignored and not reacted on quickly enough.

Figure 7.10 illustrates the fault detection monitoring results when implemented

to monitor the process behaviour as depicted by figure 7.9. From figure 7.10, the

infinity matrix norm detects parameter discrepancies as soon as there is early dif-

ferential bed pressure fluctuations at t=2700s. The Maximum-Minimum graph

serves as a threshold detector that indicates the difference between the maximum

and minimum process parameter fluctuation error over a specified time period.

The Maximum-Minimum graph allows the user to evaluate and translate the se-

riousness of the infinity matrix norm errors.
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Figure 7.9: Foaming under normal closed-loop process operation.

Figure 7.10: Foaming under normal closed-loop process operation. Graph a il-
lustrates the infinity norm parameter deviation results, where graph b illustrates
the Maximum-minimum parameter fluctuation measurement as determined from
graph a
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Figure 7.11: Flooding under normal closed-loop process operation.

It is observed from the Maximum-Minimum graph that early fault detection

starts at t=3000s, where the severity of the symptom increases drastically at the

actual foaming incident. From figure 7.10, the process operator could have pre-

vented foaming by taking early preventive actions as soon as t=3200s.

7.3.2 Detection of Process Flooding

Flooding occurs when more than one of the beds show a rapid change in their

differential bed pressures. Figure 7.11 illustrates real process behaviour under

normal conditions, where differential bed pressure fluctuations have led to flood-

ing at t=2700s. Flooding in figure 7.11 was associated with the trend of CV2

and CV3 that fluctuate rapidly. One will also notice that the undetected fault

at t=2700s has further led to spurious fluctuations of CV2 at t=5250s where at

t=7500s the threat of foaming is inevitable.

Figure 7.12 illustrates the results of the fault detection methodology that mon-

itors the process behaviour. It is observed from the infinity matrix norm graph

in figure 7.12, that at the start of severe fluctuations and a rise in differential bed

pressures, the infinity matrix norm detects severe parameter discrepancies. The

Maximum-Minimum graph can be interpreted as a warning to the process opera-

tor as soon as t=2700s.
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Figure 7.12: Flooding under normal closed-loop process operation. Graph a il-
lustrates the infinity norm parameter deviation results, where graph b illustrates
the Maximum-minimum parameter fluctuation measurement as determined from
graph a

No-or delayed reaction to the faults leads to another, even more severe, fault at

t=7500s; which is clearly observed from the infinity matrix norm graph in figure

7.12.

7.4 Conclusion

In this chapter the 2-ORT subspace identification methodology proved to be very

computationally efficient and effective in identifying process models when limited

excitation of process dynamics is available, thereby implying that large data sets

must be used for identification. The 2-ORT subspace identification methodology

is capable of identifying a process operating in a closed-loop environment, where

unbiased parameter estimates were estimated by using orthogonal projection for

data pretreatment. The models that have been identified by using closed-loop data

are just as accurate as the models that have been identified by using open-loop

data.

The fault detection methodology was able to detect faults which include pro-

cess foaming and flooding. The sensitivity of the fault detection methodology

directly depends on the accuracy of the identified model. The Kalman filter ac-

curately estimate and converge to a new set of parameters. However, an accurate
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initial parameter estimate as obtained from the 2-ORT subspace identification

methodology is essential. The infinity matrix norm is an efficient matrix mea-

surement tool to evaluate parameter deviations. A user-defined threshold value

can be defined and used to evaluate detected faults and adjust the robustness of

the fault detection methodology. A user-defined threshold value together with a

Maximum-Minimum representation (see figure 7.12) of parametric discrepancies is

a user friendly tool which can indicate to a process operator how to make critical

decisions.

From the residual analysis it was concluded that a better model could have

been estimated from the closed-loop data. The identification of a more accurate

model is only possible with the inclusion of structured closed-loop step-testing.

A lack of structured closed-loop step-testing resulted in poor identified models

for the CO2 slip. However, it was observed that the fault detection methodology

is robust and can utilise poorly identified models efficiently to detect process faults.
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Chapter 8

Subspace SID and FD
Methodology Verification

8.1 Introduction

In this chapter, the proposed 2-ORT subspace identification methodology and the

fault detection methodology is verified by using recent measured process data. The

process data were taken in the months of August, September and October, 2008,

from the Benfield East process, operating in closed-loop with a RMPCT controller.

The 2-ORT subspace identification methodology is used to identify the Ben-

field process, where a discussion on the validation fit and residual analysis results

will follow in section 8.2.2.

The fault detection methodology is verified by detecting process and instru-

mental faults, previously identified by Sasol. A discussion on the results will follow

in section 8.3.

8.2 Subspace Identification Methodology Verifi-

cation

The 2-ORT subspace identification methodology needs to be verified. The sub-

space methodology is verified by using recent measured process data of the Benfield

process, operating under normal operating conditions in closed-loop. In Chapter

7, the subspace methodology was validated by using data that were measured

when the Benfield process was initially commissioned. These data were measured

in the months of August and September, 2004. The data used for the verification

were measured in the months of August, September and October in 2008.
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For the verification of the 2-ORT subspace identification methodology, it is

necessary to conduct a validation data fit of the estimated process model, as well

as a residual analysis.

8.2.1 Critical Evaluation of Data Sets used for Identifica-
tion

Prior to process identification, it is necessary to investigate and evaluate the data

sets that are being used for identification. The effectiveness of the 2-ORT sub-

space identification methodology relies on data sets that need to be sufficiently

informative. Data sets are considered informative when they contain measured

data that represents the excited process dynamics sufficiently.

Evaluating the measured data, measured over the three months in 2008, it was

decided that the best way to identify the Benfield process is to isolate MV-CV

pairs and to identify each MV-CV pair individually, using the 2-ORT subspace

identification methodology. In Chapter 7, the process was identified by using the

measured data of all the MVs and CVs simultaneously. The latter was necessary

since the data sets were relatively small (not exceeding 5000 samples), and it was

extremely difficult to isolate individual MV excitations. The small data sets were

the result of unmeasured disturbances on the process, as well as initial instru-

mental faults (faulty sensors and actuators not correctly calibrated or installed),

which is typical for a newly commissioned plant. The Benfield process stability

has increased dramatically over the last four years due to active monitoring and

process maintenance. The only viable course to follow with the identification of

the Benfield process is thus to isolate each MV individually, once it has been

naturally stepped in such a way that the process dynamics are excited. Natural

stepping of the process does not guarantee sufficient excitation of process dynam-

ics. It is thus necessary to use very large data sets which increase the possibility of

natural excitation created by unmeasured disturbances and non-linear switching

of the RMPCT controller.

