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The study of semiconductor materials and more recently, artificially struc-
tured materials, is important for both scientific and industrial purposes. Many
techniques have been developed to characterize the electronic properties of
these materials. Optical characterization is a popular approach to this field of
study, as the absorption or reflection of incident photons is directly related to
the band structure of a semiconductor material.
When measuring the absolute reflectivity or absorptivity, the resulting spec-
trum is often rather featureless, making it difficult to observe band structure
features. This led to the invention of modulation spectroscopy techniques
where the derivative of the absorptivity or reflectiviy of a semiconductor ma-
terial with respect to some experimental parameter, is evaluated. Weak fea-
tures in the absolute spectrum are thus enhanced, making the identification
of band structure features easier.
This study describes the technique of photo reflection spectroscopy (com-
monly known as photoreflectance spectroscopy) where modulation is achiev-
ed optically. The theory behind photoreflectance spectroscopy is discussed in
detail, whereafter the practical implementation is described. This is followed
by measurements done on GaAs to do a basic comparison with published re-
sults. Finally, three different doping superlattices were investigated with this
technique; including the influence that a-particle irradiation and consequent
annealing have on the measured photoreflectance spectra.
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Chapter 1

Introduction

Artificially structured materials (ASM), such as quantum wells and super-

lattices, have been the subject of considerable theoretical and experimental

studies for quite some time [1]. These microstructures are of technological

and scientific interest because they exhibit properties that are significantly

different from bulk materials. Furthermore, because of the flexibility offered

by high-technology growth techniques, the chemical compositions, thicknes-

ses and doping concentrations of the layers are design parameters. This al-

lows the properties of ASM to be tuned for particular technological or basic

science needs.

Many experimental techniques have been applied to the study of mi-

crostructures. One such technique is modulation spectroscopy. Modulation

spectroscopy is a valuable experimental tool in the study of materials such as

bulk semiconductors, quantum wells and superlattices. In general, one could

measure the absorptivity or reflectivity with respect to some parameter, but in

the case of modulation spectroscopy, the quantity of interest is t1R(>')/ R(>'),

where AR(>') is the modulated reflectivity and R(>') is the unmodulated or de

reflectivity [2]. Modulation is achieved by applying a repetitive perturbation

to the material being studied and because the optical properties of a material

are fully described by the dielectric function, E = El + iE2, the effect of the

modulation parameter on these properties must appear as a change in the

real and the imaginary parts of the dielectric function.

 
 
 



Photoreflectance (PR) is an example of modulation spectroscopy. It is

a contactless form of electromodulation in which the internal electric field

of the sample is modulated by electron-hole pairs created by a modulated

pump-beam (typically light from a small visible laser at a level of a few mil-

liwatt).

The aim of this study was to construct a PR experimental arrangement

and to use this to study bulk GaAs samples as well as three different dop-

ing superlattice samples. In addition to this, the three superlattice samples

were particle-irradiated and afterwards annealed, to investigate the effect of

radiation damage on the PR-spectra.

The basic outline of this dissertation is as follows: In chapter 2 the tech-

nique and theory of photoreflectance will be described. Following that, in

chapter 3, the electronic structure and properties of doping superlattices will

be explained. Chapter 4 is then devoted to describing the experimental tech-

nique of photoreflectance, followed by a description of the measurements

that were carried out and a discussion thereof in chapter 5. Finally, some con-

cluding remarks and suggestions for future research are provided in chapter

6.
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Chapter 2

The Technique of
Photoreflectance

2.1 General Theory

With modulation spectroscopy, the derivative of the absorptivity or reflecti-

vity of a semiconductor material with respect to some parameter, is evalu-

ated. Weak features that may have been difficult to observe in the absolute

absorption or reflection spectrum are enhanced, as can be seen from the sharp

derivative-like features of a resulting spectrum, as shown in figure 2.1 [1].

The modulation can be accomplished by varying some parameter of the sam-

ple or experimental system in a periodic fashion and measuring the corre-

sponding normalized change in the optical properties.

In this study, the interest lies in a photoinduced variation in the built-

in electric field in a sample. This is achieved by the technique of photore-

flectance. This is a contactless technique in which a so-called pump-beam

(usually a small laser operating in the visible spectrum) is used to photoin-

ject electron-hole pairs, which modulate the built-in electric field of the mi-

crostructure under investigation. The pump-beam should therefore have a

photon energy greater than the bandgap of the semiconductor.

Differential changes in the reflectivity can be related to a perturbation of
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where R is the reflectivity, ~El and ~E2 are the changes in the complex di-

electric function, E = El + iE2, and a, (3 are the Seraphin coefficients, which are

related to the unperturbed dielectric function [1][2]. In bulk materials, near

the fundamental gap, (3 ~ 0 so that ~R/ R ~ a~El. In multilayer structures,

both a~El and (3~E2 have to be considered because of interference effects [1]

[3].

The absorption of an incident photon due to the creation of an electron-hole

pair is the fundamental process linking the band structure of a semiconductor

to its optical properties. This link is defined by the probability of individual

 
 
 



absorption processes, the contribution of all such absorption processes pos-

sible at a given photon energy and the relationship of this sum to the macro-

scopic optical quantities [4].

A monochromatic flux of photons entering an absorbing medium in the

plane x = 0, with an energy density 1(0), is reduced to 1(d) after reaching the

plane x = d according to

where K = (wjnc)E2(w), is the absorption coefficient of the medium at an-

gular frequency w of the optical field, and E2 is the imaginary part of the

dielectric function

The real and imaginary parts of this dielectric function are related to the op-

tical constants n and k by

The macroscopic quantity related to electronic transitions is the imaginary

part, E2 of the dielectric function. The most direct way to determine E2, is

by absorption measurements. In contrast to this, reflectance (at normal inci-

dence) depends on both parts of the dielectric function

1 1 1R = (N _1)2 = (E~ + E~)~ - [2El + 2(E~ + E~)~]~ + 1
1 1 1 (2.7)

N + 1 (E~ + E~P + [2El + 2(E~ + E~)~]~ + 1

The real and imaginary parts of the dielectric function are related by the

Kramers-Kronig relations [4]

2100 w· E2(W)
El(WO) = 1+ - 2 2 dw

1r 0 W - Wo
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A similar dispersion relation holds between real and imaginary parts of the

reflection amplitude

1 100 Iw - Wo I d¢(wo) = -2 In -- -d InIR(w)ldw
1['0 w+wo w

Dispersion relations of this type require knowledge of the integrand over the

entire spectral range. Experiments always fall short of this requirement and

proper extrapolations must be applied beyond the range of measurement.

However, in modulated reflectance spectra, the Kramers-Kronig relations are

replaced by dispersion relations for the change in the optical constants gen-

erated by the modulation. The integrand is then typically restricted to a few

narrow regions of the spectrum which reduces the consequences of an im-

proper extrapolation.

To investigate the probability of an elementary absorption process in a

semiconductor, one has to consider the perturbation caused by an electro-

magnetic field [4]. It stimulates the transition of an electron with initial en-

ergy Ei and wave vector k to a final state with energy Eland wave vector

k'. When the electric field of frequency w and polarization e is described as

a time-dependent perturbation operator in the Hamiltonian of the system, the

probability of finding the electron in the excited state is given by the matrix

element of the perturbation. The number of transitions per unit time is

where e . Mil is the dipole matrix element of the perturbing light wave with

respect to the wave function of the initial and final states

 
 
 



The delta-function stipulates that no transitions can occur unless the photon

energy matches the energy difference between initial and final states. This

refers to the whole system because the transition may involve a complex

many-body process. In order to draw conclusions about the one-electron

states of the energy-band model, E f and Ei must be assumed at the same

values before and after the absorption, so that the creation of an electron-hole

pair has no significant influence on the electronic states of the crystal. The

coupling of the polarization vector e into the wave functions of initial and

final states, imposes selection rules on the transition that depend on the sym-

metry character of these functions. Certain orientations of the polarization

make the integral (2.13) vanish, meaning that the transition is not allowed.

In cubic crystals, the components x, y and z of the polarization vector e
transforms in a manner that renders the selection rules independent of its di-

rection. Therefore, polarization experiments do not give additional informa-

tion over the same experiment performed with non-polarized light. Summa-

tion over equivalent directions in a cubic crystal averages out the anisotropies

of the matrix element. In most modulated reflectance techniques a vectorial

modulation parameter perturbs the symmetry of a cubic crystal, so that the

anisotropies of the matrix element no longer average out. This can only be

accomplished in static reflectance by prestressing the sample in some way.

The matrix element can be simplified if only wave functions of the Bloch-
type are admitted

and the incident light is assumed to be a plane wave. The concept of the direct

transition then follows. The matrix element is zero unless the condition

is fulfilled, where ij is the momentum of the absorbed photon. Since, in the

optical range, this momentum is always small on the scale of the first Brillouin

zone (BZ) and therefore small compared to k and k', it is usually ignored.

This means that the absorption process connects states that are located verti-

cally above each other in the conventional (E, k) diagram of the band struc-
ture.

 
 
 



A correlation between E2 and the band stucture can be established assuming

that absorption is the sum of transitions between electronic states of the same

k-vector (according to 2.15) and separated by the energy difference E f - Ei =

~E = liw [4],

r 2 2 3
E2(W) '" J BZ (2'11-)3 ·Ie· Mifl . 8(~E -liw) d k

If we further assume that the matrix element is the same for all pairs of states

located vertically above each other, regardless of their location in the BZ, we

can define the joint density-of-states function J(~E) as

This simple counting of states in the B Z is the working hypothesis of band

structure analysis. Therefore, ignoring the energy dependence of the matrix
element:

A transformation of the volume integral in (2.17) into a surface integral

over the surface ~E = canstant shows the properties of the joint density-of-

states function more clearly. This transformation gives

J(~E) = _2_ r ds
(21f)3 JAE=const l\7k(~E)1

where ds is the surface element on the isoenergetic surface ~E = canstant

and \7k(~E) is the gradient of the separation of initial and final states in k-

space.

Points for which \7 k(~E) = 0 are particularly important [4]. The gradients

of the lines Ef(k) and Ei(k) are equal, and the density of states is large, since

their separation does not change over a small region of k-space. In such a

point, known as a critical point, the denominator of the integrand in (2.18) is

zero, and the joint density-of- states function passes through a slope discon-
tinuity.

 
 
 



This condition on Ef(k) and E;(k) can be satisfied in two different ways.

First, the lines Ef(k) and E;(k) can be parallel, but not horizontal. This can

occur anywhere in the BZ, and such a critical point is therefore called a "gen-

eral" critical point. Secondly, both "hEf and "hE; can vanish separately if

the gradients are horizontal. Critical points of this kind can occur as a conse-

quence of the periodicity of the E(k) functions, in which case their position in

k-space is predictable from symmetry alone. This is a necessary condition at

the center and the edges of the BZ for reasons of symmetry and the multiple

connection of the zone. Such a critical point is called a "symmetry" critical
point.

Since critical points are present at points of high symmetry in the B Z, the

following working hypothesis of band structure analysis can be formulated.

1. Critical points introduce slope discontinuities into the joint-density- of-

states function and into f2. They correlate to the band separation at

points of high symmetry in the B Z, such as the center or edges.

2. Critical points can be classified into four different groups by developing

t::..E= E f - E; into a Taylor series

3
t::..E= t::..Eo+ L aO!(kO!- ko)2

01=1

around the critical point at ko. The band separation can either be at an

extremum in ko, in which case all 0:; are positive (minimum) or negative

(maximum). Since t::..E increases (decreases) in all directions of k-space,

the critical point is called "parabolic".

3. t::..E can on the other hand, increase in two (one) of the principal di-

rections selected for the coordinate system in (2.19). One (two) of the

0:' s is negative, and a critical point of this type is called a "hyperbolic"

or "saddlepoint" critical point. It should be noted that there is a char-

acteristic line shape for each critical point, which gives a valuable tool

for identifying the structure in optical spectra which are experimentally

observed.

 
 
 



4. Modulation of the spectral position Eg of a critical point affects 102 through

the joint density-of-states function, J(Eg, nw),

where C contains the matrix element and effective mass parameters. At

all four types of critical points, the joint density-of-states function varies

as the square root of the spectral distance from Eg. Hence, the deriva-

tive with respect to Eg has a singularity of the type (Eg - nw)-1/2 at the

critical point. This singularity at critical points probably explains the

spectral selectivity of modulated reflectance. The response disappears

as the spectral distance from the critical point increases. Noncritical ar-

eas in which the joint density-of-states function is smooth and free of

square-root slope discontinuities should not be affected by the modula-

tion.

