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Abstract

The theoretical understanding of high temperature superconductivity re-
mains one of the most important unanswered questions in contemporary
condensed matter physics. A wealth of experimental data accumulated
since the discovery of this phenomenon [1] has set strict guidelines as to
what a successful theory must incorporate. This has been complemented
with an equally large yet incomplete body of theoretical interpretations of
the problem. In this thesis a generalized formulation of the BCS[2] the-
ory of superconductivity, based on a non-extensive statistics suggested by
Tsallis [3], is proposed. The treatment is purely two-dimensional in accor-
dance with the large anisotropy in the conduction states of all known high
temperature superconductors (high T.’s). This is justifiable as the loss of
phase coherence due to fluctuations in lower dimensional superconduc-
tors, no longer persists in this generalized formulation, except in the limit

where Boltzmann-Gibbs statistics are recovered. A generalization of the
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BCS universality condition emerges in the form (ﬂi—‘;%: ~ 3.52 where g mea-
sures the degree of non-extensivity of the system. Many other character-
istic physical properties of high T, superconductors can also be described

satisfactorily in this formulation.
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Uittreksel

'n Volledige teoretiese begrip van hoé temperatuur supergeleiding is steeds
een van die mees belangrike onopgeloste vrae in hedendaagse veelligaam
fisika. 'n Magdom eksperimentele data versamel sedert die ontdekking
van die verskynsel [1] stel streng maatreéls waaraan 'n suksesvolle teorie
moet voldoen. Hierdie word gekomplementeer met 'n ewe groot dog
onvolledige liggaam van teoretiese interpretasies van die probleem. In
hierdie tesis word ‘n veralgemeende formulering van die BCS[2] teorie
van supergeleiding gebaseer op 'n nie-ekstensiewe statistiese meganika
soos voorgestel deur Tsallis [3], voorgelé. Die benadering is suiwer twee-
dimensioneel in ooreenstemming met die groot anisotropie van die gelei-
dings toestande van alle bekende hoé temperatuur supergeleiers. Laasge-
noemde is verantwoordbaar aangesien die verlies van fase koherensie a.g.v.
fluktuasies in supergeleiers van laer dimensie, nie voorkom in die veral-

gemeende formulering nie, behalwe in die limiet waar Boltzmann-Gobbs
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statistiek herstel word. ‘n Veralgemening van die BCS universele voor-
waarde word verkry in die vorm q—i%%z ~ 3.52 waar g die graad van nie-
ekstensiwiteit van die sisteem aandui. Vele ander fisiese eienskappe van
die hoé temperatuur supergeleiers kan bevredigend beskryf word in

hierdie formulering.
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Chapter 1

Introduction

The discovery of superconductivity in the copper oxides in 1986 [1] and
the subsequent race for even higher critical temperatures (125K by 1993
[5, 6]) raised hopes for the application of superconducting phenomena at
operating temperatures approaching room temperature. The inability of
the Bardeen-Cooper-Schrieffer (BCS) model [2] to satisfactorily describe
superconductivity in these materials, appears to indicate that we are deal-
ing with a completely different class of superconductors.

Various theoretical models have since been proposed. Currently one
of the most widely supported models is that of d-wave superconductivity
[7, 8]. The basic idea of this model is that the large anisotropy of the crystal
structure of all high temperature superconductors (high T.’s) leads to an
anisotropy in the order parameter of the superconducting state. Typically
this might resemble the symmetry of a d-wave orbital angular momentum
e.g.

A(k) = Agcos (kya) — cos (kya)) (1.1)
where A is the d wave order parameter, k the wave vector and a the pla-

nar lattice spacing between Cu ions. The k dependence implies that the
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Figure 1.1: Basic crystal structure of La,_,Ba,CuO,4. One copper atom is
situated at each point of the intersection of the lines in the frame structure
on the right. They are each surrounded by six oxygen atoms forming the
six corners of an octahedron as shown on the left. Lanthanum and barium

atoms are not shown but lie between the planes of the octahedra.

gap does not have the same sign everywhere on the Fermi surface. In
general, regions of opposite sign are separated by nodal lines. Some prop-
erties may in this model be predicted theoretically. Very strong evidence
for this model exists, especially in the case of the so called heavy-fermion
superconductors, such as UPt;, UBe; and CeCu,Si;. However, many of
the experiments designed to illustrate the gap-anisotropy in the cuprates,
in fact rather support an s-wave model [9]. The coupling mechanism that
would lead to such a model also remains a mystery. Therefore although
its occurrence is a well established experimental fact, it appears as though
d-wave coupling is neither a necessary nor sufficient condition for high-T,

superconductivity to occur.
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Ultimately the physical properties of a material are based on the en-
ergy spectrum of excited states. It has been suggested that the occupation
of these states in high 7, materials might obey 'para-statistics’, an admix-
ture of Bose and Fermi statistics [10, 11] since the exclusion principle ap-
plies very specifically to true Fermions only, and not necessarily to quasi-
particles. In this case, however, the predicted universality condition is
:T?% < 3.52 for all intermediate statistics, despite an exponential increase
in the critical temperature.

Other more exotic models incorporate mechanisms such as non-phononic
coupling or normal states of a different nature. Some examples are the
polaron-bipolaron model [12], the resonating valence bond model [13],
and the exciton model [14, 15]. Different degrees of success have been
achieved in explaining specific aspects of high-T, materials, but no inclu-
sive model exists.