8.2.2 Validation Fits of Identified Process Models

The 2-ORT subspace identification methodology was verified by conducting three

process validation data fits. For each process validation data fit, 2000 samples (just

over 8 hours of process operation) of the Benfield process, operating in closed-loop
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with the RMPCT controller, were used. A process validation data fit was con-

ducted once in August, once in September and once in October; in the morning,

afternoon and evening 8 hours each respectively.

Figures 8.1-8.3 illustrate the validation fit for the three months respectively. It

is concluded from these figures that the models that have been identified are very

accurate in predicting the process behaviour. Furthermore, it can be concluded

that in isolating MV-CV pairs, and using larger data sets, it is possible to capture

more excited process dynamics; thereby identifying accurate process models.
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Figure 8.1: Validation fit using raw closed-loop process data, measured in August,
2008.
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Figure 8.2: Validation fit using raw closed-loop process data, measured in Septem-
ber, 2008.
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Figure 8.3: Validation fit using raw closed-loop process data, measured in October,
2008.
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8.2.3 Residual Analysis

To validate the quality of the models that have been identified, it is further nec-

essary to consider the auto-correlation between the process residuals, as well as

the cross-correlation between the process residuals and past inputs. The auto-

correlation between the process residuals are illustrated in figure 8.4 (see Appendix

E, figures E.1-E.15 for more residual analysis results). The cross-correlation be-

tween the process residuals and past inputs are illustrated in figure 8.4 (see Ap-

pendix E, figures E.1-E.15 for more residual analysis results).

Figure 8.4: The auto-correlation and cross-correlation of residuals and MV1 with
output CV1.

From figure 8.4, the cross-correlation results are very good. All the cross-

correlation results lie within the 95% confidence boundary region, which implies

that the identified models are valid for a variety of process inputs.

Deficiency in the identified model can also be determined by considering the

auto-correlation among the residuals themselves. The auto-correlation between

the residuals, as depicted in figure 8.4, shows that the process outputs have been

predicted accurately.

8.2.4 Identified System Analysis

When isolating and identifying MV-CV pairs, it results in identified models that

are very accurate in predicting model outputs. However, the amount of poles

Department of Electrical, Electronic and Computer Engineering 163

 
 
 



Chapter 8 Subspace SID and FD Methodology Verification

and zeros (process parameters) increase dramatically. The clear advantage is that

a better process model is identified, but a disadvantage is that the increase in

process parameters creates a greater computational burden in the monitoring of

process parameters.

In Chapter 7, the 2-ORT subspace identification methodology managed to

identify the Benfield process model, where only 15 states were used to describe

the process behaviour. This was at a cost of predicting the process output accu-

rately at an average fit of 64%. However, only 361 parameters ((s+ y)× (s+ u))

had to be monitored for fault detection, where s, u and y are the number of states,

inputs and outputs, respectively. Identified models producing accurate predictions

as depicted by figures 8.1-8.3 required 77841 parameters where s=275, u=4 and

y=4. The drastic increase of process states is due to the fact that individual MV-

CV pairs were isolated for identification. The latter is one of the disadvantages

of piecewise MV-CV pair identification. However, the identified models are very

accurate, as concluded from the validation data fits.

Figure E.16 in appendix E illustrates the poles and zeros. From the pole loca-

tions, one can conclude that the identified system is stable.

8.3 Fault Detection Methodology Verification

This section verifies the effectiveness and efficiency in which the proposed fault

detection methodology is able to detect faults. Faults that were isolated include

foaming and flooding (which are regarded as process faults), and sensor faults

(which are classified as instrumental faults). Faults, as identified by Sasol, were

used to verify whether the fault detection methodology was able to detect actual

process faults.

The fault detection methodology verification process incorporates the process

model as identified in section 8.2.2. Raw plant data, as measured from the Ben-

field process operating in closed-loop with a RMPCT controller, is monitored for

abnormal situations.
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8.3.1 Detection of Process Flooding and Foaming

As discussed in section 7.3, foaming and flooding is deemed an operational prob-

lem, because it limits mass transfer and thereby leads to CO2 slip run-away [85].

Factors that cause foaming and flooding can either be distinguished between in-

ternal process upsets (the presence of hydrocarbons heavier than CO2, cyclic

hydrocarbons, DEA degradation products, organic acids and other oxygenated

components serve as foaming agents), or external abnormal unidentified process

disturbances (abnormal fluctuations in the CO2 rich gas feed).

In section 7.3, the fault detection methodology was validated and used to moni-

tor the Benfield process, where it detected foaming and flooding caused by internal

process upsets. In the verification of the fault detection methodology, foaming and

flooding were caused by external process disturbances.

Figure 8.5 illustrates the corresponding MVs and CVs that were monitored to

detect possible process faults. Figure 8.6 illustrates the detection of the fault at

t=3100s. It can already be concluded from parameter error fluctuations (t<3100s),

before the fault was detected, that the process exhibits unstable and unpredictable

behaviour. The latter is concluded from the fact that the controlled CVs exhibit

abnormal fluctuations, while the controlled inputs remained constant. One will

also notice that the Maximum-minimum graph in figure 8.6 illustrates how the pa-

rameter error deviations increase over time, where actions should have been taken

by the process operator at t=3750s to prevent possible flooding and foaming at

t=4500s. Preventive measures include dosing anti-foam agents.

Figure 8.7 illustrates the MVs and CVs, which were monitored for process

faults, as detected in figure 8.8. The fault was identified as foaming with the

possibility of flooding (flooding is usually caused by sporadic fluctuating differ-

ential bed pressures which were not controlled to acceptable levels). At t=6000s

(see CV2-CV4 in figure 8.7) the differential bed pressures have shown abnormal

deviations from their normal operating levels. These deviations resulted in a steep

increase in the infinity matrix norm parametric error measure (as seen by the infin-

ity matrix measure in graph a of figure 8.8). From the Maximum-minimum graph

in figure 8.8, the process operator could have taken the necessary precautions to

prevent possible process upsets, as soon as t=5500s.
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Figure 8.5: Measured MVs and CVs. Abnormal differential bed pressures, ob-
served from the CV fluctuations, resulted in foaming [9].

Figure 8.6: Detection of foaming due to abnormal differential bed pressure fluc-
tuations. Graph a illustrates the infinity matrix norm measure for estimated
parameter deviations, where graph b depicts the severity of the parameter devia-
tion by illustrating the difference between the maximum and minimum parameter
error over a predefined period of monitoring.
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Figure 8.7: easured MVs and CVs. Abnormal differential bed pressures, observed
from the CV fluctuations, resulted in foaming.