The modulation of 102 is transferred to 101 through a differential Kramers-Kronig
relation

A ( ) _ 2100 w . .6.102 (w) d
UE1 Wo - - 2 2 W

7r 0 Wo - w

which is easily derived from (2.8) by using 102 = 102 + .6.102 under the integral

and subtracting. Contributions to the integral in (2.21) are restricted to the

spectral regions in which the modulation affects 102. This is of considerable

practical value, since extrapolation outside the region of measurement is less

critical. The transformation properties of the differential Kramers-Kronig rela-

tion is illustrated by again using the simple model of a modulation of Eg• In

analogy to (2.20)
.6.101 = 2C [00 .6.J/ .6.Eg dw (2.23)
.6.Eg 7r 10 w(w5 - w2)

The relation between .6.101 and .6.102 for a given critical point, as well as the

relation between .6.101 or .6.102 at two different types of critical points, is inde-

pendent of the choice of mechanism and reflect the transformation properties

of the differential Kramers-Kronig relation. It is not realistic to assume that the

electron stays in the excited state indefinitely. It will leave through recom-

bination or interaction with another electron or phonon. As a consequence

 
 
 



of the uncertainty principle, this limited lifetime in the excited state leads

to a broadening of initial and final states. By using the phenomenological

Lorentzian broadening parameter r, the effect of this lifetime broadening on

E2 is described by the convolution

100 r .E2(W') ,
E2(W)LB = ( ')2 r2 dw .o w-w +

2.2 Electromodulation Lineshapes

The objective of modulation spectroscopy is to obtain sharp, well resolved

spectra that can be analyzed to directly yield the properties of the material

under study [6]. However, PR spectra in general are strongly dependent on

the magnitude of the applied field and on experimental conditions so that the

determination of material parameters from these spectra is a difficult and un-

certain process. However, at sufficiently low values of the modulating elec-

tric field, PR spectra simplify drastically. As with all modulation techniques,

the perturbation (the electric field, F) changes with the dielectric properties

of the unperturbed solid. These changes are described in terms of a change,
t::..E(F), of the complex dielectric function E. The quantity t::..E(F) is obtained

by adding a perturbation term, H' to the Hamiltonian Ho of the unperturbed

crystal. For a uniform electric field, H' = eF . r. It is of fundamental im-

portance that, in contrast to other forms of modulation spectroscopy (such as

piezoreflectance, thermoreflectance or wavelength modulation), the pertur-

bation term eF . r for the electric field is not lattice-periodic: it represents a

net force that accelerates the electron, and it therefore completely destroys the

translational invariance of the Hamiltonian in the field direction. Although

this appears to be a trivial property of the field perturbation, it is in fact the

central reason for the complexity of PR theory. It also accounts for the remark-

able relationship between low-field PR spectra and the third-derivative of

the unperturbed dielectric function, which stands in direct contrast to mod-

 
 
 



ulation techniques where lattice periodicity is retained and first-derivative

spectra are observed. The fundamental importance of translational invari-

ance in determining dielectric properties in general, can be seen from a sim-

ple physical model. For a free electron, the Hamiltonian, Ho = p2/2m, is in-

variant to any translation and therefore the electron momentum, j5 = hk, is

rigorously conserved. Here, the energy band structure is simply a parabola,

E = h2 k2 12m. A photon cannot be absorbed to first order in this system

because its momentum is negligibly small and its energy, E = hw, if ab-

sorbed by the electron, would involve a relatively large momentum change.

Thus, energy and momentum cannot both be conserved in a first-order opti-

cal transition. It follows that the sum of all allowed transitions for any finite

photon energy (i.e., the imaginary part, E2, of the complex dielectric function,

E = El + (2) is identically zero for the free electron. If the electron is in a

crystal, the Hamiltonian, Ho = p2/2m + V(1'), is now invariant only to the

class of translations that takes the crystal into itself. Momentum conserva-

tion is weakened, and the momentum hk is now a good quantum number

only to within a vector, Kn, of the reciprocal lattice. The free-electron energy

parabola breaks up into energy bands and optical absorption is now possible

in first order by utilizing a reciprocal lattice vector to obtain momentum con-

servation. In the reduced zone scheme, the optical transition will appear as

a vertical line in an energy band structure diagram as indicated in the upper

half of figure 2.2.

If the crystal is now perturbed, its Hamiltonian, Ho = p2/2m + V(1') + H',

will generally have lower symmetry depending on the form of H'. If period-

icity is retained, as for example in piezoreflectance, momentum is still a good

quantum number to within the reciprocal lattice vector. Optical transitions re-

main vertical and the dominant changes appear directly as small shifts in en-

ergy gaps or amplitudes of momentum matrix elements. Since these shifts are

generally small on the scale of energy gaps, the perturbation induced changes

in E are of first order and are approximated by first-derivative lineshapes. If

the perturbation is an electric field, H' = eF . 1', translational invariance is

lost, the electron is accelerated and momentum is no longer a good quantum
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Figure 2.2: Schematic diagram of the change in the imaginary part of the

dielectric function.

 
 
 



number in the field direction. Consequently, the one-electron Bloch functions

of the unperturbed crystal become mixed. This is equivalent to spreading the

formerly sharp vertical transitions over a finite range of initial and final mo-

menta, as shown at the bottom of figure 2.2. In the case of small fields, mixing

will be restricted to those wavefunctions near the originally vertical allowed

transition. This will yield a complicated difference spectrum having changes

in sign as indicated in the bottom half of figure 2.2. The two zero crossings

are characterictic of the third-derivative, as may be verified qualitatively by

explicit calculation. Alternatively, it might be anticipated that the averag-

ing effect of the momentum-space mixing of wave functions in the case of

electric field perturbations, would lead to effective energy shifts analogous

to those encountered in periodicity-retaining perturbations, except for being

much "smoother" functions (i.e., higher-order) of the perturbation, thus re-

sulting in higher-order changes in E (i.e., higher-derivative-spectra). To prove

this statement, consider the time dependence of the average energy of a band

electron in a perturbation turned on instantaneously at t = O. If periodic-

ity is preserved, the perturbation simply produces a discontinuous change in

the zero-order (constant) terms (Eg or r) in a Taylor series expansion of the

average energy as a function of time. In the case of an electric field, the dis-

continuity occurs in the acceleration, which appears in the second-order, or

quadratic term in the time-dependent average energy. Thus, no discontinu-

ities occur either in Eg or in the initial momentum at t = 0 for the electric

field perturbation. If a transformation into the frequency domain is made to

calculate E, it is found that a small discontinuity in the zero-order terms, E 9

and f, leads to a first-order change in E (first-derivative spectrum). Similarly,

a small discontinuity in the second-order term, leads to a third-order change

in E (third-derivative spectrum).

For the case of bulk materials with an applied electric field, the main effect

of the electric field is to change the wave vector of the Bloch state from k to

k + eFt/n, where F is the applied electric field [1]. Mathematically, this sub-

 
 
 



stitution expresses the fact that the field mixes all wave functions that have

components along the field direction. The magnitude of the mixing is de-

termined by the time parameter, t. From a free particle point of view, the

electron or hole is driven up its dispersion curve and its energy is changed

continuously, giving the appearance that it is accelerated in the electric field.

For the purpose of this discussion, the most useful expression for the dielec-

tric function involves the Fourier transform of the time-dependent current.

The general expression for E is

4rrie
2
h 1 ioo

E(E,r) = 1+ ~E2 d3k dtle' PcvJ2m BZ 0

[jt/2 d' irE - Ecv(k) + ir]t']x exp t --------
-t/2 h

where r is a phenomenological Lorentzian lifetime broadening parameter,

defined in (2.24), Pcv is the momentum matrix element between the conduc-

tion and the valence band, Ecv is the energy difference between the conduc-

tion and the valence band, and E is the photon energy [5]. Replacing I. with

I.+ eFt/h in Ecv of (2.25) and expanding in a Taylor series around I.,one gets

E(E, F, r) = 1+ ~~kz d3 k 1000
dt exp [i(E - Ecv +~r)t + int

3
/3] (2.26)

where n3 = e2F2/8J-th, A = 4rrE2hle· Fcvl2/m2, and J-tis the joint density-

of-states effective mass in the direction of the applied electric field. Equation

(2.25) is the general expression for an Airy function.

 
 
 



A simplification occurs when the field is small or when the homogeneous

broadening is large; i.e, ft » Ot3. Expanding the exponent containing o[exp(iOt3 /3) ~

1+ iOt3/3] leads to the small-field limit

f(E, F, f) = 1+ ~ kz d3k fooodt (1 + i~~3)exp [i(E - E~v + ir)t]
(2.27)

In (2.27) the term in the square brackets represents the unperturbed dielectric

function and the term in brackets represents the field-dependent perturba-

tion. The time dependence (t3) of the perturbation term can be obtained by

differentiating the unperturbed term under the integral three times with re-

spect to E (and also r) or Ecv. Integrating (2.27) yields the final form

1+ iA r d3k 1
E2 1BZ E - Ecv + if

2iA r 3 (fiO)3
+ E2 lBzd k(E-Ecv+if)4

This result is known as the Aspnes third-derivative functional form. The term

in t3 arises directly from the fact that there is a dispersion curve along the field

direction and hence a gradient with respect to k. This result is particularly

significant, from a spectroscopic point of view, because third-derivative line-

shapes are characterized by the presence of strongly enhanced critical point

structures and strongly supressed background effects. The widths of these

third-derivative critical point structures are determined by lifetime broadening.

These spectral features are well localized in energy, allowing nearly degen-

erate critical points to be resolved. Moreover, this localization permits the

actual energy band structure in the vicinity of critical points to be approxi-

mated accurately by simple model densities of states, enabling critical point

energies and broadening parameters to be obtained directly and precisely

from experimental data without requiring either a separate measurement of

the optical constants or data reduction by Kramers-Kronig analysis. A sim-

ple physcial derivation of the effects of a small electric field on the dielectric

function will be given [8]. The energy gained by a free particle in an electric

field is calculated first. This is done by replacing k with k + eFt/fi to obtain

 
 
 



where t is the time and J-t is the joint density-of-states effective mass in the

direction of the applied electric field F. Considering an optical structure near

a critical point, with energy Eg, the dielectric function has the general form:

where E is the photon energy. The electric field induced change in the dielec-

tric function, ~f, is given by:

If the field is sufficiently small, so that E(P) « r (low field regime), (2.31)

can be expanded into a Taylor series to yield:

E(P)(djdE)f(E - Eg, r)

(e2 p2t2 j2J-t)(djdE)f(E - Eg, r)

(e2 p2h2 j2J-t)(d3 jdE3)f(E - Eg, r)

4(M1)3(d3 jdE3)f(E - Eg, r)

(2.34)

(2.35)

Equation (2.36) has all of the essential features of low-field electro-modulation

(EM). The quantity ~f is proportional to p2 (modulating field), inversely pro-

portional to J-t and has a line shape that is the third-derivative of the unper-

turbed optical function. The following section will be devoted to the evalua-

tion of the dielectric function and the critical point types, as it will aid in the

determination of the band structure parameters.

 
 
 



2.2.3 The Dielectric Function and
Critical Point Types

In section 2.2.1 the physical origin of the third-derivative behaviour of low-

field electro-reflectance (ER)spectra was discussed in terms of a simple model,

emphasizing the crucial part played by translational symmetry in this effect.

In this section the field-induced change in the dielectric function, b..E, is dis-

cussed in terms of perturbation theory. The loss of translational invariance

due to an electric field, results in the appearance of a second, intraband,

or one-band acceleration mechanism that substantially modifies the phase-

coherent or long-range correlation part, eik'f, of the unperturbed Bloch func-

tions, In, k} = eik'fun(k, r<). The existence of the usual interband mechanism

acting on the periodic part, un(k, r<), of the Bloch functions, is easily demon-

strated by imagining that the linearly increasing potential of the uniform field

consists of two parts, namely a sawtooth component having lattice periodic-

ity, and a staircase component describing the loss of translational invariance

[9]. The sawtooth component results in Stark shifts of the energy bands and

momentum matrix element changes which lead to first-derivative contribu-

tions to ER spectra. When the externally applied fields are such that both in-

traband and interband mechanisms can be treated adequately by first-order

perturbation theory, low-field ER spectra are observed. Perturbation theory

implies that the perturbation itself has a certain characteristic energy and at

the same time, the system being perturbed also has a characteristic energy.