A number of characteristics must be incorporated in any such model.
Certainly the main common denominator in all high-T, materials is the
large anisotropy in the crystal structure. Very typical is the body-centered
tetragonal lattice of La,_,Ba,CuQ; as illustrated in figure 1. Situated at
each lattice point is a copper atom surrounded by six oxygen atoms form-
ing the eight corners of an octahedron. Not shown in figure 1, are the
lanthanum or barium atoms which lie in the spaces between octahedra of
copper and oxygen. Also omitted is a small distortion tilting alternate oc-
tahedra left or right which makes the true structure orthorhombic. The re-
sult is conducting CuO, planes very nearly two dimensional in character.
This can be seen in the large effective mass anisotropy in most high-T.’s
e.g. /m:/mz, = 52(1) in HgBa,Ca3CusO;9 where m} is the perpendicu-

lar and m}, the in-plane effective masses respectively [16]. It is therefore
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reasonable to assume that lower dimensionality is essential for high crit-
ical temperatures and that arguably the ‘ideal’ high-T, superconductor is
purely two-dimensional in character. It is, however, well known that in
BCS, a pure 2D model presents problems as the phase loses its coherence
due to fluctuations [17]. This generally calls for at least a quasi-2D model.

Although the results of measurements on the superconducting gap are
somewhat varied, there seems to be convergence towards a ratio of %%
equal to somewhere between 6 and 8 which is not consistent with the uni-
versal value of ~ 3.52 obtained for normal BCS superconductors. This is
particularly so in the case of tunneling measurements (4,18, 19, 20], where
ratios as high as 8.9 have been measured in La, g55r0.15CuOy4 [21], but ap-
pears to contradict optical measurements [22, 23, 24] which seem to yield
results closer to the BCS ratio for weak coupled superconductors. In the
face of the apparent BCS behaviour of the tunneling currents, the violation
of universality is difficult to understand.

Thirdly, experimental data suggests that the electronic contribution to
the specific heat in cuprates does not exhibit the exponential form of nor-
mal weak coupled superconductors. It is rather of the linear form ~T,
where 7 is of the order of a few m]J/mol-K®. Magnetic properties of the
high-T, superconductors also differ appreciably from their normal coun-
terparts, most notably in their very high upper critical fields. These fields
are extrapolated to be of the order of tens or hundreds of Teslas and are
too large to be attained with current technology. Furthermore it should
also be noted that all high-T, superconductors are of type IL.

One of the strongest arguments for the phonon coupling scheme of
the BCS model is the existence of an isotope effect. It was observed in 1950

[25] that the critical temperature scales very nearly as the square root of the



CHAPTER 1. INTRODUCTION 5

isotopic mass of the crystal. In cuprate materials, where there is a strong
doping dependence of the isotope effect, this requires some additional
consideration. In optimally doped materials the effect is often strongly
suppressed (T, may scale as a power o = 0.1 of the mass), whereas in
overdoped or underdoped materials it might be more prevalent, with the
scaling in some cases even exceeding o = 0.5 [26].

Recently in statistical mechanics there has also been interest in a gener-
alization of Boltzmann-Gibbs (BG) statistics to a non-extensive form pro-
posed by Tsallis[3] in which the former is recovered in an appropriate
limit. The formalism has had considerable success in providing an appro-
priate mathematical framework for dealing with physical systems with
long-range interactions. Very good results have been obtained in rela-
tion to the so-called stellar “polytropes” [27] where the usual Boltzmann
distribution functions yield unphysical results. A variety of other ap-
plications have also been considered such as turbulence in pure-electron
plasma [28], the dynamic linear response for nonextensive systems [29],
Lévy like anomalous diffusions [30], the solar neutrino problem [31] and
long-range fluid and magnetic systems [32]. In addition many well-known
theorems and principles have been formulated in generalized form, for
example, Ehrenfest’s theorem [33], von Neumann’s equation [34], Jaynes’
information theory duality [33], Bogolyubov’s inequality [35] and others.

In this thesis we propose and motivate the possibility that the cuprate
oxide materials have an inherent underlying non-BG like character re-
sponsible for their high-critical temperatures and other unusual proper-
ties. In order to preserve continuity of the free energy at the critical point,
we conclude that it is a property of the material at lower temperatures

and not some anomaly of the superconducting state. Our suggestion is
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that the s-wave BCS model is essentially correct in employing an effec-
tive weak coupling Hamiltonian that includes the kinetic energy of free
electrons, along with a constant attractive potential between electrons of
equal momentum and opposite spin [2]. The BCS ansatz in purely 2D
form is used for the ground state, with a generalized form of the Fermi-
distribution function [36] appearing at finite temperatures. We also show
that such a 2D model is justified as the fluctuation-dissipation theorem
is no longer valid in the Tsallis formalism [37]. The assumption that the
coupling mechanism is purely phonon mediated, needs to be modified to
obtain agreeable fits to experimental data, particularly in the case of very

high temperature superconducting materials.



Chapter 2

Generalized Statistics

2.1 Motivation

The relevant question with regard to our proposed modus operandi is, of
course, why the Tsallis formulation should be appropriate for the high-
T.’s. The Tsallis entropy was specifically postulated with non-extensive
systems in mind. These include systems having (i) long range interactions
(ii) long term microscopic memory or (iii) fractal boundary conditions in
space-time. If any one of these conditions apply, BG statistics are known
to fail.

A very compelling argument can be found from a consideration of the
electronic specific heat. The more exotic coupling methods mentioned
above, may certainly have the effect of removing problems indirectly re-
lated to the BCS-Hamiltonian, such as the lattice instabilities predicted by
Migdal [38]. The experimental evidence of an energy gap, however, re-

quires an energy spectrum for the total energy of excitations, of the form

E} =e; + A7 (2.1)
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where ¢ is the excitation energy and A the energy gap, independent of any
proposed model. If one is to believe experimental evidence, A in (2.1) is
independent of the wave number k and contrary to the d-wave model,
the pairing is s-wave. Assuming a Fermi distribution, the electronic spe-
cific heat capacity (C) at temperatures kT < A, can be shown to have the

following form [39]
o

T
One is therefore obliged to contend with an exponential form of the heat

el

C ~ (2.2)

(S

capacity in any s-wave pairing model that relies on the Fermi distribution
function used in BG statistical mechanics. One way to circumvent this is
to introduce a different distribution function.