Figure 8.8: Detection of foaming and the possibility of flooding. Graph a il-
lustrates the infinity matrix norm measure for estimated parameter deviations,
where graph b depicts the severity of the parameter deviation by illustrating the
difference between the maximum and minimum parameter error over a predefined
period of monitoring.
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Figure 8.9: Measured MVs and CVs. An abnormal spike in the MV3 illustrates
the degradation of a sensor where possible sensor failure is inevitable.

8.3.2 Detection of Sensor Faults

Early detection of sensor faults due to complete sensor failure is necessary to pre-

vent critical process upsets. Figure 8.9 illustrates the monitored MVs and CVs,

where a sensor fault was detected at t=3800s

From figure 8.10, one will notice the parameter error fluctuations (t > 4125s),

that have started after the sensor fault was detected. Parameter error fluctuations

have previously led to foaming and flooding as illustrated by figures 8.5 and 8.7.

The fault detection methodology was thus not only able to identify a sensor fault,

but was also able to detect parameter fluctuations; which have previously led to

foaming and flooding.

8.4 Conclusion

In this Chapter the proposed fault detection methodology and 2-ORT subspace

identification methodology was verified by identifying and monitoring the Benfield

process using recent process data measured in the months of August, September

and October, 2008. Process and instrumental faults, as identified by Sasol, were

used as a benchmark for the fault detection methodology.

Considering the data validation fit results, and the residual analysis results, it
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Figure 8.10: Detection of sensor failure.

was concluded that the 2-ORT subspace identification methodology is able to iden-

tify process models that are very accurate in predicting model outputs. Accurate

models were identified by using large data sets, and isolating MVs for individual

MV-CV model identification. The latter led to an increase in process parameters,

which increases the computational burden for the fault detection methodology.

The 2-ORT subspace identification methodology and fault detection method-

ology is a feasible monitoring solution to be implemented in the real Benfield

process. The computational burden of estimating a new set of parameters is not

a problem due to the slow process dynamics and sampling rate of the Benfield

process. However, processes with faster process dynamics, where higher sampling

rates are used, require that the estimation process needs to be optimised to make

it a feasible real-time solution.

The fault detection methodology was able to detect the foaming, flooding and

sensor faults as previously identified by Sasol. Monitoring the results of the fault

detection methodology, it was also possible to predict potential future process up-

sets.
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Chapter 9

Conclusions and Further
Research

9.1 Conclusive Summary

This section provides a summary of the work in this dissertation. Accurate process

monitoring is necessary to increase the economical feasibility and availability of a

process plant. Such a plant, which needs active monitoring, is the Benfield process.

9.1.1 The Benfield Process

The Benfield process is a thermally regenerated cyclic solvent process, imple-

mented by Sasol, Synfuel, which removes CO2 from tail gas. The efficient and

effective removal of CO2 from the tail gas results in an increase in profitability

margins, where the CO2-clean tail gas is further refined and used for a variety

of gas products further down the gas circuit. The Benfield unit consists of two

phases, each containing two functional stages: a Potassium Carbonate Solution

wash stage, which removes the bulk of the CO2, and a Diethanolamine Solution

wash stage, which trims the CO2 levels down to below the 40 ppm level. Each

stage consists of a wash column in which the CO2 is absorbed by the particular

wash solution, and a regeneration column in which the CO2 is stripped from the

solution using manipulated pressurised steam. For this dissertation, the focus was

mainly placed on the Potassium Carbonate Solution wash stage, where the wash

column was considered for active monitoring.
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9.1.2 Operating Philosophy and Operational Problems

The current operating philosophy for the Benfield process is to keep it simulta-

neously hydraulically and CO2 loaded, as far as possible, so as to make optimal

profit from the gas circuit products. This operating philosophy requires 100%

availability and utilisation [85]. The most common operational problems expe-

rienced with the Benfield process that could influence the plant availability and

utilisation include the following: foaming, flooding, corrosion, insufficient regen-

eration, poor mass transfer, high and abnormally low bed differential pressures,

pump cavitations and fluctuations in the CO2 slip feed to the cold separation unit

[2].

Foaming and flooding is detected by erratic bed differential pressures and col-

umn levels. Foaming is deemed an operational problem, because it limits mass

transfer, and thereby leads to CO2 slip run-away. Particulate matter, which typi-

cally includes rust particles, dirt and activated carbon particles, serve as catalysts

for potential foaming. Severe and uncontrolled foaming usually leads to flooding.

9.1.3 Benfield Process Control Solution

The Benfield process operates in a closed-loop environment, and is controlled by

an advanced process control solution, namely a Robust Multivariate Predictive

Control Technology (RMPCT). The RMPCT controller is derived from the archi-

tecture of the Model Predictive Control (MPC) architecture, where a prediction

horizon and control horizon is defined respectively such that the process is con-

trolled optimally. The RMPCT control philosophy uses a finite impulse (FIR)

model for each of the controlled-manipulated variable pairs. RMPCT uses two

different kinds of optimisation functions namely error and profit optimisation.

With optimisation, RMPCT permits the constraints on some or all controlled

variables to be de-activated.

9.1.4 Process Monitoring

On-line process monitoring with fault detection can provide stability and efficiency

for a wide range of industrial processes. With continuous on-line fault detection,

it is possible to detect abnormal and undesired process states and process parame-

ters, which ultimately increases plant performance [11]. A prerequisite for efficient

and accurate on-line monitoring is to have an accurate process model, as identi-
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fied from process data. This accurate identified process model is utilised in such

a way to predict process behaviour, so that faults can be detected and corrected,

ultimately increasing plant performance.

9.1.5 Process Model Identification

In the last decade, researchers have shown a renewed interest in closed-loop sys-

tem identification. The use of closed-loop system identification is motivated due

to distinct advantages over open-loop identification. Closed-loop system identifi-

cation can be classified into three distinct approaches, as was defined by Ljung

[30]. These approaches are: the direct approach, the indirect approach and the

joint input-output approach.

Identification formulations in the 80’s and 90’s have traditionally been can-

tered around the Prediction Error Method (PEM) [93] paradigm, proposed by

Ljung [30]. The advantage of PEM is that convergence and asymptotic variance

are well established [61], where the disadvantage of the PEM is a rather complex

parametrisation and non-convex optimisation. The extension of PEM to closed-

loop systems was first introduced in the late 90’s by the proposed ASYM [31].

The early 90’s witnessed the birth of a new type of linear system identifica-

tion algorithm called the subspace method. Subspace methods originated between

system theory, geometry and numerical linear algebra [1]. Linear subspace identi-

fication methods are concerned with systems and models that can be represented

as state-space models. State-space based approaches are typically better suited to

model multiple-input, multiple-output (MIMO) systems. The main difficulty with

applying predictor error methods to state-space models is to find a numerically

robust canonical realization, since the alternative, a full parametrisation of the

state-space model, would involve a huge number of parameters [28].