The perturbation and system energies for the interband mechanism in ER,

are et:ao, the potential drop across the unit cell, and Eg, the energy separa-

tion between the pair of bands under consideration [10] (t: and ao represent

the perturbing field and the interatomic spacing respectively). For the inter-

band mechanism, perturbation theory will apply whenever et:ao « Eg• In

the case of the intraband mechanism, the characteristic energy for the system

is r,the broadening parameter, whereas the perturbation energy is given by

[6]:

 
 
 



where p, is the effective mass of the conduction and valence bands, evaluated

in the field direction, and EcvCk) is the interband energy at k. Equation (2.38)

is derived from (2.37) using the relation [9]

h2
p,= -2-

V'kEcv

The energy hn is of course the electro-optic energy, obtained in the quantum

mechanical solution of a particle with effective mass p" which is accelerated in

a uniform field. Perturbation theory will apply to the intraband mechanism

whenever Ihn\ « r. It would be useful to attach a physical meaning to the

energies hn and r for the intraband mechanism. This is done by calculating

the average energy per particle, (~W), absorbed in a collision period, T, for a

collection of classical particles of charge -e, mass p" and zero average initial

velocity (zero initial current) being accelerated in a uniform field, £. It is

known that dW = P . v(t)dt, (P representing the force on a particle) where

P = -e£ and v(t) = Vo + at = Vo - (e£jp,)t, and consequently

(Ll.W) - {I dt( -ee) . [vo- (e£/~)tl}~e'£',' /(2~). (2.40)

The lifetime, T, is related to the broadening energy, r,by T '" hj(2r). If (~W)

is interpreted as a field-induced uncertainty in the unperturbed electron en-

ergies, analogous to the interpretation of r as a lifetime-induced uncertainty

in these levels, then (~W)jr rv (e2£2h2 j8p,r3) = (hnjr)3. Therefore, per-

turbation theory applies to the intraband mechanism whenever the average

energy gained per particle, due to the acceleration caused by the electric field,

is small compared to the natural lifetime-induced uncertainty in the unper-

turbed electron energy levels. First-order perturbation theory is known to

be a good approximation only if the perturbation energy is appreciably less

than the characteristic system energy[6], and it is therefore evident that the

intraband mechanism will determine the low-field limit. The high-field limit

occurs when e£ ao rv Eg, and corresponds to the breakdown of selection rules,

Stark shifts of energy bands, and first-derivative contributions to ER spectra

 
 
 



similar to those obtained with other modulation techniques. However, at

these fields the intraband contribution usually dominates, so high-field spec-

tra are usually important only very near points of degeneracy. The interband

mechanism can be neglected for both the intermediate and low-field ranges.

For a single band pair c, v the intermediate-field-expression for Llf., in terms

of a general energy band structure defined by Ecv(k) [6], is

2 2 . . 00

411"ieh P~cPlv (_2_) 1d3k 1d -rs iEs
m2E2 (211")3 se e

BZ 0

X { exp [-i 1::/2

2 ds' Ecv(k - e£s')]

- exp [ - iEcv(k)S] }

2 2 . . 00

~ 411"ieh P~cPlv (_2_) 1d3k 1d -rs
m2E2 (211")3 se

BZ 0

x exp[i(E - Ecv(k))s]exp[-i(hO(k))3s3 /3] - 1 (2.42)

In (2.41), the momentum matrix elements are assumed to be independent

of k and also, the energy bands are assumed to be locally parabolic, which

then leads to (2.42). If in addition the energy bands are assumed to be com-

pletely parabolic, (2.42)can be expressed in closed form and the Franz-Keldysh

expression is obtained. Lastly, the intermediate field range is identified ex-

perimentally by the complex line-shape dependence on the field, the ap-

pearance of subsidiary oscillations in ER spectra, and an exponential depen-

dence of the fundamental absorption edge. The lifetime broadening term

e-rs in (2.42) will cut of the integrand before the term, exp[-i(hO)3 s3 /3] ~

l-i(hO)3s3 /3 + ...,changes appreciably, provided that the field is sufficiently

small «(M1)3 '" £2). Furthermore, if ihOI < r/3, it has been shown that the

higher-order terms may be neglected. After explicit integration the low-field

expressions are obtained:

\bO\G3"2l4

\olSLtl7b ~3

 
 
 



2't.2C'kC'1 >l3
= e nee ( -l)kl_U_ (E2fij(r E)

24E2 J.l 8E3 '

The third-derivative relationship between the field-induced change, .6.f, and

the unperturbed dielectric function, f is clearly evident in (2.44) and (2.45).

Equation (2.45) also shows the experimentally identifying feature of low-field

spectra, namely the quadratic scaling dependence of an invariant lineshape

on an externally applied field.

The quantity .6.f, given by (2.41) to (2.45) can be related to the experimen-

tally observed relative change in reflectivity, .6.R/ R, by

o
Gin = -2ik / dz' e-2ikz' [£(z')/£(O)f

-00

and ei and ej represent Cartesian components of the unit polarization vector,

e, and 9 is a so-called strength parameter, which can be assumed to be con-

stant for a given structure. The Seraphin coefficients[2], a and {3,for a two-

phase interface (ambient n~ = fa, unperturbed substrate n2 = f) are given

by the factor Gs = a - i{3, which is rewritten in complex-variable form for

convenience. Gex represents the electron-hole Coulomb interaction [12], and

Gin is the factor arising from the spatial dependences, or inhomogeneities in

the perturbing field [13].

The energy band structure in the vicinity of a critical point can usually be ac-

curately replaced with a simple parabolic model [6] which aid in the analysis

of experimental spectra for band structure parameters. This can be ascribed

to the fact that the low-field ER structure of a single critical point is strongly

 
 
 



localized to within an energy range not exceeding several broadening param-

eters. For one-, two-, and three-dimensional simple parabolic model densities

of states (D = 1,2, and 3 respectively), (2.43) becomes [4]

4 4 i .
Qij _ e n pvePlv. (2.53)

- 87r/lIIE2m2'

I is the order of the critical point, equal to the number of negative effective

masses /lx, /ly, /lz; Ky and Kz represent k space cutoff limits used for D = 1

or D = 2; /lll is the interband reduced mass evaluated in the field direction

as defined in (2.37) and (2.38). In the described model, the energy location of

.6.f.ij is determined by the band gap, Eg, its width by the broadening param-

eter, r, its amplitude by a combination of r, the momentum matrix elements

Pev, the electric field £, and the effective masses /li, and finally the general

lineshape is determined by the complex phase factors together with the sign

of /lli' It should be noted that in this model the field £2 only interacts with the

parameters determining the amplitude. Therefore, r,Eg, and the phase factor

can be determined from an experimentally determined spectrum .6.f. without

requiring the value of £. Equations (2.47) to (2.49) describes the three major

interactions that take .6.f. into the experimentally measured lineshape .6.R/ R,

namely the optical properties of the ambient and the material, the electron-

hole correlation effects, and the field inhomogeneities.

In general, experimental ER spectra exhibit a relatively simple line shape

which has both positive and negative extrema. These experimental line-

 
 
 



shapes are approximated by a perturbation treatment of ER [16], which de-

scribe the modulated reflectivity spectra /:),.R/ R as

/:),.R "f)If = Re(Ce~ /:),.E).

Aspnes and Rowe [15] determined that a least-squares fit to the experimental

lineshape is sufficient to determine interband energies to high accuracy. They

proposed a simple three-point fit of theory to experiment. The so-called

three-point ratio p is defined as

p = - (~:) (~~)

where A and B are the lower- and higher-energy dominant peaks, respectively,

of the /:),.R/R spectrum. The position of Eg with respect to the energy EA of

peak A is given uniquely in terms of p:

and f is the scaling parameter. The scaling parameter is plotted in figure 2.3

for three different values of n in (2.55). The value n = 3, corresponding to a

two-dimensional critical point [15] is a good description of three-dimensional

critical points with large mass ratios [17] [18] and fundamental absorption

edges modified by the Coulomb interaction [19]. The values n = 2 and 2.5

describe the modulation of discrete excitons and general three-dimensional

critical points, respectively [15]. Since the curves for all three values of n are

nearly the same, it is evident that the three-point method is nearly indepen-

dent of the physical model chosen to represent the transition.

This implies that the critical point energies and broadening parameters

can be determined directly from the experimental /:),.R/ R lineshape, without
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resorting to a Kramers-Kronig analysis, or a knowledge of the field inhomo-

geneity, electron-hole interaction strength, or even the optical properties of

the material [14] [15]. Further spectroscopic information is contained in the

phase and amplitude factors, but these depend on an interrelationship among

the various mechanisms mentioned above, and the study of anyone of these

mechanisms in particular requires estimates of the phase and amplitude con-

tributions from the others. Therefore, the entire analysis of an experimental

spectrum in the simple parabolic model density of states approximation can

be carried out in the framework of the experimental spectrum, fj.R/ R, be-

cause analysis of the data by means of a Kramers-Kronig analysis will provide

no further information. If the dielectric function is varying rapidly in energy

near a critical point structure, however, a Kramers-Kronig analysis is usually

required.

 
 
 



PR spectra in general, and low-field spectra in particular, exhibit one positive

and one negative extremum for each critical point. This is a general property

of complex resonance lineshapes of the form

where C and fJ are amplitude and phase factors that vary slowly with E and

n [6]. The amplitude and phase factors C and fJ determine the amplitude and

asymmetry of the lineshape respectively, and Eg and r determine the energy

location and width of the structure. The parameter n represents the type of

critical point and order of the derivative.

Figure 2.4 shows how the parameters interact in determining the line-

shape for the two-dimensional (n = 3) and three-dimensional (n = 5/2) sim-

ple parabolic critical point models. The amplitude factor only scales the line-

shape determined by fJ, n, Eg and r and thus does not enter into the actual

lineshape determination. The phase, fJ, is the dominant factor determining

the lineshape, however, regardless of the value of fJ, the energy gap always

lie between the two extrema and the energy seperation between the two ex-

trema is nearly constant. This suggests that Eg and r should be obtainable in

a relatively straightforward manner from these lineshapes.
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Chapter 3

Doping Superlattices

In general there are two different types of superlattices, namely, composi-

tional and doping superlattices. These artificially structured materials consist

of a periodic sequence of ultrathin layers which have alternating composi-

tion or doping. A crystal which is made by depositing alternate layers of two

different semiconductors, for example gallium arsenide and aluminium ar-

senide, is known as a compositional superlattice. When donor and acceptor

impurities are incorporated into alternate layers of a single semiconducting

material, for example n-doped and p-doped GaAs, it is known as a doping

superlattice. In some cases the n- and p-doped layers are separated by un-

doped or intrinsic (i) layers of the same semiconductor, and therefore these

doping superlattices are often referred to as n-i-p-i crystals. Doping superlat-

tices have been the subject of extensive study since the foundational work of

Dahler [1] because of their unique electronic and optical properties. By cre-

ating a periodic structure of alternating n- and p-doped layers of this semi-

conductor, the resulting electronic and optical properties of the superlattice

are fundamentally altered from those of the bulk semiconductor [2]. The

most striking features by which they differ from their compositional counter-

parts and from any homogeneous bulk semiconductor, is the strong tunabil-

ity of their electronic structure and, consequently, of the resulting electrical

 
 
 



and optical properties [3]. This tunability arises from an indirect gap in real
space, since the lowest conduction-band states are shifted by half a superlat-

tice spacing with respect to the uppermost valence-band states. This shift is

induced by the space-eharge potential of the impurities. By varying the elec-

tron and hole concentration, the space-charge is also changed, and this in turn

induces strong changes of the effective energy gap EfIPI, which is always

smaller than the gap of the homogeneous, bulk semiconductor material. An-

other interesting feature is the fact that electron-hole recombination lifetimes

may exceed the corresponding values of bulk material by many orders of

magnitude because of a small overlap of electron and hole states. This allows

large deviations of electron and hole concentration from equilibrium values,

even at extremely low excitation intensities. Any semiconductor, which can

be n and p doped, can be used as a host material for the n-i-p-i structure. This

is in contrast to the compositional superlattices, where the requirement of

lattice matching severely restricts the choice of materials. Furthermore, any

value of the effective bandgap EgII,O of the n-i-p-i crystal in the ground state

(i.e. unexcited) that is smaller than the gap of the host material, Eg, can be

generated by an appropriate choice of the design parameters, Le., the doping

concentration and the thickness of the layers.

3.2 Theoretical Considerations on Doping Superlattices

In a crystalline solid, the periodicity is established by the regular arrange-

ment of atoms in the crystal lattice, and hence, the period is dictated by the

lattice constant of the particular solid [9]. In a superlattice crystal, the periodic

sequence of layers which have alternating composition or doping, results in

a new periodic variation of the electronic properties in the direction perpen-

dicular to the layers (the superlattice direction). Whereas the lattice constant

of a semiconductor is fixed, the superlattice period can be varied by changing

the thickness of the layers.