It should be remembered that the most basic interaction in an electron
gas is that of Coulomb repulsion. This interaction is of infinite range and
may also introduce correlation effects. One example is the condensation of
a true electron gas, of low enough density, into a Wigner lattice [40]. Very
early attempts at explaining superconductivity, quite intuitively, but un-
successfully, used the Coulomb potential as starting point [41, 42]. More
recently models like those of Hubbard [43], describing contributions due
to repulsion between electrons sharing an atomic orbital, have been ap-
plied to superconductivty. The condensation of electrons into its super-
fluid state is ultimately the result of an effective, attractive interaction.
The extent of the effect of Coulomb repulsion might not be obvious and
in spite of the fact that we do not explicitly take it into account in the effec-
tive interaction, we argue that it is precisely the effects of this long-range
interaction which may render the system more suitable for description by

generalized statistics.
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2.2 Formulation of Generalized Statistics

The generalized entropy postulated by Tsallis [3] takes the form:

w 9
S, = k-———zi:lq{lf : Pl gem) 2.3)

where w is the total number of microstates in the system and p; are the
associated probabilities with - | p; = 1. ¢ is a number that characterizes

the degree of non-extensivity. It is straightforward to verify that the usual

BG entropy is retrieved in the limit ¢ — 1

1 B 1?“_ 7 — 1 l H
SBG = lim Sq = klim Zz_l p exp[(q ) np ]
g—1 g—1 g—1

= —k Z ;i lnp;. (2.4)

=1

The non-extensivity becomes apparent in the additivity rule
S;(A+ B) = S,(A) + Sy(B) + (1 — q)S4(A)Se(B) (2.5)

where A and B are two independent systems. It can also be shown that this
entropy obeys the usual properties of concavity, equiprobability, positivity
and irreversibility.

It can be demonstrated[3, 44] that S, is an appropriate microscopic
form of the entropy in statistical mechanics. We present some results to
this end. Let us firstly state that by applying a variational principle to S,,

subject to the constraints ;" p; = 1 and
i=1

for the internal energy, it is possible to show [44] that a probability law

applies for which

1B - el
pbi = Z, (2.7)
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where Z, is the partition function
Z, =3 [1 - B(1 - q)e;) ™. (2.8)
=1

It is easily verified that

o Z,71~1
—Z e T _U 2.9
08 1—gq 1 (29)

which, in the ¢ — 1 limit, yields the standard expression —dln Z, /90 = Us.
Let us now Legendre transform the function (Z;~¢ — 1)/(1 — g), which
depends on 3. Constructing (Z}9 — 1)/(1 - ) + BU, we find

éll;i—Tl + BU, = 5, (2.10)
which again reproduces the standard relation In Z; + AU, = S; in the limit

q — 1. It immediately follows from (2.10) that

2s, 1

g _ 2.11
=7 (2.11)

Finally one can define a generalized free energy
F,=U,-TS, (2.12)

from which it straightforwardly follows
12,79-1

Fp=———21—— 2.13
B 1-gq 219

again recovering, for ¢ — 1, F1 = —(1/8)In Z;.

It is clear that the entire mathematical structure connecting standard
statistical mechanics and thermodynamics is preserved within the Tsallis
formulation.

Associated with equation (2.3) is a generalized Fermi distribution pro-

posed by E Biiytikkilig et al. [36]
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_ ! (2.14)

1+ 8¢~ Va7 +1
Once again the usual Fermi distribution of BG statistics is recovered in the

fq

limit ¢ — 1.

The validity of equation (2.14) has been the source of some dispute
[45, 46], the problem being that one has to assume factorizability of the
partition function to obtain this result. Biiytikkilig e al motivate this on the
basis of the diluteness of a system and the consequent statistical indepen-
dence of single particle states. We maintain that the inherent independent
quasi-particle nature of the BCS-model allows for the same approximation

to be made and we will henceforth assume (2.14) in our approach.

2.3 Interpretation of the Non-Extensive Parame-
ter g

A very valid question is whether any physical interpretation can be asso-
ciated with the parameter ¢g. The simplest answer is that it is a measure
of the degree of non-extensivity of a system, but this is not very satisfac-
tory. Some authors have attempted to find generally applicable bounds
on the value of ¢ [47] and possible experimental tests have been proposed
to identify systems as non-extensive [48]. All the latter might serve to
elucidate the problem. Probably the most important step forward is the
conclusion by Papa and Tsallis [49] that it is in fact possible to derive g
from a knowledge of the microscopic dynamics of the system. A clearer
picture is beginning to emerge (see also [50]) and it is certain that theorists

will continue to address this matter in the future.



Chapter 3

The Fluctuation Dissipation

Theorem

In the BG statistical mechanics, a simple relationship may be obtained be-
tween the canonical or grand canonical ensemble averages of commuta-
tors and anticommutators of two dynamical operators[51]. This relation-
ship is often referred to as the fluctuation-dissipation theorem, since the
anticommutator is used to describe time-dependent correlations or fluc-
tuations in the system and the commutator is related to transport coeffi-
cients or dissipation[52, 53]. It is simply due to the fact that the Boltzmann
factor or distribution function is exponential in nature and therefore fac-
torizable. A consequence of this aforementioned theorem is to rigorously
rule out the existence of superconductivity or superfluidity in one and two
dimensions[54].