Subspace identification is regarded as an alternative to PEM identification

methods. Subspace identification yields a multivariable system model without the

need for special parametrisation-which requires significant prior knowledge and

non convex optimisation [45]. Most subspace methods can fail, (unbiased esti-

mate property of subspace methods is lost) when used with closed-loop system

data, even with large amounts of data sets [7, 45]. With closed-loop data, consis-

tency for the first least squares estimation breaks down.
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Two solutions, proposed by Qin and Ljung [79] and Katayama and Tanaka

[8] respectively, addresses the problem of the lost unbiased estimate property of

subspace methods when used with closed-loop data.

Qin and Ljung [79] revealed that typical subspace identification algorithms

actually use non-parsimonious model formulations with extra terms in the model

that appear to be non-causal. These extra terms are included to conveniently per-

form subspace projection, but are the cause of inflated variance in the estimates,

and partially responsible for the loss of closed-loop identifiably. Qin and Ljung [79]

proposed a subspace method, where these non-causal terms are removed, making

the model parsimonious. Qin and Ljung’s [79] proposed method estimated the

non-causal terms and incorporated these terms into the identification of the pro-

cess model.

Katayama and Tanaka’s [8] proposed method is based on two successive or-

thogonal decompositions (ORT). The first LQ decomposition, used for data pro-

cessing, calculates the deterministic components of the joint input-output process.

The second decomposition uses the ORT method to compute the system matrices.

The LQ decomposition as proposed by Katayama and Tanaka [8] is used to elim-

inate the non-causal terms, instead if estimating these terms, as was done earlier

by Qin and Ljung [79].

The proposed method of Katayama and Tanaka [8] was implemented for closed-

loop identification of the Benfield process. It was concluded through extensive

simulations, that the models that were identified by using the 2-ORT subspace

identification method, were in some cases unstable and not suitable for use in fault

detection. A solution, proposed by Maciejowski [91], suggested an alternative way

in how the extended observability matrix can be estimated, that results in guar-

anteed system stability. The proposed method of Maciejowski [91] guarantees the

estimation of a stable system matrix. However, the cost of this benefit is the loss

of accurate estimation results, but in some applications this is outweighed by the

advantage of guaranteed stability. Possible applications that can take advantage

of this guaranteed stability is subspace algorithms that run online and unsuper-

vised, such as adaptive control or fault monitoring [91]. Maciejowski [91] proves

that by using the shift invariance property of the extended observability matrix,

and appending a block of zeros to the shifted extended observability matrix, the

estimated system matrix is guaranteed to be stable.
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9.1.6 A Parametric Fault Detection Approach

Solutions to fault detection and process monitoring are based on model based plat-

forms, where input and output signals and the dynamics of process models are

used to detect faults. Well known model-based fault detection methods include

parameter estimation, parity equations and state observers [56].

Process monitoring and fault detection methods using process parameters has

been studied extensively since the early 80’s [26]. However, due to the difficulty

of identifying accurate system models from engineering first principles, parameter

monitoring fault detection methods has not been the predominant choice in pro-

cess fault detection. The estimation of process parameters using the least squares

estimation method is also computationally intensive and is thus not a feasible so-

lution for online process parameter monitoring.

Subspace methods have proven to be computational efficient where no a-priori

process knowledge is necessary to estimate a system model. Subspace system iden-

tification methods thus allow the user to identify black-box models, which can be

used to monitor processes. The challenge in fault detection with subspace meth-

ods is to monitor and evaluate the vast amount of system parameters efficiently

and elegantly. Re-identification of the process using subspace methods, necessary

to track parameter changes, is also not a feasible solution to fault detection. The

reason is due to the vast amount of data samples which are necessary and must

contain well excited process dynamics.

The proposed fault detection solution in this dissertation utilises the initial

process parameters as was identified by die subspace identification methodology;

and updates and monitors these parameters periodically, to detect possible process

upsets and faults. The general Kalman filter theory, which is generally used to

estimate systems states, was extended such that it can be used to estimate system

parameters. The infinity norm matrix measurement is an effective measurement

tool which was implemented to detect parameter deviations between initial param-

eters and newly estimated parameters as estimated by the extended Kalman fitler.

9.1.7 Validation and Verification of Methodologies

The proposed 2-ORT subspace identification methodology and fault detection

methodology were validated by identifying and monitoring a true process model.

Data used for identification and monitoring purposes was measured under closed-
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loop process operation, using data obtained at the time when the Benfield pro-

cess was initially commissioned. The Benfield was commissioned in August 2004,

where the process was characterised with a lot of unmeasured disturbances as well

as process and instrumental failures. The latter characteristics enabled the fault

detection methodology to be tested and validated thoroughly.

The proposed methodologies were also verified by using measured data ob-

tained during the months of August, September and October, 2008. With con-

tinuous plant monitoring and maintenance procedures, plant operators were able

to minimise and isolate unmeasured disturbances and process upsets. With a

stable plant with minimal plant upsets, it was possible to obtain very large and

informative data sets, which could be utilised in the identification process. These

informative data sets led to identified models that are very accurate in predicting

system behaviour, which is critical for effective fault monitoring.

9.2 Critical Review of Own Work

This dissertation evaluated the hypothesis which states that process faults can be

detected by monitoring process parameters, updated periodically, by re-identifying

the process model. This hypothesis required the development of an efficient and

effective identification methodology, which can be integrated with a fault detection

methodology that monitor and update parameter changes. This work was carried

out for the Benfield process at Sasol.

It was further noted that it would be advantageous if such an identification

and fault detection methodology can be executed in real time, thus conducting

on-line process monitoring.

The first task and objective was to propose and implement a system identifica-

tion methodology; which can identify process models that operate in a closed-loop

environment with unmeasured disturbances and limited excitation. A subspace

approach was adopted since it makes use of well defined system theory, geometry

and numerical linear algebra, which are efficient tools to be used when large data

sets are manipulated to identify process models. A subspace identification solu-

tion that caters for single-input, single-output (SISO) systems, was proposed by

Katayama and Tanaka [8]; which was further adapted so that it can be used to

identify system models of multiple-input multiple-output (MIMO). The subspace
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SISO SID solution can be used for MIMO systems if the process is known to be

diagonal. The latter was not the case for the Benfield process. However, due to

limited process excitation in the verification process, it was impossible to isolate

scenarios where all the MVs were excited simultaneously and thus required that

individual MV-CV pair-wise identification had to be conducted.