The motion of the electrons parallel to the superlattice layers is, to a first

 
 
 



approximation, not affected by the periodic potential of the superlattice. The

electrons moving in the superlattice direction are subject to a potential which

has the superlattice period. The effect of this motion on the energy band

structure of the host semiconductors is to limit the electron energy to nar-

row subbands due to the subdivision of the host Brillouin zone into a series

of minizones. This is explained by refering to the dispersion relation in mo-

mentum space. The z-axis is chosen to lie along the superlattice direction.

Figure 3.1 shows the dispersion curve f(kz) for the bulk semiconductor in the

Brillouin zone defined by

where a is the lattice constant. The introduction of the superlattice periodicity

has the effect of subdividing the Brillouin zone into a series of minizones, the
first minizone defined by

where d is the superlattice period. It is obvious from the above relations that

if the period d is much larger than the lattice constant a, then the minizone

will be much smaller than the host Brillouin zone. The period of superlat-

tice structures typically ranges from 20A to 2000A, which is equivalent to 4

to 400 lattice constants. In the reduced-zone scheme, the dispersion curve

for the bulk semiconductor is folded back into the first Brillouin zone, using

the translational symmetry properties of the crystal lattice. In an analogous

manner, the dispersion curve f(kz) of the host semiconductors in the super-

lattice are folded back into the reduced Brillouin zone or minizone, and each

host band is split into a number of minibands fn(kz), n = 1,2,3, .." separated

by forbidden gaps at the zone centre (kz = 0) and the first minizone bound-

ary (kz = ±7r / d). Thus the most important consequence of the superlattice

periodicity is the splitting of the conduction and valence bands of the host

semiconductor into a series of minibands. These minibands are much nar-

rower than the bands in a bulk seminconductor and the gaps between them

are relatively large.

The band structure of a superlattice provides the environment for the ob-

servation of a number of high-field phenomena which are expected for the
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Figure 3.1: The dispersion curve of a bulk semiconductor as well as a super-

lattice.

periodic structures in general. These phenomena are usually not observable

in any JJnatural" crystalline solid because the scattering of the free carriers

by the electron-phonon and electron-electron interactions is too strong. The

motion of the electrons is described by the so-called Bloch oscillations, which

can in principle be observed in superlattices because of the excistence of mini-

bands. In the presence of a strong electric field, the bands are tilted because of

the potential difference which the field produces across the length of the crys-

tal. The electrons are then accelerated by the electric field toward the upper

edge of the tilted band (figure 3.2), and scattered after a time which is short

compared to the time they require to attain the energy of the upper edge,

and finally they lose the energy they have gained from the field by exciting

thermal vibrations (phonons) in the crystal lattice. In the case of a superlat-

tice, the excistence of minibands which are much narrower than the natural

bands greatly increases the probability of an electron attaining the energy of

the upper edge of a tilted miniband.

When the electrons attain this maximum energy, they are Bragg reflected

and they acquire a negative velocity as they move towards the bottom edge

 
 
 



Figure 3.2: The motion of electrons in an applied electric field.

a) in the conduction band of a bulk semiconductor;

b) in the conduction miniband of a superlattice;

c) an enlarged section of b) showing the Bloch oscillations.

of the miniband. The electrons can be repeatedly Bragg reflected between the

upper and the lower edges of the miniband, performing many Bloch oscilla-

tions before they are scattered, at which stage they relax to a lower energy in

the miniband.

Doping semiconductor superlattices are composed of a periodic sequence of

n- and p-type impurity layers, possibly with intrinsic regions between, in an

otherwise homogeneous semiconductor [5]. They possess a space-charge-

induced one-dimensional periodic potential which creates wells for electrons

and holes, that are offset by one half-period (figure 3.3). This is in contrast

to the compositional superlattices, where the different band gaps of the com-

ponents induces periodic variations of the band edges. The fact that we are

dealing with a homogeneous semiconductor which is only modulated by the

superposition of a periodic superlattice potential, makes the theoretical treat-

ment of the electronic structure easier. In general, the effective mass approxi-

mation provides a satisfactory description. The space-charge potential varies

slowly over distances of the order of the bulk lattice constant and the con-

sidered energies of the bands are sufficiently close to the band edges. This

 
 
 



justifies the neglect of corrections due to the non-parabolicity of the bands.

A n-i-p-i crystal consists of an arbitrary homogeneous semiconductor with

a periodic variation of n- and p-type doping,

where Z is the direction of periodicity and d is the superlattice period [6]. An

approximation was made, by replacing the space-charge distribution of the

individual doping atoms with a homogeneous distribution function enD(z)

for donors, and -enD(z) for acceptors. These distribution functions vary

periodically in the superlattice direction. In making this approximation, the

following have been neglected:

1. the spatial potential fluctuations which result from the random distri-

bution of impurities in the doped regions, and

2. the point charge character of the impurities which may lead to bound

impurity states or to the formation of impurity bands.

The motivation for this approximation is given by Ruden and Dohler [6]. The

following is applicable in the case of GaAs doping superlattices,

3. the formation of acceptor impurity bands must be considered within

the typical range of values of design parameters of n-i-p-i crystals.

Long-range potential fluctuations are screened by a small concentration of

free electrons in the n-type layers (holes in the p-type layers), making these

fluctuations unimportant, if at least a certain fraction of the impurity space-

charge per layer is compensated by free carriers. The short-range potential

fluctuations result mainly from the random nearest-neighbour impurity dis-

tances, which deviate from the mean value rm (the subscript m is valid for

donors as well as acceptors). These fluctuations may be estimated by calcu-

lating the value of the unscreened Coulomb energy e2 / ",orm of a point charge
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Figure 3.3: Physical and electrical structure of a doping superlattice.

a) p-doped, n-doped and intrinsic regions are indicated by p, n, and i respec-

tively;

b) concentration of acceptors (nA) and donors (nD);

c) space-charge distribution;

d) modulation of conduction and valence bands by space charges - unexcited;

e) modulation of conduction and valence bands under optical excitation.

 
 
 



at a distance rm = [41r/(3nm}F/3, where KO is the static dielectric constant of

bulk GaAs. For any reasonable statistical distribution of the impurities, the

width of the distribution will have roughly the value of the average. The

numerical value of e2/Korm increases from 15 to 32 meV within the range

5 x 1017cm-3 ~ nm ~ 5 x 1018cm-3 with KO = 12.5 for GaAs, which is al-

ways smaller than the corresponding subband energies. From this it is clear

that, due to the screening by the charge carriers in the layers, the potential

fluctuation will be reduced.

The importance of impurity bands may be estimated by the following ar-

gument. Consider a regular simple cubic array of nm shallow impurities with

ionization energy Em' Bohr radius am, and nearest-neighbour distance rm =

n:;,.1/3. The impurity bandwidth would be approximately 12Emexp( -rm/am)

in a tight-binding picture.

A different approach is based on the nearly-free-electron model. The ki-

netic energy at the Brillouin zone boundary becomes

A rough estimate of the band splitting is

2V(21r/rm) :::::::e2/KOrm = e2n1J3/Ko

The tight-binding picture is appropriate for rm » am whereas the nearly-

free-electron model suits the case f(1rjrm) » 2V(21r/rm). Making use of

an experimental value for the ionization energy of shallow donors in GaAs,

ED ~ 6meV, which corresponds to a Bohr radius aD ~ lOnm, and using

me = O.067mo (me is the effective mass of an electron and mo is the rest mass

of an electron), we get f(1r/rD) » 2V(21r/rD) for nD > 1016cm-3• This shows

that even the unscreened impurity potentials act as a relatively small pertur-

bation at donor concentrations which are typical for n-i-p-i crystals. Therefore

impurity-band formation in the case of the conduction band can be neglected,

and it is allowed to replace the actual donor space charge by a homogeneous

space charge distribution, enD(z).

In the case of the acceptor impurities we find (because of the larger heavy-

hole effective mass mhh) a Bohr radius aA ~ 1.8nm so that r A > aA for nA <

 
 
 



1020cm-3 and f(1r/f A) > 2V(21r/f A) only if nA > 2 x 1019cm-3 using mhh =

0.6mo. This implies that an impurity band can exist in the p-type layers of a

n-i-p-i structure, unless nA is extremely high. This result does not signify that

hole subbands do not exist in the p-type layers or that they are unimportant.

The presence of an impurity band implies important consequences for the

calculation of the self-consistent potential (to be discussed at a later stage).

The superlattice potential is exclusively space-charge induced. The reason

for this is that the superlattice potential, in general, (also known as the space-

charge potential) is made up of contributions by both the doping atoms (re-

ferred to as the bare ionized impurities or the fixed impurity charge) and the

free-carriers (electrons and holes). (If the superlattice potential is calculated

self-consistently, it is known as the self-consistent potential, Vsc(z)[2].) The

superlattice potential is then defined as the sum of the fixed impurity charge

potential and the free-carrier space charge potential[7]. The contribution of

the fixed impurity charge to the superlattice potential Vo (z) is determined by

integrating Poisson's equation twice

&2VO(Z) 41repo(z)
&z2 /'\;0

where po(z) = e[nD(z) - nA(z)] and /'\;0 is the static dielectric constant of

the bulk semiconductor. Poisson's equation is also subject to the following

&vo(z) I = 0; vo(O) = 0
&z z=O

41re21Z lz'
vo(z) = -- dz' dz"{nD(z") - nA(z")}

/'\;0 0 0

Except for the case of a compensated doping superlattice which contains the

same amount of donors and acceptors per period d, i.e.,

j
d/2 jd/2

nD(z) dz = nA(z) dz,
-d/2 -d/2

the condition of (macroscopic) neutrality of the crystal requires a periodic

electron or hole space-charge distribution -e n(z) or ep(z) respectively. These

 
 
 



mobile charges provide a Hartree1 [8] [9] contribution to the superlattice po-

tential
41re21Z lzr

VH(Z) = -- dz' dz"{-n(z") +p(z")}
"'0 0 0

where n(z) and p(z) are the free electron and hole carrier densities respec-

tively [2].

The exchange and correlation corrections of the free carriers also con-

tribute to the superlattice potential. The exchange and correlation potential

is obtained from[6]

( )
OExc ( )

Vxc Z = fxcn{z) + n{z) <5n 3.11

where fxc{n) is the exchange and correlation energy per electron of a homo-

geneous electron gas of the (local) density n (this is the local density approx-

imation of the density functional formalism [2]. Since the electronic densi-

ties of interest in n-i-p-i crystals are usually very high, i.e., the mean distance

between two electrons is short compared to the effective-mass Bohr radius

a1SMA = aB"'o{mo/meff)' we will take

1
with rs = [41r/{3n)]3" /a1SMA. The inclusion of higher-order correlation terms

does not affect the results appreciably. The contributions of the holes in the p-

type layers to the superlattice potential is not written explicitly since it can be

incorporated into the superlattice potential in the manner discussed above.

[6]

Before proceeding further, it is necessary to make the following state-

ments: [2] [5]

1. In a compensated doping superlattice, which contains the same amount

of donors and acceptors per period d, the superlattice potential arises

solely from the fixed impurity charges (or bare ionized impurities), and

can be analytically determined with the help of Poisson's equation.

IThe Hartree approximation replaces the dynamic interaction of an electron with the other

electrons in a crystal, by averages of the interaction over the occupied electron states. This

in effect, reduces the many-electron problem to a single electron problem, in which the

Schrodinger equation containing the coordinates of only one electron, has to be solved.

 
 
 



2. In a non-compensated doping superlattice (nDdn f:. nAdp), the superlat-

tice potential arises from both the fixed impurity layers and the excess

free carriers (electrons and holes). This implies that the superlattice

potential is the sum of the fixed-charge contribution (vo), the Hartree

contribution (v H) of the free carriers, and the exchange and correlation

corrections (vxe) of the free carriers:

4 21z z'
vsdz) = ~ dz' ( z"{nD(z") - nA(z")}

li:o 0 10
4 2 z z'+~ { dz' ( dz" {-n(z") +p(z")}

li:o 10 10

+0.611 (::) C~~»)! (3.13)

Both the contributions of the free carriers have to be calculated self-consistently.

This is in agreement with the Hartree approximation which reduces the many-

electron problem to a one-electron problem.

Considering the non-compensated case, the self-consistent one-particle

Schrodinger equation becomes

;,,2 a2iJ!ikz [
-2--~ + Ei(kz) - vse(Z)]iJ!ikz = 0

meff uZ

where vse(z) is the superlattice potential vsdz), calculated self-consistently.