The approach to the high-T. superconductor problem we shall pro-
pose in the next chapter, is based on the assumption that the “ideal” high
T. is purely 2D in nature. In light of the previous paragraph this needs
to be justified. Unlike in the BG case, the generalized distribution func-

12
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tion (2.14) we shall be using is not simply factorizable, except in the lim-
iting case where BG statistics are recovered. Hence, as we shall show, the
fluctuation-dissipation theorem as stated above no longer holds. This al-
lows for the possibility of forming a condensate in two dimensions, pro-
vided these generalized statistics are realized.

To this end we require a generalized form of the Maxwell-Boltzmann

distribution of an ideal gas [36]
folew) = [1+ Blg = 1)(ex — )7 (3.1)

where 1 is the chemical potential. Now, with u = 0, consider the simplest

form of canonical correlation function[51]

< A()B(t") >=Tr{pAt)B(t')} (3.2)

where
P= Pt = e P Tr{e P} (3.3)
= fomi(H)/ 21 = J(H)/Z, (3.4)

Z is the partition function and f, is given by eq. (3.1). The spectral function
for this correlation function may be written as

Japlw) = [ T et < A()B(0) > di (3.5)

— 00

- / / dEAE' p(E)21hé(E + hw — ENjan(E,E')  (3.6)
where
jap(E,E') = Tr{0(E — HYAS(E' — H)B} (3.7)

and

p(E)=ePE/7 (3.8)
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which yields for the correlation function

A 1 00 . /
/ — —iw(t—t') .
< A@)B({') > 5 /_Oodwe Jap(w). (3.9)

Interchanging the order of the product and E and E’ yields

< B(tYA(t) >= % /_ * dwe B T () (3.10)

since p(E + hw) = p(E)e™#". This leads to a simple relationship between
the ensemble average of the commutator and anticommutator of A and
B which is referred to as the fluctuation-dissipation theorem([51, 54]. Un-
fortunately this factorization is not possible over the complete integration
range if p in eq. (3.4) is replaced by p,1. Hence, in principle, for ¢ # 1
condensation may occur in dimensions d < 3.

We demonstrate, for interest sake, the following application of this re-

sult. Consider an ideal Bose gas for which the number of bosons is given

by
NwT) = [ [drdpfye (3.11)
~ /0 7 dee$ 1, (e) (3.12)
where d is the dimensionality and f, is given by the Bose distribution
f = L (3.13)

Cl+Bg-Deli -1
For q=1 it is easy to show that lim,_,o Ny—1(y, T) is divergent for d=1,2[55,
54] and condensation only occurs for d=3. On the other hand for q=2,
lim, o N,=2(p, T) is not convergent for d=1,2 or 3 which in spite of the
absence of the fluctuation-dissipation theorem rules out the possibility of
condensation.
In summary we conclude that it is acceptable to construct a 2D-BCS

model of high-T, superconductivity, provided we remain within the realm
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of generalized statistics, where the fluctuation-dissipation theorem is in-

validated.



Chapter 4

BCS Theory and the Generalized
Gap Equation

BCS theory is based on the assumption that, in a Fermi gas, normal state
electrons near the Fermi surface may experience an effective attractive in-
teraction due to polarization of the ionic lattice (electron-phonon-electron
interaction). The Hamiltonian describing the energetics of electrons in

such a system was postulated as follows

g _ f 1 i f
H = Z EkCi,oCk,o T 9 Z Cly+5,01 Cka—s,02 Jk1 k2,5Cka,02Ck1,01 (41)

k,O’ k1a017k2302

where ¢! and c represent the usual Fermion creation and annihilation op-
erators, corresponding to a state with momentum k and spin o. The first
term describes the kinetic energy and here ¢y stands for R2k%/2me — p,
where again u is the chemical potential. The second term represents the
interaction between electrons quantified by the matrix element g, k;,s- It
has the effect of taking a pair from a state ks, 03; k1,01 and scattering it
into a state k; + s, 01; ky — s, 03 so that both the scattered state and orig-

inal state have the same total momentum. This might seem like a trivial

16
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statement. It is however the very foundation on which BCS theory is laid.
It has the effect of creating a superfluid groundstate |BC'S) consisting of
pairs of electrons all having the same pair momentum.

Minimizing the corresponding free energy, one obtains at finite tem-

perature the gap equation

A .
Ap = _ngpﬁ(l = frr = fry)- (4.2)
k k
fxo is the distribution function and Ej the quasi-particle energy given by
B} =i+ A’ (4.3)

with A the energy gap. In the BG case for weak coupling superconductors,

the distribution function is the Fermi distribution and
A 1
A== g,cpf’“ tanh & . (4.4)
k k

Chosing at the outset S, (2.3) for the entropy leads to f, (2.14) in eq.(4.2)
and changing the sum to an integral over the density of states, we obtain

in 2D the generalized form of the gap equation:

= [ [1+ B¢ — YV T ART - 1
N(0)g VEZ+ A2[1 4 B(g — 1)+ AT + 1

where N(0) represents the density of states. For g=1 in 3D, one recovers

(4.5)

the integral representation 0f(4.4) and, of course, a description of normal
superconductors in the weak coupling limit. As required, equation (4.5)
is independent of the distribution function at zero temperature where it

reduces to

1 de
= , 4.6
N(0)g / (AZ+¢2)2 “0

A being the zero temperature gap.
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Let us, as a starting point, choose the usual BCS value as cutoff to the
gap equation i.e. the Debye frequency fiwp. Then the analytical solution

to equation (4.6) is

Ao = (hwp + /hwd + AZ)e¥0%. (4.7)

Using experimental values for the gap and Debye frequency, one can solve
for N(0)g at zero temperature. The problem reduces to finding that g in the
gap equation, which yields a vanishing gap at the critical temperature and
the same N(0)g. With ¢ thus fixed, the temperature dependence of the gap
can be determined.

