
Chapter 6 

Conclusions 

One of the objectives of this thesis was to show that the back-propagation algorithm, 

that provides a computationally efficient method for the training of multilayer 

summation neural networks, fails to train PUNNs. The reason for its failure can 

be ascribed to the search space for PUNNs that is usually extremely convoluted 

[Durbin et al1989, Leerink et al1995] . The main reasons for the failure of gradient 

descent in the convoluted search space of PUNNs are (a) incorrect weight initialization 

and (b) the presence of an increased number of local minima. Generally, gradient 

descent only manages to train PUNNs when the weights are initialized in close 

proximity of the optimal weight values. Usually, the optimal weight values are often 

not available resulting in bad choices for weight initialization, which in turn causes 

gradient descent to get stuck in one of the numerous local minima that occur on the 

error surface or become paralyzed (which occurs when the gradient of the error with 

respect to the current weight is close to zero). In chapter 3 an inspection of the error 

surfaces of J( z ) = z3, with z E [-1,1]' and J(Zl, Z2) = zi + zi, with Zl, Z2 E [-1,1]' 

indicated that weight initialization greatly influenced the convergence of gradient 

descent when applied to PUNNs. It illustrated that initial weights chosen such that the 

direction of the negative of its gradient points to a local rather than a global minimum, 
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often resulted in gradient descent to converge to and become trapped by this bad local 

minimum. Also, it was shown that if initial weights are chosen along a steep incline of 

the error surface, where the derivative of the error surface with respect to the weight 

is extremely large, then weight updates will be large which may cause jumping over 

the global minimum. The neural network then oscillates between extreme points of 

the error surface overshooting the global minimum each time. The results in chapter 

4 with respect to functions Fl and F2 indicate that gradient descent using PUNNs 

were trapped in local minima resulting in much larger MSEs than achieved by particle 

swarm optimization and genetic algorithms. 

Another objective was to show that global optimization algorithms such as genetic 

algorithms, particle swarm optimization and leapfrog optimization could be used 

to avoid the numerous local minima that occur on the error surface of PUNNs in 

training PUNNs successfully. The results in chapter 4 in table 4.25 on page 121 show 

that the various optimization algorithms applied to PUNNs produced much lower 

MSEs on the training and test sets for each function than gradient descent applied 

to PUNNs, indicating that the PSO, GA and LFOP are more successful in training 

PUNNs than gradient descent. In functions F3, F4, F5, F6, F7 and F8 gradient 

descent was unsuccessful in training the corresponding PUNNs. In a comparison of 

the global optimization algorithms applied to SUNNs, it is evident that LFOP:SUs 

managed to produce smaller training errors and generalized much better than BP:SUs, 

except for functions f(x) = x2 and f(x, y) = x2 + y2, where BP:SUs outperformed 

PSO:SUs and LFOP:SUs. The global optimization algorithms applied to SUNNs in 

all eight functions did not perform better than BP:SUs, however, they did manage 

to reach lower generalization levels using much fewer iterations than BP:SUs and a 

corresponding higher percentage of convergence for the various generalization levels. 

In the case of function F5, although BP:SUs achieved a smaller training error than 
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PSO:PUs, it did not manage to reach the low generalization level of 0.0001, that was 

achieved by PSO:PUs. It can be concluded that the global optimization algorithms 

appeared to find the global minimum on the error surface faster than BP:SUs. 

Another objective was to determine the global optimization algorithm which is more 

efficient and robust in training PUNNs. Results in chapter 4 indicated that PUNNs 

performed the best with respect to functions Fl, F2, F6 and F8, while SUNNs 

outperformed the PUNNs in functions F3, F4, F5 and F7 achieving lower MSEs on the 

training sets and improved generalization. In the case of the global algorithms applied 

to PUNNs, PSO was the only algorithm that managed to reach a low generalization 

level of 0.0001 for all functions, except for function F7. LFOP applied to PUNNs 

also managed to reach low generalization levels of 0.00001 in functions Fl, F2, F3 

and F5. GAs only managed to achieve a low generalization level in functions Fl and 

F2. In choosing a global algorithm applied to PUNNs that is the most robust, it 

appears that PSO is more robust than LFOP with respect to functions Fl and F2 

from tables 4.30 and 4.32, also taking fewer iterations than PSO to reach convergence, 

whereas PSO appears to be more robust with respect to functions F4 and F5 since 

they have a larger percentage of simulations that converged to a generalization level 

of 0.00001. PSO tends to be more robust than LFOP if one takes into account the 

instances of functions F6, F7 and F8 where not a single simulation of LFOP could 

train the PUNNs successfully as reflected in tables 4.25 and 4.32; only overflows were 

produced in these cases due to the large weight adjustments caused by gradient descent. 

The optimal architectures for PUNNs were initially determined using brute force 

pruning in chapter 4 which resulted in much smaller architectures. The number 

of hidden units that occurred in optimal PUNNs expressed as a percentage of the 

number of hidden units that occurred in the equivalent optimal SUNNs, are for 
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functions F1 50%) F2 33.3%) F3 80%) F4 33.3%) F5 50%) F6 66.7%) F7 75% and 

F8 77.8%. This shows that the optimal PUNNs were smaller than the equivalent 

SUNNs for the eight test functions. The variance nullity pruning algorithm applied in 

chapter 5 produced similar PUNN architectures as the brute force pruning approach of 

section 4.8 on page 114. The results of chapter 4 show that PUNNs) with their much 

smaller optimal architectures compared to the corresponding larger optimal SUNNs) 

did not always result in an improvement with respect to performance of the neural 

networks. These smaller PUNNs networks did not always produce good training errors 

and generalization compared to the larger architectures of SUNNs. However) global 

optimization using SUs showed an improvement in performance compared to gradient 

descent using SUs. In certain instances the PUNNs outperformed the SUNNs. 

In general) PUNNs did not show a remarkable gain in performance) other than reaching 

lower generalization levels faster than gradient descent applied to SUNNs. One has 

to consider the trade-off between (a) added complexity when using PUNNs due to 

exponentiation and (b) the larger architecture required by SUNNs) before deciding on 

implementing a neural network using either PUs or SUs. 

6.1 Possible Improvements and Future Research 

The following aspects are suggested for future research: 

1. 	 The learning profiles in chapter 4 reflected that PSO and GA applied to PUNNs 

had larger reductions in error early in training) reaching low errors using substan­

tially less training epochs than gradient descent applied to SUNNs. This suggests 

using the global optimization algorithms for initial training to produce weights 

close to the global minima on the error surface. Once the area where the global 
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minimum occurs is reached, gradient descent can then be applied to further train 

the PUNN to completion, an approach which has been used successfully in the 

past using different optimization algorithms. 

2. 	 PSO can be enhanced by incorporating constriction coefficients in the algo­

rithm, which have lead to improved performance as reported by Eberhart et at 

[Eberhart et at 2000]. 

3. 	 The variance nullity algorithm applied to PUNNs can be improved by avoiding 

re-initialization of weights in cases where no parameters were pruned by retaining 

the unpruned weights and to continue the pruning process by re-training only the 

bias. 

4. 	 An investigation into the overfitting tendencies of PSO, GA and LFOP to identify 

the algorithm that exhibits the smallest degree of overfitting and consequently the 

best generalization. These results can then be compared to results obtained by 

Lawrence and Giles that showed that the Scaled Conjugate Gradient algorithm 

tended to overfit more than gradient descent [Lawrence et at2000j. 
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