To arrive at the above equation, the following has to be kept in mind: it

has been well established for semiconductor superlattices that charge carriers

near the band edges behave as free carriers with an effective mass determined

by the bulk band curvature, in the directions parallel to the superlattice lay-

ers, but are strongly perturbed in the direction of superlattice growth [5].

The envelope function approximation is used to separate the wave functions

into bulk and superlattice components, and thus the subband energies and

wave functions iJ!ikz can be determined from the one-dimensional Schrodinger

equation. Using the effective-mass approximation, the energy band structure

of the superlattice is given by

 
 
 



where Ei is the subband energy (i is the subband index) and kz and kt are

the wave vectors perpendicular and parallel, respectively, to the superlattice

layers (z being the direction of superlattice growth). In the next section the

superlattice potential will be calculated for specific cases.

Consider the case of a np structure (therefore, no intrinsic layers between the

n- and p-doped layers) with equal layer thickness dn and dp and constant

doping concentration nv = nA. Thus in the ground state, the superlattice

potential arises from only the ionized impurities and can be determined ana-

lytically from Poisson's equation [5]. First, consider a n-doped layer:

where Pn(z) = env(z) and making use of

j
d/2 jd/2

nv(z) dz = nA(z) dz.
-d/2 -d/2

4 21dn/2 lz1

vno(z) = ~ dz' nv(z")dz"
~o 0 0

27fe
2 (dn) 2-- - nv

~o 2

4 2 jO lz1
- 7fe dz' nA(z")dz"

~O -dp/2 0

27fe
2 (dp)2

-- - nA
~o 2

The amplitude of the compensated superlattice potential is then

 
 
 



For noncompensated doping superlattices (nDdn f:. nAdp), the superlattice

potential arises from both the ionized impurities and the excess free carriers.

The one-dimensional superlattice potential is [2]

41fe21Z lZI-- dz' [nD(z") - nA(z")] dz"
KO 0 0

4 2
1

z lZI+~ dz' [-n(z") +p(z")] dz"
KO 0 0

2 1
-o.61l~ [3n(z)] J

KO 41l"

where the second and the third term are the Hartree and the exchange and

correlation contributions respectively. The superlattice potential then has to

be solved self-consistently, as it depends on the solutions of the one-particle

SchrOdinger equation. This is accomplished using iterative techniques.

3.3 Photoreflectance of Superlattices

The results of Aspnes (discussed in section 2.2.2) will now be applied to su-

perlattices [12]. We begin by recalling that the confining potential (i.e. the

superlattice potential) is along the z- or superlattice direction. Also, the wave

function can be written as the product of an envelope function Fn(z) and a

Bloch state ucoexp( ik . r) representing the unconfined directions. Because of

the confining potential, kz is no longer an eigenvalue of the system, therefore

(2.25) has to be modified:

81l"
2ie2h h loo -

1+ 2E2L L dk2 dtle· pcv(k)InmI
2

m nm BZ 0

[jt/2 irE - Enm(k) + irlt']x exp dt' c_V _

-t/2, h

where nand m are the subband indices of the conduction and valence bands,

L is the width of the confined region, and I nm is the overlap integral between

the electron and hole envelope functions (subband states). The sum over the

subband states takes the place of the kz integral in (2.25). If an electric field

 
 
 



is applied along the direction of confinement, the shape of the confining po-

tential changes, and if the field is small, new quasibound states are formed.

Furthermore, the new potential redistributes the electronic charge in such a

manner that electrons and holes are localized at opposite ends of the con-

fining region. Unlike the three-dimensional case, the new potential does not

accelerate the particles and, hence, does not produce a continuously changing

energy. The difference between the free and confined particles in an electric

field can be viewed classically in the following manner. Under the influence

of the additional force of the electric field, the electron is accelerated and its

energy becomes time-dependent in that it will continuously change in time.

This implies that at any two different times, the energy of the electron is not

the same. In the confined case, the electric field acts to change the shape of

the potential, thus at any two times, the energy of the particle is unchanged

because it is in a quasibound state. The main effect of the field is to change

the energy level, the functional forms of the wave functions, and the lifetime

of the particle [10] [11]. Calculations have shown that for small fields, the

energy changes by a fixed amount rather than in a continuous fashion as it

would in the case of a free particle.

These results are very important because they indicate that one cannot

replace k with k + eFt/h in (2.25). Instead, the interband energy EJ;vm(k) and

the overlap integral between electrons and holes, Inm, should be changed by

some fixed amount that is not dependent on the time t. The energy changes to

E~vm(k)+8E~vm and the overlap integral changes to Inm +8Inm. The quantities

8E~m and 8Inm can be calculated from stationary-state perturbation theory.

Provided that 8EJ;vm is much smaller than any other energy present in

the problem and that 8Inm/lnm « 1, one can expand the exponent and the

overlap integral to obtain

 
 
 



iA' 2
1+ E2Ll1nmi

nm

r dk2 [ i8E~vm
x lBz (E - E~vm(k) + ir)2
+ (1 + 28Inm)/Inm ]

E + E~vm(k) + if)

Equation (3.24)is the general result for any type of one-dimensional confining

potential with the field applied along the confinement direction. The first

term under the integral represents changes in E from electric-field-induced

changes in the gap, E~m, while the second term is a combination of the un-

perturbed dielectric function and a term due to the modulation of the overlap

integral. Note that the modulated terms are first derivatives and not third

derivatives as in the bulk case. Equation (3.24) can be expressed in a com-

pact manner as a first derivative functional form for the modulated dielectric
function

~E = [~ dlnm + ~ dE~vm+ dE dr] ~F (3.25)
dlnm dF dE~m dF dr dF

which is the most general form of the modulated dielectric function for con-

fined systems.
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Chapter 4

Experimental Photoreflectance

4.1 General Technique

A schematic drawing of a typical experimental arrangement is shown in fig-

ure 4.1. Light from a broadband light source passes through a monochroma-

tor and is focused onto the sample (this will be referred to as the probe-beam).

The sample is also illuminated by a laser beam that passes through a mechan-

ical chopper operating at a frequency nm. This chopped laser provides the

modulation for photoreflectance (this will be referred to as the pump-beam).

The probe-beam is reflected from the sample and focused onto a suitable de-

tector. Notice that a filter is placed in front of the detector that blocks any

diffusely reflected or scattered laser light. The light striking the detector con-

tains two signals: the de (or average value) which is proportional to the de

reflectance R of the material, and an ae signal which is proportional to the

change in reflectance D..R, produced by the modulation of the sample. The

ae signal from the detector is measured by the lock-in amplifier (LIA) and

recorded by a computer, while the de signal is used as an input to the server

motor which varies the Variable Neutral Density Filter (VNDF) to keep the de

signal constant, by varying the intensity of the probe-beam. This is a normal-

ization technique which yields a derivative-like D..R/ R spectrum (the next

section will be devoted to the normalization procedure) [1] [2] [3] [4].

A common problem associated with photoreflectance is the unwanted

 
 
 



LAMP

••••,~\I/ ••••••- -..•, \
l\
\

•.•.••.••~ \ SAMPLE

"'::¥l
£..../11

DETECTOR \\ ••••••••.•

...£U /
FILTER ~

/
CHOPPER / ~ ON

/ OFF

~
/

/

COMPUTERU
LASER (OR OTHER
SECONDARY LIGHT SOURCE)

 
 
 



(spurious) signal that enters the detector due to the diffusely reflected or scat-

tered pump light, as well as possible photoluminescence. The photolumines-

cence signal is particularly accute at low temperatures, especially for super-

lattices and quantum wells (even at room temperature) [2]. Such signals are

phase-locked to the modulation source and if not treated properly, can dis-

tort the PR spectrum, leading to erroneous results [5] [6]. The normalization

procedure attempts to solve this problem.

The technique will now be discussed in detail. The de output of the detector

Vde can be written as

where IO(A) is the light intensity striking the sample, R(A) is the de reflectivity

of the sample, K(A) is the detector response and A(A) is the amplification

factor of the detector. The ae output is given by

where Isp is the intensity of the spurious signal discussed in the previous

section and Asp is the wavelength of the spurious signal. The second term

in the above equation is generally absent in other forms of modulation spec-

troscopy. Since it is the quantity tlRJ R that is of interest in photoreflectance,

it is necessary to eliminate the common factor IO(A) (i.e., keep Vde(A) con-

stant). The simplest method of elimination is to measure tlR and R indepen-

dentlyand to divide, but this presents problems due to the spurious-signal

term [2]:
Vae tlR(A) Isp(A)Ksp(A)
Vde = R(A) + IO(A)R(A)K(A) (4.3)

This method will be suitable only if Isp is very small.

In figure 4.1 normalization is achieved by means of the variable neutral

density filter (VNDF), connected to a servo (or stepper) motor, placed in the

optical path between the probe monochromator and the sample. The de sig-

nal from the detector [Vde(A)] is used as input to the servomotor, which varies

 
 
 



the VNDF and hence keeps Vdc as a constant. The method used in this study

used the de output of the detector to adjust the intensity of the broadband

light source. The de output was fed to a feedback-control unit which regu-

lated the constant-voltage power supply that powered the light source.

4.3 Experimental Details

The broadband light source used is a commercial 50 watt Tungsten-halogen

lamp. Power is supplied to this lamp by a constant-voltage power supply

which is controlled by a feedback-control loop via the de signal from the de-

tector. The light is focused onto the monochromator-slit by a single lens. The

light exiting the monochromator is then focused onto the sample (this is the

probe-beam), and another lens collects the reflected light from the sample and

focuses it onto the detector. A holographic notch-filter is placed in front of

the detector to attenuate diffusely reflected or scattered laser light. The laser

light source is a 633.8nm He-Ne laser that is focused onto the sample (this is

the pump-beam). It should be noted that the probe-beam and the pump-beam

are incident at different angles. Before the pump-beam reaches the sample,

it passes through a chopper blade, which modulates the pump-beam at the

modulation frequency, Om. The chopper is phase-locked to the lock-in am-

plifier (LIA). The de signal from the detector is fed to the differential input of

the feedback-control loop, while the ae signal is recovered by the LIA. From

there the output of the LIA is passed onto the personal computer (PC), which

stores the data and is also responsible for controlling the monochromator.

The PC is equipped with a IPC30" AID card, which establishes commu-

nication between the monochromator and LIA, and the Pc. The control soft-

ware is included in Appendix A. The file IPC30.CPP" is the driver software

for the AID card. The software has four main functions, namely initiating

the AID card, reading a single analogue value and converting it to a digital

signal, and both a 12-bit and a 8-bit converter to convert digital signals to

analogue output signals. The file IPC30G.CPP" is the user interface. It en-

 
 
 



abIes the operator to select the scan interval of the monochromator and reads

and stores the measurements received from the LIA. It also draws a real-time

graph of the measurements against the wavelength of the monochromator.

Some precautions that have to be taken when doing measurements, will be

discussed here:

1. The purpose of the pump-beam is to excite the carriers prevalent in the

area of incidence. Therefore, the spot size of the pump-beam should be

bigger or equal to the probe-beam spot size, and also, coincident, to have

a modulation effect on the area of the sample being probed. The photon

energy of the pump-beam should of course be above the energy gap of

the semiconductor under investigation, to be able to lift carriers into the

conduction band.

2. The modulation frequency Om should never be a multiple of 50Hz as

interfering signals will enter into the circuitry via the power-line input

(the LIA will lock onto the experimental signal as well as the 50Hz ac

signal). It is also advisable to switch on and adjust the chopper to the

required frequency about an hour prior to the first measurements to be

taken, in order to stabilize at the required frequency.

3. The mirrors used for directing the pump-beam to the sample should be

mounted on stable mirror-mounts to ensure that the pump-beam is inci-

dent on exactly the same spot throughout the experiment.

4. Because the He-Ne laser has a 50kHz power supply, care should be taken

in the positioning of the laser with respect to the steel, optical bench

and/ or the circuitry, as signals can be capacitively coupled (electro-

static coupling) onto wires in the circuit or electromagnetically coupled

to wires acting as small antennas for electromagnetic radiation. Signal

currents from one part of a circuit can couple to other parts through

voltage drops on ground lines or power supply lines.
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Chapter 5

Experimental Results

For the purpose of illustrating the technique of photoreflectance, two differ-

ent GaAs samples were studied. They are:

1. sample 1 (figure 5.1): GaAs that was n-doped with Si at a level of 1 x

1016cm-3 (the sample consisted of a 6p,m thick epitaxial GaAs layer on

a bulk GaAs substrate) and,

2. sample 2 (figure 5.2): n-type GaAs (also Si-doped) with a net carrier

concentration of 6.5 x 1016cm-3.