It is at this stage appropriate to note that despite reasonable physical
arguments in the case of normal superconductoys, the choice of the Debye
frequency as a cutoff is mathematically quite arbitrary. The temperature
dependent solution to the gap equation in fact converges to a well defined
value for any cutoff of sufficient magnitude. It is only when the cutoff
is of a magnitude of the order of the gap itself, that deviations occur. In
normal superconductors the Debye frequency is greater than the gap by
~ 10? and thus adequate. This is, however, certainly not the case in high-
T, superconductors where the gap at zero temperature may even be larger
than the Debye frequency, e.g. in Tl,Ba;Ca,Cuz Oy [56] (see [57] for Debye
frequencies of other high T, superconductors). Abandoning the Debye
frequency as a cutoff is tantamount to acknowledging that the electron-
phonon interaction is not the only interaction involved in forming of the
condensed state.

It is interesting to note that the convergence of the gap at greater cut-
offs, is accompanied by a simultaneous convergence of g. Consider a trans-

formation of the gap in equation (4.5) via the substitution ¢ = EfQTi Let
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us also define the cutoff in terms of multiples of the energy gap, e.g. nAo.
Then for a given value of the gap to critical temperature ratio, JS?ATQZ =m,
one can show that the gap equation reduces to a form dependent only on
the ratio %’ the number n and ¢, and not on either the gap or critical

temperature directly.

(4.8)

1 mn de! [1 4 (g — 1)e'/2]71 — 1
N(0)g :/0 L4 (g 1)e/2 T +1

Thus, if for a specific ratio of Ay to T, the temperature dependent gap is
convergent independent of cutoff, ¢ must have a uniquely defined value.
It therefore seems appropriate to define the cutoff in terms of the conver-
gence of g, as this can be specified independently of the critical tempera-
ture pertaining to a specific material.

A relevant question now, is whether a generalization of the BCS uni-
versality condition of JSTATQC' ~ 3.52 exists for the generalized statistics of
Tsallis. Clearly the generalization must be ¢ dependent because of the de-
pendence of T, on ¢ and reduce to the BCS universality condition for ¢=1.
In figure 4 a graph of q—i—ﬁ—% versus ¢ is given. This ratio does not deviate

appreciably from 3.5 which suggests the following generalization

27,
quTc

~ 3.52 (4.9)

A more detailed analysis might lead to replacing ¢ by some function of ¢

which should be ~ g.
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2A/k, T

Figure 4.1: The ratio "EBATQZ vs. q is given by the solid curve. For comparison

the dashed curve representing qi—ﬁ% vs. q is included.



Chapter 5

Physical Properties

In this chapter we investigate some of the consequences of introducing
generalized statistics into the BCS equations at finite temperature for mea-
surable physical properties. Particular attention is paid to those properties

mentioned in the introduction as characteristic of the cuprates.

5.1 The Isotope Effect

In BCS theory, the solution of the gap equation at T. yields
kT, = 1.14k0pe 0% (5.1)

This linear dependence on #p predicts a corresponding dependence on
the isotopic mass (M) of the phonon mediating ions: T, ~ \/% The
question now arises whether the incorporation of non-BG statistics will
retain this dependence.

Consider the gap in equation (4.2) at T, independent of any particular
choice of statistics and with the Debye frequency as choice of cutoff. A
change in the integration variable ¢ — ¢kpT, may always be made such

that the integration limits are from 0 to %’l Integrating by parts yields:

21
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1 ép op

No)g ~ lne(t —2/(@)" ~ [T e-2F@)me de (52)

where F(e) is the indefinite integral of f(¢). In the first term on the right, the

evaluation at zero must vanish, leaving;:

1 Op.. Op [P
W:(l—zf(—))ln——/o (e —2F(€))Ine de (5.3)

Taking the integral on the right to the left hand side and dividing by

(1—-2f (QTJCZ)) yields some number ¢ which depends on the choice of f(e) .
Exponentiating both sides yields:

T, = 0pe? (5.4)

which clearly demonstrates that the isotope effect is preserved in the BCS
formulation irrespective of the particular form of statistical mechanics em-
ployed.

We have motivated the need to change the cutoff and this will, of course,
influence this relation. It might be argued that the observed suppression

in the isotope effect is a consequence of this.

5.2 Electronic Specific Heat

The electronic specific heat capacity may be expressed as

as
=T= 5.5
C TdT (5.5)

where the entropy is given by

[de{f(B) — f(B)"} | [del(1=J(B) = (L= fE)Y s 0

S, = 2kp[— o
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Figure 5.1: The normalized electronic specific heats C—fﬂ: VS. % for various
choices of %“%’ q and cutoffs where in each case Cp,q; corresponds to the
maximum value of C. The dotted line results from integrating to a cutoff of
390K which corresponds to the accepted value of the Debye temperature
of LSCO. Corresponding values of the normalized gaps are shown in the

inset.

and we use N(0) = ;25 for the density of states in 2D and the bare electron
mass m, in all cases. 2D carrier densities given by Harshman and Mills
[58] were used to convert the specific heat phase space integrals (2D) to
amount of substance (mol) concentrations. The effect of the cutoff on the
specific heat is shown in figure 5.2 for LSCO (T = 36 K).