Models that have been identified by the proposed 2-ORT MIMO subspace

identification methodology tend to be unstable. A solution to this problem was to

alter the way in how the system matrices are derived from the extended observ-

ability matrix. The latter proposed solution resulted in stable models. However,

process dynamics were lost since some of the unstable poles where not included

in the process model. If the process indeed has unstable poles, then excluding

these poles in the system model may jeopardise the efficiency of the fault detec-

tion methodology. The latter was not a problem in the Benfield process, since all

the faults that were used as a benchmark to test the fault detection methodology

were detected, and poles identified were all stable.

One can conclude from the validation and verification results that the pro-

posed 2-ORT MIMO subspace identification methodology was very successful in

identifying the Benfield processes operating in closed-loop. Very accurate models

were identified every time which were validated by validation data fits and residual

analysis. Compared to traditional subspace methods, the 2-ORT MIMO subspace

identification methodology is superior in every way, in the sense that it identified

unbiased system parameters successfully. In comparison to the PEM framework,

the 2-ORT MIMO subspace identification methodology is superior in the sense

that it can efficiently utilise large amounts of data sets and identify system models

with limited process excitation.

A prerequisite of the 2-ORT MIMO subspace identification methodology was

that it needed persistent excitation signals as references to excite plant dynamics.

This is not practically feasible in a real-time operating plant, and was thus not

adhered to. However, it would be insightful to conduct further comparative stud-

ies to determine the effect of the inclusion of these reference signals.

It was concluded that it is not practically feasible to re-identify process models,

using the subspace methodology, to update process parameters for fault detection.

Subspace methods require a vast amount of measured process data which makes

the turnaround time for parameter updating too long for effective fault detection.
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A proposed solution was to adapt the Kalman filter theory to estimate system pa-

rameters instead of states. A natural prerequisite for the extended Kalman filter

is accurate initial parameter estimates. The subspace method is able to produce

accurate initial parameter estimates periodically. The extended Kalman filter is

an elegant way of estimating new parameters but it might be difficult to isolate

parameter changes since there is no controlled manner or procedure in how these

parameters are updated. The extended Kalman filter is thus a good solution for

fault detection, but may not be suitable for fault isolation. The extended Kalman

filter approach is also computational intensive when there are many parameters

which need to be estimated.

It was concluded from verification and validation results that by monitoring

parameter deviations it is possible to detect process faults, such as foaming, flood-

ing and sensor faults. The infinity matrix norm measurement tool is an effective

way to determine whether there is a global parameter change. However, it is not

very sensitive to small parameter deviations. The fault detection methodology is

thus regarded as a robust fault detection tool, which produces a minimum amount

of false alarms.

9.3 Directions of Future Work

Closed-loop identification has proven to be the most economically feasible method

in identifying process models. However, limited excitation of process dynamics

due to limited or no structured step-testing on the plant sometimes makes closed-

loop identification infeasible. Subspace identification methods address the problem

where subspace methodologies can utilise large data sets and extract system dy-

namics information.

Addressing the problem of non-causal terms found in the formulation of sub-

space methods, used for projection, has extended the use of subspace SID to

the identification of processes operating in a closed-loop system. Katayama and

Tanaka [8] proposed a LQ projection procedure used to pre-treat data and remove

stochastic and non-causal components. Theoretical work conducted by Katayama

and Tanaka [8] showed that it is possible to limit and prevent biased estimated

parameters by using the LQ projection procedure. However, through simulations

it was concluded that the efficiency of this method strongly relies on the type of

unmeasured disturbances which are present. Subjected to a colored noise source,
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it is very difficult to estimate accurate system parameters. More theoretical work

needs to be done to understand the estimated parameter variance properties of

subspace methods when subjected to colored noise environments. The assump-

tion of white noise environments is too general to develop any method of practical

significance.

Monitoring parameter deviations is a feasible way of detecting faults. The

next step would be to isolate the parameters that cause the most severe devi-

ations and link the deviations to a cause. The isolation of process faults would

increase plant availability and utilisation, which will increase profitability margins.

Further research also needs to be done in fault prediction. The timely pre-

dictions of faults that include foaming and flooding (in reference to the Benfield

process) will result in more efficient mass transfer rates and regeneration cycles,

ultimately increasing plant economic profitability.

The extended Kalman theory approach to estimate system parameters is an

effective tool. However, the computational burden increases dramatically with an

increase in system parameters which are necessary for accurate system models.

This can become a bottleneck when very large parameter sets are necessary to

describe the dynamics of a plant. Further optimisation and reformulation of the

implementation of the extended Kalman theory needs to be addressed.
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[6] J. C. Agüero and G. C. Goodwin, “Virtual closed loop identification: A

subspace approach,” in 43rd IEEE Conference on Decision and Control, (At-

lantis, Paradise Island, Bahamas), pp. 14–17, December 2004.

[7] E. de Klerk and I. Craig, “Multivariable closed-loop system identification of

plants under model predictive control,” in Proc. of the 13th IFAC Symposium

on System Identification (P. V. den Hof, B. Wahlberg, and S. Weiland, eds.),

vol. 1, (Rotterdam, The Nederland), pp. 411–419, IFAC, Elsivier, August

2003.

[8] T. Katayama and H. Tanaka, “An approach to closed loop subspace identifi-

cation by orthogonal decomposition,” Automatica, vol. 43, 2007.

[9] O. van der Westhuizen. Synfuels, Sasol, Private Communications, October

2008.

 
 
 



Bibliography

[10] S. Simani and C. Fantuzzi, “Dynamic system identification and model-based

fault diagnosis of an industrial gas turbine prototype,” Control Engineering

Practise, vol. 16, pp. 341–363, 2006.

[11] P. Kampjarvia, M. Souranderb, T. Komulainenc, N. Vatanskic, M. Nikusc,

and S. Jamsa-Jounela, “Fault detection and isolation of an on-line analyzer for

an ethylene cracking process,” Control Engineering Practise, vol. 16, pp. 1–10,

2008.

[12] R. Isermann, Fault-diagnosis systems: An introduction from fault detection

to fault tolerance. Springer, 1 ed., 2005.

[13] R. Patton, P. Frank, and R. Clark, Issues of fault diagnosis for dynamic

systems. Springer, 1 ed., 2000.

[14] J. Gertler, Fault detection and diagnosis in engineering systems. New York:

Marcel Dekker, 1998.

[15] M. Basseville and I. Nikiforov, Detection of abrupt changes: Theory and ap-

plication. Prentice-Hall, Englewood Cliffs, 1993.

[16] J. Chen and R. Patton, Robust model-based fault diagnosis for dynamic sys-

tems. Dordrecht: Kluwer Academic, 1999.