It is the aim of this section to demonstrate that the PR structure at the

fundamental edge in GaAs results from a modulation of the electric field in

the Schottky surface barrier by the photoexcited carriers. To accomplish this,

the PR line shape, as a function of doping concentration, of the two samples,

will be compared.

The experimental setup described previously was used to carry out all

the measurements, with the chopper frequency set at 220Hz. The photore-

flectance of each sample was measured at room temperature, for energies

ranging between 1.2eV and 1.geV. Before discussing the results, it is neces-

sary to briefly describe the depletion region Schottky barrier at the surface of
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an extrinsic semiconductor, as it will help to predict the essential features of

the experimental data.

Consider the potential distributions near the surface of an n-type GaAs

sample. Figure 5.3 shows the electric field in the depletion region near the

surface of an n-type semiconductor. The photoexcited electrons and holes

find themselves in a strong electric field, that separates them, and this sepa-

ration then reduces the built-in field. With the pump-beam off, the electric field

varies linearly with distance from a maximum value Emax at the surface, to

zero at a depth d below the surface. These quantities are given by
1

Emax = {2eNd<P/E}'1 , (5.1)

where Nd is the doping density, E is the dielectric constant, and the poten-

tial difference <p, is the total amount of band bending. Since the spacing of
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peaks in the Franz-Keldysh lineshape [1] is proportional to E2/3 and (5.1) pre-

dicts that the maximum field increases as N~/2, the spacing of peaks in the

PR lineshape should vary as NY3. Shay [1] reported a discrepancy, where

the experimentally obtained spacing between peaks were about half the pre-

dicted spacing. The same phenomenon was observed in sample 1 and sample

2. The predicted variation in the spacing of the peaks (1) and (2), is obtained

by calculating the ratio between the respective carrier concentrations:

The experimentally observed spacing was determined as ::::::0.95, which is

about half of the predicted value. Shay [1] contributed this discrepancy to

the fact that the impurity concentration in a sample might be considerably

larger than the free-electron concentration. Therefore, the neutral donors or

compensated acceptors below the Fermi level in the bulk can contribute to the

effective doping density Nd, even though they do not contribute free carriers
in the bulk.

The aim is to calculate the respective band gap energies from these experi-

mental spectra, and compare the results to the band gap energy (E g) of bulk

GaAs, which is usually quoted as 1.424 eV at 300K [2]. To accomplish this, we

refer to section 2.2.4, where, according to Aspnes [3][4], the band gap energy

always lies between the two extrema, regardless of the value of the phase ().

The three-point method is used to calculate the position of the band gap be-

tween these two extrema. The extrema are indicated on the respective figures

by the numbers 1 and 3. Using (2.56), (2.57), and (2.58), and also the plot of

the scaling parameter f(p) (figure 2.3), the band gap energies, Egi of samples

1 and 2 are calculated as Eg1 = 1.447eV and Eg2 = 1.4525eV respectively.

The large deviations of the Egi values from the band gap value of bulk GaAs,

could be attributed to the Franz-Keldysh theory, that predicts that an increase

in the electric field, causes structure both below and above the band gap to
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Figure 5.3: Schottky barrier depletion region at a semiconductor surface.

Cb, Vb and EF represent the conduction band, valence band, and Fermi en-

ergy respectively.

a) Bending of the energy bands,

b) the charge density as a function of depth x into the crystal, and

c) the macroscopic electric field as a function of depth into the crystal.

 
 
 



5.2. Photoreflectance Results of GaAs
Doping Superlattices

"move away" from the actual band gap [1]. Another possible cause of this de-

viation could be the uncertainty in the exact position of the b..R/ R = 0 level

of the PR response, as the relative peak values used to calculate the assymetry

ratio p, are referenced to the b..R/ R = 0 level. Furthermore, the scaling pa-

rameter f(p) is determined graphically from figure 2.3, using the calculated

value of p, which could introduce inaccuracy.

Another interesting feature present in both spectra is the kink (point 2)

between the two main extrema. In the case of sample 1 the kink is at 1.425

eV and in the case of sample 2 the kink is at 1.428 eY. Estrera et al [5] re-

ported a similar feature which they, together with Sydor et al [6] attributed to

exiton/ impurity effects. There is also an interesting relation between the in-

dicated extrema for each of the samples. The extrema Ei display a periodicity

with (Ei - Eg )3/2. If this is plotted against the extremum number, a linear de-

pendence is obtained. Both spectra show strong oscillatory behaviour above

the GaAs band gap, which is characteristic of the FK effect observed in bulk

material [7]. The linear dependence of the extrema confirms the identification

of the spectral features as FK oscillations [8].

5.2 Photoreflectance Results of GaAs

Doping Superlattices

The samples studied in this section are three different doping superlattices,

grown by organo-metallic vapour phase epitaxy (OMVPE) [9]. These super-

lattices are "n-p-n-p" structures with no intrinsic layers between the n- and

p-doped layers (figure 5.4). The thicknesses of the n- and p-doped layers are

denoted by dn and dp respectively.

The superlattice period for the "np" structures is

 
 
 



5.2. Photoreflectance Results of GaAs
Doping Superlattices

n p n p

with d1 = 600 A (superlattice I), dz = 400 A (superlattice 2), and d3 = 200

A (superlattice 3). The number of periods grown in each superlattice was

chosen so that all the superlattices have the same total thickness of 2.40j.Lm.

The smallest layer thickness was chosen to be 200 A, because in thinner lay-

ers there are an insufficient number of carriers to produce a significant space

charge potential for band modulation. Also, the layer thicknesses were cho-

sen in multiples of 200 A so that there will be an appreciable difference in the

optical properties of the structures. The n-Iayers were doped with tellurium

atoms to yield a donor concentration of

and the p-Iayers were doped with zinc atoms to yield an acceptor concentra-

tion of

 
 
 



5.2. Photoreflectance Results of GaAs
Doping Superlattices

I Sample I dn = dp (A) I Amplitude (V) I Effective Band Gap (eV) I
SLl 600 0.651 0.121

SL2 400 0.289 0.845

SL3 200 0.072 1.279

produce a large space-charge potential at the p-n interfaces, and thus achieve

a large modulation of the host band structure. In all the samples an undoped

GaAs buffer layer O.5tJ.m thick was first deposited on the substrate, followed

by a p-doped layer and with the last layer being n-doped. Due to the trans-

fer of electrons from the donor atoms in the n-Iayers to the acceptor atoms in

the p-Iayers, the periodic layer sequence gives rise to a periodic space-charge

potential in the doping superlattice. This space-charge potential induces a

periodic modulation of the conduction and valence bands. The amplitude of

the space-charge potential, with the assumption that there is complete trans-

fer of the electrons from the n-doped layers to the p-doped layers, (Vo) is

calculated using [9]:

where dn = dp and nA = nD (compensated superlattice), and the band gap

of GaAs is taken as 1.424 eY.The amplitude as well as the effective bandgap,

E~ff ~ Eg - 2eVo [10] were calculated and the results given in table 1.

The description of the superlattice samples is extended by a model for

the charge distribution of the superlattice layers. The central regions, with

thicknesses d~ and ~, are assumed not to be depleted of their carriers and

are therefore conducting. The remaining parts of the layers of thicknesses

2d;t and 2dp are the space-charge regions which border on the interfaces.

The space-charge regions result from the transfer of electrons from the donor

atoms in the n-Iayers to the acceptor atoms in the p-Iayers. This model is

illustrated in figure 5.5 [9].

 
 
 



5.2. Photoreflectance Results of GaAs
Doping Superlattices

I~ d ~I~ d ~I
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I I I I I I
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p P P IL I). I).

I
I I
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I I
I I
I ,
I I

I Sample I dn = dp (A) I ~ (A) I
SLl 600 210
SL2 400 88

SL3 200 46

Jensen [9] carried out resistivity and Hall effect measurements on both

homogeneously-doped GaAs epilayers as well as the superlattices. Resistiv-

ity is determined measuring the sheet resistivity of the material and taking

the product with the thickness of the sample. The Hall measurements also

include making use of the thickness of the sample. Jensen observed devia-

tions between the epilayers and superlattices which were corrected by using,

instead of the physical thicknesses of the superlattice layers, the thickness d~

of the conducting regions. The conducting layer thicknesses d~ versus the

physical thicknesses are given in table 2

The space-charge potential and the effective band gap can now be recal-

culated by replacing the physical layer thickness dn with the total depletion

 
 
 



5.2. Photo reflectance Results of GaAs
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Sample dn = dp (A) 2d;i (A) Amplitude (V) Effective

Band Gap (eV)

SLl 600 390 0.275 0.874

SL2 400 312 0.176 1.072

SL3 200 154 0.043 1.338

Table 5.3: Recalculated amplitude and effective bandgap of sample superlat-

tices.

Photoreflectance measurements were carried out using the experimental ar-

rangement described in sections (4.3) and (5.1.1). In the first phase of the

study, the PR spectra of the superlattice samples described in section (5.2.1)

were obtained. In the second phase, a superlattice sample similar to SL 3 were

used to study the effects of a-particle irradiation, and subsequent annealing,

on the PR spectra.

The PR spectra of the three samples are shown in figures (5.6), (5.7), and (5.8).

All three spectra are characterized by well defined peaks both above and be-

low the band gap of GaAs. These peaks represent transition energies. We

know that in the case of bulk materials, the PR response has a third-derivative

functional form (TDFF), where the main modulation mechanism is the field

modulation of the surface potential. It is suggested that the modulation of

the PR response of doping superlattices is not related to the surface potential,

but rather to internal field modulation.

These materials have a two-dirriensional subband structure in which the

electrons and holes exist, i.e., the potential wells for the electrons are located

in the n-type layers, and the potential wells for the holes are located in the p-
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type layers. When a pump beam is incident on the sample, the built-in poten-

tials is modulated due to the modulation of the photo-excited carriers. How-

ever, because of the large carrier effective mass in the superlattice direction

(growth direction), the characteristic electro-optic energy hO produced by the

built-in electric field in this direction, would be very small [11]. Therefore the

TDFF mechanism has a small influence on the modulation of the dielectric

function, and the modulation of the subband shift has a first-derivative func-

tional form (FDFF).

Tang et al [11] have studied a sample very similar to SL 3, the only dif-

ferences being the number of periods (15 as opposed to 60 for SL 3), and the

growth process (MBE instead of OMVPE for SL 3). They calculated the built-

in potential as 145 meV, which indicates that they assumed total depletion of

the superlattice layers. There are two main differences between the results

of Tang and the results for SL 3. In the case of Tang the cluster of peaks are

mainly located above the band gap of bulk GaAs, and also, the peak spacing

is very irregular. The spectrum of SL 3 shows three pronounced peaks just

below the band gap of bulk GaAs, with the peak spacing being constant from
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peak (1) to peak (3). It is unclear whether peak (3) (at 1.42 eV) or peak (4) (at

1.44 eV), corresponds to the band gap of bulk GaAs.

Moving on to SL 2, we again see the most prominent peaks below the

band gap of bulk GaAs. The peak spacing decreases gradually from (1) to (5).

Peak (5) (1.43 eV) corresponds well with the band gap. Tang et al recorded

PR spectra at different pump beam intensities and established that with de-

creasing pump beam intensity, additional structures were observed.

The PR spectrum (figure 5.9) ofSL 2 was also recorded with a lower pump

beam intensity, by inserting a 30% transmission filter in the path of the He-

Ne laser beam. (The feature just above 1.4 eV is due to experimental error,

where the A-D converter was not set correctly.) Comparing this spectrum

with figure 5.7, we see that no additional structures appeared in the spectrum.

In the case of Tang et al a 1 mW He-Ne laser was used, compared with the 5

mW He-Ne laser used in this study. It can be concluded, that, even with a

30% transmission filter, the intensity of the pump beam was still too high to

observe the reported effect.

Next, we consider SL 1. This sample shows a PR response that is very
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Figure 5.8: PR spectrum of SL 1.

4

3

2
a::
ii:
<]

1

0

-1
1.2 1.3 1.4 1.5 1.6 1.7 1.8

Energy (eV)

 
 
 



5.2. Photoreflectance Results of GaAs
Doping Superlattices

similar to SL 2. Again, the most prominent peaks are situated below the bulk

band gap, with the peak spacing decreasing from peak (1) to (5). The only

indication of the bulk band gap is the negative peak (5) at 1,425 eV.

Before proceeding further, it is important to make a few general remarks

regarding the interpretation of the spectra.

1. The measured PR response is a function of how the probe as well as the

pump beam is focussed onto the sample under study. With the equip-

ment available, there was no way of ensuring that the different samples

were measured under identical conditions.

2. Before each measurement, a pre-scan was done to determine where the

strongest peak is, and then the lock-in amplifier was "locked" onto this
signal.