The linear nature of the specific heat can be seen over most of the su-
perconducting region with Aiwp = 390K as the cutoff. Clearly the situa-

tion deteriorates as the critical temperature is reached. Applying a linear
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regression to the ‘most linear’ part of C (between 0K and approximately
Tlc = 0.65) yields a slope of v = 5.5 mJ/mol-K®. Increasing the cutoff to 704,
yields a more linear form of the specific heat near T, with little change in
the shape of the gap (see inset in figure 5.2). Changing the cutoff from
Fwp to 704, increases the « from to 10.7 mJ/mol-K? with a slight change
in g (from 1.752 to 1.679). Note that in spite of the fact that the slopes of
the specific heat may be altered by using an effective mass (y — %’37),
these values are not in disagreement with many of the experimental re-
sults which seem to lie between 3 and 12 mJ/mol-K? for most cuprates
[57]. For comparison the results for the specific heats and the gaps corre-
sponding to ratios of k%AT% = 4.0 and 8.0 are shown. Note the specific heat
is much more linear when larger cutoffs are used and that the nonlinear-
ity around 7, disappears almost completely for l??ATOZ = 8.0, for which the
slope increases to v = 20.0 J/mol-K? and the cutoff = 450-A,.

Little experimental data is available on the temperature dependence of
the energy gap in cuprates. In figure 5.2 the experimental data obtained
by Briceno and Zettl [4] for Bi;Sr,CaCu;Og with 7, = 85K and E?AT% =6.2
is compared with the theoretical results with ¢=1.717. In spite of a corre-
sponding linear specific heat (y = 13.9 mJ/mol-K? using m,.), the shape of

the gap is not in exact agreement with their result.

5.3 Critical Field

Due to the type II nature of the cuprate oxides, a full analysis of the crit-
ical magnetic field would require including contributions to the free en-
ergy resulting from the flux lattice as well as the mutual energy of the

surface current and flux line currents. We therefore present only a qualita-
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Figure 5.2: Comparison of the temperature dependence of experimental
values of A from Ref [4] for BiySr,CaCu,Os with T, = 85K and %ﬂc- =6.2,
with the theoretical results for ¢=1.71



CHAPTER 5. PHYSICAL PROPERTIES 26

025 . , ' T ' T

0.2

e
G

—— Nermal
| —— Superconductiog

13c ( Tesla )

I
T

F (arb. units)

005

0 10 20 30 40

Figure 5.3: The critical magnetic field B, vs. T obtained from free energies

given in the inset.

tive analysis of the thermodynamic critical field, B., and make no attempt
at solving either the lower- (B,;) or upper- (B.,) critical fields.

In 2D, the thermodynamic critical field is given by

~ =F,—F, (5.7)
240

where F), and F; are the free energies in the normal- and superconducting
states respectively, and p is the permeability of free space. The free energy

can be written as

F o= 2> |exllfi + (1 — 2f) hue]

— Y Viwlhe(1 = Bdhe (1 — he)]E x {(1 = 2£)(1 = 2fw)} = TS

kK
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(5.8)
hx is of the form

o = %[1 - 25, (5.9)

Upon substituting equation(2.14) and after some lengthy but straight-

forward algebra, our final result is

Fy = NOGP1+ (S 1) - 280 [ a2 5 (sE)
—SEINO) [0 - FOE) - - fBE). (510)

The question now arises whether the usual form for the normal state
energy, F,, = —im2N(0)(kgT)? is still appropriate. Clearly, if ¢ # 1 is
used, F; will not approach the normal state F,, as the gap vanishes at T,
thus implying the existence of a non-zero critical field. This is of course
experimentally unacceptable and demands that we postulate the normal
state to also obey the generalized statistics.

Figure 5.3 shows the thermodynamic field obtained for a superconduc-
tor with k%ATO; = 6.0 and 7, = 36K . The inset shows the behaviour of the free
energies. They differ from the weak coupled normal superconductor case
where the free energy is always negative except at T = 0 at which point
it vanishes. The difference, however, remains a positive definite quantity
and no problems arise in calculating B,. The zero temperature result of
figure 5.3 agrees exceptionally well with an extrapolation based on exper-
imental results due to [59]. They find, for a La; 546510 154CuQ; crystal with
T, = 35K that B, = 0.251 T, while our results is 0.234 T.
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5.4 The Josephson Effect

In this section we consider the effect of using generalized statistics on the
current between two superconductors in contact via a tunneling barrier
under an applied voltage. Effects resulting from the distinct tunneling
mechanisms between superconductors are broadly referred to as Joseph-
son effects[60]. Cohen et al. [61] first successfully described the tunneling
of particles between superconductors. They considered a typical tunnel-

ing Hamiltonian of the form

where Hy, and Hp, are the complete Hamiltonians of the left and right sides
of the tunneling barrier and Hr a tunneling term of the form

Hr = Z TL,R(CTLCR + CECL)- (5.12)

LR
Ty, r is the matrix element of the term, while ¢}, and ¢, are again the usual
single particle creation and annihilation operators. The effect of this term
is to take a particle from the one side of the barrier and transfer it to the
other side. Josephson subsequently pointed out the need to take into ac-
count the tunneling not only of single particles, but also of pairs. This
leads to a total tunneling current consisting of three contributions and de-
pendent on the difference in phase, ¢, of the superconducting states on the

right and left sides
IV,T) =1, (V,T)sing + Ij5cos¢ + 1,,(V,T). (5.13)