[17] J. Korbicz, J. Koscielny, Z. Kowalczuk, and W. Cholewa, Fault diagnosis:

Models, artificial intelligence, applications. Springer, 2004.

[18] S. Simani and R. Patton, “Fault diagnosis of an industrial gas turbine proto-

type using a system identification approach,” Control Engineering Practise,

vol. 9, pp. 1016–1024, 8 2007.

[19] A. Deshpande, C. Patwardhan, and S. Narasimhan, Assessment and Future

Directions of Nonlinear Model Predictive Control, vol. 358 of Lecture Notes

in Control and Information Sciences. 2007.

[20] D. G. Chapel, C. L. Mariz, and J. Ernest, “Recovery of co2 from flue gases:

Commercial trends.” October 2000.

[21] M. Tolsma and H. Barnard. Synfuels, Sasol, Private Communications, Octo-

ber 2008.

[22] V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. Kavuri, “A review

of process fault detection and diagnosis part i: Quantitative model-based

methods,” Control Engineering Practise, vol. 27, pp. 293–311, 2003.

Department of Electrical, Electronic and Computer Engineering 180

 
 
 



Bibliography

[23] S. Kavuri, V. Venkatasubramanian, R. Rengaswamy, and K. Yin, “A review of

process fault detection and diagnosis part i: Qualitive model-based methods,”

Journal of Process Control, vol. 27, pp. 312–326, 2003.

[24] R. Rengaswamy, V. Venkatasubramanian, K. Yin, and S. Kavuri, “A review of

process fault detection and diagnosis part iii: Process history based methods,”

Journal of Process Control, vol. 27, pp. 327–346, 2003.

[25] R. Patton, P. Frank, and R. Clark, Fault Diagnosis in Dynamic sytems: The-

ory and Application. Series in Systems and Control Engineering, 66 Wood

Lane End, Hemel Hempstead, Hertfordshire: Prentice Hall, 1989.

[26] R. Isermann, “Process fauls detection based on modelling and estimation

methods:a survey,” Automatica, vol. 20, no. 4, pp. 387–404, 1984.

[27] S. Katipamula and M. Brambley, “Methods for fault detection, diagnostics,

and prognostics for building systems:a review, part i,” International Journal

of HVAC&R Research, vol. 11, pp. 23–47, January 2003.

[28] O. Nelles, Nonlinear System Identification. Springer, 2001.

[29] K. Patan and T. Parisini, “Identification of neural dynamic models for fault

detection and isolation: the case of a real sugar evaporation process,” Journal

of Process Control, vol. 15, pp. 67–79, 2005.

[30] L. Ljung, System Identification: Theory for the user. Prentice Hall, 1999.

[31] Y. Zhu, “Multivariable process identification for mpc: the asymptotic method

and its application,” Journal of Process Control, vol. 8, pp. 101–115, April

1998.

[32] P. van den Hof and R. de Callafon, “Multivariable closed-loop identification:

From indirect identification to dual-youla paramterization,” in Proc. of the

35th Conf. on Decision and Control, 1996.

[33] M. Viberg, “Subspace based methods for the identification of linear time

invariant systems,” Automatica, vol. 31, no. 12, pp. 1835–1851, 1995.

[34] Z. Zhang, J. Fan, and H. Hua, “Simulation and experiment of a blind subspace

identification method,” Journal of Sound and Vibration, vol. 311, 2008.

[35] S. Simani, C. Fantuzzi, and S. Beghelli, “Diagnosis techniques for sensor

faults of industrial processes,” IEEE Trans. on Control Systems Tech., vol. 8,

pp. 848–856, September 2000.

Department of Electrical, Electronic and Computer Engineering 181

 
 
 



Bibliography
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Appendix A

Residual Analysis of Nominal
Benfield Process Model

Figures A.1-A.15 illustrate the auto-correlation between the residuals of the iden-

tified Benfield process, validated by closed-loop raw plant data, and the individual

CV outputs of the identified Benfield process. Figures A.1-A.15 also illustrate the

cross-correlation between each CV output and MV input.

 
 
 



Appendix A Residual Analysis of Nominal Benfield Process Model

Figure A.1: The auto-correlation and cross-correlation of residuals and MV1 with
output CV2.

Figure A.2: The auto-correlation and cross-correlation of residuals and MV1 with
output CV3.
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Appendix A Residual Analysis of Nominal Benfield Process Model

Figure A.3: The auto-correlation and cross-correlation of residuals and MV1 with
output CV4.

Figure A.4: The auto-correlation and cross-correlation of residuals and MV2 with
output CV1.
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Appendix A Residual Analysis of Nominal Benfield Process Model

Figure A.5: The auto-correlation and cross-correlation of residuals and MV2 with
output CV2.

Figure A.6: The auto-correlation and cross-correlation of residuals and MV2 with
output CV3.
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Appendix A Residual Analysis of Nominal Benfield Process Model

Figure A.7: The auto-correlation and cross-correlation of residuals and MV2 with
output CV4.

Figure A.8: The auto-correlation and cross-correlation of residuals and MV3 with
output CV1.
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Appendix A Residual Analysis of Nominal Benfield Process Model

Figure A.9: The auto-correlation and cross-correlation of residuals and MV3 with
output CV2.

Figure A.10: The auto-correlation and cross-correlation of residuals and MV3 with
output CV3.

Department of Electrical, Electronic and Computer Engineering 192

 
 
 



Appendix A Residual Analysis of Nominal Benfield Process Model

Figure A.11: The auto-correlation and cross-correlation of residuals and MV3 with
output CV4.

Figure A.12: The auto-correlation and cross-correlation of residuals and MV4 with
output CV1.
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Appendix A Residual Analysis of Nominal Benfield Process Model

Figure A.13: The auto-correlation and cross-correlation of residuals and MV4 with
output CV2.

Figure A.14: The auto-correlation and cross-correlation of residuals and MV4 with
output CV3.
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Appendix A Residual Analysis of Nominal Benfield Process Model

Figure A.15: The auto-correlation and cross-correlation of residuals and MV4 with
output CV4.
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Appendix B

Complementary Subspace Theory

Shift Invariance property of Extended Observabil-

ity and Controllability matrix

The system matrix, A , can be determined by exploiting the shift-invariance prop-

erty of either the extended observability matrix, Γ, or the extended controllability

matrix, Ξ. The extended observability matrix and extended controllability matrix

can be defined as follow [91]:

Γ
def
=
[
C CA CA2 · · ·

]T
Ξ
def
=
[
B AB A2B · · ·

]
.