From the above remarks, one can come to the conclusion that it is difficult to

compare the relative intensities of the peaks in a PR spectrum, and to compare

peaks from different spectra with each other.

Returning to the issue of the functional form of the PR lineshape. Shen et
al [12] reported room temperature measurements on two different samples,

where the samples had built-in potentials of 1.2 eV and 85 meV respectively.

They ascribed the PR features of the sample with the large built-in potential

to Franz-Keldysh oscillations. The sample with the small built-in potential

had a number of features both below and above the band gap of GaAs, and

they ascribed these to the transitions between the quantized electron and hole

states. Comparing their work with the results obtained in this study, we see

that SL 3 has a built-in potential of 86 me'Y, and therefore, according to their

conclusions, is a case of internal field modulation.

For the purpose of studying the effects of irradiation and subsequent an-

nealing, a superlattice similar to SL 3 has been irradiated with an a-particle

source. The sample has been irradiated for 90 minutes in total, and after that

annealed for a total of 4 hours at different temperatures (1 hour at a time).
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A control measurement was done on the sample before the irradiation treat-

ment commenced, to determine whether the PR response corresponds to that

of SL 3 or not. After each irradiation treatment, the PR spectrum was mea-

sured, with the results shown in figures 5.10,5.11,5.12, and 5.13. The sample

was then annealed four times, one hour at a time. The annealing temperature

ranged from 460 to 640 K.

Comparing the peaks on the PR spectrum, before irradiation and after

the irradiation treatment, it is evident that the irradiation did not have any

effect on the number of distinguishable peaks, or on the position of these

peaks. The annealing process did have a noticable effect on the PR spectra.

The spectrum obtained after the first annealing process (figure 5.14), shows

extreme tilting of the PR response, together with, what seems to be noise.

However, after annealing at a temperature of 640 K, the PR response returns

to normal, indicating complete recovery of the superlattice.
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Chapter 6

Conclusion

This study indicates that it is relatively easy to implement the technique of

photoreflectance and that the amount of information obtainable, can be con-

siderable. However, the measured lineshapes are complicated and require

careful analysis which have to be aided by the theoretical treatment of PRo Of

all the modulation techniques, PR yields the sharpest structure, and this fact

makes it useful when investigating new materials or microstructures which

are characterized by complex electronic transitions.

In essence, PR represents the optical response of a system to the applied

modulation. This implies that important information lies in the other modu-

lation variables such as the phase, the modulation frequency, the modulation

amplitude and the pump wavelength used. The technique used for this study

can be expanded and improved in the following way:

1. As mentioned in section (5.2.2), it is important to carry out all measure-

ments under exactly the same conditions. This implies accurate place-

ment of samples, accurate focusing and positioning of the probe as well

as the pump beam, and measurement and control of the pump beam

intensity.

2. If the above mentioned conditions are met, it will be possible to mea-

sure PR responses under different modulating conditions and compare

results.

 
 
 



3. Measuring under different modulation conditions can sometimes de-

crease the signal level to such an extent that the signal becomes partially

buried under the noise floor. Therefore, a signal processing approach

wil have to be followed in order adjust experimental parameters (such

as the time constant and sensitivity of the lock-in amplifier) correctly

and in general, to describe measured data in a statistically correct way.

4. Two modulating conditions that could be varied fairly easily, are the

chopping (modulation) frequency and the intensity of the pump beam.

The idea is then to study the effect on the amplitude of the PR peaks as

well as the number and position of peaks in the spectrum. A particu-

larly interesting problem would be to determine the oscillator strengths

of different transitions.

5. The interpretation of the effect irradiation and annealing has on the PR

response calls for a study aimed specifically at this effect. To aid in

the interpretation it might be necessary to obtain information on the

changes in the material parameters, as this will aid in the understand-

ing of the changes in the PR response.

 
 
 



Appendix A

C codes

/* PROGRAM OM AID KAART TE BEDRYF

v1.2 Mei/Junie 1991

v1.S Oktober 1996

*/

#include<stdio.h>

#include<dos.h>

#include<ctype.h>

#include<conio.h>

/* standaard C funksies */

/* poort adresering */

/* to-upperO */

/* getchO */

void pc-mmenuO;

void pc-initO;

void pc-clrADO;

void pc-wrt12(double val);

void pc-wrt8(double val);

double pc-rdADO;

void pc-puls12(double val);

 
 
 



struct sbyte

{
unsigned int bO:l;

unsigned int bl:l;

unsigned int b2:1;

unsigned int b3:1;

unsigned int b4:1;

unsigned int b5:1;

unsigned int b6:1;

unsigned int b7:1;

};

union bnum /* 8 opeenvolgende l-bit veranderlikes word by */
{ /* dieselfde adres as 'n 1 byte veranderlike gestoor */
struct sbyte bb; /* 8 enkel bits */
unsigned char wb;/* 1 byte */

} bval;

double vin=O.O,v8=O.O,v12=O.O,p12=O.O; 40

unsigned int L8=2,L12=O,CHAN=O,LINE=12,error=O;

unsigned int ADDATL=O,ADDSR=1,ADCCR=2,ADMDE=3,TMRCTR=7,

DIOCTR=11;

unsigned int OFFSET=Ox700,DACO=12,DACl=16,DAC2=20,DAC3=21;

int rpt;

void pcmmenuO

{

char tst;

clrscrO;

 
 
 



putS( II"); putS( II");

putS("DRUK ' n SLEUTELSOOSAANGEDUI:");
putS(IIII); putS(IIII);

printf("o: Kaartadres = %X (%d) \n\n",OFFSET,OFFSET);

printf( III: Inlees spanning = %E K: Kanaal =

%d\n\n" ,vin,CHAN);

printf("u: Uitlees (8_bit)

%d\n\n" ,v8,L8);

printf("v: Uitlees (12_bit

%d\n \n II,v12,L12);

printf(lIp: Puls (12 op C)

printf(1IF: Fout status

Reset fout \n II,error);

putS("Q: QUIT");

tst=toupper(getchO) ;

switch(tst)

{

%E G: Go pUls\n\n",p12);

%d R:

case ' F': clrscrO;

if(error== 1)

{
putS("' n inlees fout is geraporteer");

putS(" herstel kaart deur -R- te roep");

else putS(" geen fout is geraporteer niell);

putS(" druk enige sleutel om voort te gaan");

getchO;

break;

case ' R': pcclrADO;

break;

case ' 0': clrscrO;

 
 
 



printf("0ffset adres (HEX) ");

scanf( II%XII,&OFFSET);

break;

case ' K': clrscrO;

printf("Kanaal nr vir inlees = ");

scanf(" %d",&CHAN);

break;

case ' v': clrscrO;

printf("Uitlees spanning met 12 bit op

%1d (V) = II,L12); scanf(" %lG" ,&v12);

pc- wrt12(v12);

break;

case ' U': clrscrO;

printf("Uitlees spanning met 8 bit op
%ld (V) = II ,L8);

scanf(1I%lG" ,&v8);

pc-wrt8(v8);

break;

case ' L': clrscrO;

printf("Lyn nr vir 8 bit uitlees (2,3) II);

scanf(" %d",&L8);

break;

case ' C': clrscrO;

printf("Lyn nr vir 12 bit uitlees (0,1) ");
scanf( II%dII,&L12);

if(L12==O) LINE=12;

else LINE=16; 110

break;

case ' I': vin=pc-rdADO;

break;

case ' P': clrscrO;

printf("pulsspanning = ");

 
 
 



scanf(" %lG" ,&p12);

break;

case ' G': pc-puls12(p12);

break;

case ' Q': rpt=O;

clrscrO;

break;

default : break;

}
}

unsigned char Ib;

int ww;

bval.bb.b7=1; bval.bb.b6=O; bval.bb.b5=O; bval.bb.b4=1; 130

bval.bb.b3=O; bval.bb.b2=O; bval.bb.bl=1; bval.bb.bO=O;

outportb(ADMDE +OFFSET,bval.wb);

bval.bb.b7=O; bval.bb.b6=O; bval.bb.b5=1; bval.bb.b4=1;

bval.bb.b3=O; bval.bb.b2=1; bval.bb.bl=O; bval.bb.bO=O;

outportb(TMRCTR+OFFSET,bval. wb);

bval.bb.b7=O; bval.bb.b6=1; bval.bb.b5=1; bval.bb.b4=1;

bval.bb.b3=O; bval.bb.b2=1; bval.bb.bl=O; bval.bb.bO=O;

outportb(TMRCTR+OFFSET,bval. wb);

bval.bb.b7=1; bval.bb.b6=O; bval.bb.b5=1; bval.bb.b4=1;

bval.bb.b3=O; bval.bb.b2=1; bval.bb.bl=1; bval.bb.bO=O; 140

outportb(TMRCTR+OFFSET,bval.wb );

bval.bb.b7=O; bval.bb.b6=O; bval.bb.b5=O; bval.bb.b4=O;

bval.bb.b3=O; bval.bb.b2=O; bval.bb.bl=1; bval.bb.bO=O;

outportb(ADCCR +OFFSET,bval.wb);

bval.bb.b7=1; bval.bb.b6=O; bval.bb.b5=O; bval.bb.b4=1;

bval.bb.b3=1; bval.bb.b2=O; bval.bb.bl=1; bval.bb.bO=1;

outportb(DIOCTR+OFFSET, bval. wb);

 
 
 



Ib=inportb(ADDATL+OFFSET); /* lees van lb reset bit 6 van hb na 0 */150

bval.wb=inportb( ADDSR+OFFSET); /* lees ADDSR register */

} while(bval.bb.b5==1); /* loop solank AD besig (bit 5) op is */

ww=inport(ADDATL+OFFSET);/* lees nou 2 bytes=woord van AD */

L8=2;pcwrt8(O.O); L8=3;pcwrt8(O.O);L8=2; /* uitgange na nul */

L12=O;LINE=12;pcwrt12(O.O); L12=1 ;LINE=16;

pc wrt12(O.O);L12=O;LINE=12;

/* puts("Alle uitgange is op 0 volt");

puts("A/D-kaart is geinisieer");

puts("druk 'n sleutel om voort te gaan");

getchO;*/ 160

unsigned char Ib;

int ww;

bval.bb.b7=1; bval.bb.b6=O; bval.bb.b5=O; bval.bb.b4=1;

bval.bb.b3=O; bval.bb.b2=O; bval.bb.bl=1; bval.bb.bO=O;

outportb(ADMDE +OFFSET,bval.wb);

bval.bb.b7=O; bval.bb.b6=O; bval.bb.b5=O; bval.bb.b4=O;

bval.bb.b3=O; bval.bb.b2=O; bval.bb.bl=1; bval.bb.bO=O; 170

outportb(ADCCR +OFFSET,bval.wb);

do
{

Ib=inportb(ADDATL+OFFSET);

bval.wb=inportb( ADDSR+OFFSET);

} while(bval.bb.b5==1);

ww=inport(ADDATL+OFFSET);

error=bval.bb.b7;

 
 
 



unsigned char lb,bb;

int ww,dcode;

bb=2+(CHAN«4); /* bb = ch3 ch2 ch1 chO 0 0 1 0 */
outportb(AOCCR+OFFSET,bb); /* skryf na ADCCR register */
bb++; /* bb = dieselfde met strobebit=1 */
outportb(AOCCR+OFFSET,bb); /* stap 1 van sagteware strobe */
bb--; /* bb = soos voorheen met strobebit=O */
outportb(AOCCR+OFFSET,bb); /* stap 2 van sagteware strobe */
~ m

bval.wb=inportb( ADDSR+OFFSET);

} while(bval.bb.b6==0); /* loop tot bit 6 = 1 = klaar */

Ib=inport(ADDATL+OFFSET); /* bit 6 = klaar word gevee */

ww=inport(ADDATL+OFFSET); /* lees woord van AD */
error=bval.bb.b7; /* bit 7 gee fout */
dcode=ww-4096;

/* dcode=ww-2048;*/
retum((dcode*10.0)/4096.0); /* bereken spanning: 0 - 10 V skaal */

/* return«dcode*1O.0)j2048.0); */ /* bereken spanning: -10 - +10 V skaal */200

}

void pc-wrt12(double val) /* 12-bit DA omsetter vir uitreeseine */ pc_wrt12

{

unsigned int bcode;

unsigned char lb,hb;

bcode=2048-(val*204.8); /* bereken b-kode vir spanning: -10 - +10 V */

hb=bcode> >4; /* high byte van 12 bit kode */
lb=(bcode< < 12» >8; /* low byte: net 4 bits na links verskuif */
outportb(OFFSET+LINE+1,hb); /* laai adres */ 210

outportb(OFFSET+LINE,lb); /* uitree met skryf van low byte */

 
 