I,, is the quasi-particle tunneling current, I;; the coherent tunneling of

pairs, while I;, can be viewed as describing the tunneling of ordinary
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quasi-particles with a phase dependence. Integral expressions for all three
terms were given by Ambegaokar and Baratoff [62], and also by Werthamer
[63]. Larkin and Ovchinnikov [64] used an equivalent approach to sim-
plify the expressions to single integrals, thus making the numerical analy-
sis more tractable. We’ve used the expressions derived by the latter which

are

In

AlAQ /oo Q(Al — |w — €V|)9(|W‘ — Ag)
ey oo (A7 = (w— eV w? - A3}

O(lw| — A1)8(A2 — |w+ V)
(@~ ADFB] — (w eV}l

) x [1=2f(jwD]dw  (5.14)

I JASPAV /oo (sgnw)[sgn(w + eV)]_Q(!w| —ADf(jw+eV| — Az)

eBy S (w? = A} {(w +ev)? - AR

X[flw+eV)— flw)]dw (5.15)

and

I 1 /00 lw||lw+ eV]8(|w] — A1)0(Jw + V| — Az)
qp

eRy oo (w2 — A})3[(w+eV)? — A

X[f(w) = flw+eV)]dw (5.16)
where
sgn(w) = +1 for w>0

= -1 for w<o,

flw) = 0 for w<O

= 1 for w>0 (5.17)
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and V is the applied voltage, e the electron charge, Ry the junction re-
sistance and A;, A, the energy gap on either side of the tunneling junction.
A summary of much of the fundamental work is given by Harris [65].

Equations (5.14)-(5.16) apply to 3D where the junction resistance is ex-
pressed in terms of the microscopic quantities [66]: the density of states at
the Fermi level, the matrix element and fundamental constants. This we
assume to be a macroscopicly measurable quantity and no problems arise
in directly using (5.14)-(5.16) in the 2D case, if results are expressed as I-
Ry.

The main difficulty in evaluating the tunneling currents is the presence
of square root singularities, due to the denominator becoming zero for cer-
tain values of the integration variable w in (5.14)- (5.16). The appropriate
method to deal with these singularities was demonstrated by Shapiro et al.
[67]. A detailed discussion of his approach is given in Appendix A. One
frequently applied, and apparently indispensable step in this approach,
is a transformation of the variable of integration w — —w, see equation
(A.12). This leads to another complication. The generalized distribution

function contains terms of the form
1+ B(g~ 1)e]7T. (5.18)

The change in sign of w might lead, in this case, to a negative value of the
argument € and consequently a negative under the power q—}I This seems
to be an inherent difficulty of the Tsallis formulation, which requires a
cutoff to the integration boundaries whenever (5.18) becomes imaginary.
We propose, however, that a perfectly valid, and in some respects a more
consistent, generalization of BG statistics can be made by writing any term
e~? in the BG case as

e’ — — (519)
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Figure 5.4: Various components of the total tunneling current for a tunnel
junction between two identical superconductors at 5K with an energy gap
of E%ATZ = 6.0. Dashed lines indicate BG calculations while solid lines show

the generalized results with ¢ = 1.679.

and analogously in the generalized case
1
1+ B(a = Dlel]=

In both formulations the BG exponential is retrieved as ¢ — 1 and both are

(5.20)

1+ 8(g-D(~le))m -

therefore equally valid. No complication arises due to an imaginary term
in the latter and the integration may be done over the whole region. This
was used whenever applicable.

In Figure 5.4 we show the result of evaluating equations (5.14)-(5.16)
at 5K for a junction with identical superconductors with kZTéTQ; = 6.0 and
using the generalized distribution function with ¢=1.679. The results are

compared to the equivalent calculation using BG statistics to illustrate the
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Figure 5.5: Generalized I,,(solid line) and I,,(dashed line) in the region
eV < 2A. Note that a BG calculation yields a negligible contribution in

this region.

effect of the choice of statistics. Of interest is significant contributions of
Iy; and I, below an applied voltage of 2A /e. The BG calculation yields a
negligible contribution in this region at low temperatures. In figure 5.5 the
eV < 2A region is magnified for clarity.

One feature that has emerged experimentally, is the presence of a peak
in the conductance spectrum 4 of certain high-T.’s at zero bias and low
temperatures [68, 9] . No peak of this nature can arise in the BG case,
as both I, and I, are effectively negligible and the derivative of I;; is
zero at V' = 0. The existence of finite contributions are, however, clearly
illustrated in figures 5.4 and 5.5 for the generalized case. Although the
precise structure observed experimentally is not seen here, the existence

of these contributions raises the possibility that interference due to other
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admixtures, perhaps d-wave or Andreev bound states, will produce the
sought after structure.

The use of generalized statistics in the BCS equations thus allows the
experimentally observed discontinuities in the tunneling currents to be
interpreted as being coincident with the energy gap at low T, whilst con-

sistently predicting the gap to vanish at the correct critical temperature.

5.5 Discussion

We have thus far shown that many of the characteristic properties of the
high-T.’s may be predicted by generalization of the distribution function.
A couple of general comments are in order.

An obvious question that might arise regards the conclusion that the
generalized distribution function need also apply to the normal state. Cer-
tainly the normal state of cuprates does not display surprising or anoma-
lous properties that might lead one to postulate the need for a generaliza-
tion of the entropic measure. One would want to verify that these proper-
ties can indeed appear within the generalized formulation, without appre-
ciable deviation from the expected behaviour within BG statistics. To this
end we compare the normal state entropy, S(7), in the BG case with the
generalized case for an arbitrarily chosen ¢, figure 5.6. In the BG case one
expects to see a linear entropy as illustrated (which through 745 leads to
a linear specific heat). In figure 5.6 the result of increasing the integration
cutoff in the generalized entropy is shown. This removes the non linear
behaviour in the entropy. As a larger cutoff was also required in the super-
conducting state, this is consistent with the proposed scheme. Clearly the

order of magnitude of the BG prediction is different, but nothing anoma-
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Figure 5.6: Comparison of the BG entropy in the normal state to the gener-
alized case for various cutoffs. An arbitrary Debye frequency, wp = 390K,
and ¢ = 1.679 were chosen. Note the generalized entropy becomes more

linear with increased cutoff.

lous occurs.