(B.1)

Shift invariance implies that

ΓA = Γ ↑, (B.2)

and

AΞ =
←
Ξ, (B.3)

where

Γ ↑=
[
CA CA2 CA3 . . .

]T
, (B.4)

and

←
Ξ =

[
AB A2B A3B . . .

]
. (B.5)

Approximating the pair (B,D)

Let the following LQ factorisation be given:

 
 
 



Appendix B Complementary Subspace Theory


U f

U p

Y p

Y f

 =


L11 0 0 0
L21 L22 0 0
L31 L32 L33 0
L41 L42 L43 L44



RT

1

RT
2

RT
3

RT
4

 , (B.6)

then the Toeplitz matrix, Ψ, can be estimated as follow [94]:

Ψ̂ =
[
L31 L42

] [
L11 L22

]†
. (B.7)

From the estimated Toeplitz matrix and estimated extended observability ma-

trix, the pair of matrices (B,D) satisfies the following relation [94]:

In 0

0 Γ̂ (1 : p (k − 1) , 1 : n)
In 0

0 Γ̂ (1 : p (k − 2) , 1 : n)
...

...
In 0


[
D

B

]

=


Ψ̂ (1 : pk, 1 : m)

Ψ̂ (p+ 1 : pk,m+ 1 : 2m)
...

Ψ̂ (p (k − 1) + 1 : pk,m (k − 1) + 1 : mk)

 ,
(B.8)

where p is the output dimension, m is defined as the input dimension and n is the

order of the system, and k is the Toeplitz and observability matrix depth.
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Appendix C

Residual Analysis: Simulation
Case Study

White Noise Interference

Figures C.1-C.15 illustrate the auto-correlation between the residuals of the iden-

tified Benfield process, validated by closed loop raw plant data, and the individual

CV outputs of the identified Benfield process. Figures C.1-C.15 also illustrate the

cross-correlation between each CV output and MV input.

 
 
 



Appendix C Residual Analysis: Simulation Case Study

Figure C.1: The auto-correlation and cross-correlation of residuals and MV1 with
output CV1.

Figure C.2: The auto-correlation and cross-correlation of residuals and MV1 with
output CV3.
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Appendix C Residual Analysis: Simulation Case Study

Figure C.3: The auto-correlation and cross-correlation of residuals and MV1 with
output CV4.

Figure C.4: The auto-correlation and cross-correlation of residuals and MV2 with
output CV1.
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Appendix C Residual Analysis: Simulation Case Study

Figure C.5: The auto-correlation and cross-correlation of residuals and MV2 with
output CV2.

Figure C.6: The auto-correlation and cross-correlation of residuals and MV2 with
output CV3.
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Appendix C Residual Analysis: Simulation Case Study

Figure C.7: The auto-correlation and cross-correlation of residuals and MV2 with
output CV4.

Figure C.8: The auto-correlation and cross-correlation of residuals and MV3 with
output CV1.
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Appendix C Residual Analysis: Simulation Case Study

Figure C.9: The auto-correlation and cross-correlation of residuals and MV3 with
output CV2.

Figure C.10: The auto-correlation and cross-correlation of residuals and MV3 with
output CV3.
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Appendix C Residual Analysis: Simulation Case Study

Figure C.11: The auto-correlation and cross-correlation of residuals and MV3 with
output CV4.

Figure C.12: The auto-correlation and cross-correlation of residuals and MV4 with
output CV1.
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Appendix C Residual Analysis: Simulation Case Study

Figure C.13: The auto-correlation and cross-correlation of residuals and MV4 with
output CV2.

Figure C.14: The auto-correlation and cross-correlation of residuals and MV4 with
output CV3.
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Appendix C Residual Analysis: Simulation Case Study

Figure C.15: The auto-correlation and cross-correlation of residuals and MV4 with
output CV4.

Colored Noise Interference

Figures C.16-C.30 illustrate the auto-correlation between the residuals of the iden-

tified Benfield process, validated by closed-loop raw plant data, and the individual

CV outputs of the identified Benfield process. Figures C.16-C.30 also illustrate

the cross-correlation between each CV output and MV input.
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Appendix C Residual Analysis: Simulation Case Study

Figure C.16: The auto-correlation and cross-correlation of residuals and MV1 with
output CV1.

Figure C.17: The auto-correlation and cross-correlation of residuals and MV1 with
output CV3.
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Appendix C Residual Analysis: Simulation Case Study

Figure C.18: The auto-correlation and cross-correlation of residuals and MV1 with
output CV4.

Figure C.19: The auto-correlation and cross-correlation of residuals and MV2 with
output CV1.
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Appendix C Residual Analysis: Simulation Case Study

Figure C.20: The auto-correlation and cross-correlation of residuals and MV2 with
output CV2.

Figure C.21: The auto-correlation and cross-correlation of residuals and MV2 with
output CV3.
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Appendix C Residual Analysis: Simulation Case Study

Figure C.22: The auto-correlation and cross-correlation of residuals and MV2 with
output CV4.

Figure C.23: The auto-correlation and cross-correlation of residuals and MV3 with
output CV1.
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Appendix C Residual Analysis: Simulation Case Study

Figure C.24: The auto-correlation and cross-correlation of residuals and MV3 with
output CV2.

Figure C.25: The auto-correlation and cross-correlation of residuals and MV3 with
output CV3.
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Appendix C Residual Analysis: Simulation Case Study

Figure C.26: The auto-correlation and cross-correlation of residuals and MV3 with
output CV4.

Figure C.27: The auto-correlation and cross-correlation of residuals and MV4 with
output CV1.
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Appendix C Residual Analysis: Simulation Case Study

Figure C.28: The auto-correlation and cross-correlation of residuals and MV4 with
output CV2.

Figure C.29: The auto-correlation and cross-correlation of residuals and MV4 with
output CV3.
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Appendix C Residual Analysis: Simulation Case Study

Figure C.30: The auto-correlation and cross-correlation of residuals and MV4 with
output CV4.
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Appendix D

Identified System Validation
Results: Real Process Data

Residual Analysis

Figures D.1-D.15 illustrate the auto-correlation between the residuals of the iden-

tified Benfield process, validated by closed-loop raw plant data, and the individual

CV outputs of the identified Benfield process. Figures D.1-D.15 also illustrate the

cross-correlation between each CV output and MV input. The models used for

residual analysis for figures D.1-D.15 were identified by using open-loop structured

step test data and the 2-ORT subspace identification methodology.

Figures D.16-D.30 illustrate the auto-correlation between the residuals of the

identified Benfield process, validated by closed-loop raw plant data, and the in-

dividual CV outputs of the identified Benfield process. Figures D.16-D.30 also

illustrate the cross-correlation between each CV output and MV input. The

models used for residual analysis for figures D.16-D.30 were identified by using

closed-loop data and the 2-ORT subspace identification methodology.