 



bval.wb=inportb( ADDSR+OFFSET); /* lees ADDSR vir moontlike fout */
error=bval.bb.b7; /* noteer fout */

void pc-wrt8(double val) /* 8-bit DA omsetter vir uittreeseine */
{

unsigned char bcode;

bcode=128-(val*12.8); /* bereken b-kode vir spanning: -10 - +10 V*/

outportb(OFFSET+DAC2-2+L8,bcode); /* adres van uittreepoort */
bval.wb=inportb( ADDSR+OFFSET); /* lees ADDSR vir moontlike fout */220

error=bval.bb.b7; /* noteer fout */

void pc-puls12(double val) /* huidige 12-bit uitgang kry puIs tot pc_puls12

'val' en weer */

/* terug na nul */
/* wag 0.1 sek na sleutel gedruk is:pc-wait(10000);

minder geraas */

pc- wrt12(val);

pc-wait(100);

pc- wrt12(O.0);

}

/* skryf spanning na uitgang */

/* verskaf puIs se lengte = 1 ms */
/* uitgang terug na nul */

for(i=1 ;i<peri;i++) a=a+(1 0*a+2*b)*10-(1 0*a+2*b)*10;

/* bewerking om tyd te wen */

A.2 User interface for data acquisition

#include <stdio.h>

#include <string.h>

#include <conio.h>

 
 
 



#inc1ude <stdlib.h>

#inc1ude <ctype.h>

#inc1ude <graphics.h>

#inc1ude <dos.h>

#inc1ude <math.h>

#inc1ude Ipc30.h"

#define MIN -1

#define ZERO 0

#define POS 1

#define PPULSE 2

#define NPULSE -2

#define WAIT 3

#define FSET 32 II Filter value

#define SIZE 2000

double F_UPPER=3.5,F _LOWER=3.0;

int FLUPPER,FLLOWER;

CH=O : DAO input

LINE=12 : CHO output
LINE=16 : CHl output

(grey)

(red)

(orange)

void counterO;

void stopO;

void go_posO;

void go_negO;

 
 
 



unsigned int fpcrdADO;

double diosig[SIZE]; II array to store signals from photodiode
long QANGSTROM=0,RWAIT=0,FSCALE=100;

double wstart,CWL,EOS,WLI;

double wave[SIZE]; II array to store wavelengths
char EXIT=O, RSTATUS=O,RCOUNT=O, SCAN=O, SCAN --2=0;

double buf[1 024],buf2[1 024], flt=O, ftotal=O;

int maxx,maxy;

double xmin,xmax,ymin,ymax;

doub Ie xdata,xinterval, ydata, yinterval,Energy;

int xcoord,ycoord;

FILE *leer;

char FILENAME[20];

/* "plotgraph()" teken eksperimenteel gemete waardes vanaf fotodiode
/* teenoor golflengte van monochromator

void plotgraphO

{
xdata=wave[index2];

Energy=12398.56/(xdata);

xinterval=cei1((Energy-1.20)*(58.00/0.20»;

xcoord =(1OO+xinterval);

ydata=15*(diosig[indexl]);

yinterval=ceil( (ydata)*( 48.00/20.00»;

ycoord=(378- yinterval);

 
 
 



lineto(xcoord,ycoord) ;
indexl++;

index2++;

/* "axesO" teken grafiek-asse en skryf onderskrifte/byskrifte by

/* onderskeie asse ?

void axesO

{
double Xint,xval;

II long int Yint;
int XPixelDiff/*, YPixeIDifj*I,i,j,yval;
char stry[10];

char *strx;

int dec,sign,ndig=3;

xmin=1.20; xmax=3.00; ymin=O.OO; ymax=120.00;

maxx=getmaxxO; maxy=getmaxyO;

Xint=(xmax - xmin)/9; I/Yint=floor( (ymax-ymin)16);
XPixelDiff=58; I/YPixelDiff=maxy/10;

moveto(100,122); lineto(1 00,maxy-1 00);

lineto(maxx-20,maxy-100);

moveto(maxx-20,maxy-103);

lineto(maxx - 20 ,maxy - 97);

lineto(maxx-16,maxy-100);

lineto(maxx-20,maxy-103);

moveto(97, 122);

lineto(103,122);

 
 
 



lineto( 100,118);

lineto(97, 122);

for (j=0;j<=9;j++)

{
moveto(1 00+j*XPixelDiff,maxy-1 00); lineto(1 00+j*XPixelDiff,maxy-1 03);

xval=xmin+j*Xint;

strx=ecvt(xval,ndig,&dec,&sign);

outtextxy(88+j*XPixelDiff,maxy - 90 ,strx);

outtextxy(200,maxy-70, II Photon Energy (eV) ");

Energy=12398.56/(wstart);

xinterval=ceil«Energy-1.20)*(58.00/0.20));

xcoord=(100+xinterval);

moveto(xcoord,378- yinterval);

void graph_initO

{

detectgraph( &gd,&gm);

initgraph( &gd,&gm, II C : \ \bc \ \bg i");

if «err=graphresultO ) !=grOk)

{
printf("Graphics init error: %s",grapherrormsg(err)); 130

exit(1);

 
 
 



void counLheaderO

{
clrscrO;

printf("Select operation: \n\n"

Increase wavelength\n"

Decrease wavelength\n"

Positive Pulse\n"

Negative Pulse\n"

Calibrate\n"

Scan\n"

void counLdispO

{
counLdisp

150

switch (RSTATUS)

{
case ZERO : sprintf(s." %c

case POS : sprintf(s." %c

case MIN : sprintf(s." %c

" 254)' break'. . .
" 16)" break'.. ,
",17); break;

case PPULSE : sprintf(s,"» "); break;

case NPULSE : sprintf(s."« "); break;

case WAIT : sprintf(s, "WAITING");break;

 
 
 



printf(IIStatus: %s\n",s);

CWL=wstart+2*(float(QANGSTROM)/4.0);

printf("Current wavelength: %.21f ",CWL);

void go_posO

{
LINE=12; pcwrt12(O.OO);

if (RSTATUS==MIN) delay(3000);

LINE=16; pcwrt12(5.00); RCOUNT=POS;

}

void go_negO

{
LINE=16; pcwrt12(O.OO);

if (RSTATUS==POS) delay(3000);

LINE=12; pcwrt12(5.00); RCOUNT=MIN;

}

void stopO

{
if «RSTATUS==POS) II (RSTATUS==MIN»

{

RSTATUS=WAIT;

RWAIT=80000;

}

else if ( (RSTATUS==PPULSE) II (RSTATUS==NPULSE) )

{

RSTATUS=WAIT;

RWAIT=500;

 
 
 



LINE=12; pc-wrt12(O.OO);

LINE=16; pC- wrt12(O.OO);

}

void getscanvalO

{
clrscrO;

printf("Current wavelength: %. 2lf \n" ,CWL);

printf(IIScan to: ");

scanf(" %If II ,&E05);

printf("wavelength-interval (in Angstrom): ");

scanf(" %If'' ,&WLI);

printf("Enter filename: II);

scanf(" %s" ,FILENAME);

if (E05>CWL)

{
RSTATUS=POS;

go_posO;

}

{
RSTATUS=MIN;

go_negO;

}
counLheaderO;

 
 
 



printf( II\nScanning ... \n ");

CHAN=1;

printf(lI\nV_IN: %If",pcrdAD());

diosig[indexl] = pcrdADO; II reads signal from photodiode and stores

II in array
fprintf(leer, II%E %E\n II,wave[index2],diosig[indexl]);

/* if (index2==V

{
Energy=12398.56Iwstart;

xinterval=ceil( (Energy-O. 80) *(75.0010.20));

xcoord=(1 OO+xinterval);

ydata=5*( diosig[ indexl]);

yinterval=ceil( (ydata)*( 48.00120.00));

ycoord=(380- yinterval);

moveto( xcoord,ycoord);

}*I

plotgraphO;

CHAN=O;

if (RSTATUS==POS)

{ ~o
if (CWL>=EOS) { SCAN=O; stopO; counLheaderO; counLdispO; }

}
else if (RSTATUS==MIN)

{
if (CWL<=EOS) { SCAN=O; stopO; counLheaderO; counLdispO; }

}

else { SCAN=O; counLheaderO; counLdispO; }

}

 
 
 



void counLkbeventO

{

if (RSTATUS==WAIT)

{
if (RWAIT) RWAIT--;

else { RSTATUS=ZERO; counLdispO; }

switch (c)

{

case ' C' : if (SCAN) break;

clrscrO;

printf("Recalibrate wavelength (in): II);

scanf( "% 1f II ,&wstart);

QANGSTROM=O;

counLheaderO;
break;

case'S' : if (SCAN) break;

getscanvalO;

leer=fopen(FILENAME, IIw ");

SCAN=1;

graph_initO;

 
 
 



axesO; break;

case ' -' : if (SCAN) break;

go_negO; RSTATUS=MIN; break;

case 32 : stopO; break;

case ' +' : if (SCAN) break;

go_posO; RSTATUS=POS; break;

case' , : if (SCAN) break;

if (RSTATUS==ZERO)

{
RSTATUS=PPULSE;

counLdispO;

go_posO; delay(20);

stopO;
} break;

case ' " : if (SCAN) break;

if (RSTATUS==ZERO)

{
RSTATUS=NPULSE;

counLdispO;

go_negO; delay(20);

stopO;
} break;

case 27 : stopO; EXIT=1; break;

II change v-in value to a 0->500 scale (100/Volt)

unsigned int fpcrdADO

{

 
 
 



buf2[flt]=pcrdADO*FSCALE;

ftotal+=buf2[flt];

if (flt<FSET) flt++; else flt=O;

ftotal-=buf2[flt];

void counterO

{
int x,y;

unsigned int m;

while «fpcrdADO<FLUPPER) && !EXIT) { counLkbeventO; }

while «fpcrdADO>FLLOWER) && !EXIT) { counLkbeventO; } 340

if (!EXIT)

{

QANGSTROM+=RCOUNT;

II gotoxy(21,13);

CWL=wstart+2*(float(QANGSTROM)/4.0);

if (ctr>=«WLU2)*4»

{
ctr=O;

gotoxy(21 ,13);

printf("%.2lf ",CWL);

wave[index2]=CWL;

if (SCAN)

{

 
 
 



void countO

{

360

count

clrscrO;

printf("Enter current wavelength (in): II);

scanf(" %If II ,&wstart);

QANGSTROM=O;

counLheaderO;

counLdispO;

II leer=1open(FILENAME,lJwlJ);

do counterO;

while (!EXIT);

fclose(leer) ;

closegraphO;

clrscrO;

printf("\nPC30 Control Program vl. O\n\n"

"Type PC30 I? for help. \n");

void usageO

{

 
 
 



Graphic modeI display input wave

for calibration\n"

Enter calibration values\n"

This help message\n\n"

" + Increase sample delay\n"

" Decrease sample delay\n"

" t Toggle trigger mode on/off\n"

" <Ese> Quit\n");

/*void setval(char */name)

{

printf("\nPC30 Control Program vl.0\n\n"

"Enter upper detection level (prev. %If Volt): ",F_UPPER);
scanf(lI%lf",&F _UPPER);

printf(IIEnter lower detection level (prev. %If Volt): ",F-LOWER);

scanj("%lf",&F .LOWER); 410

if ((jil=fopenlfname,"rb+"»==NULL)

{
printj("Error accessing .EXE file (Read-Only?)\n");
exit(1);

}
fseek(jiI,-16,SEEK-END) ;

fwrite(&F _UPPER,1,8,jil);

fwrite(&F .LOWER,1,8,ji1);

fclose(jil);

 
 
 



/*void getval(char */name)

{

FILE *fil;

if ((jil=fopen(jname, "rb"))==NULL)

{

printj("Error accessing .EXE jile\n");
exit(1);

}
fseek(jiI,-16,5EEK.LND );

fread(&F _UPPER,1,8,jil);

fread(&F -LOWER,l,8,jil);

fclose(jil);

} *1

void mainO

{
pcinitO;

ctr=O;

index 1=0;

index2=0;

II getval(argv[O]);

FLUPPER=F _UPPER*1 00;

FLLOWER=F _LOWER*1 00;

/* if ( (argv[lJ[OJ=='j') II (argv[lJ[OJ=='-') )

{

switch (toupper(argv[l][lJ))

{
case 'G' : graph(); break;

case '5' : setval(argv[O]); break;

 
 
 



case'?' : usage(); break;

default : usage(); break;

{*/
countO;
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