Finally, a point to ponder is a possible prediction for the limit that T,
might attain. This is presumably critically linked to the physical inter-
pretation of the value ¢. One might argue that high-T, superconductivity
results from a particular type of dynamics and that it pertains to a very
specific value of q or at worst a very small range of ¢’s. This conveniently
fixes another applicable parameter. In our proposed universality condi-
tion (4.9) one can always substitute the analytical solution (4.7) for the zero
temperature energy gap 4. A relation is then obtained between ¢, T. and

the coupling strength which may very well too be g-dependent. Ultimately
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this is the relevant relation as it links T, to that physical effect responsible
for the existence of the superconducting state, i.e. the coupling. It appears
as though no definite answer will emerge until a better understanding of
the nature of g and the material properties of the cuprates that lead to the

non-extensive dynamics is uncovered.

In conclusion a simple 2D s-wave BCS pairing model which incorpo-
rates generalized statistics has been proposed as a mechanism leading to
high critical temperatures in the cuprate family of superconductors. A
physical interpretation fixing energy cutoffs of the divergent phase space
integrals is still lacking in this formalism. Nonetheless an adequate de-
scription of many of the main features can be achieved, if non-phonon
mediated interactions are assumed to extend the excitation spectrum be-

yond the Debye frequency.



Appendix A

Josephson Integrals

The square root singularities in the Josephson integrals were first treated
by Shapiro et al. [67]. A detailed analysis of his approach for a junction
with identical superconductors is given. Consider the quasiparticle cur-

rent in equation (5.16), but with the denominator factorized:

_ 1 /00 lwllw + eV]0(|w] — A)(|lw + eV | — A)
eRy J-oo \/(w —A)(w+A)(w+eV —A)(w+eV +A)

IQP

X[f(w) = flw+eV)]dw (A.1)

The crux of the approach is to make a transformation of the variable
of integration such that terms under the square root that might cause sin-
gularities are canceled out. The 6 step functions in the numerator define
different integration regions in which the integrand is non-zero, depend-
ing on the magnitude of V. The integral must be solved independently in

each region. From (A.1)

lw] > A

lw+ eV] > A.

36
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Figure A.1: Graphical representation of the integration regions defined
by the f-step functions in equation (A.1). The top number line applies
to the applied voltages of magnitude 0 < eV < 2A, while the bottom
is for voltages eV’ > 2A. The shaded areas indicate regions where the
two #-functions are simultaneously non-zero and hence where the integral

should be solved.

Graphically this can be visualized as shown in figure A.
Consider first the situation in figure A(i) i.e. eV < 2A. The current
must be solved independently in the two integration regions, indicated by

the two shaded areas (1a) and (1b).
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Define current I, as the current in region (1a), then

o L /—A—ev w|lw + eV|
’ eRy J-o flw—A)(w+A)w+eV —A)w+eV +A)

X[f(w) — flw+ eV)]dw. (A2)

The upper boundary causes singular behaviour due to the last term

under the root. Now let

<w — 5) = cosh? u. (A.3)

«

The singularity is canceled upon substitution, by defining
(w—+eV = A)(w+eV + A) = a?sinh’u. (A4)

The first term in brackets on the left in (A.4) may be chosen arbitrarily.
o and f are consequently fixed and may be uniquely determined at the

upper boundary u = 0. Here, from (A.3)
w=pF+ta (A.5)
and (A.4) becomes
(w+eV —A)w+eV +A)=0. (A.6)

The last is true for two different values of w (see (A.5))

B+a = —A—¢€V
B—a = A—¢eV (A7)
From this it follows that
a = —A

g = —eV. (A.8)
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which yields the final desired result

\wl lw + eV
a x [flw) = flw+eV)|du A9
I eRN/ o e - e (A9)
with
= —Acoshu — eV. (A.10)
(A.10) is the appropriate transformation of w as w = —acoshu + § from

(A.3) leads to a negative value under the root in (A.9). Equation (A.9) may
be integrated numerically.

In the region (2b) in figure A, a somewhat different approach is re-
quired. In this case both integration limits are finite and therefore the cosh

function is inappropriate. Here

|w||lw + eV|

Iy, = /
eRy Ja-ev \/w— Aw+ A)(w+eV — A)(w+ eV + A)

X[f(w) = flw+ eV)]dw (A.11)

The second and third terms in brackets under the root cause singular
behaviour at the upper and lower boundaries respectively, while the first
term introduces a negative under the root. As only two terms can be can-
celed out in the current approach, it is necessary to first transform using

w — —w. Then

e L |~ ulleV —w
eRy Ja \/(w—A)(w+A)(eV—w—A)(eV—w+A)

x[f(~w) — f(eV — w)]dw (A.12)
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in which the first and third terms in brackets under the root become zero

at the lower and upper boundaries respectively. Let

w—p ° .
( ) = sin?u (A.13)
(87
and
(w— A)(eV —w— A) = a’cos’ u. (A.14)
o and § are solved for at the boundaries u = —7% and u = . The final
result is
| —wl|leV — w]

x [f(—w) — f(eV —w)]du (A.15)

= GRN/—-\/uH—A (eV —w+ A)

where

/
w= (% — A)sinu + 7‘/ (A.16)

All Josephson integrals can be solved in a manner analogous to the meth-
ods described above. For a specific voltage the total current is just the sum

of the solutions in each integration region.
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