 
 
 



Appendix D Identified System Validation Results: Real Process Data

Figure D.1: The auto-correlation and cross-correlation of residuals and MV1 with
output CV2.

Figure D.2: The auto-correlation and cross-correlation of residuals and MV1 with
output CV3.
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Appendix D Identified System Validation Results: Real Process Data

Figure D.3: The auto-correlation and cross-correlation of residuals and MV1 with
output CV4.

Figure D.4: The auto-correlation and cross-correlation of residuals and MV2 with
output CV1.
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Appendix D Identified System Validation Results: Real Process Data

Figure D.5: The auto-correlation and cross-correlation of residuals and MV2 with
output CV2.

Figure D.6: The auto-correlation and cross-correlation of residuals and MV2 with
output CV3.
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Appendix D Identified System Validation Results: Real Process Data

Figure D.7: The auto-correlation and cross-correlation of residuals and MV2 with
output CV4.

Figure D.8: The auto-correlation and cross-correlation of residuals and MV3 with
output CV1.
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Appendix D Identified System Validation Results: Real Process Data

Figure D.9: The auto-correlation and cross-correlation of residuals and MV3 with
output CV2.

Figure D.10: The auto-correlation and cross-correlation of residuals and MV3 with
output CV3.
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Appendix D Identified System Validation Results: Real Process Data

Figure D.11: The auto-correlation and cross-correlation of residuals and MV3 with
output CV4.

Figure D.12: The auto-correlation and cross-correlation of residuals and MV4 with
output CV1.
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Appendix D Identified System Validation Results: Real Process Data

Figure D.13: The auto-correlation and cross-correlation of residuals and MV4 with
output CV2.

Figure D.14: The auto-correlation and cross-correlation of residuals and MV4 with
output CV3.
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Appendix D Identified System Validation Results: Real Process Data

Figure D.15: The auto-correlation and cross-correlation of residuals and MV4 with
output CV4.

Figure D.16: The auto-correlation and cross-correlation of residuals and MV1 with
output CV2.
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Appendix D Identified System Validation Results: Real Process Data

Figure D.17: The auto-correlation and cross-correlation of residuals and MV1 with
output CV3.

Figure D.18: The auto-correlation and cross-correlation of residuals and MV1 with
output CV4.
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Appendix D Identified System Validation Results: Real Process Data

Figure D.19: The auto-correlation and cross-correlation of residuals and MV2 with
output CV1.

Figure D.20: The auto-correlation and cross-correlation of residuals and MV2 with
output CV2.
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Appendix D Identified System Validation Results: Real Process Data

Figure D.21: The auto-correlation and cross-correlation of residuals and MV2 with
output CV3.

Figure D.22: The auto-correlation and cross-correlation of residuals and MV2 with
output CV4.
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Appendix D Identified System Validation Results: Real Process Data

Figure D.23: The auto-correlation and cross-correlation of residuals and MV3 with
output CV1.

Figure D.24: The auto-correlation and cross-correlation of residuals and MV3 with
output CV2.
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Appendix D Identified System Validation Results: Real Process Data

Figure D.25: The auto-correlation and cross-correlation of residuals and MV3 with
output CV3.

Figure D.26: The auto-correlation and cross-correlation of residuals and MV3 with
output CV4.
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Appendix D Identified System Validation Results: Real Process Data

Figure D.27: The auto-correlation and cross-correlation of residuals and MV4 with
output CV1.

Figure D.28: The auto-correlation and cross-correlation of residuals and MV4 with
output CV2.
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Appendix D Identified System Validation Results: Real Process Data

Figure D.29: The auto-correlation and cross-correlation of residuals and MV4 with
output CV3.

Figure D.30: The auto-correlation and cross-correlation of residuals and MV4 with
output CV4.
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Appendix E

Identified System Verification
Results: Real Process Data

Residual Analysis

Figures E.1-E.15 illustrate the auto-correlation between the residuals of the iden-

tified Benfield process, validated by closed-loop raw plant data, and the individual

CV outputs of the identified Benfield process. Figures E.1-E.15 also illustrate the

cross-correlation between each CV output and MV input. The models used for

residual analysis for figures E.1-E.15 were identified by using closed-loop process

data and the 2-ORT subspace identification methodology.

 
 
 



Appendix E Identified System Verification Results: Real Process Data

Figure E.1: The auto-correlation and cross-correlation of residuals and MV1 with
output CV2.

Figure E.2: The auto-correlation and cross-correlation of residuals and MV1 with
output CV3.
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Appendix E Identified System Verification Results: Real Process Data

Figure E.3: The auto-correlation and cross-correlation of residuals and MV1 with
output CV4.

Figure E.4: The auto-correlation and cross-correlation of residuals and MV2 with
output CV1.
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Appendix E Identified System Verification Results: Real Process Data

Figure E.5: The auto-correlation and cross-correlation of residuals and MV2 with
output CV2.

Figure E.6: The auto-correlation and cross-correlation of residuals and MV2 with
output CV3.
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Appendix E Identified System Verification Results: Real Process Data

Figure E.7: The auto-correlation and cross-correlation of residuals and MV2 with
output CV4.

Figure E.8: The auto-correlation and cross-correlation of residuals and MV3 with
output CV1.
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Appendix E Identified System Verification Results: Real Process Data

Figure E.9: The auto-correlation and cross-correlation of residuals and MV3 with
output CV2.

Figure E.10: The auto-correlation and cross-correlation of residuals and MV3 with
output CV3.
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Appendix E Identified System Verification Results: Real Process Data

Figure E.11: The auto-correlation and cross-correlation of residuals and MV3 with
output CV4.

Figure E.12: The auto-correlation and cross-correlation of residuals and MV4 with
output CV1.

Department of Electrical, Electronic and Computer Engineering 237

 
 
 



Appendix E Identified System Verification Results: Real Process Data

Figure E.13: The auto-correlation and cross-correlation of residuals and MV4 with
output CV2.

Figure E.14: The auto-correlation and cross-correlation of residuals and MV4 with
output CV3.
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Appendix E Identified System Verification Results: Real Process Data

Figure E.15: The auto-correlation and cross-correlation of residuals and MV4 with
output CV4.

Identified Pole-Zero Plots: Closed-loop and Open-

loop SID

Figure E.16 illustrates the poles and zeros of the identified plant where closed-loop

raw plant data were used correspondingly for system identification.
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Appendix E Identified System Verification Results: Real Process Data

Figure E.16: The poles and zeros for the identified process model.
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